1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore NoAlias and NonNull because they don't affect the 61 // call sequence. 62 AttributeList CallerAttrs = F.getAttributes(); 63 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 64 .removeAttribute(Attribute::NoAlias) 65 .removeAttribute(Attribute::NonNull) 66 .hasAttributes()) 67 return false; 68 69 // It's not safe to eliminate the sign / zero extension of the return value. 70 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 71 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 72 return false; 73 74 // Check if the only use is a function return node. 75 return isUsedByReturnOnly(Node, Chain); 76 } 77 78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 79 const uint32_t *CallerPreservedMask, 80 const SmallVectorImpl<CCValAssign> &ArgLocs, 81 const SmallVectorImpl<SDValue> &OutVals) const { 82 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 83 const CCValAssign &ArgLoc = ArgLocs[I]; 84 if (!ArgLoc.isRegLoc()) 85 continue; 86 MCRegister Reg = ArgLoc.getLocReg(); 87 // Only look at callee saved registers. 88 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 89 continue; 90 // Check that we pass the value used for the caller. 91 // (We look for a CopyFromReg reading a virtual register that is used 92 // for the function live-in value of register Reg) 93 SDValue Value = OutVals[I]; 94 if (Value->getOpcode() != ISD::CopyFromReg) 95 return false; 96 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 97 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 98 return false; 99 } 100 return true; 101 } 102 103 /// Set CallLoweringInfo attribute flags based on a call instruction 104 /// and called function attributes. 105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 106 unsigned ArgIdx) { 107 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 108 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 109 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 110 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 111 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 112 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 113 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 114 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 115 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 116 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 117 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 118 Alignment = Call->getParamAlign(ArgIdx); 119 ByValType = nullptr; 120 if (IsByVal) 121 ByValType = Call->getParamByValType(ArgIdx); 122 PreallocatedType = nullptr; 123 if (IsPreallocated) 124 PreallocatedType = Call->getParamPreallocatedType(ArgIdx); 125 } 126 127 /// Generate a libcall taking the given operands as arguments and returning a 128 /// result of type RetVT. 129 std::pair<SDValue, SDValue> 130 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 131 ArrayRef<SDValue> Ops, 132 MakeLibCallOptions CallOptions, 133 const SDLoc &dl, 134 SDValue InChain) const { 135 if (!InChain) 136 InChain = DAG.getEntryNode(); 137 138 TargetLowering::ArgListTy Args; 139 Args.reserve(Ops.size()); 140 141 TargetLowering::ArgListEntry Entry; 142 for (unsigned i = 0; i < Ops.size(); ++i) { 143 SDValue NewOp = Ops[i]; 144 Entry.Node = NewOp; 145 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 146 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 147 CallOptions.IsSExt); 148 Entry.IsZExt = !Entry.IsSExt; 149 150 if (CallOptions.IsSoften && 151 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 152 Entry.IsSExt = Entry.IsZExt = false; 153 } 154 Args.push_back(Entry); 155 } 156 157 if (LC == RTLIB::UNKNOWN_LIBCALL) 158 report_fatal_error("Unsupported library call operation!"); 159 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 160 getPointerTy(DAG.getDataLayout())); 161 162 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 163 TargetLowering::CallLoweringInfo CLI(DAG); 164 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 165 bool zeroExtend = !signExtend; 166 167 if (CallOptions.IsSoften && 168 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 169 signExtend = zeroExtend = false; 170 } 171 172 CLI.setDebugLoc(dl) 173 .setChain(InChain) 174 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 175 .setNoReturn(CallOptions.DoesNotReturn) 176 .setDiscardResult(!CallOptions.IsReturnValueUsed) 177 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 178 .setSExtResult(signExtend) 179 .setZExtResult(zeroExtend); 180 return LowerCallTo(CLI); 181 } 182 183 bool TargetLowering::findOptimalMemOpLowering( 184 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 185 unsigned SrcAS, const AttributeList &FuncAttributes) const { 186 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 187 return false; 188 189 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 190 191 if (VT == MVT::Other) { 192 // Use the largest integer type whose alignment constraints are satisfied. 193 // We only need to check DstAlign here as SrcAlign is always greater or 194 // equal to DstAlign (or zero). 195 VT = MVT::i64; 196 if (Op.isFixedDstAlign()) 197 while ( 198 Op.getDstAlign() < (VT.getSizeInBits() / 8) && 199 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value())) 200 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 201 assert(VT.isInteger()); 202 203 // Find the largest legal integer type. 204 MVT LVT = MVT::i64; 205 while (!isTypeLegal(LVT)) 206 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 207 assert(LVT.isInteger()); 208 209 // If the type we've chosen is larger than the largest legal integer type 210 // then use that instead. 211 if (VT.bitsGT(LVT)) 212 VT = LVT; 213 } 214 215 unsigned NumMemOps = 0; 216 uint64_t Size = Op.size(); 217 while (Size) { 218 unsigned VTSize = VT.getSizeInBits() / 8; 219 while (VTSize > Size) { 220 // For now, only use non-vector load / store's for the left-over pieces. 221 EVT NewVT = VT; 222 unsigned NewVTSize; 223 224 bool Found = false; 225 if (VT.isVector() || VT.isFloatingPoint()) { 226 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 227 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 228 isSafeMemOpType(NewVT.getSimpleVT())) 229 Found = true; 230 else if (NewVT == MVT::i64 && 231 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 232 isSafeMemOpType(MVT::f64)) { 233 // i64 is usually not legal on 32-bit targets, but f64 may be. 234 NewVT = MVT::f64; 235 Found = true; 236 } 237 } 238 239 if (!Found) { 240 do { 241 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 242 if (NewVT == MVT::i8) 243 break; 244 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 245 } 246 NewVTSize = NewVT.getSizeInBits() / 8; 247 248 // If the new VT cannot cover all of the remaining bits, then consider 249 // issuing a (or a pair of) unaligned and overlapping load / store. 250 bool Fast; 251 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 252 allowsMisalignedMemoryAccesses( 253 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 1, 254 MachineMemOperand::MONone, &Fast) && 255 Fast) 256 VTSize = Size; 257 else { 258 VT = NewVT; 259 VTSize = NewVTSize; 260 } 261 } 262 263 if (++NumMemOps > Limit) 264 return false; 265 266 MemOps.push_back(VT); 267 Size -= VTSize; 268 } 269 270 return true; 271 } 272 273 /// Soften the operands of a comparison. This code is shared among BR_CC, 274 /// SELECT_CC, and SETCC handlers. 275 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 276 SDValue &NewLHS, SDValue &NewRHS, 277 ISD::CondCode &CCCode, 278 const SDLoc &dl, const SDValue OldLHS, 279 const SDValue OldRHS) const { 280 SDValue Chain; 281 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 282 OldRHS, Chain); 283 } 284 285 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 286 SDValue &NewLHS, SDValue &NewRHS, 287 ISD::CondCode &CCCode, 288 const SDLoc &dl, const SDValue OldLHS, 289 const SDValue OldRHS, 290 SDValue &Chain, 291 bool IsSignaling) const { 292 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 293 // not supporting it. We can update this code when libgcc provides such 294 // functions. 295 296 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 297 && "Unsupported setcc type!"); 298 299 // Expand into one or more soft-fp libcall(s). 300 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 301 bool ShouldInvertCC = false; 302 switch (CCCode) { 303 case ISD::SETEQ: 304 case ISD::SETOEQ: 305 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 306 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 307 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 308 break; 309 case ISD::SETNE: 310 case ISD::SETUNE: 311 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 312 (VT == MVT::f64) ? RTLIB::UNE_F64 : 313 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 314 break; 315 case ISD::SETGE: 316 case ISD::SETOGE: 317 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 318 (VT == MVT::f64) ? RTLIB::OGE_F64 : 319 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 320 break; 321 case ISD::SETLT: 322 case ISD::SETOLT: 323 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 324 (VT == MVT::f64) ? RTLIB::OLT_F64 : 325 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 326 break; 327 case ISD::SETLE: 328 case ISD::SETOLE: 329 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 330 (VT == MVT::f64) ? RTLIB::OLE_F64 : 331 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 332 break; 333 case ISD::SETGT: 334 case ISD::SETOGT: 335 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 336 (VT == MVT::f64) ? RTLIB::OGT_F64 : 337 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 338 break; 339 case ISD::SETO: 340 ShouldInvertCC = true; 341 LLVM_FALLTHROUGH; 342 case ISD::SETUO: 343 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 344 (VT == MVT::f64) ? RTLIB::UO_F64 : 345 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 346 break; 347 case ISD::SETONE: 348 // SETONE = O && UNE 349 ShouldInvertCC = true; 350 LLVM_FALLTHROUGH; 351 case ISD::SETUEQ: 352 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 353 (VT == MVT::f64) ? RTLIB::UO_F64 : 354 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 355 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 356 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 357 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 358 break; 359 default: 360 // Invert CC for unordered comparisons 361 ShouldInvertCC = true; 362 switch (CCCode) { 363 case ISD::SETULT: 364 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 365 (VT == MVT::f64) ? RTLIB::OGE_F64 : 366 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 367 break; 368 case ISD::SETULE: 369 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 370 (VT == MVT::f64) ? RTLIB::OGT_F64 : 371 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 372 break; 373 case ISD::SETUGT: 374 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 375 (VT == MVT::f64) ? RTLIB::OLE_F64 : 376 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 377 break; 378 case ISD::SETUGE: 379 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 380 (VT == MVT::f64) ? RTLIB::OLT_F64 : 381 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 382 break; 383 default: llvm_unreachable("Do not know how to soften this setcc!"); 384 } 385 } 386 387 // Use the target specific return value for comparions lib calls. 388 EVT RetVT = getCmpLibcallReturnType(); 389 SDValue Ops[2] = {NewLHS, NewRHS}; 390 TargetLowering::MakeLibCallOptions CallOptions; 391 EVT OpsVT[2] = { OldLHS.getValueType(), 392 OldRHS.getValueType() }; 393 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 394 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 395 NewLHS = Call.first; 396 NewRHS = DAG.getConstant(0, dl, RetVT); 397 398 CCCode = getCmpLibcallCC(LC1); 399 if (ShouldInvertCC) { 400 assert(RetVT.isInteger()); 401 CCCode = getSetCCInverse(CCCode, RetVT); 402 } 403 404 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 405 // Update Chain. 406 Chain = Call.second; 407 } else { 408 EVT SetCCVT = 409 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 410 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 411 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 412 CCCode = getCmpLibcallCC(LC2); 413 if (ShouldInvertCC) 414 CCCode = getSetCCInverse(CCCode, RetVT); 415 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 416 if (Chain) 417 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 418 Call2.second); 419 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 420 Tmp.getValueType(), Tmp, NewLHS); 421 NewRHS = SDValue(); 422 } 423 } 424 425 /// Return the entry encoding for a jump table in the current function. The 426 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 427 unsigned TargetLowering::getJumpTableEncoding() const { 428 // In non-pic modes, just use the address of a block. 429 if (!isPositionIndependent()) 430 return MachineJumpTableInfo::EK_BlockAddress; 431 432 // In PIC mode, if the target supports a GPRel32 directive, use it. 433 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 434 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 435 436 // Otherwise, use a label difference. 437 return MachineJumpTableInfo::EK_LabelDifference32; 438 } 439 440 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 441 SelectionDAG &DAG) const { 442 // If our PIC model is GP relative, use the global offset table as the base. 443 unsigned JTEncoding = getJumpTableEncoding(); 444 445 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 446 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 447 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 448 449 return Table; 450 } 451 452 /// This returns the relocation base for the given PIC jumptable, the same as 453 /// getPICJumpTableRelocBase, but as an MCExpr. 454 const MCExpr * 455 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 456 unsigned JTI,MCContext &Ctx) const{ 457 // The normal PIC reloc base is the label at the start of the jump table. 458 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 459 } 460 461 bool 462 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 463 const TargetMachine &TM = getTargetMachine(); 464 const GlobalValue *GV = GA->getGlobal(); 465 466 // If the address is not even local to this DSO we will have to load it from 467 // a got and then add the offset. 468 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 469 return false; 470 471 // If the code is position independent we will have to add a base register. 472 if (isPositionIndependent()) 473 return false; 474 475 // Otherwise we can do it. 476 return true; 477 } 478 479 //===----------------------------------------------------------------------===// 480 // Optimization Methods 481 //===----------------------------------------------------------------------===// 482 483 /// If the specified instruction has a constant integer operand and there are 484 /// bits set in that constant that are not demanded, then clear those bits and 485 /// return true. 486 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 487 const APInt &DemandedBits, 488 const APInt &DemandedElts, 489 TargetLoweringOpt &TLO) const { 490 SDLoc DL(Op); 491 unsigned Opcode = Op.getOpcode(); 492 493 // Do target-specific constant optimization. 494 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 495 return TLO.New.getNode(); 496 497 // FIXME: ISD::SELECT, ISD::SELECT_CC 498 switch (Opcode) { 499 default: 500 break; 501 case ISD::XOR: 502 case ISD::AND: 503 case ISD::OR: { 504 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 505 if (!Op1C) 506 return false; 507 508 // If this is a 'not' op, don't touch it because that's a canonical form. 509 const APInt &C = Op1C->getAPIntValue(); 510 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 511 return false; 512 513 if (!C.isSubsetOf(DemandedBits)) { 514 EVT VT = Op.getValueType(); 515 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 516 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 517 return TLO.CombineTo(Op, NewOp); 518 } 519 520 break; 521 } 522 } 523 524 return false; 525 } 526 527 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 528 const APInt &DemandedBits, 529 TargetLoweringOpt &TLO) const { 530 EVT VT = Op.getValueType(); 531 APInt DemandedElts = VT.isVector() 532 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 533 : APInt(1, 1); 534 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 535 } 536 537 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 538 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 539 /// generalized for targets with other types of implicit widening casts. 540 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 541 const APInt &Demanded, 542 TargetLoweringOpt &TLO) const { 543 assert(Op.getNumOperands() == 2 && 544 "ShrinkDemandedOp only supports binary operators!"); 545 assert(Op.getNode()->getNumValues() == 1 && 546 "ShrinkDemandedOp only supports nodes with one result!"); 547 548 SelectionDAG &DAG = TLO.DAG; 549 SDLoc dl(Op); 550 551 // Early return, as this function cannot handle vector types. 552 if (Op.getValueType().isVector()) 553 return false; 554 555 // Don't do this if the node has another user, which may require the 556 // full value. 557 if (!Op.getNode()->hasOneUse()) 558 return false; 559 560 // Search for the smallest integer type with free casts to and from 561 // Op's type. For expedience, just check power-of-2 integer types. 562 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 563 unsigned DemandedSize = Demanded.getActiveBits(); 564 unsigned SmallVTBits = DemandedSize; 565 if (!isPowerOf2_32(SmallVTBits)) 566 SmallVTBits = NextPowerOf2(SmallVTBits); 567 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 568 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 569 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 570 TLI.isZExtFree(SmallVT, Op.getValueType())) { 571 // We found a type with free casts. 572 SDValue X = DAG.getNode( 573 Op.getOpcode(), dl, SmallVT, 574 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 575 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 576 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 577 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 578 return TLO.CombineTo(Op, Z); 579 } 580 } 581 return false; 582 } 583 584 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 585 DAGCombinerInfo &DCI) const { 586 SelectionDAG &DAG = DCI.DAG; 587 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 588 !DCI.isBeforeLegalizeOps()); 589 KnownBits Known; 590 591 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 592 if (Simplified) { 593 DCI.AddToWorklist(Op.getNode()); 594 DCI.CommitTargetLoweringOpt(TLO); 595 } 596 return Simplified; 597 } 598 599 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 600 KnownBits &Known, 601 TargetLoweringOpt &TLO, 602 unsigned Depth, 603 bool AssumeSingleUse) const { 604 EVT VT = Op.getValueType(); 605 606 // TODO: We can probably do more work on calculating the known bits and 607 // simplifying the operations for scalable vectors, but for now we just 608 // bail out. 609 if (VT.isScalableVector()) { 610 // Pretend we don't know anything for now. 611 Known = KnownBits(DemandedBits.getBitWidth()); 612 return false; 613 } 614 615 APInt DemandedElts = VT.isVector() 616 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 617 : APInt(1, 1); 618 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 619 AssumeSingleUse); 620 } 621 622 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 623 // TODO: Under what circumstances can we create nodes? Constant folding? 624 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 625 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 626 SelectionDAG &DAG, unsigned Depth) const { 627 // Limit search depth. 628 if (Depth >= SelectionDAG::MaxRecursionDepth) 629 return SDValue(); 630 631 // Ignore UNDEFs. 632 if (Op.isUndef()) 633 return SDValue(); 634 635 // Not demanding any bits/elts from Op. 636 if (DemandedBits == 0 || DemandedElts == 0) 637 return DAG.getUNDEF(Op.getValueType()); 638 639 unsigned NumElts = DemandedElts.getBitWidth(); 640 unsigned BitWidth = DemandedBits.getBitWidth(); 641 KnownBits LHSKnown, RHSKnown; 642 switch (Op.getOpcode()) { 643 case ISD::BITCAST: { 644 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 645 EVT SrcVT = Src.getValueType(); 646 EVT DstVT = Op.getValueType(); 647 if (SrcVT == DstVT) 648 return Src; 649 650 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 651 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 652 if (NumSrcEltBits == NumDstEltBits) 653 if (SDValue V = SimplifyMultipleUseDemandedBits( 654 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 655 return DAG.getBitcast(DstVT, V); 656 657 // TODO - bigendian once we have test coverage. 658 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 659 DAG.getDataLayout().isLittleEndian()) { 660 unsigned Scale = NumDstEltBits / NumSrcEltBits; 661 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 662 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 663 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 664 for (unsigned i = 0; i != Scale; ++i) { 665 unsigned Offset = i * NumSrcEltBits; 666 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 667 if (!Sub.isNullValue()) { 668 DemandedSrcBits |= Sub; 669 for (unsigned j = 0; j != NumElts; ++j) 670 if (DemandedElts[j]) 671 DemandedSrcElts.setBit((j * Scale) + i); 672 } 673 } 674 675 if (SDValue V = SimplifyMultipleUseDemandedBits( 676 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 677 return DAG.getBitcast(DstVT, V); 678 } 679 680 // TODO - bigendian once we have test coverage. 681 if ((NumSrcEltBits % NumDstEltBits) == 0 && 682 DAG.getDataLayout().isLittleEndian()) { 683 unsigned Scale = NumSrcEltBits / NumDstEltBits; 684 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 685 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 686 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 687 for (unsigned i = 0; i != NumElts; ++i) 688 if (DemandedElts[i]) { 689 unsigned Offset = (i % Scale) * NumDstEltBits; 690 DemandedSrcBits.insertBits(DemandedBits, Offset); 691 DemandedSrcElts.setBit(i / Scale); 692 } 693 694 if (SDValue V = SimplifyMultipleUseDemandedBits( 695 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 696 return DAG.getBitcast(DstVT, V); 697 } 698 699 break; 700 } 701 case ISD::AND: { 702 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 703 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 704 705 // If all of the demanded bits are known 1 on one side, return the other. 706 // These bits cannot contribute to the result of the 'and' in this 707 // context. 708 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 709 return Op.getOperand(0); 710 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 711 return Op.getOperand(1); 712 break; 713 } 714 case ISD::OR: { 715 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 716 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 717 718 // If all of the demanded bits are known zero on one side, return the 719 // other. These bits cannot contribute to the result of the 'or' in this 720 // context. 721 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 722 return Op.getOperand(0); 723 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 724 return Op.getOperand(1); 725 break; 726 } 727 case ISD::XOR: { 728 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 729 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 730 731 // If all of the demanded bits are known zero on one side, return the 732 // other. 733 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 734 return Op.getOperand(0); 735 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 736 return Op.getOperand(1); 737 break; 738 } 739 case ISD::SHL: { 740 // If we are only demanding sign bits then we can use the shift source 741 // directly. 742 if (const APInt *MaxSA = 743 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 744 SDValue Op0 = Op.getOperand(0); 745 unsigned ShAmt = MaxSA->getZExtValue(); 746 unsigned NumSignBits = 747 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 748 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 749 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 750 return Op0; 751 } 752 break; 753 } 754 case ISD::SETCC: { 755 SDValue Op0 = Op.getOperand(0); 756 SDValue Op1 = Op.getOperand(1); 757 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 758 // If (1) we only need the sign-bit, (2) the setcc operands are the same 759 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 760 // -1, we may be able to bypass the setcc. 761 if (DemandedBits.isSignMask() && 762 Op0.getScalarValueSizeInBits() == BitWidth && 763 getBooleanContents(Op0.getValueType()) == 764 BooleanContent::ZeroOrNegativeOneBooleanContent) { 765 // If we're testing X < 0, then this compare isn't needed - just use X! 766 // FIXME: We're limiting to integer types here, but this should also work 767 // if we don't care about FP signed-zero. The use of SETLT with FP means 768 // that we don't care about NaNs. 769 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 770 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 771 return Op0; 772 } 773 break; 774 } 775 case ISD::SIGN_EXTEND_INREG: { 776 // If none of the extended bits are demanded, eliminate the sextinreg. 777 SDValue Op0 = Op.getOperand(0); 778 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 779 unsigned ExBits = ExVT.getScalarSizeInBits(); 780 if (DemandedBits.getActiveBits() <= ExBits) 781 return Op0; 782 // If the input is already sign extended, just drop the extension. 783 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 784 if (NumSignBits >= (BitWidth - ExBits + 1)) 785 return Op0; 786 break; 787 } 788 case ISD::ANY_EXTEND_VECTOR_INREG: 789 case ISD::SIGN_EXTEND_VECTOR_INREG: 790 case ISD::ZERO_EXTEND_VECTOR_INREG: { 791 // If we only want the lowest element and none of extended bits, then we can 792 // return the bitcasted source vector. 793 SDValue Src = Op.getOperand(0); 794 EVT SrcVT = Src.getValueType(); 795 EVT DstVT = Op.getValueType(); 796 if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 797 DAG.getDataLayout().isLittleEndian() && 798 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 799 return DAG.getBitcast(DstVT, Src); 800 } 801 break; 802 } 803 case ISD::INSERT_VECTOR_ELT: { 804 // If we don't demand the inserted element, return the base vector. 805 SDValue Vec = Op.getOperand(0); 806 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 807 EVT VecVT = Vec.getValueType(); 808 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 809 !DemandedElts[CIdx->getZExtValue()]) 810 return Vec; 811 break; 812 } 813 case ISD::INSERT_SUBVECTOR: { 814 // If we don't demand the inserted subvector, return the base vector. 815 SDValue Vec = Op.getOperand(0); 816 SDValue Sub = Op.getOperand(1); 817 uint64_t Idx = Op.getConstantOperandVal(2); 818 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 819 if (DemandedElts.extractBits(NumSubElts, Idx) == 0) 820 return Vec; 821 break; 822 } 823 case ISD::VECTOR_SHUFFLE: { 824 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 825 826 // If all the demanded elts are from one operand and are inline, 827 // then we can use the operand directly. 828 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 829 for (unsigned i = 0; i != NumElts; ++i) { 830 int M = ShuffleMask[i]; 831 if (M < 0 || !DemandedElts[i]) 832 continue; 833 AllUndef = false; 834 IdentityLHS &= (M == (int)i); 835 IdentityRHS &= ((M - NumElts) == i); 836 } 837 838 if (AllUndef) 839 return DAG.getUNDEF(Op.getValueType()); 840 if (IdentityLHS) 841 return Op.getOperand(0); 842 if (IdentityRHS) 843 return Op.getOperand(1); 844 break; 845 } 846 default: 847 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 848 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 849 Op, DemandedBits, DemandedElts, DAG, Depth)) 850 return V; 851 break; 852 } 853 return SDValue(); 854 } 855 856 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 857 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 858 unsigned Depth) const { 859 EVT VT = Op.getValueType(); 860 APInt DemandedElts = VT.isVector() 861 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 862 : APInt(1, 1); 863 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 864 Depth); 865 } 866 867 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 868 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 869 unsigned Depth) const { 870 APInt DemandedBits = APInt::getAllOnesValue(Op.getScalarValueSizeInBits()); 871 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 872 Depth); 873 } 874 875 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 876 /// result of Op are ever used downstream. If we can use this information to 877 /// simplify Op, create a new simplified DAG node and return true, returning the 878 /// original and new nodes in Old and New. Otherwise, analyze the expression and 879 /// return a mask of Known bits for the expression (used to simplify the 880 /// caller). The Known bits may only be accurate for those bits in the 881 /// OriginalDemandedBits and OriginalDemandedElts. 882 bool TargetLowering::SimplifyDemandedBits( 883 SDValue Op, const APInt &OriginalDemandedBits, 884 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 885 unsigned Depth, bool AssumeSingleUse) const { 886 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 887 assert(Op.getScalarValueSizeInBits() == BitWidth && 888 "Mask size mismatches value type size!"); 889 890 // Don't know anything. 891 Known = KnownBits(BitWidth); 892 893 // TODO: We can probably do more work on calculating the known bits and 894 // simplifying the operations for scalable vectors, but for now we just 895 // bail out. 896 if (Op.getValueType().isScalableVector()) 897 return false; 898 899 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 900 assert((!Op.getValueType().isVector() || 901 NumElts == Op.getValueType().getVectorNumElements()) && 902 "Unexpected vector size"); 903 904 APInt DemandedBits = OriginalDemandedBits; 905 APInt DemandedElts = OriginalDemandedElts; 906 SDLoc dl(Op); 907 auto &DL = TLO.DAG.getDataLayout(); 908 909 // Undef operand. 910 if (Op.isUndef()) 911 return false; 912 913 if (Op.getOpcode() == ISD::Constant) { 914 // We know all of the bits for a constant! 915 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 916 Known.Zero = ~Known.One; 917 return false; 918 } 919 920 if (Op.getOpcode() == ISD::ConstantFP) { 921 // We know all of the bits for a floating point constant! 922 Known.One = cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt(); 923 Known.Zero = ~Known.One; 924 return false; 925 } 926 927 // Other users may use these bits. 928 EVT VT = Op.getValueType(); 929 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 930 if (Depth != 0) { 931 // If not at the root, Just compute the Known bits to 932 // simplify things downstream. 933 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 934 return false; 935 } 936 // If this is the root being simplified, allow it to have multiple uses, 937 // just set the DemandedBits/Elts to all bits. 938 DemandedBits = APInt::getAllOnesValue(BitWidth); 939 DemandedElts = APInt::getAllOnesValue(NumElts); 940 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 941 // Not demanding any bits/elts from Op. 942 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 943 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 944 // Limit search depth. 945 return false; 946 } 947 948 KnownBits Known2; 949 switch (Op.getOpcode()) { 950 case ISD::TargetConstant: 951 llvm_unreachable("Can't simplify this node"); 952 case ISD::SCALAR_TO_VECTOR: { 953 if (!DemandedElts[0]) 954 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 955 956 KnownBits SrcKnown; 957 SDValue Src = Op.getOperand(0); 958 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 959 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 960 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 961 return true; 962 963 // Upper elements are undef, so only get the knownbits if we just demand 964 // the bottom element. 965 if (DemandedElts == 1) 966 Known = SrcKnown.anyextOrTrunc(BitWidth); 967 break; 968 } 969 case ISD::BUILD_VECTOR: 970 // Collect the known bits that are shared by every demanded element. 971 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 972 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 973 return false; // Don't fall through, will infinitely loop. 974 case ISD::LOAD: { 975 LoadSDNode *LD = cast<LoadSDNode>(Op); 976 if (getTargetConstantFromLoad(LD)) { 977 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 978 return false; // Don't fall through, will infinitely loop. 979 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 980 // If this is a ZEXTLoad and we are looking at the loaded value. 981 EVT MemVT = LD->getMemoryVT(); 982 unsigned MemBits = MemVT.getScalarSizeInBits(); 983 Known.Zero.setBitsFrom(MemBits); 984 return false; // Don't fall through, will infinitely loop. 985 } 986 break; 987 } 988 case ISD::INSERT_VECTOR_ELT: { 989 SDValue Vec = Op.getOperand(0); 990 SDValue Scl = Op.getOperand(1); 991 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 992 EVT VecVT = Vec.getValueType(); 993 994 // If index isn't constant, assume we need all vector elements AND the 995 // inserted element. 996 APInt DemandedVecElts(DemandedElts); 997 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 998 unsigned Idx = CIdx->getZExtValue(); 999 DemandedVecElts.clearBit(Idx); 1000 1001 // Inserted element is not required. 1002 if (!DemandedElts[Idx]) 1003 return TLO.CombineTo(Op, Vec); 1004 } 1005 1006 KnownBits KnownScl; 1007 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1008 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1009 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1010 return true; 1011 1012 Known = KnownScl.anyextOrTrunc(BitWidth); 1013 1014 KnownBits KnownVec; 1015 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1016 Depth + 1)) 1017 return true; 1018 1019 if (!!DemandedVecElts) { 1020 Known.One &= KnownVec.One; 1021 Known.Zero &= KnownVec.Zero; 1022 } 1023 1024 return false; 1025 } 1026 case ISD::INSERT_SUBVECTOR: { 1027 // Demand any elements from the subvector and the remainder from the src its 1028 // inserted into. 1029 SDValue Src = Op.getOperand(0); 1030 SDValue Sub = Op.getOperand(1); 1031 uint64_t Idx = Op.getConstantOperandVal(2); 1032 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1033 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1034 APInt DemandedSrcElts = DemandedElts; 1035 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 1036 1037 KnownBits KnownSub, KnownSrc; 1038 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1039 Depth + 1)) 1040 return true; 1041 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1042 Depth + 1)) 1043 return true; 1044 1045 Known.Zero.setAllBits(); 1046 Known.One.setAllBits(); 1047 if (!!DemandedSubElts) { 1048 Known.One &= KnownSub.One; 1049 Known.Zero &= KnownSub.Zero; 1050 } 1051 if (!!DemandedSrcElts) { 1052 Known.One &= KnownSrc.One; 1053 Known.Zero &= KnownSrc.Zero; 1054 } 1055 1056 // Attempt to avoid multi-use src if we don't need anything from it. 1057 if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() || 1058 !DemandedSrcElts.isAllOnesValue()) { 1059 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1060 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1061 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1062 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1063 if (NewSub || NewSrc) { 1064 NewSub = NewSub ? NewSub : Sub; 1065 NewSrc = NewSrc ? NewSrc : Src; 1066 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1067 Op.getOperand(2)); 1068 return TLO.CombineTo(Op, NewOp); 1069 } 1070 } 1071 break; 1072 } 1073 case ISD::EXTRACT_SUBVECTOR: { 1074 // Offset the demanded elts by the subvector index. 1075 SDValue Src = Op.getOperand(0); 1076 if (Src.getValueType().isScalableVector()) 1077 break; 1078 uint64_t Idx = Op.getConstantOperandVal(1); 1079 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1080 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1081 1082 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1083 Depth + 1)) 1084 return true; 1085 1086 // Attempt to avoid multi-use src if we don't need anything from it. 1087 if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) { 1088 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1089 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1090 if (DemandedSrc) { 1091 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1092 Op.getOperand(1)); 1093 return TLO.CombineTo(Op, NewOp); 1094 } 1095 } 1096 break; 1097 } 1098 case ISD::CONCAT_VECTORS: { 1099 Known.Zero.setAllBits(); 1100 Known.One.setAllBits(); 1101 EVT SubVT = Op.getOperand(0).getValueType(); 1102 unsigned NumSubVecs = Op.getNumOperands(); 1103 unsigned NumSubElts = SubVT.getVectorNumElements(); 1104 for (unsigned i = 0; i != NumSubVecs; ++i) { 1105 APInt DemandedSubElts = 1106 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1107 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1108 Known2, TLO, Depth + 1)) 1109 return true; 1110 // Known bits are shared by every demanded subvector element. 1111 if (!!DemandedSubElts) { 1112 Known.One &= Known2.One; 1113 Known.Zero &= Known2.Zero; 1114 } 1115 } 1116 break; 1117 } 1118 case ISD::VECTOR_SHUFFLE: { 1119 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1120 1121 // Collect demanded elements from shuffle operands.. 1122 APInt DemandedLHS(NumElts, 0); 1123 APInt DemandedRHS(NumElts, 0); 1124 for (unsigned i = 0; i != NumElts; ++i) { 1125 if (!DemandedElts[i]) 1126 continue; 1127 int M = ShuffleMask[i]; 1128 if (M < 0) { 1129 // For UNDEF elements, we don't know anything about the common state of 1130 // the shuffle result. 1131 DemandedLHS.clearAllBits(); 1132 DemandedRHS.clearAllBits(); 1133 break; 1134 } 1135 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1136 if (M < (int)NumElts) 1137 DemandedLHS.setBit(M); 1138 else 1139 DemandedRHS.setBit(M - NumElts); 1140 } 1141 1142 if (!!DemandedLHS || !!DemandedRHS) { 1143 SDValue Op0 = Op.getOperand(0); 1144 SDValue Op1 = Op.getOperand(1); 1145 1146 Known.Zero.setAllBits(); 1147 Known.One.setAllBits(); 1148 if (!!DemandedLHS) { 1149 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1150 Depth + 1)) 1151 return true; 1152 Known.One &= Known2.One; 1153 Known.Zero &= Known2.Zero; 1154 } 1155 if (!!DemandedRHS) { 1156 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1157 Depth + 1)) 1158 return true; 1159 Known.One &= Known2.One; 1160 Known.Zero &= Known2.Zero; 1161 } 1162 1163 // Attempt to avoid multi-use ops if we don't need anything from them. 1164 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1165 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1166 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1167 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1168 if (DemandedOp0 || DemandedOp1) { 1169 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1170 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1171 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1172 return TLO.CombineTo(Op, NewOp); 1173 } 1174 } 1175 break; 1176 } 1177 case ISD::AND: { 1178 SDValue Op0 = Op.getOperand(0); 1179 SDValue Op1 = Op.getOperand(1); 1180 1181 // If the RHS is a constant, check to see if the LHS would be zero without 1182 // using the bits from the RHS. Below, we use knowledge about the RHS to 1183 // simplify the LHS, here we're using information from the LHS to simplify 1184 // the RHS. 1185 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1186 // Do not increment Depth here; that can cause an infinite loop. 1187 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1188 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1189 if ((LHSKnown.Zero & DemandedBits) == 1190 (~RHSC->getAPIntValue() & DemandedBits)) 1191 return TLO.CombineTo(Op, Op0); 1192 1193 // If any of the set bits in the RHS are known zero on the LHS, shrink 1194 // the constant. 1195 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1196 DemandedElts, TLO)) 1197 return true; 1198 1199 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1200 // constant, but if this 'and' is only clearing bits that were just set by 1201 // the xor, then this 'and' can be eliminated by shrinking the mask of 1202 // the xor. For example, for a 32-bit X: 1203 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1204 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1205 LHSKnown.One == ~RHSC->getAPIntValue()) { 1206 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1207 return TLO.CombineTo(Op, Xor); 1208 } 1209 } 1210 1211 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1212 Depth + 1)) 1213 return true; 1214 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1215 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1216 Known2, TLO, Depth + 1)) 1217 return true; 1218 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1219 1220 // Attempt to avoid multi-use ops if we don't need anything from them. 1221 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1222 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1223 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1224 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1225 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1226 if (DemandedOp0 || DemandedOp1) { 1227 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1228 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1229 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1230 return TLO.CombineTo(Op, NewOp); 1231 } 1232 } 1233 1234 // If all of the demanded bits are known one on one side, return the other. 1235 // These bits cannot contribute to the result of the 'and'. 1236 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1237 return TLO.CombineTo(Op, Op0); 1238 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1239 return TLO.CombineTo(Op, Op1); 1240 // If all of the demanded bits in the inputs are known zeros, return zero. 1241 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1242 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1243 // If the RHS is a constant, see if we can simplify it. 1244 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1245 TLO)) 1246 return true; 1247 // If the operation can be done in a smaller type, do so. 1248 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1249 return true; 1250 1251 Known &= Known2; 1252 break; 1253 } 1254 case ISD::OR: { 1255 SDValue Op0 = Op.getOperand(0); 1256 SDValue Op1 = Op.getOperand(1); 1257 1258 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1259 Depth + 1)) 1260 return true; 1261 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1262 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1263 Known2, TLO, Depth + 1)) 1264 return true; 1265 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1266 1267 // Attempt to avoid multi-use ops if we don't need anything from them. 1268 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1269 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1270 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1271 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1272 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1273 if (DemandedOp0 || DemandedOp1) { 1274 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1275 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1276 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1277 return TLO.CombineTo(Op, NewOp); 1278 } 1279 } 1280 1281 // If all of the demanded bits are known zero on one side, return the other. 1282 // These bits cannot contribute to the result of the 'or'. 1283 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1284 return TLO.CombineTo(Op, Op0); 1285 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1286 return TLO.CombineTo(Op, Op1); 1287 // If the RHS is a constant, see if we can simplify it. 1288 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1289 return true; 1290 // If the operation can be done in a smaller type, do so. 1291 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1292 return true; 1293 1294 Known |= Known2; 1295 break; 1296 } 1297 case ISD::XOR: { 1298 SDValue Op0 = Op.getOperand(0); 1299 SDValue Op1 = Op.getOperand(1); 1300 1301 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1302 Depth + 1)) 1303 return true; 1304 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1305 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1306 Depth + 1)) 1307 return true; 1308 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1309 1310 // Attempt to avoid multi-use ops if we don't need anything from them. 1311 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1312 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1313 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1314 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1315 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1316 if (DemandedOp0 || DemandedOp1) { 1317 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1318 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1319 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1320 return TLO.CombineTo(Op, NewOp); 1321 } 1322 } 1323 1324 // If all of the demanded bits are known zero on one side, return the other. 1325 // These bits cannot contribute to the result of the 'xor'. 1326 if (DemandedBits.isSubsetOf(Known.Zero)) 1327 return TLO.CombineTo(Op, Op0); 1328 if (DemandedBits.isSubsetOf(Known2.Zero)) 1329 return TLO.CombineTo(Op, Op1); 1330 // If the operation can be done in a smaller type, do so. 1331 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1332 return true; 1333 1334 // If all of the unknown bits are known to be zero on one side or the other 1335 // turn this into an *inclusive* or. 1336 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1337 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1338 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1339 1340 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1341 if (C) { 1342 // If one side is a constant, and all of the set bits in the constant are 1343 // also known set on the other side, turn this into an AND, as we know 1344 // the bits will be cleared. 1345 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1346 // NB: it is okay if more bits are known than are requested 1347 if (C->getAPIntValue() == Known2.One) { 1348 SDValue ANDC = 1349 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1350 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1351 } 1352 1353 // If the RHS is a constant, see if we can change it. Don't alter a -1 1354 // constant because that's a 'not' op, and that is better for combining 1355 // and codegen. 1356 if (!C->isAllOnesValue() && 1357 DemandedBits.isSubsetOf(C->getAPIntValue())) { 1358 // We're flipping all demanded bits. Flip the undemanded bits too. 1359 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1360 return TLO.CombineTo(Op, New); 1361 } 1362 } 1363 1364 // If we can't turn this into a 'not', try to shrink the constant. 1365 if (!C || !C->isAllOnesValue()) 1366 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1367 return true; 1368 1369 Known ^= Known2; 1370 break; 1371 } 1372 case ISD::SELECT: 1373 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1374 Depth + 1)) 1375 return true; 1376 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1377 Depth + 1)) 1378 return true; 1379 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1380 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1381 1382 // If the operands are constants, see if we can simplify them. 1383 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1384 return true; 1385 1386 // Only known if known in both the LHS and RHS. 1387 Known.One &= Known2.One; 1388 Known.Zero &= Known2.Zero; 1389 break; 1390 case ISD::SELECT_CC: 1391 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1392 Depth + 1)) 1393 return true; 1394 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1395 Depth + 1)) 1396 return true; 1397 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1398 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1399 1400 // If the operands are constants, see if we can simplify them. 1401 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1402 return true; 1403 1404 // Only known if known in both the LHS and RHS. 1405 Known.One &= Known2.One; 1406 Known.Zero &= Known2.Zero; 1407 break; 1408 case ISD::SETCC: { 1409 SDValue Op0 = Op.getOperand(0); 1410 SDValue Op1 = Op.getOperand(1); 1411 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1412 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1413 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1414 // -1, we may be able to bypass the setcc. 1415 if (DemandedBits.isSignMask() && 1416 Op0.getScalarValueSizeInBits() == BitWidth && 1417 getBooleanContents(Op0.getValueType()) == 1418 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1419 // If we're testing X < 0, then this compare isn't needed - just use X! 1420 // FIXME: We're limiting to integer types here, but this should also work 1421 // if we don't care about FP signed-zero. The use of SETLT with FP means 1422 // that we don't care about NaNs. 1423 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1424 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1425 return TLO.CombineTo(Op, Op0); 1426 1427 // TODO: Should we check for other forms of sign-bit comparisons? 1428 // Examples: X <= -1, X >= 0 1429 } 1430 if (getBooleanContents(Op0.getValueType()) == 1431 TargetLowering::ZeroOrOneBooleanContent && 1432 BitWidth > 1) 1433 Known.Zero.setBitsFrom(1); 1434 break; 1435 } 1436 case ISD::SHL: { 1437 SDValue Op0 = Op.getOperand(0); 1438 SDValue Op1 = Op.getOperand(1); 1439 EVT ShiftVT = Op1.getValueType(); 1440 1441 if (const APInt *SA = 1442 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1443 unsigned ShAmt = SA->getZExtValue(); 1444 if (ShAmt == 0) 1445 return TLO.CombineTo(Op, Op0); 1446 1447 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1448 // single shift. We can do this if the bottom bits (which are shifted 1449 // out) are never demanded. 1450 // TODO - support non-uniform vector amounts. 1451 if (Op0.getOpcode() == ISD::SRL) { 1452 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1453 if (const APInt *SA2 = 1454 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1455 unsigned C1 = SA2->getZExtValue(); 1456 unsigned Opc = ISD::SHL; 1457 int Diff = ShAmt - C1; 1458 if (Diff < 0) { 1459 Diff = -Diff; 1460 Opc = ISD::SRL; 1461 } 1462 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1463 return TLO.CombineTo( 1464 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1465 } 1466 } 1467 } 1468 1469 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1470 // are not demanded. This will likely allow the anyext to be folded away. 1471 // TODO - support non-uniform vector amounts. 1472 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1473 SDValue InnerOp = Op0.getOperand(0); 1474 EVT InnerVT = InnerOp.getValueType(); 1475 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1476 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1477 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1478 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1479 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1480 ShTy = InnerVT; 1481 SDValue NarrowShl = 1482 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1483 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1484 return TLO.CombineTo( 1485 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1486 } 1487 1488 // Repeat the SHL optimization above in cases where an extension 1489 // intervenes: (shl (anyext (shr x, c1)), c2) to 1490 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1491 // aren't demanded (as above) and that the shifted upper c1 bits of 1492 // x aren't demanded. 1493 // TODO - support non-uniform vector amounts. 1494 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1495 InnerOp.hasOneUse()) { 1496 if (const APInt *SA2 = 1497 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1498 unsigned InnerShAmt = SA2->getZExtValue(); 1499 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1500 DemandedBits.getActiveBits() <= 1501 (InnerBits - InnerShAmt + ShAmt) && 1502 DemandedBits.countTrailingZeros() >= ShAmt) { 1503 SDValue NewSA = 1504 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1505 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1506 InnerOp.getOperand(0)); 1507 return TLO.CombineTo( 1508 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1509 } 1510 } 1511 } 1512 } 1513 1514 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1515 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1516 Depth + 1)) 1517 return true; 1518 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1519 Known.Zero <<= ShAmt; 1520 Known.One <<= ShAmt; 1521 // low bits known zero. 1522 Known.Zero.setLowBits(ShAmt); 1523 1524 // Try shrinking the operation as long as the shift amount will still be 1525 // in range. 1526 if ((ShAmt < DemandedBits.getActiveBits()) && 1527 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1528 return true; 1529 } 1530 1531 // If we are only demanding sign bits then we can use the shift source 1532 // directly. 1533 if (const APInt *MaxSA = 1534 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1535 unsigned ShAmt = MaxSA->getZExtValue(); 1536 unsigned NumSignBits = 1537 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1538 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1539 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1540 return TLO.CombineTo(Op, Op0); 1541 } 1542 break; 1543 } 1544 case ISD::SRL: { 1545 SDValue Op0 = Op.getOperand(0); 1546 SDValue Op1 = Op.getOperand(1); 1547 EVT ShiftVT = Op1.getValueType(); 1548 1549 if (const APInt *SA = 1550 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1551 unsigned ShAmt = SA->getZExtValue(); 1552 if (ShAmt == 0) 1553 return TLO.CombineTo(Op, Op0); 1554 1555 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1556 // single shift. We can do this if the top bits (which are shifted out) 1557 // are never demanded. 1558 // TODO - support non-uniform vector amounts. 1559 if (Op0.getOpcode() == ISD::SHL) { 1560 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1561 if (const APInt *SA2 = 1562 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1563 unsigned C1 = SA2->getZExtValue(); 1564 unsigned Opc = ISD::SRL; 1565 int Diff = ShAmt - C1; 1566 if (Diff < 0) { 1567 Diff = -Diff; 1568 Opc = ISD::SHL; 1569 } 1570 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1571 return TLO.CombineTo( 1572 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1573 } 1574 } 1575 } 1576 1577 APInt InDemandedMask = (DemandedBits << ShAmt); 1578 1579 // If the shift is exact, then it does demand the low bits (and knows that 1580 // they are zero). 1581 if (Op->getFlags().hasExact()) 1582 InDemandedMask.setLowBits(ShAmt); 1583 1584 // Compute the new bits that are at the top now. 1585 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1586 Depth + 1)) 1587 return true; 1588 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1589 Known.Zero.lshrInPlace(ShAmt); 1590 Known.One.lshrInPlace(ShAmt); 1591 // High bits known zero. 1592 Known.Zero.setHighBits(ShAmt); 1593 } 1594 break; 1595 } 1596 case ISD::SRA: { 1597 SDValue Op0 = Op.getOperand(0); 1598 SDValue Op1 = Op.getOperand(1); 1599 EVT ShiftVT = Op1.getValueType(); 1600 1601 // If we only want bits that already match the signbit then we don't need 1602 // to shift. 1603 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1604 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1605 NumHiDemandedBits) 1606 return TLO.CombineTo(Op, Op0); 1607 1608 // If this is an arithmetic shift right and only the low-bit is set, we can 1609 // always convert this into a logical shr, even if the shift amount is 1610 // variable. The low bit of the shift cannot be an input sign bit unless 1611 // the shift amount is >= the size of the datatype, which is undefined. 1612 if (DemandedBits.isOneValue()) 1613 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1614 1615 if (const APInt *SA = 1616 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1617 unsigned ShAmt = SA->getZExtValue(); 1618 if (ShAmt == 0) 1619 return TLO.CombineTo(Op, Op0); 1620 1621 APInt InDemandedMask = (DemandedBits << ShAmt); 1622 1623 // If the shift is exact, then it does demand the low bits (and knows that 1624 // they are zero). 1625 if (Op->getFlags().hasExact()) 1626 InDemandedMask.setLowBits(ShAmt); 1627 1628 // If any of the demanded bits are produced by the sign extension, we also 1629 // demand the input sign bit. 1630 if (DemandedBits.countLeadingZeros() < ShAmt) 1631 InDemandedMask.setSignBit(); 1632 1633 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1634 Depth + 1)) 1635 return true; 1636 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1637 Known.Zero.lshrInPlace(ShAmt); 1638 Known.One.lshrInPlace(ShAmt); 1639 1640 // If the input sign bit is known to be zero, or if none of the top bits 1641 // are demanded, turn this into an unsigned shift right. 1642 if (Known.Zero[BitWidth - ShAmt - 1] || 1643 DemandedBits.countLeadingZeros() >= ShAmt) { 1644 SDNodeFlags Flags; 1645 Flags.setExact(Op->getFlags().hasExact()); 1646 return TLO.CombineTo( 1647 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1648 } 1649 1650 int Log2 = DemandedBits.exactLogBase2(); 1651 if (Log2 >= 0) { 1652 // The bit must come from the sign. 1653 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1654 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1655 } 1656 1657 if (Known.One[BitWidth - ShAmt - 1]) 1658 // New bits are known one. 1659 Known.One.setHighBits(ShAmt); 1660 1661 // Attempt to avoid multi-use ops if we don't need anything from them. 1662 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1663 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1664 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1665 if (DemandedOp0) { 1666 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1667 return TLO.CombineTo(Op, NewOp); 1668 } 1669 } 1670 } 1671 break; 1672 } 1673 case ISD::FSHL: 1674 case ISD::FSHR: { 1675 SDValue Op0 = Op.getOperand(0); 1676 SDValue Op1 = Op.getOperand(1); 1677 SDValue Op2 = Op.getOperand(2); 1678 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1679 1680 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1681 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1682 1683 // For fshl, 0-shift returns the 1st arg. 1684 // For fshr, 0-shift returns the 2nd arg. 1685 if (Amt == 0) { 1686 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1687 Known, TLO, Depth + 1)) 1688 return true; 1689 break; 1690 } 1691 1692 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1693 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1694 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1695 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1696 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1697 Depth + 1)) 1698 return true; 1699 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1700 Depth + 1)) 1701 return true; 1702 1703 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1704 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1705 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1706 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1707 Known.One |= Known2.One; 1708 Known.Zero |= Known2.Zero; 1709 } 1710 1711 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1712 if (isPowerOf2_32(BitWidth)) { 1713 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1714 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1715 Known2, TLO, Depth + 1)) 1716 return true; 1717 } 1718 break; 1719 } 1720 case ISD::ROTL: 1721 case ISD::ROTR: { 1722 SDValue Op0 = Op.getOperand(0); 1723 SDValue Op1 = Op.getOperand(1); 1724 1725 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1726 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1727 return TLO.CombineTo(Op, Op0); 1728 1729 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1730 if (isPowerOf2_32(BitWidth)) { 1731 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1732 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1733 Depth + 1)) 1734 return true; 1735 } 1736 break; 1737 } 1738 case ISD::BITREVERSE: { 1739 SDValue Src = Op.getOperand(0); 1740 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1741 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1742 Depth + 1)) 1743 return true; 1744 Known.One = Known2.One.reverseBits(); 1745 Known.Zero = Known2.Zero.reverseBits(); 1746 break; 1747 } 1748 case ISD::BSWAP: { 1749 SDValue Src = Op.getOperand(0); 1750 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1751 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1752 Depth + 1)) 1753 return true; 1754 Known.One = Known2.One.byteSwap(); 1755 Known.Zero = Known2.Zero.byteSwap(); 1756 break; 1757 } 1758 case ISD::CTPOP: { 1759 // If only 1 bit is demanded, replace with PARITY as long as we're before 1760 // op legalization. 1761 // FIXME: Limit to scalars for now. 1762 if (DemandedBits.isOneValue() && !TLO.LegalOps && !VT.isVector()) 1763 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 1764 Op.getOperand(0))); 1765 1766 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1767 break; 1768 } 1769 case ISD::SIGN_EXTEND_INREG: { 1770 SDValue Op0 = Op.getOperand(0); 1771 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1772 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1773 1774 // If we only care about the highest bit, don't bother shifting right. 1775 if (DemandedBits.isSignMask()) { 1776 unsigned NumSignBits = 1777 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1778 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1779 // However if the input is already sign extended we expect the sign 1780 // extension to be dropped altogether later and do not simplify. 1781 if (!AlreadySignExtended) { 1782 // Compute the correct shift amount type, which must be getShiftAmountTy 1783 // for scalar types after legalization. 1784 EVT ShiftAmtTy = VT; 1785 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1786 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1787 1788 SDValue ShiftAmt = 1789 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1790 return TLO.CombineTo(Op, 1791 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1792 } 1793 } 1794 1795 // If none of the extended bits are demanded, eliminate the sextinreg. 1796 if (DemandedBits.getActiveBits() <= ExVTBits) 1797 return TLO.CombineTo(Op, Op0); 1798 1799 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1800 1801 // Since the sign extended bits are demanded, we know that the sign 1802 // bit is demanded. 1803 InputDemandedBits.setBit(ExVTBits - 1); 1804 1805 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1806 return true; 1807 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1808 1809 // If the sign bit of the input is known set or clear, then we know the 1810 // top bits of the result. 1811 1812 // If the input sign bit is known zero, convert this into a zero extension. 1813 if (Known.Zero[ExVTBits - 1]) 1814 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 1815 1816 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1817 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1818 Known.One.setBitsFrom(ExVTBits); 1819 Known.Zero &= Mask; 1820 } else { // Input sign bit unknown 1821 Known.Zero &= Mask; 1822 Known.One &= Mask; 1823 } 1824 break; 1825 } 1826 case ISD::BUILD_PAIR: { 1827 EVT HalfVT = Op.getOperand(0).getValueType(); 1828 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1829 1830 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1831 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1832 1833 KnownBits KnownLo, KnownHi; 1834 1835 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1836 return true; 1837 1838 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1839 return true; 1840 1841 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1842 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1843 1844 Known.One = KnownLo.One.zext(BitWidth) | 1845 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1846 break; 1847 } 1848 case ISD::ZERO_EXTEND: 1849 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1850 SDValue Src = Op.getOperand(0); 1851 EVT SrcVT = Src.getValueType(); 1852 unsigned InBits = SrcVT.getScalarSizeInBits(); 1853 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1854 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1855 1856 // If none of the top bits are demanded, convert this into an any_extend. 1857 if (DemandedBits.getActiveBits() <= InBits) { 1858 // If we only need the non-extended bits of the bottom element 1859 // then we can just bitcast to the result. 1860 if (IsVecInReg && DemandedElts == 1 && 1861 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1862 TLO.DAG.getDataLayout().isLittleEndian()) 1863 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1864 1865 unsigned Opc = 1866 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1867 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1868 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1869 } 1870 1871 APInt InDemandedBits = DemandedBits.trunc(InBits); 1872 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1873 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1874 Depth + 1)) 1875 return true; 1876 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1877 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1878 Known = Known.zext(BitWidth); 1879 1880 // Attempt to avoid multi-use ops if we don't need anything from them. 1881 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1882 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1883 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1884 break; 1885 } 1886 case ISD::SIGN_EXTEND: 1887 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1888 SDValue Src = Op.getOperand(0); 1889 EVT SrcVT = Src.getValueType(); 1890 unsigned InBits = SrcVT.getScalarSizeInBits(); 1891 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1892 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1893 1894 // If none of the top bits are demanded, convert this into an any_extend. 1895 if (DemandedBits.getActiveBits() <= InBits) { 1896 // If we only need the non-extended bits of the bottom element 1897 // then we can just bitcast to the result. 1898 if (IsVecInReg && DemandedElts == 1 && 1899 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1900 TLO.DAG.getDataLayout().isLittleEndian()) 1901 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1902 1903 unsigned Opc = 1904 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1905 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1906 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1907 } 1908 1909 APInt InDemandedBits = DemandedBits.trunc(InBits); 1910 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1911 1912 // Since some of the sign extended bits are demanded, we know that the sign 1913 // bit is demanded. 1914 InDemandedBits.setBit(InBits - 1); 1915 1916 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1917 Depth + 1)) 1918 return true; 1919 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1920 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1921 1922 // If the sign bit is known one, the top bits match. 1923 Known = Known.sext(BitWidth); 1924 1925 // If the sign bit is known zero, convert this to a zero extend. 1926 if (Known.isNonNegative()) { 1927 unsigned Opc = 1928 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1929 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1930 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1931 } 1932 1933 // Attempt to avoid multi-use ops if we don't need anything from them. 1934 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1935 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1936 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1937 break; 1938 } 1939 case ISD::ANY_EXTEND: 1940 case ISD::ANY_EXTEND_VECTOR_INREG: { 1941 SDValue Src = Op.getOperand(0); 1942 EVT SrcVT = Src.getValueType(); 1943 unsigned InBits = SrcVT.getScalarSizeInBits(); 1944 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1945 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1946 1947 // If we only need the bottom element then we can just bitcast. 1948 // TODO: Handle ANY_EXTEND? 1949 if (IsVecInReg && DemandedElts == 1 && 1950 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1951 TLO.DAG.getDataLayout().isLittleEndian()) 1952 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1953 1954 APInt InDemandedBits = DemandedBits.trunc(InBits); 1955 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1956 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1957 Depth + 1)) 1958 return true; 1959 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1960 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1961 Known = Known.anyext(BitWidth); 1962 1963 // Attempt to avoid multi-use ops if we don't need anything from them. 1964 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1965 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1966 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1967 break; 1968 } 1969 case ISD::TRUNCATE: { 1970 SDValue Src = Op.getOperand(0); 1971 1972 // Simplify the input, using demanded bit information, and compute the known 1973 // zero/one bits live out. 1974 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1975 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1976 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1977 return true; 1978 Known = Known.trunc(BitWidth); 1979 1980 // Attempt to avoid multi-use ops if we don't need anything from them. 1981 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1982 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 1983 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 1984 1985 // If the input is only used by this truncate, see if we can shrink it based 1986 // on the known demanded bits. 1987 if (Src.getNode()->hasOneUse()) { 1988 switch (Src.getOpcode()) { 1989 default: 1990 break; 1991 case ISD::SRL: 1992 // Shrink SRL by a constant if none of the high bits shifted in are 1993 // demanded. 1994 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1995 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1996 // undesirable. 1997 break; 1998 1999 SDValue ShAmt = Src.getOperand(1); 2000 auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt); 2001 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 2002 break; 2003 uint64_t ShVal = ShAmtC->getZExtValue(); 2004 2005 APInt HighBits = 2006 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2007 HighBits.lshrInPlace(ShVal); 2008 HighBits = HighBits.trunc(BitWidth); 2009 2010 if (!(HighBits & DemandedBits)) { 2011 // None of the shifted in bits are needed. Add a truncate of the 2012 // shift input, then shift it. 2013 if (TLO.LegalTypes()) 2014 ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 2015 SDValue NewTrunc = 2016 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2017 return TLO.CombineTo( 2018 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt)); 2019 } 2020 break; 2021 } 2022 } 2023 2024 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2025 break; 2026 } 2027 case ISD::AssertZext: { 2028 // AssertZext demands all of the high bits, plus any of the low bits 2029 // demanded by its users. 2030 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2031 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2032 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2033 TLO, Depth + 1)) 2034 return true; 2035 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2036 2037 Known.Zero |= ~InMask; 2038 break; 2039 } 2040 case ISD::EXTRACT_VECTOR_ELT: { 2041 SDValue Src = Op.getOperand(0); 2042 SDValue Idx = Op.getOperand(1); 2043 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2044 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2045 2046 if (SrcEltCnt.isScalable()) 2047 return false; 2048 2049 // Demand the bits from every vector element without a constant index. 2050 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2051 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 2052 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2053 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2054 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2055 2056 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2057 // anything about the extended bits. 2058 APInt DemandedSrcBits = DemandedBits; 2059 if (BitWidth > EltBitWidth) 2060 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2061 2062 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2063 Depth + 1)) 2064 return true; 2065 2066 // Attempt to avoid multi-use ops if we don't need anything from them. 2067 if (!DemandedSrcBits.isAllOnesValue() || 2068 !DemandedSrcElts.isAllOnesValue()) { 2069 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2070 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2071 SDValue NewOp = 2072 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2073 return TLO.CombineTo(Op, NewOp); 2074 } 2075 } 2076 2077 Known = Known2; 2078 if (BitWidth > EltBitWidth) 2079 Known = Known.anyext(BitWidth); 2080 break; 2081 } 2082 case ISD::BITCAST: { 2083 SDValue Src = Op.getOperand(0); 2084 EVT SrcVT = Src.getValueType(); 2085 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2086 2087 // If this is an FP->Int bitcast and if the sign bit is the only 2088 // thing demanded, turn this into a FGETSIGN. 2089 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2090 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2091 SrcVT.isFloatingPoint()) { 2092 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2093 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2094 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2095 SrcVT != MVT::f128) { 2096 // Cannot eliminate/lower SHL for f128 yet. 2097 EVT Ty = OpVTLegal ? VT : MVT::i32; 2098 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2099 // place. We expect the SHL to be eliminated by other optimizations. 2100 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2101 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2102 if (!OpVTLegal && OpVTSizeInBits > 32) 2103 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2104 unsigned ShVal = Op.getValueSizeInBits() - 1; 2105 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2106 return TLO.CombineTo(Op, 2107 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2108 } 2109 } 2110 2111 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2112 // Demand the elt/bit if any of the original elts/bits are demanded. 2113 // TODO - bigendian once we have test coverage. 2114 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 2115 TLO.DAG.getDataLayout().isLittleEndian()) { 2116 unsigned Scale = BitWidth / NumSrcEltBits; 2117 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2118 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2119 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2120 for (unsigned i = 0; i != Scale; ++i) { 2121 unsigned Offset = i * NumSrcEltBits; 2122 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 2123 if (!Sub.isNullValue()) { 2124 DemandedSrcBits |= Sub; 2125 for (unsigned j = 0; j != NumElts; ++j) 2126 if (DemandedElts[j]) 2127 DemandedSrcElts.setBit((j * Scale) + i); 2128 } 2129 } 2130 2131 APInt KnownSrcUndef, KnownSrcZero; 2132 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2133 KnownSrcZero, TLO, Depth + 1)) 2134 return true; 2135 2136 KnownBits KnownSrcBits; 2137 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2138 KnownSrcBits, TLO, Depth + 1)) 2139 return true; 2140 } else if ((NumSrcEltBits % BitWidth) == 0 && 2141 TLO.DAG.getDataLayout().isLittleEndian()) { 2142 unsigned Scale = NumSrcEltBits / BitWidth; 2143 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2144 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2145 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2146 for (unsigned i = 0; i != NumElts; ++i) 2147 if (DemandedElts[i]) { 2148 unsigned Offset = (i % Scale) * BitWidth; 2149 DemandedSrcBits.insertBits(DemandedBits, Offset); 2150 DemandedSrcElts.setBit(i / Scale); 2151 } 2152 2153 if (SrcVT.isVector()) { 2154 APInt KnownSrcUndef, KnownSrcZero; 2155 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2156 KnownSrcZero, TLO, Depth + 1)) 2157 return true; 2158 } 2159 2160 KnownBits KnownSrcBits; 2161 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2162 KnownSrcBits, TLO, Depth + 1)) 2163 return true; 2164 } 2165 2166 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2167 // recursive call where Known may be useful to the caller. 2168 if (Depth > 0) { 2169 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2170 return false; 2171 } 2172 break; 2173 } 2174 case ISD::ADD: 2175 case ISD::MUL: 2176 case ISD::SUB: { 2177 // Add, Sub, and Mul don't demand any bits in positions beyond that 2178 // of the highest bit demanded of them. 2179 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2180 SDNodeFlags Flags = Op.getNode()->getFlags(); 2181 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2182 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2183 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2184 Depth + 1) || 2185 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2186 Depth + 1) || 2187 // See if the operation should be performed at a smaller bit width. 2188 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2189 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2190 // Disable the nsw and nuw flags. We can no longer guarantee that we 2191 // won't wrap after simplification. 2192 Flags.setNoSignedWrap(false); 2193 Flags.setNoUnsignedWrap(false); 2194 SDValue NewOp = 2195 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2196 return TLO.CombineTo(Op, NewOp); 2197 } 2198 return true; 2199 } 2200 2201 // Attempt to avoid multi-use ops if we don't need anything from them. 2202 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 2203 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2204 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2205 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2206 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2207 if (DemandedOp0 || DemandedOp1) { 2208 Flags.setNoSignedWrap(false); 2209 Flags.setNoUnsignedWrap(false); 2210 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2211 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2212 SDValue NewOp = 2213 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2214 return TLO.CombineTo(Op, NewOp); 2215 } 2216 } 2217 2218 // If we have a constant operand, we may be able to turn it into -1 if we 2219 // do not demand the high bits. This can make the constant smaller to 2220 // encode, allow more general folding, or match specialized instruction 2221 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2222 // is probably not useful (and could be detrimental). 2223 ConstantSDNode *C = isConstOrConstSplat(Op1); 2224 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2225 if (C && !C->isAllOnesValue() && !C->isOne() && 2226 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 2227 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2228 // Disable the nsw and nuw flags. We can no longer guarantee that we 2229 // won't wrap after simplification. 2230 Flags.setNoSignedWrap(false); 2231 Flags.setNoUnsignedWrap(false); 2232 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2233 return TLO.CombineTo(Op, NewOp); 2234 } 2235 2236 LLVM_FALLTHROUGH; 2237 } 2238 default: 2239 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2240 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2241 Known, TLO, Depth)) 2242 return true; 2243 break; 2244 } 2245 2246 // Just use computeKnownBits to compute output bits. 2247 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2248 break; 2249 } 2250 2251 // If we know the value of all of the demanded bits, return this as a 2252 // constant. 2253 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2254 // Avoid folding to a constant if any OpaqueConstant is involved. 2255 const SDNode *N = Op.getNode(); 2256 for (SDNodeIterator I = SDNodeIterator::begin(N), 2257 E = SDNodeIterator::end(N); 2258 I != E; ++I) { 2259 SDNode *Op = *I; 2260 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2261 if (C->isOpaque()) 2262 return false; 2263 } 2264 if (VT.isInteger()) 2265 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2266 if (VT.isFloatingPoint()) 2267 return TLO.CombineTo( 2268 Op, 2269 TLO.DAG.getConstantFP( 2270 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2271 } 2272 2273 return false; 2274 } 2275 2276 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2277 const APInt &DemandedElts, 2278 APInt &KnownUndef, 2279 APInt &KnownZero, 2280 DAGCombinerInfo &DCI) const { 2281 SelectionDAG &DAG = DCI.DAG; 2282 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2283 !DCI.isBeforeLegalizeOps()); 2284 2285 bool Simplified = 2286 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2287 if (Simplified) { 2288 DCI.AddToWorklist(Op.getNode()); 2289 DCI.CommitTargetLoweringOpt(TLO); 2290 } 2291 2292 return Simplified; 2293 } 2294 2295 /// Given a vector binary operation and known undefined elements for each input 2296 /// operand, compute whether each element of the output is undefined. 2297 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2298 const APInt &UndefOp0, 2299 const APInt &UndefOp1) { 2300 EVT VT = BO.getValueType(); 2301 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2302 "Vector binop only"); 2303 2304 EVT EltVT = VT.getVectorElementType(); 2305 unsigned NumElts = VT.getVectorNumElements(); 2306 assert(UndefOp0.getBitWidth() == NumElts && 2307 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2308 2309 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2310 const APInt &UndefVals) { 2311 if (UndefVals[Index]) 2312 return DAG.getUNDEF(EltVT); 2313 2314 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2315 // Try hard to make sure that the getNode() call is not creating temporary 2316 // nodes. Ignore opaque integers because they do not constant fold. 2317 SDValue Elt = BV->getOperand(Index); 2318 auto *C = dyn_cast<ConstantSDNode>(Elt); 2319 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2320 return Elt; 2321 } 2322 2323 return SDValue(); 2324 }; 2325 2326 APInt KnownUndef = APInt::getNullValue(NumElts); 2327 for (unsigned i = 0; i != NumElts; ++i) { 2328 // If both inputs for this element are either constant or undef and match 2329 // the element type, compute the constant/undef result for this element of 2330 // the vector. 2331 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2332 // not handle FP constants. The code within getNode() should be refactored 2333 // to avoid the danger of creating a bogus temporary node here. 2334 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2335 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2336 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2337 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2338 KnownUndef.setBit(i); 2339 } 2340 return KnownUndef; 2341 } 2342 2343 bool TargetLowering::SimplifyDemandedVectorElts( 2344 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2345 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2346 bool AssumeSingleUse) const { 2347 EVT VT = Op.getValueType(); 2348 unsigned Opcode = Op.getOpcode(); 2349 APInt DemandedElts = OriginalDemandedElts; 2350 unsigned NumElts = DemandedElts.getBitWidth(); 2351 assert(VT.isVector() && "Expected vector op"); 2352 2353 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2354 2355 // TODO: For now we assume we know nothing about scalable vectors. 2356 if (VT.isScalableVector()) 2357 return false; 2358 2359 assert(VT.getVectorNumElements() == NumElts && 2360 "Mask size mismatches value type element count!"); 2361 2362 // Undef operand. 2363 if (Op.isUndef()) { 2364 KnownUndef.setAllBits(); 2365 return false; 2366 } 2367 2368 // If Op has other users, assume that all elements are needed. 2369 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2370 DemandedElts.setAllBits(); 2371 2372 // Not demanding any elements from Op. 2373 if (DemandedElts == 0) { 2374 KnownUndef.setAllBits(); 2375 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2376 } 2377 2378 // Limit search depth. 2379 if (Depth >= SelectionDAG::MaxRecursionDepth) 2380 return false; 2381 2382 SDLoc DL(Op); 2383 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2384 2385 // Helper for demanding the specified elements and all the bits of both binary 2386 // operands. 2387 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2388 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2389 TLO.DAG, Depth + 1); 2390 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2391 TLO.DAG, Depth + 1); 2392 if (NewOp0 || NewOp1) { 2393 SDValue NewOp = TLO.DAG.getNode( 2394 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2395 return TLO.CombineTo(Op, NewOp); 2396 } 2397 return false; 2398 }; 2399 2400 switch (Opcode) { 2401 case ISD::SCALAR_TO_VECTOR: { 2402 if (!DemandedElts[0]) { 2403 KnownUndef.setAllBits(); 2404 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2405 } 2406 KnownUndef.setHighBits(NumElts - 1); 2407 break; 2408 } 2409 case ISD::BITCAST: { 2410 SDValue Src = Op.getOperand(0); 2411 EVT SrcVT = Src.getValueType(); 2412 2413 // We only handle vectors here. 2414 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2415 if (!SrcVT.isVector()) 2416 break; 2417 2418 // Fast handling of 'identity' bitcasts. 2419 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2420 if (NumSrcElts == NumElts) 2421 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2422 KnownZero, TLO, Depth + 1); 2423 2424 APInt SrcZero, SrcUndef; 2425 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2426 2427 // Bitcast from 'large element' src vector to 'small element' vector, we 2428 // must demand a source element if any DemandedElt maps to it. 2429 if ((NumElts % NumSrcElts) == 0) { 2430 unsigned Scale = NumElts / NumSrcElts; 2431 for (unsigned i = 0; i != NumElts; ++i) 2432 if (DemandedElts[i]) 2433 SrcDemandedElts.setBit(i / Scale); 2434 2435 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2436 TLO, Depth + 1)) 2437 return true; 2438 2439 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2440 // of the large element. 2441 // TODO - bigendian once we have test coverage. 2442 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2443 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2444 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2445 for (unsigned i = 0; i != NumElts; ++i) 2446 if (DemandedElts[i]) { 2447 unsigned Ofs = (i % Scale) * EltSizeInBits; 2448 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2449 } 2450 2451 KnownBits Known; 2452 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2453 TLO, Depth + 1)) 2454 return true; 2455 } 2456 2457 // If the src element is zero/undef then all the output elements will be - 2458 // only demanded elements are guaranteed to be correct. 2459 for (unsigned i = 0; i != NumSrcElts; ++i) { 2460 if (SrcDemandedElts[i]) { 2461 if (SrcZero[i]) 2462 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2463 if (SrcUndef[i]) 2464 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2465 } 2466 } 2467 } 2468 2469 // Bitcast from 'small element' src vector to 'large element' vector, we 2470 // demand all smaller source elements covered by the larger demanded element 2471 // of this vector. 2472 if ((NumSrcElts % NumElts) == 0) { 2473 unsigned Scale = NumSrcElts / NumElts; 2474 for (unsigned i = 0; i != NumElts; ++i) 2475 if (DemandedElts[i]) 2476 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2477 2478 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2479 TLO, Depth + 1)) 2480 return true; 2481 2482 // If all the src elements covering an output element are zero/undef, then 2483 // the output element will be as well, assuming it was demanded. 2484 for (unsigned i = 0; i != NumElts; ++i) { 2485 if (DemandedElts[i]) { 2486 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2487 KnownZero.setBit(i); 2488 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2489 KnownUndef.setBit(i); 2490 } 2491 } 2492 } 2493 break; 2494 } 2495 case ISD::BUILD_VECTOR: { 2496 // Check all elements and simplify any unused elements with UNDEF. 2497 if (!DemandedElts.isAllOnesValue()) { 2498 // Don't simplify BROADCASTS. 2499 if (llvm::any_of(Op->op_values(), 2500 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2501 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2502 bool Updated = false; 2503 for (unsigned i = 0; i != NumElts; ++i) { 2504 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2505 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2506 KnownUndef.setBit(i); 2507 Updated = true; 2508 } 2509 } 2510 if (Updated) 2511 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2512 } 2513 } 2514 for (unsigned i = 0; i != NumElts; ++i) { 2515 SDValue SrcOp = Op.getOperand(i); 2516 if (SrcOp.isUndef()) { 2517 KnownUndef.setBit(i); 2518 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2519 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2520 KnownZero.setBit(i); 2521 } 2522 } 2523 break; 2524 } 2525 case ISD::CONCAT_VECTORS: { 2526 EVT SubVT = Op.getOperand(0).getValueType(); 2527 unsigned NumSubVecs = Op.getNumOperands(); 2528 unsigned NumSubElts = SubVT.getVectorNumElements(); 2529 for (unsigned i = 0; i != NumSubVecs; ++i) { 2530 SDValue SubOp = Op.getOperand(i); 2531 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2532 APInt SubUndef, SubZero; 2533 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2534 Depth + 1)) 2535 return true; 2536 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2537 KnownZero.insertBits(SubZero, i * NumSubElts); 2538 } 2539 break; 2540 } 2541 case ISD::INSERT_SUBVECTOR: { 2542 // Demand any elements from the subvector and the remainder from the src its 2543 // inserted into. 2544 SDValue Src = Op.getOperand(0); 2545 SDValue Sub = Op.getOperand(1); 2546 uint64_t Idx = Op.getConstantOperandVal(2); 2547 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2548 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2549 APInt DemandedSrcElts = DemandedElts; 2550 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2551 2552 APInt SubUndef, SubZero; 2553 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2554 Depth + 1)) 2555 return true; 2556 2557 // If none of the src operand elements are demanded, replace it with undef. 2558 if (!DemandedSrcElts && !Src.isUndef()) 2559 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2560 TLO.DAG.getUNDEF(VT), Sub, 2561 Op.getOperand(2))); 2562 2563 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2564 TLO, Depth + 1)) 2565 return true; 2566 KnownUndef.insertBits(SubUndef, Idx); 2567 KnownZero.insertBits(SubZero, Idx); 2568 2569 // Attempt to avoid multi-use ops if we don't need anything from them. 2570 if (!DemandedSrcElts.isAllOnesValue() || 2571 !DemandedSubElts.isAllOnesValue()) { 2572 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2573 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2574 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2575 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2576 if (NewSrc || NewSub) { 2577 NewSrc = NewSrc ? NewSrc : Src; 2578 NewSub = NewSub ? NewSub : Sub; 2579 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2580 NewSub, Op.getOperand(2)); 2581 return TLO.CombineTo(Op, NewOp); 2582 } 2583 } 2584 break; 2585 } 2586 case ISD::EXTRACT_SUBVECTOR: { 2587 // Offset the demanded elts by the subvector index. 2588 SDValue Src = Op.getOperand(0); 2589 if (Src.getValueType().isScalableVector()) 2590 break; 2591 uint64_t Idx = Op.getConstantOperandVal(1); 2592 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2593 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2594 2595 APInt SrcUndef, SrcZero; 2596 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2597 Depth + 1)) 2598 return true; 2599 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2600 KnownZero = SrcZero.extractBits(NumElts, Idx); 2601 2602 // Attempt to avoid multi-use ops if we don't need anything from them. 2603 if (!DemandedElts.isAllOnesValue()) { 2604 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2605 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2606 if (NewSrc) { 2607 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2608 Op.getOperand(1)); 2609 return TLO.CombineTo(Op, NewOp); 2610 } 2611 } 2612 break; 2613 } 2614 case ISD::INSERT_VECTOR_ELT: { 2615 SDValue Vec = Op.getOperand(0); 2616 SDValue Scl = Op.getOperand(1); 2617 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2618 2619 // For a legal, constant insertion index, if we don't need this insertion 2620 // then strip it, else remove it from the demanded elts. 2621 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2622 unsigned Idx = CIdx->getZExtValue(); 2623 if (!DemandedElts[Idx]) 2624 return TLO.CombineTo(Op, Vec); 2625 2626 APInt DemandedVecElts(DemandedElts); 2627 DemandedVecElts.clearBit(Idx); 2628 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2629 KnownZero, TLO, Depth + 1)) 2630 return true; 2631 2632 KnownUndef.setBitVal(Idx, Scl.isUndef()); 2633 2634 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 2635 break; 2636 } 2637 2638 APInt VecUndef, VecZero; 2639 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2640 Depth + 1)) 2641 return true; 2642 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2643 break; 2644 } 2645 case ISD::VSELECT: { 2646 // Try to transform the select condition based on the current demanded 2647 // elements. 2648 // TODO: If a condition element is undef, we can choose from one arm of the 2649 // select (and if one arm is undef, then we can propagate that to the 2650 // result). 2651 // TODO - add support for constant vselect masks (see IR version of this). 2652 APInt UnusedUndef, UnusedZero; 2653 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2654 UnusedZero, TLO, Depth + 1)) 2655 return true; 2656 2657 // See if we can simplify either vselect operand. 2658 APInt DemandedLHS(DemandedElts); 2659 APInt DemandedRHS(DemandedElts); 2660 APInt UndefLHS, ZeroLHS; 2661 APInt UndefRHS, ZeroRHS; 2662 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2663 ZeroLHS, TLO, Depth + 1)) 2664 return true; 2665 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2666 ZeroRHS, TLO, Depth + 1)) 2667 return true; 2668 2669 KnownUndef = UndefLHS & UndefRHS; 2670 KnownZero = ZeroLHS & ZeroRHS; 2671 break; 2672 } 2673 case ISD::VECTOR_SHUFFLE: { 2674 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2675 2676 // Collect demanded elements from shuffle operands.. 2677 APInt DemandedLHS(NumElts, 0); 2678 APInt DemandedRHS(NumElts, 0); 2679 for (unsigned i = 0; i != NumElts; ++i) { 2680 int M = ShuffleMask[i]; 2681 if (M < 0 || !DemandedElts[i]) 2682 continue; 2683 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2684 if (M < (int)NumElts) 2685 DemandedLHS.setBit(M); 2686 else 2687 DemandedRHS.setBit(M - NumElts); 2688 } 2689 2690 // See if we can simplify either shuffle operand. 2691 APInt UndefLHS, ZeroLHS; 2692 APInt UndefRHS, ZeroRHS; 2693 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2694 ZeroLHS, TLO, Depth + 1)) 2695 return true; 2696 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2697 ZeroRHS, TLO, Depth + 1)) 2698 return true; 2699 2700 // Simplify mask using undef elements from LHS/RHS. 2701 bool Updated = false; 2702 bool IdentityLHS = true, IdentityRHS = true; 2703 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2704 for (unsigned i = 0; i != NumElts; ++i) { 2705 int &M = NewMask[i]; 2706 if (M < 0) 2707 continue; 2708 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2709 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2710 Updated = true; 2711 M = -1; 2712 } 2713 IdentityLHS &= (M < 0) || (M == (int)i); 2714 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2715 } 2716 2717 // Update legal shuffle masks based on demanded elements if it won't reduce 2718 // to Identity which can cause premature removal of the shuffle mask. 2719 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2720 SDValue LegalShuffle = 2721 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2722 NewMask, TLO.DAG); 2723 if (LegalShuffle) 2724 return TLO.CombineTo(Op, LegalShuffle); 2725 } 2726 2727 // Propagate undef/zero elements from LHS/RHS. 2728 for (unsigned i = 0; i != NumElts; ++i) { 2729 int M = ShuffleMask[i]; 2730 if (M < 0) { 2731 KnownUndef.setBit(i); 2732 } else if (M < (int)NumElts) { 2733 if (UndefLHS[M]) 2734 KnownUndef.setBit(i); 2735 if (ZeroLHS[M]) 2736 KnownZero.setBit(i); 2737 } else { 2738 if (UndefRHS[M - NumElts]) 2739 KnownUndef.setBit(i); 2740 if (ZeroRHS[M - NumElts]) 2741 KnownZero.setBit(i); 2742 } 2743 } 2744 break; 2745 } 2746 case ISD::ANY_EXTEND_VECTOR_INREG: 2747 case ISD::SIGN_EXTEND_VECTOR_INREG: 2748 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2749 APInt SrcUndef, SrcZero; 2750 SDValue Src = Op.getOperand(0); 2751 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2752 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2753 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2754 Depth + 1)) 2755 return true; 2756 KnownZero = SrcZero.zextOrTrunc(NumElts); 2757 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2758 2759 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2760 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2761 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2762 // aext - if we just need the bottom element then we can bitcast. 2763 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2764 } 2765 2766 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2767 // zext(undef) upper bits are guaranteed to be zero. 2768 if (DemandedElts.isSubsetOf(KnownUndef)) 2769 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2770 KnownUndef.clearAllBits(); 2771 } 2772 break; 2773 } 2774 2775 // TODO: There are more binop opcodes that could be handled here - MIN, 2776 // MAX, saturated math, etc. 2777 case ISD::OR: 2778 case ISD::XOR: 2779 case ISD::ADD: 2780 case ISD::SUB: 2781 case ISD::FADD: 2782 case ISD::FSUB: 2783 case ISD::FMUL: 2784 case ISD::FDIV: 2785 case ISD::FREM: { 2786 SDValue Op0 = Op.getOperand(0); 2787 SDValue Op1 = Op.getOperand(1); 2788 2789 APInt UndefRHS, ZeroRHS; 2790 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2791 Depth + 1)) 2792 return true; 2793 APInt UndefLHS, ZeroLHS; 2794 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2795 Depth + 1)) 2796 return true; 2797 2798 KnownZero = ZeroLHS & ZeroRHS; 2799 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2800 2801 // Attempt to avoid multi-use ops if we don't need anything from them. 2802 // TODO - use KnownUndef to relax the demandedelts? 2803 if (!DemandedElts.isAllOnesValue()) 2804 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2805 return true; 2806 break; 2807 } 2808 case ISD::SHL: 2809 case ISD::SRL: 2810 case ISD::SRA: 2811 case ISD::ROTL: 2812 case ISD::ROTR: { 2813 SDValue Op0 = Op.getOperand(0); 2814 SDValue Op1 = Op.getOperand(1); 2815 2816 APInt UndefRHS, ZeroRHS; 2817 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2818 Depth + 1)) 2819 return true; 2820 APInt UndefLHS, ZeroLHS; 2821 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2822 Depth + 1)) 2823 return true; 2824 2825 KnownZero = ZeroLHS; 2826 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2827 2828 // Attempt to avoid multi-use ops if we don't need anything from them. 2829 // TODO - use KnownUndef to relax the demandedelts? 2830 if (!DemandedElts.isAllOnesValue()) 2831 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2832 return true; 2833 break; 2834 } 2835 case ISD::MUL: 2836 case ISD::AND: { 2837 SDValue Op0 = Op.getOperand(0); 2838 SDValue Op1 = Op.getOperand(1); 2839 2840 APInt SrcUndef, SrcZero; 2841 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 2842 Depth + 1)) 2843 return true; 2844 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 2845 TLO, Depth + 1)) 2846 return true; 2847 2848 // If either side has a zero element, then the result element is zero, even 2849 // if the other is an UNDEF. 2850 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2851 // and then handle 'and' nodes with the rest of the binop opcodes. 2852 KnownZero |= SrcZero; 2853 KnownUndef &= SrcUndef; 2854 KnownUndef &= ~KnownZero; 2855 2856 // Attempt to avoid multi-use ops if we don't need anything from them. 2857 // TODO - use KnownUndef to relax the demandedelts? 2858 if (!DemandedElts.isAllOnesValue()) 2859 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2860 return true; 2861 break; 2862 } 2863 case ISD::TRUNCATE: 2864 case ISD::SIGN_EXTEND: 2865 case ISD::ZERO_EXTEND: 2866 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2867 KnownZero, TLO, Depth + 1)) 2868 return true; 2869 2870 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2871 // zext(undef) upper bits are guaranteed to be zero. 2872 if (DemandedElts.isSubsetOf(KnownUndef)) 2873 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2874 KnownUndef.clearAllBits(); 2875 } 2876 break; 2877 default: { 2878 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2879 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2880 KnownZero, TLO, Depth)) 2881 return true; 2882 } else { 2883 KnownBits Known; 2884 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2885 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2886 TLO, Depth, AssumeSingleUse)) 2887 return true; 2888 } 2889 break; 2890 } 2891 } 2892 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2893 2894 // Constant fold all undef cases. 2895 // TODO: Handle zero cases as well. 2896 if (DemandedElts.isSubsetOf(KnownUndef)) 2897 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2898 2899 return false; 2900 } 2901 2902 /// Determine which of the bits specified in Mask are known to be either zero or 2903 /// one and return them in the Known. 2904 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2905 KnownBits &Known, 2906 const APInt &DemandedElts, 2907 const SelectionDAG &DAG, 2908 unsigned Depth) const { 2909 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2910 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2911 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2912 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2913 "Should use MaskedValueIsZero if you don't know whether Op" 2914 " is a target node!"); 2915 Known.resetAll(); 2916 } 2917 2918 void TargetLowering::computeKnownBitsForTargetInstr( 2919 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2920 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2921 unsigned Depth) const { 2922 Known.resetAll(); 2923 } 2924 2925 void TargetLowering::computeKnownBitsForFrameIndex( 2926 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 2927 // The low bits are known zero if the pointer is aligned. 2928 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 2929 } 2930 2931 Align TargetLowering::computeKnownAlignForTargetInstr( 2932 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 2933 unsigned Depth) const { 2934 return Align(1); 2935 } 2936 2937 /// This method can be implemented by targets that want to expose additional 2938 /// information about sign bits to the DAG Combiner. 2939 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2940 const APInt &, 2941 const SelectionDAG &, 2942 unsigned Depth) const { 2943 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2944 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2945 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2946 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2947 "Should use ComputeNumSignBits if you don't know whether Op" 2948 " is a target node!"); 2949 return 1; 2950 } 2951 2952 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 2953 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 2954 const MachineRegisterInfo &MRI, unsigned Depth) const { 2955 return 1; 2956 } 2957 2958 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2959 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2960 TargetLoweringOpt &TLO, unsigned Depth) const { 2961 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2962 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2963 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2964 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2965 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2966 " is a target node!"); 2967 return false; 2968 } 2969 2970 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2971 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2972 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2973 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2974 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2975 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2976 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2977 "Should use SimplifyDemandedBits if you don't know whether Op" 2978 " is a target node!"); 2979 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2980 return false; 2981 } 2982 2983 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 2984 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2985 SelectionDAG &DAG, unsigned Depth) const { 2986 assert( 2987 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2988 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2989 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2990 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2991 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 2992 " is a target node!"); 2993 return SDValue(); 2994 } 2995 2996 SDValue 2997 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 2998 SDValue N1, MutableArrayRef<int> Mask, 2999 SelectionDAG &DAG) const { 3000 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3001 if (!LegalMask) { 3002 std::swap(N0, N1); 3003 ShuffleVectorSDNode::commuteMask(Mask); 3004 LegalMask = isShuffleMaskLegal(Mask, VT); 3005 } 3006 3007 if (!LegalMask) 3008 return SDValue(); 3009 3010 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3011 } 3012 3013 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3014 return nullptr; 3015 } 3016 3017 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3018 const SelectionDAG &DAG, 3019 bool SNaN, 3020 unsigned Depth) const { 3021 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3022 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3023 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3024 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3025 "Should use isKnownNeverNaN if you don't know whether Op" 3026 " is a target node!"); 3027 return false; 3028 } 3029 3030 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3031 // work with truncating build vectors and vectors with elements of less than 3032 // 8 bits. 3033 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 3034 if (!N) 3035 return false; 3036 3037 APInt CVal; 3038 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 3039 CVal = CN->getAPIntValue(); 3040 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 3041 auto *CN = BV->getConstantSplatNode(); 3042 if (!CN) 3043 return false; 3044 3045 // If this is a truncating build vector, truncate the splat value. 3046 // Otherwise, we may fail to match the expected values below. 3047 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 3048 CVal = CN->getAPIntValue(); 3049 if (BVEltWidth < CVal.getBitWidth()) 3050 CVal = CVal.trunc(BVEltWidth); 3051 } else { 3052 return false; 3053 } 3054 3055 switch (getBooleanContents(N->getValueType(0))) { 3056 case UndefinedBooleanContent: 3057 return CVal[0]; 3058 case ZeroOrOneBooleanContent: 3059 return CVal.isOneValue(); 3060 case ZeroOrNegativeOneBooleanContent: 3061 return CVal.isAllOnesValue(); 3062 } 3063 3064 llvm_unreachable("Invalid boolean contents"); 3065 } 3066 3067 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 3068 if (!N) 3069 return false; 3070 3071 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3072 if (!CN) { 3073 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3074 if (!BV) 3075 return false; 3076 3077 // Only interested in constant splats, we don't care about undef 3078 // elements in identifying boolean constants and getConstantSplatNode 3079 // returns NULL if all ops are undef; 3080 CN = BV->getConstantSplatNode(); 3081 if (!CN) 3082 return false; 3083 } 3084 3085 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3086 return !CN->getAPIntValue()[0]; 3087 3088 return CN->isNullValue(); 3089 } 3090 3091 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3092 bool SExt) const { 3093 if (VT == MVT::i1) 3094 return N->isOne(); 3095 3096 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3097 switch (Cnt) { 3098 case TargetLowering::ZeroOrOneBooleanContent: 3099 // An extended value of 1 is always true, unless its original type is i1, 3100 // in which case it will be sign extended to -1. 3101 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3102 case TargetLowering::UndefinedBooleanContent: 3103 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3104 return N->isAllOnesValue() && SExt; 3105 } 3106 llvm_unreachable("Unexpected enumeration."); 3107 } 3108 3109 /// This helper function of SimplifySetCC tries to optimize the comparison when 3110 /// either operand of the SetCC node is a bitwise-and instruction. 3111 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3112 ISD::CondCode Cond, const SDLoc &DL, 3113 DAGCombinerInfo &DCI) const { 3114 // Match these patterns in any of their permutations: 3115 // (X & Y) == Y 3116 // (X & Y) != Y 3117 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3118 std::swap(N0, N1); 3119 3120 EVT OpVT = N0.getValueType(); 3121 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3122 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3123 return SDValue(); 3124 3125 SDValue X, Y; 3126 if (N0.getOperand(0) == N1) { 3127 X = N0.getOperand(1); 3128 Y = N0.getOperand(0); 3129 } else if (N0.getOperand(1) == N1) { 3130 X = N0.getOperand(0); 3131 Y = N0.getOperand(1); 3132 } else { 3133 return SDValue(); 3134 } 3135 3136 SelectionDAG &DAG = DCI.DAG; 3137 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3138 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3139 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3140 // Note that where Y is variable and is known to have at most one bit set 3141 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3142 // equivalent when Y == 0. 3143 assert(OpVT.isInteger()); 3144 Cond = ISD::getSetCCInverse(Cond, OpVT); 3145 if (DCI.isBeforeLegalizeOps() || 3146 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3147 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3148 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3149 // If the target supports an 'and-not' or 'and-complement' logic operation, 3150 // try to use that to make a comparison operation more efficient. 3151 // But don't do this transform if the mask is a single bit because there are 3152 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3153 // 'rlwinm' on PPC). 3154 3155 // Bail out if the compare operand that we want to turn into a zero is 3156 // already a zero (otherwise, infinite loop). 3157 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3158 if (YConst && YConst->isNullValue()) 3159 return SDValue(); 3160 3161 // Transform this into: ~X & Y == 0. 3162 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3163 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3164 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3165 } 3166 3167 return SDValue(); 3168 } 3169 3170 /// There are multiple IR patterns that could be checking whether certain 3171 /// truncation of a signed number would be lossy or not. The pattern which is 3172 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3173 /// We are looking for the following pattern: (KeptBits is a constant) 3174 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3175 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3176 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3177 /// We will unfold it into the natural trunc+sext pattern: 3178 /// ((%x << C) a>> C) dstcond %x 3179 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3180 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3181 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3182 const SDLoc &DL) const { 3183 // We must be comparing with a constant. 3184 ConstantSDNode *C1; 3185 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3186 return SDValue(); 3187 3188 // N0 should be: add %x, (1 << (KeptBits-1)) 3189 if (N0->getOpcode() != ISD::ADD) 3190 return SDValue(); 3191 3192 // And we must be 'add'ing a constant. 3193 ConstantSDNode *C01; 3194 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3195 return SDValue(); 3196 3197 SDValue X = N0->getOperand(0); 3198 EVT XVT = X.getValueType(); 3199 3200 // Validate constants ... 3201 3202 APInt I1 = C1->getAPIntValue(); 3203 3204 ISD::CondCode NewCond; 3205 if (Cond == ISD::CondCode::SETULT) { 3206 NewCond = ISD::CondCode::SETEQ; 3207 } else if (Cond == ISD::CondCode::SETULE) { 3208 NewCond = ISD::CondCode::SETEQ; 3209 // But need to 'canonicalize' the constant. 3210 I1 += 1; 3211 } else if (Cond == ISD::CondCode::SETUGT) { 3212 NewCond = ISD::CondCode::SETNE; 3213 // But need to 'canonicalize' the constant. 3214 I1 += 1; 3215 } else if (Cond == ISD::CondCode::SETUGE) { 3216 NewCond = ISD::CondCode::SETNE; 3217 } else 3218 return SDValue(); 3219 3220 APInt I01 = C01->getAPIntValue(); 3221 3222 auto checkConstants = [&I1, &I01]() -> bool { 3223 // Both of them must be power-of-two, and the constant from setcc is bigger. 3224 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3225 }; 3226 3227 if (checkConstants()) { 3228 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3229 } else { 3230 // What if we invert constants? (and the target predicate) 3231 I1.negate(); 3232 I01.negate(); 3233 assert(XVT.isInteger()); 3234 NewCond = getSetCCInverse(NewCond, XVT); 3235 if (!checkConstants()) 3236 return SDValue(); 3237 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3238 } 3239 3240 // They are power-of-two, so which bit is set? 3241 const unsigned KeptBits = I1.logBase2(); 3242 const unsigned KeptBitsMinusOne = I01.logBase2(); 3243 3244 // Magic! 3245 if (KeptBits != (KeptBitsMinusOne + 1)) 3246 return SDValue(); 3247 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3248 3249 // We don't want to do this in every single case. 3250 SelectionDAG &DAG = DCI.DAG; 3251 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3252 XVT, KeptBits)) 3253 return SDValue(); 3254 3255 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3256 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3257 3258 // Unfold into: ((%x << C) a>> C) cond %x 3259 // Where 'cond' will be either 'eq' or 'ne'. 3260 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3261 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3262 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3263 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3264 3265 return T2; 3266 } 3267 3268 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3269 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3270 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3271 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3272 assert(isConstOrConstSplat(N1C) && 3273 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 3274 "Should be a comparison with 0."); 3275 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3276 "Valid only for [in]equality comparisons."); 3277 3278 unsigned NewShiftOpcode; 3279 SDValue X, C, Y; 3280 3281 SelectionDAG &DAG = DCI.DAG; 3282 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3283 3284 // Look for '(C l>>/<< Y)'. 3285 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3286 // The shift should be one-use. 3287 if (!V.hasOneUse()) 3288 return false; 3289 unsigned OldShiftOpcode = V.getOpcode(); 3290 switch (OldShiftOpcode) { 3291 case ISD::SHL: 3292 NewShiftOpcode = ISD::SRL; 3293 break; 3294 case ISD::SRL: 3295 NewShiftOpcode = ISD::SHL; 3296 break; 3297 default: 3298 return false; // must be a logical shift. 3299 } 3300 // We should be shifting a constant. 3301 // FIXME: best to use isConstantOrConstantVector(). 3302 C = V.getOperand(0); 3303 ConstantSDNode *CC = 3304 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3305 if (!CC) 3306 return false; 3307 Y = V.getOperand(1); 3308 3309 ConstantSDNode *XC = 3310 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3311 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3312 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3313 }; 3314 3315 // LHS of comparison should be an one-use 'and'. 3316 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3317 return SDValue(); 3318 3319 X = N0.getOperand(0); 3320 SDValue Mask = N0.getOperand(1); 3321 3322 // 'and' is commutative! 3323 if (!Match(Mask)) { 3324 std::swap(X, Mask); 3325 if (!Match(Mask)) 3326 return SDValue(); 3327 } 3328 3329 EVT VT = X.getValueType(); 3330 3331 // Produce: 3332 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3333 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3334 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3335 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3336 return T2; 3337 } 3338 3339 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3340 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3341 /// handle the commuted versions of these patterns. 3342 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3343 ISD::CondCode Cond, const SDLoc &DL, 3344 DAGCombinerInfo &DCI) const { 3345 unsigned BOpcode = N0.getOpcode(); 3346 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3347 "Unexpected binop"); 3348 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3349 3350 // (X + Y) == X --> Y == 0 3351 // (X - Y) == X --> Y == 0 3352 // (X ^ Y) == X --> Y == 0 3353 SelectionDAG &DAG = DCI.DAG; 3354 EVT OpVT = N0.getValueType(); 3355 SDValue X = N0.getOperand(0); 3356 SDValue Y = N0.getOperand(1); 3357 if (X == N1) 3358 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3359 3360 if (Y != N1) 3361 return SDValue(); 3362 3363 // (X + Y) == Y --> X == 0 3364 // (X ^ Y) == Y --> X == 0 3365 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3366 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3367 3368 // The shift would not be valid if the operands are boolean (i1). 3369 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3370 return SDValue(); 3371 3372 // (X - Y) == Y --> X == Y << 1 3373 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3374 !DCI.isBeforeLegalize()); 3375 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3376 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3377 if (!DCI.isCalledByLegalizer()) 3378 DCI.AddToWorklist(YShl1.getNode()); 3379 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3380 } 3381 3382 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 3383 SDValue N0, const APInt &C1, 3384 ISD::CondCode Cond, const SDLoc &dl, 3385 SelectionDAG &DAG) { 3386 // Look through truncs that don't change the value of a ctpop. 3387 // FIXME: Add vector support? Need to be careful with setcc result type below. 3388 SDValue CTPOP = N0; 3389 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 3390 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 3391 CTPOP = N0.getOperand(0); 3392 3393 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 3394 return SDValue(); 3395 3396 EVT CTVT = CTPOP.getValueType(); 3397 SDValue CTOp = CTPOP.getOperand(0); 3398 3399 // If this is a vector CTPOP, keep the CTPOP if it is legal. 3400 // TODO: Should we check if CTPOP is legal(or custom) for scalars? 3401 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 3402 return SDValue(); 3403 3404 // (ctpop x) u< 2 -> (x & x-1) == 0 3405 // (ctpop x) u> 1 -> (x & x-1) != 0 3406 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 3407 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 3408 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 3409 return SDValue(); 3410 if (C1 == 0 && (Cond == ISD::SETULT)) 3411 return SDValue(); // This is handled elsewhere. 3412 3413 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 3414 3415 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3416 SDValue Result = CTOp; 3417 for (unsigned i = 0; i < Passes; i++) { 3418 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 3419 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 3420 } 3421 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3422 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 3423 } 3424 3425 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3426 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 3427 // For scalars, keep CTPOP if it is legal or custom. 3428 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT)) 3429 return SDValue(); 3430 // This is based on X86's custom lowering for CTPOP which produces more 3431 // instructions than the expansion here. 3432 3433 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3434 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3435 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3436 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3437 assert(CTVT.isInteger()); 3438 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3439 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3440 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3441 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3442 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3443 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3444 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3445 } 3446 3447 return SDValue(); 3448 } 3449 3450 /// Try to simplify a setcc built with the specified operands and cc. If it is 3451 /// unable to simplify it, return a null SDValue. 3452 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3453 ISD::CondCode Cond, bool foldBooleans, 3454 DAGCombinerInfo &DCI, 3455 const SDLoc &dl) const { 3456 SelectionDAG &DAG = DCI.DAG; 3457 const DataLayout &Layout = DAG.getDataLayout(); 3458 EVT OpVT = N0.getValueType(); 3459 3460 // Constant fold or commute setcc. 3461 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3462 return Fold; 3463 3464 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3465 // TODO: Handle non-splat vector constants. All undef causes trouble. 3466 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3467 if (isConstOrConstSplat(N0) && 3468 (DCI.isBeforeLegalizeOps() || 3469 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3470 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3471 3472 // If we have a subtract with the same 2 non-constant operands as this setcc 3473 // -- but in reverse order -- then try to commute the operands of this setcc 3474 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3475 // instruction on some targets. 3476 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3477 (DCI.isBeforeLegalizeOps() || 3478 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3479 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 3480 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 3481 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3482 3483 if (auto *N1C = isConstOrConstSplat(N1)) { 3484 const APInt &C1 = N1C->getAPIntValue(); 3485 3486 // Optimize some CTPOP cases. 3487 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 3488 return V; 3489 3490 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3491 // equality comparison, then we're just comparing whether X itself is 3492 // zero. 3493 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3494 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3495 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 3496 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 3497 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3498 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 3499 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3500 // (srl (ctlz x), 5) == 0 -> X != 0 3501 // (srl (ctlz x), 5) != 1 -> X != 0 3502 Cond = ISD::SETNE; 3503 } else { 3504 // (srl (ctlz x), 5) != 0 -> X == 0 3505 // (srl (ctlz x), 5) == 1 -> X == 0 3506 Cond = ISD::SETEQ; 3507 } 3508 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3509 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 3510 Cond); 3511 } 3512 } 3513 } 3514 } 3515 3516 // FIXME: Support vectors. 3517 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3518 const APInt &C1 = N1C->getAPIntValue(); 3519 3520 // (zext x) == C --> x == (trunc C) 3521 // (sext x) == C --> x == (trunc C) 3522 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3523 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3524 unsigned MinBits = N0.getValueSizeInBits(); 3525 SDValue PreExt; 3526 bool Signed = false; 3527 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3528 // ZExt 3529 MinBits = N0->getOperand(0).getValueSizeInBits(); 3530 PreExt = N0->getOperand(0); 3531 } else if (N0->getOpcode() == ISD::AND) { 3532 // DAGCombine turns costly ZExts into ANDs 3533 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3534 if ((C->getAPIntValue()+1).isPowerOf2()) { 3535 MinBits = C->getAPIntValue().countTrailingOnes(); 3536 PreExt = N0->getOperand(0); 3537 } 3538 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3539 // SExt 3540 MinBits = N0->getOperand(0).getValueSizeInBits(); 3541 PreExt = N0->getOperand(0); 3542 Signed = true; 3543 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3544 // ZEXTLOAD / SEXTLOAD 3545 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3546 MinBits = LN0->getMemoryVT().getSizeInBits(); 3547 PreExt = N0; 3548 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3549 Signed = true; 3550 MinBits = LN0->getMemoryVT().getSizeInBits(); 3551 PreExt = N0; 3552 } 3553 } 3554 3555 // Figure out how many bits we need to preserve this constant. 3556 unsigned ReqdBits = Signed ? 3557 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3558 C1.getActiveBits(); 3559 3560 // Make sure we're not losing bits from the constant. 3561 if (MinBits > 0 && 3562 MinBits < C1.getBitWidth() && 3563 MinBits >= ReqdBits) { 3564 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3565 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3566 // Will get folded away. 3567 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3568 if (MinBits == 1 && C1 == 1) 3569 // Invert the condition. 3570 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3571 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3572 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3573 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3574 } 3575 3576 // If truncating the setcc operands is not desirable, we can still 3577 // simplify the expression in some cases: 3578 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3579 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3580 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3581 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3582 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3583 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3584 SDValue TopSetCC = N0->getOperand(0); 3585 unsigned N0Opc = N0->getOpcode(); 3586 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3587 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3588 TopSetCC.getOpcode() == ISD::SETCC && 3589 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3590 (isConstFalseVal(N1C) || 3591 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3592 3593 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3594 (!N1C->isNullValue() && Cond == ISD::SETNE); 3595 3596 if (!Inverse) 3597 return TopSetCC; 3598 3599 ISD::CondCode InvCond = ISD::getSetCCInverse( 3600 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3601 TopSetCC.getOperand(0).getValueType()); 3602 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3603 TopSetCC.getOperand(1), 3604 InvCond); 3605 } 3606 } 3607 } 3608 3609 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3610 // equality or unsigned, and all 1 bits of the const are in the same 3611 // partial word, see if we can shorten the load. 3612 if (DCI.isBeforeLegalize() && 3613 !ISD::isSignedIntSetCC(Cond) && 3614 N0.getOpcode() == ISD::AND && C1 == 0 && 3615 N0.getNode()->hasOneUse() && 3616 isa<LoadSDNode>(N0.getOperand(0)) && 3617 N0.getOperand(0).getNode()->hasOneUse() && 3618 isa<ConstantSDNode>(N0.getOperand(1))) { 3619 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3620 APInt bestMask; 3621 unsigned bestWidth = 0, bestOffset = 0; 3622 if (Lod->isSimple() && Lod->isUnindexed()) { 3623 unsigned origWidth = N0.getValueSizeInBits(); 3624 unsigned maskWidth = origWidth; 3625 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3626 // 8 bits, but have to be careful... 3627 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3628 origWidth = Lod->getMemoryVT().getSizeInBits(); 3629 const APInt &Mask = N0.getConstantOperandAPInt(1); 3630 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3631 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3632 for (unsigned offset=0; offset<origWidth/width; offset++) { 3633 if (Mask.isSubsetOf(newMask)) { 3634 if (Layout.isLittleEndian()) 3635 bestOffset = (uint64_t)offset * (width/8); 3636 else 3637 bestOffset = (origWidth/width - offset - 1) * (width/8); 3638 bestMask = Mask.lshr(offset * (width/8) * 8); 3639 bestWidth = width; 3640 break; 3641 } 3642 newMask <<= width; 3643 } 3644 } 3645 } 3646 if (bestWidth) { 3647 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3648 if (newVT.isRound() && 3649 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3650 SDValue Ptr = Lod->getBasePtr(); 3651 if (bestOffset != 0) 3652 Ptr = 3653 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 3654 SDValue NewLoad = 3655 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 3656 Lod->getPointerInfo().getWithOffset(bestOffset), 3657 Lod->getOriginalAlign()); 3658 return DAG.getSetCC(dl, VT, 3659 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3660 DAG.getConstant(bestMask.trunc(bestWidth), 3661 dl, newVT)), 3662 DAG.getConstant(0LL, dl, newVT), Cond); 3663 } 3664 } 3665 } 3666 3667 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3668 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3669 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3670 3671 // If the comparison constant has bits in the upper part, the 3672 // zero-extended value could never match. 3673 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3674 C1.getBitWidth() - InSize))) { 3675 switch (Cond) { 3676 case ISD::SETUGT: 3677 case ISD::SETUGE: 3678 case ISD::SETEQ: 3679 return DAG.getConstant(0, dl, VT); 3680 case ISD::SETULT: 3681 case ISD::SETULE: 3682 case ISD::SETNE: 3683 return DAG.getConstant(1, dl, VT); 3684 case ISD::SETGT: 3685 case ISD::SETGE: 3686 // True if the sign bit of C1 is set. 3687 return DAG.getConstant(C1.isNegative(), dl, VT); 3688 case ISD::SETLT: 3689 case ISD::SETLE: 3690 // True if the sign bit of C1 isn't set. 3691 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3692 default: 3693 break; 3694 } 3695 } 3696 3697 // Otherwise, we can perform the comparison with the low bits. 3698 switch (Cond) { 3699 case ISD::SETEQ: 3700 case ISD::SETNE: 3701 case ISD::SETUGT: 3702 case ISD::SETUGE: 3703 case ISD::SETULT: 3704 case ISD::SETULE: { 3705 EVT newVT = N0.getOperand(0).getValueType(); 3706 if (DCI.isBeforeLegalizeOps() || 3707 (isOperationLegal(ISD::SETCC, newVT) && 3708 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3709 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3710 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3711 3712 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3713 NewConst, Cond); 3714 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3715 } 3716 break; 3717 } 3718 default: 3719 break; // todo, be more careful with signed comparisons 3720 } 3721 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3722 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3723 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3724 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3725 EVT ExtDstTy = N0.getValueType(); 3726 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3727 3728 // If the constant doesn't fit into the number of bits for the source of 3729 // the sign extension, it is impossible for both sides to be equal. 3730 if (C1.getMinSignedBits() > ExtSrcTyBits) 3731 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 3732 3733 SDValue ZextOp; 3734 EVT Op0Ty = N0.getOperand(0).getValueType(); 3735 if (Op0Ty == ExtSrcTy) { 3736 ZextOp = N0.getOperand(0); 3737 } else { 3738 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3739 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 3740 DAG.getConstant(Imm, dl, Op0Ty)); 3741 } 3742 if (!DCI.isCalledByLegalizer()) 3743 DCI.AddToWorklist(ZextOp.getNode()); 3744 // Otherwise, make this a use of a zext. 3745 return DAG.getSetCC(dl, VT, ZextOp, 3746 DAG.getConstant(C1 & APInt::getLowBitsSet( 3747 ExtDstTyBits, 3748 ExtSrcTyBits), 3749 dl, ExtDstTy), 3750 Cond); 3751 } else if ((N1C->isNullValue() || N1C->isOne()) && 3752 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3753 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3754 if (N0.getOpcode() == ISD::SETCC && 3755 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3756 (N0.getValueType() == MVT::i1 || 3757 getBooleanContents(N0.getOperand(0).getValueType()) == 3758 ZeroOrOneBooleanContent)) { 3759 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3760 if (TrueWhenTrue) 3761 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3762 // Invert the condition. 3763 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3764 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3765 if (DCI.isBeforeLegalizeOps() || 3766 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3767 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3768 } 3769 3770 if ((N0.getOpcode() == ISD::XOR || 3771 (N0.getOpcode() == ISD::AND && 3772 N0.getOperand(0).getOpcode() == ISD::XOR && 3773 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3774 isa<ConstantSDNode>(N0.getOperand(1)) && 3775 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 3776 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3777 // can only do this if the top bits are known zero. 3778 unsigned BitWidth = N0.getValueSizeInBits(); 3779 if (DAG.MaskedValueIsZero(N0, 3780 APInt::getHighBitsSet(BitWidth, 3781 BitWidth-1))) { 3782 // Okay, get the un-inverted input value. 3783 SDValue Val; 3784 if (N0.getOpcode() == ISD::XOR) { 3785 Val = N0.getOperand(0); 3786 } else { 3787 assert(N0.getOpcode() == ISD::AND && 3788 N0.getOperand(0).getOpcode() == ISD::XOR); 3789 // ((X^1)&1)^1 -> X & 1 3790 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3791 N0.getOperand(0).getOperand(0), 3792 N0.getOperand(1)); 3793 } 3794 3795 return DAG.getSetCC(dl, VT, Val, N1, 3796 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3797 } 3798 } else if (N1C->isOne()) { 3799 SDValue Op0 = N0; 3800 if (Op0.getOpcode() == ISD::TRUNCATE) 3801 Op0 = Op0.getOperand(0); 3802 3803 if ((Op0.getOpcode() == ISD::XOR) && 3804 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3805 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3806 SDValue XorLHS = Op0.getOperand(0); 3807 SDValue XorRHS = Op0.getOperand(1); 3808 // Ensure that the input setccs return an i1 type or 0/1 value. 3809 if (Op0.getValueType() == MVT::i1 || 3810 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3811 ZeroOrOneBooleanContent && 3812 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3813 ZeroOrOneBooleanContent)) { 3814 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3815 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3816 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3817 } 3818 } 3819 if (Op0.getOpcode() == ISD::AND && 3820 isa<ConstantSDNode>(Op0.getOperand(1)) && 3821 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 3822 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3823 if (Op0.getValueType().bitsGT(VT)) 3824 Op0 = DAG.getNode(ISD::AND, dl, VT, 3825 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3826 DAG.getConstant(1, dl, VT)); 3827 else if (Op0.getValueType().bitsLT(VT)) 3828 Op0 = DAG.getNode(ISD::AND, dl, VT, 3829 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3830 DAG.getConstant(1, dl, VT)); 3831 3832 return DAG.getSetCC(dl, VT, Op0, 3833 DAG.getConstant(0, dl, Op0.getValueType()), 3834 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3835 } 3836 if (Op0.getOpcode() == ISD::AssertZext && 3837 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3838 return DAG.getSetCC(dl, VT, Op0, 3839 DAG.getConstant(0, dl, Op0.getValueType()), 3840 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3841 } 3842 } 3843 3844 // Given: 3845 // icmp eq/ne (urem %x, %y), 0 3846 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3847 // icmp eq/ne %x, 0 3848 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3849 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3850 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3851 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3852 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3853 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3854 } 3855 3856 if (SDValue V = 3857 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3858 return V; 3859 } 3860 3861 // These simplifications apply to splat vectors as well. 3862 // TODO: Handle more splat vector cases. 3863 if (auto *N1C = isConstOrConstSplat(N1)) { 3864 const APInt &C1 = N1C->getAPIntValue(); 3865 3866 APInt MinVal, MaxVal; 3867 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3868 if (ISD::isSignedIntSetCC(Cond)) { 3869 MinVal = APInt::getSignedMinValue(OperandBitSize); 3870 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3871 } else { 3872 MinVal = APInt::getMinValue(OperandBitSize); 3873 MaxVal = APInt::getMaxValue(OperandBitSize); 3874 } 3875 3876 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3877 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3878 // X >= MIN --> true 3879 if (C1 == MinVal) 3880 return DAG.getBoolConstant(true, dl, VT, OpVT); 3881 3882 if (!VT.isVector()) { // TODO: Support this for vectors. 3883 // X >= C0 --> X > (C0 - 1) 3884 APInt C = C1 - 1; 3885 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3886 if ((DCI.isBeforeLegalizeOps() || 3887 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3888 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3889 isLegalICmpImmediate(C.getSExtValue())))) { 3890 return DAG.getSetCC(dl, VT, N0, 3891 DAG.getConstant(C, dl, N1.getValueType()), 3892 NewCC); 3893 } 3894 } 3895 } 3896 3897 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3898 // X <= MAX --> true 3899 if (C1 == MaxVal) 3900 return DAG.getBoolConstant(true, dl, VT, OpVT); 3901 3902 // X <= C0 --> X < (C0 + 1) 3903 if (!VT.isVector()) { // TODO: Support this for vectors. 3904 APInt C = C1 + 1; 3905 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3906 if ((DCI.isBeforeLegalizeOps() || 3907 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3908 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3909 isLegalICmpImmediate(C.getSExtValue())))) { 3910 return DAG.getSetCC(dl, VT, N0, 3911 DAG.getConstant(C, dl, N1.getValueType()), 3912 NewCC); 3913 } 3914 } 3915 } 3916 3917 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3918 if (C1 == MinVal) 3919 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3920 3921 // TODO: Support this for vectors after legalize ops. 3922 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3923 // Canonicalize setlt X, Max --> setne X, Max 3924 if (C1 == MaxVal) 3925 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3926 3927 // If we have setult X, 1, turn it into seteq X, 0 3928 if (C1 == MinVal+1) 3929 return DAG.getSetCC(dl, VT, N0, 3930 DAG.getConstant(MinVal, dl, N0.getValueType()), 3931 ISD::SETEQ); 3932 } 3933 } 3934 3935 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3936 if (C1 == MaxVal) 3937 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3938 3939 // TODO: Support this for vectors after legalize ops. 3940 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3941 // Canonicalize setgt X, Min --> setne X, Min 3942 if (C1 == MinVal) 3943 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3944 3945 // If we have setugt X, Max-1, turn it into seteq X, Max 3946 if (C1 == MaxVal-1) 3947 return DAG.getSetCC(dl, VT, N0, 3948 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3949 ISD::SETEQ); 3950 } 3951 } 3952 3953 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3954 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3955 if (C1.isNullValue()) 3956 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3957 VT, N0, N1, Cond, DCI, dl)) 3958 return CC; 3959 3960 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 3961 // For example, when high 32-bits of i64 X are known clear: 3962 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 3963 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 3964 bool CmpZero = N1C->getAPIntValue().isNullValue(); 3965 bool CmpNegOne = N1C->getAPIntValue().isAllOnesValue(); 3966 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 3967 // Match or(lo,shl(hi,bw/2)) pattern. 3968 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 3969 unsigned EltBits = V.getScalarValueSizeInBits(); 3970 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 3971 return false; 3972 SDValue LHS = V.getOperand(0); 3973 SDValue RHS = V.getOperand(1); 3974 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 3975 // Unshifted element must have zero upperbits. 3976 if (RHS.getOpcode() == ISD::SHL && 3977 isa<ConstantSDNode>(RHS.getOperand(1)) && 3978 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 3979 DAG.MaskedValueIsZero(LHS, HiBits)) { 3980 Lo = LHS; 3981 Hi = RHS.getOperand(0); 3982 return true; 3983 } 3984 if (LHS.getOpcode() == ISD::SHL && 3985 isa<ConstantSDNode>(LHS.getOperand(1)) && 3986 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 3987 DAG.MaskedValueIsZero(RHS, HiBits)) { 3988 Lo = RHS; 3989 Hi = LHS.getOperand(0); 3990 return true; 3991 } 3992 return false; 3993 }; 3994 3995 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 3996 unsigned EltBits = N0.getScalarValueSizeInBits(); 3997 unsigned HalfBits = EltBits / 2; 3998 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 3999 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4000 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4001 SDValue NewN0 = 4002 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4003 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4004 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4005 }; 4006 4007 SDValue Lo, Hi; 4008 if (IsConcat(N0, Lo, Hi)) 4009 return MergeConcat(Lo, Hi); 4010 4011 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4012 SDValue Lo0, Lo1, Hi0, Hi1; 4013 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4014 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4015 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4016 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4017 } 4018 } 4019 } 4020 } 4021 4022 // If we have "setcc X, C0", check to see if we can shrink the immediate 4023 // by changing cc. 4024 // TODO: Support this for vectors after legalize ops. 4025 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4026 // SETUGT X, SINTMAX -> SETLT X, 0 4027 // SETUGE X, SINTMIN -> SETLT X, 0 4028 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4029 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4030 return DAG.getSetCC(dl, VT, N0, 4031 DAG.getConstant(0, dl, N1.getValueType()), 4032 ISD::SETLT); 4033 4034 // SETULT X, SINTMIN -> SETGT X, -1 4035 // SETULE X, SINTMAX -> SETGT X, -1 4036 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4037 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4038 return DAG.getSetCC(dl, VT, N0, 4039 DAG.getAllOnesConstant(dl, N1.getValueType()), 4040 ISD::SETGT); 4041 } 4042 } 4043 4044 // Back to non-vector simplifications. 4045 // TODO: Can we do these for vector splats? 4046 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4047 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4048 const APInt &C1 = N1C->getAPIntValue(); 4049 EVT ShValTy = N0.getValueType(); 4050 4051 // Fold bit comparisons when we can. This will result in an 4052 // incorrect value when boolean false is negative one, unless 4053 // the bitsize is 1 in which case the false value is the same 4054 // in practice regardless of the representation. 4055 if ((VT.getSizeInBits() == 1 || 4056 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4057 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4058 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4059 N0.getOpcode() == ISD::AND) { 4060 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4061 EVT ShiftTy = 4062 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4063 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4064 // Perform the xform if the AND RHS is a single bit. 4065 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4066 if (AndRHS->getAPIntValue().isPowerOf2() && 4067 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4068 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4069 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4070 DAG.getConstant(ShCt, dl, ShiftTy))); 4071 } 4072 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4073 // (X & 8) == 8 --> (X & 8) >> 3 4074 // Perform the xform if C1 is a single bit. 4075 unsigned ShCt = C1.logBase2(); 4076 if (C1.isPowerOf2() && 4077 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4078 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4079 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4080 DAG.getConstant(ShCt, dl, ShiftTy))); 4081 } 4082 } 4083 } 4084 } 4085 4086 if (C1.getMinSignedBits() <= 64 && 4087 !isLegalICmpImmediate(C1.getSExtValue())) { 4088 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4089 // (X & -256) == 256 -> (X >> 8) == 1 4090 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4091 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4092 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4093 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4094 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 4095 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4096 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4097 SDValue Shift = 4098 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4099 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4100 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4101 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4102 } 4103 } 4104 } 4105 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4106 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4107 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4108 // X < 0x100000000 -> (X >> 32) < 1 4109 // X >= 0x100000000 -> (X >> 32) >= 1 4110 // X <= 0x0ffffffff -> (X >> 32) < 1 4111 // X > 0x0ffffffff -> (X >> 32) >= 1 4112 unsigned ShiftBits; 4113 APInt NewC = C1; 4114 ISD::CondCode NewCond = Cond; 4115 if (AdjOne) { 4116 ShiftBits = C1.countTrailingOnes(); 4117 NewC = NewC + 1; 4118 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4119 } else { 4120 ShiftBits = C1.countTrailingZeros(); 4121 } 4122 NewC.lshrInPlace(ShiftBits); 4123 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4124 isLegalICmpImmediate(NewC.getSExtValue()) && 4125 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4126 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4127 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4128 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4129 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4130 } 4131 } 4132 } 4133 } 4134 4135 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4136 auto *CFP = cast<ConstantFPSDNode>(N1); 4137 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4138 4139 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4140 // constant if knowing that the operand is non-nan is enough. We prefer to 4141 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4142 // materialize 0.0. 4143 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4144 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4145 4146 // setcc (fneg x), C -> setcc swap(pred) x, -C 4147 if (N0.getOpcode() == ISD::FNEG) { 4148 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4149 if (DCI.isBeforeLegalizeOps() || 4150 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4151 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4152 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4153 } 4154 } 4155 4156 // If the condition is not legal, see if we can find an equivalent one 4157 // which is legal. 4158 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4159 // If the comparison was an awkward floating-point == or != and one of 4160 // the comparison operands is infinity or negative infinity, convert the 4161 // condition to a less-awkward <= or >=. 4162 if (CFP->getValueAPF().isInfinity()) { 4163 bool IsNegInf = CFP->getValueAPF().isNegative(); 4164 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4165 switch (Cond) { 4166 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4167 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4168 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4169 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4170 default: break; 4171 } 4172 if (NewCond != ISD::SETCC_INVALID && 4173 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4174 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4175 } 4176 } 4177 } 4178 4179 if (N0 == N1) { 4180 // The sext(setcc()) => setcc() optimization relies on the appropriate 4181 // constant being emitted. 4182 assert(!N0.getValueType().isInteger() && 4183 "Integer types should be handled by FoldSetCC"); 4184 4185 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4186 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4187 if (UOF == 2) // FP operators that are undefined on NaNs. 4188 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4189 if (UOF == unsigned(EqTrue)) 4190 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4191 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4192 // if it is not already. 4193 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4194 if (NewCond != Cond && 4195 (DCI.isBeforeLegalizeOps() || 4196 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4197 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4198 } 4199 4200 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4201 N0.getValueType().isInteger()) { 4202 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4203 N0.getOpcode() == ISD::XOR) { 4204 // Simplify (X+Y) == (X+Z) --> Y == Z 4205 if (N0.getOpcode() == N1.getOpcode()) { 4206 if (N0.getOperand(0) == N1.getOperand(0)) 4207 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4208 if (N0.getOperand(1) == N1.getOperand(1)) 4209 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4210 if (isCommutativeBinOp(N0.getOpcode())) { 4211 // If X op Y == Y op X, try other combinations. 4212 if (N0.getOperand(0) == N1.getOperand(1)) 4213 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4214 Cond); 4215 if (N0.getOperand(1) == N1.getOperand(0)) 4216 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4217 Cond); 4218 } 4219 } 4220 4221 // If RHS is a legal immediate value for a compare instruction, we need 4222 // to be careful about increasing register pressure needlessly. 4223 bool LegalRHSImm = false; 4224 4225 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4226 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4227 // Turn (X+C1) == C2 --> X == C2-C1 4228 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 4229 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4230 DAG.getConstant(RHSC->getAPIntValue()- 4231 LHSR->getAPIntValue(), 4232 dl, N0.getValueType()), Cond); 4233 } 4234 4235 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 4236 if (N0.getOpcode() == ISD::XOR) 4237 // If we know that all of the inverted bits are zero, don't bother 4238 // performing the inversion. 4239 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 4240 return 4241 DAG.getSetCC(dl, VT, N0.getOperand(0), 4242 DAG.getConstant(LHSR->getAPIntValue() ^ 4243 RHSC->getAPIntValue(), 4244 dl, N0.getValueType()), 4245 Cond); 4246 } 4247 4248 // Turn (C1-X) == C2 --> X == C1-C2 4249 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 4250 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 4251 return 4252 DAG.getSetCC(dl, VT, N0.getOperand(1), 4253 DAG.getConstant(SUBC->getAPIntValue() - 4254 RHSC->getAPIntValue(), 4255 dl, N0.getValueType()), 4256 Cond); 4257 } 4258 } 4259 4260 // Could RHSC fold directly into a compare? 4261 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4262 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4263 } 4264 4265 // (X+Y) == X --> Y == 0 and similar folds. 4266 // Don't do this if X is an immediate that can fold into a cmp 4267 // instruction and X+Y has other uses. It could be an induction variable 4268 // chain, and the transform would increase register pressure. 4269 if (!LegalRHSImm || N0.hasOneUse()) 4270 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4271 return V; 4272 } 4273 4274 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4275 N1.getOpcode() == ISD::XOR) 4276 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4277 return V; 4278 4279 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4280 return V; 4281 } 4282 4283 // Fold remainder of division by a constant. 4284 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4285 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4286 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4287 4288 // When division is cheap or optimizing for minimum size, 4289 // fall through to DIVREM creation by skipping this fold. 4290 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 4291 if (N0.getOpcode() == ISD::UREM) { 4292 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4293 return Folded; 4294 } else if (N0.getOpcode() == ISD::SREM) { 4295 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4296 return Folded; 4297 } 4298 } 4299 } 4300 4301 // Fold away ALL boolean setcc's. 4302 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4303 SDValue Temp; 4304 switch (Cond) { 4305 default: llvm_unreachable("Unknown integer setcc!"); 4306 case ISD::SETEQ: // X == Y -> ~(X^Y) 4307 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4308 N0 = DAG.getNOT(dl, Temp, OpVT); 4309 if (!DCI.isCalledByLegalizer()) 4310 DCI.AddToWorklist(Temp.getNode()); 4311 break; 4312 case ISD::SETNE: // X != Y --> (X^Y) 4313 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4314 break; 4315 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4316 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4317 Temp = DAG.getNOT(dl, N0, OpVT); 4318 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4319 if (!DCI.isCalledByLegalizer()) 4320 DCI.AddToWorklist(Temp.getNode()); 4321 break; 4322 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4323 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4324 Temp = DAG.getNOT(dl, N1, OpVT); 4325 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4326 if (!DCI.isCalledByLegalizer()) 4327 DCI.AddToWorklist(Temp.getNode()); 4328 break; 4329 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4330 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4331 Temp = DAG.getNOT(dl, N0, OpVT); 4332 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4333 if (!DCI.isCalledByLegalizer()) 4334 DCI.AddToWorklist(Temp.getNode()); 4335 break; 4336 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4337 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4338 Temp = DAG.getNOT(dl, N1, OpVT); 4339 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4340 break; 4341 } 4342 if (VT.getScalarType() != MVT::i1) { 4343 if (!DCI.isCalledByLegalizer()) 4344 DCI.AddToWorklist(N0.getNode()); 4345 // FIXME: If running after legalize, we probably can't do this. 4346 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4347 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4348 } 4349 return N0; 4350 } 4351 4352 // Could not fold it. 4353 return SDValue(); 4354 } 4355 4356 /// Returns true (and the GlobalValue and the offset) if the node is a 4357 /// GlobalAddress + offset. 4358 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4359 int64_t &Offset) const { 4360 4361 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4362 4363 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4364 GA = GASD->getGlobal(); 4365 Offset += GASD->getOffset(); 4366 return true; 4367 } 4368 4369 if (N->getOpcode() == ISD::ADD) { 4370 SDValue N1 = N->getOperand(0); 4371 SDValue N2 = N->getOperand(1); 4372 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4373 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4374 Offset += V->getSExtValue(); 4375 return true; 4376 } 4377 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4378 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4379 Offset += V->getSExtValue(); 4380 return true; 4381 } 4382 } 4383 } 4384 4385 return false; 4386 } 4387 4388 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4389 DAGCombinerInfo &DCI) const { 4390 // Default implementation: no optimization. 4391 return SDValue(); 4392 } 4393 4394 //===----------------------------------------------------------------------===// 4395 // Inline Assembler Implementation Methods 4396 //===----------------------------------------------------------------------===// 4397 4398 TargetLowering::ConstraintType 4399 TargetLowering::getConstraintType(StringRef Constraint) const { 4400 unsigned S = Constraint.size(); 4401 4402 if (S == 1) { 4403 switch (Constraint[0]) { 4404 default: break; 4405 case 'r': 4406 return C_RegisterClass; 4407 case 'm': // memory 4408 case 'o': // offsetable 4409 case 'V': // not offsetable 4410 return C_Memory; 4411 case 'n': // Simple Integer 4412 case 'E': // Floating Point Constant 4413 case 'F': // Floating Point Constant 4414 return C_Immediate; 4415 case 'i': // Simple Integer or Relocatable Constant 4416 case 's': // Relocatable Constant 4417 case 'p': // Address. 4418 case 'X': // Allow ANY value. 4419 case 'I': // Target registers. 4420 case 'J': 4421 case 'K': 4422 case 'L': 4423 case 'M': 4424 case 'N': 4425 case 'O': 4426 case 'P': 4427 case '<': 4428 case '>': 4429 return C_Other; 4430 } 4431 } 4432 4433 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4434 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4435 return C_Memory; 4436 return C_Register; 4437 } 4438 return C_Unknown; 4439 } 4440 4441 /// Try to replace an X constraint, which matches anything, with another that 4442 /// has more specific requirements based on the type of the corresponding 4443 /// operand. 4444 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4445 if (ConstraintVT.isInteger()) 4446 return "r"; 4447 if (ConstraintVT.isFloatingPoint()) 4448 return "f"; // works for many targets 4449 return nullptr; 4450 } 4451 4452 SDValue TargetLowering::LowerAsmOutputForConstraint( 4453 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 4454 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 4455 return SDValue(); 4456 } 4457 4458 /// Lower the specified operand into the Ops vector. 4459 /// If it is invalid, don't add anything to Ops. 4460 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4461 std::string &Constraint, 4462 std::vector<SDValue> &Ops, 4463 SelectionDAG &DAG) const { 4464 4465 if (Constraint.length() > 1) return; 4466 4467 char ConstraintLetter = Constraint[0]; 4468 switch (ConstraintLetter) { 4469 default: break; 4470 case 'X': // Allows any operand; labels (basic block) use this. 4471 if (Op.getOpcode() == ISD::BasicBlock || 4472 Op.getOpcode() == ISD::TargetBlockAddress) { 4473 Ops.push_back(Op); 4474 return; 4475 } 4476 LLVM_FALLTHROUGH; 4477 case 'i': // Simple Integer or Relocatable Constant 4478 case 'n': // Simple Integer 4479 case 's': { // Relocatable Constant 4480 4481 GlobalAddressSDNode *GA; 4482 ConstantSDNode *C; 4483 BlockAddressSDNode *BA; 4484 uint64_t Offset = 0; 4485 4486 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4487 // etc., since getelementpointer is variadic. We can't use 4488 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4489 // while in this case the GA may be furthest from the root node which is 4490 // likely an ISD::ADD. 4491 while (1) { 4492 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4493 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4494 GA->getValueType(0), 4495 Offset + GA->getOffset())); 4496 return; 4497 } else if ((C = dyn_cast<ConstantSDNode>(Op)) && 4498 ConstraintLetter != 's') { 4499 // gcc prints these as sign extended. Sign extend value to 64 bits 4500 // now; without this it would get ZExt'd later in 4501 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4502 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4503 BooleanContent BCont = getBooleanContents(MVT::i64); 4504 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont) 4505 : ISD::SIGN_EXTEND; 4506 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() 4507 : C->getSExtValue(); 4508 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal, 4509 SDLoc(C), MVT::i64)); 4510 return; 4511 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && 4512 ConstraintLetter != 'n') { 4513 Ops.push_back(DAG.getTargetBlockAddress( 4514 BA->getBlockAddress(), BA->getValueType(0), 4515 Offset + BA->getOffset(), BA->getTargetFlags())); 4516 return; 4517 } else { 4518 const unsigned OpCode = Op.getOpcode(); 4519 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4520 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4521 Op = Op.getOperand(1); 4522 // Subtraction is not commutative. 4523 else if (OpCode == ISD::ADD && 4524 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4525 Op = Op.getOperand(0); 4526 else 4527 return; 4528 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4529 continue; 4530 } 4531 } 4532 return; 4533 } 4534 break; 4535 } 4536 } 4537 } 4538 4539 std::pair<unsigned, const TargetRegisterClass *> 4540 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4541 StringRef Constraint, 4542 MVT VT) const { 4543 if (Constraint.empty() || Constraint[0] != '{') 4544 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4545 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4546 4547 // Remove the braces from around the name. 4548 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4549 4550 std::pair<unsigned, const TargetRegisterClass *> R = 4551 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4552 4553 // Figure out which register class contains this reg. 4554 for (const TargetRegisterClass *RC : RI->regclasses()) { 4555 // If none of the value types for this register class are valid, we 4556 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4557 if (!isLegalRC(*RI, *RC)) 4558 continue; 4559 4560 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 4561 I != E; ++I) { 4562 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 4563 std::pair<unsigned, const TargetRegisterClass *> S = 4564 std::make_pair(*I, RC); 4565 4566 // If this register class has the requested value type, return it, 4567 // otherwise keep searching and return the first class found 4568 // if no other is found which explicitly has the requested type. 4569 if (RI->isTypeLegalForClass(*RC, VT)) 4570 return S; 4571 if (!R.second) 4572 R = S; 4573 } 4574 } 4575 } 4576 4577 return R; 4578 } 4579 4580 //===----------------------------------------------------------------------===// 4581 // Constraint Selection. 4582 4583 /// Return true of this is an input operand that is a matching constraint like 4584 /// "4". 4585 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4586 assert(!ConstraintCode.empty() && "No known constraint!"); 4587 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4588 } 4589 4590 /// If this is an input matching constraint, this method returns the output 4591 /// operand it matches. 4592 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4593 assert(!ConstraintCode.empty() && "No known constraint!"); 4594 return atoi(ConstraintCode.c_str()); 4595 } 4596 4597 /// Split up the constraint string from the inline assembly value into the 4598 /// specific constraints and their prefixes, and also tie in the associated 4599 /// operand values. 4600 /// If this returns an empty vector, and if the constraint string itself 4601 /// isn't empty, there was an error parsing. 4602 TargetLowering::AsmOperandInfoVector 4603 TargetLowering::ParseConstraints(const DataLayout &DL, 4604 const TargetRegisterInfo *TRI, 4605 const CallBase &Call) const { 4606 /// Information about all of the constraints. 4607 AsmOperandInfoVector ConstraintOperands; 4608 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 4609 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4610 4611 // Do a prepass over the constraints, canonicalizing them, and building up the 4612 // ConstraintOperands list. 4613 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4614 unsigned ResNo = 0; // ResNo - The result number of the next output. 4615 4616 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4617 ConstraintOperands.emplace_back(std::move(CI)); 4618 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4619 4620 // Update multiple alternative constraint count. 4621 if (OpInfo.multipleAlternatives.size() > maCount) 4622 maCount = OpInfo.multipleAlternatives.size(); 4623 4624 OpInfo.ConstraintVT = MVT::Other; 4625 4626 // Compute the value type for each operand. 4627 switch (OpInfo.Type) { 4628 case InlineAsm::isOutput: 4629 // Indirect outputs just consume an argument. 4630 if (OpInfo.isIndirect) { 4631 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4632 break; 4633 } 4634 4635 // The return value of the call is this value. As such, there is no 4636 // corresponding argument. 4637 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 4638 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 4639 OpInfo.ConstraintVT = 4640 getSimpleValueType(DL, STy->getElementType(ResNo)); 4641 } else { 4642 assert(ResNo == 0 && "Asm only has one result!"); 4643 OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType()); 4644 } 4645 ++ResNo; 4646 break; 4647 case InlineAsm::isInput: 4648 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4649 break; 4650 case InlineAsm::isClobber: 4651 // Nothing to do. 4652 break; 4653 } 4654 4655 if (OpInfo.CallOperandVal) { 4656 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4657 if (OpInfo.isIndirect) { 4658 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4659 if (!PtrTy) 4660 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4661 OpTy = PtrTy->getElementType(); 4662 } 4663 4664 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4665 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4666 if (STy->getNumElements() == 1) 4667 OpTy = STy->getElementType(0); 4668 4669 // If OpTy is not a single value, it may be a struct/union that we 4670 // can tile with integers. 4671 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4672 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4673 switch (BitSize) { 4674 default: break; 4675 case 1: 4676 case 8: 4677 case 16: 4678 case 32: 4679 case 64: 4680 case 128: 4681 OpInfo.ConstraintVT = 4682 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4683 break; 4684 } 4685 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4686 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4687 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4688 } else { 4689 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4690 } 4691 } 4692 } 4693 4694 // If we have multiple alternative constraints, select the best alternative. 4695 if (!ConstraintOperands.empty()) { 4696 if (maCount) { 4697 unsigned bestMAIndex = 0; 4698 int bestWeight = -1; 4699 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4700 int weight = -1; 4701 unsigned maIndex; 4702 // Compute the sums of the weights for each alternative, keeping track 4703 // of the best (highest weight) one so far. 4704 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4705 int weightSum = 0; 4706 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4707 cIndex != eIndex; ++cIndex) { 4708 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4709 if (OpInfo.Type == InlineAsm::isClobber) 4710 continue; 4711 4712 // If this is an output operand with a matching input operand, 4713 // look up the matching input. If their types mismatch, e.g. one 4714 // is an integer, the other is floating point, or their sizes are 4715 // different, flag it as an maCantMatch. 4716 if (OpInfo.hasMatchingInput()) { 4717 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4718 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4719 if ((OpInfo.ConstraintVT.isInteger() != 4720 Input.ConstraintVT.isInteger()) || 4721 (OpInfo.ConstraintVT.getSizeInBits() != 4722 Input.ConstraintVT.getSizeInBits())) { 4723 weightSum = -1; // Can't match. 4724 break; 4725 } 4726 } 4727 } 4728 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4729 if (weight == -1) { 4730 weightSum = -1; 4731 break; 4732 } 4733 weightSum += weight; 4734 } 4735 // Update best. 4736 if (weightSum > bestWeight) { 4737 bestWeight = weightSum; 4738 bestMAIndex = maIndex; 4739 } 4740 } 4741 4742 // Now select chosen alternative in each constraint. 4743 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4744 cIndex != eIndex; ++cIndex) { 4745 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4746 if (cInfo.Type == InlineAsm::isClobber) 4747 continue; 4748 cInfo.selectAlternative(bestMAIndex); 4749 } 4750 } 4751 } 4752 4753 // Check and hook up tied operands, choose constraint code to use. 4754 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4755 cIndex != eIndex; ++cIndex) { 4756 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4757 4758 // If this is an output operand with a matching input operand, look up the 4759 // matching input. If their types mismatch, e.g. one is an integer, the 4760 // other is floating point, or their sizes are different, flag it as an 4761 // error. 4762 if (OpInfo.hasMatchingInput()) { 4763 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4764 4765 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4766 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4767 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4768 OpInfo.ConstraintVT); 4769 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4770 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4771 Input.ConstraintVT); 4772 if ((OpInfo.ConstraintVT.isInteger() != 4773 Input.ConstraintVT.isInteger()) || 4774 (MatchRC.second != InputRC.second)) { 4775 report_fatal_error("Unsupported asm: input constraint" 4776 " with a matching output constraint of" 4777 " incompatible type!"); 4778 } 4779 } 4780 } 4781 } 4782 4783 return ConstraintOperands; 4784 } 4785 4786 /// Return an integer indicating how general CT is. 4787 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4788 switch (CT) { 4789 case TargetLowering::C_Immediate: 4790 case TargetLowering::C_Other: 4791 case TargetLowering::C_Unknown: 4792 return 0; 4793 case TargetLowering::C_Register: 4794 return 1; 4795 case TargetLowering::C_RegisterClass: 4796 return 2; 4797 case TargetLowering::C_Memory: 4798 return 3; 4799 } 4800 llvm_unreachable("Invalid constraint type"); 4801 } 4802 4803 /// Examine constraint type and operand type and determine a weight value. 4804 /// This object must already have been set up with the operand type 4805 /// and the current alternative constraint selected. 4806 TargetLowering::ConstraintWeight 4807 TargetLowering::getMultipleConstraintMatchWeight( 4808 AsmOperandInfo &info, int maIndex) const { 4809 InlineAsm::ConstraintCodeVector *rCodes; 4810 if (maIndex >= (int)info.multipleAlternatives.size()) 4811 rCodes = &info.Codes; 4812 else 4813 rCodes = &info.multipleAlternatives[maIndex].Codes; 4814 ConstraintWeight BestWeight = CW_Invalid; 4815 4816 // Loop over the options, keeping track of the most general one. 4817 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4818 ConstraintWeight weight = 4819 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4820 if (weight > BestWeight) 4821 BestWeight = weight; 4822 } 4823 4824 return BestWeight; 4825 } 4826 4827 /// Examine constraint type and operand type and determine a weight value. 4828 /// This object must already have been set up with the operand type 4829 /// and the current alternative constraint selected. 4830 TargetLowering::ConstraintWeight 4831 TargetLowering::getSingleConstraintMatchWeight( 4832 AsmOperandInfo &info, const char *constraint) const { 4833 ConstraintWeight weight = CW_Invalid; 4834 Value *CallOperandVal = info.CallOperandVal; 4835 // If we don't have a value, we can't do a match, 4836 // but allow it at the lowest weight. 4837 if (!CallOperandVal) 4838 return CW_Default; 4839 // Look at the constraint type. 4840 switch (*constraint) { 4841 case 'i': // immediate integer. 4842 case 'n': // immediate integer with a known value. 4843 if (isa<ConstantInt>(CallOperandVal)) 4844 weight = CW_Constant; 4845 break; 4846 case 's': // non-explicit intregal immediate. 4847 if (isa<GlobalValue>(CallOperandVal)) 4848 weight = CW_Constant; 4849 break; 4850 case 'E': // immediate float if host format. 4851 case 'F': // immediate float. 4852 if (isa<ConstantFP>(CallOperandVal)) 4853 weight = CW_Constant; 4854 break; 4855 case '<': // memory operand with autodecrement. 4856 case '>': // memory operand with autoincrement. 4857 case 'm': // memory operand. 4858 case 'o': // offsettable memory operand 4859 case 'V': // non-offsettable memory operand 4860 weight = CW_Memory; 4861 break; 4862 case 'r': // general register. 4863 case 'g': // general register, memory operand or immediate integer. 4864 // note: Clang converts "g" to "imr". 4865 if (CallOperandVal->getType()->isIntegerTy()) 4866 weight = CW_Register; 4867 break; 4868 case 'X': // any operand. 4869 default: 4870 weight = CW_Default; 4871 break; 4872 } 4873 return weight; 4874 } 4875 4876 /// If there are multiple different constraints that we could pick for this 4877 /// operand (e.g. "imr") try to pick the 'best' one. 4878 /// This is somewhat tricky: constraints fall into four classes: 4879 /// Other -> immediates and magic values 4880 /// Register -> one specific register 4881 /// RegisterClass -> a group of regs 4882 /// Memory -> memory 4883 /// Ideally, we would pick the most specific constraint possible: if we have 4884 /// something that fits into a register, we would pick it. The problem here 4885 /// is that if we have something that could either be in a register or in 4886 /// memory that use of the register could cause selection of *other* 4887 /// operands to fail: they might only succeed if we pick memory. Because of 4888 /// this the heuristic we use is: 4889 /// 4890 /// 1) If there is an 'other' constraint, and if the operand is valid for 4891 /// that constraint, use it. This makes us take advantage of 'i' 4892 /// constraints when available. 4893 /// 2) Otherwise, pick the most general constraint present. This prefers 4894 /// 'm' over 'r', for example. 4895 /// 4896 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4897 const TargetLowering &TLI, 4898 SDValue Op, SelectionDAG *DAG) { 4899 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4900 unsigned BestIdx = 0; 4901 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4902 int BestGenerality = -1; 4903 4904 // Loop over the options, keeping track of the most general one. 4905 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4906 TargetLowering::ConstraintType CType = 4907 TLI.getConstraintType(OpInfo.Codes[i]); 4908 4909 // Indirect 'other' or 'immediate' constraints are not allowed. 4910 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 4911 CType == TargetLowering::C_Register || 4912 CType == TargetLowering::C_RegisterClass)) 4913 continue; 4914 4915 // If this is an 'other' or 'immediate' constraint, see if the operand is 4916 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4917 // the operand is an integer in the range [0..31] we want to use I (saving a 4918 // load of a register), otherwise we must use 'r'. 4919 if ((CType == TargetLowering::C_Other || 4920 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4921 assert(OpInfo.Codes[i].size() == 1 && 4922 "Unhandled multi-letter 'other' constraint"); 4923 std::vector<SDValue> ResultOps; 4924 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4925 ResultOps, *DAG); 4926 if (!ResultOps.empty()) { 4927 BestType = CType; 4928 BestIdx = i; 4929 break; 4930 } 4931 } 4932 4933 // Things with matching constraints can only be registers, per gcc 4934 // documentation. This mainly affects "g" constraints. 4935 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4936 continue; 4937 4938 // This constraint letter is more general than the previous one, use it. 4939 int Generality = getConstraintGenerality(CType); 4940 if (Generality > BestGenerality) { 4941 BestType = CType; 4942 BestIdx = i; 4943 BestGenerality = Generality; 4944 } 4945 } 4946 4947 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4948 OpInfo.ConstraintType = BestType; 4949 } 4950 4951 /// Determines the constraint code and constraint type to use for the specific 4952 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4953 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4954 SDValue Op, 4955 SelectionDAG *DAG) const { 4956 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4957 4958 // Single-letter constraints ('r') are very common. 4959 if (OpInfo.Codes.size() == 1) { 4960 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4961 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4962 } else { 4963 ChooseConstraint(OpInfo, *this, Op, DAG); 4964 } 4965 4966 // 'X' matches anything. 4967 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4968 // Labels and constants are handled elsewhere ('X' is the only thing 4969 // that matches labels). For Functions, the type here is the type of 4970 // the result, which is not what we want to look at; leave them alone. 4971 Value *v = OpInfo.CallOperandVal; 4972 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4973 OpInfo.CallOperandVal = v; 4974 return; 4975 } 4976 4977 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4978 return; 4979 4980 // Otherwise, try to resolve it to something we know about by looking at 4981 // the actual operand type. 4982 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4983 OpInfo.ConstraintCode = Repl; 4984 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4985 } 4986 } 4987 } 4988 4989 /// Given an exact SDIV by a constant, create a multiplication 4990 /// with the multiplicative inverse of the constant. 4991 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 4992 const SDLoc &dl, SelectionDAG &DAG, 4993 SmallVectorImpl<SDNode *> &Created) { 4994 SDValue Op0 = N->getOperand(0); 4995 SDValue Op1 = N->getOperand(1); 4996 EVT VT = N->getValueType(0); 4997 EVT SVT = VT.getScalarType(); 4998 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 4999 EVT ShSVT = ShVT.getScalarType(); 5000 5001 bool UseSRA = false; 5002 SmallVector<SDValue, 16> Shifts, Factors; 5003 5004 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5005 if (C->isNullValue()) 5006 return false; 5007 APInt Divisor = C->getAPIntValue(); 5008 unsigned Shift = Divisor.countTrailingZeros(); 5009 if (Shift) { 5010 Divisor.ashrInPlace(Shift); 5011 UseSRA = true; 5012 } 5013 // Calculate the multiplicative inverse, using Newton's method. 5014 APInt t; 5015 APInt Factor = Divisor; 5016 while ((t = Divisor * Factor) != 1) 5017 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5018 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5019 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5020 return true; 5021 }; 5022 5023 // Collect all magic values from the build vector. 5024 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5025 return SDValue(); 5026 5027 SDValue Shift, Factor; 5028 if (VT.isVector()) { 5029 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5030 Factor = DAG.getBuildVector(VT, dl, Factors); 5031 } else { 5032 Shift = Shifts[0]; 5033 Factor = Factors[0]; 5034 } 5035 5036 SDValue Res = Op0; 5037 5038 // Shift the value upfront if it is even, so the LSB is one. 5039 if (UseSRA) { 5040 // TODO: For UDIV use SRL instead of SRA. 5041 SDNodeFlags Flags; 5042 Flags.setExact(true); 5043 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5044 Created.push_back(Res.getNode()); 5045 } 5046 5047 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5048 } 5049 5050 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5051 SelectionDAG &DAG, 5052 SmallVectorImpl<SDNode *> &Created) const { 5053 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5054 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5055 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5056 return SDValue(N, 0); // Lower SDIV as SDIV 5057 return SDValue(); 5058 } 5059 5060 /// Given an ISD::SDIV node expressing a divide by constant, 5061 /// return a DAG expression to select that will generate the same value by 5062 /// multiplying by a magic number. 5063 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5064 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5065 bool IsAfterLegalization, 5066 SmallVectorImpl<SDNode *> &Created) const { 5067 SDLoc dl(N); 5068 EVT VT = N->getValueType(0); 5069 EVT SVT = VT.getScalarType(); 5070 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5071 EVT ShSVT = ShVT.getScalarType(); 5072 unsigned EltBits = VT.getScalarSizeInBits(); 5073 5074 // Check to see if we can do this. 5075 // FIXME: We should be more aggressive here. 5076 if (!isTypeLegal(VT)) 5077 return SDValue(); 5078 5079 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5080 if (N->getFlags().hasExact()) 5081 return BuildExactSDIV(*this, N, dl, DAG, Created); 5082 5083 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5084 5085 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5086 if (C->isNullValue()) 5087 return false; 5088 5089 const APInt &Divisor = C->getAPIntValue(); 5090 APInt::ms magics = Divisor.magic(); 5091 int NumeratorFactor = 0; 5092 int ShiftMask = -1; 5093 5094 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 5095 // If d is +1/-1, we just multiply the numerator by +1/-1. 5096 NumeratorFactor = Divisor.getSExtValue(); 5097 magics.m = 0; 5098 magics.s = 0; 5099 ShiftMask = 0; 5100 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 5101 // If d > 0 and m < 0, add the numerator. 5102 NumeratorFactor = 1; 5103 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 5104 // If d < 0 and m > 0, subtract the numerator. 5105 NumeratorFactor = -1; 5106 } 5107 5108 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 5109 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5110 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 5111 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5112 return true; 5113 }; 5114 5115 SDValue N0 = N->getOperand(0); 5116 SDValue N1 = N->getOperand(1); 5117 5118 // Collect the shifts / magic values from each element. 5119 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5120 return SDValue(); 5121 5122 SDValue MagicFactor, Factor, Shift, ShiftMask; 5123 if (VT.isVector()) { 5124 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5125 Factor = DAG.getBuildVector(VT, dl, Factors); 5126 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5127 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5128 } else { 5129 MagicFactor = MagicFactors[0]; 5130 Factor = Factors[0]; 5131 Shift = Shifts[0]; 5132 ShiftMask = ShiftMasks[0]; 5133 } 5134 5135 // Multiply the numerator (operand 0) by the magic value. 5136 // FIXME: We should support doing a MUL in a wider type. 5137 SDValue Q; 5138 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 5139 : isOperationLegalOrCustom(ISD::MULHS, VT)) 5140 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 5141 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 5142 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 5143 SDValue LoHi = 5144 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 5145 Q = SDValue(LoHi.getNode(), 1); 5146 } else 5147 return SDValue(); // No mulhs or equivalent. 5148 Created.push_back(Q.getNode()); 5149 5150 // (Optionally) Add/subtract the numerator using Factor. 5151 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5152 Created.push_back(Factor.getNode()); 5153 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5154 Created.push_back(Q.getNode()); 5155 5156 // Shift right algebraic by shift value. 5157 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5158 Created.push_back(Q.getNode()); 5159 5160 // Extract the sign bit, mask it and add it to the quotient. 5161 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5162 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5163 Created.push_back(T.getNode()); 5164 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5165 Created.push_back(T.getNode()); 5166 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5167 } 5168 5169 /// Given an ISD::UDIV node expressing a divide by constant, 5170 /// return a DAG expression to select that will generate the same value by 5171 /// multiplying by a magic number. 5172 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5173 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5174 bool IsAfterLegalization, 5175 SmallVectorImpl<SDNode *> &Created) const { 5176 SDLoc dl(N); 5177 EVT VT = N->getValueType(0); 5178 EVT SVT = VT.getScalarType(); 5179 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5180 EVT ShSVT = ShVT.getScalarType(); 5181 unsigned EltBits = VT.getScalarSizeInBits(); 5182 5183 // Check to see if we can do this. 5184 // FIXME: We should be more aggressive here. 5185 if (!isTypeLegal(VT)) 5186 return SDValue(); 5187 5188 bool UseNPQ = false; 5189 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5190 5191 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5192 if (C->isNullValue()) 5193 return false; 5194 // FIXME: We should use a narrower constant when the upper 5195 // bits are known to be zero. 5196 APInt Divisor = C->getAPIntValue(); 5197 APInt::mu magics = Divisor.magicu(); 5198 unsigned PreShift = 0, PostShift = 0; 5199 5200 // If the divisor is even, we can avoid using the expensive fixup by 5201 // shifting the divided value upfront. 5202 if (magics.a != 0 && !Divisor[0]) { 5203 PreShift = Divisor.countTrailingZeros(); 5204 // Get magic number for the shifted divisor. 5205 magics = Divisor.lshr(PreShift).magicu(PreShift); 5206 assert(magics.a == 0 && "Should use cheap fixup now"); 5207 } 5208 5209 APInt Magic = magics.m; 5210 5211 unsigned SelNPQ; 5212 if (magics.a == 0 || Divisor.isOneValue()) { 5213 assert(magics.s < Divisor.getBitWidth() && 5214 "We shouldn't generate an undefined shift!"); 5215 PostShift = magics.s; 5216 SelNPQ = false; 5217 } else { 5218 PostShift = magics.s - 1; 5219 SelNPQ = true; 5220 } 5221 5222 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5223 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5224 NPQFactors.push_back( 5225 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5226 : APInt::getNullValue(EltBits), 5227 dl, SVT)); 5228 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5229 UseNPQ |= SelNPQ; 5230 return true; 5231 }; 5232 5233 SDValue N0 = N->getOperand(0); 5234 SDValue N1 = N->getOperand(1); 5235 5236 // Collect the shifts/magic values from each element. 5237 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5238 return SDValue(); 5239 5240 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5241 if (VT.isVector()) { 5242 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5243 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5244 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5245 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5246 } else { 5247 PreShift = PreShifts[0]; 5248 MagicFactor = MagicFactors[0]; 5249 PostShift = PostShifts[0]; 5250 } 5251 5252 SDValue Q = N0; 5253 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5254 Created.push_back(Q.getNode()); 5255 5256 // FIXME: We should support doing a MUL in a wider type. 5257 auto GetMULHU = [&](SDValue X, SDValue Y) { 5258 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 5259 : isOperationLegalOrCustom(ISD::MULHU, VT)) 5260 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5261 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 5262 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 5263 SDValue LoHi = 5264 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5265 return SDValue(LoHi.getNode(), 1); 5266 } 5267 return SDValue(); // No mulhu or equivalent 5268 }; 5269 5270 // Multiply the numerator (operand 0) by the magic value. 5271 Q = GetMULHU(Q, MagicFactor); 5272 if (!Q) 5273 return SDValue(); 5274 5275 Created.push_back(Q.getNode()); 5276 5277 if (UseNPQ) { 5278 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5279 Created.push_back(NPQ.getNode()); 5280 5281 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5282 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5283 if (VT.isVector()) 5284 NPQ = GetMULHU(NPQ, NPQFactor); 5285 else 5286 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5287 5288 Created.push_back(NPQ.getNode()); 5289 5290 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5291 Created.push_back(Q.getNode()); 5292 } 5293 5294 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5295 Created.push_back(Q.getNode()); 5296 5297 SDValue One = DAG.getConstant(1, dl, VT); 5298 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 5299 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5300 } 5301 5302 /// If all values in Values that *don't* match the predicate are same 'splat' 5303 /// value, then replace all values with that splat value. 5304 /// Else, if AlternativeReplacement was provided, then replace all values that 5305 /// do match predicate with AlternativeReplacement value. 5306 static void 5307 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5308 std::function<bool(SDValue)> Predicate, 5309 SDValue AlternativeReplacement = SDValue()) { 5310 SDValue Replacement; 5311 // Is there a value for which the Predicate does *NOT* match? What is it? 5312 auto SplatValue = llvm::find_if_not(Values, Predicate); 5313 if (SplatValue != Values.end()) { 5314 // Does Values consist only of SplatValue's and values matching Predicate? 5315 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5316 return Value == *SplatValue || Predicate(Value); 5317 })) // Then we shall replace values matching predicate with SplatValue. 5318 Replacement = *SplatValue; 5319 } 5320 if (!Replacement) { 5321 // Oops, we did not find the "baseline" splat value. 5322 if (!AlternativeReplacement) 5323 return; // Nothing to do. 5324 // Let's replace with provided value then. 5325 Replacement = AlternativeReplacement; 5326 } 5327 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5328 } 5329 5330 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5331 /// where the divisor is constant and the comparison target is zero, 5332 /// return a DAG expression that will generate the same comparison result 5333 /// using only multiplications, additions and shifts/rotations. 5334 /// Ref: "Hacker's Delight" 10-17. 5335 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5336 SDValue CompTargetNode, 5337 ISD::CondCode Cond, 5338 DAGCombinerInfo &DCI, 5339 const SDLoc &DL) const { 5340 SmallVector<SDNode *, 5> Built; 5341 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5342 DCI, DL, Built)) { 5343 for (SDNode *N : Built) 5344 DCI.AddToWorklist(N); 5345 return Folded; 5346 } 5347 5348 return SDValue(); 5349 } 5350 5351 SDValue 5352 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5353 SDValue CompTargetNode, ISD::CondCode Cond, 5354 DAGCombinerInfo &DCI, const SDLoc &DL, 5355 SmallVectorImpl<SDNode *> &Created) const { 5356 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5357 // - D must be constant, with D = D0 * 2^K where D0 is odd 5358 // - P is the multiplicative inverse of D0 modulo 2^W 5359 // - Q = floor(((2^W) - 1) / D) 5360 // where W is the width of the common type of N and D. 5361 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5362 "Only applicable for (in)equality comparisons."); 5363 5364 SelectionDAG &DAG = DCI.DAG; 5365 5366 EVT VT = REMNode.getValueType(); 5367 EVT SVT = VT.getScalarType(); 5368 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5369 EVT ShSVT = ShVT.getScalarType(); 5370 5371 // If MUL is unavailable, we cannot proceed in any case. 5372 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5373 return SDValue(); 5374 5375 bool ComparingWithAllZeros = true; 5376 bool AllComparisonsWithNonZerosAreTautological = true; 5377 bool HadTautologicalLanes = false; 5378 bool AllLanesAreTautological = true; 5379 bool HadEvenDivisor = false; 5380 bool AllDivisorsArePowerOfTwo = true; 5381 bool HadTautologicalInvertedLanes = false; 5382 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5383 5384 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5385 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5386 if (CDiv->isNullValue()) 5387 return false; 5388 5389 const APInt &D = CDiv->getAPIntValue(); 5390 const APInt &Cmp = CCmp->getAPIntValue(); 5391 5392 ComparingWithAllZeros &= Cmp.isNullValue(); 5393 5394 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5395 // if C2 is not less than C1, the comparison is always false. 5396 // But we will only be able to produce the comparison that will give the 5397 // opposive tautological answer. So this lane would need to be fixed up. 5398 bool TautologicalInvertedLane = D.ule(Cmp); 5399 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5400 5401 // If all lanes are tautological (either all divisors are ones, or divisor 5402 // is not greater than the constant we are comparing with), 5403 // we will prefer to avoid the fold. 5404 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; 5405 HadTautologicalLanes |= TautologicalLane; 5406 AllLanesAreTautological &= TautologicalLane; 5407 5408 // If we are comparing with non-zero, we need'll need to subtract said 5409 // comparison value from the LHS. But there is no point in doing that if 5410 // every lane where we are comparing with non-zero is tautological.. 5411 if (!Cmp.isNullValue()) 5412 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5413 5414 // Decompose D into D0 * 2^K 5415 unsigned K = D.countTrailingZeros(); 5416 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5417 APInt D0 = D.lshr(K); 5418 5419 // D is even if it has trailing zeros. 5420 HadEvenDivisor |= (K != 0); 5421 // D is a power-of-two if D0 is one. 5422 // If all divisors are power-of-two, we will prefer to avoid the fold. 5423 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5424 5425 // P = inv(D0, 2^W) 5426 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5427 unsigned W = D.getBitWidth(); 5428 APInt P = D0.zext(W + 1) 5429 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5430 .trunc(W); 5431 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5432 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5433 5434 // Q = floor((2^W - 1) u/ D) 5435 // R = ((2^W - 1) u% D) 5436 APInt Q, R; 5437 APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R); 5438 5439 // If we are comparing with zero, then that comparison constant is okay, 5440 // else it may need to be one less than that. 5441 if (Cmp.ugt(R)) 5442 Q -= 1; 5443 5444 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5445 "We are expecting that K is always less than all-ones for ShSVT"); 5446 5447 // If the lane is tautological the result can be constant-folded. 5448 if (TautologicalLane) { 5449 // Set P and K amount to a bogus values so we can try to splat them. 5450 P = 0; 5451 K = -1; 5452 // And ensure that comparison constant is tautological, 5453 // it will always compare true/false. 5454 Q = -1; 5455 } 5456 5457 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5458 KAmts.push_back( 5459 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5460 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5461 return true; 5462 }; 5463 5464 SDValue N = REMNode.getOperand(0); 5465 SDValue D = REMNode.getOperand(1); 5466 5467 // Collect the values from each element. 5468 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5469 return SDValue(); 5470 5471 // If all lanes are tautological, the result can be constant-folded. 5472 if (AllLanesAreTautological) 5473 return SDValue(); 5474 5475 // If this is a urem by a powers-of-two, avoid the fold since it can be 5476 // best implemented as a bit test. 5477 if (AllDivisorsArePowerOfTwo) 5478 return SDValue(); 5479 5480 SDValue PVal, KVal, QVal; 5481 if (VT.isVector()) { 5482 if (HadTautologicalLanes) { 5483 // Try to turn PAmts into a splat, since we don't care about the values 5484 // that are currently '0'. If we can't, just keep '0'`s. 5485 turnVectorIntoSplatVector(PAmts, isNullConstant); 5486 // Try to turn KAmts into a splat, since we don't care about the values 5487 // that are currently '-1'. If we can't, change them to '0'`s. 5488 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5489 DAG.getConstant(0, DL, ShSVT)); 5490 } 5491 5492 PVal = DAG.getBuildVector(VT, DL, PAmts); 5493 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5494 QVal = DAG.getBuildVector(VT, DL, QAmts); 5495 } else { 5496 PVal = PAmts[0]; 5497 KVal = KAmts[0]; 5498 QVal = QAmts[0]; 5499 } 5500 5501 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5502 if (!isOperationLegalOrCustom(ISD::SUB, VT)) 5503 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5504 assert(CompTargetNode.getValueType() == N.getValueType() && 5505 "Expecting that the types on LHS and RHS of comparisons match."); 5506 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5507 } 5508 5509 // (mul N, P) 5510 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5511 Created.push_back(Op0.getNode()); 5512 5513 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5514 // divisors as a performance improvement, since rotating by 0 is a no-op. 5515 if (HadEvenDivisor) { 5516 // We need ROTR to do this. 5517 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5518 return SDValue(); 5519 SDNodeFlags Flags; 5520 Flags.setExact(true); 5521 // UREM: (rotr (mul N, P), K) 5522 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5523 Created.push_back(Op0.getNode()); 5524 } 5525 5526 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5527 SDValue NewCC = 5528 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5529 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5530 if (!HadTautologicalInvertedLanes) 5531 return NewCC; 5532 5533 // If any lanes previously compared always-false, the NewCC will give 5534 // always-true result for them, so we need to fixup those lanes. 5535 // Or the other way around for inequality predicate. 5536 assert(VT.isVector() && "Can/should only get here for vectors."); 5537 Created.push_back(NewCC.getNode()); 5538 5539 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5540 // if C2 is not less than C1, the comparison is always false. 5541 // But we have produced the comparison that will give the 5542 // opposive tautological answer. So these lanes would need to be fixed up. 5543 SDValue TautologicalInvertedChannels = 5544 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5545 Created.push_back(TautologicalInvertedChannels.getNode()); 5546 5547 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5548 // If we have a vector select, let's replace the comparison results in the 5549 // affected lanes with the correct tautological result. 5550 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5551 DL, SETCCVT, SETCCVT); 5552 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5553 Replacement, NewCC); 5554 } 5555 5556 // Else, we can just invert the comparison result in the appropriate lanes. 5557 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5558 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5559 TautologicalInvertedChannels); 5560 5561 return SDValue(); // Don't know how to lower. 5562 } 5563 5564 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5565 /// where the divisor is constant and the comparison target is zero, 5566 /// return a DAG expression that will generate the same comparison result 5567 /// using only multiplications, additions and shifts/rotations. 5568 /// Ref: "Hacker's Delight" 10-17. 5569 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5570 SDValue CompTargetNode, 5571 ISD::CondCode Cond, 5572 DAGCombinerInfo &DCI, 5573 const SDLoc &DL) const { 5574 SmallVector<SDNode *, 7> Built; 5575 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5576 DCI, DL, Built)) { 5577 assert(Built.size() <= 7 && "Max size prediction failed."); 5578 for (SDNode *N : Built) 5579 DCI.AddToWorklist(N); 5580 return Folded; 5581 } 5582 5583 return SDValue(); 5584 } 5585 5586 SDValue 5587 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5588 SDValue CompTargetNode, ISD::CondCode Cond, 5589 DAGCombinerInfo &DCI, const SDLoc &DL, 5590 SmallVectorImpl<SDNode *> &Created) const { 5591 // Fold: 5592 // (seteq/ne (srem N, D), 0) 5593 // To: 5594 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5595 // 5596 // - D must be constant, with D = D0 * 2^K where D0 is odd 5597 // - P is the multiplicative inverse of D0 modulo 2^W 5598 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5599 // - Q = floor((2 * A) / (2^K)) 5600 // where W is the width of the common type of N and D. 5601 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5602 "Only applicable for (in)equality comparisons."); 5603 5604 SelectionDAG &DAG = DCI.DAG; 5605 5606 EVT VT = REMNode.getValueType(); 5607 EVT SVT = VT.getScalarType(); 5608 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5609 EVT ShSVT = ShVT.getScalarType(); 5610 5611 // If MUL is unavailable, we cannot proceed in any case. 5612 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5613 return SDValue(); 5614 5615 // TODO: Could support comparing with non-zero too. 5616 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5617 if (!CompTarget || !CompTarget->isNullValue()) 5618 return SDValue(); 5619 5620 bool HadIntMinDivisor = false; 5621 bool HadOneDivisor = false; 5622 bool AllDivisorsAreOnes = true; 5623 bool HadEvenDivisor = false; 5624 bool NeedToApplyOffset = false; 5625 bool AllDivisorsArePowerOfTwo = true; 5626 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5627 5628 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5629 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5630 if (C->isNullValue()) 5631 return false; 5632 5633 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5634 5635 // WARNING: this fold is only valid for positive divisors! 5636 APInt D = C->getAPIntValue(); 5637 if (D.isNegative()) 5638 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5639 5640 HadIntMinDivisor |= D.isMinSignedValue(); 5641 5642 // If all divisors are ones, we will prefer to avoid the fold. 5643 HadOneDivisor |= D.isOneValue(); 5644 AllDivisorsAreOnes &= D.isOneValue(); 5645 5646 // Decompose D into D0 * 2^K 5647 unsigned K = D.countTrailingZeros(); 5648 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5649 APInt D0 = D.lshr(K); 5650 5651 if (!D.isMinSignedValue()) { 5652 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5653 // we don't care about this lane in this fold, we'll special-handle it. 5654 HadEvenDivisor |= (K != 0); 5655 } 5656 5657 // D is a power-of-two if D0 is one. This includes INT_MIN. 5658 // If all divisors are power-of-two, we will prefer to avoid the fold. 5659 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5660 5661 // P = inv(D0, 2^W) 5662 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5663 unsigned W = D.getBitWidth(); 5664 APInt P = D0.zext(W + 1) 5665 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5666 .trunc(W); 5667 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5668 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5669 5670 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5671 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5672 A.clearLowBits(K); 5673 5674 if (!D.isMinSignedValue()) { 5675 // If divisor INT_MIN, then we don't care about this lane in this fold, 5676 // we'll special-handle it. 5677 NeedToApplyOffset |= A != 0; 5678 } 5679 5680 // Q = floor((2 * A) / (2^K)) 5681 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5682 5683 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5684 "We are expecting that A is always less than all-ones for SVT"); 5685 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5686 "We are expecting that K is always less than all-ones for ShSVT"); 5687 5688 // If the divisor is 1 the result can be constant-folded. Likewise, we 5689 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5690 if (D.isOneValue()) { 5691 // Set P, A and K to a bogus values so we can try to splat them. 5692 P = 0; 5693 A = -1; 5694 K = -1; 5695 5696 // x ?% 1 == 0 <--> true <--> x u<= -1 5697 Q = -1; 5698 } 5699 5700 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5701 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5702 KAmts.push_back( 5703 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5704 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5705 return true; 5706 }; 5707 5708 SDValue N = REMNode.getOperand(0); 5709 SDValue D = REMNode.getOperand(1); 5710 5711 // Collect the values from each element. 5712 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5713 return SDValue(); 5714 5715 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5716 if (AllDivisorsAreOnes) 5717 return SDValue(); 5718 5719 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5720 // since it can be best implemented as a bit test. 5721 if (AllDivisorsArePowerOfTwo) 5722 return SDValue(); 5723 5724 SDValue PVal, AVal, KVal, QVal; 5725 if (VT.isVector()) { 5726 if (HadOneDivisor) { 5727 // Try to turn PAmts into a splat, since we don't care about the values 5728 // that are currently '0'. If we can't, just keep '0'`s. 5729 turnVectorIntoSplatVector(PAmts, isNullConstant); 5730 // Try to turn AAmts into a splat, since we don't care about the 5731 // values that are currently '-1'. If we can't, change them to '0'`s. 5732 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5733 DAG.getConstant(0, DL, SVT)); 5734 // Try to turn KAmts into a splat, since we don't care about the values 5735 // that are currently '-1'. If we can't, change them to '0'`s. 5736 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5737 DAG.getConstant(0, DL, ShSVT)); 5738 } 5739 5740 PVal = DAG.getBuildVector(VT, DL, PAmts); 5741 AVal = DAG.getBuildVector(VT, DL, AAmts); 5742 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5743 QVal = DAG.getBuildVector(VT, DL, QAmts); 5744 } else { 5745 PVal = PAmts[0]; 5746 AVal = AAmts[0]; 5747 KVal = KAmts[0]; 5748 QVal = QAmts[0]; 5749 } 5750 5751 // (mul N, P) 5752 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5753 Created.push_back(Op0.getNode()); 5754 5755 if (NeedToApplyOffset) { 5756 // We need ADD to do this. 5757 if (!isOperationLegalOrCustom(ISD::ADD, VT)) 5758 return SDValue(); 5759 5760 // (add (mul N, P), A) 5761 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5762 Created.push_back(Op0.getNode()); 5763 } 5764 5765 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5766 // divisors as a performance improvement, since rotating by 0 is a no-op. 5767 if (HadEvenDivisor) { 5768 // We need ROTR to do this. 5769 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5770 return SDValue(); 5771 SDNodeFlags Flags; 5772 Flags.setExact(true); 5773 // SREM: (rotr (add (mul N, P), A), K) 5774 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5775 Created.push_back(Op0.getNode()); 5776 } 5777 5778 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5779 SDValue Fold = 5780 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5781 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5782 5783 // If we didn't have lanes with INT_MIN divisor, then we're done. 5784 if (!HadIntMinDivisor) 5785 return Fold; 5786 5787 // That fold is only valid for positive divisors. Which effectively means, 5788 // it is invalid for INT_MIN divisors. So if we have such a lane, 5789 // we must fix-up results for said lanes. 5790 assert(VT.isVector() && "Can/should only get here for vectors."); 5791 5792 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5793 !isOperationLegalOrCustom(ISD::AND, VT) || 5794 !isOperationLegalOrCustom(Cond, VT) || 5795 !isOperationLegalOrCustom(ISD::VSELECT, VT)) 5796 return SDValue(); 5797 5798 Created.push_back(Fold.getNode()); 5799 5800 SDValue IntMin = DAG.getConstant( 5801 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5802 SDValue IntMax = DAG.getConstant( 5803 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5804 SDValue Zero = 5805 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5806 5807 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5808 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5809 Created.push_back(DivisorIsIntMin.getNode()); 5810 5811 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5812 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5813 Created.push_back(Masked.getNode()); 5814 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5815 Created.push_back(MaskedIsZero.getNode()); 5816 5817 // To produce final result we need to blend 2 vectors: 'SetCC' and 5818 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5819 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5820 // constant-folded, select can get lowered to a shuffle with constant mask. 5821 SDValue Blended = 5822 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); 5823 5824 return Blended; 5825 } 5826 5827 bool TargetLowering:: 5828 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5829 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5830 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5831 "be a constant integer"); 5832 return true; 5833 } 5834 5835 return false; 5836 } 5837 5838 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 5839 bool LegalOps, bool OptForSize, 5840 NegatibleCost &Cost, 5841 unsigned Depth) const { 5842 // fneg is removable even if it has multiple uses. 5843 if (Op.getOpcode() == ISD::FNEG) { 5844 Cost = NegatibleCost::Cheaper; 5845 return Op.getOperand(0); 5846 } 5847 5848 // Don't recurse exponentially. 5849 if (Depth > SelectionDAG::MaxRecursionDepth) 5850 return SDValue(); 5851 5852 // Pre-increment recursion depth for use in recursive calls. 5853 ++Depth; 5854 const SDNodeFlags Flags = Op->getFlags(); 5855 const TargetOptions &Options = DAG.getTarget().Options; 5856 EVT VT = Op.getValueType(); 5857 unsigned Opcode = Op.getOpcode(); 5858 5859 // Don't allow anything with multiple uses unless we know it is free. 5860 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 5861 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 5862 isFPExtFree(VT, Op.getOperand(0).getValueType()); 5863 if (!IsFreeExtend) 5864 return SDValue(); 5865 } 5866 5867 auto RemoveDeadNode = [&](SDValue N) { 5868 if (N && N.getNode()->use_empty()) 5869 DAG.RemoveDeadNode(N.getNode()); 5870 }; 5871 5872 SDLoc DL(Op); 5873 5874 switch (Opcode) { 5875 case ISD::ConstantFP: { 5876 // Don't invert constant FP values after legalization unless the target says 5877 // the negated constant is legal. 5878 bool IsOpLegal = 5879 isOperationLegal(ISD::ConstantFP, VT) || 5880 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 5881 OptForSize); 5882 5883 if (LegalOps && !IsOpLegal) 5884 break; 5885 5886 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 5887 V.changeSign(); 5888 SDValue CFP = DAG.getConstantFP(V, DL, VT); 5889 5890 // If we already have the use of the negated floating constant, it is free 5891 // to negate it even it has multiple uses. 5892 if (!Op.hasOneUse() && CFP.use_empty()) 5893 break; 5894 Cost = NegatibleCost::Neutral; 5895 return CFP; 5896 } 5897 case ISD::BUILD_VECTOR: { 5898 // Only permit BUILD_VECTOR of constants. 5899 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 5900 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 5901 })) 5902 break; 5903 5904 bool IsOpLegal = 5905 (isOperationLegal(ISD::ConstantFP, VT) && 5906 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 5907 llvm::all_of(Op->op_values(), [&](SDValue N) { 5908 return N.isUndef() || 5909 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 5910 OptForSize); 5911 }); 5912 5913 if (LegalOps && !IsOpLegal) 5914 break; 5915 5916 SmallVector<SDValue, 4> Ops; 5917 for (SDValue C : Op->op_values()) { 5918 if (C.isUndef()) { 5919 Ops.push_back(C); 5920 continue; 5921 } 5922 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 5923 V.changeSign(); 5924 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 5925 } 5926 Cost = NegatibleCost::Neutral; 5927 return DAG.getBuildVector(VT, DL, Ops); 5928 } 5929 case ISD::FADD: { 5930 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5931 break; 5932 5933 // After operation legalization, it might not be legal to create new FSUBs. 5934 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 5935 break; 5936 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5937 5938 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 5939 NegatibleCost CostX = NegatibleCost::Expensive; 5940 SDValue NegX = 5941 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 5942 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 5943 NegatibleCost CostY = NegatibleCost::Expensive; 5944 SDValue NegY = 5945 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 5946 5947 // Negate the X if its cost is less or equal than Y. 5948 if (NegX && (CostX <= CostY)) { 5949 Cost = CostX; 5950 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 5951 if (NegY != N) 5952 RemoveDeadNode(NegY); 5953 return N; 5954 } 5955 5956 // Negate the Y if it is not expensive. 5957 if (NegY) { 5958 Cost = CostY; 5959 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 5960 if (NegX != N) 5961 RemoveDeadNode(NegX); 5962 return N; 5963 } 5964 break; 5965 } 5966 case ISD::FSUB: { 5967 // We can't turn -(A-B) into B-A when we honor signed zeros. 5968 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5969 break; 5970 5971 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5972 // fold (fneg (fsub 0, Y)) -> Y 5973 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 5974 if (C->isZero()) { 5975 Cost = NegatibleCost::Cheaper; 5976 return Y; 5977 } 5978 5979 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 5980 Cost = NegatibleCost::Neutral; 5981 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 5982 } 5983 case ISD::FMUL: 5984 case ISD::FDIV: { 5985 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5986 5987 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 5988 NegatibleCost CostX = NegatibleCost::Expensive; 5989 SDValue NegX = 5990 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 5991 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 5992 NegatibleCost CostY = NegatibleCost::Expensive; 5993 SDValue NegY = 5994 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 5995 5996 // Negate the X if its cost is less or equal than Y. 5997 if (NegX && (CostX <= CostY)) { 5998 Cost = CostX; 5999 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6000 if (NegY != N) 6001 RemoveDeadNode(NegY); 6002 return N; 6003 } 6004 6005 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6006 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6007 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6008 break; 6009 6010 // Negate the Y if it is not expensive. 6011 if (NegY) { 6012 Cost = CostY; 6013 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6014 if (NegX != N) 6015 RemoveDeadNode(NegX); 6016 return N; 6017 } 6018 break; 6019 } 6020 case ISD::FMA: 6021 case ISD::FMAD: { 6022 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6023 break; 6024 6025 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6026 NegatibleCost CostZ = NegatibleCost::Expensive; 6027 SDValue NegZ = 6028 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6029 // Give up if fail to negate the Z. 6030 if (!NegZ) 6031 break; 6032 6033 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6034 NegatibleCost CostX = NegatibleCost::Expensive; 6035 SDValue NegX = 6036 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6037 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6038 NegatibleCost CostY = NegatibleCost::Expensive; 6039 SDValue NegY = 6040 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6041 6042 // Negate the X if its cost is less or equal than Y. 6043 if (NegX && (CostX <= CostY)) { 6044 Cost = std::min(CostX, CostZ); 6045 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 6046 if (NegY != N) 6047 RemoveDeadNode(NegY); 6048 return N; 6049 } 6050 6051 // Negate the Y if it is not expensive. 6052 if (NegY) { 6053 Cost = std::min(CostY, CostZ); 6054 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 6055 if (NegX != N) 6056 RemoveDeadNode(NegX); 6057 return N; 6058 } 6059 break; 6060 } 6061 6062 case ISD::FP_EXTEND: 6063 case ISD::FSIN: 6064 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6065 OptForSize, Cost, Depth)) 6066 return DAG.getNode(Opcode, DL, VT, NegV); 6067 break; 6068 case ISD::FP_ROUND: 6069 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6070 OptForSize, Cost, Depth)) 6071 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 6072 break; 6073 } 6074 6075 return SDValue(); 6076 } 6077 6078 //===----------------------------------------------------------------------===// 6079 // Legalization Utilities 6080 //===----------------------------------------------------------------------===// 6081 6082 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 6083 SDValue LHS, SDValue RHS, 6084 SmallVectorImpl<SDValue> &Result, 6085 EVT HiLoVT, SelectionDAG &DAG, 6086 MulExpansionKind Kind, SDValue LL, 6087 SDValue LH, SDValue RL, SDValue RH) const { 6088 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 6089 Opcode == ISD::SMUL_LOHI); 6090 6091 bool HasMULHS = (Kind == MulExpansionKind::Always) || 6092 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 6093 bool HasMULHU = (Kind == MulExpansionKind::Always) || 6094 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 6095 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 6096 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 6097 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 6098 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 6099 6100 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 6101 return false; 6102 6103 unsigned OuterBitSize = VT.getScalarSizeInBits(); 6104 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6105 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 6106 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 6107 6108 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6109 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6110 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6111 6112 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6113 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6114 bool Signed) -> bool { 6115 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6116 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6117 Hi = SDValue(Lo.getNode(), 1); 6118 return true; 6119 } 6120 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6121 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6122 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6123 return true; 6124 } 6125 return false; 6126 }; 6127 6128 SDValue Lo, Hi; 6129 6130 if (!LL.getNode() && !RL.getNode() && 6131 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6132 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6133 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6134 } 6135 6136 if (!LL.getNode()) 6137 return false; 6138 6139 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6140 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6141 DAG.MaskedValueIsZero(RHS, HighMask)) { 6142 // The inputs are both zero-extended. 6143 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6144 Result.push_back(Lo); 6145 Result.push_back(Hi); 6146 if (Opcode != ISD::MUL) { 6147 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6148 Result.push_back(Zero); 6149 Result.push_back(Zero); 6150 } 6151 return true; 6152 } 6153 } 6154 6155 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 6156 RHSSB > InnerBitSize) { 6157 // The input values are both sign-extended. 6158 // TODO non-MUL case? 6159 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6160 Result.push_back(Lo); 6161 Result.push_back(Hi); 6162 return true; 6163 } 6164 } 6165 6166 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6167 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6168 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 6169 // FIXME getShiftAmountTy does not always return a sensible result when VT 6170 // is an illegal type, and so the type may be too small to fit the shift 6171 // amount. Override it with i32. The shift will have to be legalized. 6172 ShiftAmountTy = MVT::i32; 6173 } 6174 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6175 6176 if (!LH.getNode() && !RH.getNode() && 6177 isOperationLegalOrCustom(ISD::SRL, VT) && 6178 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6179 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6180 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6181 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6182 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6183 } 6184 6185 if (!LH.getNode()) 6186 return false; 6187 6188 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6189 return false; 6190 6191 Result.push_back(Lo); 6192 6193 if (Opcode == ISD::MUL) { 6194 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6195 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6196 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6197 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6198 Result.push_back(Hi); 6199 return true; 6200 } 6201 6202 // Compute the full width result. 6203 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6204 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6205 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6206 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6207 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6208 }; 6209 6210 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6211 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6212 return false; 6213 6214 // This is effectively the add part of a multiply-add of half-sized operands, 6215 // so it cannot overflow. 6216 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6217 6218 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6219 return false; 6220 6221 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6222 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6223 6224 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6225 isOperationLegalOrCustom(ISD::ADDE, VT)); 6226 if (UseGlue) 6227 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6228 Merge(Lo, Hi)); 6229 else 6230 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6231 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6232 6233 SDValue Carry = Next.getValue(1); 6234 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6235 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6236 6237 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6238 return false; 6239 6240 if (UseGlue) 6241 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6242 Carry); 6243 else 6244 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6245 Zero, Carry); 6246 6247 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6248 6249 if (Opcode == ISD::SMUL_LOHI) { 6250 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6251 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6252 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6253 6254 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6255 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6256 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6257 } 6258 6259 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6260 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6261 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6262 return true; 6263 } 6264 6265 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6266 SelectionDAG &DAG, MulExpansionKind Kind, 6267 SDValue LL, SDValue LH, SDValue RL, 6268 SDValue RH) const { 6269 SmallVector<SDValue, 2> Result; 6270 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 6271 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6272 DAG, Kind, LL, LH, RL, RH); 6273 if (Ok) { 6274 assert(Result.size() == 2); 6275 Lo = Result[0]; 6276 Hi = Result[1]; 6277 } 6278 return Ok; 6279 } 6280 6281 // Check that (every element of) Z is undef or not an exact multiple of BW. 6282 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 6283 return ISD::matchUnaryPredicate( 6284 Z, 6285 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 6286 true); 6287 } 6288 6289 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 6290 SelectionDAG &DAG) const { 6291 EVT VT = Node->getValueType(0); 6292 6293 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6294 !isOperationLegalOrCustom(ISD::SRL, VT) || 6295 !isOperationLegalOrCustom(ISD::SUB, VT) || 6296 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6297 return false; 6298 6299 SDValue X = Node->getOperand(0); 6300 SDValue Y = Node->getOperand(1); 6301 SDValue Z = Node->getOperand(2); 6302 6303 unsigned BW = VT.getScalarSizeInBits(); 6304 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6305 SDLoc DL(SDValue(Node, 0)); 6306 6307 EVT ShVT = Z.getValueType(); 6308 6309 // If a funnel shift in the other direction is more supported, use it. 6310 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 6311 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6312 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 6313 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6314 // fshl X, Y, Z -> fshr X, Y, -Z 6315 // fshr X, Y, Z -> fshl X, Y, -Z 6316 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6317 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 6318 } else { 6319 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 6320 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 6321 SDValue One = DAG.getConstant(1, DL, ShVT); 6322 if (IsFSHL) { 6323 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6324 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 6325 } else { 6326 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6327 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 6328 } 6329 Z = DAG.getNOT(DL, Z, ShVT); 6330 } 6331 Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 6332 return true; 6333 } 6334 6335 SDValue ShX, ShY; 6336 SDValue ShAmt, InvShAmt; 6337 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6338 // fshl: X << C | Y >> (BW - C) 6339 // fshr: X << (BW - C) | Y >> C 6340 // where C = Z % BW is not zero 6341 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6342 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6343 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6344 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6345 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6346 } else { 6347 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6348 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6349 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 6350 if (isPowerOf2_32(BW)) { 6351 // Z % BW -> Z & (BW - 1) 6352 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6353 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6354 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 6355 } else { 6356 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6357 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6358 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 6359 } 6360 6361 SDValue One = DAG.getConstant(1, DL, ShVT); 6362 if (IsFSHL) { 6363 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 6364 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 6365 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 6366 } else { 6367 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 6368 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 6369 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 6370 } 6371 } 6372 Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6373 return true; 6374 } 6375 6376 // TODO: Merge with expandFunnelShift. 6377 bool TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 6378 SDValue &Result, SelectionDAG &DAG) const { 6379 EVT VT = Node->getValueType(0); 6380 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6381 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6382 SDValue Op0 = Node->getOperand(0); 6383 SDValue Op1 = Node->getOperand(1); 6384 SDLoc DL(SDValue(Node, 0)); 6385 6386 EVT ShVT = Op1.getValueType(); 6387 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6388 6389 // If a rotate in the other direction is supported, use it. 6390 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6391 if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 6392 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6393 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 6394 return true; 6395 } 6396 6397 if (!AllowVectorOps && VT.isVector() && 6398 (!isOperationLegalOrCustom(ISD::SHL, VT) || 6399 !isOperationLegalOrCustom(ISD::SRL, VT) || 6400 !isOperationLegalOrCustom(ISD::SUB, VT) || 6401 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6402 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6403 return false; 6404 6405 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6406 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6407 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6408 SDValue ShVal; 6409 SDValue HsVal; 6410 if (isPowerOf2_32(EltSizeInBits)) { 6411 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 6412 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 6413 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6414 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6415 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6416 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6417 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 6418 } else { 6419 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 6420 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 6421 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6422 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 6423 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6424 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 6425 SDValue One = DAG.getConstant(1, DL, ShVT); 6426 HsVal = 6427 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 6428 } 6429 Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 6430 return true; 6431 } 6432 6433 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6434 SelectionDAG &DAG) const { 6435 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6436 SDValue Src = Node->getOperand(OpNo); 6437 EVT SrcVT = Src.getValueType(); 6438 EVT DstVT = Node->getValueType(0); 6439 SDLoc dl(SDValue(Node, 0)); 6440 6441 // FIXME: Only f32 to i64 conversions are supported. 6442 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6443 return false; 6444 6445 if (Node->isStrictFPOpcode()) 6446 // When a NaN is converted to an integer a trap is allowed. We can't 6447 // use this expansion here because it would eliminate that trap. Other 6448 // traps are also allowed and cannot be eliminated. See 6449 // IEEE 754-2008 sec 5.8. 6450 return false; 6451 6452 // Expand f32 -> i64 conversion 6453 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6454 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 6455 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6456 EVT IntVT = SrcVT.changeTypeToInteger(); 6457 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6458 6459 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6460 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6461 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6462 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6463 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6464 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6465 6466 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6467 6468 SDValue ExponentBits = DAG.getNode( 6469 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6470 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6471 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6472 6473 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6474 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6475 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6476 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6477 6478 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6479 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6480 DAG.getConstant(0x00800000, dl, IntVT)); 6481 6482 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6483 6484 R = DAG.getSelectCC( 6485 dl, Exponent, ExponentLoBit, 6486 DAG.getNode(ISD::SHL, dl, DstVT, R, 6487 DAG.getZExtOrTrunc( 6488 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6489 dl, IntShVT)), 6490 DAG.getNode(ISD::SRL, dl, DstVT, R, 6491 DAG.getZExtOrTrunc( 6492 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6493 dl, IntShVT)), 6494 ISD::SETGT); 6495 6496 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6497 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6498 6499 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6500 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6501 return true; 6502 } 6503 6504 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6505 SDValue &Chain, 6506 SelectionDAG &DAG) const { 6507 SDLoc dl(SDValue(Node, 0)); 6508 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6509 SDValue Src = Node->getOperand(OpNo); 6510 6511 EVT SrcVT = Src.getValueType(); 6512 EVT DstVT = Node->getValueType(0); 6513 EVT SetCCVT = 6514 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6515 EVT DstSetCCVT = 6516 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6517 6518 // Only expand vector types if we have the appropriate vector bit operations. 6519 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6520 ISD::FP_TO_SINT; 6521 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6522 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6523 return false; 6524 6525 // If the maximum float value is smaller then the signed integer range, 6526 // the destination signmask can't be represented by the float, so we can 6527 // just use FP_TO_SINT directly. 6528 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6529 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 6530 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6531 if (APFloat::opOverflow & 6532 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6533 if (Node->isStrictFPOpcode()) { 6534 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6535 { Node->getOperand(0), Src }); 6536 Chain = Result.getValue(1); 6537 } else 6538 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6539 return true; 6540 } 6541 6542 // Don't expand it if there isn't cheap fsub instruction. 6543 if (!isOperationLegalOrCustom( 6544 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 6545 return false; 6546 6547 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6548 SDValue Sel; 6549 6550 if (Node->isStrictFPOpcode()) { 6551 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6552 Node->getOperand(0), /*IsSignaling*/ true); 6553 Chain = Sel.getValue(1); 6554 } else { 6555 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6556 } 6557 6558 bool Strict = Node->isStrictFPOpcode() || 6559 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6560 6561 if (Strict) { 6562 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6563 // signmask then offset (the result of which should be fully representable). 6564 // Sel = Src < 0x8000000000000000 6565 // FltOfs = select Sel, 0, 0x8000000000000000 6566 // IntOfs = select Sel, 0, 0x8000000000000000 6567 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6568 6569 // TODO: Should any fast-math-flags be set for the FSUB? 6570 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6571 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6572 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6573 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6574 DAG.getConstant(0, dl, DstVT), 6575 DAG.getConstant(SignMask, dl, DstVT)); 6576 SDValue SInt; 6577 if (Node->isStrictFPOpcode()) { 6578 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6579 { Chain, Src, FltOfs }); 6580 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6581 { Val.getValue(1), Val }); 6582 Chain = SInt.getValue(1); 6583 } else { 6584 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6585 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6586 } 6587 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6588 } else { 6589 // Expand based on maximum range of FP_TO_SINT: 6590 // True = fp_to_sint(Src) 6591 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6592 // Result = select (Src < 0x8000000000000000), True, False 6593 6594 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6595 // TODO: Should any fast-math-flags be set for the FSUB? 6596 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6597 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6598 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6599 DAG.getConstant(SignMask, dl, DstVT)); 6600 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6601 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6602 } 6603 return true; 6604 } 6605 6606 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6607 SDValue &Chain, 6608 SelectionDAG &DAG) const { 6609 // This transform is not correct for converting 0 when rounding mode is set 6610 // to round toward negative infinity which will produce -0.0. So disable under 6611 // strictfp. 6612 if (Node->isStrictFPOpcode()) 6613 return false; 6614 6615 SDValue Src = Node->getOperand(0); 6616 EVT SrcVT = Src.getValueType(); 6617 EVT DstVT = Node->getValueType(0); 6618 6619 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6620 return false; 6621 6622 // Only expand vector types if we have the appropriate vector bit operations. 6623 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6624 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6625 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6626 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6627 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6628 return false; 6629 6630 SDLoc dl(SDValue(Node, 0)); 6631 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6632 6633 // Implementation of unsigned i64 to f64 following the algorithm in 6634 // __floatundidf in compiler_rt. This implementation performs rounding 6635 // correctly in all rounding modes with the exception of converting 0 6636 // when rounding toward negative infinity. In that case the fsub will produce 6637 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 6638 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6639 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6640 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6641 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6642 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6643 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6644 6645 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6646 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6647 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6648 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6649 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6650 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6651 SDValue HiSub = 6652 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6653 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6654 return true; 6655 } 6656 6657 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6658 SelectionDAG &DAG) const { 6659 SDLoc dl(Node); 6660 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6661 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6662 EVT VT = Node->getValueType(0); 6663 6664 if (VT.isScalableVector()) 6665 report_fatal_error( 6666 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 6667 6668 if (isOperationLegalOrCustom(NewOp, VT)) { 6669 SDValue Quiet0 = Node->getOperand(0); 6670 SDValue Quiet1 = Node->getOperand(1); 6671 6672 if (!Node->getFlags().hasNoNaNs()) { 6673 // Insert canonicalizes if it's possible we need to quiet to get correct 6674 // sNaN behavior. 6675 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6676 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6677 Node->getFlags()); 6678 } 6679 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6680 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6681 Node->getFlags()); 6682 } 6683 } 6684 6685 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6686 } 6687 6688 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6689 // instead if there are no NaNs. 6690 if (Node->getFlags().hasNoNaNs()) { 6691 unsigned IEEE2018Op = 6692 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6693 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6694 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6695 Node->getOperand(1), Node->getFlags()); 6696 } 6697 } 6698 6699 // If none of the above worked, but there are no NaNs, then expand to 6700 // a compare/select sequence. This is required for correctness since 6701 // InstCombine might have canonicalized a fcmp+select sequence to a 6702 // FMINNUM/FMAXNUM node. If we were to fall through to the default 6703 // expansion to libcall, we might introduce a link-time dependency 6704 // on libm into a file that originally did not have one. 6705 if (Node->getFlags().hasNoNaNs()) { 6706 ISD::CondCode Pred = 6707 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 6708 SDValue Op1 = Node->getOperand(0); 6709 SDValue Op2 = Node->getOperand(1); 6710 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 6711 // Copy FMF flags, but always set the no-signed-zeros flag 6712 // as this is implied by the FMINNUM/FMAXNUM semantics. 6713 SDNodeFlags Flags = Node->getFlags(); 6714 Flags.setNoSignedZeros(true); 6715 SelCC->setFlags(Flags); 6716 return SelCC; 6717 } 6718 6719 return SDValue(); 6720 } 6721 6722 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 6723 SelectionDAG &DAG) const { 6724 SDLoc dl(Node); 6725 EVT VT = Node->getValueType(0); 6726 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6727 SDValue Op = Node->getOperand(0); 6728 unsigned Len = VT.getScalarSizeInBits(); 6729 assert(VT.isInteger() && "CTPOP not implemented for this type."); 6730 6731 // TODO: Add support for irregular type lengths. 6732 if (!(Len <= 128 && Len % 8 == 0)) 6733 return false; 6734 6735 // Only expand vector types if we have the appropriate vector bit operations. 6736 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 6737 !isOperationLegalOrCustom(ISD::SUB, VT) || 6738 !isOperationLegalOrCustom(ISD::SRL, VT) || 6739 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 6740 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6741 return false; 6742 6743 // This is the "best" algorithm from 6744 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 6745 SDValue Mask55 = 6746 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 6747 SDValue Mask33 = 6748 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 6749 SDValue Mask0F = 6750 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 6751 SDValue Mask01 = 6752 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 6753 6754 // v = v - ((v >> 1) & 0x55555555...) 6755 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 6756 DAG.getNode(ISD::AND, dl, VT, 6757 DAG.getNode(ISD::SRL, dl, VT, Op, 6758 DAG.getConstant(1, dl, ShVT)), 6759 Mask55)); 6760 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 6761 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 6762 DAG.getNode(ISD::AND, dl, VT, 6763 DAG.getNode(ISD::SRL, dl, VT, Op, 6764 DAG.getConstant(2, dl, ShVT)), 6765 Mask33)); 6766 // v = (v + (v >> 4)) & 0x0F0F0F0F... 6767 Op = DAG.getNode(ISD::AND, dl, VT, 6768 DAG.getNode(ISD::ADD, dl, VT, Op, 6769 DAG.getNode(ISD::SRL, dl, VT, Op, 6770 DAG.getConstant(4, dl, ShVT))), 6771 Mask0F); 6772 // v = (v * 0x01010101...) >> (Len - 8) 6773 if (Len > 8) 6774 Op = 6775 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 6776 DAG.getConstant(Len - 8, dl, ShVT)); 6777 6778 Result = Op; 6779 return true; 6780 } 6781 6782 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 6783 SelectionDAG &DAG) const { 6784 SDLoc dl(Node); 6785 EVT VT = Node->getValueType(0); 6786 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6787 SDValue Op = Node->getOperand(0); 6788 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6789 6790 // If the non-ZERO_UNDEF version is supported we can use that instead. 6791 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 6792 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 6793 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 6794 return true; 6795 } 6796 6797 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6798 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 6799 EVT SetCCVT = 6800 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6801 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 6802 SDValue Zero = DAG.getConstant(0, dl, VT); 6803 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6804 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6805 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 6806 return true; 6807 } 6808 6809 // Only expand vector types if we have the appropriate vector bit operations. 6810 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6811 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 6812 !isOperationLegalOrCustom(ISD::SRL, VT) || 6813 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6814 return false; 6815 6816 // for now, we do this: 6817 // x = x | (x >> 1); 6818 // x = x | (x >> 2); 6819 // ... 6820 // x = x | (x >>16); 6821 // x = x | (x >>32); // for 64-bit input 6822 // return popcount(~x); 6823 // 6824 // Ref: "Hacker's Delight" by Henry Warren 6825 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 6826 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 6827 Op = DAG.getNode(ISD::OR, dl, VT, Op, 6828 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 6829 } 6830 Op = DAG.getNOT(dl, Op, VT); 6831 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 6832 return true; 6833 } 6834 6835 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 6836 SelectionDAG &DAG) const { 6837 SDLoc dl(Node); 6838 EVT VT = Node->getValueType(0); 6839 SDValue Op = Node->getOperand(0); 6840 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6841 6842 // If the non-ZERO_UNDEF version is supported we can use that instead. 6843 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 6844 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 6845 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 6846 return true; 6847 } 6848 6849 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6850 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 6851 EVT SetCCVT = 6852 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6853 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 6854 SDValue Zero = DAG.getConstant(0, dl, VT); 6855 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6856 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6857 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 6858 return true; 6859 } 6860 6861 // Only expand vector types if we have the appropriate vector bit operations. 6862 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6863 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 6864 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 6865 !isOperationLegalOrCustom(ISD::SUB, VT) || 6866 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 6867 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6868 return false; 6869 6870 // for now, we use: { return popcount(~x & (x - 1)); } 6871 // unless the target has ctlz but not ctpop, in which case we use: 6872 // { return 32 - nlz(~x & (x-1)); } 6873 // Ref: "Hacker's Delight" by Henry Warren 6874 SDValue Tmp = DAG.getNode( 6875 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 6876 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 6877 6878 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 6879 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 6880 Result = 6881 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 6882 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 6883 return true; 6884 } 6885 6886 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 6887 return true; 6888 } 6889 6890 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 6891 SelectionDAG &DAG, bool IsNegative) const { 6892 SDLoc dl(N); 6893 EVT VT = N->getValueType(0); 6894 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6895 SDValue Op = N->getOperand(0); 6896 6897 // abs(x) -> smax(x,sub(0,x)) 6898 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 6899 isOperationLegal(ISD::SMAX, VT)) { 6900 SDValue Zero = DAG.getConstant(0, dl, VT); 6901 Result = DAG.getNode(ISD::SMAX, dl, VT, Op, 6902 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 6903 return true; 6904 } 6905 6906 // abs(x) -> umin(x,sub(0,x)) 6907 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 6908 isOperationLegal(ISD::UMIN, VT)) { 6909 SDValue Zero = DAG.getConstant(0, dl, VT); 6910 Result = DAG.getNode(ISD::UMIN, dl, VT, Op, 6911 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 6912 return true; 6913 } 6914 6915 // 0 - abs(x) -> smin(x, sub(0,x)) 6916 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 6917 isOperationLegal(ISD::SMIN, VT)) { 6918 SDValue Zero = DAG.getConstant(0, dl, VT); 6919 Result = DAG.getNode(ISD::SMIN, dl, VT, Op, 6920 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 6921 return true; 6922 } 6923 6924 // Only expand vector types if we have the appropriate vector operations. 6925 if (VT.isVector() && 6926 (!isOperationLegalOrCustom(ISD::SRA, VT) || 6927 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 6928 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 6929 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6930 return false; 6931 6932 SDValue Shift = 6933 DAG.getNode(ISD::SRA, dl, VT, Op, 6934 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 6935 if (!IsNegative) { 6936 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 6937 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 6938 } else { 6939 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 6940 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 6941 Result = DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 6942 } 6943 return true; 6944 } 6945 6946 std::pair<SDValue, SDValue> 6947 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 6948 SelectionDAG &DAG) const { 6949 SDLoc SL(LD); 6950 SDValue Chain = LD->getChain(); 6951 SDValue BasePTR = LD->getBasePtr(); 6952 EVT SrcVT = LD->getMemoryVT(); 6953 EVT DstVT = LD->getValueType(0); 6954 ISD::LoadExtType ExtType = LD->getExtensionType(); 6955 6956 if (SrcVT.isScalableVector()) 6957 report_fatal_error("Cannot scalarize scalable vector loads"); 6958 6959 unsigned NumElem = SrcVT.getVectorNumElements(); 6960 6961 EVT SrcEltVT = SrcVT.getScalarType(); 6962 EVT DstEltVT = DstVT.getScalarType(); 6963 6964 // A vector must always be stored in memory as-is, i.e. without any padding 6965 // between the elements, since various code depend on it, e.g. in the 6966 // handling of a bitcast of a vector type to int, which may be done with a 6967 // vector store followed by an integer load. A vector that does not have 6968 // elements that are byte-sized must therefore be stored as an integer 6969 // built out of the extracted vector elements. 6970 if (!SrcEltVT.isByteSized()) { 6971 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 6972 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 6973 6974 unsigned NumSrcBits = SrcVT.getSizeInBits(); 6975 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 6976 6977 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 6978 SDValue SrcEltBitMask = DAG.getConstant( 6979 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 6980 6981 // Load the whole vector and avoid masking off the top bits as it makes 6982 // the codegen worse. 6983 SDValue Load = 6984 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 6985 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 6986 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6987 6988 SmallVector<SDValue, 8> Vals; 6989 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6990 unsigned ShiftIntoIdx = 6991 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6992 SDValue ShiftAmount = 6993 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 6994 LoadVT, SL, /*LegalTypes=*/false); 6995 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 6996 SDValue Elt = 6997 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 6998 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 6999 7000 if (ExtType != ISD::NON_EXTLOAD) { 7001 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 7002 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 7003 } 7004 7005 Vals.push_back(Scalar); 7006 } 7007 7008 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7009 return std::make_pair(Value, Load.getValue(1)); 7010 } 7011 7012 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 7013 assert(SrcEltVT.isByteSized()); 7014 7015 SmallVector<SDValue, 8> Vals; 7016 SmallVector<SDValue, 8> LoadChains; 7017 7018 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7019 SDValue ScalarLoad = 7020 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 7021 LD->getPointerInfo().getWithOffset(Idx * Stride), 7022 SrcEltVT, LD->getOriginalAlign(), 7023 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7024 7025 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 7026 7027 Vals.push_back(ScalarLoad.getValue(0)); 7028 LoadChains.push_back(ScalarLoad.getValue(1)); 7029 } 7030 7031 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 7032 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7033 7034 return std::make_pair(Value, NewChain); 7035 } 7036 7037 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 7038 SelectionDAG &DAG) const { 7039 SDLoc SL(ST); 7040 7041 SDValue Chain = ST->getChain(); 7042 SDValue BasePtr = ST->getBasePtr(); 7043 SDValue Value = ST->getValue(); 7044 EVT StVT = ST->getMemoryVT(); 7045 7046 if (StVT.isScalableVector()) 7047 report_fatal_error("Cannot scalarize scalable vector stores"); 7048 7049 // The type of the data we want to save 7050 EVT RegVT = Value.getValueType(); 7051 EVT RegSclVT = RegVT.getScalarType(); 7052 7053 // The type of data as saved in memory. 7054 EVT MemSclVT = StVT.getScalarType(); 7055 7056 unsigned NumElem = StVT.getVectorNumElements(); 7057 7058 // A vector must always be stored in memory as-is, i.e. without any padding 7059 // between the elements, since various code depend on it, e.g. in the 7060 // handling of a bitcast of a vector type to int, which may be done with a 7061 // vector store followed by an integer load. A vector that does not have 7062 // elements that are byte-sized must therefore be stored as an integer 7063 // built out of the extracted vector elements. 7064 if (!MemSclVT.isByteSized()) { 7065 unsigned NumBits = StVT.getSizeInBits(); 7066 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 7067 7068 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 7069 7070 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7071 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7072 DAG.getVectorIdxConstant(Idx, SL)); 7073 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 7074 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 7075 unsigned ShiftIntoIdx = 7076 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7077 SDValue ShiftAmount = 7078 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 7079 SDValue ShiftedElt = 7080 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 7081 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 7082 } 7083 7084 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 7085 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7086 ST->getAAInfo()); 7087 } 7088 7089 // Store Stride in bytes 7090 unsigned Stride = MemSclVT.getSizeInBits() / 8; 7091 assert(Stride && "Zero stride!"); 7092 // Extract each of the elements from the original vector and save them into 7093 // memory individually. 7094 SmallVector<SDValue, 8> Stores; 7095 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7096 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7097 DAG.getVectorIdxConstant(Idx, SL)); 7098 7099 SDValue Ptr = 7100 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 7101 7102 // This scalar TruncStore may be illegal, but we legalize it later. 7103 SDValue Store = DAG.getTruncStore( 7104 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 7105 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7106 ST->getAAInfo()); 7107 7108 Stores.push_back(Store); 7109 } 7110 7111 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 7112 } 7113 7114 std::pair<SDValue, SDValue> 7115 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 7116 assert(LD->getAddressingMode() == ISD::UNINDEXED && 7117 "unaligned indexed loads not implemented!"); 7118 SDValue Chain = LD->getChain(); 7119 SDValue Ptr = LD->getBasePtr(); 7120 EVT VT = LD->getValueType(0); 7121 EVT LoadedVT = LD->getMemoryVT(); 7122 SDLoc dl(LD); 7123 auto &MF = DAG.getMachineFunction(); 7124 7125 if (VT.isFloatingPoint() || VT.isVector()) { 7126 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 7127 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 7128 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 7129 LoadedVT.isVector()) { 7130 // Scalarize the load and let the individual components be handled. 7131 return scalarizeVectorLoad(LD, DAG); 7132 } 7133 7134 // Expand to a (misaligned) integer load of the same size, 7135 // then bitconvert to floating point or vector. 7136 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 7137 LD->getMemOperand()); 7138 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 7139 if (LoadedVT != VT) 7140 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 7141 ISD::ANY_EXTEND, dl, VT, Result); 7142 7143 return std::make_pair(Result, newLoad.getValue(1)); 7144 } 7145 7146 // Copy the value to a (aligned) stack slot using (unaligned) integer 7147 // loads and stores, then do a (aligned) load from the stack slot. 7148 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 7149 unsigned LoadedBytes = LoadedVT.getStoreSize(); 7150 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7151 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 7152 7153 // Make sure the stack slot is also aligned for the register type. 7154 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 7155 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 7156 SmallVector<SDValue, 8> Stores; 7157 SDValue StackPtr = StackBase; 7158 unsigned Offset = 0; 7159 7160 EVT PtrVT = Ptr.getValueType(); 7161 EVT StackPtrVT = StackPtr.getValueType(); 7162 7163 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7164 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7165 7166 // Do all but one copies using the full register width. 7167 for (unsigned i = 1; i < NumRegs; i++) { 7168 // Load one integer register's worth from the original location. 7169 SDValue Load = DAG.getLoad( 7170 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 7171 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7172 LD->getAAInfo()); 7173 // Follow the load with a store to the stack slot. Remember the store. 7174 Stores.push_back(DAG.getStore( 7175 Load.getValue(1), dl, Load, StackPtr, 7176 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 7177 // Increment the pointers. 7178 Offset += RegBytes; 7179 7180 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7181 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7182 } 7183 7184 // The last copy may be partial. Do an extending load. 7185 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 7186 8 * (LoadedBytes - Offset)); 7187 SDValue Load = 7188 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 7189 LD->getPointerInfo().getWithOffset(Offset), MemVT, 7190 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7191 LD->getAAInfo()); 7192 // Follow the load with a store to the stack slot. Remember the store. 7193 // On big-endian machines this requires a truncating store to ensure 7194 // that the bits end up in the right place. 7195 Stores.push_back(DAG.getTruncStore( 7196 Load.getValue(1), dl, Load, StackPtr, 7197 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 7198 7199 // The order of the stores doesn't matter - say it with a TokenFactor. 7200 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7201 7202 // Finally, perform the original load only redirected to the stack slot. 7203 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 7204 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 7205 LoadedVT); 7206 7207 // Callers expect a MERGE_VALUES node. 7208 return std::make_pair(Load, TF); 7209 } 7210 7211 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 7212 "Unaligned load of unsupported type."); 7213 7214 // Compute the new VT that is half the size of the old one. This is an 7215 // integer MVT. 7216 unsigned NumBits = LoadedVT.getSizeInBits(); 7217 EVT NewLoadedVT; 7218 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 7219 NumBits >>= 1; 7220 7221 Align Alignment = LD->getOriginalAlign(); 7222 unsigned IncrementSize = NumBits / 8; 7223 ISD::LoadExtType HiExtType = LD->getExtensionType(); 7224 7225 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 7226 if (HiExtType == ISD::NON_EXTLOAD) 7227 HiExtType = ISD::ZEXTLOAD; 7228 7229 // Load the value in two parts 7230 SDValue Lo, Hi; 7231 if (DAG.getDataLayout().isLittleEndian()) { 7232 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7233 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7234 LD->getAAInfo()); 7235 7236 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7237 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 7238 LD->getPointerInfo().getWithOffset(IncrementSize), 7239 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7240 LD->getAAInfo()); 7241 } else { 7242 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7243 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7244 LD->getAAInfo()); 7245 7246 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7247 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 7248 LD->getPointerInfo().getWithOffset(IncrementSize), 7249 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7250 LD->getAAInfo()); 7251 } 7252 7253 // aggregate the two parts 7254 SDValue ShiftAmount = 7255 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 7256 DAG.getDataLayout())); 7257 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 7258 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 7259 7260 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 7261 Hi.getValue(1)); 7262 7263 return std::make_pair(Result, TF); 7264 } 7265 7266 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 7267 SelectionDAG &DAG) const { 7268 assert(ST->getAddressingMode() == ISD::UNINDEXED && 7269 "unaligned indexed stores not implemented!"); 7270 SDValue Chain = ST->getChain(); 7271 SDValue Ptr = ST->getBasePtr(); 7272 SDValue Val = ST->getValue(); 7273 EVT VT = Val.getValueType(); 7274 Align Alignment = ST->getOriginalAlign(); 7275 auto &MF = DAG.getMachineFunction(); 7276 EVT StoreMemVT = ST->getMemoryVT(); 7277 7278 SDLoc dl(ST); 7279 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 7280 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 7281 if (isTypeLegal(intVT)) { 7282 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 7283 StoreMemVT.isVector()) { 7284 // Scalarize the store and let the individual components be handled. 7285 SDValue Result = scalarizeVectorStore(ST, DAG); 7286 return Result; 7287 } 7288 // Expand to a bitconvert of the value to the integer type of the 7289 // same size, then a (misaligned) int store. 7290 // FIXME: Does not handle truncating floating point stores! 7291 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 7292 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 7293 Alignment, ST->getMemOperand()->getFlags()); 7294 return Result; 7295 } 7296 // Do a (aligned) store to a stack slot, then copy from the stack slot 7297 // to the final destination using (unaligned) integer loads and stores. 7298 MVT RegVT = getRegisterType( 7299 *DAG.getContext(), 7300 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 7301 EVT PtrVT = Ptr.getValueType(); 7302 unsigned StoredBytes = StoreMemVT.getStoreSize(); 7303 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7304 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 7305 7306 // Make sure the stack slot is also aligned for the register type. 7307 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 7308 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 7309 7310 // Perform the original store, only redirected to the stack slot. 7311 SDValue Store = DAG.getTruncStore( 7312 Chain, dl, Val, StackPtr, 7313 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 7314 7315 EVT StackPtrVT = StackPtr.getValueType(); 7316 7317 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7318 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7319 SmallVector<SDValue, 8> Stores; 7320 unsigned Offset = 0; 7321 7322 // Do all but one copies using the full register width. 7323 for (unsigned i = 1; i < NumRegs; i++) { 7324 // Load one integer register's worth from the stack slot. 7325 SDValue Load = DAG.getLoad( 7326 RegVT, dl, Store, StackPtr, 7327 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 7328 // Store it to the final location. Remember the store. 7329 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 7330 ST->getPointerInfo().getWithOffset(Offset), 7331 ST->getOriginalAlign(), 7332 ST->getMemOperand()->getFlags())); 7333 // Increment the pointers. 7334 Offset += RegBytes; 7335 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7336 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7337 } 7338 7339 // The last store may be partial. Do a truncating store. On big-endian 7340 // machines this requires an extending load from the stack slot to ensure 7341 // that the bits are in the right place. 7342 EVT LoadMemVT = 7343 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 7344 7345 // Load from the stack slot. 7346 SDValue Load = DAG.getExtLoad( 7347 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 7348 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 7349 7350 Stores.push_back( 7351 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 7352 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 7353 ST->getOriginalAlign(), 7354 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 7355 // The order of the stores doesn't matter - say it with a TokenFactor. 7356 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7357 return Result; 7358 } 7359 7360 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 7361 "Unaligned store of unknown type."); 7362 // Get the half-size VT 7363 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 7364 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 7365 unsigned IncrementSize = NumBits / 8; 7366 7367 // Divide the stored value in two parts. 7368 SDValue ShiftAmount = DAG.getConstant( 7369 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 7370 SDValue Lo = Val; 7371 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 7372 7373 // Store the two parts 7374 SDValue Store1, Store2; 7375 Store1 = DAG.getTruncStore(Chain, dl, 7376 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 7377 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 7378 ST->getMemOperand()->getFlags()); 7379 7380 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7381 Store2 = DAG.getTruncStore( 7382 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 7383 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 7384 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 7385 7386 SDValue Result = 7387 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 7388 return Result; 7389 } 7390 7391 SDValue 7392 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7393 const SDLoc &DL, EVT DataVT, 7394 SelectionDAG &DAG, 7395 bool IsCompressedMemory) const { 7396 SDValue Increment; 7397 EVT AddrVT = Addr.getValueType(); 7398 EVT MaskVT = Mask.getValueType(); 7399 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 7400 "Incompatible types of Data and Mask"); 7401 if (IsCompressedMemory) { 7402 if (DataVT.isScalableVector()) 7403 report_fatal_error( 7404 "Cannot currently handle compressed memory with scalable vectors"); 7405 // Incrementing the pointer according to number of '1's in the mask. 7406 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7407 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7408 if (MaskIntVT.getSizeInBits() < 32) { 7409 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7410 MaskIntVT = MVT::i32; 7411 } 7412 7413 // Count '1's with POPCNT. 7414 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7415 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7416 // Scale is an element size in bytes. 7417 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7418 AddrVT); 7419 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7420 } else if (DataVT.isScalableVector()) { 7421 Increment = DAG.getVScale(DL, AddrVT, 7422 APInt(AddrVT.getFixedSizeInBits(), 7423 DataVT.getStoreSize().getKnownMinSize())); 7424 } else 7425 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7426 7427 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7428 } 7429 7430 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 7431 SDValue Idx, 7432 EVT VecVT, 7433 const SDLoc &dl) { 7434 if (!VecVT.isScalableVector() && isa<ConstantSDNode>(Idx)) 7435 return Idx; 7436 7437 EVT IdxVT = Idx.getValueType(); 7438 unsigned NElts = VecVT.getVectorMinNumElements(); 7439 if (VecVT.isScalableVector()) { 7440 SDValue VS = DAG.getVScale(dl, IdxVT, 7441 APInt(IdxVT.getFixedSizeInBits(), 7442 NElts)); 7443 SDValue Sub = DAG.getNode(ISD::SUB, dl, IdxVT, VS, 7444 DAG.getConstant(1, dl, IdxVT)); 7445 7446 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 7447 } else { 7448 if (isPowerOf2_32(NElts)) { 7449 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 7450 Log2_32(NElts)); 7451 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7452 DAG.getConstant(Imm, dl, IdxVT)); 7453 } 7454 } 7455 7456 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7457 DAG.getConstant(NElts - 1, dl, IdxVT)); 7458 } 7459 7460 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7461 SDValue VecPtr, EVT VecVT, 7462 SDValue Index) const { 7463 SDLoc dl(Index); 7464 // Make sure the index type is big enough to compute in. 7465 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7466 7467 EVT EltVT = VecVT.getVectorElementType(); 7468 7469 // Calculate the element offset and add it to the pointer. 7470 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 7471 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 7472 "Converting bits to bytes lost precision"); 7473 7474 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 7475 7476 EVT IdxVT = Index.getValueType(); 7477 7478 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7479 DAG.getConstant(EltSize, dl, IdxVT)); 7480 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7481 } 7482 7483 //===----------------------------------------------------------------------===// 7484 // Implementation of Emulated TLS Model 7485 //===----------------------------------------------------------------------===// 7486 7487 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7488 SelectionDAG &DAG) const { 7489 // Access to address of TLS varialbe xyz is lowered to a function call: 7490 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7491 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7492 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7493 SDLoc dl(GA); 7494 7495 ArgListTy Args; 7496 ArgListEntry Entry; 7497 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7498 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7499 StringRef EmuTlsVarName(NameString); 7500 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7501 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7502 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7503 Entry.Ty = VoidPtrType; 7504 Args.push_back(Entry); 7505 7506 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7507 7508 TargetLowering::CallLoweringInfo CLI(DAG); 7509 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7510 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7511 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7512 7513 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7514 // At last for X86 targets, maybe good for other targets too? 7515 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7516 MFI.setAdjustsStack(true); // Is this only for X86 target? 7517 MFI.setHasCalls(true); 7518 7519 assert((GA->getOffset() == 0) && 7520 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7521 return CallResult.first; 7522 } 7523 7524 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7525 SelectionDAG &DAG) const { 7526 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7527 if (!isCtlzFast()) 7528 return SDValue(); 7529 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7530 SDLoc dl(Op); 7531 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7532 if (C->isNullValue() && CC == ISD::SETEQ) { 7533 EVT VT = Op.getOperand(0).getValueType(); 7534 SDValue Zext = Op.getOperand(0); 7535 if (VT.bitsLT(MVT::i32)) { 7536 VT = MVT::i32; 7537 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7538 } 7539 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7540 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7541 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7542 DAG.getConstant(Log2b, dl, MVT::i32)); 7543 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7544 } 7545 } 7546 return SDValue(); 7547 } 7548 7549 // Convert redundant addressing modes (e.g. scaling is redundant 7550 // when accessing bytes). 7551 ISD::MemIndexType 7552 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT, 7553 SDValue Offsets) const { 7554 bool IsScaledIndex = 7555 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED); 7556 bool IsSignedIndex = 7557 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED); 7558 7559 // Scaling is unimportant for bytes, canonicalize to unscaled. 7560 if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) { 7561 IsScaledIndex = false; 7562 IndexType = IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED; 7563 } 7564 7565 return IndexType; 7566 } 7567 7568 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 7569 SDValue Op0 = Node->getOperand(0); 7570 SDValue Op1 = Node->getOperand(1); 7571 EVT VT = Op0.getValueType(); 7572 unsigned Opcode = Node->getOpcode(); 7573 SDLoc DL(Node); 7574 7575 // umin(x,y) -> sub(x,usubsat(x,y)) 7576 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 7577 isOperationLegal(ISD::USUBSAT, VT)) { 7578 return DAG.getNode(ISD::SUB, DL, VT, Op0, 7579 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 7580 } 7581 7582 // umax(x,y) -> add(x,usubsat(y,x)) 7583 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 7584 isOperationLegal(ISD::USUBSAT, VT)) { 7585 return DAG.getNode(ISD::ADD, DL, VT, Op0, 7586 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 7587 } 7588 7589 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 7590 ISD::CondCode CC; 7591 switch (Opcode) { 7592 default: llvm_unreachable("How did we get here?"); 7593 case ISD::SMAX: CC = ISD::SETGT; break; 7594 case ISD::SMIN: CC = ISD::SETLT; break; 7595 case ISD::UMAX: CC = ISD::SETUGT; break; 7596 case ISD::UMIN: CC = ISD::SETULT; break; 7597 } 7598 7599 // FIXME: Should really try to split the vector in case it's legal on a 7600 // subvector. 7601 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 7602 return DAG.UnrollVectorOp(Node); 7603 7604 SDValue Cond = DAG.getSetCC(DL, VT, Op0, Op1, CC); 7605 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 7606 } 7607 7608 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 7609 unsigned Opcode = Node->getOpcode(); 7610 SDValue LHS = Node->getOperand(0); 7611 SDValue RHS = Node->getOperand(1); 7612 EVT VT = LHS.getValueType(); 7613 SDLoc dl(Node); 7614 7615 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7616 assert(VT.isInteger() && "Expected operands to be integers"); 7617 7618 // usub.sat(a, b) -> umax(a, b) - b 7619 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 7620 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 7621 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 7622 } 7623 7624 // uadd.sat(a, b) -> umin(a, ~b) + b 7625 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 7626 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 7627 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 7628 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 7629 } 7630 7631 unsigned OverflowOp; 7632 switch (Opcode) { 7633 case ISD::SADDSAT: 7634 OverflowOp = ISD::SADDO; 7635 break; 7636 case ISD::UADDSAT: 7637 OverflowOp = ISD::UADDO; 7638 break; 7639 case ISD::SSUBSAT: 7640 OverflowOp = ISD::SSUBO; 7641 break; 7642 case ISD::USUBSAT: 7643 OverflowOp = ISD::USUBO; 7644 break; 7645 default: 7646 llvm_unreachable("Expected method to receive signed or unsigned saturation " 7647 "addition or subtraction node."); 7648 } 7649 7650 // FIXME: Should really try to split the vector in case it's legal on a 7651 // subvector. 7652 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 7653 return DAG.UnrollVectorOp(Node); 7654 7655 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 7656 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7657 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 7658 LHS, RHS); 7659 SDValue SumDiff = Result.getValue(0); 7660 SDValue Overflow = Result.getValue(1); 7661 SDValue Zero = DAG.getConstant(0, dl, VT); 7662 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 7663 7664 if (Opcode == ISD::UADDSAT) { 7665 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7666 // (LHS + RHS) | OverflowMask 7667 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7668 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 7669 } 7670 // Overflow ? 0xffff.... : (LHS + RHS) 7671 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 7672 } else if (Opcode == ISD::USUBSAT) { 7673 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7674 // (LHS - RHS) & ~OverflowMask 7675 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7676 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 7677 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 7678 } 7679 // Overflow ? 0 : (LHS - RHS) 7680 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 7681 } else { 7682 // SatMax -> Overflow && SumDiff < 0 7683 // SatMin -> Overflow && SumDiff >= 0 7684 APInt MinVal = APInt::getSignedMinValue(BitWidth); 7685 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 7686 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7687 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7688 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 7689 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 7690 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 7691 } 7692 } 7693 7694 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 7695 unsigned Opcode = Node->getOpcode(); 7696 bool IsSigned = Opcode == ISD::SSHLSAT; 7697 SDValue LHS = Node->getOperand(0); 7698 SDValue RHS = Node->getOperand(1); 7699 EVT VT = LHS.getValueType(); 7700 SDLoc dl(Node); 7701 7702 assert((Node->getOpcode() == ISD::SSHLSAT || 7703 Node->getOpcode() == ISD::USHLSAT) && 7704 "Expected a SHLSAT opcode"); 7705 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7706 assert(VT.isInteger() && "Expected operands to be integers"); 7707 7708 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 7709 7710 unsigned BW = VT.getScalarSizeInBits(); 7711 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 7712 SDValue Orig = 7713 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 7714 7715 SDValue SatVal; 7716 if (IsSigned) { 7717 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 7718 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 7719 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 7720 SatMin, SatMax, ISD::SETLT); 7721 } else { 7722 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 7723 } 7724 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 7725 7726 return Result; 7727 } 7728 7729 SDValue 7730 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 7731 assert((Node->getOpcode() == ISD::SMULFIX || 7732 Node->getOpcode() == ISD::UMULFIX || 7733 Node->getOpcode() == ISD::SMULFIXSAT || 7734 Node->getOpcode() == ISD::UMULFIXSAT) && 7735 "Expected a fixed point multiplication opcode"); 7736 7737 SDLoc dl(Node); 7738 SDValue LHS = Node->getOperand(0); 7739 SDValue RHS = Node->getOperand(1); 7740 EVT VT = LHS.getValueType(); 7741 unsigned Scale = Node->getConstantOperandVal(2); 7742 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 7743 Node->getOpcode() == ISD::UMULFIXSAT); 7744 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 7745 Node->getOpcode() == ISD::SMULFIXSAT); 7746 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7747 unsigned VTSize = VT.getScalarSizeInBits(); 7748 7749 if (!Scale) { 7750 // [us]mul.fix(a, b, 0) -> mul(a, b) 7751 if (!Saturating) { 7752 if (isOperationLegalOrCustom(ISD::MUL, VT)) 7753 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7754 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 7755 SDValue Result = 7756 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7757 SDValue Product = Result.getValue(0); 7758 SDValue Overflow = Result.getValue(1); 7759 SDValue Zero = DAG.getConstant(0, dl, VT); 7760 7761 APInt MinVal = APInt::getSignedMinValue(VTSize); 7762 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 7763 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7764 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7765 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 7766 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 7767 return DAG.getSelect(dl, VT, Overflow, Result, Product); 7768 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 7769 SDValue Result = 7770 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7771 SDValue Product = Result.getValue(0); 7772 SDValue Overflow = Result.getValue(1); 7773 7774 APInt MaxVal = APInt::getMaxValue(VTSize); 7775 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7776 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 7777 } 7778 } 7779 7780 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 7781 "Expected scale to be less than the number of bits if signed or at " 7782 "most the number of bits if unsigned."); 7783 assert(LHS.getValueType() == RHS.getValueType() && 7784 "Expected both operands to be the same type"); 7785 7786 // Get the upper and lower bits of the result. 7787 SDValue Lo, Hi; 7788 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 7789 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 7790 if (isOperationLegalOrCustom(LoHiOp, VT)) { 7791 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 7792 Lo = Result.getValue(0); 7793 Hi = Result.getValue(1); 7794 } else if (isOperationLegalOrCustom(HiOp, VT)) { 7795 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7796 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 7797 } else if (VT.isVector()) { 7798 return SDValue(); 7799 } else { 7800 report_fatal_error("Unable to expand fixed point multiplication."); 7801 } 7802 7803 if (Scale == VTSize) 7804 // Result is just the top half since we'd be shifting by the width of the 7805 // operand. Overflow impossible so this works for both UMULFIX and 7806 // UMULFIXSAT. 7807 return Hi; 7808 7809 // The result will need to be shifted right by the scale since both operands 7810 // are scaled. The result is given to us in 2 halves, so we only want part of 7811 // both in the result. 7812 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7813 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 7814 DAG.getConstant(Scale, dl, ShiftTy)); 7815 if (!Saturating) 7816 return Result; 7817 7818 if (!Signed) { 7819 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 7820 // widened multiplication) aren't all zeroes. 7821 7822 // Saturate to max if ((Hi >> Scale) != 0), 7823 // which is the same as if (Hi > ((1 << Scale) - 1)) 7824 APInt MaxVal = APInt::getMaxValue(VTSize); 7825 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 7826 dl, VT); 7827 Result = DAG.getSelectCC(dl, Hi, LowMask, 7828 DAG.getConstant(MaxVal, dl, VT), Result, 7829 ISD::SETUGT); 7830 7831 return Result; 7832 } 7833 7834 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 7835 // widened multiplication) aren't all ones or all zeroes. 7836 7837 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 7838 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 7839 7840 if (Scale == 0) { 7841 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 7842 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 7843 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 7844 // Saturated to SatMin if wide product is negative, and SatMax if wide 7845 // product is positive ... 7846 SDValue Zero = DAG.getConstant(0, dl, VT); 7847 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 7848 ISD::SETLT); 7849 // ... but only if we overflowed. 7850 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 7851 } 7852 7853 // We handled Scale==0 above so all the bits to examine is in Hi. 7854 7855 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 7856 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 7857 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 7858 dl, VT); 7859 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 7860 // Saturate to min if (Hi >> (Scale - 1)) < -1), 7861 // which is the same as if (HI < (-1 << (Scale - 1)) 7862 SDValue HighMask = 7863 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 7864 dl, VT); 7865 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 7866 return Result; 7867 } 7868 7869 SDValue 7870 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 7871 SDValue LHS, SDValue RHS, 7872 unsigned Scale, SelectionDAG &DAG) const { 7873 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 7874 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 7875 "Expected a fixed point division opcode"); 7876 7877 EVT VT = LHS.getValueType(); 7878 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 7879 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 7880 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7881 7882 // If there is enough room in the type to upscale the LHS or downscale the 7883 // RHS before the division, we can perform it in this type without having to 7884 // resize. For signed operations, the LHS headroom is the number of 7885 // redundant sign bits, and for unsigned ones it is the number of zeroes. 7886 // The headroom for the RHS is the number of trailing zeroes. 7887 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 7888 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 7889 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 7890 7891 // For signed saturating operations, we need to be able to detect true integer 7892 // division overflow; that is, when you have MIN / -EPS. However, this 7893 // is undefined behavior and if we emit divisions that could take such 7894 // values it may cause undesired behavior (arithmetic exceptions on x86, for 7895 // example). 7896 // Avoid this by requiring an extra bit so that we never get this case. 7897 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 7898 // signed saturating division, we need to emit a whopping 32-bit division. 7899 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 7900 return SDValue(); 7901 7902 unsigned LHSShift = std::min(LHSLead, Scale); 7903 unsigned RHSShift = Scale - LHSShift; 7904 7905 // At this point, we know that if we shift the LHS up by LHSShift and the 7906 // RHS down by RHSShift, we can emit a regular division with a final scaling 7907 // factor of Scale. 7908 7909 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7910 if (LHSShift) 7911 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 7912 DAG.getConstant(LHSShift, dl, ShiftTy)); 7913 if (RHSShift) 7914 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 7915 DAG.getConstant(RHSShift, dl, ShiftTy)); 7916 7917 SDValue Quot; 7918 if (Signed) { 7919 // For signed operations, if the resulting quotient is negative and the 7920 // remainder is nonzero, subtract 1 from the quotient to round towards 7921 // negative infinity. 7922 SDValue Rem; 7923 // FIXME: Ideally we would always produce an SDIVREM here, but if the 7924 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 7925 // we couldn't just form a libcall, but the type legalizer doesn't do it. 7926 if (isTypeLegal(VT) && 7927 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 7928 Quot = DAG.getNode(ISD::SDIVREM, dl, 7929 DAG.getVTList(VT, VT), 7930 LHS, RHS); 7931 Rem = Quot.getValue(1); 7932 Quot = Quot.getValue(0); 7933 } else { 7934 Quot = DAG.getNode(ISD::SDIV, dl, VT, 7935 LHS, RHS); 7936 Rem = DAG.getNode(ISD::SREM, dl, VT, 7937 LHS, RHS); 7938 } 7939 SDValue Zero = DAG.getConstant(0, dl, VT); 7940 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 7941 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 7942 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 7943 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 7944 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 7945 DAG.getConstant(1, dl, VT)); 7946 Quot = DAG.getSelect(dl, VT, 7947 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 7948 Sub1, Quot); 7949 } else 7950 Quot = DAG.getNode(ISD::UDIV, dl, VT, 7951 LHS, RHS); 7952 7953 return Quot; 7954 } 7955 7956 void TargetLowering::expandUADDSUBO( 7957 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7958 SDLoc dl(Node); 7959 SDValue LHS = Node->getOperand(0); 7960 SDValue RHS = Node->getOperand(1); 7961 bool IsAdd = Node->getOpcode() == ISD::UADDO; 7962 7963 // If ADD/SUBCARRY is legal, use that instead. 7964 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 7965 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 7966 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 7967 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 7968 { LHS, RHS, CarryIn }); 7969 Result = SDValue(NodeCarry.getNode(), 0); 7970 Overflow = SDValue(NodeCarry.getNode(), 1); 7971 return; 7972 } 7973 7974 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7975 LHS.getValueType(), LHS, RHS); 7976 7977 EVT ResultType = Node->getValueType(1); 7978 EVT SetCCType = getSetCCResultType( 7979 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7980 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 7981 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 7982 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7983 } 7984 7985 void TargetLowering::expandSADDSUBO( 7986 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7987 SDLoc dl(Node); 7988 SDValue LHS = Node->getOperand(0); 7989 SDValue RHS = Node->getOperand(1); 7990 bool IsAdd = Node->getOpcode() == ISD::SADDO; 7991 7992 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7993 LHS.getValueType(), LHS, RHS); 7994 7995 EVT ResultType = Node->getValueType(1); 7996 EVT OType = getSetCCResultType( 7997 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7998 7999 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 8000 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 8001 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 8002 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 8003 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 8004 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8005 return; 8006 } 8007 8008 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 8009 8010 // For an addition, the result should be less than one of the operands (LHS) 8011 // if and only if the other operand (RHS) is negative, otherwise there will 8012 // be overflow. 8013 // For a subtraction, the result should be less than one of the operands 8014 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 8015 // otherwise there will be overflow. 8016 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 8017 SDValue ConditionRHS = 8018 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 8019 8020 Overflow = DAG.getBoolExtOrTrunc( 8021 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 8022 ResultType, ResultType); 8023 } 8024 8025 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 8026 SDValue &Overflow, SelectionDAG &DAG) const { 8027 SDLoc dl(Node); 8028 EVT VT = Node->getValueType(0); 8029 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8030 SDValue LHS = Node->getOperand(0); 8031 SDValue RHS = Node->getOperand(1); 8032 bool isSigned = Node->getOpcode() == ISD::SMULO; 8033 8034 // For power-of-two multiplications we can use a simpler shift expansion. 8035 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 8036 const APInt &C = RHSC->getAPIntValue(); 8037 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 8038 if (C.isPowerOf2()) { 8039 // smulo(x, signed_min) is same as umulo(x, signed_min). 8040 bool UseArithShift = isSigned && !C.isMinSignedValue(); 8041 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8042 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 8043 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 8044 Overflow = DAG.getSetCC(dl, SetCCVT, 8045 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 8046 dl, VT, Result, ShiftAmt), 8047 LHS, ISD::SETNE); 8048 return true; 8049 } 8050 } 8051 8052 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 8053 if (VT.isVector()) 8054 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 8055 VT.getVectorNumElements()); 8056 8057 SDValue BottomHalf; 8058 SDValue TopHalf; 8059 static const unsigned Ops[2][3] = 8060 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 8061 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 8062 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 8063 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8064 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 8065 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 8066 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 8067 RHS); 8068 TopHalf = BottomHalf.getValue(1); 8069 } else if (isTypeLegal(WideVT)) { 8070 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 8071 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 8072 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 8073 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 8074 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 8075 getShiftAmountTy(WideVT, DAG.getDataLayout())); 8076 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 8077 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 8078 } else { 8079 if (VT.isVector()) 8080 return false; 8081 8082 // We can fall back to a libcall with an illegal type for the MUL if we 8083 // have a libcall big enough. 8084 // Also, we can fall back to a division in some cases, but that's a big 8085 // performance hit in the general case. 8086 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 8087 if (WideVT == MVT::i16) 8088 LC = RTLIB::MUL_I16; 8089 else if (WideVT == MVT::i32) 8090 LC = RTLIB::MUL_I32; 8091 else if (WideVT == MVT::i64) 8092 LC = RTLIB::MUL_I64; 8093 else if (WideVT == MVT::i128) 8094 LC = RTLIB::MUL_I128; 8095 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 8096 8097 SDValue HiLHS; 8098 SDValue HiRHS; 8099 if (isSigned) { 8100 // The high part is obtained by SRA'ing all but one of the bits of low 8101 // part. 8102 unsigned LoSize = VT.getFixedSizeInBits(); 8103 HiLHS = 8104 DAG.getNode(ISD::SRA, dl, VT, LHS, 8105 DAG.getConstant(LoSize - 1, dl, 8106 getPointerTy(DAG.getDataLayout()))); 8107 HiRHS = 8108 DAG.getNode(ISD::SRA, dl, VT, RHS, 8109 DAG.getConstant(LoSize - 1, dl, 8110 getPointerTy(DAG.getDataLayout()))); 8111 } else { 8112 HiLHS = DAG.getConstant(0, dl, VT); 8113 HiRHS = DAG.getConstant(0, dl, VT); 8114 } 8115 8116 // Here we're passing the 2 arguments explicitly as 4 arguments that are 8117 // pre-lowered to the correct types. This all depends upon WideVT not 8118 // being a legal type for the architecture and thus has to be split to 8119 // two arguments. 8120 SDValue Ret; 8121 TargetLowering::MakeLibCallOptions CallOptions; 8122 CallOptions.setSExt(isSigned); 8123 CallOptions.setIsPostTypeLegalization(true); 8124 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 8125 // Halves of WideVT are packed into registers in different order 8126 // depending on platform endianness. This is usually handled by 8127 // the C calling convention, but we can't defer to it in 8128 // the legalizer. 8129 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 8130 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8131 } else { 8132 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 8133 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8134 } 8135 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 8136 "Ret value is a collection of constituent nodes holding result."); 8137 if (DAG.getDataLayout().isLittleEndian()) { 8138 // Same as above. 8139 BottomHalf = Ret.getOperand(0); 8140 TopHalf = Ret.getOperand(1); 8141 } else { 8142 BottomHalf = Ret.getOperand(1); 8143 TopHalf = Ret.getOperand(0); 8144 } 8145 } 8146 8147 Result = BottomHalf; 8148 if (isSigned) { 8149 SDValue ShiftAmt = DAG.getConstant( 8150 VT.getScalarSizeInBits() - 1, dl, 8151 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 8152 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 8153 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 8154 } else { 8155 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 8156 DAG.getConstant(0, dl, VT), ISD::SETNE); 8157 } 8158 8159 // Truncate the result if SetCC returns a larger type than needed. 8160 EVT RType = Node->getValueType(1); 8161 if (RType.bitsLT(Overflow.getValueType())) 8162 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 8163 8164 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 8165 "Unexpected result type for S/UMULO legalization"); 8166 return true; 8167 } 8168 8169 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 8170 SDLoc dl(Node); 8171 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8172 SDValue Op = Node->getOperand(0); 8173 EVT VT = Op.getValueType(); 8174 8175 if (VT.isScalableVector()) 8176 report_fatal_error( 8177 "Expanding reductions for scalable vectors is undefined."); 8178 8179 // Try to use a shuffle reduction for power of two vectors. 8180 if (VT.isPow2VectorType()) { 8181 while (VT.getVectorNumElements() > 1) { 8182 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 8183 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 8184 break; 8185 8186 SDValue Lo, Hi; 8187 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 8188 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 8189 VT = HalfVT; 8190 } 8191 } 8192 8193 EVT EltVT = VT.getVectorElementType(); 8194 unsigned NumElts = VT.getVectorNumElements(); 8195 8196 SmallVector<SDValue, 8> Ops; 8197 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 8198 8199 SDValue Res = Ops[0]; 8200 for (unsigned i = 1; i < NumElts; i++) 8201 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 8202 8203 // Result type may be wider than element type. 8204 if (EltVT != Node->getValueType(0)) 8205 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 8206 return Res; 8207 } 8208 8209 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 8210 SDLoc dl(Node); 8211 SDValue AccOp = Node->getOperand(0); 8212 SDValue VecOp = Node->getOperand(1); 8213 SDNodeFlags Flags = Node->getFlags(); 8214 8215 EVT VT = VecOp.getValueType(); 8216 EVT EltVT = VT.getVectorElementType(); 8217 8218 if (VT.isScalableVector()) 8219 report_fatal_error( 8220 "Expanding reductions for scalable vectors is undefined."); 8221 8222 unsigned NumElts = VT.getVectorNumElements(); 8223 8224 SmallVector<SDValue, 8> Ops; 8225 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 8226 8227 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8228 8229 SDValue Res = AccOp; 8230 for (unsigned i = 0; i < NumElts; i++) 8231 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 8232 8233 return Res; 8234 } 8235 8236 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 8237 SelectionDAG &DAG) const { 8238 EVT VT = Node->getValueType(0); 8239 SDLoc dl(Node); 8240 bool isSigned = Node->getOpcode() == ISD::SREM; 8241 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 8242 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 8243 SDValue Dividend = Node->getOperand(0); 8244 SDValue Divisor = Node->getOperand(1); 8245 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 8246 SDVTList VTs = DAG.getVTList(VT, VT); 8247 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 8248 return true; 8249 } else if (isOperationLegalOrCustom(DivOpc, VT)) { 8250 // X % Y -> X-X/Y*Y 8251 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 8252 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 8253 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 8254 return true; 8255 } 8256 return false; 8257 } 8258 8259 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 8260 SelectionDAG &DAG) const { 8261 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 8262 SDLoc dl(SDValue(Node, 0)); 8263 SDValue Src = Node->getOperand(0); 8264 8265 // DstVT is the result type, while SatVT is the size to which we saturate 8266 EVT SrcVT = Src.getValueType(); 8267 EVT DstVT = Node->getValueType(0); 8268 8269 unsigned SatWidth = Node->getConstantOperandVal(1); 8270 unsigned DstWidth = DstVT.getScalarSizeInBits(); 8271 assert(SatWidth <= DstWidth && 8272 "Expected saturation width smaller than result width"); 8273 8274 // Determine minimum and maximum integer values and their corresponding 8275 // floating-point values. 8276 APInt MinInt, MaxInt; 8277 if (IsSigned) { 8278 MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth); 8279 MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth); 8280 } else { 8281 MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth); 8282 MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth); 8283 } 8284 8285 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 8286 // libcall emission cannot handle this. Large result types will fail. 8287 if (SrcVT == MVT::f16) { 8288 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 8289 SrcVT = Src.getValueType(); 8290 } 8291 8292 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8293 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8294 8295 APFloat::opStatus MinStatus = 8296 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 8297 APFloat::opStatus MaxStatus = 8298 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 8299 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 8300 !(MaxStatus & APFloat::opStatus::opInexact); 8301 8302 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 8303 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 8304 8305 // If the integer bounds are exactly representable as floats and min/max are 8306 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 8307 // of comparisons and selects. 8308 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 8309 isOperationLegal(ISD::FMAXNUM, SrcVT); 8310 if (AreExactFloatBounds && MinMaxLegal) { 8311 SDValue Clamped = Src; 8312 8313 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 8314 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 8315 // Clamp by MaxFloat from above. NaN cannot occur. 8316 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 8317 // Convert clamped value to integer. 8318 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 8319 dl, DstVT, Clamped); 8320 8321 // In the unsigned case we're done, because we mapped NaN to MinFloat, 8322 // which will cast to zero. 8323 if (!IsSigned) 8324 return FpToInt; 8325 8326 // Otherwise, select 0 if Src is NaN. 8327 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8328 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 8329 ISD::CondCode::SETUO); 8330 } 8331 8332 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 8333 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 8334 8335 // Result of direct conversion. The assumption here is that the operation is 8336 // non-trapping and it's fine to apply it to an out-of-range value if we 8337 // select it away later. 8338 SDValue FpToInt = 8339 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 8340 8341 SDValue Select = FpToInt; 8342 8343 // If Src ULT MinFloat, select MinInt. In particular, this also selects 8344 // MinInt if Src is NaN. 8345 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 8346 ISD::CondCode::SETULT); 8347 // If Src OGT MaxFloat, select MaxInt. 8348 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 8349 ISD::CondCode::SETOGT); 8350 8351 // In the unsigned case we are done, because we mapped NaN to MinInt, which 8352 // is already zero. 8353 if (!IsSigned) 8354 return Select; 8355 8356 // Otherwise, select 0 if Src is NaN. 8357 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8358 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 8359 } 8360