1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetLowering.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/CodeGen/CallingConvLower.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/SelectionDAG.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Target/TargetLoweringObjectFile.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include "llvm/Target/TargetRegisterInfo.h" 34 #include "llvm/Target/TargetSubtargetInfo.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 bool TargetLowering::isPositionIndependent() const { 47 return getTargetMachine().isPositionIndependent(); 48 } 49 50 /// Check whether a given call node is in tail position within its function. If 51 /// so, it sets Chain to the input chain of the tail call. 52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 53 SDValue &Chain) const { 54 const Function *F = DAG.getMachineFunction().getFunction(); 55 56 // Conservatively require the attributes of the call to match those of 57 // the return. Ignore noalias because it doesn't affect the call sequence. 58 AttributeSet CallerAttrs = F->getAttributes(); 59 if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex) 60 .removeAttribute(Attribute::NoAlias).hasAttributes()) 61 return false; 62 63 // It's not safe to eliminate the sign / zero extension of the return value. 64 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 65 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 66 return false; 67 68 // Check if the only use is a function return node. 69 return isUsedByReturnOnly(Node, Chain); 70 } 71 72 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 73 const uint32_t *CallerPreservedMask, 74 const SmallVectorImpl<CCValAssign> &ArgLocs, 75 const SmallVectorImpl<SDValue> &OutVals) const { 76 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 77 const CCValAssign &ArgLoc = ArgLocs[I]; 78 if (!ArgLoc.isRegLoc()) 79 continue; 80 unsigned Reg = ArgLoc.getLocReg(); 81 // Only look at callee saved registers. 82 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 83 continue; 84 // Check that we pass the value used for the caller. 85 // (We look for a CopyFromReg reading a virtual register that is used 86 // for the function live-in value of register Reg) 87 SDValue Value = OutVals[I]; 88 if (Value->getOpcode() != ISD::CopyFromReg) 89 return false; 90 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 91 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 92 return false; 93 } 94 return true; 95 } 96 97 /// \brief Set CallLoweringInfo attribute flags based on a call instruction 98 /// and called function attributes. 99 void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS, 100 unsigned AttrIdx) { 101 isSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); 102 isZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); 103 isInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); 104 isSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); 105 isNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); 106 isByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); 107 isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); 108 isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); 109 isSwiftSelf = CS->paramHasAttr(AttrIdx, Attribute::SwiftSelf); 110 isSwiftError = CS->paramHasAttr(AttrIdx, Attribute::SwiftError); 111 Alignment = CS->getParamAlignment(AttrIdx); 112 } 113 114 /// Generate a libcall taking the given operands as arguments and returning a 115 /// result of type RetVT. 116 std::pair<SDValue, SDValue> 117 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 118 ArrayRef<SDValue> Ops, bool isSigned, 119 const SDLoc &dl, bool doesNotReturn, 120 bool isReturnValueUsed) const { 121 TargetLowering::ArgListTy Args; 122 Args.reserve(Ops.size()); 123 124 TargetLowering::ArgListEntry Entry; 125 for (SDValue Op : Ops) { 126 Entry.Node = Op; 127 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 128 Entry.isSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 129 Entry.isZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 130 Args.push_back(Entry); 131 } 132 133 if (LC == RTLIB::UNKNOWN_LIBCALL) 134 report_fatal_error("Unsupported library call operation!"); 135 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 136 getPointerTy(DAG.getDataLayout())); 137 138 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 139 TargetLowering::CallLoweringInfo CLI(DAG); 140 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); 141 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()) 142 .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 143 .setNoReturn(doesNotReturn).setDiscardResult(!isReturnValueUsed) 144 .setSExtResult(signExtend).setZExtResult(!signExtend); 145 return LowerCallTo(CLI); 146 } 147 148 /// Soften the operands of a comparison. This code is shared among BR_CC, 149 /// SELECT_CC, and SETCC handlers. 150 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 151 SDValue &NewLHS, SDValue &NewRHS, 152 ISD::CondCode &CCCode, 153 const SDLoc &dl) const { 154 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 155 && "Unsupported setcc type!"); 156 157 // Expand into one or more soft-fp libcall(s). 158 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 159 bool ShouldInvertCC = false; 160 switch (CCCode) { 161 case ISD::SETEQ: 162 case ISD::SETOEQ: 163 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 164 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 165 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 166 break; 167 case ISD::SETNE: 168 case ISD::SETUNE: 169 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 170 (VT == MVT::f64) ? RTLIB::UNE_F64 : 171 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 172 break; 173 case ISD::SETGE: 174 case ISD::SETOGE: 175 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 176 (VT == MVT::f64) ? RTLIB::OGE_F64 : 177 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 178 break; 179 case ISD::SETLT: 180 case ISD::SETOLT: 181 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 182 (VT == MVT::f64) ? RTLIB::OLT_F64 : 183 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 184 break; 185 case ISD::SETLE: 186 case ISD::SETOLE: 187 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 188 (VT == MVT::f64) ? RTLIB::OLE_F64 : 189 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 190 break; 191 case ISD::SETGT: 192 case ISD::SETOGT: 193 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 194 (VT == MVT::f64) ? RTLIB::OGT_F64 : 195 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 196 break; 197 case ISD::SETUO: 198 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 199 (VT == MVT::f64) ? RTLIB::UO_F64 : 200 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 201 break; 202 case ISD::SETO: 203 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 204 (VT == MVT::f64) ? RTLIB::O_F64 : 205 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 206 break; 207 case ISD::SETONE: 208 // SETONE = SETOLT | SETOGT 209 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 210 (VT == MVT::f64) ? RTLIB::OLT_F64 : 211 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 212 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 213 (VT == MVT::f64) ? RTLIB::OGT_F64 : 214 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 215 break; 216 case ISD::SETUEQ: 217 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 218 (VT == MVT::f64) ? RTLIB::UO_F64 : 219 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 220 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 221 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 222 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 223 break; 224 default: 225 // Invert CC for unordered comparisons 226 ShouldInvertCC = true; 227 switch (CCCode) { 228 case ISD::SETULT: 229 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 230 (VT == MVT::f64) ? RTLIB::OGE_F64 : 231 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 232 break; 233 case ISD::SETULE: 234 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 235 (VT == MVT::f64) ? RTLIB::OGT_F64 : 236 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 237 break; 238 case ISD::SETUGT: 239 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 240 (VT == MVT::f64) ? RTLIB::OLE_F64 : 241 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 242 break; 243 case ISD::SETUGE: 244 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 245 (VT == MVT::f64) ? RTLIB::OLT_F64 : 246 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 247 break; 248 default: llvm_unreachable("Do not know how to soften this setcc!"); 249 } 250 } 251 252 // Use the target specific return value for comparions lib calls. 253 EVT RetVT = getCmpLibcallReturnType(); 254 SDValue Ops[2] = {NewLHS, NewRHS}; 255 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/, 256 dl).first; 257 NewRHS = DAG.getConstant(0, dl, RetVT); 258 259 CCCode = getCmpLibcallCC(LC1); 260 if (ShouldInvertCC) 261 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); 262 263 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 264 SDValue Tmp = DAG.getNode( 265 ISD::SETCC, dl, 266 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 267 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 268 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/, 269 dl).first; 270 NewLHS = DAG.getNode( 271 ISD::SETCC, dl, 272 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 273 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 274 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 275 NewRHS = SDValue(); 276 } 277 } 278 279 /// Return the entry encoding for a jump table in the current function. The 280 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 281 unsigned TargetLowering::getJumpTableEncoding() const { 282 // In non-pic modes, just use the address of a block. 283 if (!isPositionIndependent()) 284 return MachineJumpTableInfo::EK_BlockAddress; 285 286 // In PIC mode, if the target supports a GPRel32 directive, use it. 287 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 288 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 289 290 // Otherwise, use a label difference. 291 return MachineJumpTableInfo::EK_LabelDifference32; 292 } 293 294 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 295 SelectionDAG &DAG) const { 296 // If our PIC model is GP relative, use the global offset table as the base. 297 unsigned JTEncoding = getJumpTableEncoding(); 298 299 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 300 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 301 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 302 303 return Table; 304 } 305 306 /// This returns the relocation base for the given PIC jumptable, the same as 307 /// getPICJumpTableRelocBase, but as an MCExpr. 308 const MCExpr * 309 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 310 unsigned JTI,MCContext &Ctx) const{ 311 // The normal PIC reloc base is the label at the start of the jump table. 312 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 313 } 314 315 bool 316 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 317 const TargetMachine &TM = getTargetMachine(); 318 const GlobalValue *GV = GA->getGlobal(); 319 320 // If the address is not even local to this DSO we will have to load it from 321 // a got and then add the offset. 322 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 323 return false; 324 325 // If the code is position independent we will have to add a base register. 326 if (isPositionIndependent()) 327 return false; 328 329 // Otherwise we can do it. 330 return true; 331 } 332 333 //===----------------------------------------------------------------------===// 334 // Optimization Methods 335 //===----------------------------------------------------------------------===// 336 337 /// If the specified instruction has a constant integer operand and there are 338 /// bits set in that constant that are not demanded, then clear those bits and 339 /// return true. 340 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant( 341 SDValue Op, const APInt &Demanded) { 342 SDLoc DL(Op); 343 unsigned Opcode = Op.getOpcode(); 344 345 // FIXME: ISD::SELECT, ISD::SELECT_CC 346 switch (Opcode) { 347 default: 348 break; 349 case ISD::XOR: 350 case ISD::AND: 351 case ISD::OR: { 352 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 353 if (!Op1C) 354 return false; 355 356 // If this is a 'not' op, don't touch it because that's a canonical form. 357 const APInt &C = Op1C->getAPIntValue(); 358 if (Opcode == ISD::XOR && (C | ~Demanded).isAllOnesValue()) 359 return false; 360 361 if (C.intersects(~Demanded)) { 362 EVT VT = Op.getValueType(); 363 SDValue NewC = DAG.getConstant(Demanded & C, DL, VT); 364 SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 365 return CombineTo(Op, NewOp); 366 } 367 368 break; 369 } 370 } 371 372 return false; 373 } 374 375 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 376 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 377 /// generalized for targets with other types of implicit widening casts. 378 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op, 379 unsigned BitWidth, 380 const APInt &Demanded, 381 const SDLoc &dl) { 382 assert(Op.getNumOperands() == 2 && 383 "ShrinkDemandedOp only supports binary operators!"); 384 assert(Op.getNode()->getNumValues() == 1 && 385 "ShrinkDemandedOp only supports nodes with one result!"); 386 387 // Early return, as this function cannot handle vector types. 388 if (Op.getValueType().isVector()) 389 return false; 390 391 // Don't do this if the node has another user, which may require the 392 // full value. 393 if (!Op.getNode()->hasOneUse()) 394 return false; 395 396 // Search for the smallest integer type with free casts to and from 397 // Op's type. For expedience, just check power-of-2 integer types. 398 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 399 unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros(); 400 unsigned SmallVTBits = DemandedSize; 401 if (!isPowerOf2_32(SmallVTBits)) 402 SmallVTBits = NextPowerOf2(SmallVTBits); 403 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 404 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 405 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 406 TLI.isZExtFree(SmallVT, Op.getValueType())) { 407 // We found a type with free casts. 408 SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT, 409 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 410 Op.getNode()->getOperand(0)), 411 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 412 Op.getNode()->getOperand(1))); 413 bool NeedZext = DemandedSize > SmallVTBits; 414 SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, 415 dl, Op.getValueType(), X); 416 return CombineTo(Op, Z); 417 } 418 } 419 return false; 420 } 421 422 bool 423 TargetLowering::TargetLoweringOpt::SimplifyDemandedBits(SDNode *User, 424 unsigned OpIdx, 425 const APInt &Demanded, 426 DAGCombinerInfo &DCI) { 427 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 428 SDValue Op = User->getOperand(OpIdx); 429 APInt KnownZero, KnownOne; 430 431 if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, 432 *this, 0, true)) 433 return false; 434 435 436 // Old will not always be the same as Op. For example: 437 // 438 // Demanded = 0xffffff 439 // Op = i64 truncate (i32 and x, 0xffffff) 440 // In this case simplify demand bits will want to replace the 'and' node 441 // with the value 'x', which will give us: 442 // Old = i32 and x, 0xffffff 443 // New = x 444 if (Old.hasOneUse()) { 445 // For the one use case, we just commit the change. 446 DCI.CommitTargetLoweringOpt(*this); 447 return true; 448 } 449 450 // If Old has more than one use then it must be Op, because the 451 // AssumeSingleUse flag is not propogated to recursive calls of 452 // SimplifyDemanded bits, so the only node with multiple use that 453 // it will attempt to combine will be opt. 454 assert(Old == Op); 455 456 SmallVector <SDValue, 4> NewOps; 457 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 458 if (i == OpIdx) { 459 NewOps.push_back(New); 460 continue; 461 } 462 NewOps.push_back(User->getOperand(i)); 463 } 464 DAG.UpdateNodeOperands(User, NewOps); 465 // Op has less users now, so we may be able to perform additional combines 466 // with it. 467 DCI.AddToWorklist(Op.getNode()); 468 // User's operands have been updated, so we may be able to do new combines 469 // with it. 470 DCI.AddToWorklist(User); 471 return true; 472 } 473 474 bool TargetLowering::SimplifyDemandedBits(SDValue Op, APInt &DemandedMask, 475 DAGCombinerInfo &DCI) const { 476 477 SelectionDAG &DAG = DCI.DAG; 478 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 479 !DCI.isBeforeLegalizeOps()); 480 APInt KnownZero, KnownOne; 481 482 bool Simplified = SimplifyDemandedBits(Op, DemandedMask, KnownZero, KnownOne, 483 TLO); 484 if (Simplified) 485 DCI.CommitTargetLoweringOpt(TLO); 486 return Simplified; 487 } 488 489 /// Look at Op. At this point, we know that only the DemandedMask bits of the 490 /// result of Op are ever used downstream. If we can use this information to 491 /// simplify Op, create a new simplified DAG node and return true, returning the 492 /// original and new nodes in Old and New. Otherwise, analyze the expression and 493 /// return a mask of KnownOne and KnownZero bits for the expression (used to 494 /// simplify the caller). The KnownZero/One bits may only be accurate for those 495 /// bits in the DemandedMask. 496 bool TargetLowering::SimplifyDemandedBits(SDValue Op, 497 const APInt &DemandedMask, 498 APInt &KnownZero, 499 APInt &KnownOne, 500 TargetLoweringOpt &TLO, 501 unsigned Depth, 502 bool AssumeSingleUse) const { 503 unsigned BitWidth = DemandedMask.getBitWidth(); 504 assert(Op.getScalarValueSizeInBits() == BitWidth && 505 "Mask size mismatches value type size!"); 506 APInt NewMask = DemandedMask; 507 SDLoc dl(Op); 508 auto &DL = TLO.DAG.getDataLayout(); 509 510 // Don't know anything. 511 KnownZero = KnownOne = APInt(BitWidth, 0); 512 513 // Other users may use these bits. 514 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 515 if (Depth != 0) { 516 // If not at the root, Just compute the KnownZero/KnownOne bits to 517 // simplify things downstream. 518 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 519 return false; 520 } 521 // If this is the root being simplified, allow it to have multiple uses, 522 // just set the NewMask to all bits. 523 NewMask = APInt::getAllOnesValue(BitWidth); 524 } else if (DemandedMask == 0) { 525 // Not demanding any bits from Op. 526 if (!Op.isUndef()) 527 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType())); 528 return false; 529 } else if (Depth == 6) { // Limit search depth. 530 return false; 531 } 532 533 APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; 534 switch (Op.getOpcode()) { 535 case ISD::Constant: 536 // We know all of the bits for a constant! 537 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); 538 KnownZero = ~KnownOne; 539 return false; // Don't fall through, will infinitely loop. 540 case ISD::BUILD_VECTOR: 541 // Collect the known bits that are shared by every constant vector element. 542 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 543 for (SDValue SrcOp : Op->ops()) { 544 if (!isa<ConstantSDNode>(SrcOp)) { 545 // We can only handle all constant values - bail out with no known bits. 546 KnownZero = KnownOne = APInt(BitWidth, 0); 547 return false; 548 } 549 KnownOne2 = cast<ConstantSDNode>(SrcOp)->getAPIntValue(); 550 KnownZero2 = ~KnownOne2; 551 552 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 553 if (KnownOne2.getBitWidth() != BitWidth) { 554 assert(KnownOne2.getBitWidth() > BitWidth && 555 KnownZero2.getBitWidth() > BitWidth && 556 "Expected BUILD_VECTOR implicit truncation"); 557 KnownOne2 = KnownOne2.trunc(BitWidth); 558 KnownZero2 = KnownZero2.trunc(BitWidth); 559 } 560 561 // Known bits are the values that are shared by every element. 562 // TODO: support per-element known bits. 563 KnownOne &= KnownOne2; 564 KnownZero &= KnownZero2; 565 } 566 return false; // Don't fall through, will infinitely loop. 567 case ISD::AND: 568 // If the RHS is a constant, check to see if the LHS would be zero without 569 // using the bits from the RHS. Below, we use knowledge about the RHS to 570 // simplify the LHS, here we're using information from the LHS to simplify 571 // the RHS. 572 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 573 SDValue Op0 = Op.getOperand(0); 574 APInt LHSZero, LHSOne; 575 // Do not increment Depth here; that can cause an infinite loop. 576 TLO.DAG.computeKnownBits(Op0, LHSZero, LHSOne, Depth); 577 // If the LHS already has zeros where RHSC does, this and is dead. 578 if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) 579 return TLO.CombineTo(Op, Op0); 580 581 // If any of the set bits in the RHS are known zero on the LHS, shrink 582 // the constant. 583 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask)) 584 return true; 585 586 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 587 // constant, but if this 'and' is only clearing bits that were just set by 588 // the xor, then this 'and' can be eliminated by shrinking the mask of 589 // the xor. For example, for a 32-bit X: 590 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 591 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 592 LHSOne == ~RHSC->getAPIntValue()) { 593 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, Op.getValueType(), 594 Op0.getOperand(0), Op.getOperand(1)); 595 return TLO.CombineTo(Op, Xor); 596 } 597 } 598 599 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 600 KnownOne, TLO, Depth+1)) 601 return true; 602 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 603 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask, 604 KnownZero2, KnownOne2, TLO, Depth+1)) 605 return true; 606 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 607 608 // If all of the demanded bits are known one on one side, return the other. 609 // These bits cannot contribute to the result of the 'and'. 610 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 611 return TLO.CombineTo(Op, Op.getOperand(0)); 612 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 613 return TLO.CombineTo(Op, Op.getOperand(1)); 614 // If all of the demanded bits in the inputs are known zeros, return zero. 615 if ((NewMask & (KnownZero|KnownZero2)) == NewMask) 616 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType())); 617 // If the RHS is a constant, see if we can simplify it. 618 if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask)) 619 return true; 620 // If the operation can be done in a smaller type, do so. 621 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 622 return true; 623 624 // Output known-1 bits are only known if set in both the LHS & RHS. 625 KnownOne &= KnownOne2; 626 // Output known-0 are known to be clear if zero in either the LHS | RHS. 627 KnownZero |= KnownZero2; 628 break; 629 case ISD::OR: 630 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 631 KnownOne, TLO, Depth+1)) 632 return true; 633 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 634 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask, 635 KnownZero2, KnownOne2, TLO, Depth+1)) 636 return true; 637 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 638 639 // If all of the demanded bits are known zero on one side, return the other. 640 // These bits cannot contribute to the result of the 'or'. 641 if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask)) 642 return TLO.CombineTo(Op, Op.getOperand(0)); 643 if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask)) 644 return TLO.CombineTo(Op, Op.getOperand(1)); 645 // If all of the potentially set bits on one side are known to be set on 646 // the other side, just use the 'other' side. 647 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 648 return TLO.CombineTo(Op, Op.getOperand(0)); 649 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 650 return TLO.CombineTo(Op, Op.getOperand(1)); 651 // If the RHS is a constant, see if we can simplify it. 652 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 653 return true; 654 // If the operation can be done in a smaller type, do so. 655 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 656 return true; 657 658 // Output known-0 bits are only known if clear in both the LHS & RHS. 659 KnownZero &= KnownZero2; 660 // Output known-1 are known to be set if set in either the LHS | RHS. 661 KnownOne |= KnownOne2; 662 break; 663 case ISD::XOR: 664 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 665 KnownOne, TLO, Depth+1)) 666 return true; 667 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 668 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2, 669 KnownOne2, TLO, Depth+1)) 670 return true; 671 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 672 673 // If all of the demanded bits are known zero on one side, return the other. 674 // These bits cannot contribute to the result of the 'xor'. 675 if ((KnownZero & NewMask) == NewMask) 676 return TLO.CombineTo(Op, Op.getOperand(0)); 677 if ((KnownZero2 & NewMask) == NewMask) 678 return TLO.CombineTo(Op, Op.getOperand(1)); 679 // If the operation can be done in a smaller type, do so. 680 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 681 return true; 682 683 // If all of the unknown bits are known to be zero on one side or the other 684 // (but not both) turn this into an *inclusive* or. 685 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 686 if ((NewMask & ~KnownZero & ~KnownZero2) == 0) 687 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(), 688 Op.getOperand(0), 689 Op.getOperand(1))); 690 691 // Output known-0 bits are known if clear or set in both the LHS & RHS. 692 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 693 // Output known-1 are known to be set if set in only one of the LHS, RHS. 694 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 695 696 // If all of the demanded bits on one side are known, and all of the set 697 // bits on that side are also known to be set on the other side, turn this 698 // into an AND, as we know the bits will be cleared. 699 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 700 // NB: it is okay if more bits are known than are requested 701 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side 702 if (KnownOne == KnownOne2) { // set bits are the same on both sides 703 EVT VT = Op.getValueType(); 704 SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, dl, VT); 705 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, 706 Op.getOperand(0), ANDC)); 707 } 708 } 709 710 // If the RHS is a constant, see if we can simplify it. 711 // for XOR, we prefer to force bits to 1 if they will make a -1. 712 // If we can't force bits, try to shrink the constant. 713 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 714 APInt Expanded = C->getAPIntValue() | (~NewMask); 715 // If we can expand it to have all bits set, do it. 716 if (Expanded.isAllOnesValue()) { 717 if (Expanded != C->getAPIntValue()) { 718 EVT VT = Op.getValueType(); 719 SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0), 720 TLO.DAG.getConstant(Expanded, dl, VT)); 721 return TLO.CombineTo(Op, New); 722 } 723 // If it already has all the bits set, nothing to change 724 // but don't shrink either! 725 } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) { 726 return true; 727 } 728 } 729 730 KnownZero = KnownZeroOut; 731 KnownOne = KnownOneOut; 732 break; 733 case ISD::SELECT: 734 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero, 735 KnownOne, TLO, Depth+1)) 736 return true; 737 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2, 738 KnownOne2, TLO, Depth+1)) 739 return true; 740 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 741 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 742 743 // If the operands are constants, see if we can simplify them. 744 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 745 return true; 746 747 // Only known if known in both the LHS and RHS. 748 KnownOne &= KnownOne2; 749 KnownZero &= KnownZero2; 750 break; 751 case ISD::SELECT_CC: 752 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero, 753 KnownOne, TLO, Depth+1)) 754 return true; 755 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2, 756 KnownOne2, TLO, Depth+1)) 757 return true; 758 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 759 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 760 761 // If the operands are constants, see if we can simplify them. 762 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 763 return true; 764 765 // Only known if known in both the LHS and RHS. 766 KnownOne &= KnownOne2; 767 KnownZero &= KnownZero2; 768 break; 769 case ISD::SETCC: { 770 SDValue Op0 = Op.getOperand(0); 771 SDValue Op1 = Op.getOperand(1); 772 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 773 // If (1) we only need the sign-bit, (2) the setcc operands are the same 774 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 775 // -1, we may be able to bypass the setcc. 776 if (NewMask.isSignBit() && Op0.getScalarValueSizeInBits() == BitWidth && 777 getBooleanContents(Op.getValueType()) == 778 BooleanContent::ZeroOrNegativeOneBooleanContent) { 779 // If we're testing X < 0, then this compare isn't needed - just use X! 780 // FIXME: We're limiting to integer types here, but this should also work 781 // if we don't care about FP signed-zero. The use of SETLT with FP means 782 // that we don't care about NaNs. 783 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 784 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 785 return TLO.CombineTo(Op, Op0); 786 787 // TODO: Should we check for other forms of sign-bit comparisons? 788 // Examples: X <= -1, X >= 0 789 } 790 break; 791 } 792 case ISD::SHL: 793 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 794 unsigned ShAmt = SA->getZExtValue(); 795 SDValue InOp = Op.getOperand(0); 796 797 // If the shift count is an invalid immediate, don't do anything. 798 if (ShAmt >= BitWidth) 799 break; 800 801 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 802 // single shift. We can do this if the bottom bits (which are shifted 803 // out) are never demanded. 804 if (InOp.getOpcode() == ISD::SRL && 805 isa<ConstantSDNode>(InOp.getOperand(1))) { 806 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 807 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 808 unsigned Opc = ISD::SHL; 809 int Diff = ShAmt-C1; 810 if (Diff < 0) { 811 Diff = -Diff; 812 Opc = ISD::SRL; 813 } 814 815 SDValue NewSA = 816 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 817 EVT VT = Op.getValueType(); 818 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 819 InOp.getOperand(0), NewSA)); 820 } 821 } 822 823 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), 824 KnownZero, KnownOne, TLO, Depth+1)) 825 return true; 826 827 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 828 // are not demanded. This will likely allow the anyext to be folded away. 829 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { 830 SDValue InnerOp = InOp.getNode()->getOperand(0); 831 EVT InnerVT = InnerOp.getValueType(); 832 unsigned InnerBits = InnerVT.getSizeInBits(); 833 if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 && 834 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 835 EVT ShTy = getShiftAmountTy(InnerVT, DL); 836 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 837 ShTy = InnerVT; 838 SDValue NarrowShl = 839 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 840 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 841 return 842 TLO.CombineTo(Op, 843 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), 844 NarrowShl)); 845 } 846 // Repeat the SHL optimization above in cases where an extension 847 // intervenes: (shl (anyext (shr x, c1)), c2) to 848 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 849 // aren't demanded (as above) and that the shifted upper c1 bits of 850 // x aren't demanded. 851 if (InOp.hasOneUse() && 852 InnerOp.getOpcode() == ISD::SRL && 853 InnerOp.hasOneUse() && 854 isa<ConstantSDNode>(InnerOp.getOperand(1))) { 855 uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1)) 856 ->getZExtValue(); 857 if (InnerShAmt < ShAmt && 858 InnerShAmt < InnerBits && 859 NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 && 860 NewMask.trunc(ShAmt) == 0) { 861 SDValue NewSA = 862 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 863 Op.getOperand(1).getValueType()); 864 EVT VT = Op.getValueType(); 865 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 866 InnerOp.getOperand(0)); 867 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, 868 NewExt, NewSA)); 869 } 870 } 871 } 872 873 KnownZero <<= SA->getZExtValue(); 874 KnownOne <<= SA->getZExtValue(); 875 // low bits known zero. 876 KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue()); 877 } 878 break; 879 case ISD::SRL: 880 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 881 EVT VT = Op.getValueType(); 882 unsigned ShAmt = SA->getZExtValue(); 883 unsigned VTSize = VT.getSizeInBits(); 884 SDValue InOp = Op.getOperand(0); 885 886 // If the shift count is an invalid immediate, don't do anything. 887 if (ShAmt >= BitWidth) 888 break; 889 890 APInt InDemandedMask = (NewMask << ShAmt); 891 892 // If the shift is exact, then it does demand the low bits (and knows that 893 // they are zero). 894 if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()) 895 InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt); 896 897 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 898 // single shift. We can do this if the top bits (which are shifted out) 899 // are never demanded. 900 if (InOp.getOpcode() == ISD::SHL && 901 isa<ConstantSDNode>(InOp.getOperand(1))) { 902 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) { 903 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 904 unsigned Opc = ISD::SRL; 905 int Diff = ShAmt-C1; 906 if (Diff < 0) { 907 Diff = -Diff; 908 Opc = ISD::SHL; 909 } 910 911 SDValue NewSA = 912 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 913 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 914 InOp.getOperand(0), NewSA)); 915 } 916 } 917 918 // Compute the new bits that are at the top now. 919 if (SimplifyDemandedBits(InOp, InDemandedMask, 920 KnownZero, KnownOne, TLO, Depth+1)) 921 return true; 922 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 923 KnownZero = KnownZero.lshr(ShAmt); 924 KnownOne = KnownOne.lshr(ShAmt); 925 926 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 927 KnownZero |= HighBits; // High bits known zero. 928 } 929 break; 930 case ISD::SRA: 931 // If this is an arithmetic shift right and only the low-bit is set, we can 932 // always convert this into a logical shr, even if the shift amount is 933 // variable. The low bit of the shift cannot be an input sign bit unless 934 // the shift amount is >= the size of the datatype, which is undefined. 935 if (NewMask == 1) 936 return TLO.CombineTo(Op, 937 TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), 938 Op.getOperand(0), Op.getOperand(1))); 939 940 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 941 EVT VT = Op.getValueType(); 942 unsigned ShAmt = SA->getZExtValue(); 943 944 // If the shift count is an invalid immediate, don't do anything. 945 if (ShAmt >= BitWidth) 946 break; 947 948 APInt InDemandedMask = (NewMask << ShAmt); 949 950 // If the shift is exact, then it does demand the low bits (and knows that 951 // they are zero). 952 if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()) 953 InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt); 954 955 // If any of the demanded bits are produced by the sign extension, we also 956 // demand the input sign bit. 957 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 958 if (HighBits.intersects(NewMask)) 959 InDemandedMask |= APInt::getSignBit(VT.getScalarSizeInBits()); 960 961 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, 962 KnownZero, KnownOne, TLO, Depth+1)) 963 return true; 964 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 965 KnownZero = KnownZero.lshr(ShAmt); 966 KnownOne = KnownOne.lshr(ShAmt); 967 968 // Handle the sign bit, adjusted to where it is now in the mask. 969 APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt); 970 971 // If the input sign bit is known to be zero, or if none of the top bits 972 // are demanded, turn this into an unsigned shift right. 973 if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) { 974 SDNodeFlags Flags; 975 Flags.setExact(cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()); 976 return TLO.CombineTo(Op, 977 TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0), 978 Op.getOperand(1), &Flags)); 979 } 980 981 int Log2 = NewMask.exactLogBase2(); 982 if (Log2 >= 0) { 983 // The bit must come from the sign. 984 SDValue NewSA = 985 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, 986 Op.getOperand(1).getValueType()); 987 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 988 Op.getOperand(0), NewSA)); 989 } 990 991 if (KnownOne.intersects(SignBit)) 992 // New bits are known one. 993 KnownOne |= HighBits; 994 } 995 break; 996 case ISD::SIGN_EXTEND_INREG: { 997 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 998 999 APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1); 1000 // If we only care about the highest bit, don't bother shifting right. 1001 if (MsbMask == NewMask) { 1002 unsigned ShAmt = ExVT.getScalarSizeInBits(); 1003 SDValue InOp = Op.getOperand(0); 1004 unsigned VTBits = Op->getValueType(0).getScalarSizeInBits(); 1005 bool AlreadySignExtended = 1006 TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1; 1007 // However if the input is already sign extended we expect the sign 1008 // extension to be dropped altogether later and do not simplify. 1009 if (!AlreadySignExtended) { 1010 // Compute the correct shift amount type, which must be getShiftAmountTy 1011 // for scalar types after legalization. 1012 EVT ShiftAmtTy = Op.getValueType(); 1013 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1014 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1015 1016 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, dl, 1017 ShiftAmtTy); 1018 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 1019 Op.getValueType(), InOp, 1020 ShiftAmt)); 1021 } 1022 } 1023 1024 // Sign extension. Compute the demanded bits in the result that are not 1025 // present in the input. 1026 APInt NewBits = 1027 APInt::getHighBitsSet(BitWidth, 1028 BitWidth - ExVT.getScalarSizeInBits()); 1029 1030 // If none of the extended bits are demanded, eliminate the sextinreg. 1031 if ((NewBits & NewMask) == 0) 1032 return TLO.CombineTo(Op, Op.getOperand(0)); 1033 1034 APInt InSignBit = 1035 APInt::getSignBit(ExVT.getScalarSizeInBits()).zext(BitWidth); 1036 APInt InputDemandedBits = 1037 APInt::getLowBitsSet(BitWidth, 1038 ExVT.getScalarSizeInBits()) & 1039 NewMask; 1040 1041 // Since the sign extended bits are demanded, we know that the sign 1042 // bit is demanded. 1043 InputDemandedBits |= InSignBit; 1044 1045 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, 1046 KnownZero, KnownOne, TLO, Depth+1)) 1047 return true; 1048 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1049 1050 // If the sign bit of the input is known set or clear, then we know the 1051 // top bits of the result. 1052 1053 // If the input sign bit is known zero, convert this into a zero extension. 1054 if (KnownZero.intersects(InSignBit)) 1055 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg( 1056 Op.getOperand(0), dl, ExVT.getScalarType())); 1057 1058 if (KnownOne.intersects(InSignBit)) { // Input sign bit known set 1059 KnownOne |= NewBits; 1060 KnownZero &= ~NewBits; 1061 } else { // Input sign bit unknown 1062 KnownZero &= ~NewBits; 1063 KnownOne &= ~NewBits; 1064 } 1065 break; 1066 } 1067 case ISD::BUILD_PAIR: { 1068 EVT HalfVT = Op.getOperand(0).getValueType(); 1069 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1070 1071 APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1072 APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1073 1074 APInt KnownZeroLo, KnownOneLo; 1075 APInt KnownZeroHi, KnownOneHi; 1076 1077 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo, 1078 KnownOneLo, TLO, Depth + 1)) 1079 return true; 1080 1081 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi, 1082 KnownOneHi, TLO, Depth + 1)) 1083 return true; 1084 1085 KnownZero = KnownZeroLo.zext(BitWidth) | 1086 KnownZeroHi.zext(BitWidth).shl(HalfBitWidth); 1087 1088 KnownOne = KnownOneLo.zext(BitWidth) | 1089 KnownOneHi.zext(BitWidth).shl(HalfBitWidth); 1090 break; 1091 } 1092 case ISD::ZERO_EXTEND: { 1093 unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 1094 APInt InMask = NewMask.trunc(OperandBitWidth); 1095 1096 // If none of the top bits are demanded, convert this into an any_extend. 1097 APInt NewBits = 1098 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask; 1099 if (!NewBits.intersects(NewMask)) 1100 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 1101 Op.getValueType(), 1102 Op.getOperand(0))); 1103 1104 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 1105 KnownZero, KnownOne, TLO, Depth+1)) 1106 return true; 1107 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1108 KnownZero = KnownZero.zext(BitWidth); 1109 KnownOne = KnownOne.zext(BitWidth); 1110 KnownZero |= NewBits; 1111 break; 1112 } 1113 case ISD::SIGN_EXTEND: { 1114 EVT InVT = Op.getOperand(0).getValueType(); 1115 unsigned InBits = InVT.getScalarSizeInBits(); 1116 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits); 1117 APInt InSignBit = APInt::getOneBitSet(BitWidth, InBits - 1); 1118 APInt NewBits = ~InMask & NewMask; 1119 1120 // If none of the top bits are demanded, convert this into an any_extend. 1121 if (NewBits == 0) 1122 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 1123 Op.getValueType(), 1124 Op.getOperand(0))); 1125 1126 // Since some of the sign extended bits are demanded, we know that the sign 1127 // bit is demanded. 1128 APInt InDemandedBits = InMask & NewMask; 1129 InDemandedBits |= InSignBit; 1130 InDemandedBits = InDemandedBits.trunc(InBits); 1131 1132 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, 1133 KnownOne, TLO, Depth+1)) 1134 return true; 1135 KnownZero = KnownZero.zext(BitWidth); 1136 KnownOne = KnownOne.zext(BitWidth); 1137 1138 // If the sign bit is known zero, convert this to a zero extend. 1139 if (KnownZero.intersects(InSignBit)) 1140 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, 1141 Op.getValueType(), 1142 Op.getOperand(0))); 1143 1144 // If the sign bit is known one, the top bits match. 1145 if (KnownOne.intersects(InSignBit)) { 1146 KnownOne |= NewBits; 1147 assert((KnownZero & NewBits) == 0); 1148 } else { // Otherwise, top bits aren't known. 1149 assert((KnownOne & NewBits) == 0); 1150 assert((KnownZero & NewBits) == 0); 1151 } 1152 break; 1153 } 1154 case ISD::ANY_EXTEND: { 1155 unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 1156 APInt InMask = NewMask.trunc(OperandBitWidth); 1157 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 1158 KnownZero, KnownOne, TLO, Depth+1)) 1159 return true; 1160 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1161 KnownZero = KnownZero.zext(BitWidth); 1162 KnownOne = KnownOne.zext(BitWidth); 1163 break; 1164 } 1165 case ISD::TRUNCATE: { 1166 // Simplify the input, using demanded bit information, and compute the known 1167 // zero/one bits live out. 1168 unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 1169 APInt TruncMask = NewMask.zext(OperandBitWidth); 1170 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, 1171 KnownZero, KnownOne, TLO, Depth+1)) 1172 return true; 1173 KnownZero = KnownZero.trunc(BitWidth); 1174 KnownOne = KnownOne.trunc(BitWidth); 1175 1176 // If the input is only used by this truncate, see if we can shrink it based 1177 // on the known demanded bits. 1178 if (Op.getOperand(0).getNode()->hasOneUse()) { 1179 SDValue In = Op.getOperand(0); 1180 switch (In.getOpcode()) { 1181 default: break; 1182 case ISD::SRL: 1183 // Shrink SRL by a constant if none of the high bits shifted in are 1184 // demanded. 1185 if (TLO.LegalTypes() && 1186 !isTypeDesirableForOp(ISD::SRL, Op.getValueType())) 1187 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1188 // undesirable. 1189 break; 1190 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); 1191 if (!ShAmt) 1192 break; 1193 SDValue Shift = In.getOperand(1); 1194 if (TLO.LegalTypes()) { 1195 uint64_t ShVal = ShAmt->getZExtValue(); 1196 Shift = TLO.DAG.getConstant(ShVal, dl, 1197 getShiftAmountTy(Op.getValueType(), DL)); 1198 } 1199 1200 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 1201 OperandBitWidth - BitWidth); 1202 HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth); 1203 1204 if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) { 1205 // None of the shifted in bits are needed. Add a truncate of the 1206 // shift input, then shift it. 1207 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, 1208 Op.getValueType(), 1209 In.getOperand(0)); 1210 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, 1211 Op.getValueType(), 1212 NewTrunc, 1213 Shift)); 1214 } 1215 break; 1216 } 1217 } 1218 1219 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1220 break; 1221 } 1222 case ISD::AssertZext: { 1223 // AssertZext demands all of the high bits, plus any of the low bits 1224 // demanded by its users. 1225 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1226 APInt InMask = APInt::getLowBitsSet(BitWidth, 1227 VT.getSizeInBits()); 1228 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask, 1229 KnownZero, KnownOne, TLO, Depth+1)) 1230 return true; 1231 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1232 1233 KnownZero |= ~InMask & NewMask; 1234 break; 1235 } 1236 case ISD::BITCAST: 1237 // If this is an FP->Int bitcast and if the sign bit is the only 1238 // thing demanded, turn this into a FGETSIGN. 1239 if (!TLO.LegalOperations() && 1240 !Op.getValueType().isVector() && 1241 !Op.getOperand(0).getValueType().isVector() && 1242 NewMask == APInt::getSignBit(Op.getValueSizeInBits()) && 1243 Op.getOperand(0).getValueType().isFloatingPoint()) { 1244 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType()); 1245 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1246 if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple() && 1247 Op.getOperand(0).getValueType() != MVT::f128) { 1248 // Cannot eliminate/lower SHL for f128 yet. 1249 EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32; 1250 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1251 // place. We expect the SHL to be eliminated by other optimizations. 1252 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0)); 1253 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1254 if (!OpVTLegal && OpVTSizeInBits > 32) 1255 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign); 1256 unsigned ShVal = Op.getValueSizeInBits() - 1; 1257 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, Op.getValueType()); 1258 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 1259 Op.getValueType(), 1260 Sign, ShAmt)); 1261 } 1262 } 1263 break; 1264 case ISD::ADD: 1265 case ISD::MUL: 1266 case ISD::SUB: { 1267 // Add, Sub, and Mul don't demand any bits in positions beyond that 1268 // of the highest bit demanded of them. 1269 APInt LoMask = APInt::getLowBitsSet(BitWidth, 1270 BitWidth - NewMask.countLeadingZeros()); 1271 if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2, 1272 KnownOne2, TLO, Depth+1) || 1273 SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2, 1274 KnownOne2, TLO, Depth+1) || 1275 // See if the operation should be performed at a smaller bit width. 1276 TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) { 1277 const SDNodeFlags *Flags = Op.getNode()->getFlags(); 1278 if (Flags->hasNoSignedWrap() || Flags->hasNoUnsignedWrap()) { 1279 // Disable the nsw and nuw flags. We can no longer guarantee that we 1280 // won't wrap after simplification. 1281 SDNodeFlags NewFlags = *Flags; 1282 NewFlags.setNoSignedWrap(false); 1283 NewFlags.setNoUnsignedWrap(false); 1284 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), 1285 Op.getOperand(0), Op.getOperand(1), 1286 &NewFlags); 1287 return TLO.CombineTo(Op, NewOp); 1288 } 1289 return true; 1290 } 1291 LLVM_FALLTHROUGH; 1292 } 1293 default: 1294 // Just use computeKnownBits to compute output bits. 1295 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 1296 break; 1297 } 1298 1299 // If we know the value of all of the demanded bits, return this as a 1300 // constant. 1301 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { 1302 // Avoid folding to a constant if any OpaqueConstant is involved. 1303 const SDNode *N = Op.getNode(); 1304 for (SDNodeIterator I = SDNodeIterator::begin(N), 1305 E = SDNodeIterator::end(N); I != E; ++I) { 1306 SDNode *Op = *I; 1307 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 1308 if (C->isOpaque()) 1309 return false; 1310 } 1311 return TLO.CombineTo(Op, 1312 TLO.DAG.getConstant(KnownOne, dl, Op.getValueType())); 1313 } 1314 1315 return false; 1316 } 1317 1318 /// Determine which of the bits specified in Mask are known to be either zero or 1319 /// one and return them in the KnownZero/KnownOne bitsets. 1320 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1321 APInt &KnownZero, 1322 APInt &KnownOne, 1323 const SelectionDAG &DAG, 1324 unsigned Depth) const { 1325 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1326 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1327 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1328 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1329 "Should use MaskedValueIsZero if you don't know whether Op" 1330 " is a target node!"); 1331 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); 1332 } 1333 1334 /// This method can be implemented by targets that want to expose additional 1335 /// information about sign bits to the DAG Combiner. 1336 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 1337 const SelectionDAG &, 1338 unsigned Depth) const { 1339 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1340 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1341 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1342 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1343 "Should use ComputeNumSignBits if you don't know whether Op" 1344 " is a target node!"); 1345 return 1; 1346 } 1347 1348 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 1349 if (!N) 1350 return false; 1351 1352 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1353 if (!CN) { 1354 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1355 if (!BV) 1356 return false; 1357 1358 // Only interested in constant splats, we don't care about undef 1359 // elements in identifying boolean constants and getConstantSplatNode 1360 // returns NULL if all ops are undef; 1361 CN = BV->getConstantSplatNode(); 1362 if (!CN) 1363 return false; 1364 } 1365 1366 switch (getBooleanContents(N->getValueType(0))) { 1367 case UndefinedBooleanContent: 1368 return CN->getAPIntValue()[0]; 1369 case ZeroOrOneBooleanContent: 1370 return CN->isOne(); 1371 case ZeroOrNegativeOneBooleanContent: 1372 return CN->isAllOnesValue(); 1373 } 1374 1375 llvm_unreachable("Invalid boolean contents"); 1376 } 1377 1378 SDValue TargetLowering::getConstTrueVal(SelectionDAG &DAG, EVT VT, 1379 const SDLoc &DL) const { 1380 unsigned ElementWidth = VT.getScalarSizeInBits(); 1381 APInt TrueInt = 1382 getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent 1383 ? APInt(ElementWidth, 1) 1384 : APInt::getAllOnesValue(ElementWidth); 1385 return DAG.getConstant(TrueInt, DL, VT); 1386 } 1387 1388 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 1389 if (!N) 1390 return false; 1391 1392 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1393 if (!CN) { 1394 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1395 if (!BV) 1396 return false; 1397 1398 // Only interested in constant splats, we don't care about undef 1399 // elements in identifying boolean constants and getConstantSplatNode 1400 // returns NULL if all ops are undef; 1401 CN = BV->getConstantSplatNode(); 1402 if (!CN) 1403 return false; 1404 } 1405 1406 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 1407 return !CN->getAPIntValue()[0]; 1408 1409 return CN->isNullValue(); 1410 } 1411 1412 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 1413 bool SExt) const { 1414 if (VT == MVT::i1) 1415 return N->isOne(); 1416 1417 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 1418 switch (Cnt) { 1419 case TargetLowering::ZeroOrOneBooleanContent: 1420 // An extended value of 1 is always true, unless its original type is i1, 1421 // in which case it will be sign extended to -1. 1422 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 1423 case TargetLowering::UndefinedBooleanContent: 1424 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1425 return N->isAllOnesValue() && SExt; 1426 } 1427 llvm_unreachable("Unexpected enumeration."); 1428 } 1429 1430 /// This helper function of SimplifySetCC tries to optimize the comparison when 1431 /// either operand of the SetCC node is a bitwise-and instruction. 1432 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 1433 ISD::CondCode Cond, 1434 DAGCombinerInfo &DCI, 1435 const SDLoc &DL) const { 1436 // Match these patterns in any of their permutations: 1437 // (X & Y) == Y 1438 // (X & Y) != Y 1439 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 1440 std::swap(N0, N1); 1441 1442 EVT OpVT = N0.getValueType(); 1443 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 1444 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 1445 return SDValue(); 1446 1447 SDValue X, Y; 1448 if (N0.getOperand(0) == N1) { 1449 X = N0.getOperand(1); 1450 Y = N0.getOperand(0); 1451 } else if (N0.getOperand(1) == N1) { 1452 X = N0.getOperand(0); 1453 Y = N0.getOperand(1); 1454 } else { 1455 return SDValue(); 1456 } 1457 1458 SelectionDAG &DAG = DCI.DAG; 1459 SDValue Zero = DAG.getConstant(0, DL, OpVT); 1460 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 1461 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 1462 // Note that where Y is variable and is known to have at most one bit set 1463 // (for example, if it is Z & 1) we cannot do this; the expressions are not 1464 // equivalent when Y == 0. 1465 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 1466 if (DCI.isBeforeLegalizeOps() || 1467 isCondCodeLegal(Cond, N0.getSimpleValueType())) 1468 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 1469 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 1470 // If the target supports an 'and-not' or 'and-complement' logic operation, 1471 // try to use that to make a comparison operation more efficient. 1472 // But don't do this transform if the mask is a single bit because there are 1473 // more efficient ways to deal with that case (for example, 'bt' on x86 or 1474 // 'rlwinm' on PPC). 1475 1476 // Bail out if the compare operand that we want to turn into a zero is 1477 // already a zero (otherwise, infinite loop). 1478 auto *YConst = dyn_cast<ConstantSDNode>(Y); 1479 if (YConst && YConst->isNullValue()) 1480 return SDValue(); 1481 1482 // Transform this into: ~X & Y == 0. 1483 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 1484 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 1485 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 1486 } 1487 1488 return SDValue(); 1489 } 1490 1491 /// Try to simplify a setcc built with the specified operands and cc. If it is 1492 /// unable to simplify it, return a null SDValue. 1493 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 1494 ISD::CondCode Cond, bool foldBooleans, 1495 DAGCombinerInfo &DCI, 1496 const SDLoc &dl) const { 1497 SelectionDAG &DAG = DCI.DAG; 1498 1499 // These setcc operations always fold. 1500 switch (Cond) { 1501 default: break; 1502 case ISD::SETFALSE: 1503 case ISD::SETFALSE2: return DAG.getConstant(0, dl, VT); 1504 case ISD::SETTRUE: 1505 case ISD::SETTRUE2: { 1506 TargetLowering::BooleanContent Cnt = 1507 getBooleanContents(N0->getValueType(0)); 1508 return DAG.getConstant( 1509 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl, 1510 VT); 1511 } 1512 } 1513 1514 // Ensure that the constant occurs on the RHS, and fold constant 1515 // comparisons. 1516 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 1517 if (isa<ConstantSDNode>(N0.getNode()) && 1518 (DCI.isBeforeLegalizeOps() || 1519 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 1520 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 1521 1522 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 1523 const APInt &C1 = N1C->getAPIntValue(); 1524 1525 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 1526 // equality comparison, then we're just comparing whether X itself is 1527 // zero. 1528 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) && 1529 N0.getOperand(0).getOpcode() == ISD::CTLZ && 1530 N0.getOperand(1).getOpcode() == ISD::Constant) { 1531 const APInt &ShAmt 1532 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1533 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1534 ShAmt == Log2_32(N0.getValueSizeInBits())) { 1535 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 1536 // (srl (ctlz x), 5) == 0 -> X != 0 1537 // (srl (ctlz x), 5) != 1 -> X != 0 1538 Cond = ISD::SETNE; 1539 } else { 1540 // (srl (ctlz x), 5) != 0 -> X == 0 1541 // (srl (ctlz x), 5) == 1 -> X == 0 1542 Cond = ISD::SETEQ; 1543 } 1544 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 1545 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 1546 Zero, Cond); 1547 } 1548 } 1549 1550 SDValue CTPOP = N0; 1551 // Look through truncs that don't change the value of a ctpop. 1552 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 1553 CTPOP = N0.getOperand(0); 1554 1555 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 1556 (N0 == CTPOP || 1557 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 1558 EVT CTVT = CTPOP.getValueType(); 1559 SDValue CTOp = CTPOP.getOperand(0); 1560 1561 // (ctpop x) u< 2 -> (x & x-1) == 0 1562 // (ctpop x) u> 1 -> (x & x-1) != 0 1563 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 1564 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 1565 DAG.getConstant(1, dl, CTVT)); 1566 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 1567 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 1568 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 1569 } 1570 1571 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 1572 } 1573 1574 // (zext x) == C --> x == (trunc C) 1575 // (sext x) == C --> x == (trunc C) 1576 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1577 DCI.isBeforeLegalize() && N0->hasOneUse()) { 1578 unsigned MinBits = N0.getValueSizeInBits(); 1579 SDValue PreExt; 1580 bool Signed = false; 1581 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 1582 // ZExt 1583 MinBits = N0->getOperand(0).getValueSizeInBits(); 1584 PreExt = N0->getOperand(0); 1585 } else if (N0->getOpcode() == ISD::AND) { 1586 // DAGCombine turns costly ZExts into ANDs 1587 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 1588 if ((C->getAPIntValue()+1).isPowerOf2()) { 1589 MinBits = C->getAPIntValue().countTrailingOnes(); 1590 PreExt = N0->getOperand(0); 1591 } 1592 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 1593 // SExt 1594 MinBits = N0->getOperand(0).getValueSizeInBits(); 1595 PreExt = N0->getOperand(0); 1596 Signed = true; 1597 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 1598 // ZEXTLOAD / SEXTLOAD 1599 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 1600 MinBits = LN0->getMemoryVT().getSizeInBits(); 1601 PreExt = N0; 1602 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 1603 Signed = true; 1604 MinBits = LN0->getMemoryVT().getSizeInBits(); 1605 PreExt = N0; 1606 } 1607 } 1608 1609 // Figure out how many bits we need to preserve this constant. 1610 unsigned ReqdBits = Signed ? 1611 C1.getBitWidth() - C1.getNumSignBits() + 1 : 1612 C1.getActiveBits(); 1613 1614 // Make sure we're not losing bits from the constant. 1615 if (MinBits > 0 && 1616 MinBits < C1.getBitWidth() && 1617 MinBits >= ReqdBits) { 1618 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 1619 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 1620 // Will get folded away. 1621 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 1622 if (MinBits == 1 && C1 == 1) 1623 // Invert the condition. 1624 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 1625 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1626 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 1627 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 1628 } 1629 1630 // If truncating the setcc operands is not desirable, we can still 1631 // simplify the expression in some cases: 1632 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 1633 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 1634 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 1635 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 1636 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 1637 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 1638 SDValue TopSetCC = N0->getOperand(0); 1639 unsigned N0Opc = N0->getOpcode(); 1640 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 1641 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 1642 TopSetCC.getOpcode() == ISD::SETCC && 1643 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 1644 (isConstFalseVal(N1C) || 1645 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 1646 1647 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 1648 (!N1C->isNullValue() && Cond == ISD::SETNE); 1649 1650 if (!Inverse) 1651 return TopSetCC; 1652 1653 ISD::CondCode InvCond = ISD::getSetCCInverse( 1654 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 1655 TopSetCC.getOperand(0).getValueType().isInteger()); 1656 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 1657 TopSetCC.getOperand(1), 1658 InvCond); 1659 1660 } 1661 } 1662 } 1663 1664 // If the LHS is '(and load, const)', the RHS is 0, 1665 // the test is for equality or unsigned, and all 1 bits of the const are 1666 // in the same partial word, see if we can shorten the load. 1667 if (DCI.isBeforeLegalize() && 1668 !ISD::isSignedIntSetCC(Cond) && 1669 N0.getOpcode() == ISD::AND && C1 == 0 && 1670 N0.getNode()->hasOneUse() && 1671 isa<LoadSDNode>(N0.getOperand(0)) && 1672 N0.getOperand(0).getNode()->hasOneUse() && 1673 isa<ConstantSDNode>(N0.getOperand(1))) { 1674 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 1675 APInt bestMask; 1676 unsigned bestWidth = 0, bestOffset = 0; 1677 if (!Lod->isVolatile() && Lod->isUnindexed()) { 1678 unsigned origWidth = N0.getValueSizeInBits(); 1679 unsigned maskWidth = origWidth; 1680 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 1681 // 8 bits, but have to be careful... 1682 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 1683 origWidth = Lod->getMemoryVT().getSizeInBits(); 1684 const APInt &Mask = 1685 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1686 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 1687 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 1688 for (unsigned offset=0; offset<origWidth/width; offset++) { 1689 if ((newMask & Mask) == Mask) { 1690 if (!DAG.getDataLayout().isLittleEndian()) 1691 bestOffset = (origWidth/width - offset - 1) * (width/8); 1692 else 1693 bestOffset = (uint64_t)offset * (width/8); 1694 bestMask = Mask.lshr(offset * (width/8) * 8); 1695 bestWidth = width; 1696 break; 1697 } 1698 newMask = newMask << width; 1699 } 1700 } 1701 } 1702 if (bestWidth) { 1703 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 1704 if (newVT.isRound()) { 1705 EVT PtrType = Lod->getOperand(1).getValueType(); 1706 SDValue Ptr = Lod->getBasePtr(); 1707 if (bestOffset != 0) 1708 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 1709 DAG.getConstant(bestOffset, dl, PtrType)); 1710 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 1711 SDValue NewLoad = DAG.getLoad( 1712 newVT, dl, Lod->getChain(), Ptr, 1713 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 1714 return DAG.getSetCC(dl, VT, 1715 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 1716 DAG.getConstant(bestMask.trunc(bestWidth), 1717 dl, newVT)), 1718 DAG.getConstant(0LL, dl, newVT), Cond); 1719 } 1720 } 1721 } 1722 1723 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 1724 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 1725 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 1726 1727 // If the comparison constant has bits in the upper part, the 1728 // zero-extended value could never match. 1729 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 1730 C1.getBitWidth() - InSize))) { 1731 switch (Cond) { 1732 case ISD::SETUGT: 1733 case ISD::SETUGE: 1734 case ISD::SETEQ: return DAG.getConstant(0, dl, VT); 1735 case ISD::SETULT: 1736 case ISD::SETULE: 1737 case ISD::SETNE: return DAG.getConstant(1, dl, VT); 1738 case ISD::SETGT: 1739 case ISD::SETGE: 1740 // True if the sign bit of C1 is set. 1741 return DAG.getConstant(C1.isNegative(), dl, VT); 1742 case ISD::SETLT: 1743 case ISD::SETLE: 1744 // True if the sign bit of C1 isn't set. 1745 return DAG.getConstant(C1.isNonNegative(), dl, VT); 1746 default: 1747 break; 1748 } 1749 } 1750 1751 // Otherwise, we can perform the comparison with the low bits. 1752 switch (Cond) { 1753 case ISD::SETEQ: 1754 case ISD::SETNE: 1755 case ISD::SETUGT: 1756 case ISD::SETUGE: 1757 case ISD::SETULT: 1758 case ISD::SETULE: { 1759 EVT newVT = N0.getOperand(0).getValueType(); 1760 if (DCI.isBeforeLegalizeOps() || 1761 (isOperationLegal(ISD::SETCC, newVT) && 1762 getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) { 1763 EVT NewSetCCVT = 1764 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); 1765 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 1766 1767 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 1768 NewConst, Cond); 1769 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 1770 } 1771 break; 1772 } 1773 default: 1774 break; // todo, be more careful with signed comparisons 1775 } 1776 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 1777 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1778 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 1779 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 1780 EVT ExtDstTy = N0.getValueType(); 1781 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 1782 1783 // If the constant doesn't fit into the number of bits for the source of 1784 // the sign extension, it is impossible for both sides to be equal. 1785 if (C1.getMinSignedBits() > ExtSrcTyBits) 1786 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 1787 1788 SDValue ZextOp; 1789 EVT Op0Ty = N0.getOperand(0).getValueType(); 1790 if (Op0Ty == ExtSrcTy) { 1791 ZextOp = N0.getOperand(0); 1792 } else { 1793 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 1794 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 1795 DAG.getConstant(Imm, dl, Op0Ty)); 1796 } 1797 if (!DCI.isCalledByLegalizer()) 1798 DCI.AddToWorklist(ZextOp.getNode()); 1799 // Otherwise, make this a use of a zext. 1800 return DAG.getSetCC(dl, VT, ZextOp, 1801 DAG.getConstant(C1 & APInt::getLowBitsSet( 1802 ExtDstTyBits, 1803 ExtSrcTyBits), 1804 dl, ExtDstTy), 1805 Cond); 1806 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) && 1807 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1808 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 1809 if (N0.getOpcode() == ISD::SETCC && 1810 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 1811 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1); 1812 if (TrueWhenTrue) 1813 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 1814 // Invert the condition. 1815 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 1816 CC = ISD::getSetCCInverse(CC, 1817 N0.getOperand(0).getValueType().isInteger()); 1818 if (DCI.isBeforeLegalizeOps() || 1819 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 1820 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 1821 } 1822 1823 if ((N0.getOpcode() == ISD::XOR || 1824 (N0.getOpcode() == ISD::AND && 1825 N0.getOperand(0).getOpcode() == ISD::XOR && 1826 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 1827 isa<ConstantSDNode>(N0.getOperand(1)) && 1828 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) { 1829 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 1830 // can only do this if the top bits are known zero. 1831 unsigned BitWidth = N0.getValueSizeInBits(); 1832 if (DAG.MaskedValueIsZero(N0, 1833 APInt::getHighBitsSet(BitWidth, 1834 BitWidth-1))) { 1835 // Okay, get the un-inverted input value. 1836 SDValue Val; 1837 if (N0.getOpcode() == ISD::XOR) 1838 Val = N0.getOperand(0); 1839 else { 1840 assert(N0.getOpcode() == ISD::AND && 1841 N0.getOperand(0).getOpcode() == ISD::XOR); 1842 // ((X^1)&1)^1 -> X & 1 1843 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 1844 N0.getOperand(0).getOperand(0), 1845 N0.getOperand(1)); 1846 } 1847 1848 return DAG.getSetCC(dl, VT, Val, N1, 1849 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1850 } 1851 } else if (N1C->getAPIntValue() == 1 && 1852 (VT == MVT::i1 || 1853 getBooleanContents(N0->getValueType(0)) == 1854 ZeroOrOneBooleanContent)) { 1855 SDValue Op0 = N0; 1856 if (Op0.getOpcode() == ISD::TRUNCATE) 1857 Op0 = Op0.getOperand(0); 1858 1859 if ((Op0.getOpcode() == ISD::XOR) && 1860 Op0.getOperand(0).getOpcode() == ISD::SETCC && 1861 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 1862 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 1863 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 1864 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 1865 Cond); 1866 } 1867 if (Op0.getOpcode() == ISD::AND && 1868 isa<ConstantSDNode>(Op0.getOperand(1)) && 1869 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) { 1870 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 1871 if (Op0.getValueType().bitsGT(VT)) 1872 Op0 = DAG.getNode(ISD::AND, dl, VT, 1873 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 1874 DAG.getConstant(1, dl, VT)); 1875 else if (Op0.getValueType().bitsLT(VT)) 1876 Op0 = DAG.getNode(ISD::AND, dl, VT, 1877 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 1878 DAG.getConstant(1, dl, VT)); 1879 1880 return DAG.getSetCC(dl, VT, Op0, 1881 DAG.getConstant(0, dl, Op0.getValueType()), 1882 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1883 } 1884 if (Op0.getOpcode() == ISD::AssertZext && 1885 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 1886 return DAG.getSetCC(dl, VT, Op0, 1887 DAG.getConstant(0, dl, Op0.getValueType()), 1888 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1889 } 1890 } 1891 1892 APInt MinVal, MaxVal; 1893 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits(); 1894 if (ISD::isSignedIntSetCC(Cond)) { 1895 MinVal = APInt::getSignedMinValue(OperandBitSize); 1896 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 1897 } else { 1898 MinVal = APInt::getMinValue(OperandBitSize); 1899 MaxVal = APInt::getMaxValue(OperandBitSize); 1900 } 1901 1902 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 1903 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 1904 if (C1 == MinVal) return DAG.getConstant(1, dl, VT); // X >= MIN --> true 1905 // X >= C0 --> X > (C0 - 1) 1906 APInt C = C1 - 1; 1907 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 1908 if ((DCI.isBeforeLegalizeOps() || 1909 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1910 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1911 isLegalICmpImmediate(C.getSExtValue())))) { 1912 return DAG.getSetCC(dl, VT, N0, 1913 DAG.getConstant(C, dl, N1.getValueType()), 1914 NewCC); 1915 } 1916 } 1917 1918 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 1919 if (C1 == MaxVal) return DAG.getConstant(1, dl, VT); // X <= MAX --> true 1920 // X <= C0 --> X < (C0 + 1) 1921 APInt C = C1 + 1; 1922 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 1923 if ((DCI.isBeforeLegalizeOps() || 1924 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1925 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1926 isLegalICmpImmediate(C.getSExtValue())))) { 1927 return DAG.getSetCC(dl, VT, N0, 1928 DAG.getConstant(C, dl, N1.getValueType()), 1929 NewCC); 1930 } 1931 } 1932 1933 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) 1934 return DAG.getConstant(0, dl, VT); // X < MIN --> false 1935 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal) 1936 return DAG.getConstant(1, dl, VT); // X >= MIN --> true 1937 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal) 1938 return DAG.getConstant(0, dl, VT); // X > MAX --> false 1939 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal) 1940 return DAG.getConstant(1, dl, VT); // X <= MAX --> true 1941 1942 // Canonicalize setgt X, Min --> setne X, Min 1943 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) 1944 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1945 // Canonicalize setlt X, Max --> setne X, Max 1946 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) 1947 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1948 1949 // If we have setult X, 1, turn it into seteq X, 0 1950 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) 1951 return DAG.getSetCC(dl, VT, N0, 1952 DAG.getConstant(MinVal, dl, N0.getValueType()), 1953 ISD::SETEQ); 1954 // If we have setugt X, Max-1, turn it into seteq X, Max 1955 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) 1956 return DAG.getSetCC(dl, VT, N0, 1957 DAG.getConstant(MaxVal, dl, N0.getValueType()), 1958 ISD::SETEQ); 1959 1960 // If we have "setcc X, C0", check to see if we can shrink the immediate 1961 // by changing cc. 1962 1963 // SETUGT X, SINTMAX -> SETLT X, 0 1964 if (Cond == ISD::SETUGT && 1965 C1 == APInt::getSignedMaxValue(OperandBitSize)) 1966 return DAG.getSetCC(dl, VT, N0, 1967 DAG.getConstant(0, dl, N1.getValueType()), 1968 ISD::SETLT); 1969 1970 // SETULT X, SINTMIN -> SETGT X, -1 1971 if (Cond == ISD::SETULT && 1972 C1 == APInt::getSignedMinValue(OperandBitSize)) { 1973 SDValue ConstMinusOne = 1974 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 1975 N1.getValueType()); 1976 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 1977 } 1978 1979 // Fold bit comparisons when we can. 1980 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1981 (VT == N0.getValueType() || 1982 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 1983 N0.getOpcode() == ISD::AND) { 1984 auto &DL = DAG.getDataLayout(); 1985 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1986 EVT ShiftTy = DCI.isBeforeLegalize() 1987 ? getPointerTy(DL) 1988 : getShiftAmountTy(N0.getValueType(), DL); 1989 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 1990 // Perform the xform if the AND RHS is a single bit. 1991 if (AndRHS->getAPIntValue().isPowerOf2()) { 1992 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1993 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1994 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, 1995 ShiftTy))); 1996 } 1997 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 1998 // (X & 8) == 8 --> (X & 8) >> 3 1999 // Perform the xform if C1 is a single bit. 2000 if (C1.isPowerOf2()) { 2001 return DAG.getNode(ISD::TRUNCATE, dl, VT, 2002 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 2003 DAG.getConstant(C1.logBase2(), dl, 2004 ShiftTy))); 2005 } 2006 } 2007 } 2008 } 2009 2010 if (C1.getMinSignedBits() <= 64 && 2011 !isLegalICmpImmediate(C1.getSExtValue())) { 2012 // (X & -256) == 256 -> (X >> 8) == 1 2013 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2014 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 2015 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2016 const APInt &AndRHSC = AndRHS->getAPIntValue(); 2017 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 2018 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 2019 auto &DL = DAG.getDataLayout(); 2020 EVT ShiftTy = DCI.isBeforeLegalize() 2021 ? getPointerTy(DL) 2022 : getShiftAmountTy(N0.getValueType(), DL); 2023 EVT CmpTy = N0.getValueType(); 2024 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 2025 DAG.getConstant(ShiftBits, dl, 2026 ShiftTy)); 2027 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); 2028 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 2029 } 2030 } 2031 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 2032 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 2033 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 2034 // X < 0x100000000 -> (X >> 32) < 1 2035 // X >= 0x100000000 -> (X >> 32) >= 1 2036 // X <= 0x0ffffffff -> (X >> 32) < 1 2037 // X > 0x0ffffffff -> (X >> 32) >= 1 2038 unsigned ShiftBits; 2039 APInt NewC = C1; 2040 ISD::CondCode NewCond = Cond; 2041 if (AdjOne) { 2042 ShiftBits = C1.countTrailingOnes(); 2043 NewC = NewC + 1; 2044 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 2045 } else { 2046 ShiftBits = C1.countTrailingZeros(); 2047 } 2048 NewC = NewC.lshr(ShiftBits); 2049 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 2050 isLegalICmpImmediate(NewC.getSExtValue())) { 2051 auto &DL = DAG.getDataLayout(); 2052 EVT ShiftTy = DCI.isBeforeLegalize() 2053 ? getPointerTy(DL) 2054 : getShiftAmountTy(N0.getValueType(), DL); 2055 EVT CmpTy = N0.getValueType(); 2056 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 2057 DAG.getConstant(ShiftBits, dl, ShiftTy)); 2058 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); 2059 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 2060 } 2061 } 2062 } 2063 } 2064 2065 if (isa<ConstantFPSDNode>(N0.getNode())) { 2066 // Constant fold or commute setcc. 2067 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); 2068 if (O.getNode()) return O; 2069 } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { 2070 // If the RHS of an FP comparison is a constant, simplify it away in 2071 // some cases. 2072 if (CFP->getValueAPF().isNaN()) { 2073 // If an operand is known to be a nan, we can fold it. 2074 switch (ISD::getUnorderedFlavor(Cond)) { 2075 default: llvm_unreachable("Unknown flavor!"); 2076 case 0: // Known false. 2077 return DAG.getConstant(0, dl, VT); 2078 case 1: // Known true. 2079 return DAG.getConstant(1, dl, VT); 2080 case 2: // Undefined. 2081 return DAG.getUNDEF(VT); 2082 } 2083 } 2084 2085 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 2086 // constant if knowing that the operand is non-nan is enough. We prefer to 2087 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 2088 // materialize 0.0. 2089 if (Cond == ISD::SETO || Cond == ISD::SETUO) 2090 return DAG.getSetCC(dl, VT, N0, N0, Cond); 2091 2092 // setcc (fneg x), C -> setcc swap(pred) x, -C 2093 if (N0.getOpcode() == ISD::FNEG) { 2094 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 2095 if (DCI.isBeforeLegalizeOps() || 2096 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 2097 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 2098 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 2099 } 2100 } 2101 2102 // If the condition is not legal, see if we can find an equivalent one 2103 // which is legal. 2104 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 2105 // If the comparison was an awkward floating-point == or != and one of 2106 // the comparison operands is infinity or negative infinity, convert the 2107 // condition to a less-awkward <= or >=. 2108 if (CFP->getValueAPF().isInfinity()) { 2109 if (CFP->getValueAPF().isNegative()) { 2110 if (Cond == ISD::SETOEQ && 2111 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 2112 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 2113 if (Cond == ISD::SETUEQ && 2114 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 2115 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 2116 if (Cond == ISD::SETUNE && 2117 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 2118 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 2119 if (Cond == ISD::SETONE && 2120 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 2121 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 2122 } else { 2123 if (Cond == ISD::SETOEQ && 2124 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 2125 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 2126 if (Cond == ISD::SETUEQ && 2127 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 2128 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 2129 if (Cond == ISD::SETUNE && 2130 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 2131 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 2132 if (Cond == ISD::SETONE && 2133 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 2134 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 2135 } 2136 } 2137 } 2138 } 2139 2140 if (N0 == N1) { 2141 // The sext(setcc()) => setcc() optimization relies on the appropriate 2142 // constant being emitted. 2143 uint64_t EqVal = 0; 2144 switch (getBooleanContents(N0.getValueType())) { 2145 case UndefinedBooleanContent: 2146 case ZeroOrOneBooleanContent: 2147 EqVal = ISD::isTrueWhenEqual(Cond); 2148 break; 2149 case ZeroOrNegativeOneBooleanContent: 2150 EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0; 2151 break; 2152 } 2153 2154 // We can always fold X == X for integer setcc's. 2155 if (N0.getValueType().isInteger()) { 2156 return DAG.getConstant(EqVal, dl, VT); 2157 } 2158 unsigned UOF = ISD::getUnorderedFlavor(Cond); 2159 if (UOF == 2) // FP operators that are undefined on NaNs. 2160 return DAG.getConstant(EqVal, dl, VT); 2161 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) 2162 return DAG.getConstant(EqVal, dl, VT); 2163 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 2164 // if it is not already. 2165 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 2166 if (NewCond != Cond && (DCI.isBeforeLegalizeOps() || 2167 getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal)) 2168 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 2169 } 2170 2171 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2172 N0.getValueType().isInteger()) { 2173 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 2174 N0.getOpcode() == ISD::XOR) { 2175 // Simplify (X+Y) == (X+Z) --> Y == Z 2176 if (N0.getOpcode() == N1.getOpcode()) { 2177 if (N0.getOperand(0) == N1.getOperand(0)) 2178 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 2179 if (N0.getOperand(1) == N1.getOperand(1)) 2180 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 2181 if (DAG.isCommutativeBinOp(N0.getOpcode())) { 2182 // If X op Y == Y op X, try other combinations. 2183 if (N0.getOperand(0) == N1.getOperand(1)) 2184 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 2185 Cond); 2186 if (N0.getOperand(1) == N1.getOperand(0)) 2187 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 2188 Cond); 2189 } 2190 } 2191 2192 // If RHS is a legal immediate value for a compare instruction, we need 2193 // to be careful about increasing register pressure needlessly. 2194 bool LegalRHSImm = false; 2195 2196 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 2197 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2198 // Turn (X+C1) == C2 --> X == C2-C1 2199 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 2200 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2201 DAG.getConstant(RHSC->getAPIntValue()- 2202 LHSR->getAPIntValue(), 2203 dl, N0.getValueType()), Cond); 2204 } 2205 2206 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 2207 if (N0.getOpcode() == ISD::XOR) 2208 // If we know that all of the inverted bits are zero, don't bother 2209 // performing the inversion. 2210 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 2211 return 2212 DAG.getSetCC(dl, VT, N0.getOperand(0), 2213 DAG.getConstant(LHSR->getAPIntValue() ^ 2214 RHSC->getAPIntValue(), 2215 dl, N0.getValueType()), 2216 Cond); 2217 } 2218 2219 // Turn (C1-X) == C2 --> X == C1-C2 2220 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 2221 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 2222 return 2223 DAG.getSetCC(dl, VT, N0.getOperand(1), 2224 DAG.getConstant(SUBC->getAPIntValue() - 2225 RHSC->getAPIntValue(), 2226 dl, N0.getValueType()), 2227 Cond); 2228 } 2229 } 2230 2231 // Could RHSC fold directly into a compare? 2232 if (RHSC->getValueType(0).getSizeInBits() <= 64) 2233 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 2234 } 2235 2236 // Simplify (X+Z) == X --> Z == 0 2237 // Don't do this if X is an immediate that can fold into a cmp 2238 // instruction and X+Z has other uses. It could be an induction variable 2239 // chain, and the transform would increase register pressure. 2240 if (!LegalRHSImm || N0.getNode()->hasOneUse()) { 2241 if (N0.getOperand(0) == N1) 2242 return DAG.getSetCC(dl, VT, N0.getOperand(1), 2243 DAG.getConstant(0, dl, N0.getValueType()), Cond); 2244 if (N0.getOperand(1) == N1) { 2245 if (DAG.isCommutativeBinOp(N0.getOpcode())) 2246 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2247 DAG.getConstant(0, dl, N0.getValueType()), 2248 Cond); 2249 if (N0.getNode()->hasOneUse()) { 2250 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); 2251 auto &DL = DAG.getDataLayout(); 2252 // (Z-X) == X --> Z == X<<1 2253 SDValue SH = DAG.getNode( 2254 ISD::SHL, dl, N1.getValueType(), N1, 2255 DAG.getConstant(1, dl, 2256 getShiftAmountTy(N1.getValueType(), DL))); 2257 if (!DCI.isCalledByLegalizer()) 2258 DCI.AddToWorklist(SH.getNode()); 2259 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); 2260 } 2261 } 2262 } 2263 } 2264 2265 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 2266 N1.getOpcode() == ISD::XOR) { 2267 // Simplify X == (X+Z) --> Z == 0 2268 if (N1.getOperand(0) == N0) 2269 return DAG.getSetCC(dl, VT, N1.getOperand(1), 2270 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2271 if (N1.getOperand(1) == N0) { 2272 if (DAG.isCommutativeBinOp(N1.getOpcode())) 2273 return DAG.getSetCC(dl, VT, N1.getOperand(0), 2274 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2275 if (N1.getNode()->hasOneUse()) { 2276 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); 2277 auto &DL = DAG.getDataLayout(); 2278 // X == (Z-X) --> X<<1 == Z 2279 SDValue SH = DAG.getNode( 2280 ISD::SHL, dl, N1.getValueType(), N0, 2281 DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL))); 2282 if (!DCI.isCalledByLegalizer()) 2283 DCI.AddToWorklist(SH.getNode()); 2284 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); 2285 } 2286 } 2287 } 2288 2289 if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl)) 2290 return V; 2291 } 2292 2293 // Fold away ALL boolean setcc's. 2294 SDValue Temp; 2295 if (N0.getValueType() == MVT::i1 && foldBooleans) { 2296 switch (Cond) { 2297 default: llvm_unreachable("Unknown integer setcc!"); 2298 case ISD::SETEQ: // X == Y -> ~(X^Y) 2299 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2300 N0 = DAG.getNOT(dl, Temp, MVT::i1); 2301 if (!DCI.isCalledByLegalizer()) 2302 DCI.AddToWorklist(Temp.getNode()); 2303 break; 2304 case ISD::SETNE: // X != Y --> (X^Y) 2305 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2306 break; 2307 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 2308 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 2309 Temp = DAG.getNOT(dl, N0, MVT::i1); 2310 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp); 2311 if (!DCI.isCalledByLegalizer()) 2312 DCI.AddToWorklist(Temp.getNode()); 2313 break; 2314 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 2315 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 2316 Temp = DAG.getNOT(dl, N1, MVT::i1); 2317 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp); 2318 if (!DCI.isCalledByLegalizer()) 2319 DCI.AddToWorklist(Temp.getNode()); 2320 break; 2321 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 2322 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 2323 Temp = DAG.getNOT(dl, N0, MVT::i1); 2324 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp); 2325 if (!DCI.isCalledByLegalizer()) 2326 DCI.AddToWorklist(Temp.getNode()); 2327 break; 2328 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 2329 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 2330 Temp = DAG.getNOT(dl, N1, MVT::i1); 2331 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp); 2332 break; 2333 } 2334 if (VT != MVT::i1) { 2335 if (!DCI.isCalledByLegalizer()) 2336 DCI.AddToWorklist(N0.getNode()); 2337 // FIXME: If running after legalize, we probably can't do this. 2338 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0); 2339 } 2340 return N0; 2341 } 2342 2343 // Could not fold it. 2344 return SDValue(); 2345 } 2346 2347 /// Returns true (and the GlobalValue and the offset) if the node is a 2348 /// GlobalAddress + offset. 2349 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, 2350 int64_t &Offset) const { 2351 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 2352 GA = GASD->getGlobal(); 2353 Offset += GASD->getOffset(); 2354 return true; 2355 } 2356 2357 if (N->getOpcode() == ISD::ADD) { 2358 SDValue N1 = N->getOperand(0); 2359 SDValue N2 = N->getOperand(1); 2360 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 2361 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 2362 Offset += V->getSExtValue(); 2363 return true; 2364 } 2365 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 2366 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 2367 Offset += V->getSExtValue(); 2368 return true; 2369 } 2370 } 2371 } 2372 2373 return false; 2374 } 2375 2376 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 2377 DAGCombinerInfo &DCI) const { 2378 // Default implementation: no optimization. 2379 return SDValue(); 2380 } 2381 2382 //===----------------------------------------------------------------------===// 2383 // Inline Assembler Implementation Methods 2384 //===----------------------------------------------------------------------===// 2385 2386 TargetLowering::ConstraintType 2387 TargetLowering::getConstraintType(StringRef Constraint) const { 2388 unsigned S = Constraint.size(); 2389 2390 if (S == 1) { 2391 switch (Constraint[0]) { 2392 default: break; 2393 case 'r': return C_RegisterClass; 2394 case 'm': // memory 2395 case 'o': // offsetable 2396 case 'V': // not offsetable 2397 return C_Memory; 2398 case 'i': // Simple Integer or Relocatable Constant 2399 case 'n': // Simple Integer 2400 case 'E': // Floating Point Constant 2401 case 'F': // Floating Point Constant 2402 case 's': // Relocatable Constant 2403 case 'p': // Address. 2404 case 'X': // Allow ANY value. 2405 case 'I': // Target registers. 2406 case 'J': 2407 case 'K': 2408 case 'L': 2409 case 'M': 2410 case 'N': 2411 case 'O': 2412 case 'P': 2413 case '<': 2414 case '>': 2415 return C_Other; 2416 } 2417 } 2418 2419 if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { 2420 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 2421 return C_Memory; 2422 return C_Register; 2423 } 2424 return C_Unknown; 2425 } 2426 2427 /// Try to replace an X constraint, which matches anything, with another that 2428 /// has more specific requirements based on the type of the corresponding 2429 /// operand. 2430 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ 2431 if (ConstraintVT.isInteger()) 2432 return "r"; 2433 if (ConstraintVT.isFloatingPoint()) 2434 return "f"; // works for many targets 2435 return nullptr; 2436 } 2437 2438 /// Lower the specified operand into the Ops vector. 2439 /// If it is invalid, don't add anything to Ops. 2440 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 2441 std::string &Constraint, 2442 std::vector<SDValue> &Ops, 2443 SelectionDAG &DAG) const { 2444 2445 if (Constraint.length() > 1) return; 2446 2447 char ConstraintLetter = Constraint[0]; 2448 switch (ConstraintLetter) { 2449 default: break; 2450 case 'X': // Allows any operand; labels (basic block) use this. 2451 if (Op.getOpcode() == ISD::BasicBlock) { 2452 Ops.push_back(Op); 2453 return; 2454 } 2455 LLVM_FALLTHROUGH; 2456 case 'i': // Simple Integer or Relocatable Constant 2457 case 'n': // Simple Integer 2458 case 's': { // Relocatable Constant 2459 // These operands are interested in values of the form (GV+C), where C may 2460 // be folded in as an offset of GV, or it may be explicitly added. Also, it 2461 // is possible and fine if either GV or C are missing. 2462 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2463 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 2464 2465 // If we have "(add GV, C)", pull out GV/C 2466 if (Op.getOpcode() == ISD::ADD) { 2467 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2468 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 2469 if (!C || !GA) { 2470 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 2471 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 2472 } 2473 if (!C || !GA) { 2474 C = nullptr; 2475 GA = nullptr; 2476 } 2477 } 2478 2479 // If we find a valid operand, map to the TargetXXX version so that the 2480 // value itself doesn't get selected. 2481 if (GA) { // Either &GV or &GV+C 2482 if (ConstraintLetter != 'n') { 2483 int64_t Offs = GA->getOffset(); 2484 if (C) Offs += C->getZExtValue(); 2485 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 2486 C ? SDLoc(C) : SDLoc(), 2487 Op.getValueType(), Offs)); 2488 } 2489 return; 2490 } 2491 if (C) { // just C, no GV. 2492 // Simple constants are not allowed for 's'. 2493 if (ConstraintLetter != 's') { 2494 // gcc prints these as sign extended. Sign extend value to 64 bits 2495 // now; without this it would get ZExt'd later in 2496 // ScheduleDAGSDNodes::EmitNode, which is very generic. 2497 Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(), 2498 SDLoc(C), MVT::i64)); 2499 } 2500 return; 2501 } 2502 break; 2503 } 2504 } 2505 } 2506 2507 std::pair<unsigned, const TargetRegisterClass *> 2508 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 2509 StringRef Constraint, 2510 MVT VT) const { 2511 if (Constraint.empty() || Constraint[0] != '{') 2512 return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr)); 2513 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); 2514 2515 // Remove the braces from around the name. 2516 StringRef RegName(Constraint.data()+1, Constraint.size()-2); 2517 2518 std::pair<unsigned, const TargetRegisterClass*> R = 2519 std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr)); 2520 2521 // Figure out which register class contains this reg. 2522 for (const TargetRegisterClass *RC : RI->regclasses()) { 2523 // If none of the value types for this register class are valid, we 2524 // can't use it. For example, 64-bit reg classes on 32-bit targets. 2525 if (!isLegalRC(RC)) 2526 continue; 2527 2528 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 2529 I != E; ++I) { 2530 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 2531 std::pair<unsigned, const TargetRegisterClass*> S = 2532 std::make_pair(*I, RC); 2533 2534 // If this register class has the requested value type, return it, 2535 // otherwise keep searching and return the first class found 2536 // if no other is found which explicitly has the requested type. 2537 if (RC->hasType(VT)) 2538 return S; 2539 else if (!R.second) 2540 R = S; 2541 } 2542 } 2543 } 2544 2545 return R; 2546 } 2547 2548 //===----------------------------------------------------------------------===// 2549 // Constraint Selection. 2550 2551 /// Return true of this is an input operand that is a matching constraint like 2552 /// "4". 2553 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 2554 assert(!ConstraintCode.empty() && "No known constraint!"); 2555 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 2556 } 2557 2558 /// If this is an input matching constraint, this method returns the output 2559 /// operand it matches. 2560 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 2561 assert(!ConstraintCode.empty() && "No known constraint!"); 2562 return atoi(ConstraintCode.c_str()); 2563 } 2564 2565 /// Split up the constraint string from the inline assembly value into the 2566 /// specific constraints and their prefixes, and also tie in the associated 2567 /// operand values. 2568 /// If this returns an empty vector, and if the constraint string itself 2569 /// isn't empty, there was an error parsing. 2570 TargetLowering::AsmOperandInfoVector 2571 TargetLowering::ParseConstraints(const DataLayout &DL, 2572 const TargetRegisterInfo *TRI, 2573 ImmutableCallSite CS) const { 2574 /// Information about all of the constraints. 2575 AsmOperandInfoVector ConstraintOperands; 2576 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 2577 unsigned maCount = 0; // Largest number of multiple alternative constraints. 2578 2579 // Do a prepass over the constraints, canonicalizing them, and building up the 2580 // ConstraintOperands list. 2581 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 2582 unsigned ResNo = 0; // ResNo - The result number of the next output. 2583 2584 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 2585 ConstraintOperands.emplace_back(std::move(CI)); 2586 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 2587 2588 // Update multiple alternative constraint count. 2589 if (OpInfo.multipleAlternatives.size() > maCount) 2590 maCount = OpInfo.multipleAlternatives.size(); 2591 2592 OpInfo.ConstraintVT = MVT::Other; 2593 2594 // Compute the value type for each operand. 2595 switch (OpInfo.Type) { 2596 case InlineAsm::isOutput: 2597 // Indirect outputs just consume an argument. 2598 if (OpInfo.isIndirect) { 2599 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2600 break; 2601 } 2602 2603 // The return value of the call is this value. As such, there is no 2604 // corresponding argument. 2605 assert(!CS.getType()->isVoidTy() && 2606 "Bad inline asm!"); 2607 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 2608 OpInfo.ConstraintVT = 2609 getSimpleValueType(DL, STy->getElementType(ResNo)); 2610 } else { 2611 assert(ResNo == 0 && "Asm only has one result!"); 2612 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 2613 } 2614 ++ResNo; 2615 break; 2616 case InlineAsm::isInput: 2617 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2618 break; 2619 case InlineAsm::isClobber: 2620 // Nothing to do. 2621 break; 2622 } 2623 2624 if (OpInfo.CallOperandVal) { 2625 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 2626 if (OpInfo.isIndirect) { 2627 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 2628 if (!PtrTy) 2629 report_fatal_error("Indirect operand for inline asm not a pointer!"); 2630 OpTy = PtrTy->getElementType(); 2631 } 2632 2633 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 2634 if (StructType *STy = dyn_cast<StructType>(OpTy)) 2635 if (STy->getNumElements() == 1) 2636 OpTy = STy->getElementType(0); 2637 2638 // If OpTy is not a single value, it may be a struct/union that we 2639 // can tile with integers. 2640 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 2641 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 2642 switch (BitSize) { 2643 default: break; 2644 case 1: 2645 case 8: 2646 case 16: 2647 case 32: 2648 case 64: 2649 case 128: 2650 OpInfo.ConstraintVT = 2651 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 2652 break; 2653 } 2654 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 2655 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 2656 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 2657 } else { 2658 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 2659 } 2660 } 2661 } 2662 2663 // If we have multiple alternative constraints, select the best alternative. 2664 if (!ConstraintOperands.empty()) { 2665 if (maCount) { 2666 unsigned bestMAIndex = 0; 2667 int bestWeight = -1; 2668 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 2669 int weight = -1; 2670 unsigned maIndex; 2671 // Compute the sums of the weights for each alternative, keeping track 2672 // of the best (highest weight) one so far. 2673 for (maIndex = 0; maIndex < maCount; ++maIndex) { 2674 int weightSum = 0; 2675 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2676 cIndex != eIndex; ++cIndex) { 2677 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2678 if (OpInfo.Type == InlineAsm::isClobber) 2679 continue; 2680 2681 // If this is an output operand with a matching input operand, 2682 // look up the matching input. If their types mismatch, e.g. one 2683 // is an integer, the other is floating point, or their sizes are 2684 // different, flag it as an maCantMatch. 2685 if (OpInfo.hasMatchingInput()) { 2686 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2687 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2688 if ((OpInfo.ConstraintVT.isInteger() != 2689 Input.ConstraintVT.isInteger()) || 2690 (OpInfo.ConstraintVT.getSizeInBits() != 2691 Input.ConstraintVT.getSizeInBits())) { 2692 weightSum = -1; // Can't match. 2693 break; 2694 } 2695 } 2696 } 2697 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 2698 if (weight == -1) { 2699 weightSum = -1; 2700 break; 2701 } 2702 weightSum += weight; 2703 } 2704 // Update best. 2705 if (weightSum > bestWeight) { 2706 bestWeight = weightSum; 2707 bestMAIndex = maIndex; 2708 } 2709 } 2710 2711 // Now select chosen alternative in each constraint. 2712 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2713 cIndex != eIndex; ++cIndex) { 2714 AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; 2715 if (cInfo.Type == InlineAsm::isClobber) 2716 continue; 2717 cInfo.selectAlternative(bestMAIndex); 2718 } 2719 } 2720 } 2721 2722 // Check and hook up tied operands, choose constraint code to use. 2723 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2724 cIndex != eIndex; ++cIndex) { 2725 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2726 2727 // If this is an output operand with a matching input operand, look up the 2728 // matching input. If their types mismatch, e.g. one is an integer, the 2729 // other is floating point, or their sizes are different, flag it as an 2730 // error. 2731 if (OpInfo.hasMatchingInput()) { 2732 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2733 2734 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2735 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 2736 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 2737 OpInfo.ConstraintVT); 2738 std::pair<unsigned, const TargetRegisterClass *> InputRC = 2739 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 2740 Input.ConstraintVT); 2741 if ((OpInfo.ConstraintVT.isInteger() != 2742 Input.ConstraintVT.isInteger()) || 2743 (MatchRC.second != InputRC.second)) { 2744 report_fatal_error("Unsupported asm: input constraint" 2745 " with a matching output constraint of" 2746 " incompatible type!"); 2747 } 2748 } 2749 } 2750 } 2751 2752 return ConstraintOperands; 2753 } 2754 2755 /// Return an integer indicating how general CT is. 2756 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 2757 switch (CT) { 2758 case TargetLowering::C_Other: 2759 case TargetLowering::C_Unknown: 2760 return 0; 2761 case TargetLowering::C_Register: 2762 return 1; 2763 case TargetLowering::C_RegisterClass: 2764 return 2; 2765 case TargetLowering::C_Memory: 2766 return 3; 2767 } 2768 llvm_unreachable("Invalid constraint type"); 2769 } 2770 2771 /// Examine constraint type and operand type and determine a weight value. 2772 /// This object must already have been set up with the operand type 2773 /// and the current alternative constraint selected. 2774 TargetLowering::ConstraintWeight 2775 TargetLowering::getMultipleConstraintMatchWeight( 2776 AsmOperandInfo &info, int maIndex) const { 2777 InlineAsm::ConstraintCodeVector *rCodes; 2778 if (maIndex >= (int)info.multipleAlternatives.size()) 2779 rCodes = &info.Codes; 2780 else 2781 rCodes = &info.multipleAlternatives[maIndex].Codes; 2782 ConstraintWeight BestWeight = CW_Invalid; 2783 2784 // Loop over the options, keeping track of the most general one. 2785 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 2786 ConstraintWeight weight = 2787 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 2788 if (weight > BestWeight) 2789 BestWeight = weight; 2790 } 2791 2792 return BestWeight; 2793 } 2794 2795 /// Examine constraint type and operand type and determine a weight value. 2796 /// This object must already have been set up with the operand type 2797 /// and the current alternative constraint selected. 2798 TargetLowering::ConstraintWeight 2799 TargetLowering::getSingleConstraintMatchWeight( 2800 AsmOperandInfo &info, const char *constraint) const { 2801 ConstraintWeight weight = CW_Invalid; 2802 Value *CallOperandVal = info.CallOperandVal; 2803 // If we don't have a value, we can't do a match, 2804 // but allow it at the lowest weight. 2805 if (!CallOperandVal) 2806 return CW_Default; 2807 // Look at the constraint type. 2808 switch (*constraint) { 2809 case 'i': // immediate integer. 2810 case 'n': // immediate integer with a known value. 2811 if (isa<ConstantInt>(CallOperandVal)) 2812 weight = CW_Constant; 2813 break; 2814 case 's': // non-explicit intregal immediate. 2815 if (isa<GlobalValue>(CallOperandVal)) 2816 weight = CW_Constant; 2817 break; 2818 case 'E': // immediate float if host format. 2819 case 'F': // immediate float. 2820 if (isa<ConstantFP>(CallOperandVal)) 2821 weight = CW_Constant; 2822 break; 2823 case '<': // memory operand with autodecrement. 2824 case '>': // memory operand with autoincrement. 2825 case 'm': // memory operand. 2826 case 'o': // offsettable memory operand 2827 case 'V': // non-offsettable memory operand 2828 weight = CW_Memory; 2829 break; 2830 case 'r': // general register. 2831 case 'g': // general register, memory operand or immediate integer. 2832 // note: Clang converts "g" to "imr". 2833 if (CallOperandVal->getType()->isIntegerTy()) 2834 weight = CW_Register; 2835 break; 2836 case 'X': // any operand. 2837 default: 2838 weight = CW_Default; 2839 break; 2840 } 2841 return weight; 2842 } 2843 2844 /// If there are multiple different constraints that we could pick for this 2845 /// operand (e.g. "imr") try to pick the 'best' one. 2846 /// This is somewhat tricky: constraints fall into four classes: 2847 /// Other -> immediates and magic values 2848 /// Register -> one specific register 2849 /// RegisterClass -> a group of regs 2850 /// Memory -> memory 2851 /// Ideally, we would pick the most specific constraint possible: if we have 2852 /// something that fits into a register, we would pick it. The problem here 2853 /// is that if we have something that could either be in a register or in 2854 /// memory that use of the register could cause selection of *other* 2855 /// operands to fail: they might only succeed if we pick memory. Because of 2856 /// this the heuristic we use is: 2857 /// 2858 /// 1) If there is an 'other' constraint, and if the operand is valid for 2859 /// that constraint, use it. This makes us take advantage of 'i' 2860 /// constraints when available. 2861 /// 2) Otherwise, pick the most general constraint present. This prefers 2862 /// 'm' over 'r', for example. 2863 /// 2864 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 2865 const TargetLowering &TLI, 2866 SDValue Op, SelectionDAG *DAG) { 2867 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 2868 unsigned BestIdx = 0; 2869 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 2870 int BestGenerality = -1; 2871 2872 // Loop over the options, keeping track of the most general one. 2873 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 2874 TargetLowering::ConstraintType CType = 2875 TLI.getConstraintType(OpInfo.Codes[i]); 2876 2877 // If this is an 'other' constraint, see if the operand is valid for it. 2878 // For example, on X86 we might have an 'rI' constraint. If the operand 2879 // is an integer in the range [0..31] we want to use I (saving a load 2880 // of a register), otherwise we must use 'r'. 2881 if (CType == TargetLowering::C_Other && Op.getNode()) { 2882 assert(OpInfo.Codes[i].size() == 1 && 2883 "Unhandled multi-letter 'other' constraint"); 2884 std::vector<SDValue> ResultOps; 2885 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 2886 ResultOps, *DAG); 2887 if (!ResultOps.empty()) { 2888 BestType = CType; 2889 BestIdx = i; 2890 break; 2891 } 2892 } 2893 2894 // Things with matching constraints can only be registers, per gcc 2895 // documentation. This mainly affects "g" constraints. 2896 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 2897 continue; 2898 2899 // This constraint letter is more general than the previous one, use it. 2900 int Generality = getConstraintGenerality(CType); 2901 if (Generality > BestGenerality) { 2902 BestType = CType; 2903 BestIdx = i; 2904 BestGenerality = Generality; 2905 } 2906 } 2907 2908 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 2909 OpInfo.ConstraintType = BestType; 2910 } 2911 2912 /// Determines the constraint code and constraint type to use for the specific 2913 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 2914 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 2915 SDValue Op, 2916 SelectionDAG *DAG) const { 2917 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 2918 2919 // Single-letter constraints ('r') are very common. 2920 if (OpInfo.Codes.size() == 1) { 2921 OpInfo.ConstraintCode = OpInfo.Codes[0]; 2922 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2923 } else { 2924 ChooseConstraint(OpInfo, *this, Op, DAG); 2925 } 2926 2927 // 'X' matches anything. 2928 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 2929 // Labels and constants are handled elsewhere ('X' is the only thing 2930 // that matches labels). For Functions, the type here is the type of 2931 // the result, which is not what we want to look at; leave them alone. 2932 Value *v = OpInfo.CallOperandVal; 2933 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 2934 OpInfo.CallOperandVal = v; 2935 return; 2936 } 2937 2938 // Otherwise, try to resolve it to something we know about by looking at 2939 // the actual operand type. 2940 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 2941 OpInfo.ConstraintCode = Repl; 2942 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2943 } 2944 } 2945 } 2946 2947 /// \brief Given an exact SDIV by a constant, create a multiplication 2948 /// with the multiplicative inverse of the constant. 2949 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d, 2950 const SDLoc &dl, SelectionDAG &DAG, 2951 std::vector<SDNode *> &Created) { 2952 assert(d != 0 && "Division by zero!"); 2953 2954 // Shift the value upfront if it is even, so the LSB is one. 2955 unsigned ShAmt = d.countTrailingZeros(); 2956 if (ShAmt) { 2957 // TODO: For UDIV use SRL instead of SRA. 2958 SDValue Amt = 2959 DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(), 2960 DAG.getDataLayout())); 2961 SDNodeFlags Flags; 2962 Flags.setExact(true); 2963 Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, &Flags); 2964 Created.push_back(Op1.getNode()); 2965 d = d.ashr(ShAmt); 2966 } 2967 2968 // Calculate the multiplicative inverse, using Newton's method. 2969 APInt t, xn = d; 2970 while ((t = d*xn) != 1) 2971 xn *= APInt(d.getBitWidth(), 2) - t; 2972 2973 SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType()); 2974 SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2); 2975 Created.push_back(Mul.getNode()); 2976 return Mul; 2977 } 2978 2979 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 2980 SelectionDAG &DAG, 2981 std::vector<SDNode *> *Created) const { 2982 AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); 2983 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2984 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 2985 return SDValue(N,0); // Lower SDIV as SDIV 2986 return SDValue(); 2987 } 2988 2989 /// \brief Given an ISD::SDIV node expressing a divide by constant, 2990 /// return a DAG expression to select that will generate the same value by 2991 /// multiplying by a magic number. 2992 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 2993 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor, 2994 SelectionDAG &DAG, bool IsAfterLegalization, 2995 std::vector<SDNode *> *Created) const { 2996 assert(Created && "No vector to hold sdiv ops."); 2997 2998 EVT VT = N->getValueType(0); 2999 SDLoc dl(N); 3000 3001 // Check to see if we can do this. 3002 // FIXME: We should be more aggressive here. 3003 if (!isTypeLegal(VT)) 3004 return SDValue(); 3005 3006 // If the sdiv has an 'exact' bit we can use a simpler lowering. 3007 if (cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact()) 3008 return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created); 3009 3010 APInt::ms magics = Divisor.magic(); 3011 3012 // Multiply the numerator (operand 0) by the magic value 3013 // FIXME: We should support doing a MUL in a wider type 3014 SDValue Q; 3015 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) : 3016 isOperationLegalOrCustom(ISD::MULHS, VT)) 3017 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0), 3018 DAG.getConstant(magics.m, dl, VT)); 3019 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) : 3020 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) 3021 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), 3022 N->getOperand(0), 3023 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 3024 else 3025 return SDValue(); // No mulhs or equvialent 3026 // If d > 0 and m < 0, add the numerator 3027 if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 3028 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); 3029 Created->push_back(Q.getNode()); 3030 } 3031 // If d < 0 and m > 0, subtract the numerator. 3032 if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 3033 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0)); 3034 Created->push_back(Q.getNode()); 3035 } 3036 auto &DL = DAG.getDataLayout(); 3037 // Shift right algebraic if shift value is nonzero 3038 if (magics.s > 0) { 3039 Q = DAG.getNode( 3040 ISD::SRA, dl, VT, Q, 3041 DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); 3042 Created->push_back(Q.getNode()); 3043 } 3044 // Extract the sign bit and add it to the quotient 3045 SDValue T = 3046 DAG.getNode(ISD::SRL, dl, VT, Q, 3047 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, 3048 getShiftAmountTy(Q.getValueType(), DL))); 3049 Created->push_back(T.getNode()); 3050 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 3051 } 3052 3053 /// \brief Given an ISD::UDIV node expressing a divide by constant, 3054 /// return a DAG expression to select that will generate the same value by 3055 /// multiplying by a magic number. 3056 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 3057 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor, 3058 SelectionDAG &DAG, bool IsAfterLegalization, 3059 std::vector<SDNode *> *Created) const { 3060 assert(Created && "No vector to hold udiv ops."); 3061 3062 EVT VT = N->getValueType(0); 3063 SDLoc dl(N); 3064 auto &DL = DAG.getDataLayout(); 3065 3066 // Check to see if we can do this. 3067 // FIXME: We should be more aggressive here. 3068 if (!isTypeLegal(VT)) 3069 return SDValue(); 3070 3071 // FIXME: We should use a narrower constant when the upper 3072 // bits are known to be zero. 3073 APInt::mu magics = Divisor.magicu(); 3074 3075 SDValue Q = N->getOperand(0); 3076 3077 // If the divisor is even, we can avoid using the expensive fixup by shifting 3078 // the divided value upfront. 3079 if (magics.a != 0 && !Divisor[0]) { 3080 unsigned Shift = Divisor.countTrailingZeros(); 3081 Q = DAG.getNode( 3082 ISD::SRL, dl, VT, Q, 3083 DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL))); 3084 Created->push_back(Q.getNode()); 3085 3086 // Get magic number for the shifted divisor. 3087 magics = Divisor.lshr(Shift).magicu(Shift); 3088 assert(magics.a == 0 && "Should use cheap fixup now"); 3089 } 3090 3091 // Multiply the numerator (operand 0) by the magic value 3092 // FIXME: We should support doing a MUL in a wider type 3093 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) : 3094 isOperationLegalOrCustom(ISD::MULHU, VT)) 3095 Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT)); 3096 else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) : 3097 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) 3098 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q, 3099 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 3100 else 3101 return SDValue(); // No mulhu or equivalent 3102 3103 Created->push_back(Q.getNode()); 3104 3105 if (magics.a == 0) { 3106 assert(magics.s < Divisor.getBitWidth() && 3107 "We shouldn't generate an undefined shift!"); 3108 return DAG.getNode( 3109 ISD::SRL, dl, VT, Q, 3110 DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); 3111 } else { 3112 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); 3113 Created->push_back(NPQ.getNode()); 3114 NPQ = DAG.getNode( 3115 ISD::SRL, dl, VT, NPQ, 3116 DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL))); 3117 Created->push_back(NPQ.getNode()); 3118 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 3119 Created->push_back(NPQ.getNode()); 3120 return DAG.getNode( 3121 ISD::SRL, dl, VT, NPQ, 3122 DAG.getConstant(magics.s - 1, dl, 3123 getShiftAmountTy(NPQ.getValueType(), DL))); 3124 } 3125 } 3126 3127 bool TargetLowering:: 3128 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 3129 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 3130 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 3131 "be a constant integer"); 3132 return true; 3133 } 3134 3135 return false; 3136 } 3137 3138 //===----------------------------------------------------------------------===// 3139 // Legalization Utilities 3140 //===----------------------------------------------------------------------===// 3141 3142 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 3143 SDValue LHS, SDValue RHS, 3144 SmallVectorImpl<SDValue> &Result, 3145 EVT HiLoVT, SelectionDAG &DAG, 3146 MulExpansionKind Kind, SDValue LL, 3147 SDValue LH, SDValue RL, SDValue RH) const { 3148 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 3149 Opcode == ISD::SMUL_LOHI); 3150 3151 bool HasMULHS = (Kind == MulExpansionKind::Always) || 3152 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 3153 bool HasMULHU = (Kind == MulExpansionKind::Always) || 3154 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 3155 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 3156 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 3157 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 3158 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 3159 3160 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 3161 return false; 3162 3163 unsigned OuterBitSize = VT.getScalarSizeInBits(); 3164 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 3165 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 3166 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 3167 3168 // LL, LH, RL, and RH must be either all NULL or all set to a value. 3169 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 3170 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 3171 3172 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 3173 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 3174 bool Signed) -> bool { 3175 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 3176 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 3177 Hi = SDValue(Lo.getNode(), 1); 3178 return true; 3179 } 3180 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 3181 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 3182 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 3183 return true; 3184 } 3185 return false; 3186 }; 3187 3188 SDValue Lo, Hi; 3189 3190 if (!LL.getNode() && !RL.getNode() && 3191 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 3192 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 3193 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 3194 } 3195 3196 if (!LL.getNode()) 3197 return false; 3198 3199 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 3200 if (DAG.MaskedValueIsZero(LHS, HighMask) && 3201 DAG.MaskedValueIsZero(RHS, HighMask)) { 3202 // The inputs are both zero-extended. 3203 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 3204 Result.push_back(Lo); 3205 Result.push_back(Hi); 3206 if (Opcode != ISD::MUL) { 3207 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 3208 Result.push_back(Zero); 3209 Result.push_back(Zero); 3210 } 3211 return true; 3212 } 3213 } 3214 3215 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 3216 RHSSB > InnerBitSize) { 3217 // The input values are both sign-extended. 3218 // TODO non-MUL case? 3219 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 3220 Result.push_back(Lo); 3221 Result.push_back(Hi); 3222 return true; 3223 } 3224 } 3225 3226 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 3227 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 3228 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 3229 // FIXME getShiftAmountTy does not always return a sensible result when VT 3230 // is an illegal type, and so the type may be too small to fit the shift 3231 // amount. Override it with i32. The shift will have to be legalized. 3232 ShiftAmountTy = MVT::i32; 3233 } 3234 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 3235 3236 if (!LH.getNode() && !RH.getNode() && 3237 isOperationLegalOrCustom(ISD::SRL, VT) && 3238 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 3239 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 3240 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 3241 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 3242 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 3243 } 3244 3245 if (!LH.getNode()) 3246 return false; 3247 3248 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 3249 return false; 3250 3251 Result.push_back(Lo); 3252 3253 if (Opcode == ISD::MUL) { 3254 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 3255 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 3256 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 3257 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 3258 Result.push_back(Hi); 3259 return true; 3260 } 3261 3262 // Compute the full width result. 3263 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 3264 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3265 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 3266 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3267 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 3268 }; 3269 3270 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 3271 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 3272 return false; 3273 3274 // This is effectively the add part of a multiply-add of half-sized operands, 3275 // so it cannot overflow. 3276 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 3277 3278 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 3279 return false; 3280 3281 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 3282 Merge(Lo, Hi)); 3283 3284 SDValue Carry = Next.getValue(1); 3285 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 3286 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 3287 3288 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 3289 return false; 3290 3291 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 3292 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 3293 Carry); 3294 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 3295 3296 if (Opcode == ISD::SMUL_LOHI) { 3297 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 3298 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 3299 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 3300 3301 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 3302 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 3303 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 3304 } 3305 3306 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 3307 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 3308 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 3309 return true; 3310 } 3311 3312 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 3313 SelectionDAG &DAG, MulExpansionKind Kind, 3314 SDValue LL, SDValue LH, SDValue RL, 3315 SDValue RH) const { 3316 SmallVector<SDValue, 2> Result; 3317 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 3318 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 3319 DAG, Kind, LL, LH, RL, RH); 3320 if (Ok) { 3321 assert(Result.size() == 2); 3322 Lo = Result[0]; 3323 Hi = Result[1]; 3324 } 3325 return Ok; 3326 } 3327 3328 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 3329 SelectionDAG &DAG) const { 3330 EVT VT = Node->getOperand(0).getValueType(); 3331 EVT NVT = Node->getValueType(0); 3332 SDLoc dl(SDValue(Node, 0)); 3333 3334 // FIXME: Only f32 to i64 conversions are supported. 3335 if (VT != MVT::f32 || NVT != MVT::i64) 3336 return false; 3337 3338 // Expand f32 -> i64 conversion 3339 // This algorithm comes from compiler-rt's implementation of fixsfdi: 3340 // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c 3341 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), 3342 VT.getSizeInBits()); 3343 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 3344 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 3345 SDValue Bias = DAG.getConstant(127, dl, IntVT); 3346 SDValue SignMask = DAG.getConstant(APInt::getSignBit(VT.getSizeInBits()), dl, 3347 IntVT); 3348 SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT); 3349 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 3350 3351 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0)); 3352 3353 auto &DL = DAG.getDataLayout(); 3354 SDValue ExponentBits = DAG.getNode( 3355 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 3356 DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL))); 3357 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 3358 3359 SDValue Sign = DAG.getNode( 3360 ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 3361 DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL))); 3362 Sign = DAG.getSExtOrTrunc(Sign, dl, NVT); 3363 3364 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 3365 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 3366 DAG.getConstant(0x00800000, dl, IntVT)); 3367 3368 R = DAG.getZExtOrTrunc(R, dl, NVT); 3369 3370 R = DAG.getSelectCC( 3371 dl, Exponent, ExponentLoBit, 3372 DAG.getNode(ISD::SHL, dl, NVT, R, 3373 DAG.getZExtOrTrunc( 3374 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 3375 dl, getShiftAmountTy(IntVT, DL))), 3376 DAG.getNode(ISD::SRL, dl, NVT, R, 3377 DAG.getZExtOrTrunc( 3378 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 3379 dl, getShiftAmountTy(IntVT, DL))), 3380 ISD::SETGT); 3381 3382 SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT, 3383 DAG.getNode(ISD::XOR, dl, NVT, R, Sign), 3384 Sign); 3385 3386 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 3387 DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT); 3388 return true; 3389 } 3390 3391 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 3392 SelectionDAG &DAG) const { 3393 SDLoc SL(LD); 3394 SDValue Chain = LD->getChain(); 3395 SDValue BasePTR = LD->getBasePtr(); 3396 EVT SrcVT = LD->getMemoryVT(); 3397 ISD::LoadExtType ExtType = LD->getExtensionType(); 3398 3399 unsigned NumElem = SrcVT.getVectorNumElements(); 3400 3401 EVT SrcEltVT = SrcVT.getScalarType(); 3402 EVT DstEltVT = LD->getValueType(0).getScalarType(); 3403 3404 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 3405 assert(SrcEltVT.isByteSized()); 3406 3407 EVT PtrVT = BasePTR.getValueType(); 3408 3409 SmallVector<SDValue, 8> Vals; 3410 SmallVector<SDValue, 8> LoadChains; 3411 3412 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 3413 SDValue ScalarLoad = 3414 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 3415 LD->getPointerInfo().getWithOffset(Idx * Stride), 3416 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 3417 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3418 3419 BasePTR = DAG.getNode(ISD::ADD, SL, PtrVT, BasePTR, 3420 DAG.getConstant(Stride, SL, PtrVT)); 3421 3422 Vals.push_back(ScalarLoad.getValue(0)); 3423 LoadChains.push_back(ScalarLoad.getValue(1)); 3424 } 3425 3426 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 3427 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); 3428 3429 return DAG.getMergeValues({ Value, NewChain }, SL); 3430 } 3431 3432 // FIXME: This relies on each element having a byte size, otherwise the stride 3433 // is 0 and just overwrites the same location. ExpandStore currently expects 3434 // this broken behavior. 3435 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 3436 SelectionDAG &DAG) const { 3437 SDLoc SL(ST); 3438 3439 SDValue Chain = ST->getChain(); 3440 SDValue BasePtr = ST->getBasePtr(); 3441 SDValue Value = ST->getValue(); 3442 EVT StVT = ST->getMemoryVT(); 3443 3444 // The type of the data we want to save 3445 EVT RegVT = Value.getValueType(); 3446 EVT RegSclVT = RegVT.getScalarType(); 3447 3448 // The type of data as saved in memory. 3449 EVT MemSclVT = StVT.getScalarType(); 3450 3451 EVT PtrVT = BasePtr.getValueType(); 3452 3453 // Store Stride in bytes 3454 unsigned Stride = MemSclVT.getSizeInBits() / 8; 3455 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 3456 unsigned NumElem = StVT.getVectorNumElements(); 3457 3458 // Extract each of the elements from the original vector and save them into 3459 // memory individually. 3460 SmallVector<SDValue, 8> Stores; 3461 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 3462 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 3463 DAG.getConstant(Idx, SL, IdxVT)); 3464 3465 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 3466 DAG.getConstant(Idx * Stride, SL, PtrVT)); 3467 3468 // This scalar TruncStore may be illegal, but we legalize it later. 3469 SDValue Store = DAG.getTruncStore( 3470 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 3471 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 3472 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 3473 3474 Stores.push_back(Store); 3475 } 3476 3477 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 3478 } 3479 3480 std::pair<SDValue, SDValue> 3481 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 3482 assert(LD->getAddressingMode() == ISD::UNINDEXED && 3483 "unaligned indexed loads not implemented!"); 3484 SDValue Chain = LD->getChain(); 3485 SDValue Ptr = LD->getBasePtr(); 3486 EVT VT = LD->getValueType(0); 3487 EVT LoadedVT = LD->getMemoryVT(); 3488 SDLoc dl(LD); 3489 if (VT.isFloatingPoint() || VT.isVector()) { 3490 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 3491 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 3492 if (!isOperationLegalOrCustom(ISD::LOAD, intVT)) { 3493 // Scalarize the load and let the individual components be handled. 3494 SDValue Scalarized = scalarizeVectorLoad(LD, DAG); 3495 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); 3496 } 3497 3498 // Expand to a (misaligned) integer load of the same size, 3499 // then bitconvert to floating point or vector. 3500 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 3501 LD->getMemOperand()); 3502 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 3503 if (LoadedVT != VT) 3504 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 3505 ISD::ANY_EXTEND, dl, VT, Result); 3506 3507 return std::make_pair(Result, newLoad.getValue(1)); 3508 } 3509 3510 // Copy the value to a (aligned) stack slot using (unaligned) integer 3511 // loads and stores, then do a (aligned) load from the stack slot. 3512 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 3513 unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8; 3514 unsigned RegBytes = RegVT.getSizeInBits() / 8; 3515 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 3516 3517 // Make sure the stack slot is also aligned for the register type. 3518 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 3519 3520 SmallVector<SDValue, 8> Stores; 3521 SDValue StackPtr = StackBase; 3522 unsigned Offset = 0; 3523 3524 EVT PtrVT = Ptr.getValueType(); 3525 EVT StackPtrVT = StackPtr.getValueType(); 3526 3527 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 3528 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 3529 3530 // Do all but one copies using the full register width. 3531 for (unsigned i = 1; i < NumRegs; i++) { 3532 // Load one integer register's worth from the original location. 3533 SDValue Load = DAG.getLoad( 3534 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 3535 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 3536 LD->getAAInfo()); 3537 // Follow the load with a store to the stack slot. Remember the store. 3538 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr, 3539 MachinePointerInfo())); 3540 // Increment the pointers. 3541 Offset += RegBytes; 3542 Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement); 3543 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, StackPtr, 3544 StackPtrIncrement); 3545 } 3546 3547 // The last copy may be partial. Do an extending load. 3548 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 3549 8 * (LoadedBytes - Offset)); 3550 SDValue Load = 3551 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 3552 LD->getPointerInfo().getWithOffset(Offset), MemVT, 3553 MinAlign(LD->getAlignment(), Offset), 3554 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3555 // Follow the load with a store to the stack slot. Remember the store. 3556 // On big-endian machines this requires a truncating store to ensure 3557 // that the bits end up in the right place. 3558 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr, 3559 MachinePointerInfo(), MemVT)); 3560 3561 // The order of the stores doesn't matter - say it with a TokenFactor. 3562 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 3563 3564 // Finally, perform the original load only redirected to the stack slot. 3565 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 3566 MachinePointerInfo(), LoadedVT); 3567 3568 // Callers expect a MERGE_VALUES node. 3569 return std::make_pair(Load, TF); 3570 } 3571 3572 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 3573 "Unaligned load of unsupported type."); 3574 3575 // Compute the new VT that is half the size of the old one. This is an 3576 // integer MVT. 3577 unsigned NumBits = LoadedVT.getSizeInBits(); 3578 EVT NewLoadedVT; 3579 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 3580 NumBits >>= 1; 3581 3582 unsigned Alignment = LD->getAlignment(); 3583 unsigned IncrementSize = NumBits / 8; 3584 ISD::LoadExtType HiExtType = LD->getExtensionType(); 3585 3586 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 3587 if (HiExtType == ISD::NON_EXTLOAD) 3588 HiExtType = ISD::ZEXTLOAD; 3589 3590 // Load the value in two parts 3591 SDValue Lo, Hi; 3592 if (DAG.getDataLayout().isLittleEndian()) { 3593 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 3594 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 3595 LD->getAAInfo()); 3596 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 3597 DAG.getConstant(IncrementSize, dl, Ptr.getValueType())); 3598 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 3599 LD->getPointerInfo().getWithOffset(IncrementSize), 3600 NewLoadedVT, MinAlign(Alignment, IncrementSize), 3601 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3602 } else { 3603 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 3604 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 3605 LD->getAAInfo()); 3606 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 3607 DAG.getConstant(IncrementSize, dl, Ptr.getValueType())); 3608 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 3609 LD->getPointerInfo().getWithOffset(IncrementSize), 3610 NewLoadedVT, MinAlign(Alignment, IncrementSize), 3611 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3612 } 3613 3614 // aggregate the two parts 3615 SDValue ShiftAmount = 3616 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 3617 DAG.getDataLayout())); 3618 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 3619 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 3620 3621 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 3622 Hi.getValue(1)); 3623 3624 return std::make_pair(Result, TF); 3625 } 3626 3627 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 3628 SelectionDAG &DAG) const { 3629 assert(ST->getAddressingMode() == ISD::UNINDEXED && 3630 "unaligned indexed stores not implemented!"); 3631 SDValue Chain = ST->getChain(); 3632 SDValue Ptr = ST->getBasePtr(); 3633 SDValue Val = ST->getValue(); 3634 EVT VT = Val.getValueType(); 3635 int Alignment = ST->getAlignment(); 3636 3637 SDLoc dl(ST); 3638 if (ST->getMemoryVT().isFloatingPoint() || 3639 ST->getMemoryVT().isVector()) { 3640 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 3641 if (isTypeLegal(intVT)) { 3642 if (!isOperationLegalOrCustom(ISD::STORE, intVT)) { 3643 // Scalarize the store and let the individual components be handled. 3644 SDValue Result = scalarizeVectorStore(ST, DAG); 3645 3646 return Result; 3647 } 3648 // Expand to a bitconvert of the value to the integer type of the 3649 // same size, then a (misaligned) int store. 3650 // FIXME: Does not handle truncating floating point stores! 3651 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 3652 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 3653 Alignment, ST->getMemOperand()->getFlags()); 3654 return Result; 3655 } 3656 // Do a (aligned) store to a stack slot, then copy from the stack slot 3657 // to the final destination using (unaligned) integer loads and stores. 3658 EVT StoredVT = ST->getMemoryVT(); 3659 MVT RegVT = 3660 getRegisterType(*DAG.getContext(), 3661 EVT::getIntegerVT(*DAG.getContext(), 3662 StoredVT.getSizeInBits())); 3663 EVT PtrVT = Ptr.getValueType(); 3664 unsigned StoredBytes = StoredVT.getSizeInBits() / 8; 3665 unsigned RegBytes = RegVT.getSizeInBits() / 8; 3666 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 3667 3668 // Make sure the stack slot is also aligned for the register type. 3669 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 3670 3671 // Perform the original store, only redirected to the stack slot. 3672 SDValue Store = DAG.getTruncStore(Chain, dl, Val, StackPtr, 3673 MachinePointerInfo(), StoredVT); 3674 3675 EVT StackPtrVT = StackPtr.getValueType(); 3676 3677 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 3678 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 3679 SmallVector<SDValue, 8> Stores; 3680 unsigned Offset = 0; 3681 3682 // Do all but one copies using the full register width. 3683 for (unsigned i = 1; i < NumRegs; i++) { 3684 // Load one integer register's worth from the stack slot. 3685 SDValue Load = 3686 DAG.getLoad(RegVT, dl, Store, StackPtr, MachinePointerInfo()); 3687 // Store it to the final location. Remember the store. 3688 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 3689 ST->getPointerInfo().getWithOffset(Offset), 3690 MinAlign(ST->getAlignment(), Offset), 3691 ST->getMemOperand()->getFlags())); 3692 // Increment the pointers. 3693 Offset += RegBytes; 3694 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, 3695 StackPtr, StackPtrIncrement); 3696 Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement); 3697 } 3698 3699 // The last store may be partial. Do a truncating store. On big-endian 3700 // machines this requires an extending load from the stack slot to ensure 3701 // that the bits are in the right place. 3702 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 3703 8 * (StoredBytes - Offset)); 3704 3705 // Load from the stack slot. 3706 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 3707 MachinePointerInfo(), MemVT); 3708 3709 Stores.push_back( 3710 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 3711 ST->getPointerInfo().getWithOffset(Offset), MemVT, 3712 MinAlign(ST->getAlignment(), Offset), 3713 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 3714 // The order of the stores doesn't matter - say it with a TokenFactor. 3715 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 3716 return Result; 3717 } 3718 3719 assert(ST->getMemoryVT().isInteger() && 3720 !ST->getMemoryVT().isVector() && 3721 "Unaligned store of unknown type."); 3722 // Get the half-size VT 3723 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); 3724 int NumBits = NewStoredVT.getSizeInBits(); 3725 int IncrementSize = NumBits / 8; 3726 3727 // Divide the stored value in two parts. 3728 SDValue ShiftAmount = 3729 DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(), 3730 DAG.getDataLayout())); 3731 SDValue Lo = Val; 3732 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 3733 3734 // Store the two parts 3735 SDValue Store1, Store2; 3736 Store1 = DAG.getTruncStore(Chain, dl, 3737 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 3738 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 3739 ST->getMemOperand()->getFlags()); 3740 3741 EVT PtrVT = Ptr.getValueType(); 3742 Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3743 DAG.getConstant(IncrementSize, dl, PtrVT)); 3744 Alignment = MinAlign(Alignment, IncrementSize); 3745 Store2 = DAG.getTruncStore( 3746 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 3747 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 3748 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 3749 3750 SDValue Result = 3751 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 3752 return Result; 3753 } 3754 3755 SDValue 3756 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 3757 const SDLoc &DL, EVT DataVT, 3758 SelectionDAG &DAG, 3759 bool IsCompressedMemory) const { 3760 SDValue Increment; 3761 EVT AddrVT = Addr.getValueType(); 3762 EVT MaskVT = Mask.getValueType(); 3763 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 3764 "Incompatible types of Data and Mask"); 3765 if (IsCompressedMemory) { 3766 // Incrementing the pointer according to number of '1's in the mask. 3767 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 3768 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 3769 if (MaskIntVT.getSizeInBits() < 32) { 3770 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 3771 MaskIntVT = MVT::i32; 3772 } 3773 3774 // Count '1's with POPCNT. 3775 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 3776 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 3777 // Scale is an element size in bytes. 3778 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 3779 AddrVT); 3780 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 3781 } else 3782 Increment = DAG.getConstant(DataVT.getSizeInBits() / 8, DL, AddrVT); 3783 3784 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 3785 } 3786 3787 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 3788 SDValue Idx, 3789 EVT VecVT, 3790 const SDLoc &dl) { 3791 if (isa<ConstantSDNode>(Idx)) 3792 return Idx; 3793 3794 EVT IdxVT = Idx.getValueType(); 3795 unsigned NElts = VecVT.getVectorNumElements(); 3796 if (isPowerOf2_32(NElts)) { 3797 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 3798 Log2_32(NElts)); 3799 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 3800 DAG.getConstant(Imm, dl, IdxVT)); 3801 } 3802 3803 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 3804 DAG.getConstant(NElts - 1, dl, IdxVT)); 3805 } 3806 3807 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 3808 SDValue VecPtr, EVT VecVT, 3809 SDValue Index) const { 3810 SDLoc dl(Index); 3811 // Make sure the index type is big enough to compute in. 3812 Index = DAG.getZExtOrTrunc(Index, dl, getPointerTy(DAG.getDataLayout())); 3813 3814 EVT EltVT = VecVT.getVectorElementType(); 3815 3816 // Calculate the element offset and add it to the pointer. 3817 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 3818 assert(EltSize * 8 == EltVT.getSizeInBits() && 3819 "Converting bits to bytes lost precision"); 3820 3821 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 3822 3823 EVT IdxVT = Index.getValueType(); 3824 3825 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 3826 DAG.getConstant(EltSize, dl, IdxVT)); 3827 return DAG.getNode(ISD::ADD, dl, IdxVT, Index, VecPtr); 3828 } 3829 3830 //===----------------------------------------------------------------------===// 3831 // Implementation of Emulated TLS Model 3832 //===----------------------------------------------------------------------===// 3833 3834 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 3835 SelectionDAG &DAG) const { 3836 // Access to address of TLS varialbe xyz is lowered to a function call: 3837 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 3838 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3839 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 3840 SDLoc dl(GA); 3841 3842 ArgListTy Args; 3843 ArgListEntry Entry; 3844 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 3845 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 3846 StringRef EmuTlsVarName(NameString); 3847 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 3848 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 3849 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 3850 Entry.Ty = VoidPtrType; 3851 Args.push_back(Entry); 3852 3853 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 3854 3855 TargetLowering::CallLoweringInfo CLI(DAG); 3856 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 3857 CLI.setCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 3858 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3859 3860 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 3861 // At last for X86 targets, maybe good for other targets too? 3862 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 3863 MFI.setAdjustsStack(true); // Is this only for X86 target? 3864 MFI.setHasCalls(true); 3865 3866 assert((GA->getOffset() == 0) && 3867 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 3868 return CallResult.first; 3869 } 3870 3871 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 3872 SelectionDAG &DAG) const { 3873 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 3874 if (!isCtlzFast()) 3875 return SDValue(); 3876 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3877 SDLoc dl(Op); 3878 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3879 if (C->isNullValue() && CC == ISD::SETEQ) { 3880 EVT VT = Op.getOperand(0).getValueType(); 3881 SDValue Zext = Op.getOperand(0); 3882 if (VT.bitsLT(MVT::i32)) { 3883 VT = MVT::i32; 3884 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 3885 } 3886 unsigned Log2b = Log2_32(VT.getSizeInBits()); 3887 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 3888 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 3889 DAG.getConstant(Log2b, dl, MVT::i32)); 3890 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 3891 } 3892 } 3893 return SDValue(); 3894 } 3895