1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore NoAlias and NonNull because they don't affect the 61 // call sequence. 62 AttributeList CallerAttrs = F.getAttributes(); 63 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 64 .removeAttribute(Attribute::NoAlias) 65 .removeAttribute(Attribute::NonNull) 66 .hasAttributes()) 67 return false; 68 69 // It's not safe to eliminate the sign / zero extension of the return value. 70 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 71 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 72 return false; 73 74 // Check if the only use is a function return node. 75 return isUsedByReturnOnly(Node, Chain); 76 } 77 78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 79 const uint32_t *CallerPreservedMask, 80 const SmallVectorImpl<CCValAssign> &ArgLocs, 81 const SmallVectorImpl<SDValue> &OutVals) const { 82 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 83 const CCValAssign &ArgLoc = ArgLocs[I]; 84 if (!ArgLoc.isRegLoc()) 85 continue; 86 Register Reg = ArgLoc.getLocReg(); 87 // Only look at callee saved registers. 88 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 89 continue; 90 // Check that we pass the value used for the caller. 91 // (We look for a CopyFromReg reading a virtual register that is used 92 // for the function live-in value of register Reg) 93 SDValue Value = OutVals[I]; 94 if (Value->getOpcode() != ISD::CopyFromReg) 95 return false; 96 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 97 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 98 return false; 99 } 100 return true; 101 } 102 103 /// Set CallLoweringInfo attribute flags based on a call instruction 104 /// and called function attributes. 105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 106 unsigned ArgIdx) { 107 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 108 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 109 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 110 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 111 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 112 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 113 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 114 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 115 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 116 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 117 Alignment = Call->getParamAlignment(ArgIdx); 118 ByValType = nullptr; 119 if (Call->paramHasAttr(ArgIdx, Attribute::ByVal)) 120 ByValType = Call->getParamByValType(ArgIdx); 121 } 122 123 /// Generate a libcall taking the given operands as arguments and returning a 124 /// result of type RetVT. 125 std::pair<SDValue, SDValue> 126 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 127 ArrayRef<SDValue> Ops, 128 MakeLibCallOptions CallOptions, 129 const SDLoc &dl, 130 SDValue InChain) const { 131 if (!InChain) 132 InChain = DAG.getEntryNode(); 133 134 TargetLowering::ArgListTy Args; 135 Args.reserve(Ops.size()); 136 137 TargetLowering::ArgListEntry Entry; 138 for (unsigned i = 0; i < Ops.size(); ++i) { 139 SDValue NewOp = Ops[i]; 140 Entry.Node = NewOp; 141 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 142 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 143 CallOptions.IsSExt); 144 Entry.IsZExt = !Entry.IsSExt; 145 146 if (CallOptions.IsSoften && 147 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 148 Entry.IsSExt = Entry.IsZExt = false; 149 } 150 Args.push_back(Entry); 151 } 152 153 if (LC == RTLIB::UNKNOWN_LIBCALL) 154 report_fatal_error("Unsupported library call operation!"); 155 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 156 getPointerTy(DAG.getDataLayout())); 157 158 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 159 TargetLowering::CallLoweringInfo CLI(DAG); 160 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 161 bool zeroExtend = !signExtend; 162 163 if (CallOptions.IsSoften && 164 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 165 signExtend = zeroExtend = false; 166 } 167 168 CLI.setDebugLoc(dl) 169 .setChain(InChain) 170 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 171 .setNoReturn(CallOptions.DoesNotReturn) 172 .setDiscardResult(!CallOptions.IsReturnValueUsed) 173 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 174 .setSExtResult(signExtend) 175 .setZExtResult(zeroExtend); 176 return LowerCallTo(CLI); 177 } 178 179 bool TargetLowering::findOptimalMemOpLowering( 180 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 181 unsigned SrcAS, const AttributeList &FuncAttributes) const { 182 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 183 return false; 184 185 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 186 187 if (VT == MVT::Other) { 188 // Use the largest integer type whose alignment constraints are satisfied. 189 // We only need to check DstAlign here as SrcAlign is always greater or 190 // equal to DstAlign (or zero). 191 VT = MVT::i64; 192 if (Op.isFixedDstAlign()) 193 while ( 194 Op.getDstAlign() < (VT.getSizeInBits() / 8) && 195 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value())) 196 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 197 assert(VT.isInteger()); 198 199 // Find the largest legal integer type. 200 MVT LVT = MVT::i64; 201 while (!isTypeLegal(LVT)) 202 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 203 assert(LVT.isInteger()); 204 205 // If the type we've chosen is larger than the largest legal integer type 206 // then use that instead. 207 if (VT.bitsGT(LVT)) 208 VT = LVT; 209 } 210 211 unsigned NumMemOps = 0; 212 uint64_t Size = Op.size(); 213 while (Size) { 214 unsigned VTSize = VT.getSizeInBits() / 8; 215 while (VTSize > Size) { 216 // For now, only use non-vector load / store's for the left-over pieces. 217 EVT NewVT = VT; 218 unsigned NewVTSize; 219 220 bool Found = false; 221 if (VT.isVector() || VT.isFloatingPoint()) { 222 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 223 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 224 isSafeMemOpType(NewVT.getSimpleVT())) 225 Found = true; 226 else if (NewVT == MVT::i64 && 227 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 228 isSafeMemOpType(MVT::f64)) { 229 // i64 is usually not legal on 32-bit targets, but f64 may be. 230 NewVT = MVT::f64; 231 Found = true; 232 } 233 } 234 235 if (!Found) { 236 do { 237 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 238 if (NewVT == MVT::i8) 239 break; 240 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 241 } 242 NewVTSize = NewVT.getSizeInBits() / 8; 243 244 // If the new VT cannot cover all of the remaining bits, then consider 245 // issuing a (or a pair of) unaligned and overlapping load / store. 246 bool Fast; 247 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 248 allowsMisalignedMemoryAccesses( 249 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0, 250 MachineMemOperand::MONone, &Fast) && 251 Fast) 252 VTSize = Size; 253 else { 254 VT = NewVT; 255 VTSize = NewVTSize; 256 } 257 } 258 259 if (++NumMemOps > Limit) 260 return false; 261 262 MemOps.push_back(VT); 263 Size -= VTSize; 264 } 265 266 return true; 267 } 268 269 /// Soften the operands of a comparison. This code is shared among BR_CC, 270 /// SELECT_CC, and SETCC handlers. 271 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 272 SDValue &NewLHS, SDValue &NewRHS, 273 ISD::CondCode &CCCode, 274 const SDLoc &dl, const SDValue OldLHS, 275 const SDValue OldRHS) const { 276 SDValue Chain; 277 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 278 OldRHS, Chain); 279 } 280 281 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 282 SDValue &NewLHS, SDValue &NewRHS, 283 ISD::CondCode &CCCode, 284 const SDLoc &dl, const SDValue OldLHS, 285 const SDValue OldRHS, 286 SDValue &Chain, 287 bool IsSignaling) const { 288 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 289 // not supporting it. We can update this code when libgcc provides such 290 // functions. 291 292 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 293 && "Unsupported setcc type!"); 294 295 // Expand into one or more soft-fp libcall(s). 296 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 297 bool ShouldInvertCC = false; 298 switch (CCCode) { 299 case ISD::SETEQ: 300 case ISD::SETOEQ: 301 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 302 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 303 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 304 break; 305 case ISD::SETNE: 306 case ISD::SETUNE: 307 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 308 (VT == MVT::f64) ? RTLIB::UNE_F64 : 309 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 310 break; 311 case ISD::SETGE: 312 case ISD::SETOGE: 313 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 314 (VT == MVT::f64) ? RTLIB::OGE_F64 : 315 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 316 break; 317 case ISD::SETLT: 318 case ISD::SETOLT: 319 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 320 (VT == MVT::f64) ? RTLIB::OLT_F64 : 321 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 322 break; 323 case ISD::SETLE: 324 case ISD::SETOLE: 325 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 326 (VT == MVT::f64) ? RTLIB::OLE_F64 : 327 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 328 break; 329 case ISD::SETGT: 330 case ISD::SETOGT: 331 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 332 (VT == MVT::f64) ? RTLIB::OGT_F64 : 333 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 334 break; 335 case ISD::SETO: 336 ShouldInvertCC = true; 337 LLVM_FALLTHROUGH; 338 case ISD::SETUO: 339 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 340 (VT == MVT::f64) ? RTLIB::UO_F64 : 341 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 342 break; 343 case ISD::SETONE: 344 // SETONE = O && UNE 345 ShouldInvertCC = true; 346 LLVM_FALLTHROUGH; 347 case ISD::SETUEQ: 348 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 349 (VT == MVT::f64) ? RTLIB::UO_F64 : 350 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 351 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 352 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 353 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 354 break; 355 default: 356 // Invert CC for unordered comparisons 357 ShouldInvertCC = true; 358 switch (CCCode) { 359 case ISD::SETULT: 360 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 361 (VT == MVT::f64) ? RTLIB::OGE_F64 : 362 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 363 break; 364 case ISD::SETULE: 365 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 366 (VT == MVT::f64) ? RTLIB::OGT_F64 : 367 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 368 break; 369 case ISD::SETUGT: 370 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 371 (VT == MVT::f64) ? RTLIB::OLE_F64 : 372 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 373 break; 374 case ISD::SETUGE: 375 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 376 (VT == MVT::f64) ? RTLIB::OLT_F64 : 377 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 378 break; 379 default: llvm_unreachable("Do not know how to soften this setcc!"); 380 } 381 } 382 383 // Use the target specific return value for comparions lib calls. 384 EVT RetVT = getCmpLibcallReturnType(); 385 SDValue Ops[2] = {NewLHS, NewRHS}; 386 TargetLowering::MakeLibCallOptions CallOptions; 387 EVT OpsVT[2] = { OldLHS.getValueType(), 388 OldRHS.getValueType() }; 389 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 390 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 391 NewLHS = Call.first; 392 NewRHS = DAG.getConstant(0, dl, RetVT); 393 394 CCCode = getCmpLibcallCC(LC1); 395 if (ShouldInvertCC) { 396 assert(RetVT.isInteger()); 397 CCCode = getSetCCInverse(CCCode, RetVT); 398 } 399 400 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 401 // Update Chain. 402 Chain = Call.second; 403 } else { 404 EVT SetCCVT = 405 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 406 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 407 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 408 CCCode = getCmpLibcallCC(LC2); 409 if (ShouldInvertCC) 410 CCCode = getSetCCInverse(CCCode, RetVT); 411 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 412 if (Chain) 413 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 414 Call2.second); 415 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 416 Tmp.getValueType(), Tmp, NewLHS); 417 NewRHS = SDValue(); 418 } 419 } 420 421 /// Return the entry encoding for a jump table in the current function. The 422 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 423 unsigned TargetLowering::getJumpTableEncoding() const { 424 // In non-pic modes, just use the address of a block. 425 if (!isPositionIndependent()) 426 return MachineJumpTableInfo::EK_BlockAddress; 427 428 // In PIC mode, if the target supports a GPRel32 directive, use it. 429 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 430 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 431 432 // Otherwise, use a label difference. 433 return MachineJumpTableInfo::EK_LabelDifference32; 434 } 435 436 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 437 SelectionDAG &DAG) const { 438 // If our PIC model is GP relative, use the global offset table as the base. 439 unsigned JTEncoding = getJumpTableEncoding(); 440 441 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 442 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 443 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 444 445 return Table; 446 } 447 448 /// This returns the relocation base for the given PIC jumptable, the same as 449 /// getPICJumpTableRelocBase, but as an MCExpr. 450 const MCExpr * 451 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 452 unsigned JTI,MCContext &Ctx) const{ 453 // The normal PIC reloc base is the label at the start of the jump table. 454 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 455 } 456 457 bool 458 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 459 const TargetMachine &TM = getTargetMachine(); 460 const GlobalValue *GV = GA->getGlobal(); 461 462 // If the address is not even local to this DSO we will have to load it from 463 // a got and then add the offset. 464 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 465 return false; 466 467 // If the code is position independent we will have to add a base register. 468 if (isPositionIndependent()) 469 return false; 470 471 // Otherwise we can do it. 472 return true; 473 } 474 475 //===----------------------------------------------------------------------===// 476 // Optimization Methods 477 //===----------------------------------------------------------------------===// 478 479 /// If the specified instruction has a constant integer operand and there are 480 /// bits set in that constant that are not demanded, then clear those bits and 481 /// return true. 482 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 483 TargetLoweringOpt &TLO) const { 484 SDLoc DL(Op); 485 unsigned Opcode = Op.getOpcode(); 486 487 // Do target-specific constant optimization. 488 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 489 return TLO.New.getNode(); 490 491 // FIXME: ISD::SELECT, ISD::SELECT_CC 492 switch (Opcode) { 493 default: 494 break; 495 case ISD::XOR: 496 case ISD::AND: 497 case ISD::OR: { 498 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 499 if (!Op1C) 500 return false; 501 502 // If this is a 'not' op, don't touch it because that's a canonical form. 503 const APInt &C = Op1C->getAPIntValue(); 504 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 505 return false; 506 507 if (!C.isSubsetOf(Demanded)) { 508 EVT VT = Op.getValueType(); 509 SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT); 510 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 511 return TLO.CombineTo(Op, NewOp); 512 } 513 514 break; 515 } 516 } 517 518 return false; 519 } 520 521 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 522 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 523 /// generalized for targets with other types of implicit widening casts. 524 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 525 const APInt &Demanded, 526 TargetLoweringOpt &TLO) const { 527 assert(Op.getNumOperands() == 2 && 528 "ShrinkDemandedOp only supports binary operators!"); 529 assert(Op.getNode()->getNumValues() == 1 && 530 "ShrinkDemandedOp only supports nodes with one result!"); 531 532 SelectionDAG &DAG = TLO.DAG; 533 SDLoc dl(Op); 534 535 // Early return, as this function cannot handle vector types. 536 if (Op.getValueType().isVector()) 537 return false; 538 539 // Don't do this if the node has another user, which may require the 540 // full value. 541 if (!Op.getNode()->hasOneUse()) 542 return false; 543 544 // Search for the smallest integer type with free casts to and from 545 // Op's type. For expedience, just check power-of-2 integer types. 546 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 547 unsigned DemandedSize = Demanded.getActiveBits(); 548 unsigned SmallVTBits = DemandedSize; 549 if (!isPowerOf2_32(SmallVTBits)) 550 SmallVTBits = NextPowerOf2(SmallVTBits); 551 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 552 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 553 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 554 TLI.isZExtFree(SmallVT, Op.getValueType())) { 555 // We found a type with free casts. 556 SDValue X = DAG.getNode( 557 Op.getOpcode(), dl, SmallVT, 558 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 559 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 560 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 561 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 562 return TLO.CombineTo(Op, Z); 563 } 564 } 565 return false; 566 } 567 568 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 569 DAGCombinerInfo &DCI) const { 570 SelectionDAG &DAG = DCI.DAG; 571 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 572 !DCI.isBeforeLegalizeOps()); 573 KnownBits Known; 574 575 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 576 if (Simplified) { 577 DCI.AddToWorklist(Op.getNode()); 578 DCI.CommitTargetLoweringOpt(TLO); 579 } 580 return Simplified; 581 } 582 583 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 584 KnownBits &Known, 585 TargetLoweringOpt &TLO, 586 unsigned Depth, 587 bool AssumeSingleUse) const { 588 EVT VT = Op.getValueType(); 589 APInt DemandedElts = VT.isVector() 590 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 591 : APInt(1, 1); 592 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 593 AssumeSingleUse); 594 } 595 596 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 597 // TODO: Under what circumstances can we create nodes? Constant folding? 598 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 599 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 600 SelectionDAG &DAG, unsigned Depth) const { 601 // Limit search depth. 602 if (Depth >= SelectionDAG::MaxRecursionDepth) 603 return SDValue(); 604 605 // Ignore UNDEFs. 606 if (Op.isUndef()) 607 return SDValue(); 608 609 // Not demanding any bits/elts from Op. 610 if (DemandedBits == 0 || DemandedElts == 0) 611 return DAG.getUNDEF(Op.getValueType()); 612 613 unsigned NumElts = DemandedElts.getBitWidth(); 614 KnownBits LHSKnown, RHSKnown; 615 switch (Op.getOpcode()) { 616 case ISD::BITCAST: { 617 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 618 EVT SrcVT = Src.getValueType(); 619 EVT DstVT = Op.getValueType(); 620 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 621 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 622 623 if (NumSrcEltBits == NumDstEltBits) 624 if (SDValue V = SimplifyMultipleUseDemandedBits( 625 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 626 return DAG.getBitcast(DstVT, V); 627 628 // TODO - bigendian once we have test coverage. 629 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 630 DAG.getDataLayout().isLittleEndian()) { 631 unsigned Scale = NumDstEltBits / NumSrcEltBits; 632 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 633 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 634 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 635 for (unsigned i = 0; i != Scale; ++i) { 636 unsigned Offset = i * NumSrcEltBits; 637 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 638 if (!Sub.isNullValue()) { 639 DemandedSrcBits |= Sub; 640 for (unsigned j = 0; j != NumElts; ++j) 641 if (DemandedElts[j]) 642 DemandedSrcElts.setBit((j * Scale) + i); 643 } 644 } 645 646 if (SDValue V = SimplifyMultipleUseDemandedBits( 647 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 648 return DAG.getBitcast(DstVT, V); 649 } 650 651 // TODO - bigendian once we have test coverage. 652 if ((NumSrcEltBits % NumDstEltBits) == 0 && 653 DAG.getDataLayout().isLittleEndian()) { 654 unsigned Scale = NumSrcEltBits / NumDstEltBits; 655 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 656 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 657 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 658 for (unsigned i = 0; i != NumElts; ++i) 659 if (DemandedElts[i]) { 660 unsigned Offset = (i % Scale) * NumDstEltBits; 661 DemandedSrcBits.insertBits(DemandedBits, Offset); 662 DemandedSrcElts.setBit(i / Scale); 663 } 664 665 if (SDValue V = SimplifyMultipleUseDemandedBits( 666 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 667 return DAG.getBitcast(DstVT, V); 668 } 669 670 break; 671 } 672 case ISD::AND: { 673 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 674 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 675 676 // If all of the demanded bits are known 1 on one side, return the other. 677 // These bits cannot contribute to the result of the 'and' in this 678 // context. 679 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 680 return Op.getOperand(0); 681 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 682 return Op.getOperand(1); 683 break; 684 } 685 case ISD::OR: { 686 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 687 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 688 689 // If all of the demanded bits are known zero on one side, return the 690 // other. These bits cannot contribute to the result of the 'or' in this 691 // context. 692 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 693 return Op.getOperand(0); 694 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 695 return Op.getOperand(1); 696 break; 697 } 698 case ISD::XOR: { 699 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 700 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 701 702 // If all of the demanded bits are known zero on one side, return the 703 // other. 704 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 705 return Op.getOperand(0); 706 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 707 return Op.getOperand(1); 708 break; 709 } 710 case ISD::SETCC: { 711 SDValue Op0 = Op.getOperand(0); 712 SDValue Op1 = Op.getOperand(1); 713 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 714 // If (1) we only need the sign-bit, (2) the setcc operands are the same 715 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 716 // -1, we may be able to bypass the setcc. 717 if (DemandedBits.isSignMask() && 718 Op0.getScalarValueSizeInBits() == DemandedBits.getBitWidth() && 719 getBooleanContents(Op0.getValueType()) == 720 BooleanContent::ZeroOrNegativeOneBooleanContent) { 721 // If we're testing X < 0, then this compare isn't needed - just use X! 722 // FIXME: We're limiting to integer types here, but this should also work 723 // if we don't care about FP signed-zero. The use of SETLT with FP means 724 // that we don't care about NaNs. 725 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 726 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 727 return Op0; 728 } 729 break; 730 } 731 case ISD::SIGN_EXTEND_INREG: { 732 // If none of the extended bits are demanded, eliminate the sextinreg. 733 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 734 if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits()) 735 return Op.getOperand(0); 736 break; 737 } 738 case ISD::INSERT_VECTOR_ELT: { 739 // If we don't demand the inserted element, return the base vector. 740 SDValue Vec = Op.getOperand(0); 741 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 742 EVT VecVT = Vec.getValueType(); 743 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 744 !DemandedElts[CIdx->getZExtValue()]) 745 return Vec; 746 break; 747 } 748 case ISD::INSERT_SUBVECTOR: { 749 // If we don't demand the inserted subvector, return the base vector. 750 SDValue Vec = Op.getOperand(0); 751 SDValue Sub = Op.getOperand(1); 752 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 753 unsigned NumVecElts = Vec.getValueType().getVectorNumElements(); 754 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 755 if (CIdx && CIdx->getAPIntValue().ule(NumVecElts - NumSubElts)) 756 if (DemandedElts.extractBits(NumSubElts, CIdx->getZExtValue()) == 0) 757 return Vec; 758 break; 759 } 760 case ISD::VECTOR_SHUFFLE: { 761 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 762 763 // If all the demanded elts are from one operand and are inline, 764 // then we can use the operand directly. 765 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 766 for (unsigned i = 0; i != NumElts; ++i) { 767 int M = ShuffleMask[i]; 768 if (M < 0 || !DemandedElts[i]) 769 continue; 770 AllUndef = false; 771 IdentityLHS &= (M == (int)i); 772 IdentityRHS &= ((M - NumElts) == i); 773 } 774 775 if (AllUndef) 776 return DAG.getUNDEF(Op.getValueType()); 777 if (IdentityLHS) 778 return Op.getOperand(0); 779 if (IdentityRHS) 780 return Op.getOperand(1); 781 break; 782 } 783 default: 784 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 785 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 786 Op, DemandedBits, DemandedElts, DAG, Depth)) 787 return V; 788 break; 789 } 790 return SDValue(); 791 } 792 793 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 794 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 795 unsigned Depth) const { 796 EVT VT = Op.getValueType(); 797 APInt DemandedElts = VT.isVector() 798 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 799 : APInt(1, 1); 800 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 801 Depth); 802 } 803 804 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 805 /// result of Op are ever used downstream. If we can use this information to 806 /// simplify Op, create a new simplified DAG node and return true, returning the 807 /// original and new nodes in Old and New. Otherwise, analyze the expression and 808 /// return a mask of Known bits for the expression (used to simplify the 809 /// caller). The Known bits may only be accurate for those bits in the 810 /// OriginalDemandedBits and OriginalDemandedElts. 811 bool TargetLowering::SimplifyDemandedBits( 812 SDValue Op, const APInt &OriginalDemandedBits, 813 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 814 unsigned Depth, bool AssumeSingleUse) const { 815 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 816 assert(Op.getScalarValueSizeInBits() == BitWidth && 817 "Mask size mismatches value type size!"); 818 819 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 820 assert((!Op.getValueType().isVector() || 821 NumElts == Op.getValueType().getVectorNumElements()) && 822 "Unexpected vector size"); 823 824 APInt DemandedBits = OriginalDemandedBits; 825 APInt DemandedElts = OriginalDemandedElts; 826 SDLoc dl(Op); 827 auto &DL = TLO.DAG.getDataLayout(); 828 829 // Don't know anything. 830 Known = KnownBits(BitWidth); 831 832 // Undef operand. 833 if (Op.isUndef()) 834 return false; 835 836 if (Op.getOpcode() == ISD::Constant) { 837 // We know all of the bits for a constant! 838 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 839 Known.Zero = ~Known.One; 840 return false; 841 } 842 843 // Other users may use these bits. 844 EVT VT = Op.getValueType(); 845 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 846 if (Depth != 0) { 847 // If not at the root, Just compute the Known bits to 848 // simplify things downstream. 849 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 850 return false; 851 } 852 // If this is the root being simplified, allow it to have multiple uses, 853 // just set the DemandedBits/Elts to all bits. 854 DemandedBits = APInt::getAllOnesValue(BitWidth); 855 DemandedElts = APInt::getAllOnesValue(NumElts); 856 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 857 // Not demanding any bits/elts from Op. 858 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 859 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 860 // Limit search depth. 861 return false; 862 } 863 864 KnownBits Known2, KnownOut; 865 switch (Op.getOpcode()) { 866 case ISD::TargetConstant: 867 llvm_unreachable("Can't simplify this node"); 868 case ISD::SCALAR_TO_VECTOR: { 869 if (!DemandedElts[0]) 870 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 871 872 KnownBits SrcKnown; 873 SDValue Src = Op.getOperand(0); 874 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 875 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 876 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 877 return true; 878 879 // Upper elements are undef, so only get the knownbits if we just demand 880 // the bottom element. 881 if (DemandedElts == 1) 882 Known = SrcKnown.anyextOrTrunc(BitWidth); 883 break; 884 } 885 case ISD::BUILD_VECTOR: 886 // Collect the known bits that are shared by every demanded element. 887 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 888 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 889 return false; // Don't fall through, will infinitely loop. 890 case ISD::LOAD: { 891 LoadSDNode *LD = cast<LoadSDNode>(Op); 892 if (getTargetConstantFromLoad(LD)) { 893 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 894 return false; // Don't fall through, will infinitely loop. 895 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 896 // If this is a ZEXTLoad and we are looking at the loaded value. 897 EVT MemVT = LD->getMemoryVT(); 898 unsigned MemBits = MemVT.getScalarSizeInBits(); 899 Known.Zero.setBitsFrom(MemBits); 900 return false; // Don't fall through, will infinitely loop. 901 } 902 break; 903 } 904 case ISD::INSERT_VECTOR_ELT: { 905 SDValue Vec = Op.getOperand(0); 906 SDValue Scl = Op.getOperand(1); 907 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 908 EVT VecVT = Vec.getValueType(); 909 910 // If index isn't constant, assume we need all vector elements AND the 911 // inserted element. 912 APInt DemandedVecElts(DemandedElts); 913 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 914 unsigned Idx = CIdx->getZExtValue(); 915 DemandedVecElts.clearBit(Idx); 916 917 // Inserted element is not required. 918 if (!DemandedElts[Idx]) 919 return TLO.CombineTo(Op, Vec); 920 } 921 922 KnownBits KnownScl; 923 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 924 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 925 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 926 return true; 927 928 Known = KnownScl.anyextOrTrunc(BitWidth); 929 930 KnownBits KnownVec; 931 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 932 Depth + 1)) 933 return true; 934 935 if (!!DemandedVecElts) { 936 Known.One &= KnownVec.One; 937 Known.Zero &= KnownVec.Zero; 938 } 939 940 return false; 941 } 942 case ISD::INSERT_SUBVECTOR: { 943 SDValue Base = Op.getOperand(0); 944 SDValue Sub = Op.getOperand(1); 945 EVT SubVT = Sub.getValueType(); 946 unsigned NumSubElts = SubVT.getVectorNumElements(); 947 948 // If index isn't constant, assume we need the original demanded base 949 // elements and ALL the inserted subvector elements. 950 APInt BaseElts = DemandedElts; 951 APInt SubElts = APInt::getAllOnesValue(NumSubElts); 952 if (isa<ConstantSDNode>(Op.getOperand(2))) { 953 const APInt &Idx = Op.getConstantOperandAPInt(2); 954 if (Idx.ule(NumElts - NumSubElts)) { 955 unsigned SubIdx = Idx.getZExtValue(); 956 SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 957 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 958 } 959 } 960 961 KnownBits KnownSub, KnownBase; 962 if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO, 963 Depth + 1)) 964 return true; 965 if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO, 966 Depth + 1)) 967 return true; 968 969 Known.Zero.setAllBits(); 970 Known.One.setAllBits(); 971 if (!!SubElts) { 972 Known.One &= KnownSub.One; 973 Known.Zero &= KnownSub.Zero; 974 } 975 if (!!BaseElts) { 976 Known.One &= KnownBase.One; 977 Known.Zero &= KnownBase.Zero; 978 } 979 980 // Attempt to avoid multi-use src if we don't need anything from it. 981 if (!DemandedBits.isAllOnesValue() || !SubElts.isAllOnesValue() || 982 !BaseElts.isAllOnesValue()) { 983 SDValue NewSub = SimplifyMultipleUseDemandedBits( 984 Sub, DemandedBits, SubElts, TLO.DAG, Depth + 1); 985 SDValue NewBase = SimplifyMultipleUseDemandedBits( 986 Base, DemandedBits, BaseElts, TLO.DAG, Depth + 1); 987 if (NewSub || NewBase) { 988 NewSub = NewSub ? NewSub : Sub; 989 NewBase = NewBase ? NewBase : Base; 990 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewBase, NewSub, 991 Op.getOperand(2)); 992 return TLO.CombineTo(Op, NewOp); 993 } 994 } 995 break; 996 } 997 case ISD::EXTRACT_SUBVECTOR: { 998 // If index isn't constant, assume we need all the source vector elements. 999 SDValue Src = Op.getOperand(0); 1000 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 1001 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1002 APInt SrcElts = APInt::getAllOnesValue(NumSrcElts); 1003 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 1004 // Offset the demanded elts by the subvector index. 1005 uint64_t Idx = SubIdx->getZExtValue(); 1006 SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1007 } 1008 if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1)) 1009 return true; 1010 1011 // Attempt to avoid multi-use src if we don't need anything from it. 1012 if (!DemandedBits.isAllOnesValue() || !SrcElts.isAllOnesValue()) { 1013 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1014 Src, DemandedBits, SrcElts, TLO.DAG, Depth + 1); 1015 if (DemandedSrc) { 1016 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1017 Op.getOperand(1)); 1018 return TLO.CombineTo(Op, NewOp); 1019 } 1020 } 1021 break; 1022 } 1023 case ISD::CONCAT_VECTORS: { 1024 Known.Zero.setAllBits(); 1025 Known.One.setAllBits(); 1026 EVT SubVT = Op.getOperand(0).getValueType(); 1027 unsigned NumSubVecs = Op.getNumOperands(); 1028 unsigned NumSubElts = SubVT.getVectorNumElements(); 1029 for (unsigned i = 0; i != NumSubVecs; ++i) { 1030 APInt DemandedSubElts = 1031 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1032 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1033 Known2, TLO, Depth + 1)) 1034 return true; 1035 // Known bits are shared by every demanded subvector element. 1036 if (!!DemandedSubElts) { 1037 Known.One &= Known2.One; 1038 Known.Zero &= Known2.Zero; 1039 } 1040 } 1041 break; 1042 } 1043 case ISD::VECTOR_SHUFFLE: { 1044 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1045 1046 // Collect demanded elements from shuffle operands.. 1047 APInt DemandedLHS(NumElts, 0); 1048 APInt DemandedRHS(NumElts, 0); 1049 for (unsigned i = 0; i != NumElts; ++i) { 1050 if (!DemandedElts[i]) 1051 continue; 1052 int M = ShuffleMask[i]; 1053 if (M < 0) { 1054 // For UNDEF elements, we don't know anything about the common state of 1055 // the shuffle result. 1056 DemandedLHS.clearAllBits(); 1057 DemandedRHS.clearAllBits(); 1058 break; 1059 } 1060 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1061 if (M < (int)NumElts) 1062 DemandedLHS.setBit(M); 1063 else 1064 DemandedRHS.setBit(M - NumElts); 1065 } 1066 1067 if (!!DemandedLHS || !!DemandedRHS) { 1068 SDValue Op0 = Op.getOperand(0); 1069 SDValue Op1 = Op.getOperand(1); 1070 1071 Known.Zero.setAllBits(); 1072 Known.One.setAllBits(); 1073 if (!!DemandedLHS) { 1074 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1075 Depth + 1)) 1076 return true; 1077 Known.One &= Known2.One; 1078 Known.Zero &= Known2.Zero; 1079 } 1080 if (!!DemandedRHS) { 1081 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1082 Depth + 1)) 1083 return true; 1084 Known.One &= Known2.One; 1085 Known.Zero &= Known2.Zero; 1086 } 1087 1088 // Attempt to avoid multi-use ops if we don't need anything from them. 1089 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1090 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1091 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1092 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1093 if (DemandedOp0 || DemandedOp1) { 1094 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1095 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1096 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1097 return TLO.CombineTo(Op, NewOp); 1098 } 1099 } 1100 break; 1101 } 1102 case ISD::AND: { 1103 SDValue Op0 = Op.getOperand(0); 1104 SDValue Op1 = Op.getOperand(1); 1105 1106 // If the RHS is a constant, check to see if the LHS would be zero without 1107 // using the bits from the RHS. Below, we use knowledge about the RHS to 1108 // simplify the LHS, here we're using information from the LHS to simplify 1109 // the RHS. 1110 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1111 // Do not increment Depth here; that can cause an infinite loop. 1112 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1113 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1114 if ((LHSKnown.Zero & DemandedBits) == 1115 (~RHSC->getAPIntValue() & DemandedBits)) 1116 return TLO.CombineTo(Op, Op0); 1117 1118 // If any of the set bits in the RHS are known zero on the LHS, shrink 1119 // the constant. 1120 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 1121 return true; 1122 1123 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1124 // constant, but if this 'and' is only clearing bits that were just set by 1125 // the xor, then this 'and' can be eliminated by shrinking the mask of 1126 // the xor. For example, for a 32-bit X: 1127 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1128 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1129 LHSKnown.One == ~RHSC->getAPIntValue()) { 1130 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1131 return TLO.CombineTo(Op, Xor); 1132 } 1133 } 1134 1135 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1136 Depth + 1)) 1137 return true; 1138 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1139 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1140 Known2, TLO, Depth + 1)) 1141 return true; 1142 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1143 1144 // Attempt to avoid multi-use ops if we don't need anything from them. 1145 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1146 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1147 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1148 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1149 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1150 if (DemandedOp0 || DemandedOp1) { 1151 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1152 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1153 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1154 return TLO.CombineTo(Op, NewOp); 1155 } 1156 } 1157 1158 // If all of the demanded bits are known one on one side, return the other. 1159 // These bits cannot contribute to the result of the 'and'. 1160 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1161 return TLO.CombineTo(Op, Op0); 1162 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1163 return TLO.CombineTo(Op, Op1); 1164 // If all of the demanded bits in the inputs are known zeros, return zero. 1165 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1166 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1167 // If the RHS is a constant, see if we can simplify it. 1168 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 1169 return true; 1170 // If the operation can be done in a smaller type, do so. 1171 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1172 return true; 1173 1174 // Output known-1 bits are only known if set in both the LHS & RHS. 1175 Known.One &= Known2.One; 1176 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1177 Known.Zero |= Known2.Zero; 1178 break; 1179 } 1180 case ISD::OR: { 1181 SDValue Op0 = Op.getOperand(0); 1182 SDValue Op1 = Op.getOperand(1); 1183 1184 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1185 Depth + 1)) 1186 return true; 1187 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1188 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1189 Known2, TLO, Depth + 1)) 1190 return true; 1191 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1192 1193 // Attempt to avoid multi-use ops if we don't need anything from them. 1194 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1195 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1196 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1197 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1198 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1199 if (DemandedOp0 || DemandedOp1) { 1200 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1201 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1202 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1203 return TLO.CombineTo(Op, NewOp); 1204 } 1205 } 1206 1207 // If all of the demanded bits are known zero on one side, return the other. 1208 // These bits cannot contribute to the result of the 'or'. 1209 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1210 return TLO.CombineTo(Op, Op0); 1211 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1212 return TLO.CombineTo(Op, Op1); 1213 // If the RHS is a constant, see if we can simplify it. 1214 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1215 return true; 1216 // If the operation can be done in a smaller type, do so. 1217 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1218 return true; 1219 1220 // Output known-0 bits are only known if clear in both the LHS & RHS. 1221 Known.Zero &= Known2.Zero; 1222 // Output known-1 are known to be set if set in either the LHS | RHS. 1223 Known.One |= Known2.One; 1224 break; 1225 } 1226 case ISD::XOR: { 1227 SDValue Op0 = Op.getOperand(0); 1228 SDValue Op1 = Op.getOperand(1); 1229 1230 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1231 Depth + 1)) 1232 return true; 1233 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1234 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1235 Depth + 1)) 1236 return true; 1237 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1238 1239 // Attempt to avoid multi-use ops if we don't need anything from them. 1240 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1241 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1242 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1243 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1244 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1245 if (DemandedOp0 || DemandedOp1) { 1246 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1247 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1248 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1249 return TLO.CombineTo(Op, NewOp); 1250 } 1251 } 1252 1253 // If all of the demanded bits are known zero on one side, return the other. 1254 // These bits cannot contribute to the result of the 'xor'. 1255 if (DemandedBits.isSubsetOf(Known.Zero)) 1256 return TLO.CombineTo(Op, Op0); 1257 if (DemandedBits.isSubsetOf(Known2.Zero)) 1258 return TLO.CombineTo(Op, Op1); 1259 // If the operation can be done in a smaller type, do so. 1260 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1261 return true; 1262 1263 // If all of the unknown bits are known to be zero on one side or the other 1264 // (but not both) turn this into an *inclusive* or. 1265 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1266 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1267 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1268 1269 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1270 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1271 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1272 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1273 1274 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 1275 // If one side is a constant, and all of the known set bits on the other 1276 // side are also set in the constant, turn this into an AND, as we know 1277 // the bits will be cleared. 1278 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1279 // NB: it is okay if more bits are known than are requested 1280 if (C->getAPIntValue() == Known2.One) { 1281 SDValue ANDC = 1282 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1283 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1284 } 1285 1286 // If the RHS is a constant, see if we can change it. Don't alter a -1 1287 // constant because that's a 'not' op, and that is better for combining 1288 // and codegen. 1289 if (!C->isAllOnesValue()) { 1290 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 1291 // We're flipping all demanded bits. Flip the undemanded bits too. 1292 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1293 return TLO.CombineTo(Op, New); 1294 } 1295 // If we can't turn this into a 'not', try to shrink the constant. 1296 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1297 return true; 1298 } 1299 } 1300 1301 Known = std::move(KnownOut); 1302 break; 1303 } 1304 case ISD::SELECT: 1305 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1306 Depth + 1)) 1307 return true; 1308 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1309 Depth + 1)) 1310 return true; 1311 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1312 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1313 1314 // If the operands are constants, see if we can simplify them. 1315 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1316 return true; 1317 1318 // Only known if known in both the LHS and RHS. 1319 Known.One &= Known2.One; 1320 Known.Zero &= Known2.Zero; 1321 break; 1322 case ISD::SELECT_CC: 1323 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1324 Depth + 1)) 1325 return true; 1326 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1327 Depth + 1)) 1328 return true; 1329 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1330 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1331 1332 // If the operands are constants, see if we can simplify them. 1333 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1334 return true; 1335 1336 // Only known if known in both the LHS and RHS. 1337 Known.One &= Known2.One; 1338 Known.Zero &= Known2.Zero; 1339 break; 1340 case ISD::SETCC: { 1341 SDValue Op0 = Op.getOperand(0); 1342 SDValue Op1 = Op.getOperand(1); 1343 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1344 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1345 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1346 // -1, we may be able to bypass the setcc. 1347 if (DemandedBits.isSignMask() && 1348 Op0.getScalarValueSizeInBits() == BitWidth && 1349 getBooleanContents(Op0.getValueType()) == 1350 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1351 // If we're testing X < 0, then this compare isn't needed - just use X! 1352 // FIXME: We're limiting to integer types here, but this should also work 1353 // if we don't care about FP signed-zero. The use of SETLT with FP means 1354 // that we don't care about NaNs. 1355 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1356 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1357 return TLO.CombineTo(Op, Op0); 1358 1359 // TODO: Should we check for other forms of sign-bit comparisons? 1360 // Examples: X <= -1, X >= 0 1361 } 1362 if (getBooleanContents(Op0.getValueType()) == 1363 TargetLowering::ZeroOrOneBooleanContent && 1364 BitWidth > 1) 1365 Known.Zero.setBitsFrom(1); 1366 break; 1367 } 1368 case ISD::SHL: { 1369 SDValue Op0 = Op.getOperand(0); 1370 SDValue Op1 = Op.getOperand(1); 1371 EVT ShiftVT = Op1.getValueType(); 1372 1373 if (const APInt *SA = 1374 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1375 unsigned ShAmt = SA->getZExtValue(); 1376 if (ShAmt == 0) 1377 return TLO.CombineTo(Op, Op0); 1378 1379 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1380 // single shift. We can do this if the bottom bits (which are shifted 1381 // out) are never demanded. 1382 // TODO - support non-uniform vector amounts. 1383 if (Op0.getOpcode() == ISD::SRL) { 1384 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1385 if (const APInt *SA2 = 1386 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1387 if (SA2->ult(BitWidth)) { 1388 unsigned C1 = SA2->getZExtValue(); 1389 unsigned Opc = ISD::SHL; 1390 int Diff = ShAmt - C1; 1391 if (Diff < 0) { 1392 Diff = -Diff; 1393 Opc = ISD::SRL; 1394 } 1395 1396 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1397 return TLO.CombineTo( 1398 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1399 } 1400 } 1401 } 1402 } 1403 1404 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1405 // are not demanded. This will likely allow the anyext to be folded away. 1406 // TODO - support non-uniform vector amounts. 1407 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1408 SDValue InnerOp = Op0.getOperand(0); 1409 EVT InnerVT = InnerOp.getValueType(); 1410 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1411 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1412 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1413 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1414 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1415 ShTy = InnerVT; 1416 SDValue NarrowShl = 1417 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1418 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1419 return TLO.CombineTo( 1420 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1421 } 1422 1423 // Repeat the SHL optimization above in cases where an extension 1424 // intervenes: (shl (anyext (shr x, c1)), c2) to 1425 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1426 // aren't demanded (as above) and that the shifted upper c1 bits of 1427 // x aren't demanded. 1428 // TODO - support non-uniform vector amounts. 1429 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1430 InnerOp.hasOneUse()) { 1431 if (const APInt *SA2 = 1432 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1433 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 1434 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1435 DemandedBits.getActiveBits() <= 1436 (InnerBits - InnerShAmt + ShAmt) && 1437 DemandedBits.countTrailingZeros() >= ShAmt) { 1438 SDValue NewSA = 1439 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1440 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1441 InnerOp.getOperand(0)); 1442 return TLO.CombineTo( 1443 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1444 } 1445 } 1446 } 1447 } 1448 1449 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1450 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1451 Depth + 1)) 1452 return true; 1453 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1454 Known.Zero <<= ShAmt; 1455 Known.One <<= ShAmt; 1456 // low bits known zero. 1457 Known.Zero.setLowBits(ShAmt); 1458 1459 // Try shrinking the operation as long as the shift amount will still be 1460 // in range. 1461 if ((ShAmt < DemandedBits.getActiveBits()) && 1462 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1463 return true; 1464 } 1465 break; 1466 } 1467 case ISD::SRL: { 1468 SDValue Op0 = Op.getOperand(0); 1469 SDValue Op1 = Op.getOperand(1); 1470 EVT ShiftVT = Op1.getValueType(); 1471 1472 if (const APInt *SA = 1473 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1474 unsigned ShAmt = SA->getZExtValue(); 1475 if (ShAmt == 0) 1476 return TLO.CombineTo(Op, Op0); 1477 1478 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1479 // single shift. We can do this if the top bits (which are shifted out) 1480 // are never demanded. 1481 // TODO - support non-uniform vector amounts. 1482 if (Op0.getOpcode() == ISD::SHL) { 1483 if (const APInt *SA2 = 1484 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1485 if (!DemandedBits.intersects( 1486 APInt::getHighBitsSet(BitWidth, ShAmt))) { 1487 if (SA2->ult(BitWidth)) { 1488 unsigned C1 = SA2->getZExtValue(); 1489 unsigned Opc = ISD::SRL; 1490 int Diff = ShAmt - C1; 1491 if (Diff < 0) { 1492 Diff = -Diff; 1493 Opc = ISD::SHL; 1494 } 1495 1496 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1497 return TLO.CombineTo( 1498 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1499 } 1500 } 1501 } 1502 } 1503 1504 APInt InDemandedMask = (DemandedBits << ShAmt); 1505 1506 // If the shift is exact, then it does demand the low bits (and knows that 1507 // they are zero). 1508 if (Op->getFlags().hasExact()) 1509 InDemandedMask.setLowBits(ShAmt); 1510 1511 // Compute the new bits that are at the top now. 1512 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1513 Depth + 1)) 1514 return true; 1515 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1516 Known.Zero.lshrInPlace(ShAmt); 1517 Known.One.lshrInPlace(ShAmt); 1518 // High bits known zero. 1519 Known.Zero.setHighBits(ShAmt); 1520 } 1521 break; 1522 } 1523 case ISD::SRA: { 1524 SDValue Op0 = Op.getOperand(0); 1525 SDValue Op1 = Op.getOperand(1); 1526 EVT ShiftVT = Op1.getValueType(); 1527 1528 // If we only want bits that already match the signbit then we don't need 1529 // to shift. 1530 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1531 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1532 NumHiDemandedBits) 1533 return TLO.CombineTo(Op, Op0); 1534 1535 // If this is an arithmetic shift right and only the low-bit is set, we can 1536 // always convert this into a logical shr, even if the shift amount is 1537 // variable. The low bit of the shift cannot be an input sign bit unless 1538 // the shift amount is >= the size of the datatype, which is undefined. 1539 if (DemandedBits.isOneValue()) 1540 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1541 1542 if (const APInt *SA = 1543 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1544 unsigned ShAmt = SA->getZExtValue(); 1545 if (ShAmt == 0) 1546 return TLO.CombineTo(Op, Op0); 1547 1548 APInt InDemandedMask = (DemandedBits << ShAmt); 1549 1550 // If the shift is exact, then it does demand the low bits (and knows that 1551 // they are zero). 1552 if (Op->getFlags().hasExact()) 1553 InDemandedMask.setLowBits(ShAmt); 1554 1555 // If any of the demanded bits are produced by the sign extension, we also 1556 // demand the input sign bit. 1557 if (DemandedBits.countLeadingZeros() < ShAmt) 1558 InDemandedMask.setSignBit(); 1559 1560 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1561 Depth + 1)) 1562 return true; 1563 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1564 Known.Zero.lshrInPlace(ShAmt); 1565 Known.One.lshrInPlace(ShAmt); 1566 1567 // If the input sign bit is known to be zero, or if none of the top bits 1568 // are demanded, turn this into an unsigned shift right. 1569 if (Known.Zero[BitWidth - ShAmt - 1] || 1570 DemandedBits.countLeadingZeros() >= ShAmt) { 1571 SDNodeFlags Flags; 1572 Flags.setExact(Op->getFlags().hasExact()); 1573 return TLO.CombineTo( 1574 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1575 } 1576 1577 int Log2 = DemandedBits.exactLogBase2(); 1578 if (Log2 >= 0) { 1579 // The bit must come from the sign. 1580 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1581 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1582 } 1583 1584 if (Known.One[BitWidth - ShAmt - 1]) 1585 // New bits are known one. 1586 Known.One.setHighBits(ShAmt); 1587 1588 // Attempt to avoid multi-use ops if we don't need anything from them. 1589 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1590 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1591 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1592 if (DemandedOp0) { 1593 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1594 return TLO.CombineTo(Op, NewOp); 1595 } 1596 } 1597 } 1598 break; 1599 } 1600 case ISD::FSHL: 1601 case ISD::FSHR: { 1602 SDValue Op0 = Op.getOperand(0); 1603 SDValue Op1 = Op.getOperand(1); 1604 SDValue Op2 = Op.getOperand(2); 1605 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1606 1607 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1608 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1609 1610 // For fshl, 0-shift returns the 1st arg. 1611 // For fshr, 0-shift returns the 2nd arg. 1612 if (Amt == 0) { 1613 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1614 Known, TLO, Depth + 1)) 1615 return true; 1616 break; 1617 } 1618 1619 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1620 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1621 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1622 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1623 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1624 Depth + 1)) 1625 return true; 1626 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1627 Depth + 1)) 1628 return true; 1629 1630 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1631 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1632 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1633 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1634 Known.One |= Known2.One; 1635 Known.Zero |= Known2.Zero; 1636 } 1637 1638 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1639 if (isPowerOf2_32(BitWidth)) { 1640 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1641 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1642 Known2, TLO, Depth + 1)) 1643 return true; 1644 } 1645 break; 1646 } 1647 case ISD::ROTL: 1648 case ISD::ROTR: { 1649 SDValue Op0 = Op.getOperand(0); 1650 1651 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1652 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1653 return TLO.CombineTo(Op, Op0); 1654 break; 1655 } 1656 case ISD::BITREVERSE: { 1657 SDValue Src = Op.getOperand(0); 1658 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1659 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1660 Depth + 1)) 1661 return true; 1662 Known.One = Known2.One.reverseBits(); 1663 Known.Zero = Known2.Zero.reverseBits(); 1664 break; 1665 } 1666 case ISD::BSWAP: { 1667 SDValue Src = Op.getOperand(0); 1668 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1669 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1670 Depth + 1)) 1671 return true; 1672 Known.One = Known2.One.byteSwap(); 1673 Known.Zero = Known2.Zero.byteSwap(); 1674 break; 1675 } 1676 case ISD::SIGN_EXTEND_INREG: { 1677 SDValue Op0 = Op.getOperand(0); 1678 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1679 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1680 1681 // If we only care about the highest bit, don't bother shifting right. 1682 if (DemandedBits.isSignMask()) { 1683 unsigned NumSignBits = 1684 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1685 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1686 // However if the input is already sign extended we expect the sign 1687 // extension to be dropped altogether later and do not simplify. 1688 if (!AlreadySignExtended) { 1689 // Compute the correct shift amount type, which must be getShiftAmountTy 1690 // for scalar types after legalization. 1691 EVT ShiftAmtTy = VT; 1692 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1693 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1694 1695 SDValue ShiftAmt = 1696 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1697 return TLO.CombineTo(Op, 1698 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1699 } 1700 } 1701 1702 // If none of the extended bits are demanded, eliminate the sextinreg. 1703 if (DemandedBits.getActiveBits() <= ExVTBits) 1704 return TLO.CombineTo(Op, Op0); 1705 1706 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1707 1708 // Since the sign extended bits are demanded, we know that the sign 1709 // bit is demanded. 1710 InputDemandedBits.setBit(ExVTBits - 1); 1711 1712 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1713 return true; 1714 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1715 1716 // If the sign bit of the input is known set or clear, then we know the 1717 // top bits of the result. 1718 1719 // If the input sign bit is known zero, convert this into a zero extension. 1720 if (Known.Zero[ExVTBits - 1]) 1721 return TLO.CombineTo( 1722 Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType())); 1723 1724 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1725 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1726 Known.One.setBitsFrom(ExVTBits); 1727 Known.Zero &= Mask; 1728 } else { // Input sign bit unknown 1729 Known.Zero &= Mask; 1730 Known.One &= Mask; 1731 } 1732 break; 1733 } 1734 case ISD::BUILD_PAIR: { 1735 EVT HalfVT = Op.getOperand(0).getValueType(); 1736 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1737 1738 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1739 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1740 1741 KnownBits KnownLo, KnownHi; 1742 1743 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1744 return true; 1745 1746 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1747 return true; 1748 1749 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1750 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1751 1752 Known.One = KnownLo.One.zext(BitWidth) | 1753 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1754 break; 1755 } 1756 case ISD::ZERO_EXTEND: 1757 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1758 SDValue Src = Op.getOperand(0); 1759 EVT SrcVT = Src.getValueType(); 1760 unsigned InBits = SrcVT.getScalarSizeInBits(); 1761 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1762 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1763 1764 // If none of the top bits are demanded, convert this into an any_extend. 1765 if (DemandedBits.getActiveBits() <= InBits) { 1766 // If we only need the non-extended bits of the bottom element 1767 // then we can just bitcast to the result. 1768 if (IsVecInReg && DemandedElts == 1 && 1769 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1770 TLO.DAG.getDataLayout().isLittleEndian()) 1771 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1772 1773 unsigned Opc = 1774 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1775 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1776 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1777 } 1778 1779 APInt InDemandedBits = DemandedBits.trunc(InBits); 1780 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1781 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1782 Depth + 1)) 1783 return true; 1784 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1785 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1786 Known = Known.zext(BitWidth); 1787 break; 1788 } 1789 case ISD::SIGN_EXTEND: 1790 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1791 SDValue Src = Op.getOperand(0); 1792 EVT SrcVT = Src.getValueType(); 1793 unsigned InBits = SrcVT.getScalarSizeInBits(); 1794 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1795 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1796 1797 // If none of the top bits are demanded, convert this into an any_extend. 1798 if (DemandedBits.getActiveBits() <= InBits) { 1799 // If we only need the non-extended bits of the bottom element 1800 // then we can just bitcast to the result. 1801 if (IsVecInReg && DemandedElts == 1 && 1802 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1803 TLO.DAG.getDataLayout().isLittleEndian()) 1804 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1805 1806 unsigned Opc = 1807 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1808 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1809 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1810 } 1811 1812 APInt InDemandedBits = DemandedBits.trunc(InBits); 1813 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1814 1815 // Since some of the sign extended bits are demanded, we know that the sign 1816 // bit is demanded. 1817 InDemandedBits.setBit(InBits - 1); 1818 1819 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1820 Depth + 1)) 1821 return true; 1822 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1823 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1824 1825 // If the sign bit is known one, the top bits match. 1826 Known = Known.sext(BitWidth); 1827 1828 // If the sign bit is known zero, convert this to a zero extend. 1829 if (Known.isNonNegative()) { 1830 unsigned Opc = 1831 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1832 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1833 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1834 } 1835 break; 1836 } 1837 case ISD::ANY_EXTEND: 1838 case ISD::ANY_EXTEND_VECTOR_INREG: { 1839 SDValue Src = Op.getOperand(0); 1840 EVT SrcVT = Src.getValueType(); 1841 unsigned InBits = SrcVT.getScalarSizeInBits(); 1842 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1843 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1844 1845 // If we only need the bottom element then we can just bitcast. 1846 // TODO: Handle ANY_EXTEND? 1847 if (IsVecInReg && DemandedElts == 1 && 1848 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1849 TLO.DAG.getDataLayout().isLittleEndian()) 1850 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1851 1852 APInt InDemandedBits = DemandedBits.trunc(InBits); 1853 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1854 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1855 Depth + 1)) 1856 return true; 1857 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1858 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1859 Known = Known.anyext(BitWidth); 1860 1861 // Attempt to avoid multi-use ops if we don't need anything from them. 1862 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1863 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1864 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1865 break; 1866 } 1867 case ISD::TRUNCATE: { 1868 SDValue Src = Op.getOperand(0); 1869 1870 // Simplify the input, using demanded bit information, and compute the known 1871 // zero/one bits live out. 1872 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1873 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1874 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1875 return true; 1876 Known = Known.trunc(BitWidth); 1877 1878 // Attempt to avoid multi-use ops if we don't need anything from them. 1879 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1880 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 1881 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 1882 1883 // If the input is only used by this truncate, see if we can shrink it based 1884 // on the known demanded bits. 1885 if (Src.getNode()->hasOneUse()) { 1886 switch (Src.getOpcode()) { 1887 default: 1888 break; 1889 case ISD::SRL: 1890 // Shrink SRL by a constant if none of the high bits shifted in are 1891 // demanded. 1892 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1893 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1894 // undesirable. 1895 break; 1896 1897 SDValue ShAmt = Src.getOperand(1); 1898 auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt); 1899 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 1900 break; 1901 uint64_t ShVal = ShAmtC->getZExtValue(); 1902 1903 APInt HighBits = 1904 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 1905 HighBits.lshrInPlace(ShVal); 1906 HighBits = HighBits.trunc(BitWidth); 1907 1908 if (!(HighBits & DemandedBits)) { 1909 // None of the shifted in bits are needed. Add a truncate of the 1910 // shift input, then shift it. 1911 if (TLO.LegalTypes()) 1912 ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1913 SDValue NewTrunc = 1914 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1915 return TLO.CombineTo( 1916 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt)); 1917 } 1918 break; 1919 } 1920 } 1921 1922 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1923 break; 1924 } 1925 case ISD::AssertZext: { 1926 // AssertZext demands all of the high bits, plus any of the low bits 1927 // demanded by its users. 1928 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1929 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1930 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 1931 TLO, Depth + 1)) 1932 return true; 1933 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1934 1935 Known.Zero |= ~InMask; 1936 break; 1937 } 1938 case ISD::EXTRACT_VECTOR_ELT: { 1939 SDValue Src = Op.getOperand(0); 1940 SDValue Idx = Op.getOperand(1); 1941 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1942 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 1943 1944 // Demand the bits from every vector element without a constant index. 1945 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 1946 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 1947 if (CIdx->getAPIntValue().ult(NumSrcElts)) 1948 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 1949 1950 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 1951 // anything about the extended bits. 1952 APInt DemandedSrcBits = DemandedBits; 1953 if (BitWidth > EltBitWidth) 1954 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 1955 1956 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 1957 Depth + 1)) 1958 return true; 1959 1960 // Attempt to avoid multi-use ops if we don't need anything from them. 1961 if (!DemandedSrcBits.isAllOnesValue() || 1962 !DemandedSrcElts.isAllOnesValue()) { 1963 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1964 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 1965 SDValue NewOp = 1966 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 1967 return TLO.CombineTo(Op, NewOp); 1968 } 1969 } 1970 1971 Known = Known2; 1972 if (BitWidth > EltBitWidth) 1973 Known = Known.anyext(BitWidth); 1974 break; 1975 } 1976 case ISD::BITCAST: { 1977 SDValue Src = Op.getOperand(0); 1978 EVT SrcVT = Src.getValueType(); 1979 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 1980 1981 // If this is an FP->Int bitcast and if the sign bit is the only 1982 // thing demanded, turn this into a FGETSIGN. 1983 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 1984 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 1985 SrcVT.isFloatingPoint()) { 1986 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1987 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1988 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 1989 SrcVT != MVT::f128) { 1990 // Cannot eliminate/lower SHL for f128 yet. 1991 EVT Ty = OpVTLegal ? VT : MVT::i32; 1992 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1993 // place. We expect the SHL to be eliminated by other optimizations. 1994 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 1995 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1996 if (!OpVTLegal && OpVTSizeInBits > 32) 1997 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 1998 unsigned ShVal = Op.getValueSizeInBits() - 1; 1999 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2000 return TLO.CombineTo(Op, 2001 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2002 } 2003 } 2004 2005 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2006 // Demand the elt/bit if any of the original elts/bits are demanded. 2007 // TODO - bigendian once we have test coverage. 2008 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 2009 TLO.DAG.getDataLayout().isLittleEndian()) { 2010 unsigned Scale = BitWidth / NumSrcEltBits; 2011 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2012 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2013 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2014 for (unsigned i = 0; i != Scale; ++i) { 2015 unsigned Offset = i * NumSrcEltBits; 2016 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 2017 if (!Sub.isNullValue()) { 2018 DemandedSrcBits |= Sub; 2019 for (unsigned j = 0; j != NumElts; ++j) 2020 if (DemandedElts[j]) 2021 DemandedSrcElts.setBit((j * Scale) + i); 2022 } 2023 } 2024 2025 APInt KnownSrcUndef, KnownSrcZero; 2026 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2027 KnownSrcZero, TLO, Depth + 1)) 2028 return true; 2029 2030 KnownBits KnownSrcBits; 2031 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2032 KnownSrcBits, TLO, Depth + 1)) 2033 return true; 2034 } else if ((NumSrcEltBits % BitWidth) == 0 && 2035 TLO.DAG.getDataLayout().isLittleEndian()) { 2036 unsigned Scale = NumSrcEltBits / BitWidth; 2037 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2038 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2039 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2040 for (unsigned i = 0; i != NumElts; ++i) 2041 if (DemandedElts[i]) { 2042 unsigned Offset = (i % Scale) * BitWidth; 2043 DemandedSrcBits.insertBits(DemandedBits, Offset); 2044 DemandedSrcElts.setBit(i / Scale); 2045 } 2046 2047 if (SrcVT.isVector()) { 2048 APInt KnownSrcUndef, KnownSrcZero; 2049 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2050 KnownSrcZero, TLO, Depth + 1)) 2051 return true; 2052 } 2053 2054 KnownBits KnownSrcBits; 2055 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2056 KnownSrcBits, TLO, Depth + 1)) 2057 return true; 2058 } 2059 2060 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2061 // recursive call where Known may be useful to the caller. 2062 if (Depth > 0) { 2063 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2064 return false; 2065 } 2066 break; 2067 } 2068 case ISD::ADD: 2069 case ISD::MUL: 2070 case ISD::SUB: { 2071 // Add, Sub, and Mul don't demand any bits in positions beyond that 2072 // of the highest bit demanded of them. 2073 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2074 SDNodeFlags Flags = Op.getNode()->getFlags(); 2075 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2076 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2077 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2078 Depth + 1) || 2079 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2080 Depth + 1) || 2081 // See if the operation should be performed at a smaller bit width. 2082 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2083 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2084 // Disable the nsw and nuw flags. We can no longer guarantee that we 2085 // won't wrap after simplification. 2086 Flags.setNoSignedWrap(false); 2087 Flags.setNoUnsignedWrap(false); 2088 SDValue NewOp = 2089 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2090 return TLO.CombineTo(Op, NewOp); 2091 } 2092 return true; 2093 } 2094 2095 // Attempt to avoid multi-use ops if we don't need anything from them. 2096 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 2097 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2098 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2099 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2100 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2101 if (DemandedOp0 || DemandedOp1) { 2102 Flags.setNoSignedWrap(false); 2103 Flags.setNoUnsignedWrap(false); 2104 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2105 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2106 SDValue NewOp = 2107 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2108 return TLO.CombineTo(Op, NewOp); 2109 } 2110 } 2111 2112 // If we have a constant operand, we may be able to turn it into -1 if we 2113 // do not demand the high bits. This can make the constant smaller to 2114 // encode, allow more general folding, or match specialized instruction 2115 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2116 // is probably not useful (and could be detrimental). 2117 ConstantSDNode *C = isConstOrConstSplat(Op1); 2118 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2119 if (C && !C->isAllOnesValue() && !C->isOne() && 2120 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 2121 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2122 // Disable the nsw and nuw flags. We can no longer guarantee that we 2123 // won't wrap after simplification. 2124 Flags.setNoSignedWrap(false); 2125 Flags.setNoUnsignedWrap(false); 2126 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2127 return TLO.CombineTo(Op, NewOp); 2128 } 2129 2130 LLVM_FALLTHROUGH; 2131 } 2132 default: 2133 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2134 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2135 Known, TLO, Depth)) 2136 return true; 2137 break; 2138 } 2139 2140 // Just use computeKnownBits to compute output bits. 2141 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2142 break; 2143 } 2144 2145 // If we know the value of all of the demanded bits, return this as a 2146 // constant. 2147 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2148 // Avoid folding to a constant if any OpaqueConstant is involved. 2149 const SDNode *N = Op.getNode(); 2150 for (SDNodeIterator I = SDNodeIterator::begin(N), 2151 E = SDNodeIterator::end(N); 2152 I != E; ++I) { 2153 SDNode *Op = *I; 2154 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2155 if (C->isOpaque()) 2156 return false; 2157 } 2158 // TODO: Handle float bits as well. 2159 if (VT.isInteger()) 2160 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2161 } 2162 2163 return false; 2164 } 2165 2166 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2167 const APInt &DemandedElts, 2168 APInt &KnownUndef, 2169 APInt &KnownZero, 2170 DAGCombinerInfo &DCI) const { 2171 SelectionDAG &DAG = DCI.DAG; 2172 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2173 !DCI.isBeforeLegalizeOps()); 2174 2175 bool Simplified = 2176 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2177 if (Simplified) { 2178 DCI.AddToWorklist(Op.getNode()); 2179 DCI.CommitTargetLoweringOpt(TLO); 2180 } 2181 2182 return Simplified; 2183 } 2184 2185 /// Given a vector binary operation and known undefined elements for each input 2186 /// operand, compute whether each element of the output is undefined. 2187 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2188 const APInt &UndefOp0, 2189 const APInt &UndefOp1) { 2190 EVT VT = BO.getValueType(); 2191 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2192 "Vector binop only"); 2193 2194 EVT EltVT = VT.getVectorElementType(); 2195 unsigned NumElts = VT.getVectorNumElements(); 2196 assert(UndefOp0.getBitWidth() == NumElts && 2197 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2198 2199 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2200 const APInt &UndefVals) { 2201 if (UndefVals[Index]) 2202 return DAG.getUNDEF(EltVT); 2203 2204 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2205 // Try hard to make sure that the getNode() call is not creating temporary 2206 // nodes. Ignore opaque integers because they do not constant fold. 2207 SDValue Elt = BV->getOperand(Index); 2208 auto *C = dyn_cast<ConstantSDNode>(Elt); 2209 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2210 return Elt; 2211 } 2212 2213 return SDValue(); 2214 }; 2215 2216 APInt KnownUndef = APInt::getNullValue(NumElts); 2217 for (unsigned i = 0; i != NumElts; ++i) { 2218 // If both inputs for this element are either constant or undef and match 2219 // the element type, compute the constant/undef result for this element of 2220 // the vector. 2221 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2222 // not handle FP constants. The code within getNode() should be refactored 2223 // to avoid the danger of creating a bogus temporary node here. 2224 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2225 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2226 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2227 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2228 KnownUndef.setBit(i); 2229 } 2230 return KnownUndef; 2231 } 2232 2233 bool TargetLowering::SimplifyDemandedVectorElts( 2234 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2235 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2236 bool AssumeSingleUse) const { 2237 EVT VT = Op.getValueType(); 2238 APInt DemandedElts = OriginalDemandedElts; 2239 unsigned NumElts = DemandedElts.getBitWidth(); 2240 assert(VT.isVector() && "Expected vector op"); 2241 assert(VT.getVectorNumElements() == NumElts && 2242 "Mask size mismatches value type element count!"); 2243 2244 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2245 2246 // Undef operand. 2247 if (Op.isUndef()) { 2248 KnownUndef.setAllBits(); 2249 return false; 2250 } 2251 2252 // If Op has other users, assume that all elements are needed. 2253 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2254 DemandedElts.setAllBits(); 2255 2256 // Not demanding any elements from Op. 2257 if (DemandedElts == 0) { 2258 KnownUndef.setAllBits(); 2259 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2260 } 2261 2262 // Limit search depth. 2263 if (Depth >= SelectionDAG::MaxRecursionDepth) 2264 return false; 2265 2266 SDLoc DL(Op); 2267 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2268 2269 switch (Op.getOpcode()) { 2270 case ISD::SCALAR_TO_VECTOR: { 2271 if (!DemandedElts[0]) { 2272 KnownUndef.setAllBits(); 2273 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2274 } 2275 KnownUndef.setHighBits(NumElts - 1); 2276 break; 2277 } 2278 case ISD::BITCAST: { 2279 SDValue Src = Op.getOperand(0); 2280 EVT SrcVT = Src.getValueType(); 2281 2282 // We only handle vectors here. 2283 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2284 if (!SrcVT.isVector()) 2285 break; 2286 2287 // Fast handling of 'identity' bitcasts. 2288 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2289 if (NumSrcElts == NumElts) 2290 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2291 KnownZero, TLO, Depth + 1); 2292 2293 APInt SrcZero, SrcUndef; 2294 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2295 2296 // Bitcast from 'large element' src vector to 'small element' vector, we 2297 // must demand a source element if any DemandedElt maps to it. 2298 if ((NumElts % NumSrcElts) == 0) { 2299 unsigned Scale = NumElts / NumSrcElts; 2300 for (unsigned i = 0; i != NumElts; ++i) 2301 if (DemandedElts[i]) 2302 SrcDemandedElts.setBit(i / Scale); 2303 2304 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2305 TLO, Depth + 1)) 2306 return true; 2307 2308 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2309 // of the large element. 2310 // TODO - bigendian once we have test coverage. 2311 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2312 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2313 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2314 for (unsigned i = 0; i != NumElts; ++i) 2315 if (DemandedElts[i]) { 2316 unsigned Ofs = (i % Scale) * EltSizeInBits; 2317 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2318 } 2319 2320 KnownBits Known; 2321 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2322 TLO, Depth + 1)) 2323 return true; 2324 } 2325 2326 // If the src element is zero/undef then all the output elements will be - 2327 // only demanded elements are guaranteed to be correct. 2328 for (unsigned i = 0; i != NumSrcElts; ++i) { 2329 if (SrcDemandedElts[i]) { 2330 if (SrcZero[i]) 2331 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2332 if (SrcUndef[i]) 2333 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2334 } 2335 } 2336 } 2337 2338 // Bitcast from 'small element' src vector to 'large element' vector, we 2339 // demand all smaller source elements covered by the larger demanded element 2340 // of this vector. 2341 if ((NumSrcElts % NumElts) == 0) { 2342 unsigned Scale = NumSrcElts / NumElts; 2343 for (unsigned i = 0; i != NumElts; ++i) 2344 if (DemandedElts[i]) 2345 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2346 2347 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2348 TLO, Depth + 1)) 2349 return true; 2350 2351 // If all the src elements covering an output element are zero/undef, then 2352 // the output element will be as well, assuming it was demanded. 2353 for (unsigned i = 0; i != NumElts; ++i) { 2354 if (DemandedElts[i]) { 2355 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2356 KnownZero.setBit(i); 2357 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2358 KnownUndef.setBit(i); 2359 } 2360 } 2361 } 2362 break; 2363 } 2364 case ISD::BUILD_VECTOR: { 2365 // Check all elements and simplify any unused elements with UNDEF. 2366 if (!DemandedElts.isAllOnesValue()) { 2367 // Don't simplify BROADCASTS. 2368 if (llvm::any_of(Op->op_values(), 2369 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2370 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2371 bool Updated = false; 2372 for (unsigned i = 0; i != NumElts; ++i) { 2373 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2374 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2375 KnownUndef.setBit(i); 2376 Updated = true; 2377 } 2378 } 2379 if (Updated) 2380 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2381 } 2382 } 2383 for (unsigned i = 0; i != NumElts; ++i) { 2384 SDValue SrcOp = Op.getOperand(i); 2385 if (SrcOp.isUndef()) { 2386 KnownUndef.setBit(i); 2387 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2388 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2389 KnownZero.setBit(i); 2390 } 2391 } 2392 break; 2393 } 2394 case ISD::CONCAT_VECTORS: { 2395 EVT SubVT = Op.getOperand(0).getValueType(); 2396 unsigned NumSubVecs = Op.getNumOperands(); 2397 unsigned NumSubElts = SubVT.getVectorNumElements(); 2398 for (unsigned i = 0; i != NumSubVecs; ++i) { 2399 SDValue SubOp = Op.getOperand(i); 2400 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2401 APInt SubUndef, SubZero; 2402 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2403 Depth + 1)) 2404 return true; 2405 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2406 KnownZero.insertBits(SubZero, i * NumSubElts); 2407 } 2408 break; 2409 } 2410 case ISD::INSERT_SUBVECTOR: { 2411 if (!isa<ConstantSDNode>(Op.getOperand(2))) 2412 break; 2413 SDValue Base = Op.getOperand(0); 2414 SDValue Sub = Op.getOperand(1); 2415 EVT SubVT = Sub.getValueType(); 2416 unsigned NumSubElts = SubVT.getVectorNumElements(); 2417 const APInt &Idx = Op.getConstantOperandAPInt(2); 2418 if (Idx.ugt(NumElts - NumSubElts)) 2419 break; 2420 unsigned SubIdx = Idx.getZExtValue(); 2421 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 2422 APInt SubUndef, SubZero; 2423 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 2424 Depth + 1)) 2425 return true; 2426 APInt BaseElts = DemandedElts; 2427 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 2428 2429 // If none of the base operand elements are demanded, replace it with undef. 2430 if (!BaseElts && !Base.isUndef()) 2431 return TLO.CombineTo(Op, 2432 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2433 TLO.DAG.getUNDEF(VT), 2434 Op.getOperand(1), 2435 Op.getOperand(2))); 2436 2437 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 2438 Depth + 1)) 2439 return true; 2440 KnownUndef.insertBits(SubUndef, SubIdx); 2441 KnownZero.insertBits(SubZero, SubIdx); 2442 break; 2443 } 2444 case ISD::EXTRACT_SUBVECTOR: { 2445 SDValue Src = Op.getOperand(0); 2446 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2447 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2448 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2449 // Offset the demanded elts by the subvector index. 2450 uint64_t Idx = SubIdx->getZExtValue(); 2451 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2452 APInt SrcUndef, SrcZero; 2453 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, 2454 Depth + 1)) 2455 return true; 2456 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2457 KnownZero = SrcZero.extractBits(NumElts, Idx); 2458 } 2459 break; 2460 } 2461 case ISD::INSERT_VECTOR_ELT: { 2462 SDValue Vec = Op.getOperand(0); 2463 SDValue Scl = Op.getOperand(1); 2464 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2465 2466 // For a legal, constant insertion index, if we don't need this insertion 2467 // then strip it, else remove it from the demanded elts. 2468 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2469 unsigned Idx = CIdx->getZExtValue(); 2470 if (!DemandedElts[Idx]) 2471 return TLO.CombineTo(Op, Vec); 2472 2473 APInt DemandedVecElts(DemandedElts); 2474 DemandedVecElts.clearBit(Idx); 2475 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2476 KnownZero, TLO, Depth + 1)) 2477 return true; 2478 2479 KnownUndef.clearBit(Idx); 2480 if (Scl.isUndef()) 2481 KnownUndef.setBit(Idx); 2482 2483 KnownZero.clearBit(Idx); 2484 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 2485 KnownZero.setBit(Idx); 2486 break; 2487 } 2488 2489 APInt VecUndef, VecZero; 2490 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2491 Depth + 1)) 2492 return true; 2493 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2494 break; 2495 } 2496 case ISD::VSELECT: { 2497 // Try to transform the select condition based on the current demanded 2498 // elements. 2499 // TODO: If a condition element is undef, we can choose from one arm of the 2500 // select (and if one arm is undef, then we can propagate that to the 2501 // result). 2502 // TODO - add support for constant vselect masks (see IR version of this). 2503 APInt UnusedUndef, UnusedZero; 2504 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2505 UnusedZero, TLO, Depth + 1)) 2506 return true; 2507 2508 // See if we can simplify either vselect operand. 2509 APInt DemandedLHS(DemandedElts); 2510 APInt DemandedRHS(DemandedElts); 2511 APInt UndefLHS, ZeroLHS; 2512 APInt UndefRHS, ZeroRHS; 2513 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2514 ZeroLHS, TLO, Depth + 1)) 2515 return true; 2516 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2517 ZeroRHS, TLO, Depth + 1)) 2518 return true; 2519 2520 KnownUndef = UndefLHS & UndefRHS; 2521 KnownZero = ZeroLHS & ZeroRHS; 2522 break; 2523 } 2524 case ISD::VECTOR_SHUFFLE: { 2525 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2526 2527 // Collect demanded elements from shuffle operands.. 2528 APInt DemandedLHS(NumElts, 0); 2529 APInt DemandedRHS(NumElts, 0); 2530 for (unsigned i = 0; i != NumElts; ++i) { 2531 int M = ShuffleMask[i]; 2532 if (M < 0 || !DemandedElts[i]) 2533 continue; 2534 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2535 if (M < (int)NumElts) 2536 DemandedLHS.setBit(M); 2537 else 2538 DemandedRHS.setBit(M - NumElts); 2539 } 2540 2541 // See if we can simplify either shuffle operand. 2542 APInt UndefLHS, ZeroLHS; 2543 APInt UndefRHS, ZeroRHS; 2544 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2545 ZeroLHS, TLO, Depth + 1)) 2546 return true; 2547 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2548 ZeroRHS, TLO, Depth + 1)) 2549 return true; 2550 2551 // Simplify mask using undef elements from LHS/RHS. 2552 bool Updated = false; 2553 bool IdentityLHS = true, IdentityRHS = true; 2554 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2555 for (unsigned i = 0; i != NumElts; ++i) { 2556 int &M = NewMask[i]; 2557 if (M < 0) 2558 continue; 2559 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2560 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2561 Updated = true; 2562 M = -1; 2563 } 2564 IdentityLHS &= (M < 0) || (M == (int)i); 2565 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2566 } 2567 2568 // Update legal shuffle masks based on demanded elements if it won't reduce 2569 // to Identity which can cause premature removal of the shuffle mask. 2570 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2571 SDValue LegalShuffle = 2572 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2573 NewMask, TLO.DAG); 2574 if (LegalShuffle) 2575 return TLO.CombineTo(Op, LegalShuffle); 2576 } 2577 2578 // Propagate undef/zero elements from LHS/RHS. 2579 for (unsigned i = 0; i != NumElts; ++i) { 2580 int M = ShuffleMask[i]; 2581 if (M < 0) { 2582 KnownUndef.setBit(i); 2583 } else if (M < (int)NumElts) { 2584 if (UndefLHS[M]) 2585 KnownUndef.setBit(i); 2586 if (ZeroLHS[M]) 2587 KnownZero.setBit(i); 2588 } else { 2589 if (UndefRHS[M - NumElts]) 2590 KnownUndef.setBit(i); 2591 if (ZeroRHS[M - NumElts]) 2592 KnownZero.setBit(i); 2593 } 2594 } 2595 break; 2596 } 2597 case ISD::ANY_EXTEND_VECTOR_INREG: 2598 case ISD::SIGN_EXTEND_VECTOR_INREG: 2599 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2600 APInt SrcUndef, SrcZero; 2601 SDValue Src = Op.getOperand(0); 2602 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2603 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2604 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2605 Depth + 1)) 2606 return true; 2607 KnownZero = SrcZero.zextOrTrunc(NumElts); 2608 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2609 2610 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2611 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2612 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2613 // aext - if we just need the bottom element then we can bitcast. 2614 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2615 } 2616 2617 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2618 // zext(undef) upper bits are guaranteed to be zero. 2619 if (DemandedElts.isSubsetOf(KnownUndef)) 2620 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2621 KnownUndef.clearAllBits(); 2622 } 2623 break; 2624 } 2625 2626 // TODO: There are more binop opcodes that could be handled here - MUL, MIN, 2627 // MAX, saturated math, etc. 2628 case ISD::OR: 2629 case ISD::XOR: 2630 case ISD::ADD: 2631 case ISD::SUB: 2632 case ISD::FADD: 2633 case ISD::FSUB: 2634 case ISD::FMUL: 2635 case ISD::FDIV: 2636 case ISD::FREM: { 2637 APInt UndefRHS, ZeroRHS; 2638 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2639 ZeroRHS, TLO, Depth + 1)) 2640 return true; 2641 APInt UndefLHS, ZeroLHS; 2642 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2643 ZeroLHS, TLO, Depth + 1)) 2644 return true; 2645 2646 KnownZero = ZeroLHS & ZeroRHS; 2647 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2648 break; 2649 } 2650 case ISD::SHL: 2651 case ISD::SRL: 2652 case ISD::SRA: 2653 case ISD::ROTL: 2654 case ISD::ROTR: { 2655 APInt UndefRHS, ZeroRHS; 2656 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2657 ZeroRHS, TLO, Depth + 1)) 2658 return true; 2659 APInt UndefLHS, ZeroLHS; 2660 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2661 ZeroLHS, TLO, Depth + 1)) 2662 return true; 2663 2664 KnownZero = ZeroLHS; 2665 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2666 break; 2667 } 2668 case ISD::MUL: 2669 case ISD::AND: { 2670 APInt SrcUndef, SrcZero; 2671 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 2672 SrcZero, TLO, Depth + 1)) 2673 return true; 2674 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2675 KnownZero, TLO, Depth + 1)) 2676 return true; 2677 2678 // If either side has a zero element, then the result element is zero, even 2679 // if the other is an UNDEF. 2680 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2681 // and then handle 'and' nodes with the rest of the binop opcodes. 2682 KnownZero |= SrcZero; 2683 KnownUndef &= SrcUndef; 2684 KnownUndef &= ~KnownZero; 2685 break; 2686 } 2687 case ISD::TRUNCATE: 2688 case ISD::SIGN_EXTEND: 2689 case ISD::ZERO_EXTEND: 2690 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2691 KnownZero, TLO, Depth + 1)) 2692 return true; 2693 2694 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2695 // zext(undef) upper bits are guaranteed to be zero. 2696 if (DemandedElts.isSubsetOf(KnownUndef)) 2697 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2698 KnownUndef.clearAllBits(); 2699 } 2700 break; 2701 default: { 2702 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2703 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2704 KnownZero, TLO, Depth)) 2705 return true; 2706 } else { 2707 KnownBits Known; 2708 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2709 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2710 TLO, Depth, AssumeSingleUse)) 2711 return true; 2712 } 2713 break; 2714 } 2715 } 2716 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2717 2718 // Constant fold all undef cases. 2719 // TODO: Handle zero cases as well. 2720 if (DemandedElts.isSubsetOf(KnownUndef)) 2721 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2722 2723 return false; 2724 } 2725 2726 /// Determine which of the bits specified in Mask are known to be either zero or 2727 /// one and return them in the Known. 2728 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2729 KnownBits &Known, 2730 const APInt &DemandedElts, 2731 const SelectionDAG &DAG, 2732 unsigned Depth) const { 2733 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2734 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2735 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2736 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2737 "Should use MaskedValueIsZero if you don't know whether Op" 2738 " is a target node!"); 2739 Known.resetAll(); 2740 } 2741 2742 void TargetLowering::computeKnownBitsForTargetInstr( 2743 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2744 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2745 unsigned Depth) const { 2746 Known.resetAll(); 2747 } 2748 2749 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 2750 KnownBits &Known, 2751 const APInt &DemandedElts, 2752 const SelectionDAG &DAG, 2753 unsigned Depth) const { 2754 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 2755 2756 if (unsigned Align = DAG.InferPtrAlignment(Op)) { 2757 // The low bits are known zero if the pointer is aligned. 2758 Known.Zero.setLowBits(Log2_32(Align)); 2759 } 2760 } 2761 2762 /// This method can be implemented by targets that want to expose additional 2763 /// information about sign bits to the DAG Combiner. 2764 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2765 const APInt &, 2766 const SelectionDAG &, 2767 unsigned Depth) const { 2768 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2769 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2770 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2771 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2772 "Should use ComputeNumSignBits if you don't know whether Op" 2773 " is a target node!"); 2774 return 1; 2775 } 2776 2777 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2778 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2779 TargetLoweringOpt &TLO, unsigned Depth) const { 2780 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2781 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2782 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2783 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2784 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2785 " is a target node!"); 2786 return false; 2787 } 2788 2789 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2790 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2791 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2792 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2793 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2794 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2795 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2796 "Should use SimplifyDemandedBits if you don't know whether Op" 2797 " is a target node!"); 2798 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2799 return false; 2800 } 2801 2802 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 2803 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2804 SelectionDAG &DAG, unsigned Depth) const { 2805 assert( 2806 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2807 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2808 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2809 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2810 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 2811 " is a target node!"); 2812 return SDValue(); 2813 } 2814 2815 SDValue 2816 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 2817 SDValue N1, MutableArrayRef<int> Mask, 2818 SelectionDAG &DAG) const { 2819 bool LegalMask = isShuffleMaskLegal(Mask, VT); 2820 if (!LegalMask) { 2821 std::swap(N0, N1); 2822 ShuffleVectorSDNode::commuteMask(Mask); 2823 LegalMask = isShuffleMaskLegal(Mask, VT); 2824 } 2825 2826 if (!LegalMask) 2827 return SDValue(); 2828 2829 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 2830 } 2831 2832 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 2833 return nullptr; 2834 } 2835 2836 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 2837 const SelectionDAG &DAG, 2838 bool SNaN, 2839 unsigned Depth) const { 2840 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2841 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2842 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2843 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2844 "Should use isKnownNeverNaN if you don't know whether Op" 2845 " is a target node!"); 2846 return false; 2847 } 2848 2849 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 2850 // work with truncating build vectors and vectors with elements of less than 2851 // 8 bits. 2852 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 2853 if (!N) 2854 return false; 2855 2856 APInt CVal; 2857 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 2858 CVal = CN->getAPIntValue(); 2859 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 2860 auto *CN = BV->getConstantSplatNode(); 2861 if (!CN) 2862 return false; 2863 2864 // If this is a truncating build vector, truncate the splat value. 2865 // Otherwise, we may fail to match the expected values below. 2866 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 2867 CVal = CN->getAPIntValue(); 2868 if (BVEltWidth < CVal.getBitWidth()) 2869 CVal = CVal.trunc(BVEltWidth); 2870 } else { 2871 return false; 2872 } 2873 2874 switch (getBooleanContents(N->getValueType(0))) { 2875 case UndefinedBooleanContent: 2876 return CVal[0]; 2877 case ZeroOrOneBooleanContent: 2878 return CVal.isOneValue(); 2879 case ZeroOrNegativeOneBooleanContent: 2880 return CVal.isAllOnesValue(); 2881 } 2882 2883 llvm_unreachable("Invalid boolean contents"); 2884 } 2885 2886 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 2887 if (!N) 2888 return false; 2889 2890 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 2891 if (!CN) { 2892 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 2893 if (!BV) 2894 return false; 2895 2896 // Only interested in constant splats, we don't care about undef 2897 // elements in identifying boolean constants and getConstantSplatNode 2898 // returns NULL if all ops are undef; 2899 CN = BV->getConstantSplatNode(); 2900 if (!CN) 2901 return false; 2902 } 2903 2904 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 2905 return !CN->getAPIntValue()[0]; 2906 2907 return CN->isNullValue(); 2908 } 2909 2910 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 2911 bool SExt) const { 2912 if (VT == MVT::i1) 2913 return N->isOne(); 2914 2915 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 2916 switch (Cnt) { 2917 case TargetLowering::ZeroOrOneBooleanContent: 2918 // An extended value of 1 is always true, unless its original type is i1, 2919 // in which case it will be sign extended to -1. 2920 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 2921 case TargetLowering::UndefinedBooleanContent: 2922 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2923 return N->isAllOnesValue() && SExt; 2924 } 2925 llvm_unreachable("Unexpected enumeration."); 2926 } 2927 2928 /// This helper function of SimplifySetCC tries to optimize the comparison when 2929 /// either operand of the SetCC node is a bitwise-and instruction. 2930 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 2931 ISD::CondCode Cond, const SDLoc &DL, 2932 DAGCombinerInfo &DCI) const { 2933 // Match these patterns in any of their permutations: 2934 // (X & Y) == Y 2935 // (X & Y) != Y 2936 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 2937 std::swap(N0, N1); 2938 2939 EVT OpVT = N0.getValueType(); 2940 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 2941 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 2942 return SDValue(); 2943 2944 SDValue X, Y; 2945 if (N0.getOperand(0) == N1) { 2946 X = N0.getOperand(1); 2947 Y = N0.getOperand(0); 2948 } else if (N0.getOperand(1) == N1) { 2949 X = N0.getOperand(0); 2950 Y = N0.getOperand(1); 2951 } else { 2952 return SDValue(); 2953 } 2954 2955 SelectionDAG &DAG = DCI.DAG; 2956 SDValue Zero = DAG.getConstant(0, DL, OpVT); 2957 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 2958 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 2959 // Note that where Y is variable and is known to have at most one bit set 2960 // (for example, if it is Z & 1) we cannot do this; the expressions are not 2961 // equivalent when Y == 0. 2962 assert(OpVT.isInteger()); 2963 Cond = ISD::getSetCCInverse(Cond, OpVT); 2964 if (DCI.isBeforeLegalizeOps() || 2965 isCondCodeLegal(Cond, N0.getSimpleValueType())) 2966 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 2967 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 2968 // If the target supports an 'and-not' or 'and-complement' logic operation, 2969 // try to use that to make a comparison operation more efficient. 2970 // But don't do this transform if the mask is a single bit because there are 2971 // more efficient ways to deal with that case (for example, 'bt' on x86 or 2972 // 'rlwinm' on PPC). 2973 2974 // Bail out if the compare operand that we want to turn into a zero is 2975 // already a zero (otherwise, infinite loop). 2976 auto *YConst = dyn_cast<ConstantSDNode>(Y); 2977 if (YConst && YConst->isNullValue()) 2978 return SDValue(); 2979 2980 // Transform this into: ~X & Y == 0. 2981 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 2982 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 2983 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 2984 } 2985 2986 return SDValue(); 2987 } 2988 2989 /// There are multiple IR patterns that could be checking whether certain 2990 /// truncation of a signed number would be lossy or not. The pattern which is 2991 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 2992 /// We are looking for the following pattern: (KeptBits is a constant) 2993 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 2994 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 2995 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 2996 /// We will unfold it into the natural trunc+sext pattern: 2997 /// ((%x << C) a>> C) dstcond %x 2998 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 2999 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3000 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3001 const SDLoc &DL) const { 3002 // We must be comparing with a constant. 3003 ConstantSDNode *C1; 3004 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3005 return SDValue(); 3006 3007 // N0 should be: add %x, (1 << (KeptBits-1)) 3008 if (N0->getOpcode() != ISD::ADD) 3009 return SDValue(); 3010 3011 // And we must be 'add'ing a constant. 3012 ConstantSDNode *C01; 3013 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3014 return SDValue(); 3015 3016 SDValue X = N0->getOperand(0); 3017 EVT XVT = X.getValueType(); 3018 3019 // Validate constants ... 3020 3021 APInt I1 = C1->getAPIntValue(); 3022 3023 ISD::CondCode NewCond; 3024 if (Cond == ISD::CondCode::SETULT) { 3025 NewCond = ISD::CondCode::SETEQ; 3026 } else if (Cond == ISD::CondCode::SETULE) { 3027 NewCond = ISD::CondCode::SETEQ; 3028 // But need to 'canonicalize' the constant. 3029 I1 += 1; 3030 } else if (Cond == ISD::CondCode::SETUGT) { 3031 NewCond = ISD::CondCode::SETNE; 3032 // But need to 'canonicalize' the constant. 3033 I1 += 1; 3034 } else if (Cond == ISD::CondCode::SETUGE) { 3035 NewCond = ISD::CondCode::SETNE; 3036 } else 3037 return SDValue(); 3038 3039 APInt I01 = C01->getAPIntValue(); 3040 3041 auto checkConstants = [&I1, &I01]() -> bool { 3042 // Both of them must be power-of-two, and the constant from setcc is bigger. 3043 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3044 }; 3045 3046 if (checkConstants()) { 3047 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3048 } else { 3049 // What if we invert constants? (and the target predicate) 3050 I1.negate(); 3051 I01.negate(); 3052 assert(XVT.isInteger()); 3053 NewCond = getSetCCInverse(NewCond, XVT); 3054 if (!checkConstants()) 3055 return SDValue(); 3056 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3057 } 3058 3059 // They are power-of-two, so which bit is set? 3060 const unsigned KeptBits = I1.logBase2(); 3061 const unsigned KeptBitsMinusOne = I01.logBase2(); 3062 3063 // Magic! 3064 if (KeptBits != (KeptBitsMinusOne + 1)) 3065 return SDValue(); 3066 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3067 3068 // We don't want to do this in every single case. 3069 SelectionDAG &DAG = DCI.DAG; 3070 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3071 XVT, KeptBits)) 3072 return SDValue(); 3073 3074 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3075 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3076 3077 // Unfold into: ((%x << C) a>> C) cond %x 3078 // Where 'cond' will be either 'eq' or 'ne'. 3079 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3080 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3081 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3082 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3083 3084 return T2; 3085 } 3086 3087 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3088 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3089 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3090 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3091 assert(isConstOrConstSplat(N1C) && 3092 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 3093 "Should be a comparison with 0."); 3094 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3095 "Valid only for [in]equality comparisons."); 3096 3097 unsigned NewShiftOpcode; 3098 SDValue X, C, Y; 3099 3100 SelectionDAG &DAG = DCI.DAG; 3101 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3102 3103 // Look for '(C l>>/<< Y)'. 3104 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3105 // The shift should be one-use. 3106 if (!V.hasOneUse()) 3107 return false; 3108 unsigned OldShiftOpcode = V.getOpcode(); 3109 switch (OldShiftOpcode) { 3110 case ISD::SHL: 3111 NewShiftOpcode = ISD::SRL; 3112 break; 3113 case ISD::SRL: 3114 NewShiftOpcode = ISD::SHL; 3115 break; 3116 default: 3117 return false; // must be a logical shift. 3118 } 3119 // We should be shifting a constant. 3120 // FIXME: best to use isConstantOrConstantVector(). 3121 C = V.getOperand(0); 3122 ConstantSDNode *CC = 3123 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3124 if (!CC) 3125 return false; 3126 Y = V.getOperand(1); 3127 3128 ConstantSDNode *XC = 3129 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3130 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3131 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3132 }; 3133 3134 // LHS of comparison should be an one-use 'and'. 3135 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3136 return SDValue(); 3137 3138 X = N0.getOperand(0); 3139 SDValue Mask = N0.getOperand(1); 3140 3141 // 'and' is commutative! 3142 if (!Match(Mask)) { 3143 std::swap(X, Mask); 3144 if (!Match(Mask)) 3145 return SDValue(); 3146 } 3147 3148 EVT VT = X.getValueType(); 3149 3150 // Produce: 3151 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3152 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3153 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3154 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3155 return T2; 3156 } 3157 3158 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3159 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3160 /// handle the commuted versions of these patterns. 3161 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3162 ISD::CondCode Cond, const SDLoc &DL, 3163 DAGCombinerInfo &DCI) const { 3164 unsigned BOpcode = N0.getOpcode(); 3165 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3166 "Unexpected binop"); 3167 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3168 3169 // (X + Y) == X --> Y == 0 3170 // (X - Y) == X --> Y == 0 3171 // (X ^ Y) == X --> Y == 0 3172 SelectionDAG &DAG = DCI.DAG; 3173 EVT OpVT = N0.getValueType(); 3174 SDValue X = N0.getOperand(0); 3175 SDValue Y = N0.getOperand(1); 3176 if (X == N1) 3177 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3178 3179 if (Y != N1) 3180 return SDValue(); 3181 3182 // (X + Y) == Y --> X == 0 3183 // (X ^ Y) == Y --> X == 0 3184 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3185 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3186 3187 // The shift would not be valid if the operands are boolean (i1). 3188 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3189 return SDValue(); 3190 3191 // (X - Y) == Y --> X == Y << 1 3192 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3193 !DCI.isBeforeLegalize()); 3194 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3195 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3196 if (!DCI.isCalledByLegalizer()) 3197 DCI.AddToWorklist(YShl1.getNode()); 3198 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3199 } 3200 3201 /// Try to simplify a setcc built with the specified operands and cc. If it is 3202 /// unable to simplify it, return a null SDValue. 3203 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3204 ISD::CondCode Cond, bool foldBooleans, 3205 DAGCombinerInfo &DCI, 3206 const SDLoc &dl) const { 3207 SelectionDAG &DAG = DCI.DAG; 3208 const DataLayout &Layout = DAG.getDataLayout(); 3209 EVT OpVT = N0.getValueType(); 3210 3211 // Constant fold or commute setcc. 3212 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3213 return Fold; 3214 3215 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3216 // TODO: Handle non-splat vector constants. All undef causes trouble. 3217 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3218 if (isConstOrConstSplat(N0) && 3219 (DCI.isBeforeLegalizeOps() || 3220 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3221 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3222 3223 // If we have a subtract with the same 2 non-constant operands as this setcc 3224 // -- but in reverse order -- then try to commute the operands of this setcc 3225 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3226 // instruction on some targets. 3227 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3228 (DCI.isBeforeLegalizeOps() || 3229 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3230 DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) && 3231 !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } )) 3232 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3233 3234 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3235 const APInt &C1 = N1C->getAPIntValue(); 3236 3237 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3238 // equality comparison, then we're just comparing whether X itself is 3239 // zero. 3240 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3241 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3242 N0.getOperand(1).getOpcode() == ISD::Constant) { 3243 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 3244 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3245 ShAmt == Log2_32(N0.getValueSizeInBits())) { 3246 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3247 // (srl (ctlz x), 5) == 0 -> X != 0 3248 // (srl (ctlz x), 5) != 1 -> X != 0 3249 Cond = ISD::SETNE; 3250 } else { 3251 // (srl (ctlz x), 5) != 0 -> X == 0 3252 // (srl (ctlz x), 5) == 1 -> X == 0 3253 Cond = ISD::SETEQ; 3254 } 3255 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3256 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 3257 Zero, Cond); 3258 } 3259 } 3260 3261 SDValue CTPOP = N0; 3262 // Look through truncs that don't change the value of a ctpop. 3263 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 3264 CTPOP = N0.getOperand(0); 3265 3266 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 3267 (N0 == CTPOP || 3268 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 3269 EVT CTVT = CTPOP.getValueType(); 3270 SDValue CTOp = CTPOP.getOperand(0); 3271 3272 // (ctpop x) u< 2 -> (x & x-1) == 0 3273 // (ctpop x) u> 1 -> (x & x-1) != 0 3274 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 3275 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3276 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3277 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3278 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3279 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 3280 } 3281 3282 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3283 if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) && 3284 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3285 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3286 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3287 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3288 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3289 assert(CTVT.isInteger()); 3290 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3291 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3292 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3293 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3294 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3295 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3296 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3297 } 3298 } 3299 3300 // (zext x) == C --> x == (trunc C) 3301 // (sext x) == C --> x == (trunc C) 3302 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3303 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3304 unsigned MinBits = N0.getValueSizeInBits(); 3305 SDValue PreExt; 3306 bool Signed = false; 3307 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3308 // ZExt 3309 MinBits = N0->getOperand(0).getValueSizeInBits(); 3310 PreExt = N0->getOperand(0); 3311 } else if (N0->getOpcode() == ISD::AND) { 3312 // DAGCombine turns costly ZExts into ANDs 3313 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3314 if ((C->getAPIntValue()+1).isPowerOf2()) { 3315 MinBits = C->getAPIntValue().countTrailingOnes(); 3316 PreExt = N0->getOperand(0); 3317 } 3318 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3319 // SExt 3320 MinBits = N0->getOperand(0).getValueSizeInBits(); 3321 PreExt = N0->getOperand(0); 3322 Signed = true; 3323 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3324 // ZEXTLOAD / SEXTLOAD 3325 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3326 MinBits = LN0->getMemoryVT().getSizeInBits(); 3327 PreExt = N0; 3328 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3329 Signed = true; 3330 MinBits = LN0->getMemoryVT().getSizeInBits(); 3331 PreExt = N0; 3332 } 3333 } 3334 3335 // Figure out how many bits we need to preserve this constant. 3336 unsigned ReqdBits = Signed ? 3337 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3338 C1.getActiveBits(); 3339 3340 // Make sure we're not losing bits from the constant. 3341 if (MinBits > 0 && 3342 MinBits < C1.getBitWidth() && 3343 MinBits >= ReqdBits) { 3344 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3345 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3346 // Will get folded away. 3347 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3348 if (MinBits == 1 && C1 == 1) 3349 // Invert the condition. 3350 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3351 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3352 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3353 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3354 } 3355 3356 // If truncating the setcc operands is not desirable, we can still 3357 // simplify the expression in some cases: 3358 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3359 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3360 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3361 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3362 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3363 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3364 SDValue TopSetCC = N0->getOperand(0); 3365 unsigned N0Opc = N0->getOpcode(); 3366 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3367 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3368 TopSetCC.getOpcode() == ISD::SETCC && 3369 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3370 (isConstFalseVal(N1C) || 3371 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3372 3373 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3374 (!N1C->isNullValue() && Cond == ISD::SETNE); 3375 3376 if (!Inverse) 3377 return TopSetCC; 3378 3379 ISD::CondCode InvCond = ISD::getSetCCInverse( 3380 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3381 TopSetCC.getOperand(0).getValueType()); 3382 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3383 TopSetCC.getOperand(1), 3384 InvCond); 3385 } 3386 } 3387 } 3388 3389 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3390 // equality or unsigned, and all 1 bits of the const are in the same 3391 // partial word, see if we can shorten the load. 3392 if (DCI.isBeforeLegalize() && 3393 !ISD::isSignedIntSetCC(Cond) && 3394 N0.getOpcode() == ISD::AND && C1 == 0 && 3395 N0.getNode()->hasOneUse() && 3396 isa<LoadSDNode>(N0.getOperand(0)) && 3397 N0.getOperand(0).getNode()->hasOneUse() && 3398 isa<ConstantSDNode>(N0.getOperand(1))) { 3399 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3400 APInt bestMask; 3401 unsigned bestWidth = 0, bestOffset = 0; 3402 if (Lod->isSimple() && Lod->isUnindexed()) { 3403 unsigned origWidth = N0.getValueSizeInBits(); 3404 unsigned maskWidth = origWidth; 3405 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3406 // 8 bits, but have to be careful... 3407 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3408 origWidth = Lod->getMemoryVT().getSizeInBits(); 3409 const APInt &Mask = N0.getConstantOperandAPInt(1); 3410 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3411 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3412 for (unsigned offset=0; offset<origWidth/width; offset++) { 3413 if (Mask.isSubsetOf(newMask)) { 3414 if (Layout.isLittleEndian()) 3415 bestOffset = (uint64_t)offset * (width/8); 3416 else 3417 bestOffset = (origWidth/width - offset - 1) * (width/8); 3418 bestMask = Mask.lshr(offset * (width/8) * 8); 3419 bestWidth = width; 3420 break; 3421 } 3422 newMask <<= width; 3423 } 3424 } 3425 } 3426 if (bestWidth) { 3427 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3428 if (newVT.isRound() && 3429 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3430 SDValue Ptr = Lod->getBasePtr(); 3431 if (bestOffset != 0) 3432 Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl); 3433 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 3434 SDValue NewLoad = DAG.getLoad( 3435 newVT, dl, Lod->getChain(), Ptr, 3436 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 3437 return DAG.getSetCC(dl, VT, 3438 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3439 DAG.getConstant(bestMask.trunc(bestWidth), 3440 dl, newVT)), 3441 DAG.getConstant(0LL, dl, newVT), Cond); 3442 } 3443 } 3444 } 3445 3446 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3447 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3448 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3449 3450 // If the comparison constant has bits in the upper part, the 3451 // zero-extended value could never match. 3452 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3453 C1.getBitWidth() - InSize))) { 3454 switch (Cond) { 3455 case ISD::SETUGT: 3456 case ISD::SETUGE: 3457 case ISD::SETEQ: 3458 return DAG.getConstant(0, dl, VT); 3459 case ISD::SETULT: 3460 case ISD::SETULE: 3461 case ISD::SETNE: 3462 return DAG.getConstant(1, dl, VT); 3463 case ISD::SETGT: 3464 case ISD::SETGE: 3465 // True if the sign bit of C1 is set. 3466 return DAG.getConstant(C1.isNegative(), dl, VT); 3467 case ISD::SETLT: 3468 case ISD::SETLE: 3469 // True if the sign bit of C1 isn't set. 3470 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3471 default: 3472 break; 3473 } 3474 } 3475 3476 // Otherwise, we can perform the comparison with the low bits. 3477 switch (Cond) { 3478 case ISD::SETEQ: 3479 case ISD::SETNE: 3480 case ISD::SETUGT: 3481 case ISD::SETUGE: 3482 case ISD::SETULT: 3483 case ISD::SETULE: { 3484 EVT newVT = N0.getOperand(0).getValueType(); 3485 if (DCI.isBeforeLegalizeOps() || 3486 (isOperationLegal(ISD::SETCC, newVT) && 3487 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3488 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3489 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3490 3491 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3492 NewConst, Cond); 3493 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3494 } 3495 break; 3496 } 3497 default: 3498 break; // todo, be more careful with signed comparisons 3499 } 3500 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3501 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3502 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3503 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3504 EVT ExtDstTy = N0.getValueType(); 3505 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3506 3507 // If the constant doesn't fit into the number of bits for the source of 3508 // the sign extension, it is impossible for both sides to be equal. 3509 if (C1.getMinSignedBits() > ExtSrcTyBits) 3510 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 3511 3512 SDValue ZextOp; 3513 EVT Op0Ty = N0.getOperand(0).getValueType(); 3514 if (Op0Ty == ExtSrcTy) { 3515 ZextOp = N0.getOperand(0); 3516 } else { 3517 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3518 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 3519 DAG.getConstant(Imm, dl, Op0Ty)); 3520 } 3521 if (!DCI.isCalledByLegalizer()) 3522 DCI.AddToWorklist(ZextOp.getNode()); 3523 // Otherwise, make this a use of a zext. 3524 return DAG.getSetCC(dl, VT, ZextOp, 3525 DAG.getConstant(C1 & APInt::getLowBitsSet( 3526 ExtDstTyBits, 3527 ExtSrcTyBits), 3528 dl, ExtDstTy), 3529 Cond); 3530 } else if ((N1C->isNullValue() || N1C->isOne()) && 3531 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3532 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3533 if (N0.getOpcode() == ISD::SETCC && 3534 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3535 (N0.getValueType() == MVT::i1 || 3536 getBooleanContents(N0.getOperand(0).getValueType()) == 3537 ZeroOrOneBooleanContent)) { 3538 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3539 if (TrueWhenTrue) 3540 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3541 // Invert the condition. 3542 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3543 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3544 if (DCI.isBeforeLegalizeOps() || 3545 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3546 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3547 } 3548 3549 if ((N0.getOpcode() == ISD::XOR || 3550 (N0.getOpcode() == ISD::AND && 3551 N0.getOperand(0).getOpcode() == ISD::XOR && 3552 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3553 isa<ConstantSDNode>(N0.getOperand(1)) && 3554 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 3555 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3556 // can only do this if the top bits are known zero. 3557 unsigned BitWidth = N0.getValueSizeInBits(); 3558 if (DAG.MaskedValueIsZero(N0, 3559 APInt::getHighBitsSet(BitWidth, 3560 BitWidth-1))) { 3561 // Okay, get the un-inverted input value. 3562 SDValue Val; 3563 if (N0.getOpcode() == ISD::XOR) { 3564 Val = N0.getOperand(0); 3565 } else { 3566 assert(N0.getOpcode() == ISD::AND && 3567 N0.getOperand(0).getOpcode() == ISD::XOR); 3568 // ((X^1)&1)^1 -> X & 1 3569 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3570 N0.getOperand(0).getOperand(0), 3571 N0.getOperand(1)); 3572 } 3573 3574 return DAG.getSetCC(dl, VT, Val, N1, 3575 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3576 } 3577 } else if (N1C->isOne()) { 3578 SDValue Op0 = N0; 3579 if (Op0.getOpcode() == ISD::TRUNCATE) 3580 Op0 = Op0.getOperand(0); 3581 3582 if ((Op0.getOpcode() == ISD::XOR) && 3583 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3584 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3585 SDValue XorLHS = Op0.getOperand(0); 3586 SDValue XorRHS = Op0.getOperand(1); 3587 // Ensure that the input setccs return an i1 type or 0/1 value. 3588 if (Op0.getValueType() == MVT::i1 || 3589 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3590 ZeroOrOneBooleanContent && 3591 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3592 ZeroOrOneBooleanContent)) { 3593 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3594 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3595 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3596 } 3597 } 3598 if (Op0.getOpcode() == ISD::AND && 3599 isa<ConstantSDNode>(Op0.getOperand(1)) && 3600 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 3601 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3602 if (Op0.getValueType().bitsGT(VT)) 3603 Op0 = DAG.getNode(ISD::AND, dl, VT, 3604 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3605 DAG.getConstant(1, dl, VT)); 3606 else if (Op0.getValueType().bitsLT(VT)) 3607 Op0 = DAG.getNode(ISD::AND, dl, VT, 3608 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3609 DAG.getConstant(1, dl, VT)); 3610 3611 return DAG.getSetCC(dl, VT, Op0, 3612 DAG.getConstant(0, dl, Op0.getValueType()), 3613 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3614 } 3615 if (Op0.getOpcode() == ISD::AssertZext && 3616 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3617 return DAG.getSetCC(dl, VT, Op0, 3618 DAG.getConstant(0, dl, Op0.getValueType()), 3619 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3620 } 3621 } 3622 3623 // Given: 3624 // icmp eq/ne (urem %x, %y), 0 3625 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3626 // icmp eq/ne %x, 0 3627 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3628 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3629 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3630 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3631 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3632 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3633 } 3634 3635 if (SDValue V = 3636 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3637 return V; 3638 } 3639 3640 // These simplifications apply to splat vectors as well. 3641 // TODO: Handle more splat vector cases. 3642 if (auto *N1C = isConstOrConstSplat(N1)) { 3643 const APInt &C1 = N1C->getAPIntValue(); 3644 3645 APInt MinVal, MaxVal; 3646 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3647 if (ISD::isSignedIntSetCC(Cond)) { 3648 MinVal = APInt::getSignedMinValue(OperandBitSize); 3649 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3650 } else { 3651 MinVal = APInt::getMinValue(OperandBitSize); 3652 MaxVal = APInt::getMaxValue(OperandBitSize); 3653 } 3654 3655 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3656 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3657 // X >= MIN --> true 3658 if (C1 == MinVal) 3659 return DAG.getBoolConstant(true, dl, VT, OpVT); 3660 3661 if (!VT.isVector()) { // TODO: Support this for vectors. 3662 // X >= C0 --> X > (C0 - 1) 3663 APInt C = C1 - 1; 3664 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3665 if ((DCI.isBeforeLegalizeOps() || 3666 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3667 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3668 isLegalICmpImmediate(C.getSExtValue())))) { 3669 return DAG.getSetCC(dl, VT, N0, 3670 DAG.getConstant(C, dl, N1.getValueType()), 3671 NewCC); 3672 } 3673 } 3674 } 3675 3676 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3677 // X <= MAX --> true 3678 if (C1 == MaxVal) 3679 return DAG.getBoolConstant(true, dl, VT, OpVT); 3680 3681 // X <= C0 --> X < (C0 + 1) 3682 if (!VT.isVector()) { // TODO: Support this for vectors. 3683 APInt C = C1 + 1; 3684 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3685 if ((DCI.isBeforeLegalizeOps() || 3686 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3687 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3688 isLegalICmpImmediate(C.getSExtValue())))) { 3689 return DAG.getSetCC(dl, VT, N0, 3690 DAG.getConstant(C, dl, N1.getValueType()), 3691 NewCC); 3692 } 3693 } 3694 } 3695 3696 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3697 if (C1 == MinVal) 3698 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3699 3700 // TODO: Support this for vectors after legalize ops. 3701 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3702 // Canonicalize setlt X, Max --> setne X, Max 3703 if (C1 == MaxVal) 3704 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3705 3706 // If we have setult X, 1, turn it into seteq X, 0 3707 if (C1 == MinVal+1) 3708 return DAG.getSetCC(dl, VT, N0, 3709 DAG.getConstant(MinVal, dl, N0.getValueType()), 3710 ISD::SETEQ); 3711 } 3712 } 3713 3714 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3715 if (C1 == MaxVal) 3716 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3717 3718 // TODO: Support this for vectors after legalize ops. 3719 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3720 // Canonicalize setgt X, Min --> setne X, Min 3721 if (C1 == MinVal) 3722 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3723 3724 // If we have setugt X, Max-1, turn it into seteq X, Max 3725 if (C1 == MaxVal-1) 3726 return DAG.getSetCC(dl, VT, N0, 3727 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3728 ISD::SETEQ); 3729 } 3730 } 3731 3732 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3733 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3734 if (C1.isNullValue()) 3735 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3736 VT, N0, N1, Cond, DCI, dl)) 3737 return CC; 3738 } 3739 3740 // If we have "setcc X, C0", check to see if we can shrink the immediate 3741 // by changing cc. 3742 // TODO: Support this for vectors after legalize ops. 3743 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3744 // SETUGT X, SINTMAX -> SETLT X, 0 3745 if (Cond == ISD::SETUGT && 3746 C1 == APInt::getSignedMaxValue(OperandBitSize)) 3747 return DAG.getSetCC(dl, VT, N0, 3748 DAG.getConstant(0, dl, N1.getValueType()), 3749 ISD::SETLT); 3750 3751 // SETULT X, SINTMIN -> SETGT X, -1 3752 if (Cond == ISD::SETULT && 3753 C1 == APInt::getSignedMinValue(OperandBitSize)) { 3754 SDValue ConstMinusOne = 3755 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 3756 N1.getValueType()); 3757 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 3758 } 3759 } 3760 } 3761 3762 // Back to non-vector simplifications. 3763 // TODO: Can we do these for vector splats? 3764 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3765 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3766 const APInt &C1 = N1C->getAPIntValue(); 3767 EVT ShValTy = N0.getValueType(); 3768 3769 // Fold bit comparisons when we can. 3770 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3771 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 3772 N0.getOpcode() == ISD::AND) { 3773 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3774 EVT ShiftTy = 3775 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3776 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 3777 // Perform the xform if the AND RHS is a single bit. 3778 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 3779 if (AndRHS->getAPIntValue().isPowerOf2() && 3780 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3781 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3782 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3783 DAG.getConstant(ShCt, dl, ShiftTy))); 3784 } 3785 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 3786 // (X & 8) == 8 --> (X & 8) >> 3 3787 // Perform the xform if C1 is a single bit. 3788 unsigned ShCt = C1.logBase2(); 3789 if (C1.isPowerOf2() && 3790 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3791 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3792 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3793 DAG.getConstant(ShCt, dl, ShiftTy))); 3794 } 3795 } 3796 } 3797 } 3798 3799 if (C1.getMinSignedBits() <= 64 && 3800 !isLegalICmpImmediate(C1.getSExtValue())) { 3801 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3802 // (X & -256) == 256 -> (X >> 8) == 1 3803 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3804 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 3805 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3806 const APInt &AndRHSC = AndRHS->getAPIntValue(); 3807 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 3808 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 3809 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3810 SDValue Shift = 3811 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 3812 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3813 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 3814 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 3815 } 3816 } 3817 } 3818 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 3819 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 3820 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 3821 // X < 0x100000000 -> (X >> 32) < 1 3822 // X >= 0x100000000 -> (X >> 32) >= 1 3823 // X <= 0x0ffffffff -> (X >> 32) < 1 3824 // X > 0x0ffffffff -> (X >> 32) >= 1 3825 unsigned ShiftBits; 3826 APInt NewC = C1; 3827 ISD::CondCode NewCond = Cond; 3828 if (AdjOne) { 3829 ShiftBits = C1.countTrailingOnes(); 3830 NewC = NewC + 1; 3831 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 3832 } else { 3833 ShiftBits = C1.countTrailingZeros(); 3834 } 3835 NewC.lshrInPlace(ShiftBits); 3836 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 3837 isLegalICmpImmediate(NewC.getSExtValue()) && 3838 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3839 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3840 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3841 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 3842 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 3843 } 3844 } 3845 } 3846 } 3847 3848 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 3849 auto *CFP = cast<ConstantFPSDNode>(N1); 3850 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 3851 3852 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 3853 // constant if knowing that the operand is non-nan is enough. We prefer to 3854 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 3855 // materialize 0.0. 3856 if (Cond == ISD::SETO || Cond == ISD::SETUO) 3857 return DAG.getSetCC(dl, VT, N0, N0, Cond); 3858 3859 // setcc (fneg x), C -> setcc swap(pred) x, -C 3860 if (N0.getOpcode() == ISD::FNEG) { 3861 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 3862 if (DCI.isBeforeLegalizeOps() || 3863 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 3864 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 3865 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 3866 } 3867 } 3868 3869 // If the condition is not legal, see if we can find an equivalent one 3870 // which is legal. 3871 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 3872 // If the comparison was an awkward floating-point == or != and one of 3873 // the comparison operands is infinity or negative infinity, convert the 3874 // condition to a less-awkward <= or >=. 3875 if (CFP->getValueAPF().isInfinity()) { 3876 bool IsNegInf = CFP->getValueAPF().isNegative(); 3877 ISD::CondCode NewCond = ISD::SETCC_INVALID; 3878 switch (Cond) { 3879 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 3880 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 3881 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 3882 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 3883 default: break; 3884 } 3885 if (NewCond != ISD::SETCC_INVALID && 3886 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 3887 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3888 } 3889 } 3890 } 3891 3892 if (N0 == N1) { 3893 // The sext(setcc()) => setcc() optimization relies on the appropriate 3894 // constant being emitted. 3895 assert(!N0.getValueType().isInteger() && 3896 "Integer types should be handled by FoldSetCC"); 3897 3898 bool EqTrue = ISD::isTrueWhenEqual(Cond); 3899 unsigned UOF = ISD::getUnorderedFlavor(Cond); 3900 if (UOF == 2) // FP operators that are undefined on NaNs. 3901 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3902 if (UOF == unsigned(EqTrue)) 3903 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3904 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 3905 // if it is not already. 3906 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 3907 if (NewCond != Cond && 3908 (DCI.isBeforeLegalizeOps() || 3909 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 3910 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3911 } 3912 3913 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3914 N0.getValueType().isInteger()) { 3915 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 3916 N0.getOpcode() == ISD::XOR) { 3917 // Simplify (X+Y) == (X+Z) --> Y == Z 3918 if (N0.getOpcode() == N1.getOpcode()) { 3919 if (N0.getOperand(0) == N1.getOperand(0)) 3920 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 3921 if (N0.getOperand(1) == N1.getOperand(1)) 3922 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 3923 if (isCommutativeBinOp(N0.getOpcode())) { 3924 // If X op Y == Y op X, try other combinations. 3925 if (N0.getOperand(0) == N1.getOperand(1)) 3926 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 3927 Cond); 3928 if (N0.getOperand(1) == N1.getOperand(0)) 3929 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 3930 Cond); 3931 } 3932 } 3933 3934 // If RHS is a legal immediate value for a compare instruction, we need 3935 // to be careful about increasing register pressure needlessly. 3936 bool LegalRHSImm = false; 3937 3938 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 3939 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3940 // Turn (X+C1) == C2 --> X == C2-C1 3941 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 3942 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3943 DAG.getConstant(RHSC->getAPIntValue()- 3944 LHSR->getAPIntValue(), 3945 dl, N0.getValueType()), Cond); 3946 } 3947 3948 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 3949 if (N0.getOpcode() == ISD::XOR) 3950 // If we know that all of the inverted bits are zero, don't bother 3951 // performing the inversion. 3952 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 3953 return 3954 DAG.getSetCC(dl, VT, N0.getOperand(0), 3955 DAG.getConstant(LHSR->getAPIntValue() ^ 3956 RHSC->getAPIntValue(), 3957 dl, N0.getValueType()), 3958 Cond); 3959 } 3960 3961 // Turn (C1-X) == C2 --> X == C1-C2 3962 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 3963 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 3964 return 3965 DAG.getSetCC(dl, VT, N0.getOperand(1), 3966 DAG.getConstant(SUBC->getAPIntValue() - 3967 RHSC->getAPIntValue(), 3968 dl, N0.getValueType()), 3969 Cond); 3970 } 3971 } 3972 3973 // Could RHSC fold directly into a compare? 3974 if (RHSC->getValueType(0).getSizeInBits() <= 64) 3975 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 3976 } 3977 3978 // (X+Y) == X --> Y == 0 and similar folds. 3979 // Don't do this if X is an immediate that can fold into a cmp 3980 // instruction and X+Y has other uses. It could be an induction variable 3981 // chain, and the transform would increase register pressure. 3982 if (!LegalRHSImm || N0.hasOneUse()) 3983 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 3984 return V; 3985 } 3986 3987 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 3988 N1.getOpcode() == ISD::XOR) 3989 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 3990 return V; 3991 3992 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 3993 return V; 3994 } 3995 3996 // Fold remainder of division by a constant. 3997 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 3998 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3999 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4000 4001 // When division is cheap or optimizing for minimum size, 4002 // fall through to DIVREM creation by skipping this fold. 4003 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 4004 if (N0.getOpcode() == ISD::UREM) { 4005 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4006 return Folded; 4007 } else if (N0.getOpcode() == ISD::SREM) { 4008 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4009 return Folded; 4010 } 4011 } 4012 } 4013 4014 // Fold away ALL boolean setcc's. 4015 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4016 SDValue Temp; 4017 switch (Cond) { 4018 default: llvm_unreachable("Unknown integer setcc!"); 4019 case ISD::SETEQ: // X == Y -> ~(X^Y) 4020 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4021 N0 = DAG.getNOT(dl, Temp, OpVT); 4022 if (!DCI.isCalledByLegalizer()) 4023 DCI.AddToWorklist(Temp.getNode()); 4024 break; 4025 case ISD::SETNE: // X != Y --> (X^Y) 4026 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4027 break; 4028 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4029 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4030 Temp = DAG.getNOT(dl, N0, OpVT); 4031 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4032 if (!DCI.isCalledByLegalizer()) 4033 DCI.AddToWorklist(Temp.getNode()); 4034 break; 4035 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4036 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4037 Temp = DAG.getNOT(dl, N1, OpVT); 4038 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4039 if (!DCI.isCalledByLegalizer()) 4040 DCI.AddToWorklist(Temp.getNode()); 4041 break; 4042 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4043 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4044 Temp = DAG.getNOT(dl, N0, OpVT); 4045 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4046 if (!DCI.isCalledByLegalizer()) 4047 DCI.AddToWorklist(Temp.getNode()); 4048 break; 4049 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4050 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4051 Temp = DAG.getNOT(dl, N1, OpVT); 4052 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4053 break; 4054 } 4055 if (VT.getScalarType() != MVT::i1) { 4056 if (!DCI.isCalledByLegalizer()) 4057 DCI.AddToWorklist(N0.getNode()); 4058 // FIXME: If running after legalize, we probably can't do this. 4059 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4060 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4061 } 4062 return N0; 4063 } 4064 4065 // Could not fold it. 4066 return SDValue(); 4067 } 4068 4069 /// Returns true (and the GlobalValue and the offset) if the node is a 4070 /// GlobalAddress + offset. 4071 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4072 int64_t &Offset) const { 4073 4074 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4075 4076 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4077 GA = GASD->getGlobal(); 4078 Offset += GASD->getOffset(); 4079 return true; 4080 } 4081 4082 if (N->getOpcode() == ISD::ADD) { 4083 SDValue N1 = N->getOperand(0); 4084 SDValue N2 = N->getOperand(1); 4085 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4086 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4087 Offset += V->getSExtValue(); 4088 return true; 4089 } 4090 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4091 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4092 Offset += V->getSExtValue(); 4093 return true; 4094 } 4095 } 4096 } 4097 4098 return false; 4099 } 4100 4101 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4102 DAGCombinerInfo &DCI) const { 4103 // Default implementation: no optimization. 4104 return SDValue(); 4105 } 4106 4107 //===----------------------------------------------------------------------===// 4108 // Inline Assembler Implementation Methods 4109 //===----------------------------------------------------------------------===// 4110 4111 TargetLowering::ConstraintType 4112 TargetLowering::getConstraintType(StringRef Constraint) const { 4113 unsigned S = Constraint.size(); 4114 4115 if (S == 1) { 4116 switch (Constraint[0]) { 4117 default: break; 4118 case 'r': 4119 return C_RegisterClass; 4120 case 'm': // memory 4121 case 'o': // offsetable 4122 case 'V': // not offsetable 4123 return C_Memory; 4124 case 'n': // Simple Integer 4125 case 'E': // Floating Point Constant 4126 case 'F': // Floating Point Constant 4127 return C_Immediate; 4128 case 'i': // Simple Integer or Relocatable Constant 4129 case 's': // Relocatable Constant 4130 case 'p': // Address. 4131 case 'X': // Allow ANY value. 4132 case 'I': // Target registers. 4133 case 'J': 4134 case 'K': 4135 case 'L': 4136 case 'M': 4137 case 'N': 4138 case 'O': 4139 case 'P': 4140 case '<': 4141 case '>': 4142 return C_Other; 4143 } 4144 } 4145 4146 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4147 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4148 return C_Memory; 4149 return C_Register; 4150 } 4151 return C_Unknown; 4152 } 4153 4154 /// Try to replace an X constraint, which matches anything, with another that 4155 /// has more specific requirements based on the type of the corresponding 4156 /// operand. 4157 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4158 if (ConstraintVT.isInteger()) 4159 return "r"; 4160 if (ConstraintVT.isFloatingPoint()) 4161 return "f"; // works for many targets 4162 return nullptr; 4163 } 4164 4165 SDValue TargetLowering::LowerAsmOutputForConstraint( 4166 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, 4167 SelectionDAG &DAG) const { 4168 return SDValue(); 4169 } 4170 4171 /// Lower the specified operand into the Ops vector. 4172 /// If it is invalid, don't add anything to Ops. 4173 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4174 std::string &Constraint, 4175 std::vector<SDValue> &Ops, 4176 SelectionDAG &DAG) const { 4177 4178 if (Constraint.length() > 1) return; 4179 4180 char ConstraintLetter = Constraint[0]; 4181 switch (ConstraintLetter) { 4182 default: break; 4183 case 'X': // Allows any operand; labels (basic block) use this. 4184 if (Op.getOpcode() == ISD::BasicBlock || 4185 Op.getOpcode() == ISD::TargetBlockAddress) { 4186 Ops.push_back(Op); 4187 return; 4188 } 4189 LLVM_FALLTHROUGH; 4190 case 'i': // Simple Integer or Relocatable Constant 4191 case 'n': // Simple Integer 4192 case 's': { // Relocatable Constant 4193 4194 GlobalAddressSDNode *GA; 4195 ConstantSDNode *C; 4196 BlockAddressSDNode *BA; 4197 uint64_t Offset = 0; 4198 4199 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4200 // etc., since getelementpointer is variadic. We can't use 4201 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4202 // while in this case the GA may be furthest from the root node which is 4203 // likely an ISD::ADD. 4204 while (1) { 4205 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4206 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4207 GA->getValueType(0), 4208 Offset + GA->getOffset())); 4209 return; 4210 } else if ((C = dyn_cast<ConstantSDNode>(Op)) && 4211 ConstraintLetter != 's') { 4212 // gcc prints these as sign extended. Sign extend value to 64 bits 4213 // now; without this it would get ZExt'd later in 4214 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4215 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4216 BooleanContent BCont = getBooleanContents(MVT::i64); 4217 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont) 4218 : ISD::SIGN_EXTEND; 4219 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() 4220 : C->getSExtValue(); 4221 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal, 4222 SDLoc(C), MVT::i64)); 4223 return; 4224 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && 4225 ConstraintLetter != 'n') { 4226 Ops.push_back(DAG.getTargetBlockAddress( 4227 BA->getBlockAddress(), BA->getValueType(0), 4228 Offset + BA->getOffset(), BA->getTargetFlags())); 4229 return; 4230 } else { 4231 const unsigned OpCode = Op.getOpcode(); 4232 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4233 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4234 Op = Op.getOperand(1); 4235 // Subtraction is not commutative. 4236 else if (OpCode == ISD::ADD && 4237 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4238 Op = Op.getOperand(0); 4239 else 4240 return; 4241 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4242 continue; 4243 } 4244 } 4245 return; 4246 } 4247 break; 4248 } 4249 } 4250 } 4251 4252 std::pair<unsigned, const TargetRegisterClass *> 4253 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4254 StringRef Constraint, 4255 MVT VT) const { 4256 if (Constraint.empty() || Constraint[0] != '{') 4257 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4258 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4259 4260 // Remove the braces from around the name. 4261 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4262 4263 std::pair<unsigned, const TargetRegisterClass *> R = 4264 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4265 4266 // Figure out which register class contains this reg. 4267 for (const TargetRegisterClass *RC : RI->regclasses()) { 4268 // If none of the value types for this register class are valid, we 4269 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4270 if (!isLegalRC(*RI, *RC)) 4271 continue; 4272 4273 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 4274 I != E; ++I) { 4275 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 4276 std::pair<unsigned, const TargetRegisterClass *> S = 4277 std::make_pair(*I, RC); 4278 4279 // If this register class has the requested value type, return it, 4280 // otherwise keep searching and return the first class found 4281 // if no other is found which explicitly has the requested type. 4282 if (RI->isTypeLegalForClass(*RC, VT)) 4283 return S; 4284 if (!R.second) 4285 R = S; 4286 } 4287 } 4288 } 4289 4290 return R; 4291 } 4292 4293 //===----------------------------------------------------------------------===// 4294 // Constraint Selection. 4295 4296 /// Return true of this is an input operand that is a matching constraint like 4297 /// "4". 4298 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4299 assert(!ConstraintCode.empty() && "No known constraint!"); 4300 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4301 } 4302 4303 /// If this is an input matching constraint, this method returns the output 4304 /// operand it matches. 4305 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4306 assert(!ConstraintCode.empty() && "No known constraint!"); 4307 return atoi(ConstraintCode.c_str()); 4308 } 4309 4310 /// Split up the constraint string from the inline assembly value into the 4311 /// specific constraints and their prefixes, and also tie in the associated 4312 /// operand values. 4313 /// If this returns an empty vector, and if the constraint string itself 4314 /// isn't empty, there was an error parsing. 4315 TargetLowering::AsmOperandInfoVector 4316 TargetLowering::ParseConstraints(const DataLayout &DL, 4317 const TargetRegisterInfo *TRI, 4318 ImmutableCallSite CS) const { 4319 /// Information about all of the constraints. 4320 AsmOperandInfoVector ConstraintOperands; 4321 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 4322 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4323 4324 // Do a prepass over the constraints, canonicalizing them, and building up the 4325 // ConstraintOperands list. 4326 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4327 unsigned ResNo = 0; // ResNo - The result number of the next output. 4328 4329 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4330 ConstraintOperands.emplace_back(std::move(CI)); 4331 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4332 4333 // Update multiple alternative constraint count. 4334 if (OpInfo.multipleAlternatives.size() > maCount) 4335 maCount = OpInfo.multipleAlternatives.size(); 4336 4337 OpInfo.ConstraintVT = MVT::Other; 4338 4339 // Compute the value type for each operand. 4340 switch (OpInfo.Type) { 4341 case InlineAsm::isOutput: 4342 // Indirect outputs just consume an argument. 4343 if (OpInfo.isIndirect) { 4344 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 4345 break; 4346 } 4347 4348 // The return value of the call is this value. As such, there is no 4349 // corresponding argument. 4350 assert(!CS.getType()->isVoidTy() && 4351 "Bad inline asm!"); 4352 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 4353 OpInfo.ConstraintVT = 4354 getSimpleValueType(DL, STy->getElementType(ResNo)); 4355 } else { 4356 assert(ResNo == 0 && "Asm only has one result!"); 4357 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 4358 } 4359 ++ResNo; 4360 break; 4361 case InlineAsm::isInput: 4362 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 4363 break; 4364 case InlineAsm::isClobber: 4365 // Nothing to do. 4366 break; 4367 } 4368 4369 if (OpInfo.CallOperandVal) { 4370 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4371 if (OpInfo.isIndirect) { 4372 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4373 if (!PtrTy) 4374 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4375 OpTy = PtrTy->getElementType(); 4376 } 4377 4378 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4379 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4380 if (STy->getNumElements() == 1) 4381 OpTy = STy->getElementType(0); 4382 4383 // If OpTy is not a single value, it may be a struct/union that we 4384 // can tile with integers. 4385 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4386 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4387 switch (BitSize) { 4388 default: break; 4389 case 1: 4390 case 8: 4391 case 16: 4392 case 32: 4393 case 64: 4394 case 128: 4395 OpInfo.ConstraintVT = 4396 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4397 break; 4398 } 4399 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4400 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4401 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4402 } else { 4403 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4404 } 4405 } 4406 } 4407 4408 // If we have multiple alternative constraints, select the best alternative. 4409 if (!ConstraintOperands.empty()) { 4410 if (maCount) { 4411 unsigned bestMAIndex = 0; 4412 int bestWeight = -1; 4413 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4414 int weight = -1; 4415 unsigned maIndex; 4416 // Compute the sums of the weights for each alternative, keeping track 4417 // of the best (highest weight) one so far. 4418 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4419 int weightSum = 0; 4420 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4421 cIndex != eIndex; ++cIndex) { 4422 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4423 if (OpInfo.Type == InlineAsm::isClobber) 4424 continue; 4425 4426 // If this is an output operand with a matching input operand, 4427 // look up the matching input. If their types mismatch, e.g. one 4428 // is an integer, the other is floating point, or their sizes are 4429 // different, flag it as an maCantMatch. 4430 if (OpInfo.hasMatchingInput()) { 4431 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4432 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4433 if ((OpInfo.ConstraintVT.isInteger() != 4434 Input.ConstraintVT.isInteger()) || 4435 (OpInfo.ConstraintVT.getSizeInBits() != 4436 Input.ConstraintVT.getSizeInBits())) { 4437 weightSum = -1; // Can't match. 4438 break; 4439 } 4440 } 4441 } 4442 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4443 if (weight == -1) { 4444 weightSum = -1; 4445 break; 4446 } 4447 weightSum += weight; 4448 } 4449 // Update best. 4450 if (weightSum > bestWeight) { 4451 bestWeight = weightSum; 4452 bestMAIndex = maIndex; 4453 } 4454 } 4455 4456 // Now select chosen alternative in each constraint. 4457 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4458 cIndex != eIndex; ++cIndex) { 4459 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4460 if (cInfo.Type == InlineAsm::isClobber) 4461 continue; 4462 cInfo.selectAlternative(bestMAIndex); 4463 } 4464 } 4465 } 4466 4467 // Check and hook up tied operands, choose constraint code to use. 4468 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4469 cIndex != eIndex; ++cIndex) { 4470 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4471 4472 // If this is an output operand with a matching input operand, look up the 4473 // matching input. If their types mismatch, e.g. one is an integer, the 4474 // other is floating point, or their sizes are different, flag it as an 4475 // error. 4476 if (OpInfo.hasMatchingInput()) { 4477 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4478 4479 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4480 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4481 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4482 OpInfo.ConstraintVT); 4483 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4484 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4485 Input.ConstraintVT); 4486 if ((OpInfo.ConstraintVT.isInteger() != 4487 Input.ConstraintVT.isInteger()) || 4488 (MatchRC.second != InputRC.second)) { 4489 report_fatal_error("Unsupported asm: input constraint" 4490 " with a matching output constraint of" 4491 " incompatible type!"); 4492 } 4493 } 4494 } 4495 } 4496 4497 return ConstraintOperands; 4498 } 4499 4500 /// Return an integer indicating how general CT is. 4501 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4502 switch (CT) { 4503 case TargetLowering::C_Immediate: 4504 case TargetLowering::C_Other: 4505 case TargetLowering::C_Unknown: 4506 return 0; 4507 case TargetLowering::C_Register: 4508 return 1; 4509 case TargetLowering::C_RegisterClass: 4510 return 2; 4511 case TargetLowering::C_Memory: 4512 return 3; 4513 } 4514 llvm_unreachable("Invalid constraint type"); 4515 } 4516 4517 /// Examine constraint type and operand type and determine a weight value. 4518 /// This object must already have been set up with the operand type 4519 /// and the current alternative constraint selected. 4520 TargetLowering::ConstraintWeight 4521 TargetLowering::getMultipleConstraintMatchWeight( 4522 AsmOperandInfo &info, int maIndex) const { 4523 InlineAsm::ConstraintCodeVector *rCodes; 4524 if (maIndex >= (int)info.multipleAlternatives.size()) 4525 rCodes = &info.Codes; 4526 else 4527 rCodes = &info.multipleAlternatives[maIndex].Codes; 4528 ConstraintWeight BestWeight = CW_Invalid; 4529 4530 // Loop over the options, keeping track of the most general one. 4531 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4532 ConstraintWeight weight = 4533 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4534 if (weight > BestWeight) 4535 BestWeight = weight; 4536 } 4537 4538 return BestWeight; 4539 } 4540 4541 /// Examine constraint type and operand type and determine a weight value. 4542 /// This object must already have been set up with the operand type 4543 /// and the current alternative constraint selected. 4544 TargetLowering::ConstraintWeight 4545 TargetLowering::getSingleConstraintMatchWeight( 4546 AsmOperandInfo &info, const char *constraint) const { 4547 ConstraintWeight weight = CW_Invalid; 4548 Value *CallOperandVal = info.CallOperandVal; 4549 // If we don't have a value, we can't do a match, 4550 // but allow it at the lowest weight. 4551 if (!CallOperandVal) 4552 return CW_Default; 4553 // Look at the constraint type. 4554 switch (*constraint) { 4555 case 'i': // immediate integer. 4556 case 'n': // immediate integer with a known value. 4557 if (isa<ConstantInt>(CallOperandVal)) 4558 weight = CW_Constant; 4559 break; 4560 case 's': // non-explicit intregal immediate. 4561 if (isa<GlobalValue>(CallOperandVal)) 4562 weight = CW_Constant; 4563 break; 4564 case 'E': // immediate float if host format. 4565 case 'F': // immediate float. 4566 if (isa<ConstantFP>(CallOperandVal)) 4567 weight = CW_Constant; 4568 break; 4569 case '<': // memory operand with autodecrement. 4570 case '>': // memory operand with autoincrement. 4571 case 'm': // memory operand. 4572 case 'o': // offsettable memory operand 4573 case 'V': // non-offsettable memory operand 4574 weight = CW_Memory; 4575 break; 4576 case 'r': // general register. 4577 case 'g': // general register, memory operand or immediate integer. 4578 // note: Clang converts "g" to "imr". 4579 if (CallOperandVal->getType()->isIntegerTy()) 4580 weight = CW_Register; 4581 break; 4582 case 'X': // any operand. 4583 default: 4584 weight = CW_Default; 4585 break; 4586 } 4587 return weight; 4588 } 4589 4590 /// If there are multiple different constraints that we could pick for this 4591 /// operand (e.g. "imr") try to pick the 'best' one. 4592 /// This is somewhat tricky: constraints fall into four classes: 4593 /// Other -> immediates and magic values 4594 /// Register -> one specific register 4595 /// RegisterClass -> a group of regs 4596 /// Memory -> memory 4597 /// Ideally, we would pick the most specific constraint possible: if we have 4598 /// something that fits into a register, we would pick it. The problem here 4599 /// is that if we have something that could either be in a register or in 4600 /// memory that use of the register could cause selection of *other* 4601 /// operands to fail: they might only succeed if we pick memory. Because of 4602 /// this the heuristic we use is: 4603 /// 4604 /// 1) If there is an 'other' constraint, and if the operand is valid for 4605 /// that constraint, use it. This makes us take advantage of 'i' 4606 /// constraints when available. 4607 /// 2) Otherwise, pick the most general constraint present. This prefers 4608 /// 'm' over 'r', for example. 4609 /// 4610 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4611 const TargetLowering &TLI, 4612 SDValue Op, SelectionDAG *DAG) { 4613 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4614 unsigned BestIdx = 0; 4615 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4616 int BestGenerality = -1; 4617 4618 // Loop over the options, keeping track of the most general one. 4619 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4620 TargetLowering::ConstraintType CType = 4621 TLI.getConstraintType(OpInfo.Codes[i]); 4622 4623 // Indirect 'other' or 'immediate' constraints are not allowed. 4624 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 4625 CType == TargetLowering::C_Register || 4626 CType == TargetLowering::C_RegisterClass)) 4627 continue; 4628 4629 // If this is an 'other' or 'immediate' constraint, see if the operand is 4630 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4631 // the operand is an integer in the range [0..31] we want to use I (saving a 4632 // load of a register), otherwise we must use 'r'. 4633 if ((CType == TargetLowering::C_Other || 4634 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4635 assert(OpInfo.Codes[i].size() == 1 && 4636 "Unhandled multi-letter 'other' constraint"); 4637 std::vector<SDValue> ResultOps; 4638 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4639 ResultOps, *DAG); 4640 if (!ResultOps.empty()) { 4641 BestType = CType; 4642 BestIdx = i; 4643 break; 4644 } 4645 } 4646 4647 // Things with matching constraints can only be registers, per gcc 4648 // documentation. This mainly affects "g" constraints. 4649 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4650 continue; 4651 4652 // This constraint letter is more general than the previous one, use it. 4653 int Generality = getConstraintGenerality(CType); 4654 if (Generality > BestGenerality) { 4655 BestType = CType; 4656 BestIdx = i; 4657 BestGenerality = Generality; 4658 } 4659 } 4660 4661 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4662 OpInfo.ConstraintType = BestType; 4663 } 4664 4665 /// Determines the constraint code and constraint type to use for the specific 4666 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4667 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4668 SDValue Op, 4669 SelectionDAG *DAG) const { 4670 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4671 4672 // Single-letter constraints ('r') are very common. 4673 if (OpInfo.Codes.size() == 1) { 4674 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4675 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4676 } else { 4677 ChooseConstraint(OpInfo, *this, Op, DAG); 4678 } 4679 4680 // 'X' matches anything. 4681 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4682 // Labels and constants are handled elsewhere ('X' is the only thing 4683 // that matches labels). For Functions, the type here is the type of 4684 // the result, which is not what we want to look at; leave them alone. 4685 Value *v = OpInfo.CallOperandVal; 4686 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4687 OpInfo.CallOperandVal = v; 4688 return; 4689 } 4690 4691 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4692 return; 4693 4694 // Otherwise, try to resolve it to something we know about by looking at 4695 // the actual operand type. 4696 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4697 OpInfo.ConstraintCode = Repl; 4698 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4699 } 4700 } 4701 } 4702 4703 /// Given an exact SDIV by a constant, create a multiplication 4704 /// with the multiplicative inverse of the constant. 4705 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 4706 const SDLoc &dl, SelectionDAG &DAG, 4707 SmallVectorImpl<SDNode *> &Created) { 4708 SDValue Op0 = N->getOperand(0); 4709 SDValue Op1 = N->getOperand(1); 4710 EVT VT = N->getValueType(0); 4711 EVT SVT = VT.getScalarType(); 4712 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 4713 EVT ShSVT = ShVT.getScalarType(); 4714 4715 bool UseSRA = false; 4716 SmallVector<SDValue, 16> Shifts, Factors; 4717 4718 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4719 if (C->isNullValue()) 4720 return false; 4721 APInt Divisor = C->getAPIntValue(); 4722 unsigned Shift = Divisor.countTrailingZeros(); 4723 if (Shift) { 4724 Divisor.ashrInPlace(Shift); 4725 UseSRA = true; 4726 } 4727 // Calculate the multiplicative inverse, using Newton's method. 4728 APInt t; 4729 APInt Factor = Divisor; 4730 while ((t = Divisor * Factor) != 1) 4731 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 4732 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 4733 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 4734 return true; 4735 }; 4736 4737 // Collect all magic values from the build vector. 4738 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 4739 return SDValue(); 4740 4741 SDValue Shift, Factor; 4742 if (VT.isVector()) { 4743 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4744 Factor = DAG.getBuildVector(VT, dl, Factors); 4745 } else { 4746 Shift = Shifts[0]; 4747 Factor = Factors[0]; 4748 } 4749 4750 SDValue Res = Op0; 4751 4752 // Shift the value upfront if it is even, so the LSB is one. 4753 if (UseSRA) { 4754 // TODO: For UDIV use SRL instead of SRA. 4755 SDNodeFlags Flags; 4756 Flags.setExact(true); 4757 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 4758 Created.push_back(Res.getNode()); 4759 } 4760 4761 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 4762 } 4763 4764 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 4765 SelectionDAG &DAG, 4766 SmallVectorImpl<SDNode *> &Created) const { 4767 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4768 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4769 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 4770 return SDValue(N, 0); // Lower SDIV as SDIV 4771 return SDValue(); 4772 } 4773 4774 /// Given an ISD::SDIV node expressing a divide by constant, 4775 /// return a DAG expression to select that will generate the same value by 4776 /// multiplying by a magic number. 4777 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4778 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 4779 bool IsAfterLegalization, 4780 SmallVectorImpl<SDNode *> &Created) const { 4781 SDLoc dl(N); 4782 EVT VT = N->getValueType(0); 4783 EVT SVT = VT.getScalarType(); 4784 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4785 EVT ShSVT = ShVT.getScalarType(); 4786 unsigned EltBits = VT.getScalarSizeInBits(); 4787 4788 // Check to see if we can do this. 4789 // FIXME: We should be more aggressive here. 4790 if (!isTypeLegal(VT)) 4791 return SDValue(); 4792 4793 // If the sdiv has an 'exact' bit we can use a simpler lowering. 4794 if (N->getFlags().hasExact()) 4795 return BuildExactSDIV(*this, N, dl, DAG, Created); 4796 4797 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 4798 4799 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4800 if (C->isNullValue()) 4801 return false; 4802 4803 const APInt &Divisor = C->getAPIntValue(); 4804 APInt::ms magics = Divisor.magic(); 4805 int NumeratorFactor = 0; 4806 int ShiftMask = -1; 4807 4808 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 4809 // If d is +1/-1, we just multiply the numerator by +1/-1. 4810 NumeratorFactor = Divisor.getSExtValue(); 4811 magics.m = 0; 4812 magics.s = 0; 4813 ShiftMask = 0; 4814 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 4815 // If d > 0 and m < 0, add the numerator. 4816 NumeratorFactor = 1; 4817 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 4818 // If d < 0 and m > 0, subtract the numerator. 4819 NumeratorFactor = -1; 4820 } 4821 4822 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 4823 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 4824 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 4825 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 4826 return true; 4827 }; 4828 4829 SDValue N0 = N->getOperand(0); 4830 SDValue N1 = N->getOperand(1); 4831 4832 // Collect the shifts / magic values from each element. 4833 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 4834 return SDValue(); 4835 4836 SDValue MagicFactor, Factor, Shift, ShiftMask; 4837 if (VT.isVector()) { 4838 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4839 Factor = DAG.getBuildVector(VT, dl, Factors); 4840 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4841 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 4842 } else { 4843 MagicFactor = MagicFactors[0]; 4844 Factor = Factors[0]; 4845 Shift = Shifts[0]; 4846 ShiftMask = ShiftMasks[0]; 4847 } 4848 4849 // Multiply the numerator (operand 0) by the magic value. 4850 // FIXME: We should support doing a MUL in a wider type. 4851 SDValue Q; 4852 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 4853 : isOperationLegalOrCustom(ISD::MULHS, VT)) 4854 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 4855 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 4856 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 4857 SDValue LoHi = 4858 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 4859 Q = SDValue(LoHi.getNode(), 1); 4860 } else 4861 return SDValue(); // No mulhs or equivalent. 4862 Created.push_back(Q.getNode()); 4863 4864 // (Optionally) Add/subtract the numerator using Factor. 4865 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 4866 Created.push_back(Factor.getNode()); 4867 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 4868 Created.push_back(Q.getNode()); 4869 4870 // Shift right algebraic by shift value. 4871 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 4872 Created.push_back(Q.getNode()); 4873 4874 // Extract the sign bit, mask it and add it to the quotient. 4875 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 4876 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 4877 Created.push_back(T.getNode()); 4878 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 4879 Created.push_back(T.getNode()); 4880 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 4881 } 4882 4883 /// Given an ISD::UDIV node expressing a divide by constant, 4884 /// return a DAG expression to select that will generate the same value by 4885 /// multiplying by a magic number. 4886 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4887 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 4888 bool IsAfterLegalization, 4889 SmallVectorImpl<SDNode *> &Created) const { 4890 SDLoc dl(N); 4891 EVT VT = N->getValueType(0); 4892 EVT SVT = VT.getScalarType(); 4893 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4894 EVT ShSVT = ShVT.getScalarType(); 4895 unsigned EltBits = VT.getScalarSizeInBits(); 4896 4897 // Check to see if we can do this. 4898 // FIXME: We should be more aggressive here. 4899 if (!isTypeLegal(VT)) 4900 return SDValue(); 4901 4902 bool UseNPQ = false; 4903 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4904 4905 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 4906 if (C->isNullValue()) 4907 return false; 4908 // FIXME: We should use a narrower constant when the upper 4909 // bits are known to be zero. 4910 APInt Divisor = C->getAPIntValue(); 4911 APInt::mu magics = Divisor.magicu(); 4912 unsigned PreShift = 0, PostShift = 0; 4913 4914 // If the divisor is even, we can avoid using the expensive fixup by 4915 // shifting the divided value upfront. 4916 if (magics.a != 0 && !Divisor[0]) { 4917 PreShift = Divisor.countTrailingZeros(); 4918 // Get magic number for the shifted divisor. 4919 magics = Divisor.lshr(PreShift).magicu(PreShift); 4920 assert(magics.a == 0 && "Should use cheap fixup now"); 4921 } 4922 4923 APInt Magic = magics.m; 4924 4925 unsigned SelNPQ; 4926 if (magics.a == 0 || Divisor.isOneValue()) { 4927 assert(magics.s < Divisor.getBitWidth() && 4928 "We shouldn't generate an undefined shift!"); 4929 PostShift = magics.s; 4930 SelNPQ = false; 4931 } else { 4932 PostShift = magics.s - 1; 4933 SelNPQ = true; 4934 } 4935 4936 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 4937 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 4938 NPQFactors.push_back( 4939 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4940 : APInt::getNullValue(EltBits), 4941 dl, SVT)); 4942 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 4943 UseNPQ |= SelNPQ; 4944 return true; 4945 }; 4946 4947 SDValue N0 = N->getOperand(0); 4948 SDValue N1 = N->getOperand(1); 4949 4950 // Collect the shifts/magic values from each element. 4951 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 4952 return SDValue(); 4953 4954 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 4955 if (VT.isVector()) { 4956 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 4957 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4958 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 4959 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 4960 } else { 4961 PreShift = PreShifts[0]; 4962 MagicFactor = MagicFactors[0]; 4963 PostShift = PostShifts[0]; 4964 } 4965 4966 SDValue Q = N0; 4967 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 4968 Created.push_back(Q.getNode()); 4969 4970 // FIXME: We should support doing a MUL in a wider type. 4971 auto GetMULHU = [&](SDValue X, SDValue Y) { 4972 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 4973 : isOperationLegalOrCustom(ISD::MULHU, VT)) 4974 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 4975 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 4976 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 4977 SDValue LoHi = 4978 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 4979 return SDValue(LoHi.getNode(), 1); 4980 } 4981 return SDValue(); // No mulhu or equivalent 4982 }; 4983 4984 // Multiply the numerator (operand 0) by the magic value. 4985 Q = GetMULHU(Q, MagicFactor); 4986 if (!Q) 4987 return SDValue(); 4988 4989 Created.push_back(Q.getNode()); 4990 4991 if (UseNPQ) { 4992 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 4993 Created.push_back(NPQ.getNode()); 4994 4995 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 4996 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 4997 if (VT.isVector()) 4998 NPQ = GetMULHU(NPQ, NPQFactor); 4999 else 5000 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5001 5002 Created.push_back(NPQ.getNode()); 5003 5004 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5005 Created.push_back(Q.getNode()); 5006 } 5007 5008 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5009 Created.push_back(Q.getNode()); 5010 5011 SDValue One = DAG.getConstant(1, dl, VT); 5012 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 5013 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5014 } 5015 5016 /// If all values in Values that *don't* match the predicate are same 'splat' 5017 /// value, then replace all values with that splat value. 5018 /// Else, if AlternativeReplacement was provided, then replace all values that 5019 /// do match predicate with AlternativeReplacement value. 5020 static void 5021 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5022 std::function<bool(SDValue)> Predicate, 5023 SDValue AlternativeReplacement = SDValue()) { 5024 SDValue Replacement; 5025 // Is there a value for which the Predicate does *NOT* match? What is it? 5026 auto SplatValue = llvm::find_if_not(Values, Predicate); 5027 if (SplatValue != Values.end()) { 5028 // Does Values consist only of SplatValue's and values matching Predicate? 5029 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5030 return Value == *SplatValue || Predicate(Value); 5031 })) // Then we shall replace values matching predicate with SplatValue. 5032 Replacement = *SplatValue; 5033 } 5034 if (!Replacement) { 5035 // Oops, we did not find the "baseline" splat value. 5036 if (!AlternativeReplacement) 5037 return; // Nothing to do. 5038 // Let's replace with provided value then. 5039 Replacement = AlternativeReplacement; 5040 } 5041 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5042 } 5043 5044 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5045 /// where the divisor is constant and the comparison target is zero, 5046 /// return a DAG expression that will generate the same comparison result 5047 /// using only multiplications, additions and shifts/rotations. 5048 /// Ref: "Hacker's Delight" 10-17. 5049 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5050 SDValue CompTargetNode, 5051 ISD::CondCode Cond, 5052 DAGCombinerInfo &DCI, 5053 const SDLoc &DL) const { 5054 SmallVector<SDNode *, 5> Built; 5055 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5056 DCI, DL, Built)) { 5057 for (SDNode *N : Built) 5058 DCI.AddToWorklist(N); 5059 return Folded; 5060 } 5061 5062 return SDValue(); 5063 } 5064 5065 SDValue 5066 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5067 SDValue CompTargetNode, ISD::CondCode Cond, 5068 DAGCombinerInfo &DCI, const SDLoc &DL, 5069 SmallVectorImpl<SDNode *> &Created) const { 5070 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5071 // - D must be constant, with D = D0 * 2^K where D0 is odd 5072 // - P is the multiplicative inverse of D0 modulo 2^W 5073 // - Q = floor(((2^W) - 1) / D) 5074 // where W is the width of the common type of N and D. 5075 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5076 "Only applicable for (in)equality comparisons."); 5077 5078 SelectionDAG &DAG = DCI.DAG; 5079 5080 EVT VT = REMNode.getValueType(); 5081 EVT SVT = VT.getScalarType(); 5082 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5083 EVT ShSVT = ShVT.getScalarType(); 5084 5085 // If MUL is unavailable, we cannot proceed in any case. 5086 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5087 return SDValue(); 5088 5089 bool ComparingWithAllZeros = true; 5090 bool AllComparisonsWithNonZerosAreTautological = true; 5091 bool HadTautologicalLanes = false; 5092 bool AllLanesAreTautological = true; 5093 bool HadEvenDivisor = false; 5094 bool AllDivisorsArePowerOfTwo = true; 5095 bool HadTautologicalInvertedLanes = false; 5096 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5097 5098 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5099 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5100 if (CDiv->isNullValue()) 5101 return false; 5102 5103 const APInt &D = CDiv->getAPIntValue(); 5104 const APInt &Cmp = CCmp->getAPIntValue(); 5105 5106 ComparingWithAllZeros &= Cmp.isNullValue(); 5107 5108 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5109 // if C2 is not less than C1, the comparison is always false. 5110 // But we will only be able to produce the comparison that will give the 5111 // opposive tautological answer. So this lane would need to be fixed up. 5112 bool TautologicalInvertedLane = D.ule(Cmp); 5113 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5114 5115 // If all lanes are tautological (either all divisors are ones, or divisor 5116 // is not greater than the constant we are comparing with), 5117 // we will prefer to avoid the fold. 5118 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; 5119 HadTautologicalLanes |= TautologicalLane; 5120 AllLanesAreTautological &= TautologicalLane; 5121 5122 // If we are comparing with non-zero, we need'll need to subtract said 5123 // comparison value from the LHS. But there is no point in doing that if 5124 // every lane where we are comparing with non-zero is tautological.. 5125 if (!Cmp.isNullValue()) 5126 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5127 5128 // Decompose D into D0 * 2^K 5129 unsigned K = D.countTrailingZeros(); 5130 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5131 APInt D0 = D.lshr(K); 5132 5133 // D is even if it has trailing zeros. 5134 HadEvenDivisor |= (K != 0); 5135 // D is a power-of-two if D0 is one. 5136 // If all divisors are power-of-two, we will prefer to avoid the fold. 5137 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5138 5139 // P = inv(D0, 2^W) 5140 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5141 unsigned W = D.getBitWidth(); 5142 APInt P = D0.zext(W + 1) 5143 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5144 .trunc(W); 5145 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5146 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5147 5148 // Q = floor((2^W - 1) u/ D) 5149 // R = ((2^W - 1) u% D) 5150 APInt Q, R; 5151 APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R); 5152 5153 // If we are comparing with zero, then that comparison constant is okay, 5154 // else it may need to be one less than that. 5155 if (Cmp.ugt(R)) 5156 Q -= 1; 5157 5158 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5159 "We are expecting that K is always less than all-ones for ShSVT"); 5160 5161 // If the lane is tautological the result can be constant-folded. 5162 if (TautologicalLane) { 5163 // Set P and K amount to a bogus values so we can try to splat them. 5164 P = 0; 5165 K = -1; 5166 // And ensure that comparison constant is tautological, 5167 // it will always compare true/false. 5168 Q = -1; 5169 } 5170 5171 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5172 KAmts.push_back( 5173 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5174 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5175 return true; 5176 }; 5177 5178 SDValue N = REMNode.getOperand(0); 5179 SDValue D = REMNode.getOperand(1); 5180 5181 // Collect the values from each element. 5182 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5183 return SDValue(); 5184 5185 // If all lanes are tautological, the result can be constant-folded. 5186 if (AllLanesAreTautological) 5187 return SDValue(); 5188 5189 // If this is a urem by a powers-of-two, avoid the fold since it can be 5190 // best implemented as a bit test. 5191 if (AllDivisorsArePowerOfTwo) 5192 return SDValue(); 5193 5194 SDValue PVal, KVal, QVal; 5195 if (VT.isVector()) { 5196 if (HadTautologicalLanes) { 5197 // Try to turn PAmts into a splat, since we don't care about the values 5198 // that are currently '0'. If we can't, just keep '0'`s. 5199 turnVectorIntoSplatVector(PAmts, isNullConstant); 5200 // Try to turn KAmts into a splat, since we don't care about the values 5201 // that are currently '-1'. If we can't, change them to '0'`s. 5202 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5203 DAG.getConstant(0, DL, ShSVT)); 5204 } 5205 5206 PVal = DAG.getBuildVector(VT, DL, PAmts); 5207 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5208 QVal = DAG.getBuildVector(VT, DL, QAmts); 5209 } else { 5210 PVal = PAmts[0]; 5211 KVal = KAmts[0]; 5212 QVal = QAmts[0]; 5213 } 5214 5215 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5216 if (!isOperationLegalOrCustom(ISD::SUB, VT)) 5217 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5218 assert(CompTargetNode.getValueType() == N.getValueType() && 5219 "Expecting that the types on LHS and RHS of comparisons match."); 5220 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5221 } 5222 5223 // (mul N, P) 5224 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5225 Created.push_back(Op0.getNode()); 5226 5227 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5228 // divisors as a performance improvement, since rotating by 0 is a no-op. 5229 if (HadEvenDivisor) { 5230 // We need ROTR to do this. 5231 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5232 return SDValue(); 5233 SDNodeFlags Flags; 5234 Flags.setExact(true); 5235 // UREM: (rotr (mul N, P), K) 5236 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5237 Created.push_back(Op0.getNode()); 5238 } 5239 5240 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5241 SDValue NewCC = 5242 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5243 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5244 if (!HadTautologicalInvertedLanes) 5245 return NewCC; 5246 5247 // If any lanes previously compared always-false, the NewCC will give 5248 // always-true result for them, so we need to fixup those lanes. 5249 // Or the other way around for inequality predicate. 5250 assert(VT.isVector() && "Can/should only get here for vectors."); 5251 Created.push_back(NewCC.getNode()); 5252 5253 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5254 // if C2 is not less than C1, the comparison is always false. 5255 // But we have produced the comparison that will give the 5256 // opposive tautological answer. So these lanes would need to be fixed up. 5257 SDValue TautologicalInvertedChannels = 5258 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5259 Created.push_back(TautologicalInvertedChannels.getNode()); 5260 5261 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5262 // If we have a vector select, let's replace the comparison results in the 5263 // affected lanes with the correct tautological result. 5264 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5265 DL, SETCCVT, SETCCVT); 5266 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5267 Replacement, NewCC); 5268 } 5269 5270 // Else, we can just invert the comparison result in the appropriate lanes. 5271 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5272 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5273 TautologicalInvertedChannels); 5274 5275 return SDValue(); // Don't know how to lower. 5276 } 5277 5278 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5279 /// where the divisor is constant and the comparison target is zero, 5280 /// return a DAG expression that will generate the same comparison result 5281 /// using only multiplications, additions and shifts/rotations. 5282 /// Ref: "Hacker's Delight" 10-17. 5283 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5284 SDValue CompTargetNode, 5285 ISD::CondCode Cond, 5286 DAGCombinerInfo &DCI, 5287 const SDLoc &DL) const { 5288 SmallVector<SDNode *, 7> Built; 5289 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5290 DCI, DL, Built)) { 5291 assert(Built.size() <= 7 && "Max size prediction failed."); 5292 for (SDNode *N : Built) 5293 DCI.AddToWorklist(N); 5294 return Folded; 5295 } 5296 5297 return SDValue(); 5298 } 5299 5300 SDValue 5301 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5302 SDValue CompTargetNode, ISD::CondCode Cond, 5303 DAGCombinerInfo &DCI, const SDLoc &DL, 5304 SmallVectorImpl<SDNode *> &Created) const { 5305 // Fold: 5306 // (seteq/ne (srem N, D), 0) 5307 // To: 5308 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5309 // 5310 // - D must be constant, with D = D0 * 2^K where D0 is odd 5311 // - P is the multiplicative inverse of D0 modulo 2^W 5312 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5313 // - Q = floor((2 * A) / (2^K)) 5314 // where W is the width of the common type of N and D. 5315 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5316 "Only applicable for (in)equality comparisons."); 5317 5318 SelectionDAG &DAG = DCI.DAG; 5319 5320 EVT VT = REMNode.getValueType(); 5321 EVT SVT = VT.getScalarType(); 5322 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5323 EVT ShSVT = ShVT.getScalarType(); 5324 5325 // If MUL is unavailable, we cannot proceed in any case. 5326 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5327 return SDValue(); 5328 5329 // TODO: Could support comparing with non-zero too. 5330 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5331 if (!CompTarget || !CompTarget->isNullValue()) 5332 return SDValue(); 5333 5334 bool HadIntMinDivisor = false; 5335 bool HadOneDivisor = false; 5336 bool AllDivisorsAreOnes = true; 5337 bool HadEvenDivisor = false; 5338 bool NeedToApplyOffset = false; 5339 bool AllDivisorsArePowerOfTwo = true; 5340 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5341 5342 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5343 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5344 if (C->isNullValue()) 5345 return false; 5346 5347 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5348 5349 // WARNING: this fold is only valid for positive divisors! 5350 APInt D = C->getAPIntValue(); 5351 if (D.isNegative()) 5352 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5353 5354 HadIntMinDivisor |= D.isMinSignedValue(); 5355 5356 // If all divisors are ones, we will prefer to avoid the fold. 5357 HadOneDivisor |= D.isOneValue(); 5358 AllDivisorsAreOnes &= D.isOneValue(); 5359 5360 // Decompose D into D0 * 2^K 5361 unsigned K = D.countTrailingZeros(); 5362 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5363 APInt D0 = D.lshr(K); 5364 5365 if (!D.isMinSignedValue()) { 5366 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5367 // we don't care about this lane in this fold, we'll special-handle it. 5368 HadEvenDivisor |= (K != 0); 5369 } 5370 5371 // D is a power-of-two if D0 is one. This includes INT_MIN. 5372 // If all divisors are power-of-two, we will prefer to avoid the fold. 5373 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5374 5375 // P = inv(D0, 2^W) 5376 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5377 unsigned W = D.getBitWidth(); 5378 APInt P = D0.zext(W + 1) 5379 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5380 .trunc(W); 5381 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5382 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5383 5384 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5385 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5386 A.clearLowBits(K); 5387 5388 if (!D.isMinSignedValue()) { 5389 // If divisor INT_MIN, then we don't care about this lane in this fold, 5390 // we'll special-handle it. 5391 NeedToApplyOffset |= A != 0; 5392 } 5393 5394 // Q = floor((2 * A) / (2^K)) 5395 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5396 5397 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5398 "We are expecting that A is always less than all-ones for SVT"); 5399 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5400 "We are expecting that K is always less than all-ones for ShSVT"); 5401 5402 // If the divisor is 1 the result can be constant-folded. Likewise, we 5403 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5404 if (D.isOneValue()) { 5405 // Set P, A and K to a bogus values so we can try to splat them. 5406 P = 0; 5407 A = -1; 5408 K = -1; 5409 5410 // x ?% 1 == 0 <--> true <--> x u<= -1 5411 Q = -1; 5412 } 5413 5414 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5415 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5416 KAmts.push_back( 5417 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5418 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5419 return true; 5420 }; 5421 5422 SDValue N = REMNode.getOperand(0); 5423 SDValue D = REMNode.getOperand(1); 5424 5425 // Collect the values from each element. 5426 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5427 return SDValue(); 5428 5429 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5430 if (AllDivisorsAreOnes) 5431 return SDValue(); 5432 5433 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5434 // since it can be best implemented as a bit test. 5435 if (AllDivisorsArePowerOfTwo) 5436 return SDValue(); 5437 5438 SDValue PVal, AVal, KVal, QVal; 5439 if (VT.isVector()) { 5440 if (HadOneDivisor) { 5441 // Try to turn PAmts into a splat, since we don't care about the values 5442 // that are currently '0'. If we can't, just keep '0'`s. 5443 turnVectorIntoSplatVector(PAmts, isNullConstant); 5444 // Try to turn AAmts into a splat, since we don't care about the 5445 // values that are currently '-1'. If we can't, change them to '0'`s. 5446 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5447 DAG.getConstant(0, DL, SVT)); 5448 // Try to turn KAmts into a splat, since we don't care about the values 5449 // that are currently '-1'. If we can't, change them to '0'`s. 5450 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5451 DAG.getConstant(0, DL, ShSVT)); 5452 } 5453 5454 PVal = DAG.getBuildVector(VT, DL, PAmts); 5455 AVal = DAG.getBuildVector(VT, DL, AAmts); 5456 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5457 QVal = DAG.getBuildVector(VT, DL, QAmts); 5458 } else { 5459 PVal = PAmts[0]; 5460 AVal = AAmts[0]; 5461 KVal = KAmts[0]; 5462 QVal = QAmts[0]; 5463 } 5464 5465 // (mul N, P) 5466 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5467 Created.push_back(Op0.getNode()); 5468 5469 if (NeedToApplyOffset) { 5470 // We need ADD to do this. 5471 if (!isOperationLegalOrCustom(ISD::ADD, VT)) 5472 return SDValue(); 5473 5474 // (add (mul N, P), A) 5475 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5476 Created.push_back(Op0.getNode()); 5477 } 5478 5479 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5480 // divisors as a performance improvement, since rotating by 0 is a no-op. 5481 if (HadEvenDivisor) { 5482 // We need ROTR to do this. 5483 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5484 return SDValue(); 5485 SDNodeFlags Flags; 5486 Flags.setExact(true); 5487 // SREM: (rotr (add (mul N, P), A), K) 5488 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5489 Created.push_back(Op0.getNode()); 5490 } 5491 5492 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5493 SDValue Fold = 5494 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5495 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5496 5497 // If we didn't have lanes with INT_MIN divisor, then we're done. 5498 if (!HadIntMinDivisor) 5499 return Fold; 5500 5501 // That fold is only valid for positive divisors. Which effectively means, 5502 // it is invalid for INT_MIN divisors. So if we have such a lane, 5503 // we must fix-up results for said lanes. 5504 assert(VT.isVector() && "Can/should only get here for vectors."); 5505 5506 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5507 !isOperationLegalOrCustom(ISD::AND, VT) || 5508 !isOperationLegalOrCustom(Cond, VT) || 5509 !isOperationLegalOrCustom(ISD::VSELECT, VT)) 5510 return SDValue(); 5511 5512 Created.push_back(Fold.getNode()); 5513 5514 SDValue IntMin = DAG.getConstant( 5515 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5516 SDValue IntMax = DAG.getConstant( 5517 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5518 SDValue Zero = 5519 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5520 5521 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5522 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5523 Created.push_back(DivisorIsIntMin.getNode()); 5524 5525 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5526 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5527 Created.push_back(Masked.getNode()); 5528 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5529 Created.push_back(MaskedIsZero.getNode()); 5530 5531 // To produce final result we need to blend 2 vectors: 'SetCC' and 5532 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5533 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5534 // constant-folded, select can get lowered to a shuffle with constant mask. 5535 SDValue Blended = 5536 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); 5537 5538 return Blended; 5539 } 5540 5541 bool TargetLowering:: 5542 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5543 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5544 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5545 "be a constant integer"); 5546 return true; 5547 } 5548 5549 return false; 5550 } 5551 5552 TargetLowering::NegatibleCost 5553 TargetLowering::getNegatibleCost(SDValue Op, SelectionDAG &DAG, 5554 bool LegalOperations, bool ForCodeSize, 5555 unsigned Depth) const { 5556 // fneg is removable even if it has multiple uses. 5557 if (Op.getOpcode() == ISD::FNEG) 5558 return NegatibleCost::Cheaper; 5559 5560 // Don't allow anything with multiple uses unless we know it is free. 5561 EVT VT = Op.getValueType(); 5562 const SDNodeFlags Flags = Op->getFlags(); 5563 const TargetOptions &Options = DAG.getTarget().Options; 5564 if (!Op.hasOneUse()) { 5565 bool IsFreeExtend = Op.getOpcode() == ISD::FP_EXTEND && 5566 isFPExtFree(VT, Op.getOperand(0).getValueType()); 5567 5568 // If we already have the use of the negated floating constant, it is free 5569 // to negate it even it has multiple uses. 5570 bool IsFreeConstant = 5571 Op.getOpcode() == ISD::ConstantFP && 5572 !getNegatedExpression(Op, DAG, LegalOperations, ForCodeSize) 5573 .use_empty(); 5574 5575 if (!IsFreeExtend && !IsFreeConstant) 5576 return NegatibleCost::Expensive; 5577 } 5578 5579 // Don't recurse exponentially. 5580 if (Depth > SelectionDAG::MaxRecursionDepth) 5581 return NegatibleCost::Expensive; 5582 5583 switch (Op.getOpcode()) { 5584 case ISD::ConstantFP: { 5585 if (!LegalOperations) 5586 return NegatibleCost::Neutral; 5587 5588 // Don't invert constant FP values after legalization unless the target says 5589 // the negated constant is legal. 5590 if (isOperationLegal(ISD::ConstantFP, VT) || 5591 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 5592 ForCodeSize)) 5593 return NegatibleCost::Neutral; 5594 break; 5595 } 5596 case ISD::BUILD_VECTOR: { 5597 // Only permit BUILD_VECTOR of constants. 5598 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 5599 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 5600 })) 5601 return NegatibleCost::Expensive; 5602 if (!LegalOperations) 5603 return NegatibleCost::Neutral; 5604 if (isOperationLegal(ISD::ConstantFP, VT) && 5605 isOperationLegal(ISD::BUILD_VECTOR, VT)) 5606 return NegatibleCost::Neutral; 5607 if (llvm::all_of(Op->op_values(), [&](SDValue N) { 5608 return N.isUndef() || 5609 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 5610 ForCodeSize); 5611 })) 5612 return NegatibleCost::Neutral; 5613 break; 5614 } 5615 case ISD::FADD: { 5616 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5617 return NegatibleCost::Expensive; 5618 5619 // After operation legalization, it might not be legal to create new FSUBs. 5620 if (LegalOperations && !isOperationLegalOrCustom(ISD::FSUB, VT)) 5621 return NegatibleCost::Expensive; 5622 5623 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 5624 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5625 ForCodeSize, Depth + 1); 5626 if (V0 != NegatibleCost::Expensive) 5627 return V0; 5628 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 5629 return getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, ForCodeSize, 5630 Depth + 1); 5631 } 5632 case ISD::FSUB: 5633 // We can't turn -(A-B) into B-A when we honor signed zeros. 5634 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5635 return NegatibleCost::Expensive; 5636 5637 // fold (fneg (fsub A, B)) -> (fsub B, A) 5638 return NegatibleCost::Neutral; 5639 case ISD::FMUL: 5640 case ISD::FDIV: { 5641 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) 5642 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5643 ForCodeSize, Depth + 1); 5644 if (V0 != NegatibleCost::Expensive) 5645 return V0; 5646 5647 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 5648 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 5649 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 5650 return NegatibleCost::Expensive; 5651 5652 return getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, ForCodeSize, 5653 Depth + 1); 5654 } 5655 case ISD::FMA: 5656 case ISD::FMAD: { 5657 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5658 return NegatibleCost::Expensive; 5659 5660 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5661 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5662 NegatibleCost V2 = getNegatibleCost(Op.getOperand(2), DAG, LegalOperations, 5663 ForCodeSize, Depth + 1); 5664 if (NegatibleCost::Expensive == V2) 5665 return NegatibleCost::Expensive; 5666 5667 // One of Op0/Op1 must be cheaply negatible, then select the cheapest. 5668 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5669 ForCodeSize, Depth + 1); 5670 NegatibleCost V1 = getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, 5671 ForCodeSize, Depth + 1); 5672 NegatibleCost V01 = std::max(V0, V1); 5673 if (V01 == NegatibleCost::Expensive) 5674 return NegatibleCost::Expensive; 5675 return std::max(V01, V2); 5676 } 5677 5678 case ISD::FP_EXTEND: 5679 case ISD::FP_ROUND: 5680 case ISD::FSIN: 5681 return getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, ForCodeSize, 5682 Depth + 1); 5683 } 5684 5685 return NegatibleCost::Expensive; 5686 } 5687 5688 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 5689 bool LegalOperations, 5690 bool ForCodeSize, 5691 unsigned Depth) const { 5692 // fneg is removable even if it has multiple uses. 5693 if (Op.getOpcode() == ISD::FNEG) 5694 return Op.getOperand(0); 5695 5696 assert(Depth <= SelectionDAG::MaxRecursionDepth && 5697 "getNegatedExpression doesn't match getNegatibleCost"); 5698 const SDNodeFlags Flags = Op->getFlags(); 5699 5700 switch (Op.getOpcode()) { 5701 case ISD::ConstantFP: { 5702 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 5703 V.changeSign(); 5704 return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType()); 5705 } 5706 case ISD::BUILD_VECTOR: { 5707 SmallVector<SDValue, 4> Ops; 5708 for (SDValue C : Op->op_values()) { 5709 if (C.isUndef()) { 5710 Ops.push_back(C); 5711 continue; 5712 } 5713 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 5714 V.changeSign(); 5715 Ops.push_back(DAG.getConstantFP(V, SDLoc(Op), C.getValueType())); 5716 } 5717 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Ops); 5718 } 5719 case ISD::FADD: { 5720 assert((DAG.getTarget().Options.NoSignedZerosFPMath || 5721 Flags.hasNoSignedZeros()) && 5722 "Expected NSZ fp-flag"); 5723 5724 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 5725 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5726 ForCodeSize, Depth + 1); 5727 if (V0 != NegatibleCost::Expensive) 5728 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5729 getNegatedExpression(Op.getOperand(0), DAG, 5730 LegalOperations, ForCodeSize, 5731 Depth + 1), 5732 Op.getOperand(1), Flags); 5733 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 5734 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5735 getNegatedExpression(Op.getOperand(1), DAG, 5736 LegalOperations, ForCodeSize, 5737 Depth + 1), 5738 Op.getOperand(0), Flags); 5739 } 5740 case ISD::FSUB: 5741 // fold (fneg (fsub 0, B)) -> B 5742 if (ConstantFPSDNode *N0CFP = 5743 isConstOrConstSplatFP(Op.getOperand(0), /*AllowUndefs*/ true)) 5744 if (N0CFP->isZero()) 5745 return Op.getOperand(1); 5746 5747 // fold (fneg (fsub A, B)) -> (fsub B, A) 5748 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5749 Op.getOperand(1), Op.getOperand(0), Flags); 5750 5751 case ISD::FMUL: 5752 case ISD::FDIV: { 5753 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 5754 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5755 ForCodeSize, Depth + 1); 5756 if (V0 != NegatibleCost::Expensive) 5757 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5758 getNegatedExpression(Op.getOperand(0), DAG, 5759 LegalOperations, ForCodeSize, 5760 Depth + 1), 5761 Op.getOperand(1), Flags); 5762 5763 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 5764 return DAG.getNode( 5765 Op.getOpcode(), SDLoc(Op), Op.getValueType(), Op.getOperand(0), 5766 getNegatedExpression(Op.getOperand(1), DAG, LegalOperations, 5767 ForCodeSize, Depth + 1), 5768 Flags); 5769 } 5770 case ISD::FMA: 5771 case ISD::FMAD: { 5772 assert((DAG.getTarget().Options.NoSignedZerosFPMath || 5773 Flags.hasNoSignedZeros()) && 5774 "Expected NSZ fp-flag"); 5775 5776 SDValue Neg2 = getNegatedExpression(Op.getOperand(2), DAG, LegalOperations, 5777 ForCodeSize, Depth + 1); 5778 5779 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5780 ForCodeSize, Depth + 1); 5781 NegatibleCost V1 = getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, 5782 ForCodeSize, Depth + 1); 5783 if (V0 > V1) { 5784 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5785 SDValue Neg0 = getNegatedExpression( 5786 Op.getOperand(0), DAG, LegalOperations, ForCodeSize, Depth + 1); 5787 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Neg0, 5788 Op.getOperand(1), Neg2, Flags); 5789 } 5790 5791 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5792 SDValue Neg1 = getNegatedExpression(Op.getOperand(1), DAG, LegalOperations, 5793 ForCodeSize, Depth + 1); 5794 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5795 Op.getOperand(0), Neg1, Neg2, Flags); 5796 } 5797 5798 case ISD::FP_EXTEND: 5799 case ISD::FSIN: 5800 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5801 getNegatedExpression(Op.getOperand(0), DAG, 5802 LegalOperations, ForCodeSize, 5803 Depth + 1)); 5804 case ISD::FP_ROUND: 5805 return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(), 5806 getNegatedExpression(Op.getOperand(0), DAG, 5807 LegalOperations, ForCodeSize, 5808 Depth + 1), 5809 Op.getOperand(1)); 5810 } 5811 5812 llvm_unreachable("Unknown code"); 5813 } 5814 5815 //===----------------------------------------------------------------------===// 5816 // Legalization Utilities 5817 //===----------------------------------------------------------------------===// 5818 5819 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 5820 SDValue LHS, SDValue RHS, 5821 SmallVectorImpl<SDValue> &Result, 5822 EVT HiLoVT, SelectionDAG &DAG, 5823 MulExpansionKind Kind, SDValue LL, 5824 SDValue LH, SDValue RL, SDValue RH) const { 5825 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 5826 Opcode == ISD::SMUL_LOHI); 5827 5828 bool HasMULHS = (Kind == MulExpansionKind::Always) || 5829 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 5830 bool HasMULHU = (Kind == MulExpansionKind::Always) || 5831 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 5832 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 5833 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 5834 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 5835 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 5836 5837 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 5838 return false; 5839 5840 unsigned OuterBitSize = VT.getScalarSizeInBits(); 5841 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 5842 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 5843 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 5844 5845 // LL, LH, RL, and RH must be either all NULL or all set to a value. 5846 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 5847 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 5848 5849 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 5850 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 5851 bool Signed) -> bool { 5852 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 5853 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 5854 Hi = SDValue(Lo.getNode(), 1); 5855 return true; 5856 } 5857 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 5858 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 5859 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 5860 return true; 5861 } 5862 return false; 5863 }; 5864 5865 SDValue Lo, Hi; 5866 5867 if (!LL.getNode() && !RL.getNode() && 5868 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5869 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 5870 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 5871 } 5872 5873 if (!LL.getNode()) 5874 return false; 5875 5876 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 5877 if (DAG.MaskedValueIsZero(LHS, HighMask) && 5878 DAG.MaskedValueIsZero(RHS, HighMask)) { 5879 // The inputs are both zero-extended. 5880 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 5881 Result.push_back(Lo); 5882 Result.push_back(Hi); 5883 if (Opcode != ISD::MUL) { 5884 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5885 Result.push_back(Zero); 5886 Result.push_back(Zero); 5887 } 5888 return true; 5889 } 5890 } 5891 5892 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 5893 RHSSB > InnerBitSize) { 5894 // The input values are both sign-extended. 5895 // TODO non-MUL case? 5896 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 5897 Result.push_back(Lo); 5898 Result.push_back(Hi); 5899 return true; 5900 } 5901 } 5902 5903 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 5904 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5905 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 5906 // FIXME getShiftAmountTy does not always return a sensible result when VT 5907 // is an illegal type, and so the type may be too small to fit the shift 5908 // amount. Override it with i32. The shift will have to be legalized. 5909 ShiftAmountTy = MVT::i32; 5910 } 5911 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 5912 5913 if (!LH.getNode() && !RH.getNode() && 5914 isOperationLegalOrCustom(ISD::SRL, VT) && 5915 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5916 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 5917 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 5918 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 5919 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 5920 } 5921 5922 if (!LH.getNode()) 5923 return false; 5924 5925 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 5926 return false; 5927 5928 Result.push_back(Lo); 5929 5930 if (Opcode == ISD::MUL) { 5931 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 5932 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 5933 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 5934 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 5935 Result.push_back(Hi); 5936 return true; 5937 } 5938 5939 // Compute the full width result. 5940 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 5941 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 5942 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5943 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 5944 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 5945 }; 5946 5947 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5948 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 5949 return false; 5950 5951 // This is effectively the add part of a multiply-add of half-sized operands, 5952 // so it cannot overflow. 5953 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5954 5955 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 5956 return false; 5957 5958 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5959 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5960 5961 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 5962 isOperationLegalOrCustom(ISD::ADDE, VT)); 5963 if (UseGlue) 5964 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 5965 Merge(Lo, Hi)); 5966 else 5967 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 5968 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 5969 5970 SDValue Carry = Next.getValue(1); 5971 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5972 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5973 5974 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 5975 return false; 5976 5977 if (UseGlue) 5978 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 5979 Carry); 5980 else 5981 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 5982 Zero, Carry); 5983 5984 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5985 5986 if (Opcode == ISD::SMUL_LOHI) { 5987 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5988 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 5989 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 5990 5991 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5992 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 5993 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 5994 } 5995 5996 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5997 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5998 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5999 return true; 6000 } 6001 6002 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6003 SelectionDAG &DAG, MulExpansionKind Kind, 6004 SDValue LL, SDValue LH, SDValue RL, 6005 SDValue RH) const { 6006 SmallVector<SDValue, 2> Result; 6007 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 6008 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6009 DAG, Kind, LL, LH, RL, RH); 6010 if (Ok) { 6011 assert(Result.size() == 2); 6012 Lo = Result[0]; 6013 Hi = Result[1]; 6014 } 6015 return Ok; 6016 } 6017 6018 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 6019 SelectionDAG &DAG) const { 6020 EVT VT = Node->getValueType(0); 6021 6022 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6023 !isOperationLegalOrCustom(ISD::SRL, VT) || 6024 !isOperationLegalOrCustom(ISD::SUB, VT) || 6025 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6026 return false; 6027 6028 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6029 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6030 SDValue X = Node->getOperand(0); 6031 SDValue Y = Node->getOperand(1); 6032 SDValue Z = Node->getOperand(2); 6033 6034 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6035 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6036 SDLoc DL(SDValue(Node, 0)); 6037 6038 EVT ShVT = Z.getValueType(); 6039 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6040 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6041 6042 SDValue ShAmt; 6043 if (isPowerOf2_32(EltSizeInBits)) { 6044 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6045 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6046 } else { 6047 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6048 } 6049 6050 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6051 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6052 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6053 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6054 6055 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6056 // and that is undefined. We must compare and select to avoid UB. 6057 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT); 6058 6059 // For fshl, 0-shift returns the 1st arg (X). 6060 // For fshr, 0-shift returns the 2nd arg (Y). 6061 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ); 6062 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or); 6063 return true; 6064 } 6065 6066 // TODO: Merge with expandFunnelShift. 6067 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 6068 SelectionDAG &DAG) const { 6069 EVT VT = Node->getValueType(0); 6070 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6071 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6072 SDValue Op0 = Node->getOperand(0); 6073 SDValue Op1 = Node->getOperand(1); 6074 SDLoc DL(SDValue(Node, 0)); 6075 6076 EVT ShVT = Op1.getValueType(); 6077 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6078 6079 // If a rotate in the other direction is legal, use it. 6080 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6081 if (isOperationLegal(RevRot, VT)) { 6082 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 6083 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 6084 return true; 6085 } 6086 6087 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6088 !isOperationLegalOrCustom(ISD::SRL, VT) || 6089 !isOperationLegalOrCustom(ISD::SUB, VT) || 6090 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6091 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6092 return false; 6093 6094 // Otherwise, 6095 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) 6096 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) 6097 // 6098 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && 6099 "Expecting the type bitwidth to be a power of 2"); 6100 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6101 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6102 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6103 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 6104 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6105 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6106 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), 6107 DAG.getNode(HsOpc, DL, VT, Op0, And1)); 6108 return true; 6109 } 6110 6111 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6112 SelectionDAG &DAG) const { 6113 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6114 SDValue Src = Node->getOperand(OpNo); 6115 EVT SrcVT = Src.getValueType(); 6116 EVT DstVT = Node->getValueType(0); 6117 SDLoc dl(SDValue(Node, 0)); 6118 6119 // FIXME: Only f32 to i64 conversions are supported. 6120 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6121 return false; 6122 6123 if (Node->isStrictFPOpcode()) 6124 // When a NaN is converted to an integer a trap is allowed. We can't 6125 // use this expansion here because it would eliminate that trap. Other 6126 // traps are also allowed and cannot be eliminated. See 6127 // IEEE 754-2008 sec 5.8. 6128 return false; 6129 6130 // Expand f32 -> i64 conversion 6131 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6132 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 6133 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6134 EVT IntVT = SrcVT.changeTypeToInteger(); 6135 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6136 6137 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6138 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6139 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6140 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6141 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6142 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6143 6144 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6145 6146 SDValue ExponentBits = DAG.getNode( 6147 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6148 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6149 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6150 6151 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6152 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6153 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6154 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6155 6156 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6157 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6158 DAG.getConstant(0x00800000, dl, IntVT)); 6159 6160 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6161 6162 R = DAG.getSelectCC( 6163 dl, Exponent, ExponentLoBit, 6164 DAG.getNode(ISD::SHL, dl, DstVT, R, 6165 DAG.getZExtOrTrunc( 6166 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6167 dl, IntShVT)), 6168 DAG.getNode(ISD::SRL, dl, DstVT, R, 6169 DAG.getZExtOrTrunc( 6170 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6171 dl, IntShVT)), 6172 ISD::SETGT); 6173 6174 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6175 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6176 6177 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6178 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6179 return true; 6180 } 6181 6182 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6183 SDValue &Chain, 6184 SelectionDAG &DAG) const { 6185 SDLoc dl(SDValue(Node, 0)); 6186 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6187 SDValue Src = Node->getOperand(OpNo); 6188 6189 EVT SrcVT = Src.getValueType(); 6190 EVT DstVT = Node->getValueType(0); 6191 EVT SetCCVT = 6192 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6193 EVT DstSetCCVT = 6194 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6195 6196 // Only expand vector types if we have the appropriate vector bit operations. 6197 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6198 ISD::FP_TO_SINT; 6199 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6200 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6201 return false; 6202 6203 // If the maximum float value is smaller then the signed integer range, 6204 // the destination signmask can't be represented by the float, so we can 6205 // just use FP_TO_SINT directly. 6206 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6207 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 6208 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6209 if (APFloat::opOverflow & 6210 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6211 if (Node->isStrictFPOpcode()) { 6212 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6213 { Node->getOperand(0), Src }); 6214 Chain = Result.getValue(1); 6215 } else 6216 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6217 return true; 6218 } 6219 6220 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6221 SDValue Sel; 6222 6223 if (Node->isStrictFPOpcode()) { 6224 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6225 Node->getOperand(0), /*IsSignaling*/ true); 6226 Chain = Sel.getValue(1); 6227 } else { 6228 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6229 } 6230 6231 bool Strict = Node->isStrictFPOpcode() || 6232 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6233 6234 if (Strict) { 6235 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6236 // signmask then offset (the result of which should be fully representable). 6237 // Sel = Src < 0x8000000000000000 6238 // FltOfs = select Sel, 0, 0x8000000000000000 6239 // IntOfs = select Sel, 0, 0x8000000000000000 6240 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6241 6242 // TODO: Should any fast-math-flags be set for the FSUB? 6243 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6244 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6245 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6246 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6247 DAG.getConstant(0, dl, DstVT), 6248 DAG.getConstant(SignMask, dl, DstVT)); 6249 SDValue SInt; 6250 if (Node->isStrictFPOpcode()) { 6251 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6252 { Chain, Src, FltOfs }); 6253 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6254 { Val.getValue(1), Val }); 6255 Chain = SInt.getValue(1); 6256 } else { 6257 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6258 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6259 } 6260 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6261 } else { 6262 // Expand based on maximum range of FP_TO_SINT: 6263 // True = fp_to_sint(Src) 6264 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6265 // Result = select (Src < 0x8000000000000000), True, False 6266 6267 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6268 // TODO: Should any fast-math-flags be set for the FSUB? 6269 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6270 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6271 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6272 DAG.getConstant(SignMask, dl, DstVT)); 6273 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6274 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6275 } 6276 return true; 6277 } 6278 6279 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6280 SDValue &Chain, 6281 SelectionDAG &DAG) const { 6282 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6283 SDValue Src = Node->getOperand(OpNo); 6284 EVT SrcVT = Src.getValueType(); 6285 EVT DstVT = Node->getValueType(0); 6286 6287 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6288 return false; 6289 6290 // Only expand vector types if we have the appropriate vector bit operations. 6291 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6292 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6293 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6294 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6295 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6296 return false; 6297 6298 SDLoc dl(SDValue(Node, 0)); 6299 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6300 6301 // Implementation of unsigned i64 to f64 following the algorithm in 6302 // __floatundidf in compiler_rt. This implementation has the advantage 6303 // of performing rounding correctly, both in the default rounding mode 6304 // and in all alternate rounding modes. 6305 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6306 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6307 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6308 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6309 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6310 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6311 6312 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6313 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6314 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6315 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6316 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6317 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6318 if (Node->isStrictFPOpcode()) { 6319 SDValue HiSub = 6320 DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other}, 6321 {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52}); 6322 Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other}, 6323 {HiSub.getValue(1), LoFlt, HiSub}); 6324 Chain = Result.getValue(1); 6325 } else { 6326 SDValue HiSub = 6327 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6328 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6329 } 6330 return true; 6331 } 6332 6333 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6334 SelectionDAG &DAG) const { 6335 SDLoc dl(Node); 6336 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6337 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6338 EVT VT = Node->getValueType(0); 6339 if (isOperationLegalOrCustom(NewOp, VT)) { 6340 SDValue Quiet0 = Node->getOperand(0); 6341 SDValue Quiet1 = Node->getOperand(1); 6342 6343 if (!Node->getFlags().hasNoNaNs()) { 6344 // Insert canonicalizes if it's possible we need to quiet to get correct 6345 // sNaN behavior. 6346 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6347 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6348 Node->getFlags()); 6349 } 6350 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6351 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6352 Node->getFlags()); 6353 } 6354 } 6355 6356 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6357 } 6358 6359 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6360 // instead if there are no NaNs. 6361 if (Node->getFlags().hasNoNaNs()) { 6362 unsigned IEEE2018Op = 6363 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6364 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6365 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6366 Node->getOperand(1), Node->getFlags()); 6367 } 6368 } 6369 6370 // If none of the above worked, but there are no NaNs, then expand to 6371 // a compare/select sequence. This is required for correctness since 6372 // InstCombine might have canonicalized a fcmp+select sequence to a 6373 // FMINNUM/FMAXNUM node. If we were to fall through to the default 6374 // expansion to libcall, we might introduce a link-time dependency 6375 // on libm into a file that originally did not have one. 6376 if (Node->getFlags().hasNoNaNs()) { 6377 ISD::CondCode Pred = 6378 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 6379 SDValue Op1 = Node->getOperand(0); 6380 SDValue Op2 = Node->getOperand(1); 6381 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 6382 // Copy FMF flags, but always set the no-signed-zeros flag 6383 // as this is implied by the FMINNUM/FMAXNUM semantics. 6384 SDNodeFlags Flags = Node->getFlags(); 6385 Flags.setNoSignedZeros(true); 6386 SelCC->setFlags(Flags); 6387 return SelCC; 6388 } 6389 6390 return SDValue(); 6391 } 6392 6393 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 6394 SelectionDAG &DAG) const { 6395 SDLoc dl(Node); 6396 EVT VT = Node->getValueType(0); 6397 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6398 SDValue Op = Node->getOperand(0); 6399 unsigned Len = VT.getScalarSizeInBits(); 6400 assert(VT.isInteger() && "CTPOP not implemented for this type."); 6401 6402 // TODO: Add support for irregular type lengths. 6403 if (!(Len <= 128 && Len % 8 == 0)) 6404 return false; 6405 6406 // Only expand vector types if we have the appropriate vector bit operations. 6407 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 6408 !isOperationLegalOrCustom(ISD::SUB, VT) || 6409 !isOperationLegalOrCustom(ISD::SRL, VT) || 6410 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 6411 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6412 return false; 6413 6414 // This is the "best" algorithm from 6415 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 6416 SDValue Mask55 = 6417 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 6418 SDValue Mask33 = 6419 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 6420 SDValue Mask0F = 6421 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 6422 SDValue Mask01 = 6423 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 6424 6425 // v = v - ((v >> 1) & 0x55555555...) 6426 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 6427 DAG.getNode(ISD::AND, dl, VT, 6428 DAG.getNode(ISD::SRL, dl, VT, Op, 6429 DAG.getConstant(1, dl, ShVT)), 6430 Mask55)); 6431 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 6432 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 6433 DAG.getNode(ISD::AND, dl, VT, 6434 DAG.getNode(ISD::SRL, dl, VT, Op, 6435 DAG.getConstant(2, dl, ShVT)), 6436 Mask33)); 6437 // v = (v + (v >> 4)) & 0x0F0F0F0F... 6438 Op = DAG.getNode(ISD::AND, dl, VT, 6439 DAG.getNode(ISD::ADD, dl, VT, Op, 6440 DAG.getNode(ISD::SRL, dl, VT, Op, 6441 DAG.getConstant(4, dl, ShVT))), 6442 Mask0F); 6443 // v = (v * 0x01010101...) >> (Len - 8) 6444 if (Len > 8) 6445 Op = 6446 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 6447 DAG.getConstant(Len - 8, dl, ShVT)); 6448 6449 Result = Op; 6450 return true; 6451 } 6452 6453 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 6454 SelectionDAG &DAG) const { 6455 SDLoc dl(Node); 6456 EVT VT = Node->getValueType(0); 6457 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6458 SDValue Op = Node->getOperand(0); 6459 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6460 6461 // If the non-ZERO_UNDEF version is supported we can use that instead. 6462 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 6463 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 6464 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 6465 return true; 6466 } 6467 6468 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6469 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 6470 EVT SetCCVT = 6471 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6472 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 6473 SDValue Zero = DAG.getConstant(0, dl, VT); 6474 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6475 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6476 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 6477 return true; 6478 } 6479 6480 // Only expand vector types if we have the appropriate vector bit operations. 6481 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6482 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 6483 !isOperationLegalOrCustom(ISD::SRL, VT) || 6484 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6485 return false; 6486 6487 // for now, we do this: 6488 // x = x | (x >> 1); 6489 // x = x | (x >> 2); 6490 // ... 6491 // x = x | (x >>16); 6492 // x = x | (x >>32); // for 64-bit input 6493 // return popcount(~x); 6494 // 6495 // Ref: "Hacker's Delight" by Henry Warren 6496 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 6497 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 6498 Op = DAG.getNode(ISD::OR, dl, VT, Op, 6499 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 6500 } 6501 Op = DAG.getNOT(dl, Op, VT); 6502 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 6503 return true; 6504 } 6505 6506 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 6507 SelectionDAG &DAG) const { 6508 SDLoc dl(Node); 6509 EVT VT = Node->getValueType(0); 6510 SDValue Op = Node->getOperand(0); 6511 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6512 6513 // If the non-ZERO_UNDEF version is supported we can use that instead. 6514 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 6515 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 6516 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 6517 return true; 6518 } 6519 6520 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6521 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 6522 EVT SetCCVT = 6523 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6524 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 6525 SDValue Zero = DAG.getConstant(0, dl, VT); 6526 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6527 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6528 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 6529 return true; 6530 } 6531 6532 // Only expand vector types if we have the appropriate vector bit operations. 6533 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6534 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 6535 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 6536 !isOperationLegalOrCustom(ISD::SUB, VT) || 6537 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 6538 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6539 return false; 6540 6541 // for now, we use: { return popcount(~x & (x - 1)); } 6542 // unless the target has ctlz but not ctpop, in which case we use: 6543 // { return 32 - nlz(~x & (x-1)); } 6544 // Ref: "Hacker's Delight" by Henry Warren 6545 SDValue Tmp = DAG.getNode( 6546 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 6547 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 6548 6549 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 6550 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 6551 Result = 6552 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 6553 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 6554 return true; 6555 } 6556 6557 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 6558 return true; 6559 } 6560 6561 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 6562 SelectionDAG &DAG) const { 6563 SDLoc dl(N); 6564 EVT VT = N->getValueType(0); 6565 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6566 SDValue Op = N->getOperand(0); 6567 6568 // Only expand vector types if we have the appropriate vector operations. 6569 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 6570 !isOperationLegalOrCustom(ISD::ADD, VT) || 6571 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6572 return false; 6573 6574 SDValue Shift = 6575 DAG.getNode(ISD::SRA, dl, VT, Op, 6576 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 6577 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 6578 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 6579 return true; 6580 } 6581 6582 std::pair<SDValue, SDValue> 6583 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 6584 SelectionDAG &DAG) const { 6585 SDLoc SL(LD); 6586 SDValue Chain = LD->getChain(); 6587 SDValue BasePTR = LD->getBasePtr(); 6588 EVT SrcVT = LD->getMemoryVT(); 6589 EVT DstVT = LD->getValueType(0); 6590 ISD::LoadExtType ExtType = LD->getExtensionType(); 6591 6592 unsigned NumElem = SrcVT.getVectorNumElements(); 6593 6594 EVT SrcEltVT = SrcVT.getScalarType(); 6595 EVT DstEltVT = DstVT.getScalarType(); 6596 6597 // A vector must always be stored in memory as-is, i.e. without any padding 6598 // between the elements, since various code depend on it, e.g. in the 6599 // handling of a bitcast of a vector type to int, which may be done with a 6600 // vector store followed by an integer load. A vector that does not have 6601 // elements that are byte-sized must therefore be stored as an integer 6602 // built out of the extracted vector elements. 6603 if (!SrcEltVT.isByteSized()) { 6604 unsigned NumBits = SrcVT.getSizeInBits(); 6605 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 6606 6607 SDValue Load = DAG.getLoad(IntVT, SL, Chain, BasePTR, LD->getPointerInfo(), 6608 LD->getAlignment(), 6609 LD->getMemOperand()->getFlags(), 6610 LD->getAAInfo()); 6611 6612 SmallVector<SDValue, 8> Vals; 6613 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6614 unsigned ShiftIntoIdx = 6615 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6616 SDValue ShiftAmount = 6617 DAG.getConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), SL, IntVT); 6618 SDValue ShiftedElt = 6619 DAG.getNode(ISD::SRL, SL, IntVT, Load, ShiftAmount); 6620 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, ShiftedElt); 6621 if (ExtType != ISD::NON_EXTLOAD) { 6622 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 6623 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 6624 } 6625 Vals.push_back(Scalar); 6626 } 6627 6628 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 6629 return std::make_pair(Value, Load.getValue(1)); 6630 } 6631 6632 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 6633 assert(SrcEltVT.isByteSized()); 6634 6635 SmallVector<SDValue, 8> Vals; 6636 SmallVector<SDValue, 8> LoadChains; 6637 6638 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6639 SDValue ScalarLoad = 6640 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 6641 LD->getPointerInfo().getWithOffset(Idx * Stride), 6642 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 6643 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6644 6645 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 6646 6647 Vals.push_back(ScalarLoad.getValue(0)); 6648 LoadChains.push_back(ScalarLoad.getValue(1)); 6649 } 6650 6651 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 6652 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 6653 6654 return std::make_pair(Value, NewChain); 6655 } 6656 6657 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 6658 SelectionDAG &DAG) const { 6659 SDLoc SL(ST); 6660 6661 SDValue Chain = ST->getChain(); 6662 SDValue BasePtr = ST->getBasePtr(); 6663 SDValue Value = ST->getValue(); 6664 EVT StVT = ST->getMemoryVT(); 6665 6666 // The type of the data we want to save 6667 EVT RegVT = Value.getValueType(); 6668 EVT RegSclVT = RegVT.getScalarType(); 6669 6670 // The type of data as saved in memory. 6671 EVT MemSclVT = StVT.getScalarType(); 6672 6673 unsigned NumElem = StVT.getVectorNumElements(); 6674 6675 // A vector must always be stored in memory as-is, i.e. without any padding 6676 // between the elements, since various code depend on it, e.g. in the 6677 // handling of a bitcast of a vector type to int, which may be done with a 6678 // vector store followed by an integer load. A vector that does not have 6679 // elements that are byte-sized must therefore be stored as an integer 6680 // built out of the extracted vector elements. 6681 if (!MemSclVT.isByteSized()) { 6682 unsigned NumBits = StVT.getSizeInBits(); 6683 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 6684 6685 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 6686 6687 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6688 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6689 DAG.getVectorIdxConstant(Idx, SL)); 6690 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 6691 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 6692 unsigned ShiftIntoIdx = 6693 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6694 SDValue ShiftAmount = 6695 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 6696 SDValue ShiftedElt = 6697 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 6698 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 6699 } 6700 6701 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 6702 ST->getAlignment(), ST->getMemOperand()->getFlags(), 6703 ST->getAAInfo()); 6704 } 6705 6706 // Store Stride in bytes 6707 unsigned Stride = MemSclVT.getSizeInBits() / 8; 6708 assert(Stride && "Zero stride!"); 6709 // Extract each of the elements from the original vector and save them into 6710 // memory individually. 6711 SmallVector<SDValue, 8> Stores; 6712 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6713 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6714 DAG.getVectorIdxConstant(Idx, SL)); 6715 6716 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 6717 6718 // This scalar TruncStore may be illegal, but we legalize it later. 6719 SDValue Store = DAG.getTruncStore( 6720 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 6721 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 6722 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6723 6724 Stores.push_back(Store); 6725 } 6726 6727 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 6728 } 6729 6730 std::pair<SDValue, SDValue> 6731 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 6732 assert(LD->getAddressingMode() == ISD::UNINDEXED && 6733 "unaligned indexed loads not implemented!"); 6734 SDValue Chain = LD->getChain(); 6735 SDValue Ptr = LD->getBasePtr(); 6736 EVT VT = LD->getValueType(0); 6737 EVT LoadedVT = LD->getMemoryVT(); 6738 SDLoc dl(LD); 6739 auto &MF = DAG.getMachineFunction(); 6740 6741 if (VT.isFloatingPoint() || VT.isVector()) { 6742 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 6743 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 6744 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 6745 LoadedVT.isVector()) { 6746 // Scalarize the load and let the individual components be handled. 6747 return scalarizeVectorLoad(LD, DAG); 6748 } 6749 6750 // Expand to a (misaligned) integer load of the same size, 6751 // then bitconvert to floating point or vector. 6752 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 6753 LD->getMemOperand()); 6754 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 6755 if (LoadedVT != VT) 6756 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 6757 ISD::ANY_EXTEND, dl, VT, Result); 6758 6759 return std::make_pair(Result, newLoad.getValue(1)); 6760 } 6761 6762 // Copy the value to a (aligned) stack slot using (unaligned) integer 6763 // loads and stores, then do a (aligned) load from the stack slot. 6764 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 6765 unsigned LoadedBytes = LoadedVT.getStoreSize(); 6766 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6767 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 6768 6769 // Make sure the stack slot is also aligned for the register type. 6770 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 6771 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 6772 SmallVector<SDValue, 8> Stores; 6773 SDValue StackPtr = StackBase; 6774 unsigned Offset = 0; 6775 6776 EVT PtrVT = Ptr.getValueType(); 6777 EVT StackPtrVT = StackPtr.getValueType(); 6778 6779 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6780 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6781 6782 // Do all but one copies using the full register width. 6783 for (unsigned i = 1; i < NumRegs; i++) { 6784 // Load one integer register's worth from the original location. 6785 SDValue Load = DAG.getLoad( 6786 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 6787 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 6788 LD->getAAInfo()); 6789 // Follow the load with a store to the stack slot. Remember the store. 6790 Stores.push_back(DAG.getStore( 6791 Load.getValue(1), dl, Load, StackPtr, 6792 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 6793 // Increment the pointers. 6794 Offset += RegBytes; 6795 6796 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6797 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6798 } 6799 6800 // The last copy may be partial. Do an extending load. 6801 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 6802 8 * (LoadedBytes - Offset)); 6803 SDValue Load = 6804 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 6805 LD->getPointerInfo().getWithOffset(Offset), MemVT, 6806 MinAlign(LD->getAlignment(), Offset), 6807 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6808 // Follow the load with a store to the stack slot. Remember the store. 6809 // On big-endian machines this requires a truncating store to ensure 6810 // that the bits end up in the right place. 6811 Stores.push_back(DAG.getTruncStore( 6812 Load.getValue(1), dl, Load, StackPtr, 6813 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 6814 6815 // The order of the stores doesn't matter - say it with a TokenFactor. 6816 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6817 6818 // Finally, perform the original load only redirected to the stack slot. 6819 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 6820 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 6821 LoadedVT); 6822 6823 // Callers expect a MERGE_VALUES node. 6824 return std::make_pair(Load, TF); 6825 } 6826 6827 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 6828 "Unaligned load of unsupported type."); 6829 6830 // Compute the new VT that is half the size of the old one. This is an 6831 // integer MVT. 6832 unsigned NumBits = LoadedVT.getSizeInBits(); 6833 EVT NewLoadedVT; 6834 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 6835 NumBits >>= 1; 6836 6837 unsigned Alignment = LD->getAlignment(); 6838 unsigned IncrementSize = NumBits / 8; 6839 ISD::LoadExtType HiExtType = LD->getExtensionType(); 6840 6841 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 6842 if (HiExtType == ISD::NON_EXTLOAD) 6843 HiExtType = ISD::ZEXTLOAD; 6844 6845 // Load the value in two parts 6846 SDValue Lo, Hi; 6847 if (DAG.getDataLayout().isLittleEndian()) { 6848 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6849 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6850 LD->getAAInfo()); 6851 6852 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6853 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 6854 LD->getPointerInfo().getWithOffset(IncrementSize), 6855 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6856 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6857 } else { 6858 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6859 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6860 LD->getAAInfo()); 6861 6862 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6863 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 6864 LD->getPointerInfo().getWithOffset(IncrementSize), 6865 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6866 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6867 } 6868 6869 // aggregate the two parts 6870 SDValue ShiftAmount = 6871 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 6872 DAG.getDataLayout())); 6873 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 6874 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 6875 6876 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 6877 Hi.getValue(1)); 6878 6879 return std::make_pair(Result, TF); 6880 } 6881 6882 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 6883 SelectionDAG &DAG) const { 6884 assert(ST->getAddressingMode() == ISD::UNINDEXED && 6885 "unaligned indexed stores not implemented!"); 6886 SDValue Chain = ST->getChain(); 6887 SDValue Ptr = ST->getBasePtr(); 6888 SDValue Val = ST->getValue(); 6889 EVT VT = Val.getValueType(); 6890 int Alignment = ST->getAlignment(); 6891 auto &MF = DAG.getMachineFunction(); 6892 EVT StoreMemVT = ST->getMemoryVT(); 6893 6894 SDLoc dl(ST); 6895 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 6896 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 6897 if (isTypeLegal(intVT)) { 6898 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 6899 StoreMemVT.isVector()) { 6900 // Scalarize the store and let the individual components be handled. 6901 SDValue Result = scalarizeVectorStore(ST, DAG); 6902 return Result; 6903 } 6904 // Expand to a bitconvert of the value to the integer type of the 6905 // same size, then a (misaligned) int store. 6906 // FIXME: Does not handle truncating floating point stores! 6907 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 6908 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 6909 Alignment, ST->getMemOperand()->getFlags()); 6910 return Result; 6911 } 6912 // Do a (aligned) store to a stack slot, then copy from the stack slot 6913 // to the final destination using (unaligned) integer loads and stores. 6914 MVT RegVT = getRegisterType( 6915 *DAG.getContext(), 6916 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 6917 EVT PtrVT = Ptr.getValueType(); 6918 unsigned StoredBytes = StoreMemVT.getStoreSize(); 6919 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6920 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 6921 6922 // Make sure the stack slot is also aligned for the register type. 6923 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 6924 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 6925 6926 // Perform the original store, only redirected to the stack slot. 6927 SDValue Store = DAG.getTruncStore( 6928 Chain, dl, Val, StackPtr, 6929 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 6930 6931 EVT StackPtrVT = StackPtr.getValueType(); 6932 6933 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6934 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6935 SmallVector<SDValue, 8> Stores; 6936 unsigned Offset = 0; 6937 6938 // Do all but one copies using the full register width. 6939 for (unsigned i = 1; i < NumRegs; i++) { 6940 // Load one integer register's worth from the stack slot. 6941 SDValue Load = DAG.getLoad( 6942 RegVT, dl, Store, StackPtr, 6943 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 6944 // Store it to the final location. Remember the store. 6945 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 6946 ST->getPointerInfo().getWithOffset(Offset), 6947 MinAlign(ST->getAlignment(), Offset), 6948 ST->getMemOperand()->getFlags())); 6949 // Increment the pointers. 6950 Offset += RegBytes; 6951 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6952 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6953 } 6954 6955 // The last store may be partial. Do a truncating store. On big-endian 6956 // machines this requires an extending load from the stack slot to ensure 6957 // that the bits are in the right place. 6958 EVT LoadMemVT = 6959 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 6960 6961 // Load from the stack slot. 6962 SDValue Load = DAG.getExtLoad( 6963 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 6964 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 6965 6966 Stores.push_back( 6967 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 6968 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 6969 MinAlign(ST->getAlignment(), Offset), 6970 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 6971 // The order of the stores doesn't matter - say it with a TokenFactor. 6972 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6973 return Result; 6974 } 6975 6976 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 6977 "Unaligned store of unknown type."); 6978 // Get the half-size VT 6979 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 6980 int NumBits = NewStoredVT.getSizeInBits(); 6981 int IncrementSize = NumBits / 8; 6982 6983 // Divide the stored value in two parts. 6984 SDValue ShiftAmount = DAG.getConstant( 6985 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 6986 SDValue Lo = Val; 6987 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 6988 6989 // Store the two parts 6990 SDValue Store1, Store2; 6991 Store1 = DAG.getTruncStore(Chain, dl, 6992 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 6993 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 6994 ST->getMemOperand()->getFlags()); 6995 6996 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6997 Alignment = MinAlign(Alignment, IncrementSize); 6998 Store2 = DAG.getTruncStore( 6999 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 7000 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 7001 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 7002 7003 SDValue Result = 7004 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 7005 return Result; 7006 } 7007 7008 SDValue 7009 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7010 const SDLoc &DL, EVT DataVT, 7011 SelectionDAG &DAG, 7012 bool IsCompressedMemory) const { 7013 SDValue Increment; 7014 EVT AddrVT = Addr.getValueType(); 7015 EVT MaskVT = Mask.getValueType(); 7016 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 7017 "Incompatible types of Data and Mask"); 7018 if (IsCompressedMemory) { 7019 // Incrementing the pointer according to number of '1's in the mask. 7020 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7021 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7022 if (MaskIntVT.getSizeInBits() < 32) { 7023 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7024 MaskIntVT = MVT::i32; 7025 } 7026 7027 // Count '1's with POPCNT. 7028 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7029 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7030 // Scale is an element size in bytes. 7031 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7032 AddrVT); 7033 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7034 } else 7035 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7036 7037 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7038 } 7039 7040 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 7041 SDValue Idx, 7042 EVT VecVT, 7043 const SDLoc &dl) { 7044 if (isa<ConstantSDNode>(Idx)) 7045 return Idx; 7046 7047 EVT IdxVT = Idx.getValueType(); 7048 unsigned NElts = VecVT.getVectorNumElements(); 7049 if (isPowerOf2_32(NElts)) { 7050 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 7051 Log2_32(NElts)); 7052 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7053 DAG.getConstant(Imm, dl, IdxVT)); 7054 } 7055 7056 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7057 DAG.getConstant(NElts - 1, dl, IdxVT)); 7058 } 7059 7060 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7061 SDValue VecPtr, EVT VecVT, 7062 SDValue Index) const { 7063 SDLoc dl(Index); 7064 // Make sure the index type is big enough to compute in. 7065 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7066 7067 EVT EltVT = VecVT.getVectorElementType(); 7068 7069 // Calculate the element offset and add it to the pointer. 7070 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 7071 assert(EltSize * 8 == EltVT.getSizeInBits() && 7072 "Converting bits to bytes lost precision"); 7073 7074 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 7075 7076 EVT IdxVT = Index.getValueType(); 7077 7078 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7079 DAG.getConstant(EltSize, dl, IdxVT)); 7080 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7081 } 7082 7083 //===----------------------------------------------------------------------===// 7084 // Implementation of Emulated TLS Model 7085 //===----------------------------------------------------------------------===// 7086 7087 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7088 SelectionDAG &DAG) const { 7089 // Access to address of TLS varialbe xyz is lowered to a function call: 7090 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7091 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7092 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7093 SDLoc dl(GA); 7094 7095 ArgListTy Args; 7096 ArgListEntry Entry; 7097 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7098 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7099 StringRef EmuTlsVarName(NameString); 7100 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7101 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7102 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7103 Entry.Ty = VoidPtrType; 7104 Args.push_back(Entry); 7105 7106 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7107 7108 TargetLowering::CallLoweringInfo CLI(DAG); 7109 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7110 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7111 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7112 7113 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7114 // At last for X86 targets, maybe good for other targets too? 7115 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7116 MFI.setAdjustsStack(true); // Is this only for X86 target? 7117 MFI.setHasCalls(true); 7118 7119 assert((GA->getOffset() == 0) && 7120 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7121 return CallResult.first; 7122 } 7123 7124 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7125 SelectionDAG &DAG) const { 7126 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7127 if (!isCtlzFast()) 7128 return SDValue(); 7129 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7130 SDLoc dl(Op); 7131 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7132 if (C->isNullValue() && CC == ISD::SETEQ) { 7133 EVT VT = Op.getOperand(0).getValueType(); 7134 SDValue Zext = Op.getOperand(0); 7135 if (VT.bitsLT(MVT::i32)) { 7136 VT = MVT::i32; 7137 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7138 } 7139 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7140 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7141 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7142 DAG.getConstant(Log2b, dl, MVT::i32)); 7143 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7144 } 7145 } 7146 return SDValue(); 7147 } 7148 7149 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 7150 unsigned Opcode = Node->getOpcode(); 7151 SDValue LHS = Node->getOperand(0); 7152 SDValue RHS = Node->getOperand(1); 7153 EVT VT = LHS.getValueType(); 7154 SDLoc dl(Node); 7155 7156 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7157 assert(VT.isInteger() && "Expected operands to be integers"); 7158 7159 // usub.sat(a, b) -> umax(a, b) - b 7160 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 7161 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 7162 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 7163 } 7164 7165 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 7166 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 7167 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 7168 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 7169 } 7170 7171 unsigned OverflowOp; 7172 switch (Opcode) { 7173 case ISD::SADDSAT: 7174 OverflowOp = ISD::SADDO; 7175 break; 7176 case ISD::UADDSAT: 7177 OverflowOp = ISD::UADDO; 7178 break; 7179 case ISD::SSUBSAT: 7180 OverflowOp = ISD::SSUBO; 7181 break; 7182 case ISD::USUBSAT: 7183 OverflowOp = ISD::USUBO; 7184 break; 7185 default: 7186 llvm_unreachable("Expected method to receive signed or unsigned saturation " 7187 "addition or subtraction node."); 7188 } 7189 7190 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 7191 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7192 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 7193 LHS, RHS); 7194 SDValue SumDiff = Result.getValue(0); 7195 SDValue Overflow = Result.getValue(1); 7196 SDValue Zero = DAG.getConstant(0, dl, VT); 7197 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 7198 7199 if (Opcode == ISD::UADDSAT) { 7200 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7201 // (LHS + RHS) | OverflowMask 7202 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7203 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 7204 } 7205 // Overflow ? 0xffff.... : (LHS + RHS) 7206 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 7207 } else if (Opcode == ISD::USUBSAT) { 7208 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7209 // (LHS - RHS) & ~OverflowMask 7210 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7211 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 7212 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 7213 } 7214 // Overflow ? 0 : (LHS - RHS) 7215 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 7216 } else { 7217 // SatMax -> Overflow && SumDiff < 0 7218 // SatMin -> Overflow && SumDiff >= 0 7219 APInt MinVal = APInt::getSignedMinValue(BitWidth); 7220 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 7221 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7222 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7223 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 7224 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 7225 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 7226 } 7227 } 7228 7229 SDValue 7230 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 7231 assert((Node->getOpcode() == ISD::SMULFIX || 7232 Node->getOpcode() == ISD::UMULFIX || 7233 Node->getOpcode() == ISD::SMULFIXSAT || 7234 Node->getOpcode() == ISD::UMULFIXSAT) && 7235 "Expected a fixed point multiplication opcode"); 7236 7237 SDLoc dl(Node); 7238 SDValue LHS = Node->getOperand(0); 7239 SDValue RHS = Node->getOperand(1); 7240 EVT VT = LHS.getValueType(); 7241 unsigned Scale = Node->getConstantOperandVal(2); 7242 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 7243 Node->getOpcode() == ISD::UMULFIXSAT); 7244 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 7245 Node->getOpcode() == ISD::SMULFIXSAT); 7246 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7247 unsigned VTSize = VT.getScalarSizeInBits(); 7248 7249 if (!Scale) { 7250 // [us]mul.fix(a, b, 0) -> mul(a, b) 7251 if (!Saturating) { 7252 if (isOperationLegalOrCustom(ISD::MUL, VT)) 7253 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7254 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 7255 SDValue Result = 7256 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7257 SDValue Product = Result.getValue(0); 7258 SDValue Overflow = Result.getValue(1); 7259 SDValue Zero = DAG.getConstant(0, dl, VT); 7260 7261 APInt MinVal = APInt::getSignedMinValue(VTSize); 7262 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 7263 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7264 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7265 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 7266 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 7267 return DAG.getSelect(dl, VT, Overflow, Result, Product); 7268 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 7269 SDValue Result = 7270 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7271 SDValue Product = Result.getValue(0); 7272 SDValue Overflow = Result.getValue(1); 7273 7274 APInt MaxVal = APInt::getMaxValue(VTSize); 7275 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7276 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 7277 } 7278 } 7279 7280 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 7281 "Expected scale to be less than the number of bits if signed or at " 7282 "most the number of bits if unsigned."); 7283 assert(LHS.getValueType() == RHS.getValueType() && 7284 "Expected both operands to be the same type"); 7285 7286 // Get the upper and lower bits of the result. 7287 SDValue Lo, Hi; 7288 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 7289 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 7290 if (isOperationLegalOrCustom(LoHiOp, VT)) { 7291 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 7292 Lo = Result.getValue(0); 7293 Hi = Result.getValue(1); 7294 } else if (isOperationLegalOrCustom(HiOp, VT)) { 7295 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7296 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 7297 } else if (VT.isVector()) { 7298 return SDValue(); 7299 } else { 7300 report_fatal_error("Unable to expand fixed point multiplication."); 7301 } 7302 7303 if (Scale == VTSize) 7304 // Result is just the top half since we'd be shifting by the width of the 7305 // operand. Overflow impossible so this works for both UMULFIX and 7306 // UMULFIXSAT. 7307 return Hi; 7308 7309 // The result will need to be shifted right by the scale since both operands 7310 // are scaled. The result is given to us in 2 halves, so we only want part of 7311 // both in the result. 7312 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7313 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 7314 DAG.getConstant(Scale, dl, ShiftTy)); 7315 if (!Saturating) 7316 return Result; 7317 7318 if (!Signed) { 7319 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 7320 // widened multiplication) aren't all zeroes. 7321 7322 // Saturate to max if ((Hi >> Scale) != 0), 7323 // which is the same as if (Hi > ((1 << Scale) - 1)) 7324 APInt MaxVal = APInt::getMaxValue(VTSize); 7325 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 7326 dl, VT); 7327 Result = DAG.getSelectCC(dl, Hi, LowMask, 7328 DAG.getConstant(MaxVal, dl, VT), Result, 7329 ISD::SETUGT); 7330 7331 return Result; 7332 } 7333 7334 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 7335 // widened multiplication) aren't all ones or all zeroes. 7336 7337 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 7338 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 7339 7340 if (Scale == 0) { 7341 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 7342 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 7343 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 7344 // Saturated to SatMin if wide product is negative, and SatMax if wide 7345 // product is positive ... 7346 SDValue Zero = DAG.getConstant(0, dl, VT); 7347 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 7348 ISD::SETLT); 7349 // ... but only if we overflowed. 7350 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 7351 } 7352 7353 // We handled Scale==0 above so all the bits to examine is in Hi. 7354 7355 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 7356 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 7357 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 7358 dl, VT); 7359 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 7360 // Saturate to min if (Hi >> (Scale - 1)) < -1), 7361 // which is the same as if (HI < (-1 << (Scale - 1)) 7362 SDValue HighMask = 7363 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 7364 dl, VT); 7365 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 7366 return Result; 7367 } 7368 7369 SDValue 7370 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 7371 SDValue LHS, SDValue RHS, 7372 unsigned Scale, SelectionDAG &DAG) const { 7373 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 7374 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 7375 "Expected a fixed point division opcode"); 7376 7377 EVT VT = LHS.getValueType(); 7378 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 7379 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 7380 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7381 7382 // If there is enough room in the type to upscale the LHS or downscale the 7383 // RHS before the division, we can perform it in this type without having to 7384 // resize. For signed operations, the LHS headroom is the number of 7385 // redundant sign bits, and for unsigned ones it is the number of zeroes. 7386 // The headroom for the RHS is the number of trailing zeroes. 7387 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 7388 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 7389 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 7390 7391 // For signed saturating operations, we need to be able to detect true integer 7392 // division overflow; that is, when you have MIN / -EPS. However, this 7393 // is undefined behavior and if we emit divisions that could take such 7394 // values it may cause undesired behavior (arithmetic exceptions on x86, for 7395 // example). 7396 // Avoid this by requiring an extra bit so that we never get this case. 7397 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 7398 // signed saturating division, we need to emit a whopping 32-bit division. 7399 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 7400 return SDValue(); 7401 7402 unsigned LHSShift = std::min(LHSLead, Scale); 7403 unsigned RHSShift = Scale - LHSShift; 7404 7405 // At this point, we know that if we shift the LHS up by LHSShift and the 7406 // RHS down by RHSShift, we can emit a regular division with a final scaling 7407 // factor of Scale. 7408 7409 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7410 if (LHSShift) 7411 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 7412 DAG.getConstant(LHSShift, dl, ShiftTy)); 7413 if (RHSShift) 7414 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 7415 DAG.getConstant(RHSShift, dl, ShiftTy)); 7416 7417 SDValue Quot; 7418 if (Signed) { 7419 // For signed operations, if the resulting quotient is negative and the 7420 // remainder is nonzero, subtract 1 from the quotient to round towards 7421 // negative infinity. 7422 SDValue Rem; 7423 // FIXME: Ideally we would always produce an SDIVREM here, but if the 7424 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 7425 // we couldn't just form a libcall, but the type legalizer doesn't do it. 7426 if (isTypeLegal(VT) && 7427 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 7428 Quot = DAG.getNode(ISD::SDIVREM, dl, 7429 DAG.getVTList(VT, VT), 7430 LHS, RHS); 7431 Rem = Quot.getValue(1); 7432 Quot = Quot.getValue(0); 7433 } else { 7434 Quot = DAG.getNode(ISD::SDIV, dl, VT, 7435 LHS, RHS); 7436 Rem = DAG.getNode(ISD::SREM, dl, VT, 7437 LHS, RHS); 7438 } 7439 SDValue Zero = DAG.getConstant(0, dl, VT); 7440 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 7441 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 7442 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 7443 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 7444 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 7445 DAG.getConstant(1, dl, VT)); 7446 Quot = DAG.getSelect(dl, VT, 7447 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 7448 Sub1, Quot); 7449 } else 7450 Quot = DAG.getNode(ISD::UDIV, dl, VT, 7451 LHS, RHS); 7452 7453 return Quot; 7454 } 7455 7456 void TargetLowering::expandUADDSUBO( 7457 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7458 SDLoc dl(Node); 7459 SDValue LHS = Node->getOperand(0); 7460 SDValue RHS = Node->getOperand(1); 7461 bool IsAdd = Node->getOpcode() == ISD::UADDO; 7462 7463 // If ADD/SUBCARRY is legal, use that instead. 7464 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 7465 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 7466 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 7467 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 7468 { LHS, RHS, CarryIn }); 7469 Result = SDValue(NodeCarry.getNode(), 0); 7470 Overflow = SDValue(NodeCarry.getNode(), 1); 7471 return; 7472 } 7473 7474 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7475 LHS.getValueType(), LHS, RHS); 7476 7477 EVT ResultType = Node->getValueType(1); 7478 EVT SetCCType = getSetCCResultType( 7479 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7480 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 7481 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 7482 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7483 } 7484 7485 void TargetLowering::expandSADDSUBO( 7486 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7487 SDLoc dl(Node); 7488 SDValue LHS = Node->getOperand(0); 7489 SDValue RHS = Node->getOperand(1); 7490 bool IsAdd = Node->getOpcode() == ISD::SADDO; 7491 7492 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7493 LHS.getValueType(), LHS, RHS); 7494 7495 EVT ResultType = Node->getValueType(1); 7496 EVT OType = getSetCCResultType( 7497 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7498 7499 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 7500 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 7501 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 7502 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 7503 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 7504 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7505 return; 7506 } 7507 7508 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 7509 7510 // For an addition, the result should be less than one of the operands (LHS) 7511 // if and only if the other operand (RHS) is negative, otherwise there will 7512 // be overflow. 7513 // For a subtraction, the result should be less than one of the operands 7514 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 7515 // otherwise there will be overflow. 7516 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 7517 SDValue ConditionRHS = 7518 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 7519 7520 Overflow = DAG.getBoolExtOrTrunc( 7521 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 7522 ResultType, ResultType); 7523 } 7524 7525 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 7526 SDValue &Overflow, SelectionDAG &DAG) const { 7527 SDLoc dl(Node); 7528 EVT VT = Node->getValueType(0); 7529 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7530 SDValue LHS = Node->getOperand(0); 7531 SDValue RHS = Node->getOperand(1); 7532 bool isSigned = Node->getOpcode() == ISD::SMULO; 7533 7534 // For power-of-two multiplications we can use a simpler shift expansion. 7535 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 7536 const APInt &C = RHSC->getAPIntValue(); 7537 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 7538 if (C.isPowerOf2()) { 7539 // smulo(x, signed_min) is same as umulo(x, signed_min). 7540 bool UseArithShift = isSigned && !C.isMinSignedValue(); 7541 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7542 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 7543 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 7544 Overflow = DAG.getSetCC(dl, SetCCVT, 7545 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 7546 dl, VT, Result, ShiftAmt), 7547 LHS, ISD::SETNE); 7548 return true; 7549 } 7550 } 7551 7552 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 7553 if (VT.isVector()) 7554 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 7555 VT.getVectorNumElements()); 7556 7557 SDValue BottomHalf; 7558 SDValue TopHalf; 7559 static const unsigned Ops[2][3] = 7560 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 7561 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 7562 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 7563 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7564 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 7565 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 7566 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 7567 RHS); 7568 TopHalf = BottomHalf.getValue(1); 7569 } else if (isTypeLegal(WideVT)) { 7570 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 7571 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 7572 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 7573 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 7574 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 7575 getShiftAmountTy(WideVT, DAG.getDataLayout())); 7576 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 7577 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 7578 } else { 7579 if (VT.isVector()) 7580 return false; 7581 7582 // We can fall back to a libcall with an illegal type for the MUL if we 7583 // have a libcall big enough. 7584 // Also, we can fall back to a division in some cases, but that's a big 7585 // performance hit in the general case. 7586 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 7587 if (WideVT == MVT::i16) 7588 LC = RTLIB::MUL_I16; 7589 else if (WideVT == MVT::i32) 7590 LC = RTLIB::MUL_I32; 7591 else if (WideVT == MVT::i64) 7592 LC = RTLIB::MUL_I64; 7593 else if (WideVT == MVT::i128) 7594 LC = RTLIB::MUL_I128; 7595 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 7596 7597 SDValue HiLHS; 7598 SDValue HiRHS; 7599 if (isSigned) { 7600 // The high part is obtained by SRA'ing all but one of the bits of low 7601 // part. 7602 unsigned LoSize = VT.getSizeInBits(); 7603 HiLHS = 7604 DAG.getNode(ISD::SRA, dl, VT, LHS, 7605 DAG.getConstant(LoSize - 1, dl, 7606 getPointerTy(DAG.getDataLayout()))); 7607 HiRHS = 7608 DAG.getNode(ISD::SRA, dl, VT, RHS, 7609 DAG.getConstant(LoSize - 1, dl, 7610 getPointerTy(DAG.getDataLayout()))); 7611 } else { 7612 HiLHS = DAG.getConstant(0, dl, VT); 7613 HiRHS = DAG.getConstant(0, dl, VT); 7614 } 7615 7616 // Here we're passing the 2 arguments explicitly as 4 arguments that are 7617 // pre-lowered to the correct types. This all depends upon WideVT not 7618 // being a legal type for the architecture and thus has to be split to 7619 // two arguments. 7620 SDValue Ret; 7621 TargetLowering::MakeLibCallOptions CallOptions; 7622 CallOptions.setSExt(isSigned); 7623 CallOptions.setIsPostTypeLegalization(true); 7624 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 7625 // Halves of WideVT are packed into registers in different order 7626 // depending on platform endianness. This is usually handled by 7627 // the C calling convention, but we can't defer to it in 7628 // the legalizer. 7629 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 7630 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7631 } else { 7632 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 7633 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7634 } 7635 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 7636 "Ret value is a collection of constituent nodes holding result."); 7637 if (DAG.getDataLayout().isLittleEndian()) { 7638 // Same as above. 7639 BottomHalf = Ret.getOperand(0); 7640 TopHalf = Ret.getOperand(1); 7641 } else { 7642 BottomHalf = Ret.getOperand(1); 7643 TopHalf = Ret.getOperand(0); 7644 } 7645 } 7646 7647 Result = BottomHalf; 7648 if (isSigned) { 7649 SDValue ShiftAmt = DAG.getConstant( 7650 VT.getScalarSizeInBits() - 1, dl, 7651 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 7652 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 7653 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 7654 } else { 7655 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 7656 DAG.getConstant(0, dl, VT), ISD::SETNE); 7657 } 7658 7659 // Truncate the result if SetCC returns a larger type than needed. 7660 EVT RType = Node->getValueType(1); 7661 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 7662 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 7663 7664 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 7665 "Unexpected result type for S/UMULO legalization"); 7666 return true; 7667 } 7668 7669 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 7670 SDLoc dl(Node); 7671 bool NoNaN = Node->getFlags().hasNoNaNs(); 7672 unsigned BaseOpcode = 0; 7673 switch (Node->getOpcode()) { 7674 default: llvm_unreachable("Expected VECREDUCE opcode"); 7675 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 7676 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 7677 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; 7678 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 7679 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 7680 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 7681 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 7682 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; 7683 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; 7684 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; 7685 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; 7686 case ISD::VECREDUCE_FMAX: 7687 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM; 7688 break; 7689 case ISD::VECREDUCE_FMIN: 7690 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM; 7691 break; 7692 } 7693 7694 SDValue Op = Node->getOperand(0); 7695 EVT VT = Op.getValueType(); 7696 7697 // Try to use a shuffle reduction for power of two vectors. 7698 if (VT.isPow2VectorType()) { 7699 while (VT.getVectorNumElements() > 1) { 7700 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 7701 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 7702 break; 7703 7704 SDValue Lo, Hi; 7705 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 7706 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 7707 VT = HalfVT; 7708 } 7709 } 7710 7711 EVT EltVT = VT.getVectorElementType(); 7712 unsigned NumElts = VT.getVectorNumElements(); 7713 7714 SmallVector<SDValue, 8> Ops; 7715 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 7716 7717 SDValue Res = Ops[0]; 7718 for (unsigned i = 1; i < NumElts; i++) 7719 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 7720 7721 // Result type may be wider than element type. 7722 if (EltVT != Node->getValueType(0)) 7723 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 7724 return Res; 7725 } 7726