1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore NoAlias and NonNull because they don't affect the
61   // call sequence.
62   AttributeList CallerAttrs = F.getAttributes();
63   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
64           .removeAttribute(Attribute::NoAlias)
65           .removeAttribute(Attribute::NonNull)
66           .hasAttributes())
67     return false;
68 
69   // It's not safe to eliminate the sign / zero extension of the return value.
70   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
71       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
72     return false;
73 
74   // Check if the only use is a function return node.
75   return isUsedByReturnOnly(Node, Chain);
76 }
77 
78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
79     const uint32_t *CallerPreservedMask,
80     const SmallVectorImpl<CCValAssign> &ArgLocs,
81     const SmallVectorImpl<SDValue> &OutVals) const {
82   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
83     const CCValAssign &ArgLoc = ArgLocs[I];
84     if (!ArgLoc.isRegLoc())
85       continue;
86     Register Reg = ArgLoc.getLocReg();
87     // Only look at callee saved registers.
88     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
89       continue;
90     // Check that we pass the value used for the caller.
91     // (We look for a CopyFromReg reading a virtual register that is used
92     //  for the function live-in value of register Reg)
93     SDValue Value = OutVals[I];
94     if (Value->getOpcode() != ISD::CopyFromReg)
95       return false;
96     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
97     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
98       return false;
99   }
100   return true;
101 }
102 
103 /// Set CallLoweringInfo attribute flags based on a call instruction
104 /// and called function attributes.
105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
106                                                      unsigned ArgIdx) {
107   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
108   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
109   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
110   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
111   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
112   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
113   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
114   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
115   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
116   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
117   Alignment = Call->getParamAlignment(ArgIdx);
118   ByValType = nullptr;
119   if (Call->paramHasAttr(ArgIdx, Attribute::ByVal))
120     ByValType = Call->getParamByValType(ArgIdx);
121 }
122 
123 /// Generate a libcall taking the given operands as arguments and returning a
124 /// result of type RetVT.
125 std::pair<SDValue, SDValue>
126 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
127                             ArrayRef<SDValue> Ops,
128                             MakeLibCallOptions CallOptions,
129                             const SDLoc &dl,
130                             SDValue InChain) const {
131   if (!InChain)
132     InChain = DAG.getEntryNode();
133 
134   TargetLowering::ArgListTy Args;
135   Args.reserve(Ops.size());
136 
137   TargetLowering::ArgListEntry Entry;
138   for (unsigned i = 0; i < Ops.size(); ++i) {
139     SDValue NewOp = Ops[i];
140     Entry.Node = NewOp;
141     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
142     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
143                                                  CallOptions.IsSExt);
144     Entry.IsZExt = !Entry.IsSExt;
145 
146     if (CallOptions.IsSoften &&
147         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
148       Entry.IsSExt = Entry.IsZExt = false;
149     }
150     Args.push_back(Entry);
151   }
152 
153   if (LC == RTLIB::UNKNOWN_LIBCALL)
154     report_fatal_error("Unsupported library call operation!");
155   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
156                                          getPointerTy(DAG.getDataLayout()));
157 
158   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
159   TargetLowering::CallLoweringInfo CLI(DAG);
160   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
161   bool zeroExtend = !signExtend;
162 
163   if (CallOptions.IsSoften &&
164       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
165     signExtend = zeroExtend = false;
166   }
167 
168   CLI.setDebugLoc(dl)
169       .setChain(InChain)
170       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
171       .setNoReturn(CallOptions.DoesNotReturn)
172       .setDiscardResult(!CallOptions.IsReturnValueUsed)
173       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
174       .setSExtResult(signExtend)
175       .setZExtResult(zeroExtend);
176   return LowerCallTo(CLI);
177 }
178 
179 bool TargetLowering::findOptimalMemOpLowering(
180     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
181     unsigned SrcAS, const AttributeList &FuncAttributes) const {
182   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
183     return false;
184 
185   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
186 
187   if (VT == MVT::Other) {
188     // Use the largest integer type whose alignment constraints are satisfied.
189     // We only need to check DstAlign here as SrcAlign is always greater or
190     // equal to DstAlign (or zero).
191     VT = MVT::i64;
192     if (Op.isFixedDstAlign())
193       while (
194           Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
195           !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value()))
196         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
197     assert(VT.isInteger());
198 
199     // Find the largest legal integer type.
200     MVT LVT = MVT::i64;
201     while (!isTypeLegal(LVT))
202       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
203     assert(LVT.isInteger());
204 
205     // If the type we've chosen is larger than the largest legal integer type
206     // then use that instead.
207     if (VT.bitsGT(LVT))
208       VT = LVT;
209   }
210 
211   unsigned NumMemOps = 0;
212   uint64_t Size = Op.size();
213   while (Size) {
214     unsigned VTSize = VT.getSizeInBits() / 8;
215     while (VTSize > Size) {
216       // For now, only use non-vector load / store's for the left-over pieces.
217       EVT NewVT = VT;
218       unsigned NewVTSize;
219 
220       bool Found = false;
221       if (VT.isVector() || VT.isFloatingPoint()) {
222         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
223         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
224             isSafeMemOpType(NewVT.getSimpleVT()))
225           Found = true;
226         else if (NewVT == MVT::i64 &&
227                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
228                  isSafeMemOpType(MVT::f64)) {
229           // i64 is usually not legal on 32-bit targets, but f64 may be.
230           NewVT = MVT::f64;
231           Found = true;
232         }
233       }
234 
235       if (!Found) {
236         do {
237           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
238           if (NewVT == MVT::i8)
239             break;
240         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
241       }
242       NewVTSize = NewVT.getSizeInBits() / 8;
243 
244       // If the new VT cannot cover all of the remaining bits, then consider
245       // issuing a (or a pair of) unaligned and overlapping load / store.
246       bool Fast;
247       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
248           allowsMisalignedMemoryAccesses(
249               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0,
250               MachineMemOperand::MONone, &Fast) &&
251           Fast)
252         VTSize = Size;
253       else {
254         VT = NewVT;
255         VTSize = NewVTSize;
256       }
257     }
258 
259     if (++NumMemOps > Limit)
260       return false;
261 
262     MemOps.push_back(VT);
263     Size -= VTSize;
264   }
265 
266   return true;
267 }
268 
269 /// Soften the operands of a comparison. This code is shared among BR_CC,
270 /// SELECT_CC, and SETCC handlers.
271 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
272                                          SDValue &NewLHS, SDValue &NewRHS,
273                                          ISD::CondCode &CCCode,
274                                          const SDLoc &dl, const SDValue OldLHS,
275                                          const SDValue OldRHS) const {
276   SDValue Chain;
277   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
278                              OldRHS, Chain);
279 }
280 
281 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
282                                          SDValue &NewLHS, SDValue &NewRHS,
283                                          ISD::CondCode &CCCode,
284                                          const SDLoc &dl, const SDValue OldLHS,
285                                          const SDValue OldRHS,
286                                          SDValue &Chain,
287                                          bool IsSignaling) const {
288   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
289   // not supporting it. We can update this code when libgcc provides such
290   // functions.
291 
292   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
293          && "Unsupported setcc type!");
294 
295   // Expand into one or more soft-fp libcall(s).
296   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
297   bool ShouldInvertCC = false;
298   switch (CCCode) {
299   case ISD::SETEQ:
300   case ISD::SETOEQ:
301     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
302           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
303           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
304     break;
305   case ISD::SETNE:
306   case ISD::SETUNE:
307     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
308           (VT == MVT::f64) ? RTLIB::UNE_F64 :
309           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
310     break;
311   case ISD::SETGE:
312   case ISD::SETOGE:
313     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
314           (VT == MVT::f64) ? RTLIB::OGE_F64 :
315           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
316     break;
317   case ISD::SETLT:
318   case ISD::SETOLT:
319     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
320           (VT == MVT::f64) ? RTLIB::OLT_F64 :
321           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
322     break;
323   case ISD::SETLE:
324   case ISD::SETOLE:
325     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
326           (VT == MVT::f64) ? RTLIB::OLE_F64 :
327           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
328     break;
329   case ISD::SETGT:
330   case ISD::SETOGT:
331     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
332           (VT == MVT::f64) ? RTLIB::OGT_F64 :
333           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
334     break;
335   case ISD::SETO:
336     ShouldInvertCC = true;
337     LLVM_FALLTHROUGH;
338   case ISD::SETUO:
339     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
340           (VT == MVT::f64) ? RTLIB::UO_F64 :
341           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
342     break;
343   case ISD::SETONE:
344     // SETONE = O && UNE
345     ShouldInvertCC = true;
346     LLVM_FALLTHROUGH;
347   case ISD::SETUEQ:
348     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
349           (VT == MVT::f64) ? RTLIB::UO_F64 :
350           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
351     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
352           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
353           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
354     break;
355   default:
356     // Invert CC for unordered comparisons
357     ShouldInvertCC = true;
358     switch (CCCode) {
359     case ISD::SETULT:
360       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
361             (VT == MVT::f64) ? RTLIB::OGE_F64 :
362             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
363       break;
364     case ISD::SETULE:
365       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
366             (VT == MVT::f64) ? RTLIB::OGT_F64 :
367             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
368       break;
369     case ISD::SETUGT:
370       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
371             (VT == MVT::f64) ? RTLIB::OLE_F64 :
372             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
373       break;
374     case ISD::SETUGE:
375       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
376             (VT == MVT::f64) ? RTLIB::OLT_F64 :
377             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
378       break;
379     default: llvm_unreachable("Do not know how to soften this setcc!");
380     }
381   }
382 
383   // Use the target specific return value for comparions lib calls.
384   EVT RetVT = getCmpLibcallReturnType();
385   SDValue Ops[2] = {NewLHS, NewRHS};
386   TargetLowering::MakeLibCallOptions CallOptions;
387   EVT OpsVT[2] = { OldLHS.getValueType(),
388                    OldRHS.getValueType() };
389   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
390   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
391   NewLHS = Call.first;
392   NewRHS = DAG.getConstant(0, dl, RetVT);
393 
394   CCCode = getCmpLibcallCC(LC1);
395   if (ShouldInvertCC) {
396     assert(RetVT.isInteger());
397     CCCode = getSetCCInverse(CCCode, RetVT);
398   }
399 
400   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
401     // Update Chain.
402     Chain = Call.second;
403   } else {
404     EVT SetCCVT =
405         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
406     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
407     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
408     CCCode = getCmpLibcallCC(LC2);
409     if (ShouldInvertCC)
410       CCCode = getSetCCInverse(CCCode, RetVT);
411     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
412     if (Chain)
413       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
414                           Call2.second);
415     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
416                          Tmp.getValueType(), Tmp, NewLHS);
417     NewRHS = SDValue();
418   }
419 }
420 
421 /// Return the entry encoding for a jump table in the current function. The
422 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
423 unsigned TargetLowering::getJumpTableEncoding() const {
424   // In non-pic modes, just use the address of a block.
425   if (!isPositionIndependent())
426     return MachineJumpTableInfo::EK_BlockAddress;
427 
428   // In PIC mode, if the target supports a GPRel32 directive, use it.
429   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
430     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
431 
432   // Otherwise, use a label difference.
433   return MachineJumpTableInfo::EK_LabelDifference32;
434 }
435 
436 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
437                                                  SelectionDAG &DAG) const {
438   // If our PIC model is GP relative, use the global offset table as the base.
439   unsigned JTEncoding = getJumpTableEncoding();
440 
441   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
442       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
443     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
444 
445   return Table;
446 }
447 
448 /// This returns the relocation base for the given PIC jumptable, the same as
449 /// getPICJumpTableRelocBase, but as an MCExpr.
450 const MCExpr *
451 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
452                                              unsigned JTI,MCContext &Ctx) const{
453   // The normal PIC reloc base is the label at the start of the jump table.
454   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
455 }
456 
457 bool
458 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
459   const TargetMachine &TM = getTargetMachine();
460   const GlobalValue *GV = GA->getGlobal();
461 
462   // If the address is not even local to this DSO we will have to load it from
463   // a got and then add the offset.
464   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
465     return false;
466 
467   // If the code is position independent we will have to add a base register.
468   if (isPositionIndependent())
469     return false;
470 
471   // Otherwise we can do it.
472   return true;
473 }
474 
475 //===----------------------------------------------------------------------===//
476 //  Optimization Methods
477 //===----------------------------------------------------------------------===//
478 
479 /// If the specified instruction has a constant integer operand and there are
480 /// bits set in that constant that are not demanded, then clear those bits and
481 /// return true.
482 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
483                                             TargetLoweringOpt &TLO) const {
484   SDLoc DL(Op);
485   unsigned Opcode = Op.getOpcode();
486 
487   // Do target-specific constant optimization.
488   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
489     return TLO.New.getNode();
490 
491   // FIXME: ISD::SELECT, ISD::SELECT_CC
492   switch (Opcode) {
493   default:
494     break;
495   case ISD::XOR:
496   case ISD::AND:
497   case ISD::OR: {
498     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
499     if (!Op1C)
500       return false;
501 
502     // If this is a 'not' op, don't touch it because that's a canonical form.
503     const APInt &C = Op1C->getAPIntValue();
504     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
505       return false;
506 
507     if (!C.isSubsetOf(Demanded)) {
508       EVT VT = Op.getValueType();
509       SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT);
510       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
511       return TLO.CombineTo(Op, NewOp);
512     }
513 
514     break;
515   }
516   }
517 
518   return false;
519 }
520 
521 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
522 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
523 /// generalized for targets with other types of implicit widening casts.
524 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
525                                       const APInt &Demanded,
526                                       TargetLoweringOpt &TLO) const {
527   assert(Op.getNumOperands() == 2 &&
528          "ShrinkDemandedOp only supports binary operators!");
529   assert(Op.getNode()->getNumValues() == 1 &&
530          "ShrinkDemandedOp only supports nodes with one result!");
531 
532   SelectionDAG &DAG = TLO.DAG;
533   SDLoc dl(Op);
534 
535   // Early return, as this function cannot handle vector types.
536   if (Op.getValueType().isVector())
537     return false;
538 
539   // Don't do this if the node has another user, which may require the
540   // full value.
541   if (!Op.getNode()->hasOneUse())
542     return false;
543 
544   // Search for the smallest integer type with free casts to and from
545   // Op's type. For expedience, just check power-of-2 integer types.
546   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
547   unsigned DemandedSize = Demanded.getActiveBits();
548   unsigned SmallVTBits = DemandedSize;
549   if (!isPowerOf2_32(SmallVTBits))
550     SmallVTBits = NextPowerOf2(SmallVTBits);
551   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
552     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
553     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
554         TLI.isZExtFree(SmallVT, Op.getValueType())) {
555       // We found a type with free casts.
556       SDValue X = DAG.getNode(
557           Op.getOpcode(), dl, SmallVT,
558           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
559           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
560       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
561       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
562       return TLO.CombineTo(Op, Z);
563     }
564   }
565   return false;
566 }
567 
568 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
569                                           DAGCombinerInfo &DCI) const {
570   SelectionDAG &DAG = DCI.DAG;
571   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
572                         !DCI.isBeforeLegalizeOps());
573   KnownBits Known;
574 
575   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
576   if (Simplified) {
577     DCI.AddToWorklist(Op.getNode());
578     DCI.CommitTargetLoweringOpt(TLO);
579   }
580   return Simplified;
581 }
582 
583 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
584                                           KnownBits &Known,
585                                           TargetLoweringOpt &TLO,
586                                           unsigned Depth,
587                                           bool AssumeSingleUse) const {
588   EVT VT = Op.getValueType();
589   APInt DemandedElts = VT.isVector()
590                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
591                            : APInt(1, 1);
592   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
593                               AssumeSingleUse);
594 }
595 
596 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
597 // TODO: Under what circumstances can we create nodes? Constant folding?
598 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
599     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
600     SelectionDAG &DAG, unsigned Depth) const {
601   // Limit search depth.
602   if (Depth >= SelectionDAG::MaxRecursionDepth)
603     return SDValue();
604 
605   // Ignore UNDEFs.
606   if (Op.isUndef())
607     return SDValue();
608 
609   // Not demanding any bits/elts from Op.
610   if (DemandedBits == 0 || DemandedElts == 0)
611     return DAG.getUNDEF(Op.getValueType());
612 
613   unsigned NumElts = DemandedElts.getBitWidth();
614   KnownBits LHSKnown, RHSKnown;
615   switch (Op.getOpcode()) {
616   case ISD::BITCAST: {
617     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
618     EVT SrcVT = Src.getValueType();
619     EVT DstVT = Op.getValueType();
620     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
621     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
622 
623     if (NumSrcEltBits == NumDstEltBits)
624       if (SDValue V = SimplifyMultipleUseDemandedBits(
625               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
626         return DAG.getBitcast(DstVT, V);
627 
628     // TODO - bigendian once we have test coverage.
629     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
630         DAG.getDataLayout().isLittleEndian()) {
631       unsigned Scale = NumDstEltBits / NumSrcEltBits;
632       unsigned NumSrcElts = SrcVT.getVectorNumElements();
633       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
634       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
635       for (unsigned i = 0; i != Scale; ++i) {
636         unsigned Offset = i * NumSrcEltBits;
637         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
638         if (!Sub.isNullValue()) {
639           DemandedSrcBits |= Sub;
640           for (unsigned j = 0; j != NumElts; ++j)
641             if (DemandedElts[j])
642               DemandedSrcElts.setBit((j * Scale) + i);
643         }
644       }
645 
646       if (SDValue V = SimplifyMultipleUseDemandedBits(
647               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
648         return DAG.getBitcast(DstVT, V);
649     }
650 
651     // TODO - bigendian once we have test coverage.
652     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
653         DAG.getDataLayout().isLittleEndian()) {
654       unsigned Scale = NumSrcEltBits / NumDstEltBits;
655       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
656       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
657       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
658       for (unsigned i = 0; i != NumElts; ++i)
659         if (DemandedElts[i]) {
660           unsigned Offset = (i % Scale) * NumDstEltBits;
661           DemandedSrcBits.insertBits(DemandedBits, Offset);
662           DemandedSrcElts.setBit(i / Scale);
663         }
664 
665       if (SDValue V = SimplifyMultipleUseDemandedBits(
666               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
667         return DAG.getBitcast(DstVT, V);
668     }
669 
670     break;
671   }
672   case ISD::AND: {
673     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
674     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
675 
676     // If all of the demanded bits are known 1 on one side, return the other.
677     // These bits cannot contribute to the result of the 'and' in this
678     // context.
679     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
680       return Op.getOperand(0);
681     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
682       return Op.getOperand(1);
683     break;
684   }
685   case ISD::OR: {
686     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
687     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
688 
689     // If all of the demanded bits are known zero on one side, return the
690     // other.  These bits cannot contribute to the result of the 'or' in this
691     // context.
692     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
693       return Op.getOperand(0);
694     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
695       return Op.getOperand(1);
696     break;
697   }
698   case ISD::XOR: {
699     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
700     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
701 
702     // If all of the demanded bits are known zero on one side, return the
703     // other.
704     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
705       return Op.getOperand(0);
706     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
707       return Op.getOperand(1);
708     break;
709   }
710   case ISD::SETCC: {
711     SDValue Op0 = Op.getOperand(0);
712     SDValue Op1 = Op.getOperand(1);
713     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
714     // If (1) we only need the sign-bit, (2) the setcc operands are the same
715     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
716     // -1, we may be able to bypass the setcc.
717     if (DemandedBits.isSignMask() &&
718         Op0.getScalarValueSizeInBits() == DemandedBits.getBitWidth() &&
719         getBooleanContents(Op0.getValueType()) ==
720             BooleanContent::ZeroOrNegativeOneBooleanContent) {
721       // If we're testing X < 0, then this compare isn't needed - just use X!
722       // FIXME: We're limiting to integer types here, but this should also work
723       // if we don't care about FP signed-zero. The use of SETLT with FP means
724       // that we don't care about NaNs.
725       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
726           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
727         return Op0;
728     }
729     break;
730   }
731   case ISD::SIGN_EXTEND_INREG: {
732     // If none of the extended bits are demanded, eliminate the sextinreg.
733     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
734     if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits())
735       return Op.getOperand(0);
736     break;
737   }
738   case ISD::INSERT_VECTOR_ELT: {
739     // If we don't demand the inserted element, return the base vector.
740     SDValue Vec = Op.getOperand(0);
741     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
742     EVT VecVT = Vec.getValueType();
743     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
744         !DemandedElts[CIdx->getZExtValue()])
745       return Vec;
746     break;
747   }
748   case ISD::INSERT_SUBVECTOR: {
749     // If we don't demand the inserted subvector, return the base vector.
750     SDValue Vec = Op.getOperand(0);
751     SDValue Sub = Op.getOperand(1);
752     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
753     unsigned NumVecElts = Vec.getValueType().getVectorNumElements();
754     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
755     if (CIdx && CIdx->getAPIntValue().ule(NumVecElts - NumSubElts))
756       if (DemandedElts.extractBits(NumSubElts, CIdx->getZExtValue()) == 0)
757         return Vec;
758     break;
759   }
760   case ISD::VECTOR_SHUFFLE: {
761     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
762 
763     // If all the demanded elts are from one operand and are inline,
764     // then we can use the operand directly.
765     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
766     for (unsigned i = 0; i != NumElts; ++i) {
767       int M = ShuffleMask[i];
768       if (M < 0 || !DemandedElts[i])
769         continue;
770       AllUndef = false;
771       IdentityLHS &= (M == (int)i);
772       IdentityRHS &= ((M - NumElts) == i);
773     }
774 
775     if (AllUndef)
776       return DAG.getUNDEF(Op.getValueType());
777     if (IdentityLHS)
778       return Op.getOperand(0);
779     if (IdentityRHS)
780       return Op.getOperand(1);
781     break;
782   }
783   default:
784     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
785       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
786               Op, DemandedBits, DemandedElts, DAG, Depth))
787         return V;
788     break;
789   }
790   return SDValue();
791 }
792 
793 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
794     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
795     unsigned Depth) const {
796   EVT VT = Op.getValueType();
797   APInt DemandedElts = VT.isVector()
798                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
799                            : APInt(1, 1);
800   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
801                                          Depth);
802 }
803 
804 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
805 /// result of Op are ever used downstream. If we can use this information to
806 /// simplify Op, create a new simplified DAG node and return true, returning the
807 /// original and new nodes in Old and New. Otherwise, analyze the expression and
808 /// return a mask of Known bits for the expression (used to simplify the
809 /// caller).  The Known bits may only be accurate for those bits in the
810 /// OriginalDemandedBits and OriginalDemandedElts.
811 bool TargetLowering::SimplifyDemandedBits(
812     SDValue Op, const APInt &OriginalDemandedBits,
813     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
814     unsigned Depth, bool AssumeSingleUse) const {
815   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
816   assert(Op.getScalarValueSizeInBits() == BitWidth &&
817          "Mask size mismatches value type size!");
818 
819   unsigned NumElts = OriginalDemandedElts.getBitWidth();
820   assert((!Op.getValueType().isVector() ||
821           NumElts == Op.getValueType().getVectorNumElements()) &&
822          "Unexpected vector size");
823 
824   APInt DemandedBits = OriginalDemandedBits;
825   APInt DemandedElts = OriginalDemandedElts;
826   SDLoc dl(Op);
827   auto &DL = TLO.DAG.getDataLayout();
828 
829   // Don't know anything.
830   Known = KnownBits(BitWidth);
831 
832   // Undef operand.
833   if (Op.isUndef())
834     return false;
835 
836   if (Op.getOpcode() == ISD::Constant) {
837     // We know all of the bits for a constant!
838     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
839     Known.Zero = ~Known.One;
840     return false;
841   }
842 
843   // Other users may use these bits.
844   EVT VT = Op.getValueType();
845   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
846     if (Depth != 0) {
847       // If not at the root, Just compute the Known bits to
848       // simplify things downstream.
849       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
850       return false;
851     }
852     // If this is the root being simplified, allow it to have multiple uses,
853     // just set the DemandedBits/Elts to all bits.
854     DemandedBits = APInt::getAllOnesValue(BitWidth);
855     DemandedElts = APInt::getAllOnesValue(NumElts);
856   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
857     // Not demanding any bits/elts from Op.
858     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
859   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
860     // Limit search depth.
861     return false;
862   }
863 
864   KnownBits Known2, KnownOut;
865   switch (Op.getOpcode()) {
866   case ISD::TargetConstant:
867     llvm_unreachable("Can't simplify this node");
868   case ISD::SCALAR_TO_VECTOR: {
869     if (!DemandedElts[0])
870       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
871 
872     KnownBits SrcKnown;
873     SDValue Src = Op.getOperand(0);
874     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
875     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
876     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
877       return true;
878 
879     // Upper elements are undef, so only get the knownbits if we just demand
880     // the bottom element.
881     if (DemandedElts == 1)
882       Known = SrcKnown.anyextOrTrunc(BitWidth);
883     break;
884   }
885   case ISD::BUILD_VECTOR:
886     // Collect the known bits that are shared by every demanded element.
887     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
888     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
889     return false; // Don't fall through, will infinitely loop.
890   case ISD::LOAD: {
891     LoadSDNode *LD = cast<LoadSDNode>(Op);
892     if (getTargetConstantFromLoad(LD)) {
893       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
894       return false; // Don't fall through, will infinitely loop.
895     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
896       // If this is a ZEXTLoad and we are looking at the loaded value.
897       EVT MemVT = LD->getMemoryVT();
898       unsigned MemBits = MemVT.getScalarSizeInBits();
899       Known.Zero.setBitsFrom(MemBits);
900       return false; // Don't fall through, will infinitely loop.
901     }
902     break;
903   }
904   case ISD::INSERT_VECTOR_ELT: {
905     SDValue Vec = Op.getOperand(0);
906     SDValue Scl = Op.getOperand(1);
907     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
908     EVT VecVT = Vec.getValueType();
909 
910     // If index isn't constant, assume we need all vector elements AND the
911     // inserted element.
912     APInt DemandedVecElts(DemandedElts);
913     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
914       unsigned Idx = CIdx->getZExtValue();
915       DemandedVecElts.clearBit(Idx);
916 
917       // Inserted element is not required.
918       if (!DemandedElts[Idx])
919         return TLO.CombineTo(Op, Vec);
920     }
921 
922     KnownBits KnownScl;
923     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
924     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
925     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
926       return true;
927 
928     Known = KnownScl.anyextOrTrunc(BitWidth);
929 
930     KnownBits KnownVec;
931     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
932                              Depth + 1))
933       return true;
934 
935     if (!!DemandedVecElts) {
936       Known.One &= KnownVec.One;
937       Known.Zero &= KnownVec.Zero;
938     }
939 
940     return false;
941   }
942   case ISD::INSERT_SUBVECTOR: {
943     SDValue Base = Op.getOperand(0);
944     SDValue Sub = Op.getOperand(1);
945     EVT SubVT = Sub.getValueType();
946     unsigned NumSubElts = SubVT.getVectorNumElements();
947 
948     // If index isn't constant, assume we need the original demanded base
949     // elements and ALL the inserted subvector elements.
950     APInt BaseElts = DemandedElts;
951     APInt SubElts = APInt::getAllOnesValue(NumSubElts);
952     if (isa<ConstantSDNode>(Op.getOperand(2))) {
953       const APInt &Idx = Op.getConstantOperandAPInt(2);
954       if (Idx.ule(NumElts - NumSubElts)) {
955         unsigned SubIdx = Idx.getZExtValue();
956         SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
957         BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
958       }
959     }
960 
961     KnownBits KnownSub, KnownBase;
962     if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO,
963                              Depth + 1))
964       return true;
965     if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO,
966                              Depth + 1))
967       return true;
968 
969     Known.Zero.setAllBits();
970     Known.One.setAllBits();
971     if (!!SubElts) {
972         Known.One &= KnownSub.One;
973         Known.Zero &= KnownSub.Zero;
974     }
975     if (!!BaseElts) {
976         Known.One &= KnownBase.One;
977         Known.Zero &= KnownBase.Zero;
978     }
979 
980     // Attempt to avoid multi-use src if we don't need anything from it.
981     if (!DemandedBits.isAllOnesValue() || !SubElts.isAllOnesValue() ||
982         !BaseElts.isAllOnesValue()) {
983       SDValue NewSub = SimplifyMultipleUseDemandedBits(
984           Sub, DemandedBits, SubElts, TLO.DAG, Depth + 1);
985       SDValue NewBase = SimplifyMultipleUseDemandedBits(
986           Base, DemandedBits, BaseElts, TLO.DAG, Depth + 1);
987       if (NewSub || NewBase) {
988         NewSub = NewSub ? NewSub : Sub;
989         NewBase = NewBase ? NewBase : Base;
990         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewBase, NewSub,
991                                         Op.getOperand(2));
992         return TLO.CombineTo(Op, NewOp);
993       }
994     }
995     break;
996   }
997   case ISD::EXTRACT_SUBVECTOR: {
998     // If index isn't constant, assume we need all the source vector elements.
999     SDValue Src = Op.getOperand(0);
1000     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1001     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1002     APInt SrcElts = APInt::getAllOnesValue(NumSrcElts);
1003     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
1004       // Offset the demanded elts by the subvector index.
1005       uint64_t Idx = SubIdx->getZExtValue();
1006       SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1007     }
1008     if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1))
1009       return true;
1010 
1011     // Attempt to avoid multi-use src if we don't need anything from it.
1012     if (!DemandedBits.isAllOnesValue() || !SrcElts.isAllOnesValue()) {
1013       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1014           Src, DemandedBits, SrcElts, TLO.DAG, Depth + 1);
1015       if (DemandedSrc) {
1016         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1017                                         Op.getOperand(1));
1018         return TLO.CombineTo(Op, NewOp);
1019       }
1020     }
1021     break;
1022   }
1023   case ISD::CONCAT_VECTORS: {
1024     Known.Zero.setAllBits();
1025     Known.One.setAllBits();
1026     EVT SubVT = Op.getOperand(0).getValueType();
1027     unsigned NumSubVecs = Op.getNumOperands();
1028     unsigned NumSubElts = SubVT.getVectorNumElements();
1029     for (unsigned i = 0; i != NumSubVecs; ++i) {
1030       APInt DemandedSubElts =
1031           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1032       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1033                                Known2, TLO, Depth + 1))
1034         return true;
1035       // Known bits are shared by every demanded subvector element.
1036       if (!!DemandedSubElts) {
1037         Known.One &= Known2.One;
1038         Known.Zero &= Known2.Zero;
1039       }
1040     }
1041     break;
1042   }
1043   case ISD::VECTOR_SHUFFLE: {
1044     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1045 
1046     // Collect demanded elements from shuffle operands..
1047     APInt DemandedLHS(NumElts, 0);
1048     APInt DemandedRHS(NumElts, 0);
1049     for (unsigned i = 0; i != NumElts; ++i) {
1050       if (!DemandedElts[i])
1051         continue;
1052       int M = ShuffleMask[i];
1053       if (M < 0) {
1054         // For UNDEF elements, we don't know anything about the common state of
1055         // the shuffle result.
1056         DemandedLHS.clearAllBits();
1057         DemandedRHS.clearAllBits();
1058         break;
1059       }
1060       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1061       if (M < (int)NumElts)
1062         DemandedLHS.setBit(M);
1063       else
1064         DemandedRHS.setBit(M - NumElts);
1065     }
1066 
1067     if (!!DemandedLHS || !!DemandedRHS) {
1068       SDValue Op0 = Op.getOperand(0);
1069       SDValue Op1 = Op.getOperand(1);
1070 
1071       Known.Zero.setAllBits();
1072       Known.One.setAllBits();
1073       if (!!DemandedLHS) {
1074         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1075                                  Depth + 1))
1076           return true;
1077         Known.One &= Known2.One;
1078         Known.Zero &= Known2.Zero;
1079       }
1080       if (!!DemandedRHS) {
1081         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1082                                  Depth + 1))
1083           return true;
1084         Known.One &= Known2.One;
1085         Known.Zero &= Known2.Zero;
1086       }
1087 
1088       // Attempt to avoid multi-use ops if we don't need anything from them.
1089       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1090           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1091       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1092           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1093       if (DemandedOp0 || DemandedOp1) {
1094         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1095         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1096         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1097         return TLO.CombineTo(Op, NewOp);
1098       }
1099     }
1100     break;
1101   }
1102   case ISD::AND: {
1103     SDValue Op0 = Op.getOperand(0);
1104     SDValue Op1 = Op.getOperand(1);
1105 
1106     // If the RHS is a constant, check to see if the LHS would be zero without
1107     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1108     // simplify the LHS, here we're using information from the LHS to simplify
1109     // the RHS.
1110     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1111       // Do not increment Depth here; that can cause an infinite loop.
1112       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1113       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1114       if ((LHSKnown.Zero & DemandedBits) ==
1115           (~RHSC->getAPIntValue() & DemandedBits))
1116         return TLO.CombineTo(Op, Op0);
1117 
1118       // If any of the set bits in the RHS are known zero on the LHS, shrink
1119       // the constant.
1120       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
1121         return true;
1122 
1123       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1124       // constant, but if this 'and' is only clearing bits that were just set by
1125       // the xor, then this 'and' can be eliminated by shrinking the mask of
1126       // the xor. For example, for a 32-bit X:
1127       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1128       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1129           LHSKnown.One == ~RHSC->getAPIntValue()) {
1130         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1131         return TLO.CombineTo(Op, Xor);
1132       }
1133     }
1134 
1135     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1136                              Depth + 1))
1137       return true;
1138     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1139     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1140                              Known2, TLO, Depth + 1))
1141       return true;
1142     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1143 
1144     // Attempt to avoid multi-use ops if we don't need anything from them.
1145     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1146       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1147           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1148       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1149           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1150       if (DemandedOp0 || DemandedOp1) {
1151         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1152         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1153         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1154         return TLO.CombineTo(Op, NewOp);
1155       }
1156     }
1157 
1158     // If all of the demanded bits are known one on one side, return the other.
1159     // These bits cannot contribute to the result of the 'and'.
1160     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1161       return TLO.CombineTo(Op, Op0);
1162     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1163       return TLO.CombineTo(Op, Op1);
1164     // If all of the demanded bits in the inputs are known zeros, return zero.
1165     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1166       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1167     // If the RHS is a constant, see if we can simplify it.
1168     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
1169       return true;
1170     // If the operation can be done in a smaller type, do so.
1171     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1172       return true;
1173 
1174     // Output known-1 bits are only known if set in both the LHS & RHS.
1175     Known.One &= Known2.One;
1176     // Output known-0 are known to be clear if zero in either the LHS | RHS.
1177     Known.Zero |= Known2.Zero;
1178     break;
1179   }
1180   case ISD::OR: {
1181     SDValue Op0 = Op.getOperand(0);
1182     SDValue Op1 = Op.getOperand(1);
1183 
1184     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1185                              Depth + 1))
1186       return true;
1187     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1188     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1189                              Known2, TLO, Depth + 1))
1190       return true;
1191     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1192 
1193     // Attempt to avoid multi-use ops if we don't need anything from them.
1194     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1195       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1196           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1197       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1198           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1199       if (DemandedOp0 || DemandedOp1) {
1200         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1201         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1202         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1203         return TLO.CombineTo(Op, NewOp);
1204       }
1205     }
1206 
1207     // If all of the demanded bits are known zero on one side, return the other.
1208     // These bits cannot contribute to the result of the 'or'.
1209     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1210       return TLO.CombineTo(Op, Op0);
1211     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1212       return TLO.CombineTo(Op, Op1);
1213     // If the RHS is a constant, see if we can simplify it.
1214     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1215       return true;
1216     // If the operation can be done in a smaller type, do so.
1217     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1218       return true;
1219 
1220     // Output known-0 bits are only known if clear in both the LHS & RHS.
1221     Known.Zero &= Known2.Zero;
1222     // Output known-1 are known to be set if set in either the LHS | RHS.
1223     Known.One |= Known2.One;
1224     break;
1225   }
1226   case ISD::XOR: {
1227     SDValue Op0 = Op.getOperand(0);
1228     SDValue Op1 = Op.getOperand(1);
1229 
1230     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1231                              Depth + 1))
1232       return true;
1233     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1234     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1235                              Depth + 1))
1236       return true;
1237     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1238 
1239     // Attempt to avoid multi-use ops if we don't need anything from them.
1240     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1241       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1242           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1243       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1244           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1245       if (DemandedOp0 || DemandedOp1) {
1246         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1247         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1248         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1249         return TLO.CombineTo(Op, NewOp);
1250       }
1251     }
1252 
1253     // If all of the demanded bits are known zero on one side, return the other.
1254     // These bits cannot contribute to the result of the 'xor'.
1255     if (DemandedBits.isSubsetOf(Known.Zero))
1256       return TLO.CombineTo(Op, Op0);
1257     if (DemandedBits.isSubsetOf(Known2.Zero))
1258       return TLO.CombineTo(Op, Op1);
1259     // If the operation can be done in a smaller type, do so.
1260     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1261       return true;
1262 
1263     // If all of the unknown bits are known to be zero on one side or the other
1264     // (but not both) turn this into an *inclusive* or.
1265     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1266     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1267       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1268 
1269     // Output known-0 bits are known if clear or set in both the LHS & RHS.
1270     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
1271     // Output known-1 are known to be set if set in only one of the LHS, RHS.
1272     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1273 
1274     if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
1275       // If one side is a constant, and all of the known set bits on the other
1276       // side are also set in the constant, turn this into an AND, as we know
1277       // the bits will be cleared.
1278       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1279       // NB: it is okay if more bits are known than are requested
1280       if (C->getAPIntValue() == Known2.One) {
1281         SDValue ANDC =
1282             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1283         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1284       }
1285 
1286       // If the RHS is a constant, see if we can change it. Don't alter a -1
1287       // constant because that's a 'not' op, and that is better for combining
1288       // and codegen.
1289       if (!C->isAllOnesValue()) {
1290         if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
1291           // We're flipping all demanded bits. Flip the undemanded bits too.
1292           SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1293           return TLO.CombineTo(Op, New);
1294         }
1295         // If we can't turn this into a 'not', try to shrink the constant.
1296         if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1297           return true;
1298       }
1299     }
1300 
1301     Known = std::move(KnownOut);
1302     break;
1303   }
1304   case ISD::SELECT:
1305     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1306                              Depth + 1))
1307       return true;
1308     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1309                              Depth + 1))
1310       return true;
1311     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1312     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1313 
1314     // If the operands are constants, see if we can simplify them.
1315     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1316       return true;
1317 
1318     // Only known if known in both the LHS and RHS.
1319     Known.One &= Known2.One;
1320     Known.Zero &= Known2.Zero;
1321     break;
1322   case ISD::SELECT_CC:
1323     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1324                              Depth + 1))
1325       return true;
1326     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1327                              Depth + 1))
1328       return true;
1329     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1330     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1331 
1332     // If the operands are constants, see if we can simplify them.
1333     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1334       return true;
1335 
1336     // Only known if known in both the LHS and RHS.
1337     Known.One &= Known2.One;
1338     Known.Zero &= Known2.Zero;
1339     break;
1340   case ISD::SETCC: {
1341     SDValue Op0 = Op.getOperand(0);
1342     SDValue Op1 = Op.getOperand(1);
1343     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1344     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1345     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1346     // -1, we may be able to bypass the setcc.
1347     if (DemandedBits.isSignMask() &&
1348         Op0.getScalarValueSizeInBits() == BitWidth &&
1349         getBooleanContents(Op0.getValueType()) ==
1350             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1351       // If we're testing X < 0, then this compare isn't needed - just use X!
1352       // FIXME: We're limiting to integer types here, but this should also work
1353       // if we don't care about FP signed-zero. The use of SETLT with FP means
1354       // that we don't care about NaNs.
1355       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1356           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1357         return TLO.CombineTo(Op, Op0);
1358 
1359       // TODO: Should we check for other forms of sign-bit comparisons?
1360       // Examples: X <= -1, X >= 0
1361     }
1362     if (getBooleanContents(Op0.getValueType()) ==
1363             TargetLowering::ZeroOrOneBooleanContent &&
1364         BitWidth > 1)
1365       Known.Zero.setBitsFrom(1);
1366     break;
1367   }
1368   case ISD::SHL: {
1369     SDValue Op0 = Op.getOperand(0);
1370     SDValue Op1 = Op.getOperand(1);
1371     EVT ShiftVT = Op1.getValueType();
1372 
1373     if (const APInt *SA =
1374             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1375       unsigned ShAmt = SA->getZExtValue();
1376       if (ShAmt == 0)
1377         return TLO.CombineTo(Op, Op0);
1378 
1379       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1380       // single shift.  We can do this if the bottom bits (which are shifted
1381       // out) are never demanded.
1382       // TODO - support non-uniform vector amounts.
1383       if (Op0.getOpcode() == ISD::SRL) {
1384         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1385           if (const APInt *SA2 =
1386                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1387             if (SA2->ult(BitWidth)) {
1388               unsigned C1 = SA2->getZExtValue();
1389               unsigned Opc = ISD::SHL;
1390               int Diff = ShAmt - C1;
1391               if (Diff < 0) {
1392                 Diff = -Diff;
1393                 Opc = ISD::SRL;
1394               }
1395 
1396               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1397               return TLO.CombineTo(
1398                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1399             }
1400           }
1401         }
1402       }
1403 
1404       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1405       // are not demanded. This will likely allow the anyext to be folded away.
1406       // TODO - support non-uniform vector amounts.
1407       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1408         SDValue InnerOp = Op0.getOperand(0);
1409         EVT InnerVT = InnerOp.getValueType();
1410         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1411         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1412             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1413           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1414           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1415             ShTy = InnerVT;
1416           SDValue NarrowShl =
1417               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1418                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1419           return TLO.CombineTo(
1420               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1421         }
1422 
1423         // Repeat the SHL optimization above in cases where an extension
1424         // intervenes: (shl (anyext (shr x, c1)), c2) to
1425         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1426         // aren't demanded (as above) and that the shifted upper c1 bits of
1427         // x aren't demanded.
1428         // TODO - support non-uniform vector amounts.
1429         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1430             InnerOp.hasOneUse()) {
1431           if (const APInt *SA2 =
1432                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1433             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
1434             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1435                 DemandedBits.getActiveBits() <=
1436                     (InnerBits - InnerShAmt + ShAmt) &&
1437                 DemandedBits.countTrailingZeros() >= ShAmt) {
1438               SDValue NewSA =
1439                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1440               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1441                                                InnerOp.getOperand(0));
1442               return TLO.CombineTo(
1443                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1444             }
1445           }
1446         }
1447       }
1448 
1449       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1450       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1451                                Depth + 1))
1452         return true;
1453       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1454       Known.Zero <<= ShAmt;
1455       Known.One <<= ShAmt;
1456       // low bits known zero.
1457       Known.Zero.setLowBits(ShAmt);
1458 
1459       // Try shrinking the operation as long as the shift amount will still be
1460       // in range.
1461       if ((ShAmt < DemandedBits.getActiveBits()) &&
1462           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1463         return true;
1464     }
1465     break;
1466   }
1467   case ISD::SRL: {
1468     SDValue Op0 = Op.getOperand(0);
1469     SDValue Op1 = Op.getOperand(1);
1470     EVT ShiftVT = Op1.getValueType();
1471 
1472     if (const APInt *SA =
1473             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1474       unsigned ShAmt = SA->getZExtValue();
1475       if (ShAmt == 0)
1476         return TLO.CombineTo(Op, Op0);
1477 
1478       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1479       // single shift.  We can do this if the top bits (which are shifted out)
1480       // are never demanded.
1481       // TODO - support non-uniform vector amounts.
1482       if (Op0.getOpcode() == ISD::SHL) {
1483         if (const APInt *SA2 =
1484                 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1485           if (!DemandedBits.intersects(
1486                   APInt::getHighBitsSet(BitWidth, ShAmt))) {
1487             if (SA2->ult(BitWidth)) {
1488               unsigned C1 = SA2->getZExtValue();
1489               unsigned Opc = ISD::SRL;
1490               int Diff = ShAmt - C1;
1491               if (Diff < 0) {
1492                 Diff = -Diff;
1493                 Opc = ISD::SHL;
1494               }
1495 
1496               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1497               return TLO.CombineTo(
1498                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1499             }
1500           }
1501         }
1502       }
1503 
1504       APInt InDemandedMask = (DemandedBits << ShAmt);
1505 
1506       // If the shift is exact, then it does demand the low bits (and knows that
1507       // they are zero).
1508       if (Op->getFlags().hasExact())
1509         InDemandedMask.setLowBits(ShAmt);
1510 
1511       // Compute the new bits that are at the top now.
1512       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1513                                Depth + 1))
1514         return true;
1515       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1516       Known.Zero.lshrInPlace(ShAmt);
1517       Known.One.lshrInPlace(ShAmt);
1518       // High bits known zero.
1519       Known.Zero.setHighBits(ShAmt);
1520     }
1521     break;
1522   }
1523   case ISD::SRA: {
1524     SDValue Op0 = Op.getOperand(0);
1525     SDValue Op1 = Op.getOperand(1);
1526     EVT ShiftVT = Op1.getValueType();
1527 
1528     // If we only want bits that already match the signbit then we don't need
1529     // to shift.
1530     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1531     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1532         NumHiDemandedBits)
1533       return TLO.CombineTo(Op, Op0);
1534 
1535     // If this is an arithmetic shift right and only the low-bit is set, we can
1536     // always convert this into a logical shr, even if the shift amount is
1537     // variable.  The low bit of the shift cannot be an input sign bit unless
1538     // the shift amount is >= the size of the datatype, which is undefined.
1539     if (DemandedBits.isOneValue())
1540       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1541 
1542     if (const APInt *SA =
1543             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1544       unsigned ShAmt = SA->getZExtValue();
1545       if (ShAmt == 0)
1546         return TLO.CombineTo(Op, Op0);
1547 
1548       APInt InDemandedMask = (DemandedBits << ShAmt);
1549 
1550       // If the shift is exact, then it does demand the low bits (and knows that
1551       // they are zero).
1552       if (Op->getFlags().hasExact())
1553         InDemandedMask.setLowBits(ShAmt);
1554 
1555       // If any of the demanded bits are produced by the sign extension, we also
1556       // demand the input sign bit.
1557       if (DemandedBits.countLeadingZeros() < ShAmt)
1558         InDemandedMask.setSignBit();
1559 
1560       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1561                                Depth + 1))
1562         return true;
1563       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1564       Known.Zero.lshrInPlace(ShAmt);
1565       Known.One.lshrInPlace(ShAmt);
1566 
1567       // If the input sign bit is known to be zero, or if none of the top bits
1568       // are demanded, turn this into an unsigned shift right.
1569       if (Known.Zero[BitWidth - ShAmt - 1] ||
1570           DemandedBits.countLeadingZeros() >= ShAmt) {
1571         SDNodeFlags Flags;
1572         Flags.setExact(Op->getFlags().hasExact());
1573         return TLO.CombineTo(
1574             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1575       }
1576 
1577       int Log2 = DemandedBits.exactLogBase2();
1578       if (Log2 >= 0) {
1579         // The bit must come from the sign.
1580         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1581         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1582       }
1583 
1584       if (Known.One[BitWidth - ShAmt - 1])
1585         // New bits are known one.
1586         Known.One.setHighBits(ShAmt);
1587 
1588       // Attempt to avoid multi-use ops if we don't need anything from them.
1589       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1590         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1591             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1592         if (DemandedOp0) {
1593           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1594           return TLO.CombineTo(Op, NewOp);
1595         }
1596       }
1597     }
1598     break;
1599   }
1600   case ISD::FSHL:
1601   case ISD::FSHR: {
1602     SDValue Op0 = Op.getOperand(0);
1603     SDValue Op1 = Op.getOperand(1);
1604     SDValue Op2 = Op.getOperand(2);
1605     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1606 
1607     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1608       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1609 
1610       // For fshl, 0-shift returns the 1st arg.
1611       // For fshr, 0-shift returns the 2nd arg.
1612       if (Amt == 0) {
1613         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1614                                  Known, TLO, Depth + 1))
1615           return true;
1616         break;
1617       }
1618 
1619       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1620       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1621       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1622       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1623       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1624                                Depth + 1))
1625         return true;
1626       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1627                                Depth + 1))
1628         return true;
1629 
1630       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1631       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1632       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1633       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1634       Known.One |= Known2.One;
1635       Known.Zero |= Known2.Zero;
1636     }
1637 
1638     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1639     if (isPowerOf2_32(BitWidth)) {
1640       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1641       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1642                                Known2, TLO, Depth + 1))
1643         return true;
1644     }
1645     break;
1646   }
1647   case ISD::ROTL:
1648   case ISD::ROTR: {
1649     SDValue Op0 = Op.getOperand(0);
1650 
1651     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1652     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1653       return TLO.CombineTo(Op, Op0);
1654     break;
1655   }
1656   case ISD::BITREVERSE: {
1657     SDValue Src = Op.getOperand(0);
1658     APInt DemandedSrcBits = DemandedBits.reverseBits();
1659     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1660                              Depth + 1))
1661       return true;
1662     Known.One = Known2.One.reverseBits();
1663     Known.Zero = Known2.Zero.reverseBits();
1664     break;
1665   }
1666   case ISD::BSWAP: {
1667     SDValue Src = Op.getOperand(0);
1668     APInt DemandedSrcBits = DemandedBits.byteSwap();
1669     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1670                              Depth + 1))
1671       return true;
1672     Known.One = Known2.One.byteSwap();
1673     Known.Zero = Known2.Zero.byteSwap();
1674     break;
1675   }
1676   case ISD::SIGN_EXTEND_INREG: {
1677     SDValue Op0 = Op.getOperand(0);
1678     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1679     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1680 
1681     // If we only care about the highest bit, don't bother shifting right.
1682     if (DemandedBits.isSignMask()) {
1683       unsigned NumSignBits =
1684           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1685       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1686       // However if the input is already sign extended we expect the sign
1687       // extension to be dropped altogether later and do not simplify.
1688       if (!AlreadySignExtended) {
1689         // Compute the correct shift amount type, which must be getShiftAmountTy
1690         // for scalar types after legalization.
1691         EVT ShiftAmtTy = VT;
1692         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1693           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1694 
1695         SDValue ShiftAmt =
1696             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1697         return TLO.CombineTo(Op,
1698                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1699       }
1700     }
1701 
1702     // If none of the extended bits are demanded, eliminate the sextinreg.
1703     if (DemandedBits.getActiveBits() <= ExVTBits)
1704       return TLO.CombineTo(Op, Op0);
1705 
1706     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1707 
1708     // Since the sign extended bits are demanded, we know that the sign
1709     // bit is demanded.
1710     InputDemandedBits.setBit(ExVTBits - 1);
1711 
1712     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1713       return true;
1714     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1715 
1716     // If the sign bit of the input is known set or clear, then we know the
1717     // top bits of the result.
1718 
1719     // If the input sign bit is known zero, convert this into a zero extension.
1720     if (Known.Zero[ExVTBits - 1])
1721       return TLO.CombineTo(
1722           Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
1723 
1724     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1725     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1726       Known.One.setBitsFrom(ExVTBits);
1727       Known.Zero &= Mask;
1728     } else { // Input sign bit unknown
1729       Known.Zero &= Mask;
1730       Known.One &= Mask;
1731     }
1732     break;
1733   }
1734   case ISD::BUILD_PAIR: {
1735     EVT HalfVT = Op.getOperand(0).getValueType();
1736     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1737 
1738     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1739     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1740 
1741     KnownBits KnownLo, KnownHi;
1742 
1743     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1744       return true;
1745 
1746     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1747       return true;
1748 
1749     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1750                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1751 
1752     Known.One = KnownLo.One.zext(BitWidth) |
1753                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1754     break;
1755   }
1756   case ISD::ZERO_EXTEND:
1757   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1758     SDValue Src = Op.getOperand(0);
1759     EVT SrcVT = Src.getValueType();
1760     unsigned InBits = SrcVT.getScalarSizeInBits();
1761     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1762     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1763 
1764     // If none of the top bits are demanded, convert this into an any_extend.
1765     if (DemandedBits.getActiveBits() <= InBits) {
1766       // If we only need the non-extended bits of the bottom element
1767       // then we can just bitcast to the result.
1768       if (IsVecInReg && DemandedElts == 1 &&
1769           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1770           TLO.DAG.getDataLayout().isLittleEndian())
1771         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1772 
1773       unsigned Opc =
1774           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1775       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1776         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1777     }
1778 
1779     APInt InDemandedBits = DemandedBits.trunc(InBits);
1780     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1781     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1782                              Depth + 1))
1783       return true;
1784     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1785     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1786     Known = Known.zext(BitWidth);
1787     break;
1788   }
1789   case ISD::SIGN_EXTEND:
1790   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1791     SDValue Src = Op.getOperand(0);
1792     EVT SrcVT = Src.getValueType();
1793     unsigned InBits = SrcVT.getScalarSizeInBits();
1794     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1795     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1796 
1797     // If none of the top bits are demanded, convert this into an any_extend.
1798     if (DemandedBits.getActiveBits() <= InBits) {
1799       // If we only need the non-extended bits of the bottom element
1800       // then we can just bitcast to the result.
1801       if (IsVecInReg && DemandedElts == 1 &&
1802           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1803           TLO.DAG.getDataLayout().isLittleEndian())
1804         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1805 
1806       unsigned Opc =
1807           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1808       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1809         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1810     }
1811 
1812     APInt InDemandedBits = DemandedBits.trunc(InBits);
1813     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1814 
1815     // Since some of the sign extended bits are demanded, we know that the sign
1816     // bit is demanded.
1817     InDemandedBits.setBit(InBits - 1);
1818 
1819     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1820                              Depth + 1))
1821       return true;
1822     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1823     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1824 
1825     // If the sign bit is known one, the top bits match.
1826     Known = Known.sext(BitWidth);
1827 
1828     // If the sign bit is known zero, convert this to a zero extend.
1829     if (Known.isNonNegative()) {
1830       unsigned Opc =
1831           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1832       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1833         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1834     }
1835     break;
1836   }
1837   case ISD::ANY_EXTEND:
1838   case ISD::ANY_EXTEND_VECTOR_INREG: {
1839     SDValue Src = Op.getOperand(0);
1840     EVT SrcVT = Src.getValueType();
1841     unsigned InBits = SrcVT.getScalarSizeInBits();
1842     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1843     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1844 
1845     // If we only need the bottom element then we can just bitcast.
1846     // TODO: Handle ANY_EXTEND?
1847     if (IsVecInReg && DemandedElts == 1 &&
1848         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1849         TLO.DAG.getDataLayout().isLittleEndian())
1850       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1851 
1852     APInt InDemandedBits = DemandedBits.trunc(InBits);
1853     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1854     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1855                              Depth + 1))
1856       return true;
1857     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1858     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1859     Known = Known.anyext(BitWidth);
1860 
1861     // Attempt to avoid multi-use ops if we don't need anything from them.
1862     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1863             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1864       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1865     break;
1866   }
1867   case ISD::TRUNCATE: {
1868     SDValue Src = Op.getOperand(0);
1869 
1870     // Simplify the input, using demanded bit information, and compute the known
1871     // zero/one bits live out.
1872     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1873     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1874     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1875       return true;
1876     Known = Known.trunc(BitWidth);
1877 
1878     // Attempt to avoid multi-use ops if we don't need anything from them.
1879     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1880             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
1881       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
1882 
1883     // If the input is only used by this truncate, see if we can shrink it based
1884     // on the known demanded bits.
1885     if (Src.getNode()->hasOneUse()) {
1886       switch (Src.getOpcode()) {
1887       default:
1888         break;
1889       case ISD::SRL:
1890         // Shrink SRL by a constant if none of the high bits shifted in are
1891         // demanded.
1892         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1893           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1894           // undesirable.
1895           break;
1896 
1897         SDValue ShAmt = Src.getOperand(1);
1898         auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt);
1899         if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
1900           break;
1901         uint64_t ShVal = ShAmtC->getZExtValue();
1902 
1903         APInt HighBits =
1904             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
1905         HighBits.lshrInPlace(ShVal);
1906         HighBits = HighBits.trunc(BitWidth);
1907 
1908         if (!(HighBits & DemandedBits)) {
1909           // None of the shifted in bits are needed.  Add a truncate of the
1910           // shift input, then shift it.
1911           if (TLO.LegalTypes())
1912             ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1913           SDValue NewTrunc =
1914               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1915           return TLO.CombineTo(
1916               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt));
1917         }
1918         break;
1919       }
1920     }
1921 
1922     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1923     break;
1924   }
1925   case ISD::AssertZext: {
1926     // AssertZext demands all of the high bits, plus any of the low bits
1927     // demanded by its users.
1928     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1929     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1930     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
1931                              TLO, Depth + 1))
1932       return true;
1933     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1934 
1935     Known.Zero |= ~InMask;
1936     break;
1937   }
1938   case ISD::EXTRACT_VECTOR_ELT: {
1939     SDValue Src = Op.getOperand(0);
1940     SDValue Idx = Op.getOperand(1);
1941     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1942     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1943 
1944     // Demand the bits from every vector element without a constant index.
1945     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1946     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1947       if (CIdx->getAPIntValue().ult(NumSrcElts))
1948         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1949 
1950     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1951     // anything about the extended bits.
1952     APInt DemandedSrcBits = DemandedBits;
1953     if (BitWidth > EltBitWidth)
1954       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1955 
1956     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1957                              Depth + 1))
1958       return true;
1959 
1960     // Attempt to avoid multi-use ops if we don't need anything from them.
1961     if (!DemandedSrcBits.isAllOnesValue() ||
1962         !DemandedSrcElts.isAllOnesValue()) {
1963       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1964               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
1965         SDValue NewOp =
1966             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
1967         return TLO.CombineTo(Op, NewOp);
1968       }
1969     }
1970 
1971     Known = Known2;
1972     if (BitWidth > EltBitWidth)
1973       Known = Known.anyext(BitWidth);
1974     break;
1975   }
1976   case ISD::BITCAST: {
1977     SDValue Src = Op.getOperand(0);
1978     EVT SrcVT = Src.getValueType();
1979     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1980 
1981     // If this is an FP->Int bitcast and if the sign bit is the only
1982     // thing demanded, turn this into a FGETSIGN.
1983     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1984         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1985         SrcVT.isFloatingPoint()) {
1986       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1987       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1988       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1989           SrcVT != MVT::f128) {
1990         // Cannot eliminate/lower SHL for f128 yet.
1991         EVT Ty = OpVTLegal ? VT : MVT::i32;
1992         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1993         // place.  We expect the SHL to be eliminated by other optimizations.
1994         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
1995         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1996         if (!OpVTLegal && OpVTSizeInBits > 32)
1997           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1998         unsigned ShVal = Op.getValueSizeInBits() - 1;
1999         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2000         return TLO.CombineTo(Op,
2001                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2002       }
2003     }
2004 
2005     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2006     // Demand the elt/bit if any of the original elts/bits are demanded.
2007     // TODO - bigendian once we have test coverage.
2008     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
2009         TLO.DAG.getDataLayout().isLittleEndian()) {
2010       unsigned Scale = BitWidth / NumSrcEltBits;
2011       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2012       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2013       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2014       for (unsigned i = 0; i != Scale; ++i) {
2015         unsigned Offset = i * NumSrcEltBits;
2016         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
2017         if (!Sub.isNullValue()) {
2018           DemandedSrcBits |= Sub;
2019           for (unsigned j = 0; j != NumElts; ++j)
2020             if (DemandedElts[j])
2021               DemandedSrcElts.setBit((j * Scale) + i);
2022         }
2023       }
2024 
2025       APInt KnownSrcUndef, KnownSrcZero;
2026       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2027                                      KnownSrcZero, TLO, Depth + 1))
2028         return true;
2029 
2030       KnownBits KnownSrcBits;
2031       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2032                                KnownSrcBits, TLO, Depth + 1))
2033         return true;
2034     } else if ((NumSrcEltBits % BitWidth) == 0 &&
2035                TLO.DAG.getDataLayout().isLittleEndian()) {
2036       unsigned Scale = NumSrcEltBits / BitWidth;
2037       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2038       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2039       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2040       for (unsigned i = 0; i != NumElts; ++i)
2041         if (DemandedElts[i]) {
2042           unsigned Offset = (i % Scale) * BitWidth;
2043           DemandedSrcBits.insertBits(DemandedBits, Offset);
2044           DemandedSrcElts.setBit(i / Scale);
2045         }
2046 
2047       if (SrcVT.isVector()) {
2048         APInt KnownSrcUndef, KnownSrcZero;
2049         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2050                                        KnownSrcZero, TLO, Depth + 1))
2051           return true;
2052       }
2053 
2054       KnownBits KnownSrcBits;
2055       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2056                                KnownSrcBits, TLO, Depth + 1))
2057         return true;
2058     }
2059 
2060     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2061     // recursive call where Known may be useful to the caller.
2062     if (Depth > 0) {
2063       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2064       return false;
2065     }
2066     break;
2067   }
2068   case ISD::ADD:
2069   case ISD::MUL:
2070   case ISD::SUB: {
2071     // Add, Sub, and Mul don't demand any bits in positions beyond that
2072     // of the highest bit demanded of them.
2073     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2074     SDNodeFlags Flags = Op.getNode()->getFlags();
2075     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2076     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2077     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2078                              Depth + 1) ||
2079         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2080                              Depth + 1) ||
2081         // See if the operation should be performed at a smaller bit width.
2082         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2083       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2084         // Disable the nsw and nuw flags. We can no longer guarantee that we
2085         // won't wrap after simplification.
2086         Flags.setNoSignedWrap(false);
2087         Flags.setNoUnsignedWrap(false);
2088         SDValue NewOp =
2089             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2090         return TLO.CombineTo(Op, NewOp);
2091       }
2092       return true;
2093     }
2094 
2095     // Attempt to avoid multi-use ops if we don't need anything from them.
2096     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
2097       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2098           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2099       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2100           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2101       if (DemandedOp0 || DemandedOp1) {
2102         Flags.setNoSignedWrap(false);
2103         Flags.setNoUnsignedWrap(false);
2104         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2105         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2106         SDValue NewOp =
2107             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2108         return TLO.CombineTo(Op, NewOp);
2109       }
2110     }
2111 
2112     // If we have a constant operand, we may be able to turn it into -1 if we
2113     // do not demand the high bits. This can make the constant smaller to
2114     // encode, allow more general folding, or match specialized instruction
2115     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2116     // is probably not useful (and could be detrimental).
2117     ConstantSDNode *C = isConstOrConstSplat(Op1);
2118     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2119     if (C && !C->isAllOnesValue() && !C->isOne() &&
2120         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
2121       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2122       // Disable the nsw and nuw flags. We can no longer guarantee that we
2123       // won't wrap after simplification.
2124       Flags.setNoSignedWrap(false);
2125       Flags.setNoUnsignedWrap(false);
2126       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2127       return TLO.CombineTo(Op, NewOp);
2128     }
2129 
2130     LLVM_FALLTHROUGH;
2131   }
2132   default:
2133     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2134       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2135                                             Known, TLO, Depth))
2136         return true;
2137       break;
2138     }
2139 
2140     // Just use computeKnownBits to compute output bits.
2141     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2142     break;
2143   }
2144 
2145   // If we know the value of all of the demanded bits, return this as a
2146   // constant.
2147   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2148     // Avoid folding to a constant if any OpaqueConstant is involved.
2149     const SDNode *N = Op.getNode();
2150     for (SDNodeIterator I = SDNodeIterator::begin(N),
2151                         E = SDNodeIterator::end(N);
2152          I != E; ++I) {
2153       SDNode *Op = *I;
2154       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2155         if (C->isOpaque())
2156           return false;
2157     }
2158     // TODO: Handle float bits as well.
2159     if (VT.isInteger())
2160       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2161   }
2162 
2163   return false;
2164 }
2165 
2166 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2167                                                 const APInt &DemandedElts,
2168                                                 APInt &KnownUndef,
2169                                                 APInt &KnownZero,
2170                                                 DAGCombinerInfo &DCI) const {
2171   SelectionDAG &DAG = DCI.DAG;
2172   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2173                         !DCI.isBeforeLegalizeOps());
2174 
2175   bool Simplified =
2176       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2177   if (Simplified) {
2178     DCI.AddToWorklist(Op.getNode());
2179     DCI.CommitTargetLoweringOpt(TLO);
2180   }
2181 
2182   return Simplified;
2183 }
2184 
2185 /// Given a vector binary operation and known undefined elements for each input
2186 /// operand, compute whether each element of the output is undefined.
2187 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2188                                          const APInt &UndefOp0,
2189                                          const APInt &UndefOp1) {
2190   EVT VT = BO.getValueType();
2191   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2192          "Vector binop only");
2193 
2194   EVT EltVT = VT.getVectorElementType();
2195   unsigned NumElts = VT.getVectorNumElements();
2196   assert(UndefOp0.getBitWidth() == NumElts &&
2197          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2198 
2199   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2200                                    const APInt &UndefVals) {
2201     if (UndefVals[Index])
2202       return DAG.getUNDEF(EltVT);
2203 
2204     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2205       // Try hard to make sure that the getNode() call is not creating temporary
2206       // nodes. Ignore opaque integers because they do not constant fold.
2207       SDValue Elt = BV->getOperand(Index);
2208       auto *C = dyn_cast<ConstantSDNode>(Elt);
2209       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2210         return Elt;
2211     }
2212 
2213     return SDValue();
2214   };
2215 
2216   APInt KnownUndef = APInt::getNullValue(NumElts);
2217   for (unsigned i = 0; i != NumElts; ++i) {
2218     // If both inputs for this element are either constant or undef and match
2219     // the element type, compute the constant/undef result for this element of
2220     // the vector.
2221     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2222     // not handle FP constants. The code within getNode() should be refactored
2223     // to avoid the danger of creating a bogus temporary node here.
2224     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2225     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2226     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2227       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2228         KnownUndef.setBit(i);
2229   }
2230   return KnownUndef;
2231 }
2232 
2233 bool TargetLowering::SimplifyDemandedVectorElts(
2234     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2235     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2236     bool AssumeSingleUse) const {
2237   EVT VT = Op.getValueType();
2238   APInt DemandedElts = OriginalDemandedElts;
2239   unsigned NumElts = DemandedElts.getBitWidth();
2240   assert(VT.isVector() && "Expected vector op");
2241   assert(VT.getVectorNumElements() == NumElts &&
2242          "Mask size mismatches value type element count!");
2243 
2244   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2245 
2246   // Undef operand.
2247   if (Op.isUndef()) {
2248     KnownUndef.setAllBits();
2249     return false;
2250   }
2251 
2252   // If Op has other users, assume that all elements are needed.
2253   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2254     DemandedElts.setAllBits();
2255 
2256   // Not demanding any elements from Op.
2257   if (DemandedElts == 0) {
2258     KnownUndef.setAllBits();
2259     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2260   }
2261 
2262   // Limit search depth.
2263   if (Depth >= SelectionDAG::MaxRecursionDepth)
2264     return false;
2265 
2266   SDLoc DL(Op);
2267   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2268 
2269   switch (Op.getOpcode()) {
2270   case ISD::SCALAR_TO_VECTOR: {
2271     if (!DemandedElts[0]) {
2272       KnownUndef.setAllBits();
2273       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2274     }
2275     KnownUndef.setHighBits(NumElts - 1);
2276     break;
2277   }
2278   case ISD::BITCAST: {
2279     SDValue Src = Op.getOperand(0);
2280     EVT SrcVT = Src.getValueType();
2281 
2282     // We only handle vectors here.
2283     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2284     if (!SrcVT.isVector())
2285       break;
2286 
2287     // Fast handling of 'identity' bitcasts.
2288     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2289     if (NumSrcElts == NumElts)
2290       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2291                                         KnownZero, TLO, Depth + 1);
2292 
2293     APInt SrcZero, SrcUndef;
2294     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2295 
2296     // Bitcast from 'large element' src vector to 'small element' vector, we
2297     // must demand a source element if any DemandedElt maps to it.
2298     if ((NumElts % NumSrcElts) == 0) {
2299       unsigned Scale = NumElts / NumSrcElts;
2300       for (unsigned i = 0; i != NumElts; ++i)
2301         if (DemandedElts[i])
2302           SrcDemandedElts.setBit(i / Scale);
2303 
2304       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2305                                      TLO, Depth + 1))
2306         return true;
2307 
2308       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2309       // of the large element.
2310       // TODO - bigendian once we have test coverage.
2311       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2312         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2313         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2314         for (unsigned i = 0; i != NumElts; ++i)
2315           if (DemandedElts[i]) {
2316             unsigned Ofs = (i % Scale) * EltSizeInBits;
2317             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2318           }
2319 
2320         KnownBits Known;
2321         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2322                                  TLO, Depth + 1))
2323           return true;
2324       }
2325 
2326       // If the src element is zero/undef then all the output elements will be -
2327       // only demanded elements are guaranteed to be correct.
2328       for (unsigned i = 0; i != NumSrcElts; ++i) {
2329         if (SrcDemandedElts[i]) {
2330           if (SrcZero[i])
2331             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2332           if (SrcUndef[i])
2333             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2334         }
2335       }
2336     }
2337 
2338     // Bitcast from 'small element' src vector to 'large element' vector, we
2339     // demand all smaller source elements covered by the larger demanded element
2340     // of this vector.
2341     if ((NumSrcElts % NumElts) == 0) {
2342       unsigned Scale = NumSrcElts / NumElts;
2343       for (unsigned i = 0; i != NumElts; ++i)
2344         if (DemandedElts[i])
2345           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2346 
2347       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2348                                      TLO, Depth + 1))
2349         return true;
2350 
2351       // If all the src elements covering an output element are zero/undef, then
2352       // the output element will be as well, assuming it was demanded.
2353       for (unsigned i = 0; i != NumElts; ++i) {
2354         if (DemandedElts[i]) {
2355           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2356             KnownZero.setBit(i);
2357           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2358             KnownUndef.setBit(i);
2359         }
2360       }
2361     }
2362     break;
2363   }
2364   case ISD::BUILD_VECTOR: {
2365     // Check all elements and simplify any unused elements with UNDEF.
2366     if (!DemandedElts.isAllOnesValue()) {
2367       // Don't simplify BROADCASTS.
2368       if (llvm::any_of(Op->op_values(),
2369                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2370         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2371         bool Updated = false;
2372         for (unsigned i = 0; i != NumElts; ++i) {
2373           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2374             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2375             KnownUndef.setBit(i);
2376             Updated = true;
2377           }
2378         }
2379         if (Updated)
2380           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2381       }
2382     }
2383     for (unsigned i = 0; i != NumElts; ++i) {
2384       SDValue SrcOp = Op.getOperand(i);
2385       if (SrcOp.isUndef()) {
2386         KnownUndef.setBit(i);
2387       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2388                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2389         KnownZero.setBit(i);
2390       }
2391     }
2392     break;
2393   }
2394   case ISD::CONCAT_VECTORS: {
2395     EVT SubVT = Op.getOperand(0).getValueType();
2396     unsigned NumSubVecs = Op.getNumOperands();
2397     unsigned NumSubElts = SubVT.getVectorNumElements();
2398     for (unsigned i = 0; i != NumSubVecs; ++i) {
2399       SDValue SubOp = Op.getOperand(i);
2400       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2401       APInt SubUndef, SubZero;
2402       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2403                                      Depth + 1))
2404         return true;
2405       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2406       KnownZero.insertBits(SubZero, i * NumSubElts);
2407     }
2408     break;
2409   }
2410   case ISD::INSERT_SUBVECTOR: {
2411     if (!isa<ConstantSDNode>(Op.getOperand(2)))
2412       break;
2413     SDValue Base = Op.getOperand(0);
2414     SDValue Sub = Op.getOperand(1);
2415     EVT SubVT = Sub.getValueType();
2416     unsigned NumSubElts = SubVT.getVectorNumElements();
2417     const APInt &Idx = Op.getConstantOperandAPInt(2);
2418     if (Idx.ugt(NumElts - NumSubElts))
2419       break;
2420     unsigned SubIdx = Idx.getZExtValue();
2421     APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
2422     APInt SubUndef, SubZero;
2423     if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
2424                                    Depth + 1))
2425       return true;
2426     APInt BaseElts = DemandedElts;
2427     BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
2428 
2429     // If none of the base operand elements are demanded, replace it with undef.
2430     if (!BaseElts && !Base.isUndef())
2431       return TLO.CombineTo(Op,
2432                            TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2433                                            TLO.DAG.getUNDEF(VT),
2434                                            Op.getOperand(1),
2435                                            Op.getOperand(2)));
2436 
2437     if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
2438                                    Depth + 1))
2439       return true;
2440     KnownUndef.insertBits(SubUndef, SubIdx);
2441     KnownZero.insertBits(SubZero, SubIdx);
2442     break;
2443   }
2444   case ISD::EXTRACT_SUBVECTOR: {
2445     SDValue Src = Op.getOperand(0);
2446     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2447     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2448     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2449       // Offset the demanded elts by the subvector index.
2450       uint64_t Idx = SubIdx->getZExtValue();
2451       APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2452       APInt SrcUndef, SrcZero;
2453       if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
2454                                      Depth + 1))
2455         return true;
2456       KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2457       KnownZero = SrcZero.extractBits(NumElts, Idx);
2458     }
2459     break;
2460   }
2461   case ISD::INSERT_VECTOR_ELT: {
2462     SDValue Vec = Op.getOperand(0);
2463     SDValue Scl = Op.getOperand(1);
2464     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2465 
2466     // For a legal, constant insertion index, if we don't need this insertion
2467     // then strip it, else remove it from the demanded elts.
2468     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2469       unsigned Idx = CIdx->getZExtValue();
2470       if (!DemandedElts[Idx])
2471         return TLO.CombineTo(Op, Vec);
2472 
2473       APInt DemandedVecElts(DemandedElts);
2474       DemandedVecElts.clearBit(Idx);
2475       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2476                                      KnownZero, TLO, Depth + 1))
2477         return true;
2478 
2479       KnownUndef.clearBit(Idx);
2480       if (Scl.isUndef())
2481         KnownUndef.setBit(Idx);
2482 
2483       KnownZero.clearBit(Idx);
2484       if (isNullConstant(Scl) || isNullFPConstant(Scl))
2485         KnownZero.setBit(Idx);
2486       break;
2487     }
2488 
2489     APInt VecUndef, VecZero;
2490     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2491                                    Depth + 1))
2492       return true;
2493     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2494     break;
2495   }
2496   case ISD::VSELECT: {
2497     // Try to transform the select condition based on the current demanded
2498     // elements.
2499     // TODO: If a condition element is undef, we can choose from one arm of the
2500     //       select (and if one arm is undef, then we can propagate that to the
2501     //       result).
2502     // TODO - add support for constant vselect masks (see IR version of this).
2503     APInt UnusedUndef, UnusedZero;
2504     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2505                                    UnusedZero, TLO, Depth + 1))
2506       return true;
2507 
2508     // See if we can simplify either vselect operand.
2509     APInt DemandedLHS(DemandedElts);
2510     APInt DemandedRHS(DemandedElts);
2511     APInt UndefLHS, ZeroLHS;
2512     APInt UndefRHS, ZeroRHS;
2513     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2514                                    ZeroLHS, TLO, Depth + 1))
2515       return true;
2516     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2517                                    ZeroRHS, TLO, Depth + 1))
2518       return true;
2519 
2520     KnownUndef = UndefLHS & UndefRHS;
2521     KnownZero = ZeroLHS & ZeroRHS;
2522     break;
2523   }
2524   case ISD::VECTOR_SHUFFLE: {
2525     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2526 
2527     // Collect demanded elements from shuffle operands..
2528     APInt DemandedLHS(NumElts, 0);
2529     APInt DemandedRHS(NumElts, 0);
2530     for (unsigned i = 0; i != NumElts; ++i) {
2531       int M = ShuffleMask[i];
2532       if (M < 0 || !DemandedElts[i])
2533         continue;
2534       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2535       if (M < (int)NumElts)
2536         DemandedLHS.setBit(M);
2537       else
2538         DemandedRHS.setBit(M - NumElts);
2539     }
2540 
2541     // See if we can simplify either shuffle operand.
2542     APInt UndefLHS, ZeroLHS;
2543     APInt UndefRHS, ZeroRHS;
2544     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2545                                    ZeroLHS, TLO, Depth + 1))
2546       return true;
2547     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2548                                    ZeroRHS, TLO, Depth + 1))
2549       return true;
2550 
2551     // Simplify mask using undef elements from LHS/RHS.
2552     bool Updated = false;
2553     bool IdentityLHS = true, IdentityRHS = true;
2554     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2555     for (unsigned i = 0; i != NumElts; ++i) {
2556       int &M = NewMask[i];
2557       if (M < 0)
2558         continue;
2559       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2560           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2561         Updated = true;
2562         M = -1;
2563       }
2564       IdentityLHS &= (M < 0) || (M == (int)i);
2565       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2566     }
2567 
2568     // Update legal shuffle masks based on demanded elements if it won't reduce
2569     // to Identity which can cause premature removal of the shuffle mask.
2570     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2571       SDValue LegalShuffle =
2572           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2573                                   NewMask, TLO.DAG);
2574       if (LegalShuffle)
2575         return TLO.CombineTo(Op, LegalShuffle);
2576     }
2577 
2578     // Propagate undef/zero elements from LHS/RHS.
2579     for (unsigned i = 0; i != NumElts; ++i) {
2580       int M = ShuffleMask[i];
2581       if (M < 0) {
2582         KnownUndef.setBit(i);
2583       } else if (M < (int)NumElts) {
2584         if (UndefLHS[M])
2585           KnownUndef.setBit(i);
2586         if (ZeroLHS[M])
2587           KnownZero.setBit(i);
2588       } else {
2589         if (UndefRHS[M - NumElts])
2590           KnownUndef.setBit(i);
2591         if (ZeroRHS[M - NumElts])
2592           KnownZero.setBit(i);
2593       }
2594     }
2595     break;
2596   }
2597   case ISD::ANY_EXTEND_VECTOR_INREG:
2598   case ISD::SIGN_EXTEND_VECTOR_INREG:
2599   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2600     APInt SrcUndef, SrcZero;
2601     SDValue Src = Op.getOperand(0);
2602     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2603     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2604     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2605                                    Depth + 1))
2606       return true;
2607     KnownZero = SrcZero.zextOrTrunc(NumElts);
2608     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2609 
2610     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2611         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2612         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2613       // aext - if we just need the bottom element then we can bitcast.
2614       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2615     }
2616 
2617     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2618       // zext(undef) upper bits are guaranteed to be zero.
2619       if (DemandedElts.isSubsetOf(KnownUndef))
2620         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2621       KnownUndef.clearAllBits();
2622     }
2623     break;
2624   }
2625 
2626   // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
2627   // MAX, saturated math, etc.
2628   case ISD::OR:
2629   case ISD::XOR:
2630   case ISD::ADD:
2631   case ISD::SUB:
2632   case ISD::FADD:
2633   case ISD::FSUB:
2634   case ISD::FMUL:
2635   case ISD::FDIV:
2636   case ISD::FREM: {
2637     APInt UndefRHS, ZeroRHS;
2638     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2639                                    ZeroRHS, TLO, Depth + 1))
2640       return true;
2641     APInt UndefLHS, ZeroLHS;
2642     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2643                                    ZeroLHS, TLO, Depth + 1))
2644       return true;
2645 
2646     KnownZero = ZeroLHS & ZeroRHS;
2647     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2648     break;
2649   }
2650   case ISD::SHL:
2651   case ISD::SRL:
2652   case ISD::SRA:
2653   case ISD::ROTL:
2654   case ISD::ROTR: {
2655     APInt UndefRHS, ZeroRHS;
2656     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2657                                    ZeroRHS, TLO, Depth + 1))
2658       return true;
2659     APInt UndefLHS, ZeroLHS;
2660     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2661                                    ZeroLHS, TLO, Depth + 1))
2662       return true;
2663 
2664     KnownZero = ZeroLHS;
2665     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2666     break;
2667   }
2668   case ISD::MUL:
2669   case ISD::AND: {
2670     APInt SrcUndef, SrcZero;
2671     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
2672                                    SrcZero, TLO, Depth + 1))
2673       return true;
2674     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2675                                    KnownZero, TLO, Depth + 1))
2676       return true;
2677 
2678     // If either side has a zero element, then the result element is zero, even
2679     // if the other is an UNDEF.
2680     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2681     // and then handle 'and' nodes with the rest of the binop opcodes.
2682     KnownZero |= SrcZero;
2683     KnownUndef &= SrcUndef;
2684     KnownUndef &= ~KnownZero;
2685     break;
2686   }
2687   case ISD::TRUNCATE:
2688   case ISD::SIGN_EXTEND:
2689   case ISD::ZERO_EXTEND:
2690     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2691                                    KnownZero, TLO, Depth + 1))
2692       return true;
2693 
2694     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2695       // zext(undef) upper bits are guaranteed to be zero.
2696       if (DemandedElts.isSubsetOf(KnownUndef))
2697         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2698       KnownUndef.clearAllBits();
2699     }
2700     break;
2701   default: {
2702     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2703       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2704                                                   KnownZero, TLO, Depth))
2705         return true;
2706     } else {
2707       KnownBits Known;
2708       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2709       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2710                                TLO, Depth, AssumeSingleUse))
2711         return true;
2712     }
2713     break;
2714   }
2715   }
2716   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2717 
2718   // Constant fold all undef cases.
2719   // TODO: Handle zero cases as well.
2720   if (DemandedElts.isSubsetOf(KnownUndef))
2721     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2722 
2723   return false;
2724 }
2725 
2726 /// Determine which of the bits specified in Mask are known to be either zero or
2727 /// one and return them in the Known.
2728 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2729                                                    KnownBits &Known,
2730                                                    const APInt &DemandedElts,
2731                                                    const SelectionDAG &DAG,
2732                                                    unsigned Depth) const {
2733   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2734           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2735           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2736           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2737          "Should use MaskedValueIsZero if you don't know whether Op"
2738          " is a target node!");
2739   Known.resetAll();
2740 }
2741 
2742 void TargetLowering::computeKnownBitsForTargetInstr(
2743     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2744     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2745     unsigned Depth) const {
2746   Known.resetAll();
2747 }
2748 
2749 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
2750                                                    KnownBits &Known,
2751                                                    const APInt &DemandedElts,
2752                                                    const SelectionDAG &DAG,
2753                                                    unsigned Depth) const {
2754   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
2755 
2756   if (unsigned Align = DAG.InferPtrAlignment(Op)) {
2757     // The low bits are known zero if the pointer is aligned.
2758     Known.Zero.setLowBits(Log2_32(Align));
2759   }
2760 }
2761 
2762 /// This method can be implemented by targets that want to expose additional
2763 /// information about sign bits to the DAG Combiner.
2764 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2765                                                          const APInt &,
2766                                                          const SelectionDAG &,
2767                                                          unsigned Depth) const {
2768   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2769           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2770           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2771           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2772          "Should use ComputeNumSignBits if you don't know whether Op"
2773          " is a target node!");
2774   return 1;
2775 }
2776 
2777 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2778     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2779     TargetLoweringOpt &TLO, unsigned Depth) const {
2780   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2781           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2782           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2783           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2784          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2785          " is a target node!");
2786   return false;
2787 }
2788 
2789 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2790     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2791     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2792   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2793           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2794           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2795           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2796          "Should use SimplifyDemandedBits if you don't know whether Op"
2797          " is a target node!");
2798   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2799   return false;
2800 }
2801 
2802 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2803     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2804     SelectionDAG &DAG, unsigned Depth) const {
2805   assert(
2806       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2807        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2808        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2809        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2810       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
2811       " is a target node!");
2812   return SDValue();
2813 }
2814 
2815 SDValue
2816 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
2817                                         SDValue N1, MutableArrayRef<int> Mask,
2818                                         SelectionDAG &DAG) const {
2819   bool LegalMask = isShuffleMaskLegal(Mask, VT);
2820   if (!LegalMask) {
2821     std::swap(N0, N1);
2822     ShuffleVectorSDNode::commuteMask(Mask);
2823     LegalMask = isShuffleMaskLegal(Mask, VT);
2824   }
2825 
2826   if (!LegalMask)
2827     return SDValue();
2828 
2829   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
2830 }
2831 
2832 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
2833   return nullptr;
2834 }
2835 
2836 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2837                                                   const SelectionDAG &DAG,
2838                                                   bool SNaN,
2839                                                   unsigned Depth) const {
2840   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2841           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2842           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2843           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2844          "Should use isKnownNeverNaN if you don't know whether Op"
2845          " is a target node!");
2846   return false;
2847 }
2848 
2849 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2850 // work with truncating build vectors and vectors with elements of less than
2851 // 8 bits.
2852 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2853   if (!N)
2854     return false;
2855 
2856   APInt CVal;
2857   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2858     CVal = CN->getAPIntValue();
2859   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2860     auto *CN = BV->getConstantSplatNode();
2861     if (!CN)
2862       return false;
2863 
2864     // If this is a truncating build vector, truncate the splat value.
2865     // Otherwise, we may fail to match the expected values below.
2866     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2867     CVal = CN->getAPIntValue();
2868     if (BVEltWidth < CVal.getBitWidth())
2869       CVal = CVal.trunc(BVEltWidth);
2870   } else {
2871     return false;
2872   }
2873 
2874   switch (getBooleanContents(N->getValueType(0))) {
2875   case UndefinedBooleanContent:
2876     return CVal[0];
2877   case ZeroOrOneBooleanContent:
2878     return CVal.isOneValue();
2879   case ZeroOrNegativeOneBooleanContent:
2880     return CVal.isAllOnesValue();
2881   }
2882 
2883   llvm_unreachable("Invalid boolean contents");
2884 }
2885 
2886 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2887   if (!N)
2888     return false;
2889 
2890   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2891   if (!CN) {
2892     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2893     if (!BV)
2894       return false;
2895 
2896     // Only interested in constant splats, we don't care about undef
2897     // elements in identifying boolean constants and getConstantSplatNode
2898     // returns NULL if all ops are undef;
2899     CN = BV->getConstantSplatNode();
2900     if (!CN)
2901       return false;
2902   }
2903 
2904   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2905     return !CN->getAPIntValue()[0];
2906 
2907   return CN->isNullValue();
2908 }
2909 
2910 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2911                                        bool SExt) const {
2912   if (VT == MVT::i1)
2913     return N->isOne();
2914 
2915   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2916   switch (Cnt) {
2917   case TargetLowering::ZeroOrOneBooleanContent:
2918     // An extended value of 1 is always true, unless its original type is i1,
2919     // in which case it will be sign extended to -1.
2920     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
2921   case TargetLowering::UndefinedBooleanContent:
2922   case TargetLowering::ZeroOrNegativeOneBooleanContent:
2923     return N->isAllOnesValue() && SExt;
2924   }
2925   llvm_unreachable("Unexpected enumeration.");
2926 }
2927 
2928 /// This helper function of SimplifySetCC tries to optimize the comparison when
2929 /// either operand of the SetCC node is a bitwise-and instruction.
2930 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
2931                                          ISD::CondCode Cond, const SDLoc &DL,
2932                                          DAGCombinerInfo &DCI) const {
2933   // Match these patterns in any of their permutations:
2934   // (X & Y) == Y
2935   // (X & Y) != Y
2936   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
2937     std::swap(N0, N1);
2938 
2939   EVT OpVT = N0.getValueType();
2940   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
2941       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
2942     return SDValue();
2943 
2944   SDValue X, Y;
2945   if (N0.getOperand(0) == N1) {
2946     X = N0.getOperand(1);
2947     Y = N0.getOperand(0);
2948   } else if (N0.getOperand(1) == N1) {
2949     X = N0.getOperand(0);
2950     Y = N0.getOperand(1);
2951   } else {
2952     return SDValue();
2953   }
2954 
2955   SelectionDAG &DAG = DCI.DAG;
2956   SDValue Zero = DAG.getConstant(0, DL, OpVT);
2957   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
2958     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2959     // Note that where Y is variable and is known to have at most one bit set
2960     // (for example, if it is Z & 1) we cannot do this; the expressions are not
2961     // equivalent when Y == 0.
2962     assert(OpVT.isInteger());
2963     Cond = ISD::getSetCCInverse(Cond, OpVT);
2964     if (DCI.isBeforeLegalizeOps() ||
2965         isCondCodeLegal(Cond, N0.getSimpleValueType()))
2966       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
2967   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
2968     // If the target supports an 'and-not' or 'and-complement' logic operation,
2969     // try to use that to make a comparison operation more efficient.
2970     // But don't do this transform if the mask is a single bit because there are
2971     // more efficient ways to deal with that case (for example, 'bt' on x86 or
2972     // 'rlwinm' on PPC).
2973 
2974     // Bail out if the compare operand that we want to turn into a zero is
2975     // already a zero (otherwise, infinite loop).
2976     auto *YConst = dyn_cast<ConstantSDNode>(Y);
2977     if (YConst && YConst->isNullValue())
2978       return SDValue();
2979 
2980     // Transform this into: ~X & Y == 0.
2981     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
2982     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
2983     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
2984   }
2985 
2986   return SDValue();
2987 }
2988 
2989 /// There are multiple IR patterns that could be checking whether certain
2990 /// truncation of a signed number would be lossy or not. The pattern which is
2991 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
2992 /// We are looking for the following pattern: (KeptBits is a constant)
2993 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
2994 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
2995 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
2996 /// We will unfold it into the natural trunc+sext pattern:
2997 ///   ((%x << C) a>> C) dstcond %x
2998 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
2999 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3000     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3001     const SDLoc &DL) const {
3002   // We must be comparing with a constant.
3003   ConstantSDNode *C1;
3004   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3005     return SDValue();
3006 
3007   // N0 should be:  add %x, (1 << (KeptBits-1))
3008   if (N0->getOpcode() != ISD::ADD)
3009     return SDValue();
3010 
3011   // And we must be 'add'ing a constant.
3012   ConstantSDNode *C01;
3013   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3014     return SDValue();
3015 
3016   SDValue X = N0->getOperand(0);
3017   EVT XVT = X.getValueType();
3018 
3019   // Validate constants ...
3020 
3021   APInt I1 = C1->getAPIntValue();
3022 
3023   ISD::CondCode NewCond;
3024   if (Cond == ISD::CondCode::SETULT) {
3025     NewCond = ISD::CondCode::SETEQ;
3026   } else if (Cond == ISD::CondCode::SETULE) {
3027     NewCond = ISD::CondCode::SETEQ;
3028     // But need to 'canonicalize' the constant.
3029     I1 += 1;
3030   } else if (Cond == ISD::CondCode::SETUGT) {
3031     NewCond = ISD::CondCode::SETNE;
3032     // But need to 'canonicalize' the constant.
3033     I1 += 1;
3034   } else if (Cond == ISD::CondCode::SETUGE) {
3035     NewCond = ISD::CondCode::SETNE;
3036   } else
3037     return SDValue();
3038 
3039   APInt I01 = C01->getAPIntValue();
3040 
3041   auto checkConstants = [&I1, &I01]() -> bool {
3042     // Both of them must be power-of-two, and the constant from setcc is bigger.
3043     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3044   };
3045 
3046   if (checkConstants()) {
3047     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3048   } else {
3049     // What if we invert constants? (and the target predicate)
3050     I1.negate();
3051     I01.negate();
3052     assert(XVT.isInteger());
3053     NewCond = getSetCCInverse(NewCond, XVT);
3054     if (!checkConstants())
3055       return SDValue();
3056     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3057   }
3058 
3059   // They are power-of-two, so which bit is set?
3060   const unsigned KeptBits = I1.logBase2();
3061   const unsigned KeptBitsMinusOne = I01.logBase2();
3062 
3063   // Magic!
3064   if (KeptBits != (KeptBitsMinusOne + 1))
3065     return SDValue();
3066   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3067 
3068   // We don't want to do this in every single case.
3069   SelectionDAG &DAG = DCI.DAG;
3070   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3071           XVT, KeptBits))
3072     return SDValue();
3073 
3074   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3075   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3076 
3077   // Unfold into:  ((%x << C) a>> C) cond %x
3078   // Where 'cond' will be either 'eq' or 'ne'.
3079   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3080   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3081   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3082   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3083 
3084   return T2;
3085 }
3086 
3087 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3088 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3089     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3090     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3091   assert(isConstOrConstSplat(N1C) &&
3092          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
3093          "Should be a comparison with 0.");
3094   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3095          "Valid only for [in]equality comparisons.");
3096 
3097   unsigned NewShiftOpcode;
3098   SDValue X, C, Y;
3099 
3100   SelectionDAG &DAG = DCI.DAG;
3101   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3102 
3103   // Look for '(C l>>/<< Y)'.
3104   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3105     // The shift should be one-use.
3106     if (!V.hasOneUse())
3107       return false;
3108     unsigned OldShiftOpcode = V.getOpcode();
3109     switch (OldShiftOpcode) {
3110     case ISD::SHL:
3111       NewShiftOpcode = ISD::SRL;
3112       break;
3113     case ISD::SRL:
3114       NewShiftOpcode = ISD::SHL;
3115       break;
3116     default:
3117       return false; // must be a logical shift.
3118     }
3119     // We should be shifting a constant.
3120     // FIXME: best to use isConstantOrConstantVector().
3121     C = V.getOperand(0);
3122     ConstantSDNode *CC =
3123         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3124     if (!CC)
3125       return false;
3126     Y = V.getOperand(1);
3127 
3128     ConstantSDNode *XC =
3129         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3130     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3131         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3132   };
3133 
3134   // LHS of comparison should be an one-use 'and'.
3135   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3136     return SDValue();
3137 
3138   X = N0.getOperand(0);
3139   SDValue Mask = N0.getOperand(1);
3140 
3141   // 'and' is commutative!
3142   if (!Match(Mask)) {
3143     std::swap(X, Mask);
3144     if (!Match(Mask))
3145       return SDValue();
3146   }
3147 
3148   EVT VT = X.getValueType();
3149 
3150   // Produce:
3151   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3152   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3153   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3154   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3155   return T2;
3156 }
3157 
3158 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3159 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3160 /// handle the commuted versions of these patterns.
3161 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3162                                            ISD::CondCode Cond, const SDLoc &DL,
3163                                            DAGCombinerInfo &DCI) const {
3164   unsigned BOpcode = N0.getOpcode();
3165   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3166          "Unexpected binop");
3167   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3168 
3169   // (X + Y) == X --> Y == 0
3170   // (X - Y) == X --> Y == 0
3171   // (X ^ Y) == X --> Y == 0
3172   SelectionDAG &DAG = DCI.DAG;
3173   EVT OpVT = N0.getValueType();
3174   SDValue X = N0.getOperand(0);
3175   SDValue Y = N0.getOperand(1);
3176   if (X == N1)
3177     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3178 
3179   if (Y != N1)
3180     return SDValue();
3181 
3182   // (X + Y) == Y --> X == 0
3183   // (X ^ Y) == Y --> X == 0
3184   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3185     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3186 
3187   // The shift would not be valid if the operands are boolean (i1).
3188   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3189     return SDValue();
3190 
3191   // (X - Y) == Y --> X == Y << 1
3192   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3193                                  !DCI.isBeforeLegalize());
3194   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3195   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3196   if (!DCI.isCalledByLegalizer())
3197     DCI.AddToWorklist(YShl1.getNode());
3198   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3199 }
3200 
3201 /// Try to simplify a setcc built with the specified operands and cc. If it is
3202 /// unable to simplify it, return a null SDValue.
3203 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3204                                       ISD::CondCode Cond, bool foldBooleans,
3205                                       DAGCombinerInfo &DCI,
3206                                       const SDLoc &dl) const {
3207   SelectionDAG &DAG = DCI.DAG;
3208   const DataLayout &Layout = DAG.getDataLayout();
3209   EVT OpVT = N0.getValueType();
3210 
3211   // Constant fold or commute setcc.
3212   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3213     return Fold;
3214 
3215   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3216   // TODO: Handle non-splat vector constants. All undef causes trouble.
3217   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3218   if (isConstOrConstSplat(N0) &&
3219       (DCI.isBeforeLegalizeOps() ||
3220        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3221     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3222 
3223   // If we have a subtract with the same 2 non-constant operands as this setcc
3224   // -- but in reverse order -- then try to commute the operands of this setcc
3225   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3226   // instruction on some targets.
3227   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3228       (DCI.isBeforeLegalizeOps() ||
3229        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3230       DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) &&
3231       !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } ))
3232     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3233 
3234   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3235     const APInt &C1 = N1C->getAPIntValue();
3236 
3237     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3238     // equality comparison, then we're just comparing whether X itself is
3239     // zero.
3240     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3241         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3242         N0.getOperand(1).getOpcode() == ISD::Constant) {
3243       const APInt &ShAmt = N0.getConstantOperandAPInt(1);
3244       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3245           ShAmt == Log2_32(N0.getValueSizeInBits())) {
3246         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3247           // (srl (ctlz x), 5) == 0  -> X != 0
3248           // (srl (ctlz x), 5) != 1  -> X != 0
3249           Cond = ISD::SETNE;
3250         } else {
3251           // (srl (ctlz x), 5) != 0  -> X == 0
3252           // (srl (ctlz x), 5) == 1  -> X == 0
3253           Cond = ISD::SETEQ;
3254         }
3255         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3256         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
3257                             Zero, Cond);
3258       }
3259     }
3260 
3261     SDValue CTPOP = N0;
3262     // Look through truncs that don't change the value of a ctpop.
3263     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
3264       CTPOP = N0.getOperand(0);
3265 
3266     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
3267         (N0 == CTPOP ||
3268          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
3269       EVT CTVT = CTPOP.getValueType();
3270       SDValue CTOp = CTPOP.getOperand(0);
3271 
3272       // (ctpop x) u< 2 -> (x & x-1) == 0
3273       // (ctpop x) u> 1 -> (x & x-1) != 0
3274       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
3275         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3276         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3277         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3278         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3279         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
3280       }
3281 
3282       // If ctpop is not supported, expand a power-of-2 comparison based on it.
3283       if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) &&
3284           (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3285         // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3286         // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3287         SDValue Zero = DAG.getConstant(0, dl, CTVT);
3288         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3289         assert(CTVT.isInteger());
3290         ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3291         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3292         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3293         SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3294         SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3295         unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3296         return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3297       }
3298     }
3299 
3300     // (zext x) == C --> x == (trunc C)
3301     // (sext x) == C --> x == (trunc C)
3302     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3303         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3304       unsigned MinBits = N0.getValueSizeInBits();
3305       SDValue PreExt;
3306       bool Signed = false;
3307       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3308         // ZExt
3309         MinBits = N0->getOperand(0).getValueSizeInBits();
3310         PreExt = N0->getOperand(0);
3311       } else if (N0->getOpcode() == ISD::AND) {
3312         // DAGCombine turns costly ZExts into ANDs
3313         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3314           if ((C->getAPIntValue()+1).isPowerOf2()) {
3315             MinBits = C->getAPIntValue().countTrailingOnes();
3316             PreExt = N0->getOperand(0);
3317           }
3318       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3319         // SExt
3320         MinBits = N0->getOperand(0).getValueSizeInBits();
3321         PreExt = N0->getOperand(0);
3322         Signed = true;
3323       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3324         // ZEXTLOAD / SEXTLOAD
3325         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3326           MinBits = LN0->getMemoryVT().getSizeInBits();
3327           PreExt = N0;
3328         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3329           Signed = true;
3330           MinBits = LN0->getMemoryVT().getSizeInBits();
3331           PreExt = N0;
3332         }
3333       }
3334 
3335       // Figure out how many bits we need to preserve this constant.
3336       unsigned ReqdBits = Signed ?
3337         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3338         C1.getActiveBits();
3339 
3340       // Make sure we're not losing bits from the constant.
3341       if (MinBits > 0 &&
3342           MinBits < C1.getBitWidth() &&
3343           MinBits >= ReqdBits) {
3344         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3345         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3346           // Will get folded away.
3347           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3348           if (MinBits == 1 && C1 == 1)
3349             // Invert the condition.
3350             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3351                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3352           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3353           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3354         }
3355 
3356         // If truncating the setcc operands is not desirable, we can still
3357         // simplify the expression in some cases:
3358         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3359         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3360         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3361         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3362         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3363         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3364         SDValue TopSetCC = N0->getOperand(0);
3365         unsigned N0Opc = N0->getOpcode();
3366         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3367         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3368             TopSetCC.getOpcode() == ISD::SETCC &&
3369             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3370             (isConstFalseVal(N1C) ||
3371              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3372 
3373           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3374                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3375 
3376           if (!Inverse)
3377             return TopSetCC;
3378 
3379           ISD::CondCode InvCond = ISD::getSetCCInverse(
3380               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3381               TopSetCC.getOperand(0).getValueType());
3382           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3383                                       TopSetCC.getOperand(1),
3384                                       InvCond);
3385         }
3386       }
3387     }
3388 
3389     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3390     // equality or unsigned, and all 1 bits of the const are in the same
3391     // partial word, see if we can shorten the load.
3392     if (DCI.isBeforeLegalize() &&
3393         !ISD::isSignedIntSetCC(Cond) &&
3394         N0.getOpcode() == ISD::AND && C1 == 0 &&
3395         N0.getNode()->hasOneUse() &&
3396         isa<LoadSDNode>(N0.getOperand(0)) &&
3397         N0.getOperand(0).getNode()->hasOneUse() &&
3398         isa<ConstantSDNode>(N0.getOperand(1))) {
3399       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3400       APInt bestMask;
3401       unsigned bestWidth = 0, bestOffset = 0;
3402       if (Lod->isSimple() && Lod->isUnindexed()) {
3403         unsigned origWidth = N0.getValueSizeInBits();
3404         unsigned maskWidth = origWidth;
3405         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3406         // 8 bits, but have to be careful...
3407         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3408           origWidth = Lod->getMemoryVT().getSizeInBits();
3409         const APInt &Mask = N0.getConstantOperandAPInt(1);
3410         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3411           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3412           for (unsigned offset=0; offset<origWidth/width; offset++) {
3413             if (Mask.isSubsetOf(newMask)) {
3414               if (Layout.isLittleEndian())
3415                 bestOffset = (uint64_t)offset * (width/8);
3416               else
3417                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3418               bestMask = Mask.lshr(offset * (width/8) * 8);
3419               bestWidth = width;
3420               break;
3421             }
3422             newMask <<= width;
3423           }
3424         }
3425       }
3426       if (bestWidth) {
3427         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3428         if (newVT.isRound() &&
3429             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3430           SDValue Ptr = Lod->getBasePtr();
3431           if (bestOffset != 0)
3432             Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl);
3433           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
3434           SDValue NewLoad = DAG.getLoad(
3435               newVT, dl, Lod->getChain(), Ptr,
3436               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
3437           return DAG.getSetCC(dl, VT,
3438                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3439                                       DAG.getConstant(bestMask.trunc(bestWidth),
3440                                                       dl, newVT)),
3441                               DAG.getConstant(0LL, dl, newVT), Cond);
3442         }
3443       }
3444     }
3445 
3446     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3447     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3448       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3449 
3450       // If the comparison constant has bits in the upper part, the
3451       // zero-extended value could never match.
3452       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3453                                               C1.getBitWidth() - InSize))) {
3454         switch (Cond) {
3455         case ISD::SETUGT:
3456         case ISD::SETUGE:
3457         case ISD::SETEQ:
3458           return DAG.getConstant(0, dl, VT);
3459         case ISD::SETULT:
3460         case ISD::SETULE:
3461         case ISD::SETNE:
3462           return DAG.getConstant(1, dl, VT);
3463         case ISD::SETGT:
3464         case ISD::SETGE:
3465           // True if the sign bit of C1 is set.
3466           return DAG.getConstant(C1.isNegative(), dl, VT);
3467         case ISD::SETLT:
3468         case ISD::SETLE:
3469           // True if the sign bit of C1 isn't set.
3470           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3471         default:
3472           break;
3473         }
3474       }
3475 
3476       // Otherwise, we can perform the comparison with the low bits.
3477       switch (Cond) {
3478       case ISD::SETEQ:
3479       case ISD::SETNE:
3480       case ISD::SETUGT:
3481       case ISD::SETUGE:
3482       case ISD::SETULT:
3483       case ISD::SETULE: {
3484         EVT newVT = N0.getOperand(0).getValueType();
3485         if (DCI.isBeforeLegalizeOps() ||
3486             (isOperationLegal(ISD::SETCC, newVT) &&
3487              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3488           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3489           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3490 
3491           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3492                                           NewConst, Cond);
3493           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3494         }
3495         break;
3496       }
3497       default:
3498         break; // todo, be more careful with signed comparisons
3499       }
3500     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3501                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3502       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3503       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3504       EVT ExtDstTy = N0.getValueType();
3505       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3506 
3507       // If the constant doesn't fit into the number of bits for the source of
3508       // the sign extension, it is impossible for both sides to be equal.
3509       if (C1.getMinSignedBits() > ExtSrcTyBits)
3510         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
3511 
3512       SDValue ZextOp;
3513       EVT Op0Ty = N0.getOperand(0).getValueType();
3514       if (Op0Ty == ExtSrcTy) {
3515         ZextOp = N0.getOperand(0);
3516       } else {
3517         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3518         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
3519                              DAG.getConstant(Imm, dl, Op0Ty));
3520       }
3521       if (!DCI.isCalledByLegalizer())
3522         DCI.AddToWorklist(ZextOp.getNode());
3523       // Otherwise, make this a use of a zext.
3524       return DAG.getSetCC(dl, VT, ZextOp,
3525                           DAG.getConstant(C1 & APInt::getLowBitsSet(
3526                                                               ExtDstTyBits,
3527                                                               ExtSrcTyBits),
3528                                           dl, ExtDstTy),
3529                           Cond);
3530     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3531                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3532       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3533       if (N0.getOpcode() == ISD::SETCC &&
3534           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3535           (N0.getValueType() == MVT::i1 ||
3536            getBooleanContents(N0.getOperand(0).getValueType()) ==
3537                        ZeroOrOneBooleanContent)) {
3538         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3539         if (TrueWhenTrue)
3540           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3541         // Invert the condition.
3542         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3543         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3544         if (DCI.isBeforeLegalizeOps() ||
3545             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3546           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3547       }
3548 
3549       if ((N0.getOpcode() == ISD::XOR ||
3550            (N0.getOpcode() == ISD::AND &&
3551             N0.getOperand(0).getOpcode() == ISD::XOR &&
3552             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3553           isa<ConstantSDNode>(N0.getOperand(1)) &&
3554           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
3555         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3556         // can only do this if the top bits are known zero.
3557         unsigned BitWidth = N0.getValueSizeInBits();
3558         if (DAG.MaskedValueIsZero(N0,
3559                                   APInt::getHighBitsSet(BitWidth,
3560                                                         BitWidth-1))) {
3561           // Okay, get the un-inverted input value.
3562           SDValue Val;
3563           if (N0.getOpcode() == ISD::XOR) {
3564             Val = N0.getOperand(0);
3565           } else {
3566             assert(N0.getOpcode() == ISD::AND &&
3567                     N0.getOperand(0).getOpcode() == ISD::XOR);
3568             // ((X^1)&1)^1 -> X & 1
3569             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3570                               N0.getOperand(0).getOperand(0),
3571                               N0.getOperand(1));
3572           }
3573 
3574           return DAG.getSetCC(dl, VT, Val, N1,
3575                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3576         }
3577       } else if (N1C->isOne()) {
3578         SDValue Op0 = N0;
3579         if (Op0.getOpcode() == ISD::TRUNCATE)
3580           Op0 = Op0.getOperand(0);
3581 
3582         if ((Op0.getOpcode() == ISD::XOR) &&
3583             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3584             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3585           SDValue XorLHS = Op0.getOperand(0);
3586           SDValue XorRHS = Op0.getOperand(1);
3587           // Ensure that the input setccs return an i1 type or 0/1 value.
3588           if (Op0.getValueType() == MVT::i1 ||
3589               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3590                       ZeroOrOneBooleanContent &&
3591                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3592                         ZeroOrOneBooleanContent)) {
3593             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3594             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3595             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3596           }
3597         }
3598         if (Op0.getOpcode() == ISD::AND &&
3599             isa<ConstantSDNode>(Op0.getOperand(1)) &&
3600             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
3601           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3602           if (Op0.getValueType().bitsGT(VT))
3603             Op0 = DAG.getNode(ISD::AND, dl, VT,
3604                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3605                           DAG.getConstant(1, dl, VT));
3606           else if (Op0.getValueType().bitsLT(VT))
3607             Op0 = DAG.getNode(ISD::AND, dl, VT,
3608                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3609                         DAG.getConstant(1, dl, VT));
3610 
3611           return DAG.getSetCC(dl, VT, Op0,
3612                               DAG.getConstant(0, dl, Op0.getValueType()),
3613                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3614         }
3615         if (Op0.getOpcode() == ISD::AssertZext &&
3616             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3617           return DAG.getSetCC(dl, VT, Op0,
3618                               DAG.getConstant(0, dl, Op0.getValueType()),
3619                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3620       }
3621     }
3622 
3623     // Given:
3624     //   icmp eq/ne (urem %x, %y), 0
3625     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3626     //   icmp eq/ne %x, 0
3627     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3628         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3629       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3630       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3631       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3632         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3633     }
3634 
3635     if (SDValue V =
3636             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3637       return V;
3638   }
3639 
3640   // These simplifications apply to splat vectors as well.
3641   // TODO: Handle more splat vector cases.
3642   if (auto *N1C = isConstOrConstSplat(N1)) {
3643     const APInt &C1 = N1C->getAPIntValue();
3644 
3645     APInt MinVal, MaxVal;
3646     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3647     if (ISD::isSignedIntSetCC(Cond)) {
3648       MinVal = APInt::getSignedMinValue(OperandBitSize);
3649       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3650     } else {
3651       MinVal = APInt::getMinValue(OperandBitSize);
3652       MaxVal = APInt::getMaxValue(OperandBitSize);
3653     }
3654 
3655     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3656     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3657       // X >= MIN --> true
3658       if (C1 == MinVal)
3659         return DAG.getBoolConstant(true, dl, VT, OpVT);
3660 
3661       if (!VT.isVector()) { // TODO: Support this for vectors.
3662         // X >= C0 --> X > (C0 - 1)
3663         APInt C = C1 - 1;
3664         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3665         if ((DCI.isBeforeLegalizeOps() ||
3666              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3667             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3668                                   isLegalICmpImmediate(C.getSExtValue())))) {
3669           return DAG.getSetCC(dl, VT, N0,
3670                               DAG.getConstant(C, dl, N1.getValueType()),
3671                               NewCC);
3672         }
3673       }
3674     }
3675 
3676     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3677       // X <= MAX --> true
3678       if (C1 == MaxVal)
3679         return DAG.getBoolConstant(true, dl, VT, OpVT);
3680 
3681       // X <= C0 --> X < (C0 + 1)
3682       if (!VT.isVector()) { // TODO: Support this for vectors.
3683         APInt C = C1 + 1;
3684         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3685         if ((DCI.isBeforeLegalizeOps() ||
3686              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3687             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3688                                   isLegalICmpImmediate(C.getSExtValue())))) {
3689           return DAG.getSetCC(dl, VT, N0,
3690                               DAG.getConstant(C, dl, N1.getValueType()),
3691                               NewCC);
3692         }
3693       }
3694     }
3695 
3696     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3697       if (C1 == MinVal)
3698         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3699 
3700       // TODO: Support this for vectors after legalize ops.
3701       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3702         // Canonicalize setlt X, Max --> setne X, Max
3703         if (C1 == MaxVal)
3704           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3705 
3706         // If we have setult X, 1, turn it into seteq X, 0
3707         if (C1 == MinVal+1)
3708           return DAG.getSetCC(dl, VT, N0,
3709                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3710                               ISD::SETEQ);
3711       }
3712     }
3713 
3714     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3715       if (C1 == MaxVal)
3716         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3717 
3718       // TODO: Support this for vectors after legalize ops.
3719       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3720         // Canonicalize setgt X, Min --> setne X, Min
3721         if (C1 == MinVal)
3722           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3723 
3724         // If we have setugt X, Max-1, turn it into seteq X, Max
3725         if (C1 == MaxVal-1)
3726           return DAG.getSetCC(dl, VT, N0,
3727                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3728                               ISD::SETEQ);
3729       }
3730     }
3731 
3732     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3733       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3734       if (C1.isNullValue())
3735         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3736                 VT, N0, N1, Cond, DCI, dl))
3737           return CC;
3738     }
3739 
3740     // If we have "setcc X, C0", check to see if we can shrink the immediate
3741     // by changing cc.
3742     // TODO: Support this for vectors after legalize ops.
3743     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3744       // SETUGT X, SINTMAX  -> SETLT X, 0
3745       if (Cond == ISD::SETUGT &&
3746           C1 == APInt::getSignedMaxValue(OperandBitSize))
3747         return DAG.getSetCC(dl, VT, N0,
3748                             DAG.getConstant(0, dl, N1.getValueType()),
3749                             ISD::SETLT);
3750 
3751       // SETULT X, SINTMIN  -> SETGT X, -1
3752       if (Cond == ISD::SETULT &&
3753           C1 == APInt::getSignedMinValue(OperandBitSize)) {
3754         SDValue ConstMinusOne =
3755             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
3756                             N1.getValueType());
3757         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
3758       }
3759     }
3760   }
3761 
3762   // Back to non-vector simplifications.
3763   // TODO: Can we do these for vector splats?
3764   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3765     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3766     const APInt &C1 = N1C->getAPIntValue();
3767     EVT ShValTy = N0.getValueType();
3768 
3769     // Fold bit comparisons when we can.
3770     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3771         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
3772         N0.getOpcode() == ISD::AND) {
3773       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3774         EVT ShiftTy =
3775             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3776         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
3777           // Perform the xform if the AND RHS is a single bit.
3778           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
3779           if (AndRHS->getAPIntValue().isPowerOf2() &&
3780               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3781             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3782                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3783                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3784           }
3785         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
3786           // (X & 8) == 8  -->  (X & 8) >> 3
3787           // Perform the xform if C1 is a single bit.
3788           unsigned ShCt = C1.logBase2();
3789           if (C1.isPowerOf2() &&
3790               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3791             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3792                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3793                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3794           }
3795         }
3796       }
3797     }
3798 
3799     if (C1.getMinSignedBits() <= 64 &&
3800         !isLegalICmpImmediate(C1.getSExtValue())) {
3801       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3802       // (X & -256) == 256 -> (X >> 8) == 1
3803       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3804           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
3805         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3806           const APInt &AndRHSC = AndRHS->getAPIntValue();
3807           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
3808             unsigned ShiftBits = AndRHSC.countTrailingZeros();
3809             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3810               SDValue Shift =
3811                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
3812                             DAG.getConstant(ShiftBits, dl, ShiftTy));
3813               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
3814               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
3815             }
3816           }
3817         }
3818       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
3819                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
3820         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
3821         // X <  0x100000000 -> (X >> 32) <  1
3822         // X >= 0x100000000 -> (X >> 32) >= 1
3823         // X <= 0x0ffffffff -> (X >> 32) <  1
3824         // X >  0x0ffffffff -> (X >> 32) >= 1
3825         unsigned ShiftBits;
3826         APInt NewC = C1;
3827         ISD::CondCode NewCond = Cond;
3828         if (AdjOne) {
3829           ShiftBits = C1.countTrailingOnes();
3830           NewC = NewC + 1;
3831           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3832         } else {
3833           ShiftBits = C1.countTrailingZeros();
3834         }
3835         NewC.lshrInPlace(ShiftBits);
3836         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
3837             isLegalICmpImmediate(NewC.getSExtValue()) &&
3838             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3839           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3840                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
3841           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
3842           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
3843         }
3844       }
3845     }
3846   }
3847 
3848   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
3849     auto *CFP = cast<ConstantFPSDNode>(N1);
3850     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
3851 
3852     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
3853     // constant if knowing that the operand is non-nan is enough.  We prefer to
3854     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3855     // materialize 0.0.
3856     if (Cond == ISD::SETO || Cond == ISD::SETUO)
3857       return DAG.getSetCC(dl, VT, N0, N0, Cond);
3858 
3859     // setcc (fneg x), C -> setcc swap(pred) x, -C
3860     if (N0.getOpcode() == ISD::FNEG) {
3861       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
3862       if (DCI.isBeforeLegalizeOps() ||
3863           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
3864         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
3865         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
3866       }
3867     }
3868 
3869     // If the condition is not legal, see if we can find an equivalent one
3870     // which is legal.
3871     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
3872       // If the comparison was an awkward floating-point == or != and one of
3873       // the comparison operands is infinity or negative infinity, convert the
3874       // condition to a less-awkward <= or >=.
3875       if (CFP->getValueAPF().isInfinity()) {
3876         bool IsNegInf = CFP->getValueAPF().isNegative();
3877         ISD::CondCode NewCond = ISD::SETCC_INVALID;
3878         switch (Cond) {
3879         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
3880         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
3881         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
3882         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
3883         default: break;
3884         }
3885         if (NewCond != ISD::SETCC_INVALID &&
3886             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
3887           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3888       }
3889     }
3890   }
3891 
3892   if (N0 == N1) {
3893     // The sext(setcc()) => setcc() optimization relies on the appropriate
3894     // constant being emitted.
3895     assert(!N0.getValueType().isInteger() &&
3896            "Integer types should be handled by FoldSetCC");
3897 
3898     bool EqTrue = ISD::isTrueWhenEqual(Cond);
3899     unsigned UOF = ISD::getUnorderedFlavor(Cond);
3900     if (UOF == 2) // FP operators that are undefined on NaNs.
3901       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3902     if (UOF == unsigned(EqTrue))
3903       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3904     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
3905     // if it is not already.
3906     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3907     if (NewCond != Cond &&
3908         (DCI.isBeforeLegalizeOps() ||
3909                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
3910       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3911   }
3912 
3913   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3914       N0.getValueType().isInteger()) {
3915     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
3916         N0.getOpcode() == ISD::XOR) {
3917       // Simplify (X+Y) == (X+Z) -->  Y == Z
3918       if (N0.getOpcode() == N1.getOpcode()) {
3919         if (N0.getOperand(0) == N1.getOperand(0))
3920           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
3921         if (N0.getOperand(1) == N1.getOperand(1))
3922           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
3923         if (isCommutativeBinOp(N0.getOpcode())) {
3924           // If X op Y == Y op X, try other combinations.
3925           if (N0.getOperand(0) == N1.getOperand(1))
3926             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
3927                                 Cond);
3928           if (N0.getOperand(1) == N1.getOperand(0))
3929             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
3930                                 Cond);
3931         }
3932       }
3933 
3934       // If RHS is a legal immediate value for a compare instruction, we need
3935       // to be careful about increasing register pressure needlessly.
3936       bool LegalRHSImm = false;
3937 
3938       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
3939         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3940           // Turn (X+C1) == C2 --> X == C2-C1
3941           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
3942             return DAG.getSetCC(dl, VT, N0.getOperand(0),
3943                                 DAG.getConstant(RHSC->getAPIntValue()-
3944                                                 LHSR->getAPIntValue(),
3945                                 dl, N0.getValueType()), Cond);
3946           }
3947 
3948           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3949           if (N0.getOpcode() == ISD::XOR)
3950             // If we know that all of the inverted bits are zero, don't bother
3951             // performing the inversion.
3952             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
3953               return
3954                 DAG.getSetCC(dl, VT, N0.getOperand(0),
3955                              DAG.getConstant(LHSR->getAPIntValue() ^
3956                                                RHSC->getAPIntValue(),
3957                                              dl, N0.getValueType()),
3958                              Cond);
3959         }
3960 
3961         // Turn (C1-X) == C2 --> X == C1-C2
3962         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3963           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
3964             return
3965               DAG.getSetCC(dl, VT, N0.getOperand(1),
3966                            DAG.getConstant(SUBC->getAPIntValue() -
3967                                              RHSC->getAPIntValue(),
3968                                            dl, N0.getValueType()),
3969                            Cond);
3970           }
3971         }
3972 
3973         // Could RHSC fold directly into a compare?
3974         if (RHSC->getValueType(0).getSizeInBits() <= 64)
3975           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
3976       }
3977 
3978       // (X+Y) == X --> Y == 0 and similar folds.
3979       // Don't do this if X is an immediate that can fold into a cmp
3980       // instruction and X+Y has other uses. It could be an induction variable
3981       // chain, and the transform would increase register pressure.
3982       if (!LegalRHSImm || N0.hasOneUse())
3983         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
3984           return V;
3985     }
3986 
3987     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
3988         N1.getOpcode() == ISD::XOR)
3989       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
3990         return V;
3991 
3992     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
3993       return V;
3994   }
3995 
3996   // Fold remainder of division by a constant.
3997   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
3998       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3999     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4000 
4001     // When division is cheap or optimizing for minimum size,
4002     // fall through to DIVREM creation by skipping this fold.
4003     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
4004       if (N0.getOpcode() == ISD::UREM) {
4005         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4006           return Folded;
4007       } else if (N0.getOpcode() == ISD::SREM) {
4008         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4009           return Folded;
4010       }
4011     }
4012   }
4013 
4014   // Fold away ALL boolean setcc's.
4015   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4016     SDValue Temp;
4017     switch (Cond) {
4018     default: llvm_unreachable("Unknown integer setcc!");
4019     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4020       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4021       N0 = DAG.getNOT(dl, Temp, OpVT);
4022       if (!DCI.isCalledByLegalizer())
4023         DCI.AddToWorklist(Temp.getNode());
4024       break;
4025     case ISD::SETNE:  // X != Y   -->  (X^Y)
4026       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4027       break;
4028     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4029     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4030       Temp = DAG.getNOT(dl, N0, OpVT);
4031       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4032       if (!DCI.isCalledByLegalizer())
4033         DCI.AddToWorklist(Temp.getNode());
4034       break;
4035     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4036     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4037       Temp = DAG.getNOT(dl, N1, OpVT);
4038       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4039       if (!DCI.isCalledByLegalizer())
4040         DCI.AddToWorklist(Temp.getNode());
4041       break;
4042     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4043     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4044       Temp = DAG.getNOT(dl, N0, OpVT);
4045       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4046       if (!DCI.isCalledByLegalizer())
4047         DCI.AddToWorklist(Temp.getNode());
4048       break;
4049     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4050     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4051       Temp = DAG.getNOT(dl, N1, OpVT);
4052       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4053       break;
4054     }
4055     if (VT.getScalarType() != MVT::i1) {
4056       if (!DCI.isCalledByLegalizer())
4057         DCI.AddToWorklist(N0.getNode());
4058       // FIXME: If running after legalize, we probably can't do this.
4059       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4060       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4061     }
4062     return N0;
4063   }
4064 
4065   // Could not fold it.
4066   return SDValue();
4067 }
4068 
4069 /// Returns true (and the GlobalValue and the offset) if the node is a
4070 /// GlobalAddress + offset.
4071 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4072                                     int64_t &Offset) const {
4073 
4074   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4075 
4076   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4077     GA = GASD->getGlobal();
4078     Offset += GASD->getOffset();
4079     return true;
4080   }
4081 
4082   if (N->getOpcode() == ISD::ADD) {
4083     SDValue N1 = N->getOperand(0);
4084     SDValue N2 = N->getOperand(1);
4085     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4086       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4087         Offset += V->getSExtValue();
4088         return true;
4089       }
4090     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4091       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4092         Offset += V->getSExtValue();
4093         return true;
4094       }
4095     }
4096   }
4097 
4098   return false;
4099 }
4100 
4101 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4102                                           DAGCombinerInfo &DCI) const {
4103   // Default implementation: no optimization.
4104   return SDValue();
4105 }
4106 
4107 //===----------------------------------------------------------------------===//
4108 //  Inline Assembler Implementation Methods
4109 //===----------------------------------------------------------------------===//
4110 
4111 TargetLowering::ConstraintType
4112 TargetLowering::getConstraintType(StringRef Constraint) const {
4113   unsigned S = Constraint.size();
4114 
4115   if (S == 1) {
4116     switch (Constraint[0]) {
4117     default: break;
4118     case 'r':
4119       return C_RegisterClass;
4120     case 'm': // memory
4121     case 'o': // offsetable
4122     case 'V': // not offsetable
4123       return C_Memory;
4124     case 'n': // Simple Integer
4125     case 'E': // Floating Point Constant
4126     case 'F': // Floating Point Constant
4127       return C_Immediate;
4128     case 'i': // Simple Integer or Relocatable Constant
4129     case 's': // Relocatable Constant
4130     case 'p': // Address.
4131     case 'X': // Allow ANY value.
4132     case 'I': // Target registers.
4133     case 'J':
4134     case 'K':
4135     case 'L':
4136     case 'M':
4137     case 'N':
4138     case 'O':
4139     case 'P':
4140     case '<':
4141     case '>':
4142       return C_Other;
4143     }
4144   }
4145 
4146   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4147     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4148       return C_Memory;
4149     return C_Register;
4150   }
4151   return C_Unknown;
4152 }
4153 
4154 /// Try to replace an X constraint, which matches anything, with another that
4155 /// has more specific requirements based on the type of the corresponding
4156 /// operand.
4157 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4158   if (ConstraintVT.isInteger())
4159     return "r";
4160   if (ConstraintVT.isFloatingPoint())
4161     return "f"; // works for many targets
4162   return nullptr;
4163 }
4164 
4165 SDValue TargetLowering::LowerAsmOutputForConstraint(
4166     SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
4167     SelectionDAG &DAG) const {
4168   return SDValue();
4169 }
4170 
4171 /// Lower the specified operand into the Ops vector.
4172 /// If it is invalid, don't add anything to Ops.
4173 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4174                                                   std::string &Constraint,
4175                                                   std::vector<SDValue> &Ops,
4176                                                   SelectionDAG &DAG) const {
4177 
4178   if (Constraint.length() > 1) return;
4179 
4180   char ConstraintLetter = Constraint[0];
4181   switch (ConstraintLetter) {
4182   default: break;
4183   case 'X':     // Allows any operand; labels (basic block) use this.
4184     if (Op.getOpcode() == ISD::BasicBlock ||
4185         Op.getOpcode() == ISD::TargetBlockAddress) {
4186       Ops.push_back(Op);
4187       return;
4188     }
4189     LLVM_FALLTHROUGH;
4190   case 'i':    // Simple Integer or Relocatable Constant
4191   case 'n':    // Simple Integer
4192   case 's': {  // Relocatable Constant
4193 
4194     GlobalAddressSDNode *GA;
4195     ConstantSDNode *C;
4196     BlockAddressSDNode *BA;
4197     uint64_t Offset = 0;
4198 
4199     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4200     // etc., since getelementpointer is variadic. We can't use
4201     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4202     // while in this case the GA may be furthest from the root node which is
4203     // likely an ISD::ADD.
4204     while (1) {
4205       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4206         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4207                                                  GA->getValueType(0),
4208                                                  Offset + GA->getOffset()));
4209         return;
4210       } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
4211                  ConstraintLetter != 's') {
4212         // gcc prints these as sign extended.  Sign extend value to 64 bits
4213         // now; without this it would get ZExt'd later in
4214         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4215         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4216         BooleanContent BCont = getBooleanContents(MVT::i64);
4217         ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
4218                                       : ISD::SIGN_EXTEND;
4219         int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
4220                                                     : C->getSExtValue();
4221         Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
4222                                             SDLoc(C), MVT::i64));
4223         return;
4224       } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
4225                  ConstraintLetter != 'n') {
4226         Ops.push_back(DAG.getTargetBlockAddress(
4227             BA->getBlockAddress(), BA->getValueType(0),
4228             Offset + BA->getOffset(), BA->getTargetFlags()));
4229         return;
4230       } else {
4231         const unsigned OpCode = Op.getOpcode();
4232         if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4233           if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4234             Op = Op.getOperand(1);
4235           // Subtraction is not commutative.
4236           else if (OpCode == ISD::ADD &&
4237                    (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4238             Op = Op.getOperand(0);
4239           else
4240             return;
4241           Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4242           continue;
4243         }
4244       }
4245       return;
4246     }
4247     break;
4248   }
4249   }
4250 }
4251 
4252 std::pair<unsigned, const TargetRegisterClass *>
4253 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4254                                              StringRef Constraint,
4255                                              MVT VT) const {
4256   if (Constraint.empty() || Constraint[0] != '{')
4257     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4258   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4259 
4260   // Remove the braces from around the name.
4261   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4262 
4263   std::pair<unsigned, const TargetRegisterClass *> R =
4264       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4265 
4266   // Figure out which register class contains this reg.
4267   for (const TargetRegisterClass *RC : RI->regclasses()) {
4268     // If none of the value types for this register class are valid, we
4269     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4270     if (!isLegalRC(*RI, *RC))
4271       continue;
4272 
4273     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4274          I != E; ++I) {
4275       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4276         std::pair<unsigned, const TargetRegisterClass *> S =
4277             std::make_pair(*I, RC);
4278 
4279         // If this register class has the requested value type, return it,
4280         // otherwise keep searching and return the first class found
4281         // if no other is found which explicitly has the requested type.
4282         if (RI->isTypeLegalForClass(*RC, VT))
4283           return S;
4284         if (!R.second)
4285           R = S;
4286       }
4287     }
4288   }
4289 
4290   return R;
4291 }
4292 
4293 //===----------------------------------------------------------------------===//
4294 // Constraint Selection.
4295 
4296 /// Return true of this is an input operand that is a matching constraint like
4297 /// "4".
4298 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4299   assert(!ConstraintCode.empty() && "No known constraint!");
4300   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4301 }
4302 
4303 /// If this is an input matching constraint, this method returns the output
4304 /// operand it matches.
4305 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4306   assert(!ConstraintCode.empty() && "No known constraint!");
4307   return atoi(ConstraintCode.c_str());
4308 }
4309 
4310 /// Split up the constraint string from the inline assembly value into the
4311 /// specific constraints and their prefixes, and also tie in the associated
4312 /// operand values.
4313 /// If this returns an empty vector, and if the constraint string itself
4314 /// isn't empty, there was an error parsing.
4315 TargetLowering::AsmOperandInfoVector
4316 TargetLowering::ParseConstraints(const DataLayout &DL,
4317                                  const TargetRegisterInfo *TRI,
4318                                  ImmutableCallSite CS) const {
4319   /// Information about all of the constraints.
4320   AsmOperandInfoVector ConstraintOperands;
4321   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4322   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4323 
4324   // Do a prepass over the constraints, canonicalizing them, and building up the
4325   // ConstraintOperands list.
4326   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4327   unsigned ResNo = 0; // ResNo - The result number of the next output.
4328 
4329   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4330     ConstraintOperands.emplace_back(std::move(CI));
4331     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4332 
4333     // Update multiple alternative constraint count.
4334     if (OpInfo.multipleAlternatives.size() > maCount)
4335       maCount = OpInfo.multipleAlternatives.size();
4336 
4337     OpInfo.ConstraintVT = MVT::Other;
4338 
4339     // Compute the value type for each operand.
4340     switch (OpInfo.Type) {
4341     case InlineAsm::isOutput:
4342       // Indirect outputs just consume an argument.
4343       if (OpInfo.isIndirect) {
4344         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4345         break;
4346       }
4347 
4348       // The return value of the call is this value.  As such, there is no
4349       // corresponding argument.
4350       assert(!CS.getType()->isVoidTy() &&
4351              "Bad inline asm!");
4352       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
4353         OpInfo.ConstraintVT =
4354             getSimpleValueType(DL, STy->getElementType(ResNo));
4355       } else {
4356         assert(ResNo == 0 && "Asm only has one result!");
4357         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
4358       }
4359       ++ResNo;
4360       break;
4361     case InlineAsm::isInput:
4362       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4363       break;
4364     case InlineAsm::isClobber:
4365       // Nothing to do.
4366       break;
4367     }
4368 
4369     if (OpInfo.CallOperandVal) {
4370       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4371       if (OpInfo.isIndirect) {
4372         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4373         if (!PtrTy)
4374           report_fatal_error("Indirect operand for inline asm not a pointer!");
4375         OpTy = PtrTy->getElementType();
4376       }
4377 
4378       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4379       if (StructType *STy = dyn_cast<StructType>(OpTy))
4380         if (STy->getNumElements() == 1)
4381           OpTy = STy->getElementType(0);
4382 
4383       // If OpTy is not a single value, it may be a struct/union that we
4384       // can tile with integers.
4385       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4386         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4387         switch (BitSize) {
4388         default: break;
4389         case 1:
4390         case 8:
4391         case 16:
4392         case 32:
4393         case 64:
4394         case 128:
4395           OpInfo.ConstraintVT =
4396               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4397           break;
4398         }
4399       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4400         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4401         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4402       } else {
4403         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4404       }
4405     }
4406   }
4407 
4408   // If we have multiple alternative constraints, select the best alternative.
4409   if (!ConstraintOperands.empty()) {
4410     if (maCount) {
4411       unsigned bestMAIndex = 0;
4412       int bestWeight = -1;
4413       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4414       int weight = -1;
4415       unsigned maIndex;
4416       // Compute the sums of the weights for each alternative, keeping track
4417       // of the best (highest weight) one so far.
4418       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4419         int weightSum = 0;
4420         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4421              cIndex != eIndex; ++cIndex) {
4422           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4423           if (OpInfo.Type == InlineAsm::isClobber)
4424             continue;
4425 
4426           // If this is an output operand with a matching input operand,
4427           // look up the matching input. If their types mismatch, e.g. one
4428           // is an integer, the other is floating point, or their sizes are
4429           // different, flag it as an maCantMatch.
4430           if (OpInfo.hasMatchingInput()) {
4431             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4432             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4433               if ((OpInfo.ConstraintVT.isInteger() !=
4434                    Input.ConstraintVT.isInteger()) ||
4435                   (OpInfo.ConstraintVT.getSizeInBits() !=
4436                    Input.ConstraintVT.getSizeInBits())) {
4437                 weightSum = -1; // Can't match.
4438                 break;
4439               }
4440             }
4441           }
4442           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4443           if (weight == -1) {
4444             weightSum = -1;
4445             break;
4446           }
4447           weightSum += weight;
4448         }
4449         // Update best.
4450         if (weightSum > bestWeight) {
4451           bestWeight = weightSum;
4452           bestMAIndex = maIndex;
4453         }
4454       }
4455 
4456       // Now select chosen alternative in each constraint.
4457       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4458            cIndex != eIndex; ++cIndex) {
4459         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4460         if (cInfo.Type == InlineAsm::isClobber)
4461           continue;
4462         cInfo.selectAlternative(bestMAIndex);
4463       }
4464     }
4465   }
4466 
4467   // Check and hook up tied operands, choose constraint code to use.
4468   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4469        cIndex != eIndex; ++cIndex) {
4470     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4471 
4472     // If this is an output operand with a matching input operand, look up the
4473     // matching input. If their types mismatch, e.g. one is an integer, the
4474     // other is floating point, or their sizes are different, flag it as an
4475     // error.
4476     if (OpInfo.hasMatchingInput()) {
4477       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4478 
4479       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4480         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4481             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4482                                          OpInfo.ConstraintVT);
4483         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4484             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4485                                          Input.ConstraintVT);
4486         if ((OpInfo.ConstraintVT.isInteger() !=
4487              Input.ConstraintVT.isInteger()) ||
4488             (MatchRC.second != InputRC.second)) {
4489           report_fatal_error("Unsupported asm: input constraint"
4490                              " with a matching output constraint of"
4491                              " incompatible type!");
4492         }
4493       }
4494     }
4495   }
4496 
4497   return ConstraintOperands;
4498 }
4499 
4500 /// Return an integer indicating how general CT is.
4501 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4502   switch (CT) {
4503   case TargetLowering::C_Immediate:
4504   case TargetLowering::C_Other:
4505   case TargetLowering::C_Unknown:
4506     return 0;
4507   case TargetLowering::C_Register:
4508     return 1;
4509   case TargetLowering::C_RegisterClass:
4510     return 2;
4511   case TargetLowering::C_Memory:
4512     return 3;
4513   }
4514   llvm_unreachable("Invalid constraint type");
4515 }
4516 
4517 /// Examine constraint type and operand type and determine a weight value.
4518 /// This object must already have been set up with the operand type
4519 /// and the current alternative constraint selected.
4520 TargetLowering::ConstraintWeight
4521   TargetLowering::getMultipleConstraintMatchWeight(
4522     AsmOperandInfo &info, int maIndex) const {
4523   InlineAsm::ConstraintCodeVector *rCodes;
4524   if (maIndex >= (int)info.multipleAlternatives.size())
4525     rCodes = &info.Codes;
4526   else
4527     rCodes = &info.multipleAlternatives[maIndex].Codes;
4528   ConstraintWeight BestWeight = CW_Invalid;
4529 
4530   // Loop over the options, keeping track of the most general one.
4531   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4532     ConstraintWeight weight =
4533       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4534     if (weight > BestWeight)
4535       BestWeight = weight;
4536   }
4537 
4538   return BestWeight;
4539 }
4540 
4541 /// Examine constraint type and operand type and determine a weight value.
4542 /// This object must already have been set up with the operand type
4543 /// and the current alternative constraint selected.
4544 TargetLowering::ConstraintWeight
4545   TargetLowering::getSingleConstraintMatchWeight(
4546     AsmOperandInfo &info, const char *constraint) const {
4547   ConstraintWeight weight = CW_Invalid;
4548   Value *CallOperandVal = info.CallOperandVal;
4549     // If we don't have a value, we can't do a match,
4550     // but allow it at the lowest weight.
4551   if (!CallOperandVal)
4552     return CW_Default;
4553   // Look at the constraint type.
4554   switch (*constraint) {
4555     case 'i': // immediate integer.
4556     case 'n': // immediate integer with a known value.
4557       if (isa<ConstantInt>(CallOperandVal))
4558         weight = CW_Constant;
4559       break;
4560     case 's': // non-explicit intregal immediate.
4561       if (isa<GlobalValue>(CallOperandVal))
4562         weight = CW_Constant;
4563       break;
4564     case 'E': // immediate float if host format.
4565     case 'F': // immediate float.
4566       if (isa<ConstantFP>(CallOperandVal))
4567         weight = CW_Constant;
4568       break;
4569     case '<': // memory operand with autodecrement.
4570     case '>': // memory operand with autoincrement.
4571     case 'm': // memory operand.
4572     case 'o': // offsettable memory operand
4573     case 'V': // non-offsettable memory operand
4574       weight = CW_Memory;
4575       break;
4576     case 'r': // general register.
4577     case 'g': // general register, memory operand or immediate integer.
4578               // note: Clang converts "g" to "imr".
4579       if (CallOperandVal->getType()->isIntegerTy())
4580         weight = CW_Register;
4581       break;
4582     case 'X': // any operand.
4583   default:
4584     weight = CW_Default;
4585     break;
4586   }
4587   return weight;
4588 }
4589 
4590 /// If there are multiple different constraints that we could pick for this
4591 /// operand (e.g. "imr") try to pick the 'best' one.
4592 /// This is somewhat tricky: constraints fall into four classes:
4593 ///    Other         -> immediates and magic values
4594 ///    Register      -> one specific register
4595 ///    RegisterClass -> a group of regs
4596 ///    Memory        -> memory
4597 /// Ideally, we would pick the most specific constraint possible: if we have
4598 /// something that fits into a register, we would pick it.  The problem here
4599 /// is that if we have something that could either be in a register or in
4600 /// memory that use of the register could cause selection of *other*
4601 /// operands to fail: they might only succeed if we pick memory.  Because of
4602 /// this the heuristic we use is:
4603 ///
4604 ///  1) If there is an 'other' constraint, and if the operand is valid for
4605 ///     that constraint, use it.  This makes us take advantage of 'i'
4606 ///     constraints when available.
4607 ///  2) Otherwise, pick the most general constraint present.  This prefers
4608 ///     'm' over 'r', for example.
4609 ///
4610 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4611                              const TargetLowering &TLI,
4612                              SDValue Op, SelectionDAG *DAG) {
4613   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4614   unsigned BestIdx = 0;
4615   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4616   int BestGenerality = -1;
4617 
4618   // Loop over the options, keeping track of the most general one.
4619   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4620     TargetLowering::ConstraintType CType =
4621       TLI.getConstraintType(OpInfo.Codes[i]);
4622 
4623     // Indirect 'other' or 'immediate' constraints are not allowed.
4624     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4625                                CType == TargetLowering::C_Register ||
4626                                CType == TargetLowering::C_RegisterClass))
4627       continue;
4628 
4629     // If this is an 'other' or 'immediate' constraint, see if the operand is
4630     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4631     // the operand is an integer in the range [0..31] we want to use I (saving a
4632     // load of a register), otherwise we must use 'r'.
4633     if ((CType == TargetLowering::C_Other ||
4634          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4635       assert(OpInfo.Codes[i].size() == 1 &&
4636              "Unhandled multi-letter 'other' constraint");
4637       std::vector<SDValue> ResultOps;
4638       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4639                                        ResultOps, *DAG);
4640       if (!ResultOps.empty()) {
4641         BestType = CType;
4642         BestIdx = i;
4643         break;
4644       }
4645     }
4646 
4647     // Things with matching constraints can only be registers, per gcc
4648     // documentation.  This mainly affects "g" constraints.
4649     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4650       continue;
4651 
4652     // This constraint letter is more general than the previous one, use it.
4653     int Generality = getConstraintGenerality(CType);
4654     if (Generality > BestGenerality) {
4655       BestType = CType;
4656       BestIdx = i;
4657       BestGenerality = Generality;
4658     }
4659   }
4660 
4661   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4662   OpInfo.ConstraintType = BestType;
4663 }
4664 
4665 /// Determines the constraint code and constraint type to use for the specific
4666 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4667 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4668                                             SDValue Op,
4669                                             SelectionDAG *DAG) const {
4670   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4671 
4672   // Single-letter constraints ('r') are very common.
4673   if (OpInfo.Codes.size() == 1) {
4674     OpInfo.ConstraintCode = OpInfo.Codes[0];
4675     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4676   } else {
4677     ChooseConstraint(OpInfo, *this, Op, DAG);
4678   }
4679 
4680   // 'X' matches anything.
4681   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4682     // Labels and constants are handled elsewhere ('X' is the only thing
4683     // that matches labels).  For Functions, the type here is the type of
4684     // the result, which is not what we want to look at; leave them alone.
4685     Value *v = OpInfo.CallOperandVal;
4686     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4687       OpInfo.CallOperandVal = v;
4688       return;
4689     }
4690 
4691     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4692       return;
4693 
4694     // Otherwise, try to resolve it to something we know about by looking at
4695     // the actual operand type.
4696     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4697       OpInfo.ConstraintCode = Repl;
4698       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4699     }
4700   }
4701 }
4702 
4703 /// Given an exact SDIV by a constant, create a multiplication
4704 /// with the multiplicative inverse of the constant.
4705 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4706                               const SDLoc &dl, SelectionDAG &DAG,
4707                               SmallVectorImpl<SDNode *> &Created) {
4708   SDValue Op0 = N->getOperand(0);
4709   SDValue Op1 = N->getOperand(1);
4710   EVT VT = N->getValueType(0);
4711   EVT SVT = VT.getScalarType();
4712   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
4713   EVT ShSVT = ShVT.getScalarType();
4714 
4715   bool UseSRA = false;
4716   SmallVector<SDValue, 16> Shifts, Factors;
4717 
4718   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4719     if (C->isNullValue())
4720       return false;
4721     APInt Divisor = C->getAPIntValue();
4722     unsigned Shift = Divisor.countTrailingZeros();
4723     if (Shift) {
4724       Divisor.ashrInPlace(Shift);
4725       UseSRA = true;
4726     }
4727     // Calculate the multiplicative inverse, using Newton's method.
4728     APInt t;
4729     APInt Factor = Divisor;
4730     while ((t = Divisor * Factor) != 1)
4731       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
4732     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
4733     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
4734     return true;
4735   };
4736 
4737   // Collect all magic values from the build vector.
4738   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
4739     return SDValue();
4740 
4741   SDValue Shift, Factor;
4742   if (VT.isVector()) {
4743     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4744     Factor = DAG.getBuildVector(VT, dl, Factors);
4745   } else {
4746     Shift = Shifts[0];
4747     Factor = Factors[0];
4748   }
4749 
4750   SDValue Res = Op0;
4751 
4752   // Shift the value upfront if it is even, so the LSB is one.
4753   if (UseSRA) {
4754     // TODO: For UDIV use SRL instead of SRA.
4755     SDNodeFlags Flags;
4756     Flags.setExact(true);
4757     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
4758     Created.push_back(Res.getNode());
4759   }
4760 
4761   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
4762 }
4763 
4764 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4765                               SelectionDAG &DAG,
4766                               SmallVectorImpl<SDNode *> &Created) const {
4767   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4768   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4769   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
4770     return SDValue(N, 0); // Lower SDIV as SDIV
4771   return SDValue();
4772 }
4773 
4774 /// Given an ISD::SDIV node expressing a divide by constant,
4775 /// return a DAG expression to select that will generate the same value by
4776 /// multiplying by a magic number.
4777 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4778 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
4779                                   bool IsAfterLegalization,
4780                                   SmallVectorImpl<SDNode *> &Created) const {
4781   SDLoc dl(N);
4782   EVT VT = N->getValueType(0);
4783   EVT SVT = VT.getScalarType();
4784   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4785   EVT ShSVT = ShVT.getScalarType();
4786   unsigned EltBits = VT.getScalarSizeInBits();
4787 
4788   // Check to see if we can do this.
4789   // FIXME: We should be more aggressive here.
4790   if (!isTypeLegal(VT))
4791     return SDValue();
4792 
4793   // If the sdiv has an 'exact' bit we can use a simpler lowering.
4794   if (N->getFlags().hasExact())
4795     return BuildExactSDIV(*this, N, dl, DAG, Created);
4796 
4797   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
4798 
4799   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4800     if (C->isNullValue())
4801       return false;
4802 
4803     const APInt &Divisor = C->getAPIntValue();
4804     APInt::ms magics = Divisor.magic();
4805     int NumeratorFactor = 0;
4806     int ShiftMask = -1;
4807 
4808     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
4809       // If d is +1/-1, we just multiply the numerator by +1/-1.
4810       NumeratorFactor = Divisor.getSExtValue();
4811       magics.m = 0;
4812       magics.s = 0;
4813       ShiftMask = 0;
4814     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
4815       // If d > 0 and m < 0, add the numerator.
4816       NumeratorFactor = 1;
4817     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
4818       // If d < 0 and m > 0, subtract the numerator.
4819       NumeratorFactor = -1;
4820     }
4821 
4822     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
4823     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
4824     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
4825     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
4826     return true;
4827   };
4828 
4829   SDValue N0 = N->getOperand(0);
4830   SDValue N1 = N->getOperand(1);
4831 
4832   // Collect the shifts / magic values from each element.
4833   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
4834     return SDValue();
4835 
4836   SDValue MagicFactor, Factor, Shift, ShiftMask;
4837   if (VT.isVector()) {
4838     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4839     Factor = DAG.getBuildVector(VT, dl, Factors);
4840     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4841     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
4842   } else {
4843     MagicFactor = MagicFactors[0];
4844     Factor = Factors[0];
4845     Shift = Shifts[0];
4846     ShiftMask = ShiftMasks[0];
4847   }
4848 
4849   // Multiply the numerator (operand 0) by the magic value.
4850   // FIXME: We should support doing a MUL in a wider type.
4851   SDValue Q;
4852   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
4853                           : isOperationLegalOrCustom(ISD::MULHS, VT))
4854     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
4855   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
4856                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
4857     SDValue LoHi =
4858         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
4859     Q = SDValue(LoHi.getNode(), 1);
4860   } else
4861     return SDValue(); // No mulhs or equivalent.
4862   Created.push_back(Q.getNode());
4863 
4864   // (Optionally) Add/subtract the numerator using Factor.
4865   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
4866   Created.push_back(Factor.getNode());
4867   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
4868   Created.push_back(Q.getNode());
4869 
4870   // Shift right algebraic by shift value.
4871   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
4872   Created.push_back(Q.getNode());
4873 
4874   // Extract the sign bit, mask it and add it to the quotient.
4875   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
4876   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
4877   Created.push_back(T.getNode());
4878   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
4879   Created.push_back(T.getNode());
4880   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
4881 }
4882 
4883 /// Given an ISD::UDIV node expressing a divide by constant,
4884 /// return a DAG expression to select that will generate the same value by
4885 /// multiplying by a magic number.
4886 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4887 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
4888                                   bool IsAfterLegalization,
4889                                   SmallVectorImpl<SDNode *> &Created) const {
4890   SDLoc dl(N);
4891   EVT VT = N->getValueType(0);
4892   EVT SVT = VT.getScalarType();
4893   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4894   EVT ShSVT = ShVT.getScalarType();
4895   unsigned EltBits = VT.getScalarSizeInBits();
4896 
4897   // Check to see if we can do this.
4898   // FIXME: We should be more aggressive here.
4899   if (!isTypeLegal(VT))
4900     return SDValue();
4901 
4902   bool UseNPQ = false;
4903   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4904 
4905   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
4906     if (C->isNullValue())
4907       return false;
4908     // FIXME: We should use a narrower constant when the upper
4909     // bits are known to be zero.
4910     APInt Divisor = C->getAPIntValue();
4911     APInt::mu magics = Divisor.magicu();
4912     unsigned PreShift = 0, PostShift = 0;
4913 
4914     // If the divisor is even, we can avoid using the expensive fixup by
4915     // shifting the divided value upfront.
4916     if (magics.a != 0 && !Divisor[0]) {
4917       PreShift = Divisor.countTrailingZeros();
4918       // Get magic number for the shifted divisor.
4919       magics = Divisor.lshr(PreShift).magicu(PreShift);
4920       assert(magics.a == 0 && "Should use cheap fixup now");
4921     }
4922 
4923     APInt Magic = magics.m;
4924 
4925     unsigned SelNPQ;
4926     if (magics.a == 0 || Divisor.isOneValue()) {
4927       assert(magics.s < Divisor.getBitWidth() &&
4928              "We shouldn't generate an undefined shift!");
4929       PostShift = magics.s;
4930       SelNPQ = false;
4931     } else {
4932       PostShift = magics.s - 1;
4933       SelNPQ = true;
4934     }
4935 
4936     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
4937     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
4938     NPQFactors.push_back(
4939         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
4940                                : APInt::getNullValue(EltBits),
4941                         dl, SVT));
4942     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
4943     UseNPQ |= SelNPQ;
4944     return true;
4945   };
4946 
4947   SDValue N0 = N->getOperand(0);
4948   SDValue N1 = N->getOperand(1);
4949 
4950   // Collect the shifts/magic values from each element.
4951   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
4952     return SDValue();
4953 
4954   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
4955   if (VT.isVector()) {
4956     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
4957     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4958     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
4959     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
4960   } else {
4961     PreShift = PreShifts[0];
4962     MagicFactor = MagicFactors[0];
4963     PostShift = PostShifts[0];
4964   }
4965 
4966   SDValue Q = N0;
4967   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
4968   Created.push_back(Q.getNode());
4969 
4970   // FIXME: We should support doing a MUL in a wider type.
4971   auto GetMULHU = [&](SDValue X, SDValue Y) {
4972     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
4973                             : isOperationLegalOrCustom(ISD::MULHU, VT))
4974       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
4975     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
4976                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
4977       SDValue LoHi =
4978           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
4979       return SDValue(LoHi.getNode(), 1);
4980     }
4981     return SDValue(); // No mulhu or equivalent
4982   };
4983 
4984   // Multiply the numerator (operand 0) by the magic value.
4985   Q = GetMULHU(Q, MagicFactor);
4986   if (!Q)
4987     return SDValue();
4988 
4989   Created.push_back(Q.getNode());
4990 
4991   if (UseNPQ) {
4992     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
4993     Created.push_back(NPQ.getNode());
4994 
4995     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
4996     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
4997     if (VT.isVector())
4998       NPQ = GetMULHU(NPQ, NPQFactor);
4999     else
5000       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5001 
5002     Created.push_back(NPQ.getNode());
5003 
5004     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5005     Created.push_back(Q.getNode());
5006   }
5007 
5008   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5009   Created.push_back(Q.getNode());
5010 
5011   SDValue One = DAG.getConstant(1, dl, VT);
5012   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
5013   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5014 }
5015 
5016 /// If all values in Values that *don't* match the predicate are same 'splat'
5017 /// value, then replace all values with that splat value.
5018 /// Else, if AlternativeReplacement was provided, then replace all values that
5019 /// do match predicate with AlternativeReplacement value.
5020 static void
5021 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5022                           std::function<bool(SDValue)> Predicate,
5023                           SDValue AlternativeReplacement = SDValue()) {
5024   SDValue Replacement;
5025   // Is there a value for which the Predicate does *NOT* match? What is it?
5026   auto SplatValue = llvm::find_if_not(Values, Predicate);
5027   if (SplatValue != Values.end()) {
5028     // Does Values consist only of SplatValue's and values matching Predicate?
5029     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5030           return Value == *SplatValue || Predicate(Value);
5031         })) // Then we shall replace values matching predicate with SplatValue.
5032       Replacement = *SplatValue;
5033   }
5034   if (!Replacement) {
5035     // Oops, we did not find the "baseline" splat value.
5036     if (!AlternativeReplacement)
5037       return; // Nothing to do.
5038     // Let's replace with provided value then.
5039     Replacement = AlternativeReplacement;
5040   }
5041   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5042 }
5043 
5044 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5045 /// where the divisor is constant and the comparison target is zero,
5046 /// return a DAG expression that will generate the same comparison result
5047 /// using only multiplications, additions and shifts/rotations.
5048 /// Ref: "Hacker's Delight" 10-17.
5049 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5050                                         SDValue CompTargetNode,
5051                                         ISD::CondCode Cond,
5052                                         DAGCombinerInfo &DCI,
5053                                         const SDLoc &DL) const {
5054   SmallVector<SDNode *, 5> Built;
5055   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5056                                          DCI, DL, Built)) {
5057     for (SDNode *N : Built)
5058       DCI.AddToWorklist(N);
5059     return Folded;
5060   }
5061 
5062   return SDValue();
5063 }
5064 
5065 SDValue
5066 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5067                                   SDValue CompTargetNode, ISD::CondCode Cond,
5068                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5069                                   SmallVectorImpl<SDNode *> &Created) const {
5070   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5071   // - D must be constant, with D = D0 * 2^K where D0 is odd
5072   // - P is the multiplicative inverse of D0 modulo 2^W
5073   // - Q = floor(((2^W) - 1) / D)
5074   // where W is the width of the common type of N and D.
5075   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5076          "Only applicable for (in)equality comparisons.");
5077 
5078   SelectionDAG &DAG = DCI.DAG;
5079 
5080   EVT VT = REMNode.getValueType();
5081   EVT SVT = VT.getScalarType();
5082   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5083   EVT ShSVT = ShVT.getScalarType();
5084 
5085   // If MUL is unavailable, we cannot proceed in any case.
5086   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5087     return SDValue();
5088 
5089   bool ComparingWithAllZeros = true;
5090   bool AllComparisonsWithNonZerosAreTautological = true;
5091   bool HadTautologicalLanes = false;
5092   bool AllLanesAreTautological = true;
5093   bool HadEvenDivisor = false;
5094   bool AllDivisorsArePowerOfTwo = true;
5095   bool HadTautologicalInvertedLanes = false;
5096   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5097 
5098   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5099     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5100     if (CDiv->isNullValue())
5101       return false;
5102 
5103     const APInt &D = CDiv->getAPIntValue();
5104     const APInt &Cmp = CCmp->getAPIntValue();
5105 
5106     ComparingWithAllZeros &= Cmp.isNullValue();
5107 
5108     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5109     // if C2 is not less than C1, the comparison is always false.
5110     // But we will only be able to produce the comparison that will give the
5111     // opposive tautological answer. So this lane would need to be fixed up.
5112     bool TautologicalInvertedLane = D.ule(Cmp);
5113     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5114 
5115     // If all lanes are tautological (either all divisors are ones, or divisor
5116     // is not greater than the constant we are comparing with),
5117     // we will prefer to avoid the fold.
5118     bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane;
5119     HadTautologicalLanes |= TautologicalLane;
5120     AllLanesAreTautological &= TautologicalLane;
5121 
5122     // If we are comparing with non-zero, we need'll need  to subtract said
5123     // comparison value from the LHS. But there is no point in doing that if
5124     // every lane where we are comparing with non-zero is tautological..
5125     if (!Cmp.isNullValue())
5126       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5127 
5128     // Decompose D into D0 * 2^K
5129     unsigned K = D.countTrailingZeros();
5130     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5131     APInt D0 = D.lshr(K);
5132 
5133     // D is even if it has trailing zeros.
5134     HadEvenDivisor |= (K != 0);
5135     // D is a power-of-two if D0 is one.
5136     // If all divisors are power-of-two, we will prefer to avoid the fold.
5137     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5138 
5139     // P = inv(D0, 2^W)
5140     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5141     unsigned W = D.getBitWidth();
5142     APInt P = D0.zext(W + 1)
5143                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5144                   .trunc(W);
5145     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5146     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5147 
5148     // Q = floor((2^W - 1) u/ D)
5149     // R = ((2^W - 1) u% D)
5150     APInt Q, R;
5151     APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R);
5152 
5153     // If we are comparing with zero, then that comparison constant is okay,
5154     // else it may need to be one less than that.
5155     if (Cmp.ugt(R))
5156       Q -= 1;
5157 
5158     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5159            "We are expecting that K is always less than all-ones for ShSVT");
5160 
5161     // If the lane is tautological the result can be constant-folded.
5162     if (TautologicalLane) {
5163       // Set P and K amount to a bogus values so we can try to splat them.
5164       P = 0;
5165       K = -1;
5166       // And ensure that comparison constant is tautological,
5167       // it will always compare true/false.
5168       Q = -1;
5169     }
5170 
5171     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5172     KAmts.push_back(
5173         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5174     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5175     return true;
5176   };
5177 
5178   SDValue N = REMNode.getOperand(0);
5179   SDValue D = REMNode.getOperand(1);
5180 
5181   // Collect the values from each element.
5182   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5183     return SDValue();
5184 
5185   // If all lanes are tautological, the result can be constant-folded.
5186   if (AllLanesAreTautological)
5187     return SDValue();
5188 
5189   // If this is a urem by a powers-of-two, avoid the fold since it can be
5190   // best implemented as a bit test.
5191   if (AllDivisorsArePowerOfTwo)
5192     return SDValue();
5193 
5194   SDValue PVal, KVal, QVal;
5195   if (VT.isVector()) {
5196     if (HadTautologicalLanes) {
5197       // Try to turn PAmts into a splat, since we don't care about the values
5198       // that are currently '0'. If we can't, just keep '0'`s.
5199       turnVectorIntoSplatVector(PAmts, isNullConstant);
5200       // Try to turn KAmts into a splat, since we don't care about the values
5201       // that are currently '-1'. If we can't, change them to '0'`s.
5202       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5203                                 DAG.getConstant(0, DL, ShSVT));
5204     }
5205 
5206     PVal = DAG.getBuildVector(VT, DL, PAmts);
5207     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5208     QVal = DAG.getBuildVector(VT, DL, QAmts);
5209   } else {
5210     PVal = PAmts[0];
5211     KVal = KAmts[0];
5212     QVal = QAmts[0];
5213   }
5214 
5215   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5216     if (!isOperationLegalOrCustom(ISD::SUB, VT))
5217       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5218     assert(CompTargetNode.getValueType() == N.getValueType() &&
5219            "Expecting that the types on LHS and RHS of comparisons match.");
5220     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5221   }
5222 
5223   // (mul N, P)
5224   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5225   Created.push_back(Op0.getNode());
5226 
5227   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5228   // divisors as a performance improvement, since rotating by 0 is a no-op.
5229   if (HadEvenDivisor) {
5230     // We need ROTR to do this.
5231     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5232       return SDValue();
5233     SDNodeFlags Flags;
5234     Flags.setExact(true);
5235     // UREM: (rotr (mul N, P), K)
5236     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5237     Created.push_back(Op0.getNode());
5238   }
5239 
5240   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5241   SDValue NewCC =
5242       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5243                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5244   if (!HadTautologicalInvertedLanes)
5245     return NewCC;
5246 
5247   // If any lanes previously compared always-false, the NewCC will give
5248   // always-true result for them, so we need to fixup those lanes.
5249   // Or the other way around for inequality predicate.
5250   assert(VT.isVector() && "Can/should only get here for vectors.");
5251   Created.push_back(NewCC.getNode());
5252 
5253   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5254   // if C2 is not less than C1, the comparison is always false.
5255   // But we have produced the comparison that will give the
5256   // opposive tautological answer. So these lanes would need to be fixed up.
5257   SDValue TautologicalInvertedChannels =
5258       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5259   Created.push_back(TautologicalInvertedChannels.getNode());
5260 
5261   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5262     // If we have a vector select, let's replace the comparison results in the
5263     // affected lanes with the correct tautological result.
5264     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5265                                               DL, SETCCVT, SETCCVT);
5266     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5267                        Replacement, NewCC);
5268   }
5269 
5270   // Else, we can just invert the comparison result in the appropriate lanes.
5271   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5272     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5273                        TautologicalInvertedChannels);
5274 
5275   return SDValue(); // Don't know how to lower.
5276 }
5277 
5278 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5279 /// where the divisor is constant and the comparison target is zero,
5280 /// return a DAG expression that will generate the same comparison result
5281 /// using only multiplications, additions and shifts/rotations.
5282 /// Ref: "Hacker's Delight" 10-17.
5283 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5284                                         SDValue CompTargetNode,
5285                                         ISD::CondCode Cond,
5286                                         DAGCombinerInfo &DCI,
5287                                         const SDLoc &DL) const {
5288   SmallVector<SDNode *, 7> Built;
5289   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5290                                          DCI, DL, Built)) {
5291     assert(Built.size() <= 7 && "Max size prediction failed.");
5292     for (SDNode *N : Built)
5293       DCI.AddToWorklist(N);
5294     return Folded;
5295   }
5296 
5297   return SDValue();
5298 }
5299 
5300 SDValue
5301 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5302                                   SDValue CompTargetNode, ISD::CondCode Cond,
5303                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5304                                   SmallVectorImpl<SDNode *> &Created) const {
5305   // Fold:
5306   //   (seteq/ne (srem N, D), 0)
5307   // To:
5308   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5309   //
5310   // - D must be constant, with D = D0 * 2^K where D0 is odd
5311   // - P is the multiplicative inverse of D0 modulo 2^W
5312   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5313   // - Q = floor((2 * A) / (2^K))
5314   // where W is the width of the common type of N and D.
5315   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5316          "Only applicable for (in)equality comparisons.");
5317 
5318   SelectionDAG &DAG = DCI.DAG;
5319 
5320   EVT VT = REMNode.getValueType();
5321   EVT SVT = VT.getScalarType();
5322   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5323   EVT ShSVT = ShVT.getScalarType();
5324 
5325   // If MUL is unavailable, we cannot proceed in any case.
5326   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5327     return SDValue();
5328 
5329   // TODO: Could support comparing with non-zero too.
5330   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5331   if (!CompTarget || !CompTarget->isNullValue())
5332     return SDValue();
5333 
5334   bool HadIntMinDivisor = false;
5335   bool HadOneDivisor = false;
5336   bool AllDivisorsAreOnes = true;
5337   bool HadEvenDivisor = false;
5338   bool NeedToApplyOffset = false;
5339   bool AllDivisorsArePowerOfTwo = true;
5340   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5341 
5342   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5343     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5344     if (C->isNullValue())
5345       return false;
5346 
5347     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5348 
5349     // WARNING: this fold is only valid for positive divisors!
5350     APInt D = C->getAPIntValue();
5351     if (D.isNegative())
5352       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5353 
5354     HadIntMinDivisor |= D.isMinSignedValue();
5355 
5356     // If all divisors are ones, we will prefer to avoid the fold.
5357     HadOneDivisor |= D.isOneValue();
5358     AllDivisorsAreOnes &= D.isOneValue();
5359 
5360     // Decompose D into D0 * 2^K
5361     unsigned K = D.countTrailingZeros();
5362     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5363     APInt D0 = D.lshr(K);
5364 
5365     if (!D.isMinSignedValue()) {
5366       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5367       // we don't care about this lane in this fold, we'll special-handle it.
5368       HadEvenDivisor |= (K != 0);
5369     }
5370 
5371     // D is a power-of-two if D0 is one. This includes INT_MIN.
5372     // If all divisors are power-of-two, we will prefer to avoid the fold.
5373     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5374 
5375     // P = inv(D0, 2^W)
5376     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5377     unsigned W = D.getBitWidth();
5378     APInt P = D0.zext(W + 1)
5379                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5380                   .trunc(W);
5381     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5382     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5383 
5384     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5385     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5386     A.clearLowBits(K);
5387 
5388     if (!D.isMinSignedValue()) {
5389       // If divisor INT_MIN, then we don't care about this lane in this fold,
5390       // we'll special-handle it.
5391       NeedToApplyOffset |= A != 0;
5392     }
5393 
5394     // Q = floor((2 * A) / (2^K))
5395     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5396 
5397     assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5398            "We are expecting that A is always less than all-ones for SVT");
5399     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5400            "We are expecting that K is always less than all-ones for ShSVT");
5401 
5402     // If the divisor is 1 the result can be constant-folded. Likewise, we
5403     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5404     if (D.isOneValue()) {
5405       // Set P, A and K to a bogus values so we can try to splat them.
5406       P = 0;
5407       A = -1;
5408       K = -1;
5409 
5410       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5411       Q = -1;
5412     }
5413 
5414     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5415     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5416     KAmts.push_back(
5417         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5418     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5419     return true;
5420   };
5421 
5422   SDValue N = REMNode.getOperand(0);
5423   SDValue D = REMNode.getOperand(1);
5424 
5425   // Collect the values from each element.
5426   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5427     return SDValue();
5428 
5429   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5430   if (AllDivisorsAreOnes)
5431     return SDValue();
5432 
5433   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5434   // since it can be best implemented as a bit test.
5435   if (AllDivisorsArePowerOfTwo)
5436     return SDValue();
5437 
5438   SDValue PVal, AVal, KVal, QVal;
5439   if (VT.isVector()) {
5440     if (HadOneDivisor) {
5441       // Try to turn PAmts into a splat, since we don't care about the values
5442       // that are currently '0'. If we can't, just keep '0'`s.
5443       turnVectorIntoSplatVector(PAmts, isNullConstant);
5444       // Try to turn AAmts into a splat, since we don't care about the
5445       // values that are currently '-1'. If we can't, change them to '0'`s.
5446       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5447                                 DAG.getConstant(0, DL, SVT));
5448       // Try to turn KAmts into a splat, since we don't care about the values
5449       // that are currently '-1'. If we can't, change them to '0'`s.
5450       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5451                                 DAG.getConstant(0, DL, ShSVT));
5452     }
5453 
5454     PVal = DAG.getBuildVector(VT, DL, PAmts);
5455     AVal = DAG.getBuildVector(VT, DL, AAmts);
5456     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5457     QVal = DAG.getBuildVector(VT, DL, QAmts);
5458   } else {
5459     PVal = PAmts[0];
5460     AVal = AAmts[0];
5461     KVal = KAmts[0];
5462     QVal = QAmts[0];
5463   }
5464 
5465   // (mul N, P)
5466   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5467   Created.push_back(Op0.getNode());
5468 
5469   if (NeedToApplyOffset) {
5470     // We need ADD to do this.
5471     if (!isOperationLegalOrCustom(ISD::ADD, VT))
5472       return SDValue();
5473 
5474     // (add (mul N, P), A)
5475     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5476     Created.push_back(Op0.getNode());
5477   }
5478 
5479   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5480   // divisors as a performance improvement, since rotating by 0 is a no-op.
5481   if (HadEvenDivisor) {
5482     // We need ROTR to do this.
5483     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5484       return SDValue();
5485     SDNodeFlags Flags;
5486     Flags.setExact(true);
5487     // SREM: (rotr (add (mul N, P), A), K)
5488     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5489     Created.push_back(Op0.getNode());
5490   }
5491 
5492   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5493   SDValue Fold =
5494       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5495                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5496 
5497   // If we didn't have lanes with INT_MIN divisor, then we're done.
5498   if (!HadIntMinDivisor)
5499     return Fold;
5500 
5501   // That fold is only valid for positive divisors. Which effectively means,
5502   // it is invalid for INT_MIN divisors. So if we have such a lane,
5503   // we must fix-up results for said lanes.
5504   assert(VT.isVector() && "Can/should only get here for vectors.");
5505 
5506   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5507       !isOperationLegalOrCustom(ISD::AND, VT) ||
5508       !isOperationLegalOrCustom(Cond, VT) ||
5509       !isOperationLegalOrCustom(ISD::VSELECT, VT))
5510     return SDValue();
5511 
5512   Created.push_back(Fold.getNode());
5513 
5514   SDValue IntMin = DAG.getConstant(
5515       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5516   SDValue IntMax = DAG.getConstant(
5517       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5518   SDValue Zero =
5519       DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5520 
5521   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5522   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5523   Created.push_back(DivisorIsIntMin.getNode());
5524 
5525   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
5526   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5527   Created.push_back(Masked.getNode());
5528   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5529   Created.push_back(MaskedIsZero.getNode());
5530 
5531   // To produce final result we need to blend 2 vectors: 'SetCC' and
5532   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5533   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5534   // constant-folded, select can get lowered to a shuffle with constant mask.
5535   SDValue Blended =
5536       DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5537 
5538   return Blended;
5539 }
5540 
5541 bool TargetLowering::
5542 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5543   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5544     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5545                                 "be a constant integer");
5546     return true;
5547   }
5548 
5549   return false;
5550 }
5551 
5552 TargetLowering::NegatibleCost
5553 TargetLowering::getNegatibleCost(SDValue Op, SelectionDAG &DAG,
5554                                  bool LegalOperations, bool ForCodeSize,
5555                                  unsigned Depth) const {
5556   // fneg is removable even if it has multiple uses.
5557   if (Op.getOpcode() == ISD::FNEG)
5558     return NegatibleCost::Cheaper;
5559 
5560   // Don't allow anything with multiple uses unless we know it is free.
5561   EVT VT = Op.getValueType();
5562   const SDNodeFlags Flags = Op->getFlags();
5563   const TargetOptions &Options = DAG.getTarget().Options;
5564   if (!Op.hasOneUse()) {
5565     bool IsFreeExtend = Op.getOpcode() == ISD::FP_EXTEND &&
5566                         isFPExtFree(VT, Op.getOperand(0).getValueType());
5567 
5568     // If we already have the use of the negated floating constant, it is free
5569     // to negate it even it has multiple uses.
5570     bool IsFreeConstant =
5571         Op.getOpcode() == ISD::ConstantFP &&
5572         !getNegatedExpression(Op, DAG, LegalOperations, ForCodeSize)
5573              .use_empty();
5574 
5575     if (!IsFreeExtend && !IsFreeConstant)
5576       return NegatibleCost::Expensive;
5577   }
5578 
5579   // Don't recurse exponentially.
5580   if (Depth > SelectionDAG::MaxRecursionDepth)
5581     return NegatibleCost::Expensive;
5582 
5583   switch (Op.getOpcode()) {
5584   case ISD::ConstantFP: {
5585     if (!LegalOperations)
5586       return NegatibleCost::Neutral;
5587 
5588     // Don't invert constant FP values after legalization unless the target says
5589     // the negated constant is legal.
5590     if (isOperationLegal(ISD::ConstantFP, VT) ||
5591         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
5592                      ForCodeSize))
5593       return NegatibleCost::Neutral;
5594     break;
5595   }
5596   case ISD::BUILD_VECTOR: {
5597     // Only permit BUILD_VECTOR of constants.
5598     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
5599           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
5600         }))
5601       return NegatibleCost::Expensive;
5602     if (!LegalOperations)
5603       return NegatibleCost::Neutral;
5604     if (isOperationLegal(ISD::ConstantFP, VT) &&
5605         isOperationLegal(ISD::BUILD_VECTOR, VT))
5606       return NegatibleCost::Neutral;
5607     if (llvm::all_of(Op->op_values(), [&](SDValue N) {
5608           return N.isUndef() ||
5609                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
5610                               ForCodeSize);
5611         }))
5612       return NegatibleCost::Neutral;
5613     break;
5614   }
5615   case ISD::FADD: {
5616     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5617       return NegatibleCost::Expensive;
5618 
5619     // After operation legalization, it might not be legal to create new FSUBs.
5620     if (LegalOperations && !isOperationLegalOrCustom(ISD::FSUB, VT))
5621       return NegatibleCost::Expensive;
5622 
5623     // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
5624     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5625                                         ForCodeSize, Depth + 1);
5626     if (V0 != NegatibleCost::Expensive)
5627       return V0;
5628     // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
5629     return getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, ForCodeSize,
5630                             Depth + 1);
5631   }
5632   case ISD::FSUB:
5633     // We can't turn -(A-B) into B-A when we honor signed zeros.
5634     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5635       return NegatibleCost::Expensive;
5636 
5637     // fold (fneg (fsub A, B)) -> (fsub B, A)
5638     return NegatibleCost::Neutral;
5639   case ISD::FMUL:
5640   case ISD::FDIV: {
5641     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
5642     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5643                                         ForCodeSize, Depth + 1);
5644     if (V0 != NegatibleCost::Expensive)
5645       return V0;
5646 
5647     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
5648     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
5649       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
5650         return NegatibleCost::Expensive;
5651 
5652     return getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, ForCodeSize,
5653                             Depth + 1);
5654   }
5655   case ISD::FMA:
5656   case ISD::FMAD: {
5657     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5658       return NegatibleCost::Expensive;
5659 
5660     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5661     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5662     NegatibleCost V2 = getNegatibleCost(Op.getOperand(2), DAG, LegalOperations,
5663                                         ForCodeSize, Depth + 1);
5664     if (NegatibleCost::Expensive == V2)
5665       return NegatibleCost::Expensive;
5666 
5667     // One of Op0/Op1 must be cheaply negatible, then select the cheapest.
5668     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5669                                         ForCodeSize, Depth + 1);
5670     NegatibleCost V1 = getNegatibleCost(Op.getOperand(1), DAG, LegalOperations,
5671                                         ForCodeSize, Depth + 1);
5672     NegatibleCost V01 = std::max(V0, V1);
5673     if (V01 == NegatibleCost::Expensive)
5674       return NegatibleCost::Expensive;
5675     return std::max(V01, V2);
5676   }
5677 
5678   case ISD::FP_EXTEND:
5679   case ISD::FP_ROUND:
5680   case ISD::FSIN:
5681     return getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, ForCodeSize,
5682                             Depth + 1);
5683   }
5684 
5685   return NegatibleCost::Expensive;
5686 }
5687 
5688 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
5689                                              bool LegalOperations,
5690                                              bool ForCodeSize,
5691                                              unsigned Depth) const {
5692   // fneg is removable even if it has multiple uses.
5693   if (Op.getOpcode() == ISD::FNEG)
5694     return Op.getOperand(0);
5695 
5696   assert(Depth <= SelectionDAG::MaxRecursionDepth &&
5697          "getNegatedExpression doesn't match getNegatibleCost");
5698   const SDNodeFlags Flags = Op->getFlags();
5699 
5700   switch (Op.getOpcode()) {
5701   case ISD::ConstantFP: {
5702     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
5703     V.changeSign();
5704     return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType());
5705   }
5706   case ISD::BUILD_VECTOR: {
5707     SmallVector<SDValue, 4> Ops;
5708     for (SDValue C : Op->op_values()) {
5709       if (C.isUndef()) {
5710         Ops.push_back(C);
5711         continue;
5712       }
5713       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
5714       V.changeSign();
5715       Ops.push_back(DAG.getConstantFP(V, SDLoc(Op), C.getValueType()));
5716     }
5717     return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Ops);
5718   }
5719   case ISD::FADD: {
5720     assert((DAG.getTarget().Options.NoSignedZerosFPMath ||
5721             Flags.hasNoSignedZeros()) &&
5722            "Expected NSZ fp-flag");
5723 
5724     // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
5725     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5726                                         ForCodeSize, Depth + 1);
5727     if (V0 != NegatibleCost::Expensive)
5728       return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5729                          getNegatedExpression(Op.getOperand(0), DAG,
5730                                               LegalOperations, ForCodeSize,
5731                                               Depth + 1),
5732                          Op.getOperand(1), Flags);
5733     // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
5734     return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5735                        getNegatedExpression(Op.getOperand(1), DAG,
5736                                             LegalOperations, ForCodeSize,
5737                                             Depth + 1),
5738                        Op.getOperand(0), Flags);
5739   }
5740   case ISD::FSUB:
5741     // fold (fneg (fsub 0, B)) -> B
5742     if (ConstantFPSDNode *N0CFP =
5743             isConstOrConstSplatFP(Op.getOperand(0), /*AllowUndefs*/ true))
5744       if (N0CFP->isZero())
5745         return Op.getOperand(1);
5746 
5747     // fold (fneg (fsub A, B)) -> (fsub B, A)
5748     return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5749                        Op.getOperand(1), Op.getOperand(0), Flags);
5750 
5751   case ISD::FMUL:
5752   case ISD::FDIV: {
5753     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
5754     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5755                                         ForCodeSize, Depth + 1);
5756     if (V0 != NegatibleCost::Expensive)
5757       return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5758                          getNegatedExpression(Op.getOperand(0), DAG,
5759                                               LegalOperations, ForCodeSize,
5760                                               Depth + 1),
5761                          Op.getOperand(1), Flags);
5762 
5763     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
5764     return DAG.getNode(
5765         Op.getOpcode(), SDLoc(Op), Op.getValueType(), Op.getOperand(0),
5766         getNegatedExpression(Op.getOperand(1), DAG, LegalOperations,
5767                              ForCodeSize, Depth + 1),
5768         Flags);
5769   }
5770   case ISD::FMA:
5771   case ISD::FMAD: {
5772     assert((DAG.getTarget().Options.NoSignedZerosFPMath ||
5773             Flags.hasNoSignedZeros()) &&
5774            "Expected NSZ fp-flag");
5775 
5776     SDValue Neg2 = getNegatedExpression(Op.getOperand(2), DAG, LegalOperations,
5777                                         ForCodeSize, Depth + 1);
5778 
5779     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5780                                         ForCodeSize, Depth + 1);
5781     NegatibleCost V1 = getNegatibleCost(Op.getOperand(1), DAG, LegalOperations,
5782                                         ForCodeSize, Depth + 1);
5783     if (V0 > V1) {
5784       // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5785       SDValue Neg0 = getNegatedExpression(
5786           Op.getOperand(0), DAG, LegalOperations, ForCodeSize, Depth + 1);
5787       return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Neg0,
5788                          Op.getOperand(1), Neg2, Flags);
5789     }
5790 
5791     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5792     SDValue Neg1 = getNegatedExpression(Op.getOperand(1), DAG, LegalOperations,
5793                                         ForCodeSize, Depth + 1);
5794     return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5795                        Op.getOperand(0), Neg1, Neg2, Flags);
5796   }
5797 
5798   case ISD::FP_EXTEND:
5799   case ISD::FSIN:
5800     return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5801                        getNegatedExpression(Op.getOperand(0), DAG,
5802                                             LegalOperations, ForCodeSize,
5803                                             Depth + 1));
5804   case ISD::FP_ROUND:
5805     return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(),
5806                        getNegatedExpression(Op.getOperand(0), DAG,
5807                                             LegalOperations, ForCodeSize,
5808                                             Depth + 1),
5809                        Op.getOperand(1));
5810   }
5811 
5812   llvm_unreachable("Unknown code");
5813 }
5814 
5815 //===----------------------------------------------------------------------===//
5816 // Legalization Utilities
5817 //===----------------------------------------------------------------------===//
5818 
5819 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
5820                                     SDValue LHS, SDValue RHS,
5821                                     SmallVectorImpl<SDValue> &Result,
5822                                     EVT HiLoVT, SelectionDAG &DAG,
5823                                     MulExpansionKind Kind, SDValue LL,
5824                                     SDValue LH, SDValue RL, SDValue RH) const {
5825   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
5826          Opcode == ISD::SMUL_LOHI);
5827 
5828   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
5829                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
5830   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
5831                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
5832   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5833                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
5834   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5835                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
5836 
5837   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
5838     return false;
5839 
5840   unsigned OuterBitSize = VT.getScalarSizeInBits();
5841   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
5842   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
5843   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
5844 
5845   // LL, LH, RL, and RH must be either all NULL or all set to a value.
5846   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
5847          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
5848 
5849   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
5850   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
5851                           bool Signed) -> bool {
5852     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
5853       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
5854       Hi = SDValue(Lo.getNode(), 1);
5855       return true;
5856     }
5857     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
5858       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
5859       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
5860       return true;
5861     }
5862     return false;
5863   };
5864 
5865   SDValue Lo, Hi;
5866 
5867   if (!LL.getNode() && !RL.getNode() &&
5868       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5869     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
5870     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
5871   }
5872 
5873   if (!LL.getNode())
5874     return false;
5875 
5876   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
5877   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
5878       DAG.MaskedValueIsZero(RHS, HighMask)) {
5879     // The inputs are both zero-extended.
5880     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
5881       Result.push_back(Lo);
5882       Result.push_back(Hi);
5883       if (Opcode != ISD::MUL) {
5884         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5885         Result.push_back(Zero);
5886         Result.push_back(Zero);
5887       }
5888       return true;
5889     }
5890   }
5891 
5892   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
5893       RHSSB > InnerBitSize) {
5894     // The input values are both sign-extended.
5895     // TODO non-MUL case?
5896     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
5897       Result.push_back(Lo);
5898       Result.push_back(Hi);
5899       return true;
5900     }
5901   }
5902 
5903   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
5904   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
5905   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
5906     // FIXME getShiftAmountTy does not always return a sensible result when VT
5907     // is an illegal type, and so the type may be too small to fit the shift
5908     // amount. Override it with i32. The shift will have to be legalized.
5909     ShiftAmountTy = MVT::i32;
5910   }
5911   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
5912 
5913   if (!LH.getNode() && !RH.getNode() &&
5914       isOperationLegalOrCustom(ISD::SRL, VT) &&
5915       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5916     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
5917     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
5918     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
5919     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
5920   }
5921 
5922   if (!LH.getNode())
5923     return false;
5924 
5925   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
5926     return false;
5927 
5928   Result.push_back(Lo);
5929 
5930   if (Opcode == ISD::MUL) {
5931     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
5932     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
5933     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
5934     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
5935     Result.push_back(Hi);
5936     return true;
5937   }
5938 
5939   // Compute the full width result.
5940   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
5941     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
5942     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5943     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
5944     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
5945   };
5946 
5947   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5948   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
5949     return false;
5950 
5951   // This is effectively the add part of a multiply-add of half-sized operands,
5952   // so it cannot overflow.
5953   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5954 
5955   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
5956     return false;
5957 
5958   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5959   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5960 
5961   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
5962                   isOperationLegalOrCustom(ISD::ADDE, VT));
5963   if (UseGlue)
5964     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
5965                        Merge(Lo, Hi));
5966   else
5967     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
5968                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
5969 
5970   SDValue Carry = Next.getValue(1);
5971   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5972   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5973 
5974   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
5975     return false;
5976 
5977   if (UseGlue)
5978     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
5979                      Carry);
5980   else
5981     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
5982                      Zero, Carry);
5983 
5984   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5985 
5986   if (Opcode == ISD::SMUL_LOHI) {
5987     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5988                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
5989     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
5990 
5991     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5992                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
5993     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
5994   }
5995 
5996   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5997   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5998   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5999   return true;
6000 }
6001 
6002 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6003                                SelectionDAG &DAG, MulExpansionKind Kind,
6004                                SDValue LL, SDValue LH, SDValue RL,
6005                                SDValue RH) const {
6006   SmallVector<SDValue, 2> Result;
6007   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
6008                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6009                            DAG, Kind, LL, LH, RL, RH);
6010   if (Ok) {
6011     assert(Result.size() == 2);
6012     Lo = Result[0];
6013     Hi = Result[1];
6014   }
6015   return Ok;
6016 }
6017 
6018 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
6019                                        SelectionDAG &DAG) const {
6020   EVT VT = Node->getValueType(0);
6021 
6022   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6023                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6024                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6025                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6026     return false;
6027 
6028   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6029   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6030   SDValue X = Node->getOperand(0);
6031   SDValue Y = Node->getOperand(1);
6032   SDValue Z = Node->getOperand(2);
6033 
6034   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6035   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6036   SDLoc DL(SDValue(Node, 0));
6037 
6038   EVT ShVT = Z.getValueType();
6039   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6040   SDValue Zero = DAG.getConstant(0, DL, ShVT);
6041 
6042   SDValue ShAmt;
6043   if (isPowerOf2_32(EltSizeInBits)) {
6044     SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6045     ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6046   } else {
6047     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6048   }
6049 
6050   SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6051   SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6052   SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6053   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6054 
6055   // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6056   // and that is undefined. We must compare and select to avoid UB.
6057   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
6058 
6059   // For fshl, 0-shift returns the 1st arg (X).
6060   // For fshr, 0-shift returns the 2nd arg (Y).
6061   SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
6062   Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
6063   return true;
6064 }
6065 
6066 // TODO: Merge with expandFunnelShift.
6067 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
6068                                SelectionDAG &DAG) const {
6069   EVT VT = Node->getValueType(0);
6070   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6071   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6072   SDValue Op0 = Node->getOperand(0);
6073   SDValue Op1 = Node->getOperand(1);
6074   SDLoc DL(SDValue(Node, 0));
6075 
6076   EVT ShVT = Op1.getValueType();
6077   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6078 
6079   // If a rotate in the other direction is legal, use it.
6080   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6081   if (isOperationLegal(RevRot, VT)) {
6082     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
6083     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6084     return true;
6085   }
6086 
6087   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6088                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6089                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6090                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6091                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6092     return false;
6093 
6094   // Otherwise,
6095   //   (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
6096   //   (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
6097   //
6098   assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
6099          "Expecting the type bitwidth to be a power of 2");
6100   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6101   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6102   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6103   SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
6104   SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6105   SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6106   Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
6107                        DAG.getNode(HsOpc, DL, VT, Op0, And1));
6108   return true;
6109 }
6110 
6111 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6112                                       SelectionDAG &DAG) const {
6113   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6114   SDValue Src = Node->getOperand(OpNo);
6115   EVT SrcVT = Src.getValueType();
6116   EVT DstVT = Node->getValueType(0);
6117   SDLoc dl(SDValue(Node, 0));
6118 
6119   // FIXME: Only f32 to i64 conversions are supported.
6120   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6121     return false;
6122 
6123   if (Node->isStrictFPOpcode())
6124     // When a NaN is converted to an integer a trap is allowed. We can't
6125     // use this expansion here because it would eliminate that trap. Other
6126     // traps are also allowed and cannot be eliminated. See
6127     // IEEE 754-2008 sec 5.8.
6128     return false;
6129 
6130   // Expand f32 -> i64 conversion
6131   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6132   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
6133   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6134   EVT IntVT = SrcVT.changeTypeToInteger();
6135   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6136 
6137   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6138   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6139   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6140   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6141   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6142   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6143 
6144   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6145 
6146   SDValue ExponentBits = DAG.getNode(
6147       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6148       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6149   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6150 
6151   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6152                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6153                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6154   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6155 
6156   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6157                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6158                           DAG.getConstant(0x00800000, dl, IntVT));
6159 
6160   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6161 
6162   R = DAG.getSelectCC(
6163       dl, Exponent, ExponentLoBit,
6164       DAG.getNode(ISD::SHL, dl, DstVT, R,
6165                   DAG.getZExtOrTrunc(
6166                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6167                       dl, IntShVT)),
6168       DAG.getNode(ISD::SRL, dl, DstVT, R,
6169                   DAG.getZExtOrTrunc(
6170                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6171                       dl, IntShVT)),
6172       ISD::SETGT);
6173 
6174   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6175                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6176 
6177   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6178                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6179   return true;
6180 }
6181 
6182 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6183                                       SDValue &Chain,
6184                                       SelectionDAG &DAG) const {
6185   SDLoc dl(SDValue(Node, 0));
6186   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6187   SDValue Src = Node->getOperand(OpNo);
6188 
6189   EVT SrcVT = Src.getValueType();
6190   EVT DstVT = Node->getValueType(0);
6191   EVT SetCCVT =
6192       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6193   EVT DstSetCCVT =
6194       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6195 
6196   // Only expand vector types if we have the appropriate vector bit operations.
6197   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6198                                                    ISD::FP_TO_SINT;
6199   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6200                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6201     return false;
6202 
6203   // If the maximum float value is smaller then the signed integer range,
6204   // the destination signmask can't be represented by the float, so we can
6205   // just use FP_TO_SINT directly.
6206   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6207   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
6208   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6209   if (APFloat::opOverflow &
6210       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6211     if (Node->isStrictFPOpcode()) {
6212       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6213                            { Node->getOperand(0), Src });
6214       Chain = Result.getValue(1);
6215     } else
6216       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6217     return true;
6218   }
6219 
6220   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6221   SDValue Sel;
6222 
6223   if (Node->isStrictFPOpcode()) {
6224     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6225                        Node->getOperand(0), /*IsSignaling*/ true);
6226     Chain = Sel.getValue(1);
6227   } else {
6228     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6229   }
6230 
6231   bool Strict = Node->isStrictFPOpcode() ||
6232                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6233 
6234   if (Strict) {
6235     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6236     // signmask then offset (the result of which should be fully representable).
6237     // Sel = Src < 0x8000000000000000
6238     // FltOfs = select Sel, 0, 0x8000000000000000
6239     // IntOfs = select Sel, 0, 0x8000000000000000
6240     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6241 
6242     // TODO: Should any fast-math-flags be set for the FSUB?
6243     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6244                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6245     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6246     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6247                                    DAG.getConstant(0, dl, DstVT),
6248                                    DAG.getConstant(SignMask, dl, DstVT));
6249     SDValue SInt;
6250     if (Node->isStrictFPOpcode()) {
6251       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6252                                 { Chain, Src, FltOfs });
6253       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6254                          { Val.getValue(1), Val });
6255       Chain = SInt.getValue(1);
6256     } else {
6257       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6258       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6259     }
6260     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6261   } else {
6262     // Expand based on maximum range of FP_TO_SINT:
6263     // True = fp_to_sint(Src)
6264     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6265     // Result = select (Src < 0x8000000000000000), True, False
6266 
6267     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6268     // TODO: Should any fast-math-flags be set for the FSUB?
6269     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6270                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6271     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6272                         DAG.getConstant(SignMask, dl, DstVT));
6273     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6274     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6275   }
6276   return true;
6277 }
6278 
6279 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6280                                       SDValue &Chain,
6281                                       SelectionDAG &DAG) const {
6282   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6283   SDValue Src = Node->getOperand(OpNo);
6284   EVT SrcVT = Src.getValueType();
6285   EVT DstVT = Node->getValueType(0);
6286 
6287   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6288     return false;
6289 
6290   // Only expand vector types if we have the appropriate vector bit operations.
6291   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6292                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6293                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6294                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6295                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6296     return false;
6297 
6298   SDLoc dl(SDValue(Node, 0));
6299   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6300 
6301   // Implementation of unsigned i64 to f64 following the algorithm in
6302   // __floatundidf in compiler_rt. This implementation has the advantage
6303   // of performing rounding correctly, both in the default rounding mode
6304   // and in all alternate rounding modes.
6305   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6306   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6307       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6308   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6309   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6310   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6311 
6312   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6313   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6314   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6315   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6316   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6317   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6318   if (Node->isStrictFPOpcode()) {
6319     SDValue HiSub =
6320         DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other},
6321                     {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52});
6322     Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other},
6323                          {HiSub.getValue(1), LoFlt, HiSub});
6324     Chain = Result.getValue(1);
6325   } else {
6326     SDValue HiSub =
6327         DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6328     Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6329   }
6330   return true;
6331 }
6332 
6333 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6334                                               SelectionDAG &DAG) const {
6335   SDLoc dl(Node);
6336   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6337     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6338   EVT VT = Node->getValueType(0);
6339   if (isOperationLegalOrCustom(NewOp, VT)) {
6340     SDValue Quiet0 = Node->getOperand(0);
6341     SDValue Quiet1 = Node->getOperand(1);
6342 
6343     if (!Node->getFlags().hasNoNaNs()) {
6344       // Insert canonicalizes if it's possible we need to quiet to get correct
6345       // sNaN behavior.
6346       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6347         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6348                              Node->getFlags());
6349       }
6350       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6351         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6352                              Node->getFlags());
6353       }
6354     }
6355 
6356     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6357   }
6358 
6359   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6360   // instead if there are no NaNs.
6361   if (Node->getFlags().hasNoNaNs()) {
6362     unsigned IEEE2018Op =
6363         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6364     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6365       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6366                          Node->getOperand(1), Node->getFlags());
6367     }
6368   }
6369 
6370   // If none of the above worked, but there are no NaNs, then expand to
6371   // a compare/select sequence.  This is required for correctness since
6372   // InstCombine might have canonicalized a fcmp+select sequence to a
6373   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
6374   // expansion to libcall, we might introduce a link-time dependency
6375   // on libm into a file that originally did not have one.
6376   if (Node->getFlags().hasNoNaNs()) {
6377     ISD::CondCode Pred =
6378         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
6379     SDValue Op1 = Node->getOperand(0);
6380     SDValue Op2 = Node->getOperand(1);
6381     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
6382     // Copy FMF flags, but always set the no-signed-zeros flag
6383     // as this is implied by the FMINNUM/FMAXNUM semantics.
6384     SDNodeFlags Flags = Node->getFlags();
6385     Flags.setNoSignedZeros(true);
6386     SelCC->setFlags(Flags);
6387     return SelCC;
6388   }
6389 
6390   return SDValue();
6391 }
6392 
6393 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
6394                                  SelectionDAG &DAG) const {
6395   SDLoc dl(Node);
6396   EVT VT = Node->getValueType(0);
6397   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6398   SDValue Op = Node->getOperand(0);
6399   unsigned Len = VT.getScalarSizeInBits();
6400   assert(VT.isInteger() && "CTPOP not implemented for this type.");
6401 
6402   // TODO: Add support for irregular type lengths.
6403   if (!(Len <= 128 && Len % 8 == 0))
6404     return false;
6405 
6406   // Only expand vector types if we have the appropriate vector bit operations.
6407   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
6408                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6409                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6410                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
6411                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6412     return false;
6413 
6414   // This is the "best" algorithm from
6415   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
6416   SDValue Mask55 =
6417       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
6418   SDValue Mask33 =
6419       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
6420   SDValue Mask0F =
6421       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
6422   SDValue Mask01 =
6423       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
6424 
6425   // v = v - ((v >> 1) & 0x55555555...)
6426   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
6427                    DAG.getNode(ISD::AND, dl, VT,
6428                                DAG.getNode(ISD::SRL, dl, VT, Op,
6429                                            DAG.getConstant(1, dl, ShVT)),
6430                                Mask55));
6431   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
6432   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
6433                    DAG.getNode(ISD::AND, dl, VT,
6434                                DAG.getNode(ISD::SRL, dl, VT, Op,
6435                                            DAG.getConstant(2, dl, ShVT)),
6436                                Mask33));
6437   // v = (v + (v >> 4)) & 0x0F0F0F0F...
6438   Op = DAG.getNode(ISD::AND, dl, VT,
6439                    DAG.getNode(ISD::ADD, dl, VT, Op,
6440                                DAG.getNode(ISD::SRL, dl, VT, Op,
6441                                            DAG.getConstant(4, dl, ShVT))),
6442                    Mask0F);
6443   // v = (v * 0x01010101...) >> (Len - 8)
6444   if (Len > 8)
6445     Op =
6446         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
6447                     DAG.getConstant(Len - 8, dl, ShVT));
6448 
6449   Result = Op;
6450   return true;
6451 }
6452 
6453 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
6454                                 SelectionDAG &DAG) const {
6455   SDLoc dl(Node);
6456   EVT VT = Node->getValueType(0);
6457   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6458   SDValue Op = Node->getOperand(0);
6459   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6460 
6461   // If the non-ZERO_UNDEF version is supported we can use that instead.
6462   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
6463       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
6464     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
6465     return true;
6466   }
6467 
6468   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6469   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
6470     EVT SetCCVT =
6471         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6472     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
6473     SDValue Zero = DAG.getConstant(0, dl, VT);
6474     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6475     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6476                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
6477     return true;
6478   }
6479 
6480   // Only expand vector types if we have the appropriate vector bit operations.
6481   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6482                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
6483                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6484                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6485     return false;
6486 
6487   // for now, we do this:
6488   // x = x | (x >> 1);
6489   // x = x | (x >> 2);
6490   // ...
6491   // x = x | (x >>16);
6492   // x = x | (x >>32); // for 64-bit input
6493   // return popcount(~x);
6494   //
6495   // Ref: "Hacker's Delight" by Henry Warren
6496   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
6497     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
6498     Op = DAG.getNode(ISD::OR, dl, VT, Op,
6499                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
6500   }
6501   Op = DAG.getNOT(dl, Op, VT);
6502   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
6503   return true;
6504 }
6505 
6506 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
6507                                 SelectionDAG &DAG) const {
6508   SDLoc dl(Node);
6509   EVT VT = Node->getValueType(0);
6510   SDValue Op = Node->getOperand(0);
6511   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6512 
6513   // If the non-ZERO_UNDEF version is supported we can use that instead.
6514   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
6515       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
6516     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
6517     return true;
6518   }
6519 
6520   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6521   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
6522     EVT SetCCVT =
6523         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6524     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
6525     SDValue Zero = DAG.getConstant(0, dl, VT);
6526     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6527     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6528                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
6529     return true;
6530   }
6531 
6532   // Only expand vector types if we have the appropriate vector bit operations.
6533   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6534                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
6535                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
6536                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6537                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
6538                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6539     return false;
6540 
6541   // for now, we use: { return popcount(~x & (x - 1)); }
6542   // unless the target has ctlz but not ctpop, in which case we use:
6543   // { return 32 - nlz(~x & (x-1)); }
6544   // Ref: "Hacker's Delight" by Henry Warren
6545   SDValue Tmp = DAG.getNode(
6546       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
6547       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
6548 
6549   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6550   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
6551     Result =
6552         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
6553                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
6554     return true;
6555   }
6556 
6557   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
6558   return true;
6559 }
6560 
6561 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
6562                                SelectionDAG &DAG) const {
6563   SDLoc dl(N);
6564   EVT VT = N->getValueType(0);
6565   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6566   SDValue Op = N->getOperand(0);
6567 
6568   // Only expand vector types if we have the appropriate vector operations.
6569   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
6570                         !isOperationLegalOrCustom(ISD::ADD, VT) ||
6571                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6572     return false;
6573 
6574   SDValue Shift =
6575       DAG.getNode(ISD::SRA, dl, VT, Op,
6576                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
6577   SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
6578   Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
6579   return true;
6580 }
6581 
6582 std::pair<SDValue, SDValue>
6583 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
6584                                     SelectionDAG &DAG) const {
6585   SDLoc SL(LD);
6586   SDValue Chain = LD->getChain();
6587   SDValue BasePTR = LD->getBasePtr();
6588   EVT SrcVT = LD->getMemoryVT();
6589   EVT DstVT = LD->getValueType(0);
6590   ISD::LoadExtType ExtType = LD->getExtensionType();
6591 
6592   unsigned NumElem = SrcVT.getVectorNumElements();
6593 
6594   EVT SrcEltVT = SrcVT.getScalarType();
6595   EVT DstEltVT = DstVT.getScalarType();
6596 
6597   // A vector must always be stored in memory as-is, i.e. without any padding
6598   // between the elements, since various code depend on it, e.g. in the
6599   // handling of a bitcast of a vector type to int, which may be done with a
6600   // vector store followed by an integer load. A vector that does not have
6601   // elements that are byte-sized must therefore be stored as an integer
6602   // built out of the extracted vector elements.
6603   if (!SrcEltVT.isByteSized()) {
6604     unsigned NumBits = SrcVT.getSizeInBits();
6605     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
6606 
6607     SDValue Load = DAG.getLoad(IntVT, SL, Chain, BasePTR, LD->getPointerInfo(),
6608                                LD->getAlignment(),
6609                                LD->getMemOperand()->getFlags(),
6610                                LD->getAAInfo());
6611 
6612     SmallVector<SDValue, 8> Vals;
6613     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6614       unsigned ShiftIntoIdx =
6615           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6616       SDValue ShiftAmount =
6617           DAG.getConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), SL, IntVT);
6618       SDValue ShiftedElt =
6619           DAG.getNode(ISD::SRL, SL, IntVT, Load, ShiftAmount);
6620       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, ShiftedElt);
6621       if (ExtType != ISD::NON_EXTLOAD) {
6622         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
6623         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
6624       }
6625       Vals.push_back(Scalar);
6626     }
6627 
6628     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
6629     return std::make_pair(Value, Load.getValue(1));
6630   }
6631 
6632   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
6633   assert(SrcEltVT.isByteSized());
6634 
6635   SmallVector<SDValue, 8> Vals;
6636   SmallVector<SDValue, 8> LoadChains;
6637 
6638   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6639     SDValue ScalarLoad =
6640         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
6641                        LD->getPointerInfo().getWithOffset(Idx * Stride),
6642                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
6643                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6644 
6645     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
6646 
6647     Vals.push_back(ScalarLoad.getValue(0));
6648     LoadChains.push_back(ScalarLoad.getValue(1));
6649   }
6650 
6651   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
6652   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
6653 
6654   return std::make_pair(Value, NewChain);
6655 }
6656 
6657 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
6658                                              SelectionDAG &DAG) const {
6659   SDLoc SL(ST);
6660 
6661   SDValue Chain = ST->getChain();
6662   SDValue BasePtr = ST->getBasePtr();
6663   SDValue Value = ST->getValue();
6664   EVT StVT = ST->getMemoryVT();
6665 
6666   // The type of the data we want to save
6667   EVT RegVT = Value.getValueType();
6668   EVT RegSclVT = RegVT.getScalarType();
6669 
6670   // The type of data as saved in memory.
6671   EVT MemSclVT = StVT.getScalarType();
6672 
6673   unsigned NumElem = StVT.getVectorNumElements();
6674 
6675   // A vector must always be stored in memory as-is, i.e. without any padding
6676   // between the elements, since various code depend on it, e.g. in the
6677   // handling of a bitcast of a vector type to int, which may be done with a
6678   // vector store followed by an integer load. A vector that does not have
6679   // elements that are byte-sized must therefore be stored as an integer
6680   // built out of the extracted vector elements.
6681   if (!MemSclVT.isByteSized()) {
6682     unsigned NumBits = StVT.getSizeInBits();
6683     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
6684 
6685     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
6686 
6687     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6688       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6689                                 DAG.getVectorIdxConstant(Idx, SL));
6690       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
6691       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
6692       unsigned ShiftIntoIdx =
6693           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6694       SDValue ShiftAmount =
6695           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
6696       SDValue ShiftedElt =
6697           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
6698       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
6699     }
6700 
6701     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
6702                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
6703                         ST->getAAInfo());
6704   }
6705 
6706   // Store Stride in bytes
6707   unsigned Stride = MemSclVT.getSizeInBits() / 8;
6708   assert(Stride && "Zero stride!");
6709   // Extract each of the elements from the original vector and save them into
6710   // memory individually.
6711   SmallVector<SDValue, 8> Stores;
6712   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6713     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6714                               DAG.getVectorIdxConstant(Idx, SL));
6715 
6716     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
6717 
6718     // This scalar TruncStore may be illegal, but we legalize it later.
6719     SDValue Store = DAG.getTruncStore(
6720         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
6721         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
6722         ST->getMemOperand()->getFlags(), ST->getAAInfo());
6723 
6724     Stores.push_back(Store);
6725   }
6726 
6727   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
6728 }
6729 
6730 std::pair<SDValue, SDValue>
6731 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
6732   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
6733          "unaligned indexed loads not implemented!");
6734   SDValue Chain = LD->getChain();
6735   SDValue Ptr = LD->getBasePtr();
6736   EVT VT = LD->getValueType(0);
6737   EVT LoadedVT = LD->getMemoryVT();
6738   SDLoc dl(LD);
6739   auto &MF = DAG.getMachineFunction();
6740 
6741   if (VT.isFloatingPoint() || VT.isVector()) {
6742     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
6743     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
6744       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
6745           LoadedVT.isVector()) {
6746         // Scalarize the load and let the individual components be handled.
6747         return scalarizeVectorLoad(LD, DAG);
6748       }
6749 
6750       // Expand to a (misaligned) integer load of the same size,
6751       // then bitconvert to floating point or vector.
6752       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
6753                                     LD->getMemOperand());
6754       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
6755       if (LoadedVT != VT)
6756         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
6757                              ISD::ANY_EXTEND, dl, VT, Result);
6758 
6759       return std::make_pair(Result, newLoad.getValue(1));
6760     }
6761 
6762     // Copy the value to a (aligned) stack slot using (unaligned) integer
6763     // loads and stores, then do a (aligned) load from the stack slot.
6764     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
6765     unsigned LoadedBytes = LoadedVT.getStoreSize();
6766     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6767     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
6768 
6769     // Make sure the stack slot is also aligned for the register type.
6770     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
6771     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
6772     SmallVector<SDValue, 8> Stores;
6773     SDValue StackPtr = StackBase;
6774     unsigned Offset = 0;
6775 
6776     EVT PtrVT = Ptr.getValueType();
6777     EVT StackPtrVT = StackPtr.getValueType();
6778 
6779     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6780     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6781 
6782     // Do all but one copies using the full register width.
6783     for (unsigned i = 1; i < NumRegs; i++) {
6784       // Load one integer register's worth from the original location.
6785       SDValue Load = DAG.getLoad(
6786           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
6787           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
6788           LD->getAAInfo());
6789       // Follow the load with a store to the stack slot.  Remember the store.
6790       Stores.push_back(DAG.getStore(
6791           Load.getValue(1), dl, Load, StackPtr,
6792           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
6793       // Increment the pointers.
6794       Offset += RegBytes;
6795 
6796       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6797       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6798     }
6799 
6800     // The last copy may be partial.  Do an extending load.
6801     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
6802                                   8 * (LoadedBytes - Offset));
6803     SDValue Load =
6804         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
6805                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
6806                        MinAlign(LD->getAlignment(), Offset),
6807                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6808     // Follow the load with a store to the stack slot.  Remember the store.
6809     // On big-endian machines this requires a truncating store to ensure
6810     // that the bits end up in the right place.
6811     Stores.push_back(DAG.getTruncStore(
6812         Load.getValue(1), dl, Load, StackPtr,
6813         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
6814 
6815     // The order of the stores doesn't matter - say it with a TokenFactor.
6816     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6817 
6818     // Finally, perform the original load only redirected to the stack slot.
6819     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
6820                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
6821                           LoadedVT);
6822 
6823     // Callers expect a MERGE_VALUES node.
6824     return std::make_pair(Load, TF);
6825   }
6826 
6827   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
6828          "Unaligned load of unsupported type.");
6829 
6830   // Compute the new VT that is half the size of the old one.  This is an
6831   // integer MVT.
6832   unsigned NumBits = LoadedVT.getSizeInBits();
6833   EVT NewLoadedVT;
6834   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
6835   NumBits >>= 1;
6836 
6837   unsigned Alignment = LD->getAlignment();
6838   unsigned IncrementSize = NumBits / 8;
6839   ISD::LoadExtType HiExtType = LD->getExtensionType();
6840 
6841   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
6842   if (HiExtType == ISD::NON_EXTLOAD)
6843     HiExtType = ISD::ZEXTLOAD;
6844 
6845   // Load the value in two parts
6846   SDValue Lo, Hi;
6847   if (DAG.getDataLayout().isLittleEndian()) {
6848     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6849                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6850                         LD->getAAInfo());
6851 
6852     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6853     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
6854                         LD->getPointerInfo().getWithOffset(IncrementSize),
6855                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6856                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6857   } else {
6858     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6859                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6860                         LD->getAAInfo());
6861 
6862     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6863     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
6864                         LD->getPointerInfo().getWithOffset(IncrementSize),
6865                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6866                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6867   }
6868 
6869   // aggregate the two parts
6870   SDValue ShiftAmount =
6871       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
6872                                                     DAG.getDataLayout()));
6873   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
6874   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
6875 
6876   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
6877                              Hi.getValue(1));
6878 
6879   return std::make_pair(Result, TF);
6880 }
6881 
6882 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
6883                                              SelectionDAG &DAG) const {
6884   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
6885          "unaligned indexed stores not implemented!");
6886   SDValue Chain = ST->getChain();
6887   SDValue Ptr = ST->getBasePtr();
6888   SDValue Val = ST->getValue();
6889   EVT VT = Val.getValueType();
6890   int Alignment = ST->getAlignment();
6891   auto &MF = DAG.getMachineFunction();
6892   EVT StoreMemVT = ST->getMemoryVT();
6893 
6894   SDLoc dl(ST);
6895   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
6896     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
6897     if (isTypeLegal(intVT)) {
6898       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
6899           StoreMemVT.isVector()) {
6900         // Scalarize the store and let the individual components be handled.
6901         SDValue Result = scalarizeVectorStore(ST, DAG);
6902         return Result;
6903       }
6904       // Expand to a bitconvert of the value to the integer type of the
6905       // same size, then a (misaligned) int store.
6906       // FIXME: Does not handle truncating floating point stores!
6907       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
6908       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
6909                             Alignment, ST->getMemOperand()->getFlags());
6910       return Result;
6911     }
6912     // Do a (aligned) store to a stack slot, then copy from the stack slot
6913     // to the final destination using (unaligned) integer loads and stores.
6914     MVT RegVT = getRegisterType(
6915         *DAG.getContext(),
6916         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
6917     EVT PtrVT = Ptr.getValueType();
6918     unsigned StoredBytes = StoreMemVT.getStoreSize();
6919     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6920     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
6921 
6922     // Make sure the stack slot is also aligned for the register type.
6923     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
6924     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
6925 
6926     // Perform the original store, only redirected to the stack slot.
6927     SDValue Store = DAG.getTruncStore(
6928         Chain, dl, Val, StackPtr,
6929         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
6930 
6931     EVT StackPtrVT = StackPtr.getValueType();
6932 
6933     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6934     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6935     SmallVector<SDValue, 8> Stores;
6936     unsigned Offset = 0;
6937 
6938     // Do all but one copies using the full register width.
6939     for (unsigned i = 1; i < NumRegs; i++) {
6940       // Load one integer register's worth from the stack slot.
6941       SDValue Load = DAG.getLoad(
6942           RegVT, dl, Store, StackPtr,
6943           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
6944       // Store it to the final location.  Remember the store.
6945       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
6946                                     ST->getPointerInfo().getWithOffset(Offset),
6947                                     MinAlign(ST->getAlignment(), Offset),
6948                                     ST->getMemOperand()->getFlags()));
6949       // Increment the pointers.
6950       Offset += RegBytes;
6951       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6952       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6953     }
6954 
6955     // The last store may be partial.  Do a truncating store.  On big-endian
6956     // machines this requires an extending load from the stack slot to ensure
6957     // that the bits are in the right place.
6958     EVT LoadMemVT =
6959         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
6960 
6961     // Load from the stack slot.
6962     SDValue Load = DAG.getExtLoad(
6963         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
6964         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
6965 
6966     Stores.push_back(
6967         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
6968                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
6969                           MinAlign(ST->getAlignment(), Offset),
6970                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
6971     // The order of the stores doesn't matter - say it with a TokenFactor.
6972     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6973     return Result;
6974   }
6975 
6976   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
6977          "Unaligned store of unknown type.");
6978   // Get the half-size VT
6979   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
6980   int NumBits = NewStoredVT.getSizeInBits();
6981   int IncrementSize = NumBits / 8;
6982 
6983   // Divide the stored value in two parts.
6984   SDValue ShiftAmount = DAG.getConstant(
6985       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
6986   SDValue Lo = Val;
6987   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
6988 
6989   // Store the two parts
6990   SDValue Store1, Store2;
6991   Store1 = DAG.getTruncStore(Chain, dl,
6992                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
6993                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
6994                              ST->getMemOperand()->getFlags());
6995 
6996   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6997   Alignment = MinAlign(Alignment, IncrementSize);
6998   Store2 = DAG.getTruncStore(
6999       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
7000       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
7001       ST->getMemOperand()->getFlags(), ST->getAAInfo());
7002 
7003   SDValue Result =
7004       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
7005   return Result;
7006 }
7007 
7008 SDValue
7009 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
7010                                        const SDLoc &DL, EVT DataVT,
7011                                        SelectionDAG &DAG,
7012                                        bool IsCompressedMemory) const {
7013   SDValue Increment;
7014   EVT AddrVT = Addr.getValueType();
7015   EVT MaskVT = Mask.getValueType();
7016   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
7017          "Incompatible types of Data and Mask");
7018   if (IsCompressedMemory) {
7019     // Incrementing the pointer according to number of '1's in the mask.
7020     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7021     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7022     if (MaskIntVT.getSizeInBits() < 32) {
7023       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7024       MaskIntVT = MVT::i32;
7025     }
7026 
7027     // Count '1's with POPCNT.
7028     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7029     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7030     // Scale is an element size in bytes.
7031     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7032                                     AddrVT);
7033     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7034   } else
7035     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7036 
7037   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7038 }
7039 
7040 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
7041                                        SDValue Idx,
7042                                        EVT VecVT,
7043                                        const SDLoc &dl) {
7044   if (isa<ConstantSDNode>(Idx))
7045     return Idx;
7046 
7047   EVT IdxVT = Idx.getValueType();
7048   unsigned NElts = VecVT.getVectorNumElements();
7049   if (isPowerOf2_32(NElts)) {
7050     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
7051                                      Log2_32(NElts));
7052     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7053                        DAG.getConstant(Imm, dl, IdxVT));
7054   }
7055 
7056   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7057                      DAG.getConstant(NElts - 1, dl, IdxVT));
7058 }
7059 
7060 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7061                                                 SDValue VecPtr, EVT VecVT,
7062                                                 SDValue Index) const {
7063   SDLoc dl(Index);
7064   // Make sure the index type is big enough to compute in.
7065   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7066 
7067   EVT EltVT = VecVT.getVectorElementType();
7068 
7069   // Calculate the element offset and add it to the pointer.
7070   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
7071   assert(EltSize * 8 == EltVT.getSizeInBits() &&
7072          "Converting bits to bytes lost precision");
7073 
7074   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
7075 
7076   EVT IdxVT = Index.getValueType();
7077 
7078   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7079                       DAG.getConstant(EltSize, dl, IdxVT));
7080   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7081 }
7082 
7083 //===----------------------------------------------------------------------===//
7084 // Implementation of Emulated TLS Model
7085 //===----------------------------------------------------------------------===//
7086 
7087 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7088                                                 SelectionDAG &DAG) const {
7089   // Access to address of TLS varialbe xyz is lowered to a function call:
7090   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7091   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7092   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7093   SDLoc dl(GA);
7094 
7095   ArgListTy Args;
7096   ArgListEntry Entry;
7097   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7098   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7099   StringRef EmuTlsVarName(NameString);
7100   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7101   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7102   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7103   Entry.Ty = VoidPtrType;
7104   Args.push_back(Entry);
7105 
7106   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7107 
7108   TargetLowering::CallLoweringInfo CLI(DAG);
7109   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7110   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7111   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7112 
7113   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7114   // At last for X86 targets, maybe good for other targets too?
7115   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7116   MFI.setAdjustsStack(true); // Is this only for X86 target?
7117   MFI.setHasCalls(true);
7118 
7119   assert((GA->getOffset() == 0) &&
7120          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7121   return CallResult.first;
7122 }
7123 
7124 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7125                                                 SelectionDAG &DAG) const {
7126   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7127   if (!isCtlzFast())
7128     return SDValue();
7129   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7130   SDLoc dl(Op);
7131   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7132     if (C->isNullValue() && CC == ISD::SETEQ) {
7133       EVT VT = Op.getOperand(0).getValueType();
7134       SDValue Zext = Op.getOperand(0);
7135       if (VT.bitsLT(MVT::i32)) {
7136         VT = MVT::i32;
7137         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7138       }
7139       unsigned Log2b = Log2_32(VT.getSizeInBits());
7140       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7141       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7142                                 DAG.getConstant(Log2b, dl, MVT::i32));
7143       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7144     }
7145   }
7146   return SDValue();
7147 }
7148 
7149 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
7150   unsigned Opcode = Node->getOpcode();
7151   SDValue LHS = Node->getOperand(0);
7152   SDValue RHS = Node->getOperand(1);
7153   EVT VT = LHS.getValueType();
7154   SDLoc dl(Node);
7155 
7156   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7157   assert(VT.isInteger() && "Expected operands to be integers");
7158 
7159   // usub.sat(a, b) -> umax(a, b) - b
7160   if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
7161     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
7162     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
7163   }
7164 
7165   if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
7166     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
7167     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
7168     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
7169   }
7170 
7171   unsigned OverflowOp;
7172   switch (Opcode) {
7173   case ISD::SADDSAT:
7174     OverflowOp = ISD::SADDO;
7175     break;
7176   case ISD::UADDSAT:
7177     OverflowOp = ISD::UADDO;
7178     break;
7179   case ISD::SSUBSAT:
7180     OverflowOp = ISD::SSUBO;
7181     break;
7182   case ISD::USUBSAT:
7183     OverflowOp = ISD::USUBO;
7184     break;
7185   default:
7186     llvm_unreachable("Expected method to receive signed or unsigned saturation "
7187                      "addition or subtraction node.");
7188   }
7189 
7190   unsigned BitWidth = LHS.getScalarValueSizeInBits();
7191   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7192   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
7193                                LHS, RHS);
7194   SDValue SumDiff = Result.getValue(0);
7195   SDValue Overflow = Result.getValue(1);
7196   SDValue Zero = DAG.getConstant(0, dl, VT);
7197   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
7198 
7199   if (Opcode == ISD::UADDSAT) {
7200     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7201       // (LHS + RHS) | OverflowMask
7202       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7203       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
7204     }
7205     // Overflow ? 0xffff.... : (LHS + RHS)
7206     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
7207   } else if (Opcode == ISD::USUBSAT) {
7208     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7209       // (LHS - RHS) & ~OverflowMask
7210       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7211       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
7212       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
7213     }
7214     // Overflow ? 0 : (LHS - RHS)
7215     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
7216   } else {
7217     // SatMax -> Overflow && SumDiff < 0
7218     // SatMin -> Overflow && SumDiff >= 0
7219     APInt MinVal = APInt::getSignedMinValue(BitWidth);
7220     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
7221     SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7222     SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7223     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
7224     Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
7225     return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
7226   }
7227 }
7228 
7229 SDValue
7230 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
7231   assert((Node->getOpcode() == ISD::SMULFIX ||
7232           Node->getOpcode() == ISD::UMULFIX ||
7233           Node->getOpcode() == ISD::SMULFIXSAT ||
7234           Node->getOpcode() == ISD::UMULFIXSAT) &&
7235          "Expected a fixed point multiplication opcode");
7236 
7237   SDLoc dl(Node);
7238   SDValue LHS = Node->getOperand(0);
7239   SDValue RHS = Node->getOperand(1);
7240   EVT VT = LHS.getValueType();
7241   unsigned Scale = Node->getConstantOperandVal(2);
7242   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
7243                      Node->getOpcode() == ISD::UMULFIXSAT);
7244   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
7245                  Node->getOpcode() == ISD::SMULFIXSAT);
7246   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7247   unsigned VTSize = VT.getScalarSizeInBits();
7248 
7249   if (!Scale) {
7250     // [us]mul.fix(a, b, 0) -> mul(a, b)
7251     if (!Saturating) {
7252       if (isOperationLegalOrCustom(ISD::MUL, VT))
7253         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7254     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
7255       SDValue Result =
7256           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7257       SDValue Product = Result.getValue(0);
7258       SDValue Overflow = Result.getValue(1);
7259       SDValue Zero = DAG.getConstant(0, dl, VT);
7260 
7261       APInt MinVal = APInt::getSignedMinValue(VTSize);
7262       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
7263       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7264       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7265       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
7266       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
7267       return DAG.getSelect(dl, VT, Overflow, Result, Product);
7268     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
7269       SDValue Result =
7270           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7271       SDValue Product = Result.getValue(0);
7272       SDValue Overflow = Result.getValue(1);
7273 
7274       APInt MaxVal = APInt::getMaxValue(VTSize);
7275       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7276       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
7277     }
7278   }
7279 
7280   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
7281          "Expected scale to be less than the number of bits if signed or at "
7282          "most the number of bits if unsigned.");
7283   assert(LHS.getValueType() == RHS.getValueType() &&
7284          "Expected both operands to be the same type");
7285 
7286   // Get the upper and lower bits of the result.
7287   SDValue Lo, Hi;
7288   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
7289   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
7290   if (isOperationLegalOrCustom(LoHiOp, VT)) {
7291     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
7292     Lo = Result.getValue(0);
7293     Hi = Result.getValue(1);
7294   } else if (isOperationLegalOrCustom(HiOp, VT)) {
7295     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7296     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
7297   } else if (VT.isVector()) {
7298     return SDValue();
7299   } else {
7300     report_fatal_error("Unable to expand fixed point multiplication.");
7301   }
7302 
7303   if (Scale == VTSize)
7304     // Result is just the top half since we'd be shifting by the width of the
7305     // operand. Overflow impossible so this works for both UMULFIX and
7306     // UMULFIXSAT.
7307     return Hi;
7308 
7309   // The result will need to be shifted right by the scale since both operands
7310   // are scaled. The result is given to us in 2 halves, so we only want part of
7311   // both in the result.
7312   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7313   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
7314                                DAG.getConstant(Scale, dl, ShiftTy));
7315   if (!Saturating)
7316     return Result;
7317 
7318   if (!Signed) {
7319     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
7320     // widened multiplication) aren't all zeroes.
7321 
7322     // Saturate to max if ((Hi >> Scale) != 0),
7323     // which is the same as if (Hi > ((1 << Scale) - 1))
7324     APInt MaxVal = APInt::getMaxValue(VTSize);
7325     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
7326                                       dl, VT);
7327     Result = DAG.getSelectCC(dl, Hi, LowMask,
7328                              DAG.getConstant(MaxVal, dl, VT), Result,
7329                              ISD::SETUGT);
7330 
7331     return Result;
7332   }
7333 
7334   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
7335   // widened multiplication) aren't all ones or all zeroes.
7336 
7337   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
7338   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
7339 
7340   if (Scale == 0) {
7341     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
7342                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
7343     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
7344     // Saturated to SatMin if wide product is negative, and SatMax if wide
7345     // product is positive ...
7346     SDValue Zero = DAG.getConstant(0, dl, VT);
7347     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
7348                                                ISD::SETLT);
7349     // ... but only if we overflowed.
7350     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
7351   }
7352 
7353   //  We handled Scale==0 above so all the bits to examine is in Hi.
7354 
7355   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
7356   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
7357   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
7358                                     dl, VT);
7359   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
7360   // Saturate to min if (Hi >> (Scale - 1)) < -1),
7361   // which is the same as if (HI < (-1 << (Scale - 1))
7362   SDValue HighMask =
7363       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
7364                       dl, VT);
7365   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
7366   return Result;
7367 }
7368 
7369 SDValue
7370 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
7371                                     SDValue LHS, SDValue RHS,
7372                                     unsigned Scale, SelectionDAG &DAG) const {
7373   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
7374           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
7375          "Expected a fixed point division opcode");
7376 
7377   EVT VT = LHS.getValueType();
7378   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
7379   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
7380   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7381 
7382   // If there is enough room in the type to upscale the LHS or downscale the
7383   // RHS before the division, we can perform it in this type without having to
7384   // resize. For signed operations, the LHS headroom is the number of
7385   // redundant sign bits, and for unsigned ones it is the number of zeroes.
7386   // The headroom for the RHS is the number of trailing zeroes.
7387   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
7388                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
7389   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
7390 
7391   // For signed saturating operations, we need to be able to detect true integer
7392   // division overflow; that is, when you have MIN / -EPS. However, this
7393   // is undefined behavior and if we emit divisions that could take such
7394   // values it may cause undesired behavior (arithmetic exceptions on x86, for
7395   // example).
7396   // Avoid this by requiring an extra bit so that we never get this case.
7397   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
7398   // signed saturating division, we need to emit a whopping 32-bit division.
7399   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
7400     return SDValue();
7401 
7402   unsigned LHSShift = std::min(LHSLead, Scale);
7403   unsigned RHSShift = Scale - LHSShift;
7404 
7405   // At this point, we know that if we shift the LHS up by LHSShift and the
7406   // RHS down by RHSShift, we can emit a regular division with a final scaling
7407   // factor of Scale.
7408 
7409   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7410   if (LHSShift)
7411     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
7412                       DAG.getConstant(LHSShift, dl, ShiftTy));
7413   if (RHSShift)
7414     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
7415                       DAG.getConstant(RHSShift, dl, ShiftTy));
7416 
7417   SDValue Quot;
7418   if (Signed) {
7419     // For signed operations, if the resulting quotient is negative and the
7420     // remainder is nonzero, subtract 1 from the quotient to round towards
7421     // negative infinity.
7422     SDValue Rem;
7423     // FIXME: Ideally we would always produce an SDIVREM here, but if the
7424     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
7425     // we couldn't just form a libcall, but the type legalizer doesn't do it.
7426     if (isTypeLegal(VT) &&
7427         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
7428       Quot = DAG.getNode(ISD::SDIVREM, dl,
7429                          DAG.getVTList(VT, VT),
7430                          LHS, RHS);
7431       Rem = Quot.getValue(1);
7432       Quot = Quot.getValue(0);
7433     } else {
7434       Quot = DAG.getNode(ISD::SDIV, dl, VT,
7435                          LHS, RHS);
7436       Rem = DAG.getNode(ISD::SREM, dl, VT,
7437                         LHS, RHS);
7438     }
7439     SDValue Zero = DAG.getConstant(0, dl, VT);
7440     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
7441     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
7442     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
7443     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
7444     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
7445                                DAG.getConstant(1, dl, VT));
7446     Quot = DAG.getSelect(dl, VT,
7447                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
7448                          Sub1, Quot);
7449   } else
7450     Quot = DAG.getNode(ISD::UDIV, dl, VT,
7451                        LHS, RHS);
7452 
7453   return Quot;
7454 }
7455 
7456 void TargetLowering::expandUADDSUBO(
7457     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7458   SDLoc dl(Node);
7459   SDValue LHS = Node->getOperand(0);
7460   SDValue RHS = Node->getOperand(1);
7461   bool IsAdd = Node->getOpcode() == ISD::UADDO;
7462 
7463   // If ADD/SUBCARRY is legal, use that instead.
7464   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
7465   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
7466     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
7467     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
7468                                     { LHS, RHS, CarryIn });
7469     Result = SDValue(NodeCarry.getNode(), 0);
7470     Overflow = SDValue(NodeCarry.getNode(), 1);
7471     return;
7472   }
7473 
7474   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7475                             LHS.getValueType(), LHS, RHS);
7476 
7477   EVT ResultType = Node->getValueType(1);
7478   EVT SetCCType = getSetCCResultType(
7479       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7480   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
7481   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
7482   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7483 }
7484 
7485 void TargetLowering::expandSADDSUBO(
7486     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7487   SDLoc dl(Node);
7488   SDValue LHS = Node->getOperand(0);
7489   SDValue RHS = Node->getOperand(1);
7490   bool IsAdd = Node->getOpcode() == ISD::SADDO;
7491 
7492   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7493                             LHS.getValueType(), LHS, RHS);
7494 
7495   EVT ResultType = Node->getValueType(1);
7496   EVT OType = getSetCCResultType(
7497       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7498 
7499   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
7500   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
7501   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
7502     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
7503     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
7504     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7505     return;
7506   }
7507 
7508   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
7509 
7510   // For an addition, the result should be less than one of the operands (LHS)
7511   // if and only if the other operand (RHS) is negative, otherwise there will
7512   // be overflow.
7513   // For a subtraction, the result should be less than one of the operands
7514   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
7515   // otherwise there will be overflow.
7516   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
7517   SDValue ConditionRHS =
7518       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
7519 
7520   Overflow = DAG.getBoolExtOrTrunc(
7521       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
7522       ResultType, ResultType);
7523 }
7524 
7525 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
7526                                 SDValue &Overflow, SelectionDAG &DAG) const {
7527   SDLoc dl(Node);
7528   EVT VT = Node->getValueType(0);
7529   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7530   SDValue LHS = Node->getOperand(0);
7531   SDValue RHS = Node->getOperand(1);
7532   bool isSigned = Node->getOpcode() == ISD::SMULO;
7533 
7534   // For power-of-two multiplications we can use a simpler shift expansion.
7535   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
7536     const APInt &C = RHSC->getAPIntValue();
7537     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
7538     if (C.isPowerOf2()) {
7539       // smulo(x, signed_min) is same as umulo(x, signed_min).
7540       bool UseArithShift = isSigned && !C.isMinSignedValue();
7541       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
7542       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
7543       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
7544       Overflow = DAG.getSetCC(dl, SetCCVT,
7545           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
7546                       dl, VT, Result, ShiftAmt),
7547           LHS, ISD::SETNE);
7548       return true;
7549     }
7550   }
7551 
7552   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
7553   if (VT.isVector())
7554     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
7555                               VT.getVectorNumElements());
7556 
7557   SDValue BottomHalf;
7558   SDValue TopHalf;
7559   static const unsigned Ops[2][3] =
7560       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
7561         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
7562   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
7563     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7564     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
7565   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
7566     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
7567                              RHS);
7568     TopHalf = BottomHalf.getValue(1);
7569   } else if (isTypeLegal(WideVT)) {
7570     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
7571     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
7572     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
7573     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
7574     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
7575         getShiftAmountTy(WideVT, DAG.getDataLayout()));
7576     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
7577                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
7578   } else {
7579     if (VT.isVector())
7580       return false;
7581 
7582     // We can fall back to a libcall with an illegal type for the MUL if we
7583     // have a libcall big enough.
7584     // Also, we can fall back to a division in some cases, but that's a big
7585     // performance hit in the general case.
7586     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
7587     if (WideVT == MVT::i16)
7588       LC = RTLIB::MUL_I16;
7589     else if (WideVT == MVT::i32)
7590       LC = RTLIB::MUL_I32;
7591     else if (WideVT == MVT::i64)
7592       LC = RTLIB::MUL_I64;
7593     else if (WideVT == MVT::i128)
7594       LC = RTLIB::MUL_I128;
7595     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
7596 
7597     SDValue HiLHS;
7598     SDValue HiRHS;
7599     if (isSigned) {
7600       // The high part is obtained by SRA'ing all but one of the bits of low
7601       // part.
7602       unsigned LoSize = VT.getSizeInBits();
7603       HiLHS =
7604           DAG.getNode(ISD::SRA, dl, VT, LHS,
7605                       DAG.getConstant(LoSize - 1, dl,
7606                                       getPointerTy(DAG.getDataLayout())));
7607       HiRHS =
7608           DAG.getNode(ISD::SRA, dl, VT, RHS,
7609                       DAG.getConstant(LoSize - 1, dl,
7610                                       getPointerTy(DAG.getDataLayout())));
7611     } else {
7612         HiLHS = DAG.getConstant(0, dl, VT);
7613         HiRHS = DAG.getConstant(0, dl, VT);
7614     }
7615 
7616     // Here we're passing the 2 arguments explicitly as 4 arguments that are
7617     // pre-lowered to the correct types. This all depends upon WideVT not
7618     // being a legal type for the architecture and thus has to be split to
7619     // two arguments.
7620     SDValue Ret;
7621     TargetLowering::MakeLibCallOptions CallOptions;
7622     CallOptions.setSExt(isSigned);
7623     CallOptions.setIsPostTypeLegalization(true);
7624     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
7625       // Halves of WideVT are packed into registers in different order
7626       // depending on platform endianness. This is usually handled by
7627       // the C calling convention, but we can't defer to it in
7628       // the legalizer.
7629       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
7630       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7631     } else {
7632       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
7633       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7634     }
7635     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
7636            "Ret value is a collection of constituent nodes holding result.");
7637     if (DAG.getDataLayout().isLittleEndian()) {
7638       // Same as above.
7639       BottomHalf = Ret.getOperand(0);
7640       TopHalf = Ret.getOperand(1);
7641     } else {
7642       BottomHalf = Ret.getOperand(1);
7643       TopHalf = Ret.getOperand(0);
7644     }
7645   }
7646 
7647   Result = BottomHalf;
7648   if (isSigned) {
7649     SDValue ShiftAmt = DAG.getConstant(
7650         VT.getScalarSizeInBits() - 1, dl,
7651         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
7652     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
7653     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
7654   } else {
7655     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
7656                             DAG.getConstant(0, dl, VT), ISD::SETNE);
7657   }
7658 
7659   // Truncate the result if SetCC returns a larger type than needed.
7660   EVT RType = Node->getValueType(1);
7661   if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
7662     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
7663 
7664   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
7665          "Unexpected result type for S/UMULO legalization");
7666   return true;
7667 }
7668 
7669 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
7670   SDLoc dl(Node);
7671   bool NoNaN = Node->getFlags().hasNoNaNs();
7672   unsigned BaseOpcode = 0;
7673   switch (Node->getOpcode()) {
7674   default: llvm_unreachable("Expected VECREDUCE opcode");
7675   case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
7676   case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
7677   case ISD::VECREDUCE_ADD:  BaseOpcode = ISD::ADD; break;
7678   case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break;
7679   case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break;
7680   case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break;
7681   case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break;
7682   case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
7683   case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
7684   case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
7685   case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
7686   case ISD::VECREDUCE_FMAX:
7687     BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
7688     break;
7689   case ISD::VECREDUCE_FMIN:
7690     BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
7691     break;
7692   }
7693 
7694   SDValue Op = Node->getOperand(0);
7695   EVT VT = Op.getValueType();
7696 
7697   // Try to use a shuffle reduction for power of two vectors.
7698   if (VT.isPow2VectorType()) {
7699     while (VT.getVectorNumElements() > 1) {
7700       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
7701       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
7702         break;
7703 
7704       SDValue Lo, Hi;
7705       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
7706       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
7707       VT = HalfVT;
7708     }
7709   }
7710 
7711   EVT EltVT = VT.getVectorElementType();
7712   unsigned NumElts = VT.getVectorNumElements();
7713 
7714   SmallVector<SDValue, 8> Ops;
7715   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
7716 
7717   SDValue Res = Ops[0];
7718   for (unsigned i = 1; i < NumElts; i++)
7719     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
7720 
7721   // Result type may be wider than element type.
7722   if (EltVT != Node->getValueType(0))
7723     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
7724   return Res;
7725 }
7726