1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // Conservatively require the attributes of the call to match those of
56   // the return. Ignore NoAlias and NonNull because they don't affect the
57   // call sequence.
58   AttributeList CallerAttrs = F.getAttributes();
59   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
60           .removeAttribute(Attribute::NoAlias)
61           .removeAttribute(Attribute::NonNull)
62           .hasAttributes())
63     return false;
64 
65   // It's not safe to eliminate the sign / zero extension of the return value.
66   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
67       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
68     return false;
69 
70   // Check if the only use is a function return node.
71   return isUsedByReturnOnly(Node, Chain);
72 }
73 
74 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
75     const uint32_t *CallerPreservedMask,
76     const SmallVectorImpl<CCValAssign> &ArgLocs,
77     const SmallVectorImpl<SDValue> &OutVals) const {
78   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
79     const CCValAssign &ArgLoc = ArgLocs[I];
80     if (!ArgLoc.isRegLoc())
81       continue;
82     Register Reg = ArgLoc.getLocReg();
83     // Only look at callee saved registers.
84     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
85       continue;
86     // Check that we pass the value used for the caller.
87     // (We look for a CopyFromReg reading a virtual register that is used
88     //  for the function live-in value of register Reg)
89     SDValue Value = OutVals[I];
90     if (Value->getOpcode() != ISD::CopyFromReg)
91       return false;
92     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
93     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
94       return false;
95   }
96   return true;
97 }
98 
99 /// Set CallLoweringInfo attribute flags based on a call instruction
100 /// and called function attributes.
101 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
102                                                      unsigned ArgIdx) {
103   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
104   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
105   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
106   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
107   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
108   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
109   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
110   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
111   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
112   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
113   Alignment = Call->getParamAlignment(ArgIdx);
114   ByValType = nullptr;
115   if (Call->paramHasAttr(ArgIdx, Attribute::ByVal))
116     ByValType = Call->getParamByValType(ArgIdx);
117 }
118 
119 /// Generate a libcall taking the given operands as arguments and returning a
120 /// result of type RetVT.
121 std::pair<SDValue, SDValue>
122 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
123                             ArrayRef<SDValue> Ops,
124                             MakeLibCallOptions CallOptions,
125                             const SDLoc &dl) const {
126   TargetLowering::ArgListTy Args;
127   Args.reserve(Ops.size());
128 
129   TargetLowering::ArgListEntry Entry;
130   for (unsigned i = 0; i < Ops.size(); ++i) {
131     SDValue NewOp = Ops[i];
132     Entry.Node = NewOp;
133     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
134     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
135                                                  CallOptions.IsSExt);
136     Entry.IsZExt = !Entry.IsSExt;
137 
138     if (CallOptions.IsSoften &&
139         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
140       Entry.IsSExt = Entry.IsZExt = false;
141     }
142     Args.push_back(Entry);
143   }
144 
145   if (LC == RTLIB::UNKNOWN_LIBCALL)
146     report_fatal_error("Unsupported library call operation!");
147   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
148                                          getPointerTy(DAG.getDataLayout()));
149 
150   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
151   TargetLowering::CallLoweringInfo CLI(DAG);
152   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
153   bool zeroExtend = !signExtend;
154 
155   if (CallOptions.IsSoften &&
156       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
157     signExtend = zeroExtend = false;
158   }
159 
160   CLI.setDebugLoc(dl)
161       .setChain(DAG.getEntryNode())
162       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
163       .setNoReturn(CallOptions.DoesNotReturn)
164       .setDiscardResult(!CallOptions.IsReturnValueUsed)
165       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
166       .setSExtResult(signExtend)
167       .setZExtResult(zeroExtend);
168   return LowerCallTo(CLI);
169 }
170 
171 bool
172 TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps,
173                                          unsigned Limit, uint64_t Size,
174                                          unsigned DstAlign, unsigned SrcAlign,
175                                          bool IsMemset,
176                                          bool ZeroMemset,
177                                          bool MemcpyStrSrc,
178                                          bool AllowOverlap,
179                                          unsigned DstAS, unsigned SrcAS,
180                                          const AttributeList &FuncAttributes) const {
181   // If 'SrcAlign' is zero, that means the memory operation does not need to
182   // load the value, i.e. memset or memcpy from constant string. Otherwise,
183   // it's the inferred alignment of the source. 'DstAlign', on the other hand,
184   // is the specified alignment of the memory operation. If it is zero, that
185   // means it's possible to change the alignment of the destination.
186   // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
187   // not need to be loaded.
188   if (!(SrcAlign == 0 || SrcAlign >= DstAlign))
189     return false;
190 
191   EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign,
192                                IsMemset, ZeroMemset, MemcpyStrSrc,
193                                FuncAttributes);
194 
195   if (VT == MVT::Other) {
196     // Use the largest integer type whose alignment constraints are satisfied.
197     // We only need to check DstAlign here as SrcAlign is always greater or
198     // equal to DstAlign (or zero).
199     VT = MVT::i64;
200     while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
201            !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
202       VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
203     assert(VT.isInteger());
204 
205     // Find the largest legal integer type.
206     MVT LVT = MVT::i64;
207     while (!isTypeLegal(LVT))
208       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
209     assert(LVT.isInteger());
210 
211     // If the type we've chosen is larger than the largest legal integer type
212     // then use that instead.
213     if (VT.bitsGT(LVT))
214       VT = LVT;
215   }
216 
217   unsigned NumMemOps = 0;
218   while (Size != 0) {
219     unsigned VTSize = VT.getSizeInBits() / 8;
220     while (VTSize > Size) {
221       // For now, only use non-vector load / store's for the left-over pieces.
222       EVT NewVT = VT;
223       unsigned NewVTSize;
224 
225       bool Found = false;
226       if (VT.isVector() || VT.isFloatingPoint()) {
227         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
228         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
229             isSafeMemOpType(NewVT.getSimpleVT()))
230           Found = true;
231         else if (NewVT == MVT::i64 &&
232                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
233                  isSafeMemOpType(MVT::f64)) {
234           // i64 is usually not legal on 32-bit targets, but f64 may be.
235           NewVT = MVT::f64;
236           Found = true;
237         }
238       }
239 
240       if (!Found) {
241         do {
242           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
243           if (NewVT == MVT::i8)
244             break;
245         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
246       }
247       NewVTSize = NewVT.getSizeInBits() / 8;
248 
249       // If the new VT cannot cover all of the remaining bits, then consider
250       // issuing a (or a pair of) unaligned and overlapping load / store.
251       bool Fast;
252       if (NumMemOps && AllowOverlap && NewVTSize < Size &&
253           allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign,
254                                          MachineMemOperand::MONone, &Fast) &&
255           Fast)
256         VTSize = Size;
257       else {
258         VT = NewVT;
259         VTSize = NewVTSize;
260       }
261     }
262 
263     if (++NumMemOps > Limit)
264       return false;
265 
266     MemOps.push_back(VT);
267     Size -= VTSize;
268   }
269 
270   return true;
271 }
272 
273 /// Soften the operands of a comparison. This code is shared among BR_CC,
274 /// SELECT_CC, and SETCC handlers.
275 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
276                                          SDValue &NewLHS, SDValue &NewRHS,
277                                          ISD::CondCode &CCCode,
278                                          const SDLoc &dl, const SDValue OldLHS,
279                                          const SDValue OldRHS) const {
280   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
281          && "Unsupported setcc type!");
282 
283   // Expand into one or more soft-fp libcall(s).
284   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
285   bool ShouldInvertCC = false;
286   switch (CCCode) {
287   case ISD::SETEQ:
288   case ISD::SETOEQ:
289     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
290           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
291           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
292     break;
293   case ISD::SETNE:
294   case ISD::SETUNE:
295     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
296           (VT == MVT::f64) ? RTLIB::UNE_F64 :
297           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
298     break;
299   case ISD::SETGE:
300   case ISD::SETOGE:
301     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
302           (VT == MVT::f64) ? RTLIB::OGE_F64 :
303           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
304     break;
305   case ISD::SETLT:
306   case ISD::SETOLT:
307     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
308           (VT == MVT::f64) ? RTLIB::OLT_F64 :
309           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
310     break;
311   case ISD::SETLE:
312   case ISD::SETOLE:
313     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
314           (VT == MVT::f64) ? RTLIB::OLE_F64 :
315           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
316     break;
317   case ISD::SETGT:
318   case ISD::SETOGT:
319     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
320           (VT == MVT::f64) ? RTLIB::OGT_F64 :
321           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
322     break;
323   case ISD::SETUO:
324     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
325           (VT == MVT::f64) ? RTLIB::UO_F64 :
326           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
327     break;
328   case ISD::SETO:
329     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
330           (VT == MVT::f64) ? RTLIB::O_F64 :
331           (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
332     break;
333   case ISD::SETONE:
334     // SETONE = SETOLT | SETOGT
335     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
336           (VT == MVT::f64) ? RTLIB::OLT_F64 :
337           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
338     LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
339           (VT == MVT::f64) ? RTLIB::OGT_F64 :
340           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
341     break;
342   case ISD::SETUEQ:
343     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
344           (VT == MVT::f64) ? RTLIB::UO_F64 :
345           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
346     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
347           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
348           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
349     break;
350   default:
351     // Invert CC for unordered comparisons
352     ShouldInvertCC = true;
353     switch (CCCode) {
354     case ISD::SETULT:
355       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
356             (VT == MVT::f64) ? RTLIB::OGE_F64 :
357             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
358       break;
359     case ISD::SETULE:
360       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
361             (VT == MVT::f64) ? RTLIB::OGT_F64 :
362             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
363       break;
364     case ISD::SETUGT:
365       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
366             (VT == MVT::f64) ? RTLIB::OLE_F64 :
367             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
368       break;
369     case ISD::SETUGE:
370       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
371             (VT == MVT::f64) ? RTLIB::OLT_F64 :
372             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
373       break;
374     default: llvm_unreachable("Do not know how to soften this setcc!");
375     }
376   }
377 
378   // Use the target specific return value for comparions lib calls.
379   EVT RetVT = getCmpLibcallReturnType();
380   SDValue Ops[2] = {NewLHS, NewRHS};
381   TargetLowering::MakeLibCallOptions CallOptions;
382   EVT OpsVT[2] = { OldLHS.getValueType(),
383                    OldRHS.getValueType() };
384   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
385   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl).first;
386   NewRHS = DAG.getConstant(0, dl, RetVT);
387 
388   CCCode = getCmpLibcallCC(LC1);
389   if (ShouldInvertCC)
390     CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
391 
392   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
393     SDValue Tmp = DAG.getNode(
394         ISD::SETCC, dl,
395         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
396         NewLHS, NewRHS, DAG.getCondCode(CCCode));
397     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl).first;
398     NewLHS = DAG.getNode(
399         ISD::SETCC, dl,
400         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
401         NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
402     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
403     NewRHS = SDValue();
404   }
405 }
406 
407 /// Return the entry encoding for a jump table in the current function. The
408 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
409 unsigned TargetLowering::getJumpTableEncoding() const {
410   // In non-pic modes, just use the address of a block.
411   if (!isPositionIndependent())
412     return MachineJumpTableInfo::EK_BlockAddress;
413 
414   // In PIC mode, if the target supports a GPRel32 directive, use it.
415   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
416     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
417 
418   // Otherwise, use a label difference.
419   return MachineJumpTableInfo::EK_LabelDifference32;
420 }
421 
422 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
423                                                  SelectionDAG &DAG) const {
424   // If our PIC model is GP relative, use the global offset table as the base.
425   unsigned JTEncoding = getJumpTableEncoding();
426 
427   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
428       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
429     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
430 
431   return Table;
432 }
433 
434 /// This returns the relocation base for the given PIC jumptable, the same as
435 /// getPICJumpTableRelocBase, but as an MCExpr.
436 const MCExpr *
437 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
438                                              unsigned JTI,MCContext &Ctx) const{
439   // The normal PIC reloc base is the label at the start of the jump table.
440   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
441 }
442 
443 bool
444 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
445   const TargetMachine &TM = getTargetMachine();
446   const GlobalValue *GV = GA->getGlobal();
447 
448   // If the address is not even local to this DSO we will have to load it from
449   // a got and then add the offset.
450   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
451     return false;
452 
453   // If the code is position independent we will have to add a base register.
454   if (isPositionIndependent())
455     return false;
456 
457   // Otherwise we can do it.
458   return true;
459 }
460 
461 //===----------------------------------------------------------------------===//
462 //  Optimization Methods
463 //===----------------------------------------------------------------------===//
464 
465 /// If the specified instruction has a constant integer operand and there are
466 /// bits set in that constant that are not demanded, then clear those bits and
467 /// return true.
468 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
469                                             TargetLoweringOpt &TLO) const {
470   SDLoc DL(Op);
471   unsigned Opcode = Op.getOpcode();
472 
473   // Do target-specific constant optimization.
474   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
475     return TLO.New.getNode();
476 
477   // FIXME: ISD::SELECT, ISD::SELECT_CC
478   switch (Opcode) {
479   default:
480     break;
481   case ISD::XOR:
482   case ISD::AND:
483   case ISD::OR: {
484     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
485     if (!Op1C)
486       return false;
487 
488     // If this is a 'not' op, don't touch it because that's a canonical form.
489     const APInt &C = Op1C->getAPIntValue();
490     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
491       return false;
492 
493     if (!C.isSubsetOf(Demanded)) {
494       EVT VT = Op.getValueType();
495       SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT);
496       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
497       return TLO.CombineTo(Op, NewOp);
498     }
499 
500     break;
501   }
502   }
503 
504   return false;
505 }
506 
507 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
508 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
509 /// generalized for targets with other types of implicit widening casts.
510 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
511                                       const APInt &Demanded,
512                                       TargetLoweringOpt &TLO) const {
513   assert(Op.getNumOperands() == 2 &&
514          "ShrinkDemandedOp only supports binary operators!");
515   assert(Op.getNode()->getNumValues() == 1 &&
516          "ShrinkDemandedOp only supports nodes with one result!");
517 
518   SelectionDAG &DAG = TLO.DAG;
519   SDLoc dl(Op);
520 
521   // Early return, as this function cannot handle vector types.
522   if (Op.getValueType().isVector())
523     return false;
524 
525   // Don't do this if the node has another user, which may require the
526   // full value.
527   if (!Op.getNode()->hasOneUse())
528     return false;
529 
530   // Search for the smallest integer type with free casts to and from
531   // Op's type. For expedience, just check power-of-2 integer types.
532   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
533   unsigned DemandedSize = Demanded.getActiveBits();
534   unsigned SmallVTBits = DemandedSize;
535   if (!isPowerOf2_32(SmallVTBits))
536     SmallVTBits = NextPowerOf2(SmallVTBits);
537   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
538     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
539     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
540         TLI.isZExtFree(SmallVT, Op.getValueType())) {
541       // We found a type with free casts.
542       SDValue X = DAG.getNode(
543           Op.getOpcode(), dl, SmallVT,
544           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
545           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
546       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
547       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
548       return TLO.CombineTo(Op, Z);
549     }
550   }
551   return false;
552 }
553 
554 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
555                                           DAGCombinerInfo &DCI) const {
556   SelectionDAG &DAG = DCI.DAG;
557   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
558                         !DCI.isBeforeLegalizeOps());
559   KnownBits Known;
560 
561   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
562   if (Simplified) {
563     DCI.AddToWorklist(Op.getNode());
564     DCI.CommitTargetLoweringOpt(TLO);
565   }
566   return Simplified;
567 }
568 
569 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
570                                           KnownBits &Known,
571                                           TargetLoweringOpt &TLO,
572                                           unsigned Depth,
573                                           bool AssumeSingleUse) const {
574   EVT VT = Op.getValueType();
575   APInt DemandedElts = VT.isVector()
576                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
577                            : APInt(1, 1);
578   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
579                               AssumeSingleUse);
580 }
581 
582 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
583 // TODO: Under what circumstances can we create nodes? Constant folding?
584 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
585     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
586     SelectionDAG &DAG, unsigned Depth) const {
587   // Limit search depth.
588   if (Depth >= SelectionDAG::MaxRecursionDepth)
589     return SDValue();
590 
591   // Ignore UNDEFs.
592   if (Op.isUndef())
593     return SDValue();
594 
595   // Not demanding any bits/elts from Op.
596   if (DemandedBits == 0 || DemandedElts == 0)
597     return DAG.getUNDEF(Op.getValueType());
598 
599   unsigned NumElts = DemandedElts.getBitWidth();
600   KnownBits LHSKnown, RHSKnown;
601   switch (Op.getOpcode()) {
602   case ISD::BITCAST: {
603     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
604     EVT SrcVT = Src.getValueType();
605     EVT DstVT = Op.getValueType();
606     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
607     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
608 
609     if (NumSrcEltBits == NumDstEltBits)
610       if (SDValue V = SimplifyMultipleUseDemandedBits(
611               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
612         return DAG.getBitcast(DstVT, V);
613 
614     // TODO - bigendian once we have test coverage.
615     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
616         DAG.getDataLayout().isLittleEndian()) {
617       unsigned Scale = NumDstEltBits / NumSrcEltBits;
618       unsigned NumSrcElts = SrcVT.getVectorNumElements();
619       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
620       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
621       for (unsigned i = 0; i != Scale; ++i) {
622         unsigned Offset = i * NumSrcEltBits;
623         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
624         if (!Sub.isNullValue()) {
625           DemandedSrcBits |= Sub;
626           for (unsigned j = 0; j != NumElts; ++j)
627             if (DemandedElts[j])
628               DemandedSrcElts.setBit((j * Scale) + i);
629         }
630       }
631 
632       if (SDValue V = SimplifyMultipleUseDemandedBits(
633               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
634         return DAG.getBitcast(DstVT, V);
635     }
636 
637     // TODO - bigendian once we have test coverage.
638     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
639         DAG.getDataLayout().isLittleEndian()) {
640       unsigned Scale = NumSrcEltBits / NumDstEltBits;
641       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
642       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
643       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
644       for (unsigned i = 0; i != NumElts; ++i)
645         if (DemandedElts[i]) {
646           unsigned Offset = (i % Scale) * NumDstEltBits;
647           DemandedSrcBits.insertBits(DemandedBits, Offset);
648           DemandedSrcElts.setBit(i / Scale);
649         }
650 
651       if (SDValue V = SimplifyMultipleUseDemandedBits(
652               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
653         return DAG.getBitcast(DstVT, V);
654     }
655 
656     break;
657   }
658   case ISD::AND: {
659     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
660     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
661 
662     // If all of the demanded bits are known 1 on one side, return the other.
663     // These bits cannot contribute to the result of the 'and' in this
664     // context.
665     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
666       return Op.getOperand(0);
667     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
668       return Op.getOperand(1);
669     break;
670   }
671   case ISD::OR: {
672     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
673     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
674 
675     // If all of the demanded bits are known zero on one side, return the
676     // other.  These bits cannot contribute to the result of the 'or' in this
677     // context.
678     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
679       return Op.getOperand(0);
680     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
681       return Op.getOperand(1);
682     break;
683   }
684   case ISD::XOR: {
685     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
686     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
687 
688     // If all of the demanded bits are known zero on one side, return the
689     // other.
690     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
691       return Op.getOperand(0);
692     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
693       return Op.getOperand(1);
694     break;
695   }
696   case ISD::SIGN_EXTEND_INREG: {
697     // If none of the extended bits are demanded, eliminate the sextinreg.
698     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
699     if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits())
700       return Op.getOperand(0);
701     break;
702   }
703   case ISD::INSERT_VECTOR_ELT: {
704     // If we don't demand the inserted element, return the base vector.
705     SDValue Vec = Op.getOperand(0);
706     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
707     EVT VecVT = Vec.getValueType();
708     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
709         !DemandedElts[CIdx->getZExtValue()])
710       return Vec;
711     break;
712   }
713   case ISD::VECTOR_SHUFFLE: {
714     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
715 
716     // If all the demanded elts are from one operand and are inline,
717     // then we can use the operand directly.
718     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
719     for (unsigned i = 0; i != NumElts; ++i) {
720       int M = ShuffleMask[i];
721       if (M < 0 || !DemandedElts[i])
722         continue;
723       AllUndef = false;
724       IdentityLHS &= (M == (int)i);
725       IdentityRHS &= ((M - NumElts) == i);
726     }
727 
728     if (AllUndef)
729       return DAG.getUNDEF(Op.getValueType());
730     if (IdentityLHS)
731       return Op.getOperand(0);
732     if (IdentityRHS)
733       return Op.getOperand(1);
734     break;
735   }
736   default:
737     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
738       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
739               Op, DemandedBits, DemandedElts, DAG, Depth))
740         return V;
741     break;
742   }
743   return SDValue();
744 }
745 
746 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
747 /// result of Op are ever used downstream. If we can use this information to
748 /// simplify Op, create a new simplified DAG node and return true, returning the
749 /// original and new nodes in Old and New. Otherwise, analyze the expression and
750 /// return a mask of Known bits for the expression (used to simplify the
751 /// caller).  The Known bits may only be accurate for those bits in the
752 /// OriginalDemandedBits and OriginalDemandedElts.
753 bool TargetLowering::SimplifyDemandedBits(
754     SDValue Op, const APInt &OriginalDemandedBits,
755     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
756     unsigned Depth, bool AssumeSingleUse) const {
757   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
758   assert(Op.getScalarValueSizeInBits() == BitWidth &&
759          "Mask size mismatches value type size!");
760 
761   unsigned NumElts = OriginalDemandedElts.getBitWidth();
762   assert((!Op.getValueType().isVector() ||
763           NumElts == Op.getValueType().getVectorNumElements()) &&
764          "Unexpected vector size");
765 
766   APInt DemandedBits = OriginalDemandedBits;
767   APInt DemandedElts = OriginalDemandedElts;
768   SDLoc dl(Op);
769   auto &DL = TLO.DAG.getDataLayout();
770 
771   // Don't know anything.
772   Known = KnownBits(BitWidth);
773 
774   // Undef operand.
775   if (Op.isUndef())
776     return false;
777 
778   if (Op.getOpcode() == ISD::Constant) {
779     // We know all of the bits for a constant!
780     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
781     Known.Zero = ~Known.One;
782     return false;
783   }
784 
785   // Other users may use these bits.
786   EVT VT = Op.getValueType();
787   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
788     if (Depth != 0) {
789       // If not at the root, Just compute the Known bits to
790       // simplify things downstream.
791       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
792       return false;
793     }
794     // If this is the root being simplified, allow it to have multiple uses,
795     // just set the DemandedBits/Elts to all bits.
796     DemandedBits = APInt::getAllOnesValue(BitWidth);
797     DemandedElts = APInt::getAllOnesValue(NumElts);
798   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
799     // Not demanding any bits/elts from Op.
800     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
801   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
802     // Limit search depth.
803     return false;
804   }
805 
806   KnownBits Known2, KnownOut;
807   switch (Op.getOpcode()) {
808   case ISD::TargetConstant:
809     llvm_unreachable("Can't simplify this node");
810   case ISD::SCALAR_TO_VECTOR: {
811     if (!DemandedElts[0])
812       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
813 
814     KnownBits SrcKnown;
815     SDValue Src = Op.getOperand(0);
816     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
817     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
818     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
819       return true;
820     Known = SrcKnown.zextOrTrunc(BitWidth, false);
821     break;
822   }
823   case ISD::BUILD_VECTOR:
824     // Collect the known bits that are shared by every demanded element.
825     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
826     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
827     return false; // Don't fall through, will infinitely loop.
828   case ISD::LOAD: {
829     LoadSDNode *LD = cast<LoadSDNode>(Op);
830     if (getTargetConstantFromLoad(LD)) {
831       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
832       return false; // Don't fall through, will infinitely loop.
833     }
834     break;
835   }
836   case ISD::INSERT_VECTOR_ELT: {
837     SDValue Vec = Op.getOperand(0);
838     SDValue Scl = Op.getOperand(1);
839     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
840     EVT VecVT = Vec.getValueType();
841 
842     // If index isn't constant, assume we need all vector elements AND the
843     // inserted element.
844     APInt DemandedVecElts(DemandedElts);
845     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
846       unsigned Idx = CIdx->getZExtValue();
847       DemandedVecElts.clearBit(Idx);
848 
849       // Inserted element is not required.
850       if (!DemandedElts[Idx])
851         return TLO.CombineTo(Op, Vec);
852     }
853 
854     KnownBits KnownScl;
855     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
856     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
857     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
858       return true;
859 
860     Known = KnownScl.zextOrTrunc(BitWidth, false);
861 
862     KnownBits KnownVec;
863     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
864                              Depth + 1))
865       return true;
866 
867     if (!!DemandedVecElts) {
868       Known.One &= KnownVec.One;
869       Known.Zero &= KnownVec.Zero;
870     }
871 
872     return false;
873   }
874   case ISD::INSERT_SUBVECTOR: {
875     SDValue Base = Op.getOperand(0);
876     SDValue Sub = Op.getOperand(1);
877     EVT SubVT = Sub.getValueType();
878     unsigned NumSubElts = SubVT.getVectorNumElements();
879 
880     // If index isn't constant, assume we need the original demanded base
881     // elements and ALL the inserted subvector elements.
882     APInt BaseElts = DemandedElts;
883     APInt SubElts = APInt::getAllOnesValue(NumSubElts);
884     if (isa<ConstantSDNode>(Op.getOperand(2))) {
885       const APInt &Idx = Op.getConstantOperandAPInt(2);
886       if (Idx.ule(NumElts - NumSubElts)) {
887         unsigned SubIdx = Idx.getZExtValue();
888         SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
889         BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
890       }
891     }
892 
893     KnownBits KnownSub, KnownBase;
894     if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO,
895                              Depth + 1))
896       return true;
897     if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO,
898                              Depth + 1))
899       return true;
900 
901     Known.Zero.setAllBits();
902     Known.One.setAllBits();
903     if (!!SubElts) {
904         Known.One &= KnownSub.One;
905         Known.Zero &= KnownSub.Zero;
906     }
907     if (!!BaseElts) {
908         Known.One &= KnownBase.One;
909         Known.Zero &= KnownBase.Zero;
910     }
911     break;
912   }
913   case ISD::EXTRACT_SUBVECTOR: {
914     // If index isn't constant, assume we need all the source vector elements.
915     SDValue Src = Op.getOperand(0);
916     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
917     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
918     APInt SrcElts = APInt::getAllOnesValue(NumSrcElts);
919     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
920       // Offset the demanded elts by the subvector index.
921       uint64_t Idx = SubIdx->getZExtValue();
922       SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
923     }
924     if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1))
925       return true;
926     break;
927   }
928   case ISD::CONCAT_VECTORS: {
929     Known.Zero.setAllBits();
930     Known.One.setAllBits();
931     EVT SubVT = Op.getOperand(0).getValueType();
932     unsigned NumSubVecs = Op.getNumOperands();
933     unsigned NumSubElts = SubVT.getVectorNumElements();
934     for (unsigned i = 0; i != NumSubVecs; ++i) {
935       APInt DemandedSubElts =
936           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
937       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
938                                Known2, TLO, Depth + 1))
939         return true;
940       // Known bits are shared by every demanded subvector element.
941       if (!!DemandedSubElts) {
942         Known.One &= Known2.One;
943         Known.Zero &= Known2.Zero;
944       }
945     }
946     break;
947   }
948   case ISD::VECTOR_SHUFFLE: {
949     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
950 
951     // Collect demanded elements from shuffle operands..
952     APInt DemandedLHS(NumElts, 0);
953     APInt DemandedRHS(NumElts, 0);
954     for (unsigned i = 0; i != NumElts; ++i) {
955       if (!DemandedElts[i])
956         continue;
957       int M = ShuffleMask[i];
958       if (M < 0) {
959         // For UNDEF elements, we don't know anything about the common state of
960         // the shuffle result.
961         DemandedLHS.clearAllBits();
962         DemandedRHS.clearAllBits();
963         break;
964       }
965       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
966       if (M < (int)NumElts)
967         DemandedLHS.setBit(M);
968       else
969         DemandedRHS.setBit(M - NumElts);
970     }
971 
972     if (!!DemandedLHS || !!DemandedRHS) {
973       SDValue Op0 = Op.getOperand(0);
974       SDValue Op1 = Op.getOperand(1);
975 
976       Known.Zero.setAllBits();
977       Known.One.setAllBits();
978       if (!!DemandedLHS) {
979         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
980                                  Depth + 1))
981           return true;
982         Known.One &= Known2.One;
983         Known.Zero &= Known2.Zero;
984       }
985       if (!!DemandedRHS) {
986         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
987                                  Depth + 1))
988           return true;
989         Known.One &= Known2.One;
990         Known.Zero &= Known2.Zero;
991       }
992 
993       // Attempt to avoid multi-use ops if we don't need anything from them.
994       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
995           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
996       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
997           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
998       if (DemandedOp0 || DemandedOp1) {
999         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1000         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1001         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1002         return TLO.CombineTo(Op, NewOp);
1003       }
1004     }
1005     break;
1006   }
1007   case ISD::AND: {
1008     SDValue Op0 = Op.getOperand(0);
1009     SDValue Op1 = Op.getOperand(1);
1010 
1011     // If the RHS is a constant, check to see if the LHS would be zero without
1012     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1013     // simplify the LHS, here we're using information from the LHS to simplify
1014     // the RHS.
1015     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1016       // Do not increment Depth here; that can cause an infinite loop.
1017       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1018       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1019       if ((LHSKnown.Zero & DemandedBits) ==
1020           (~RHSC->getAPIntValue() & DemandedBits))
1021         return TLO.CombineTo(Op, Op0);
1022 
1023       // If any of the set bits in the RHS are known zero on the LHS, shrink
1024       // the constant.
1025       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
1026         return true;
1027 
1028       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1029       // constant, but if this 'and' is only clearing bits that were just set by
1030       // the xor, then this 'and' can be eliminated by shrinking the mask of
1031       // the xor. For example, for a 32-bit X:
1032       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1033       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1034           LHSKnown.One == ~RHSC->getAPIntValue()) {
1035         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1036         return TLO.CombineTo(Op, Xor);
1037       }
1038     }
1039 
1040     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1041                              Depth + 1))
1042       return true;
1043     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1044     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1045                              Known2, TLO, Depth + 1))
1046       return true;
1047     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1048 
1049     // Attempt to avoid multi-use ops if we don't need anything from them.
1050     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1051       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1052           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1053       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1054           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1055       if (DemandedOp0 || DemandedOp1) {
1056         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1057         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1058         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1059         return TLO.CombineTo(Op, NewOp);
1060       }
1061     }
1062 
1063     // If all of the demanded bits are known one on one side, return the other.
1064     // These bits cannot contribute to the result of the 'and'.
1065     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1066       return TLO.CombineTo(Op, Op0);
1067     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1068       return TLO.CombineTo(Op, Op1);
1069     // If all of the demanded bits in the inputs are known zeros, return zero.
1070     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1071       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1072     // If the RHS is a constant, see if we can simplify it.
1073     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
1074       return true;
1075     // If the operation can be done in a smaller type, do so.
1076     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1077       return true;
1078 
1079     // Output known-1 bits are only known if set in both the LHS & RHS.
1080     Known.One &= Known2.One;
1081     // Output known-0 are known to be clear if zero in either the LHS | RHS.
1082     Known.Zero |= Known2.Zero;
1083     break;
1084   }
1085   case ISD::OR: {
1086     SDValue Op0 = Op.getOperand(0);
1087     SDValue Op1 = Op.getOperand(1);
1088 
1089     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1090                              Depth + 1))
1091       return true;
1092     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1093     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1094                              Known2, TLO, Depth + 1))
1095       return true;
1096     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1097 
1098     // Attempt to avoid multi-use ops if we don't need anything from them.
1099     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1100       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1101           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1102       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1103           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1104       if (DemandedOp0 || DemandedOp1) {
1105         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1106         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1107         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1108         return TLO.CombineTo(Op, NewOp);
1109       }
1110     }
1111 
1112     // If all of the demanded bits are known zero on one side, return the other.
1113     // These bits cannot contribute to the result of the 'or'.
1114     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1115       return TLO.CombineTo(Op, Op0);
1116     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1117       return TLO.CombineTo(Op, Op1);
1118     // If the RHS is a constant, see if we can simplify it.
1119     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1120       return true;
1121     // If the operation can be done in a smaller type, do so.
1122     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1123       return true;
1124 
1125     // Output known-0 bits are only known if clear in both the LHS & RHS.
1126     Known.Zero &= Known2.Zero;
1127     // Output known-1 are known to be set if set in either the LHS | RHS.
1128     Known.One |= Known2.One;
1129     break;
1130   }
1131   case ISD::XOR: {
1132     SDValue Op0 = Op.getOperand(0);
1133     SDValue Op1 = Op.getOperand(1);
1134 
1135     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1136                              Depth + 1))
1137       return true;
1138     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1139     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1140                              Depth + 1))
1141       return true;
1142     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1143 
1144     // Attempt to avoid multi-use ops if we don't need anything from them.
1145     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1146       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1147           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1148       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1149           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1150       if (DemandedOp0 || DemandedOp1) {
1151         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1152         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1153         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1154         return TLO.CombineTo(Op, NewOp);
1155       }
1156     }
1157 
1158     // If all of the demanded bits are known zero on one side, return the other.
1159     // These bits cannot contribute to the result of the 'xor'.
1160     if (DemandedBits.isSubsetOf(Known.Zero))
1161       return TLO.CombineTo(Op, Op0);
1162     if (DemandedBits.isSubsetOf(Known2.Zero))
1163       return TLO.CombineTo(Op, Op1);
1164     // If the operation can be done in a smaller type, do so.
1165     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1166       return true;
1167 
1168     // If all of the unknown bits are known to be zero on one side or the other
1169     // (but not both) turn this into an *inclusive* or.
1170     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1171     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1172       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1173 
1174     // Output known-0 bits are known if clear or set in both the LHS & RHS.
1175     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
1176     // Output known-1 are known to be set if set in only one of the LHS, RHS.
1177     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1178 
1179     if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
1180       // If one side is a constant, and all of the known set bits on the other
1181       // side are also set in the constant, turn this into an AND, as we know
1182       // the bits will be cleared.
1183       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1184       // NB: it is okay if more bits are known than are requested
1185       if (C->getAPIntValue() == Known2.One) {
1186         SDValue ANDC =
1187             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1188         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1189       }
1190 
1191       // If the RHS is a constant, see if we can change it. Don't alter a -1
1192       // constant because that's a 'not' op, and that is better for combining
1193       // and codegen.
1194       if (!C->isAllOnesValue()) {
1195         if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
1196           // We're flipping all demanded bits. Flip the undemanded bits too.
1197           SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1198           return TLO.CombineTo(Op, New);
1199         }
1200         // If we can't turn this into a 'not', try to shrink the constant.
1201         if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1202           return true;
1203       }
1204     }
1205 
1206     Known = std::move(KnownOut);
1207     break;
1208   }
1209   case ISD::SELECT:
1210     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1211                              Depth + 1))
1212       return true;
1213     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1214                              Depth + 1))
1215       return true;
1216     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1217     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1218 
1219     // If the operands are constants, see if we can simplify them.
1220     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1221       return true;
1222 
1223     // Only known if known in both the LHS and RHS.
1224     Known.One &= Known2.One;
1225     Known.Zero &= Known2.Zero;
1226     break;
1227   case ISD::SELECT_CC:
1228     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1229                              Depth + 1))
1230       return true;
1231     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1232                              Depth + 1))
1233       return true;
1234     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1235     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1236 
1237     // If the operands are constants, see if we can simplify them.
1238     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1239       return true;
1240 
1241     // Only known if known in both the LHS and RHS.
1242     Known.One &= Known2.One;
1243     Known.Zero &= Known2.Zero;
1244     break;
1245   case ISD::SETCC: {
1246     SDValue Op0 = Op.getOperand(0);
1247     SDValue Op1 = Op.getOperand(1);
1248     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1249     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1250     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1251     // -1, we may be able to bypass the setcc.
1252     if (DemandedBits.isSignMask() &&
1253         Op0.getScalarValueSizeInBits() == BitWidth &&
1254         getBooleanContents(VT) ==
1255             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1256       // If we're testing X < 0, then this compare isn't needed - just use X!
1257       // FIXME: We're limiting to integer types here, but this should also work
1258       // if we don't care about FP signed-zero. The use of SETLT with FP means
1259       // that we don't care about NaNs.
1260       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1261           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1262         return TLO.CombineTo(Op, Op0);
1263 
1264       // TODO: Should we check for other forms of sign-bit comparisons?
1265       // Examples: X <= -1, X >= 0
1266     }
1267     if (getBooleanContents(Op0.getValueType()) ==
1268             TargetLowering::ZeroOrOneBooleanContent &&
1269         BitWidth > 1)
1270       Known.Zero.setBitsFrom(1);
1271     break;
1272   }
1273   case ISD::SHL: {
1274     SDValue Op0 = Op.getOperand(0);
1275     SDValue Op1 = Op.getOperand(1);
1276 
1277     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1278       // If the shift count is an invalid immediate, don't do anything.
1279       if (SA->getAPIntValue().uge(BitWidth))
1280         break;
1281 
1282       unsigned ShAmt = SA->getZExtValue();
1283       if (ShAmt == 0)
1284         return TLO.CombineTo(Op, Op0);
1285 
1286       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1287       // single shift.  We can do this if the bottom bits (which are shifted
1288       // out) are never demanded.
1289       // TODO - support non-uniform vector amounts.
1290       if (Op0.getOpcode() == ISD::SRL) {
1291         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1292           if (ConstantSDNode *SA2 =
1293                   isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1294             if (SA2->getAPIntValue().ult(BitWidth)) {
1295               unsigned C1 = SA2->getZExtValue();
1296               unsigned Opc = ISD::SHL;
1297               int Diff = ShAmt - C1;
1298               if (Diff < 0) {
1299                 Diff = -Diff;
1300                 Opc = ISD::SRL;
1301               }
1302 
1303               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
1304               return TLO.CombineTo(
1305                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1306             }
1307           }
1308         }
1309       }
1310 
1311       if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts,
1312                                Known, TLO, Depth + 1))
1313         return true;
1314 
1315       // Try shrinking the operation as long as the shift amount will still be
1316       // in range.
1317       if ((ShAmt < DemandedBits.getActiveBits()) &&
1318           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1319         return true;
1320 
1321       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1322       // are not demanded. This will likely allow the anyext to be folded away.
1323       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1324         SDValue InnerOp = Op0.getOperand(0);
1325         EVT InnerVT = InnerOp.getValueType();
1326         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1327         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1328             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1329           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1330           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1331             ShTy = InnerVT;
1332           SDValue NarrowShl =
1333               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1334                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1335           return TLO.CombineTo(
1336               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1337         }
1338         // Repeat the SHL optimization above in cases where an extension
1339         // intervenes: (shl (anyext (shr x, c1)), c2) to
1340         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1341         // aren't demanded (as above) and that the shifted upper c1 bits of
1342         // x aren't demanded.
1343         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1344             InnerOp.hasOneUse()) {
1345           if (ConstantSDNode *SA2 =
1346                   isConstOrConstSplat(InnerOp.getOperand(1))) {
1347             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
1348             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1349                 DemandedBits.getActiveBits() <=
1350                     (InnerBits - InnerShAmt + ShAmt) &&
1351                 DemandedBits.countTrailingZeros() >= ShAmt) {
1352               SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
1353                                                   Op1.getValueType());
1354               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1355                                                InnerOp.getOperand(0));
1356               return TLO.CombineTo(
1357                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1358             }
1359           }
1360         }
1361       }
1362 
1363       Known.Zero <<= ShAmt;
1364       Known.One <<= ShAmt;
1365       // low bits known zero.
1366       Known.Zero.setLowBits(ShAmt);
1367     }
1368     break;
1369   }
1370   case ISD::SRL: {
1371     SDValue Op0 = Op.getOperand(0);
1372     SDValue Op1 = Op.getOperand(1);
1373 
1374     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1375       // If the shift count is an invalid immediate, don't do anything.
1376       if (SA->getAPIntValue().uge(BitWidth))
1377         break;
1378 
1379       unsigned ShAmt = SA->getZExtValue();
1380       if (ShAmt == 0)
1381         return TLO.CombineTo(Op, Op0);
1382 
1383       EVT ShiftVT = Op1.getValueType();
1384       APInt InDemandedMask = (DemandedBits << ShAmt);
1385 
1386       // If the shift is exact, then it does demand the low bits (and knows that
1387       // they are zero).
1388       if (Op->getFlags().hasExact())
1389         InDemandedMask.setLowBits(ShAmt);
1390 
1391       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1392       // single shift.  We can do this if the top bits (which are shifted out)
1393       // are never demanded.
1394       // TODO - support non-uniform vector amounts.
1395       if (Op0.getOpcode() == ISD::SHL) {
1396         if (ConstantSDNode *SA2 =
1397                 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1398           if (!DemandedBits.intersects(
1399                   APInt::getHighBitsSet(BitWidth, ShAmt))) {
1400             if (SA2->getAPIntValue().ult(BitWidth)) {
1401               unsigned C1 = SA2->getZExtValue();
1402               unsigned Opc = ISD::SRL;
1403               int Diff = ShAmt - C1;
1404               if (Diff < 0) {
1405                 Diff = -Diff;
1406                 Opc = ISD::SHL;
1407               }
1408 
1409               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1410               return TLO.CombineTo(
1411                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1412             }
1413           }
1414         }
1415       }
1416 
1417       // Compute the new bits that are at the top now.
1418       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1419                                Depth + 1))
1420         return true;
1421       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1422       Known.Zero.lshrInPlace(ShAmt);
1423       Known.One.lshrInPlace(ShAmt);
1424 
1425       Known.Zero.setHighBits(ShAmt); // High bits known zero.
1426     }
1427     break;
1428   }
1429   case ISD::SRA: {
1430     SDValue Op0 = Op.getOperand(0);
1431     SDValue Op1 = Op.getOperand(1);
1432 
1433     // If this is an arithmetic shift right and only the low-bit is set, we can
1434     // always convert this into a logical shr, even if the shift amount is
1435     // variable.  The low bit of the shift cannot be an input sign bit unless
1436     // the shift amount is >= the size of the datatype, which is undefined.
1437     if (DemandedBits.isOneValue())
1438       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1439 
1440     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1441       // If the shift count is an invalid immediate, don't do anything.
1442       if (SA->getAPIntValue().uge(BitWidth))
1443         break;
1444 
1445       unsigned ShAmt = SA->getZExtValue();
1446       if (ShAmt == 0)
1447         return TLO.CombineTo(Op, Op0);
1448 
1449       APInt InDemandedMask = (DemandedBits << ShAmt);
1450 
1451       // If the shift is exact, then it does demand the low bits (and knows that
1452       // they are zero).
1453       if (Op->getFlags().hasExact())
1454         InDemandedMask.setLowBits(ShAmt);
1455 
1456       // If any of the demanded bits are produced by the sign extension, we also
1457       // demand the input sign bit.
1458       if (DemandedBits.countLeadingZeros() < ShAmt)
1459         InDemandedMask.setSignBit();
1460 
1461       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1462                                Depth + 1))
1463         return true;
1464       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1465       Known.Zero.lshrInPlace(ShAmt);
1466       Known.One.lshrInPlace(ShAmt);
1467 
1468       // If the input sign bit is known to be zero, or if none of the top bits
1469       // are demanded, turn this into an unsigned shift right.
1470       if (Known.Zero[BitWidth - ShAmt - 1] ||
1471           DemandedBits.countLeadingZeros() >= ShAmt) {
1472         SDNodeFlags Flags;
1473         Flags.setExact(Op->getFlags().hasExact());
1474         return TLO.CombineTo(
1475             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1476       }
1477 
1478       int Log2 = DemandedBits.exactLogBase2();
1479       if (Log2 >= 0) {
1480         // The bit must come from the sign.
1481         SDValue NewSA =
1482             TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType());
1483         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1484       }
1485 
1486       if (Known.One[BitWidth - ShAmt - 1])
1487         // New bits are known one.
1488         Known.One.setHighBits(ShAmt);
1489     }
1490     break;
1491   }
1492   case ISD::FSHL:
1493   case ISD::FSHR: {
1494     SDValue Op0 = Op.getOperand(0);
1495     SDValue Op1 = Op.getOperand(1);
1496     SDValue Op2 = Op.getOperand(2);
1497     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1498 
1499     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1500       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1501 
1502       // For fshl, 0-shift returns the 1st arg.
1503       // For fshr, 0-shift returns the 2nd arg.
1504       if (Amt == 0) {
1505         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1506                                  Known, TLO, Depth + 1))
1507           return true;
1508         break;
1509       }
1510 
1511       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1512       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1513       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1514       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1515       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1516                                Depth + 1))
1517         return true;
1518       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1519                                Depth + 1))
1520         return true;
1521 
1522       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1523       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1524       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1525       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1526       Known.One |= Known2.One;
1527       Known.Zero |= Known2.Zero;
1528     }
1529     break;
1530   }
1531   case ISD::BITREVERSE: {
1532     SDValue Src = Op.getOperand(0);
1533     APInt DemandedSrcBits = DemandedBits.reverseBits();
1534     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1535                              Depth + 1))
1536       return true;
1537     Known.One = Known2.One.reverseBits();
1538     Known.Zero = Known2.Zero.reverseBits();
1539     break;
1540   }
1541   case ISD::SIGN_EXTEND_INREG: {
1542     SDValue Op0 = Op.getOperand(0);
1543     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1544     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1545 
1546     // If we only care about the highest bit, don't bother shifting right.
1547     if (DemandedBits.isSignMask()) {
1548       unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0);
1549       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1550       // However if the input is already sign extended we expect the sign
1551       // extension to be dropped altogether later and do not simplify.
1552       if (!AlreadySignExtended) {
1553         // Compute the correct shift amount type, which must be getShiftAmountTy
1554         // for scalar types after legalization.
1555         EVT ShiftAmtTy = VT;
1556         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1557           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1558 
1559         SDValue ShiftAmt =
1560             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1561         return TLO.CombineTo(Op,
1562                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1563       }
1564     }
1565 
1566     // If none of the extended bits are demanded, eliminate the sextinreg.
1567     if (DemandedBits.getActiveBits() <= ExVTBits)
1568       return TLO.CombineTo(Op, Op0);
1569 
1570     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1571 
1572     // Since the sign extended bits are demanded, we know that the sign
1573     // bit is demanded.
1574     InputDemandedBits.setBit(ExVTBits - 1);
1575 
1576     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1577       return true;
1578     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1579 
1580     // If the sign bit of the input is known set or clear, then we know the
1581     // top bits of the result.
1582 
1583     // If the input sign bit is known zero, convert this into a zero extension.
1584     if (Known.Zero[ExVTBits - 1])
1585       return TLO.CombineTo(
1586           Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
1587 
1588     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1589     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1590       Known.One.setBitsFrom(ExVTBits);
1591       Known.Zero &= Mask;
1592     } else { // Input sign bit unknown
1593       Known.Zero &= Mask;
1594       Known.One &= Mask;
1595     }
1596     break;
1597   }
1598   case ISD::BUILD_PAIR: {
1599     EVT HalfVT = Op.getOperand(0).getValueType();
1600     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1601 
1602     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1603     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1604 
1605     KnownBits KnownLo, KnownHi;
1606 
1607     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1608       return true;
1609 
1610     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1611       return true;
1612 
1613     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1614                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1615 
1616     Known.One = KnownLo.One.zext(BitWidth) |
1617                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1618     break;
1619   }
1620   case ISD::ZERO_EXTEND:
1621   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1622     SDValue Src = Op.getOperand(0);
1623     EVT SrcVT = Src.getValueType();
1624     unsigned InBits = SrcVT.getScalarSizeInBits();
1625     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1626     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1627 
1628     // If none of the top bits are demanded, convert this into an any_extend.
1629     if (DemandedBits.getActiveBits() <= InBits) {
1630       // If we only need the non-extended bits of the bottom element
1631       // then we can just bitcast to the result.
1632       if (IsVecInReg && DemandedElts == 1 &&
1633           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1634           TLO.DAG.getDataLayout().isLittleEndian())
1635         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1636 
1637       unsigned Opc =
1638           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1639       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1640         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1641     }
1642 
1643     APInt InDemandedBits = DemandedBits.trunc(InBits);
1644     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1645     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1646                              Depth + 1))
1647       return true;
1648     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1649     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1650     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
1651     break;
1652   }
1653   case ISD::SIGN_EXTEND:
1654   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1655     SDValue Src = Op.getOperand(0);
1656     EVT SrcVT = Src.getValueType();
1657     unsigned InBits = SrcVT.getScalarSizeInBits();
1658     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1659     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1660 
1661     // If none of the top bits are demanded, convert this into an any_extend.
1662     if (DemandedBits.getActiveBits() <= InBits) {
1663       // If we only need the non-extended bits of the bottom element
1664       // then we can just bitcast to the result.
1665       if (IsVecInReg && DemandedElts == 1 &&
1666           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1667           TLO.DAG.getDataLayout().isLittleEndian())
1668         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1669 
1670       unsigned Opc =
1671           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1672       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1673         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1674     }
1675 
1676     APInt InDemandedBits = DemandedBits.trunc(InBits);
1677     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1678 
1679     // Since some of the sign extended bits are demanded, we know that the sign
1680     // bit is demanded.
1681     InDemandedBits.setBit(InBits - 1);
1682 
1683     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1684                              Depth + 1))
1685       return true;
1686     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1687     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1688 
1689     // If the sign bit is known one, the top bits match.
1690     Known = Known.sext(BitWidth);
1691 
1692     // If the sign bit is known zero, convert this to a zero extend.
1693     if (Known.isNonNegative()) {
1694       unsigned Opc =
1695           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1696       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1697         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1698     }
1699     break;
1700   }
1701   case ISD::ANY_EXTEND:
1702   case ISD::ANY_EXTEND_VECTOR_INREG: {
1703     SDValue Src = Op.getOperand(0);
1704     EVT SrcVT = Src.getValueType();
1705     unsigned InBits = SrcVT.getScalarSizeInBits();
1706     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1707     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1708 
1709     // If we only need the bottom element then we can just bitcast.
1710     // TODO: Handle ANY_EXTEND?
1711     if (IsVecInReg && DemandedElts == 1 &&
1712         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1713         TLO.DAG.getDataLayout().isLittleEndian())
1714       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1715 
1716     APInt InDemandedBits = DemandedBits.trunc(InBits);
1717     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1718     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1719                              Depth + 1))
1720       return true;
1721     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1722     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1723     Known = Known.zext(BitWidth, false /* => any extend */);
1724     break;
1725   }
1726   case ISD::TRUNCATE: {
1727     SDValue Src = Op.getOperand(0);
1728 
1729     // Simplify the input, using demanded bit information, and compute the known
1730     // zero/one bits live out.
1731     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1732     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1733     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1734       return true;
1735     Known = Known.trunc(BitWidth);
1736 
1737     // Attempt to avoid multi-use ops if we don't need anything from them.
1738     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1739             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
1740       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
1741 
1742     // If the input is only used by this truncate, see if we can shrink it based
1743     // on the known demanded bits.
1744     if (Src.getNode()->hasOneUse()) {
1745       switch (Src.getOpcode()) {
1746       default:
1747         break;
1748       case ISD::SRL:
1749         // Shrink SRL by a constant if none of the high bits shifted in are
1750         // demanded.
1751         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1752           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1753           // undesirable.
1754           break;
1755 
1756         auto *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
1757         if (!ShAmt || ShAmt->getAPIntValue().uge(BitWidth))
1758           break;
1759 
1760         SDValue Shift = Src.getOperand(1);
1761         uint64_t ShVal = ShAmt->getZExtValue();
1762 
1763         if (TLO.LegalTypes())
1764           Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1765 
1766         APInt HighBits =
1767             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
1768         HighBits.lshrInPlace(ShVal);
1769         HighBits = HighBits.trunc(BitWidth);
1770 
1771         if (!(HighBits & DemandedBits)) {
1772           // None of the shifted in bits are needed.  Add a truncate of the
1773           // shift input, then shift it.
1774           SDValue NewTrunc =
1775               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1776           return TLO.CombineTo(
1777               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift));
1778         }
1779         break;
1780       }
1781     }
1782 
1783     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1784     break;
1785   }
1786   case ISD::AssertZext: {
1787     // AssertZext demands all of the high bits, plus any of the low bits
1788     // demanded by its users.
1789     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1790     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1791     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
1792                              TLO, Depth + 1))
1793       return true;
1794     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1795 
1796     Known.Zero |= ~InMask;
1797     break;
1798   }
1799   case ISD::EXTRACT_VECTOR_ELT: {
1800     SDValue Src = Op.getOperand(0);
1801     SDValue Idx = Op.getOperand(1);
1802     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1803     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1804 
1805     // Demand the bits from every vector element without a constant index.
1806     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1807     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1808       if (CIdx->getAPIntValue().ult(NumSrcElts))
1809         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1810 
1811     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1812     // anything about the extended bits.
1813     APInt DemandedSrcBits = DemandedBits;
1814     if (BitWidth > EltBitWidth)
1815       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1816 
1817     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1818                              Depth + 1))
1819       return true;
1820 
1821     Known = Known2;
1822     if (BitWidth > EltBitWidth)
1823       Known = Known.zext(BitWidth, false /* => any extend */);
1824     break;
1825   }
1826   case ISD::BITCAST: {
1827     SDValue Src = Op.getOperand(0);
1828     EVT SrcVT = Src.getValueType();
1829     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1830 
1831     // If this is an FP->Int bitcast and if the sign bit is the only
1832     // thing demanded, turn this into a FGETSIGN.
1833     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1834         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1835         SrcVT.isFloatingPoint()) {
1836       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1837       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1838       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1839           SrcVT != MVT::f128) {
1840         // Cannot eliminate/lower SHL for f128 yet.
1841         EVT Ty = OpVTLegal ? VT : MVT::i32;
1842         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1843         // place.  We expect the SHL to be eliminated by other optimizations.
1844         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
1845         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1846         if (!OpVTLegal && OpVTSizeInBits > 32)
1847           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1848         unsigned ShVal = Op.getValueSizeInBits() - 1;
1849         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1850         return TLO.CombineTo(Op,
1851                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1852       }
1853     }
1854 
1855     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
1856     // Demand the elt/bit if any of the original elts/bits are demanded.
1857     // TODO - bigendian once we have test coverage.
1858     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
1859         TLO.DAG.getDataLayout().isLittleEndian()) {
1860       unsigned Scale = BitWidth / NumSrcEltBits;
1861       unsigned NumSrcElts = SrcVT.getVectorNumElements();
1862       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1863       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1864       for (unsigned i = 0; i != Scale; ++i) {
1865         unsigned Offset = i * NumSrcEltBits;
1866         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
1867         if (!Sub.isNullValue()) {
1868           DemandedSrcBits |= Sub;
1869           for (unsigned j = 0; j != NumElts; ++j)
1870             if (DemandedElts[j])
1871               DemandedSrcElts.setBit((j * Scale) + i);
1872         }
1873       }
1874 
1875       APInt KnownSrcUndef, KnownSrcZero;
1876       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1877                                      KnownSrcZero, TLO, Depth + 1))
1878         return true;
1879 
1880       KnownBits KnownSrcBits;
1881       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1882                                KnownSrcBits, TLO, Depth + 1))
1883         return true;
1884     } else if ((NumSrcEltBits % BitWidth) == 0 &&
1885                TLO.DAG.getDataLayout().isLittleEndian()) {
1886       unsigned Scale = NumSrcEltBits / BitWidth;
1887       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1888       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1889       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1890       for (unsigned i = 0; i != NumElts; ++i)
1891         if (DemandedElts[i]) {
1892           unsigned Offset = (i % Scale) * BitWidth;
1893           DemandedSrcBits.insertBits(DemandedBits, Offset);
1894           DemandedSrcElts.setBit(i / Scale);
1895         }
1896 
1897       if (SrcVT.isVector()) {
1898         APInt KnownSrcUndef, KnownSrcZero;
1899         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1900                                        KnownSrcZero, TLO, Depth + 1))
1901           return true;
1902       }
1903 
1904       KnownBits KnownSrcBits;
1905       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1906                                KnownSrcBits, TLO, Depth + 1))
1907         return true;
1908     }
1909 
1910     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
1911     // recursive call where Known may be useful to the caller.
1912     if (Depth > 0) {
1913       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1914       return false;
1915     }
1916     break;
1917   }
1918   case ISD::ADD:
1919   case ISD::MUL:
1920   case ISD::SUB: {
1921     // Add, Sub, and Mul don't demand any bits in positions beyond that
1922     // of the highest bit demanded of them.
1923     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
1924     SDNodeFlags Flags = Op.getNode()->getFlags();
1925     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
1926     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
1927     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
1928                              Depth + 1) ||
1929         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
1930                              Depth + 1) ||
1931         // See if the operation should be performed at a smaller bit width.
1932         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
1933       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1934         // Disable the nsw and nuw flags. We can no longer guarantee that we
1935         // won't wrap after simplification.
1936         Flags.setNoSignedWrap(false);
1937         Flags.setNoUnsignedWrap(false);
1938         SDValue NewOp =
1939             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
1940         return TLO.CombineTo(Op, NewOp);
1941       }
1942       return true;
1943     }
1944 
1945     // Attempt to avoid multi-use ops if we don't need anything from them.
1946     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1947       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1948           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
1949       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1950           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
1951       if (DemandedOp0 || DemandedOp1) {
1952         Flags.setNoSignedWrap(false);
1953         Flags.setNoUnsignedWrap(false);
1954         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1955         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1956         SDValue NewOp =
1957             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
1958         return TLO.CombineTo(Op, NewOp);
1959       }
1960     }
1961 
1962     // If we have a constant operand, we may be able to turn it into -1 if we
1963     // do not demand the high bits. This can make the constant smaller to
1964     // encode, allow more general folding, or match specialized instruction
1965     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
1966     // is probably not useful (and could be detrimental).
1967     ConstantSDNode *C = isConstOrConstSplat(Op1);
1968     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
1969     if (C && !C->isAllOnesValue() && !C->isOne() &&
1970         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
1971       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
1972       // Disable the nsw and nuw flags. We can no longer guarantee that we
1973       // won't wrap after simplification.
1974       Flags.setNoSignedWrap(false);
1975       Flags.setNoUnsignedWrap(false);
1976       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
1977       return TLO.CombineTo(Op, NewOp);
1978     }
1979 
1980     LLVM_FALLTHROUGH;
1981   }
1982   default:
1983     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1984       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
1985                                             Known, TLO, Depth))
1986         return true;
1987       break;
1988     }
1989 
1990     // Just use computeKnownBits to compute output bits.
1991     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1992     break;
1993   }
1994 
1995   // If we know the value of all of the demanded bits, return this as a
1996   // constant.
1997   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
1998     // Avoid folding to a constant if any OpaqueConstant is involved.
1999     const SDNode *N = Op.getNode();
2000     for (SDNodeIterator I = SDNodeIterator::begin(N),
2001                         E = SDNodeIterator::end(N);
2002          I != E; ++I) {
2003       SDNode *Op = *I;
2004       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2005         if (C->isOpaque())
2006           return false;
2007     }
2008     // TODO: Handle float bits as well.
2009     if (VT.isInteger())
2010       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2011   }
2012 
2013   return false;
2014 }
2015 
2016 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2017                                                 const APInt &DemandedElts,
2018                                                 APInt &KnownUndef,
2019                                                 APInt &KnownZero,
2020                                                 DAGCombinerInfo &DCI) const {
2021   SelectionDAG &DAG = DCI.DAG;
2022   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2023                         !DCI.isBeforeLegalizeOps());
2024 
2025   bool Simplified =
2026       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2027   if (Simplified) {
2028     DCI.AddToWorklist(Op.getNode());
2029     DCI.CommitTargetLoweringOpt(TLO);
2030   }
2031 
2032   return Simplified;
2033 }
2034 
2035 /// Given a vector binary operation and known undefined elements for each input
2036 /// operand, compute whether each element of the output is undefined.
2037 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2038                                          const APInt &UndefOp0,
2039                                          const APInt &UndefOp1) {
2040   EVT VT = BO.getValueType();
2041   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2042          "Vector binop only");
2043 
2044   EVT EltVT = VT.getVectorElementType();
2045   unsigned NumElts = VT.getVectorNumElements();
2046   assert(UndefOp0.getBitWidth() == NumElts &&
2047          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2048 
2049   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2050                                    const APInt &UndefVals) {
2051     if (UndefVals[Index])
2052       return DAG.getUNDEF(EltVT);
2053 
2054     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2055       // Try hard to make sure that the getNode() call is not creating temporary
2056       // nodes. Ignore opaque integers because they do not constant fold.
2057       SDValue Elt = BV->getOperand(Index);
2058       auto *C = dyn_cast<ConstantSDNode>(Elt);
2059       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2060         return Elt;
2061     }
2062 
2063     return SDValue();
2064   };
2065 
2066   APInt KnownUndef = APInt::getNullValue(NumElts);
2067   for (unsigned i = 0; i != NumElts; ++i) {
2068     // If both inputs for this element are either constant or undef and match
2069     // the element type, compute the constant/undef result for this element of
2070     // the vector.
2071     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2072     // not handle FP constants. The code within getNode() should be refactored
2073     // to avoid the danger of creating a bogus temporary node here.
2074     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2075     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2076     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2077       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2078         KnownUndef.setBit(i);
2079   }
2080   return KnownUndef;
2081 }
2082 
2083 bool TargetLowering::SimplifyDemandedVectorElts(
2084     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2085     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2086     bool AssumeSingleUse) const {
2087   EVT VT = Op.getValueType();
2088   APInt DemandedElts = OriginalDemandedElts;
2089   unsigned NumElts = DemandedElts.getBitWidth();
2090   assert(VT.isVector() && "Expected vector op");
2091   assert(VT.getVectorNumElements() == NumElts &&
2092          "Mask size mismatches value type element count!");
2093 
2094   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2095 
2096   // Undef operand.
2097   if (Op.isUndef()) {
2098     KnownUndef.setAllBits();
2099     return false;
2100   }
2101 
2102   // If Op has other users, assume that all elements are needed.
2103   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2104     DemandedElts.setAllBits();
2105 
2106   // Not demanding any elements from Op.
2107   if (DemandedElts == 0) {
2108     KnownUndef.setAllBits();
2109     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2110   }
2111 
2112   // Limit search depth.
2113   if (Depth >= SelectionDAG::MaxRecursionDepth)
2114     return false;
2115 
2116   SDLoc DL(Op);
2117   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2118 
2119   switch (Op.getOpcode()) {
2120   case ISD::SCALAR_TO_VECTOR: {
2121     if (!DemandedElts[0]) {
2122       KnownUndef.setAllBits();
2123       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2124     }
2125     KnownUndef.setHighBits(NumElts - 1);
2126     break;
2127   }
2128   case ISD::BITCAST: {
2129     SDValue Src = Op.getOperand(0);
2130     EVT SrcVT = Src.getValueType();
2131 
2132     // We only handle vectors here.
2133     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2134     if (!SrcVT.isVector())
2135       break;
2136 
2137     // Fast handling of 'identity' bitcasts.
2138     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2139     if (NumSrcElts == NumElts)
2140       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2141                                         KnownZero, TLO, Depth + 1);
2142 
2143     APInt SrcZero, SrcUndef;
2144     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2145 
2146     // Bitcast from 'large element' src vector to 'small element' vector, we
2147     // must demand a source element if any DemandedElt maps to it.
2148     if ((NumElts % NumSrcElts) == 0) {
2149       unsigned Scale = NumElts / NumSrcElts;
2150       for (unsigned i = 0; i != NumElts; ++i)
2151         if (DemandedElts[i])
2152           SrcDemandedElts.setBit(i / Scale);
2153 
2154       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2155                                      TLO, Depth + 1))
2156         return true;
2157 
2158       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2159       // of the large element.
2160       // TODO - bigendian once we have test coverage.
2161       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2162         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2163         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2164         for (unsigned i = 0; i != NumElts; ++i)
2165           if (DemandedElts[i]) {
2166             unsigned Ofs = (i % Scale) * EltSizeInBits;
2167             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2168           }
2169 
2170         KnownBits Known;
2171         if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1))
2172           return true;
2173       }
2174 
2175       // If the src element is zero/undef then all the output elements will be -
2176       // only demanded elements are guaranteed to be correct.
2177       for (unsigned i = 0; i != NumSrcElts; ++i) {
2178         if (SrcDemandedElts[i]) {
2179           if (SrcZero[i])
2180             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2181           if (SrcUndef[i])
2182             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2183         }
2184       }
2185     }
2186 
2187     // Bitcast from 'small element' src vector to 'large element' vector, we
2188     // demand all smaller source elements covered by the larger demanded element
2189     // of this vector.
2190     if ((NumSrcElts % NumElts) == 0) {
2191       unsigned Scale = NumSrcElts / NumElts;
2192       for (unsigned i = 0; i != NumElts; ++i)
2193         if (DemandedElts[i])
2194           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2195 
2196       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2197                                      TLO, Depth + 1))
2198         return true;
2199 
2200       // If all the src elements covering an output element are zero/undef, then
2201       // the output element will be as well, assuming it was demanded.
2202       for (unsigned i = 0; i != NumElts; ++i) {
2203         if (DemandedElts[i]) {
2204           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2205             KnownZero.setBit(i);
2206           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2207             KnownUndef.setBit(i);
2208         }
2209       }
2210     }
2211     break;
2212   }
2213   case ISD::BUILD_VECTOR: {
2214     // Check all elements and simplify any unused elements with UNDEF.
2215     if (!DemandedElts.isAllOnesValue()) {
2216       // Don't simplify BROADCASTS.
2217       if (llvm::any_of(Op->op_values(),
2218                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2219         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2220         bool Updated = false;
2221         for (unsigned i = 0; i != NumElts; ++i) {
2222           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2223             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2224             KnownUndef.setBit(i);
2225             Updated = true;
2226           }
2227         }
2228         if (Updated)
2229           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2230       }
2231     }
2232     for (unsigned i = 0; i != NumElts; ++i) {
2233       SDValue SrcOp = Op.getOperand(i);
2234       if (SrcOp.isUndef()) {
2235         KnownUndef.setBit(i);
2236       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2237                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2238         KnownZero.setBit(i);
2239       }
2240     }
2241     break;
2242   }
2243   case ISD::CONCAT_VECTORS: {
2244     EVT SubVT = Op.getOperand(0).getValueType();
2245     unsigned NumSubVecs = Op.getNumOperands();
2246     unsigned NumSubElts = SubVT.getVectorNumElements();
2247     for (unsigned i = 0; i != NumSubVecs; ++i) {
2248       SDValue SubOp = Op.getOperand(i);
2249       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2250       APInt SubUndef, SubZero;
2251       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2252                                      Depth + 1))
2253         return true;
2254       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2255       KnownZero.insertBits(SubZero, i * NumSubElts);
2256     }
2257     break;
2258   }
2259   case ISD::INSERT_SUBVECTOR: {
2260     if (!isa<ConstantSDNode>(Op.getOperand(2)))
2261       break;
2262     SDValue Base = Op.getOperand(0);
2263     SDValue Sub = Op.getOperand(1);
2264     EVT SubVT = Sub.getValueType();
2265     unsigned NumSubElts = SubVT.getVectorNumElements();
2266     const APInt &Idx = Op.getConstantOperandAPInt(2);
2267     if (Idx.ugt(NumElts - NumSubElts))
2268       break;
2269     unsigned SubIdx = Idx.getZExtValue();
2270     APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
2271     APInt SubUndef, SubZero;
2272     if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
2273                                    Depth + 1))
2274       return true;
2275     APInt BaseElts = DemandedElts;
2276     BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
2277 
2278     // If none of the base operand elements are demanded, replace it with undef.
2279     if (!BaseElts && !Base.isUndef())
2280       return TLO.CombineTo(Op,
2281                            TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2282                                            TLO.DAG.getUNDEF(VT),
2283                                            Op.getOperand(1),
2284                                            Op.getOperand(2)));
2285 
2286     if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
2287                                    Depth + 1))
2288       return true;
2289     KnownUndef.insertBits(SubUndef, SubIdx);
2290     KnownZero.insertBits(SubZero, SubIdx);
2291     break;
2292   }
2293   case ISD::EXTRACT_SUBVECTOR: {
2294     SDValue Src = Op.getOperand(0);
2295     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2296     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2297     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2298       // Offset the demanded elts by the subvector index.
2299       uint64_t Idx = SubIdx->getZExtValue();
2300       APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2301       APInt SrcUndef, SrcZero;
2302       if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
2303                                      Depth + 1))
2304         return true;
2305       KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2306       KnownZero = SrcZero.extractBits(NumElts, Idx);
2307     }
2308     break;
2309   }
2310   case ISD::INSERT_VECTOR_ELT: {
2311     SDValue Vec = Op.getOperand(0);
2312     SDValue Scl = Op.getOperand(1);
2313     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2314 
2315     // For a legal, constant insertion index, if we don't need this insertion
2316     // then strip it, else remove it from the demanded elts.
2317     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2318       unsigned Idx = CIdx->getZExtValue();
2319       if (!DemandedElts[Idx])
2320         return TLO.CombineTo(Op, Vec);
2321 
2322       APInt DemandedVecElts(DemandedElts);
2323       DemandedVecElts.clearBit(Idx);
2324       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2325                                      KnownZero, TLO, Depth + 1))
2326         return true;
2327 
2328       KnownUndef.clearBit(Idx);
2329       if (Scl.isUndef())
2330         KnownUndef.setBit(Idx);
2331 
2332       KnownZero.clearBit(Idx);
2333       if (isNullConstant(Scl) || isNullFPConstant(Scl))
2334         KnownZero.setBit(Idx);
2335       break;
2336     }
2337 
2338     APInt VecUndef, VecZero;
2339     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2340                                    Depth + 1))
2341       return true;
2342     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2343     break;
2344   }
2345   case ISD::VSELECT: {
2346     // Try to transform the select condition based on the current demanded
2347     // elements.
2348     // TODO: If a condition element is undef, we can choose from one arm of the
2349     //       select (and if one arm is undef, then we can propagate that to the
2350     //       result).
2351     // TODO - add support for constant vselect masks (see IR version of this).
2352     APInt UnusedUndef, UnusedZero;
2353     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2354                                    UnusedZero, TLO, Depth + 1))
2355       return true;
2356 
2357     // See if we can simplify either vselect operand.
2358     APInt DemandedLHS(DemandedElts);
2359     APInt DemandedRHS(DemandedElts);
2360     APInt UndefLHS, ZeroLHS;
2361     APInt UndefRHS, ZeroRHS;
2362     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2363                                    ZeroLHS, TLO, Depth + 1))
2364       return true;
2365     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2366                                    ZeroRHS, TLO, Depth + 1))
2367       return true;
2368 
2369     KnownUndef = UndefLHS & UndefRHS;
2370     KnownZero = ZeroLHS & ZeroRHS;
2371     break;
2372   }
2373   case ISD::VECTOR_SHUFFLE: {
2374     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2375 
2376     // Collect demanded elements from shuffle operands..
2377     APInt DemandedLHS(NumElts, 0);
2378     APInt DemandedRHS(NumElts, 0);
2379     for (unsigned i = 0; i != NumElts; ++i) {
2380       int M = ShuffleMask[i];
2381       if (M < 0 || !DemandedElts[i])
2382         continue;
2383       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2384       if (M < (int)NumElts)
2385         DemandedLHS.setBit(M);
2386       else
2387         DemandedRHS.setBit(M - NumElts);
2388     }
2389 
2390     // See if we can simplify either shuffle operand.
2391     APInt UndefLHS, ZeroLHS;
2392     APInt UndefRHS, ZeroRHS;
2393     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2394                                    ZeroLHS, TLO, Depth + 1))
2395       return true;
2396     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2397                                    ZeroRHS, TLO, Depth + 1))
2398       return true;
2399 
2400     // Simplify mask using undef elements from LHS/RHS.
2401     bool Updated = false;
2402     bool IdentityLHS = true, IdentityRHS = true;
2403     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2404     for (unsigned i = 0; i != NumElts; ++i) {
2405       int &M = NewMask[i];
2406       if (M < 0)
2407         continue;
2408       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2409           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2410         Updated = true;
2411         M = -1;
2412       }
2413       IdentityLHS &= (M < 0) || (M == (int)i);
2414       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2415     }
2416 
2417     // Update legal shuffle masks based on demanded elements if it won't reduce
2418     // to Identity which can cause premature removal of the shuffle mask.
2419     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2420       SDValue LegalShuffle =
2421           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2422                                   NewMask, TLO.DAG);
2423       if (LegalShuffle)
2424         return TLO.CombineTo(Op, LegalShuffle);
2425     }
2426 
2427     // Propagate undef/zero elements from LHS/RHS.
2428     for (unsigned i = 0; i != NumElts; ++i) {
2429       int M = ShuffleMask[i];
2430       if (M < 0) {
2431         KnownUndef.setBit(i);
2432       } else if (M < (int)NumElts) {
2433         if (UndefLHS[M])
2434           KnownUndef.setBit(i);
2435         if (ZeroLHS[M])
2436           KnownZero.setBit(i);
2437       } else {
2438         if (UndefRHS[M - NumElts])
2439           KnownUndef.setBit(i);
2440         if (ZeroRHS[M - NumElts])
2441           KnownZero.setBit(i);
2442       }
2443     }
2444     break;
2445   }
2446   case ISD::ANY_EXTEND_VECTOR_INREG:
2447   case ISD::SIGN_EXTEND_VECTOR_INREG:
2448   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2449     APInt SrcUndef, SrcZero;
2450     SDValue Src = Op.getOperand(0);
2451     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2452     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2453     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2454                                    Depth + 1))
2455       return true;
2456     KnownZero = SrcZero.zextOrTrunc(NumElts);
2457     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2458 
2459     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2460         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2461         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2462       // aext - if we just need the bottom element then we can bitcast.
2463       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2464     }
2465 
2466     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2467       // zext(undef) upper bits are guaranteed to be zero.
2468       if (DemandedElts.isSubsetOf(KnownUndef))
2469         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2470       KnownUndef.clearAllBits();
2471     }
2472     break;
2473   }
2474 
2475   // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
2476   // MAX, saturated math, etc.
2477   case ISD::OR:
2478   case ISD::XOR:
2479   case ISD::ADD:
2480   case ISD::SUB:
2481   case ISD::FADD:
2482   case ISD::FSUB:
2483   case ISD::FMUL:
2484   case ISD::FDIV:
2485   case ISD::FREM: {
2486     APInt UndefRHS, ZeroRHS;
2487     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2488                                    ZeroRHS, TLO, Depth + 1))
2489       return true;
2490     APInt UndefLHS, ZeroLHS;
2491     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2492                                    ZeroLHS, TLO, Depth + 1))
2493       return true;
2494 
2495     KnownZero = ZeroLHS & ZeroRHS;
2496     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2497     break;
2498   }
2499   case ISD::SHL:
2500   case ISD::SRL:
2501   case ISD::SRA:
2502   case ISD::ROTL:
2503   case ISD::ROTR: {
2504     APInt UndefRHS, ZeroRHS;
2505     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2506                                    ZeroRHS, TLO, Depth + 1))
2507       return true;
2508     APInt UndefLHS, ZeroLHS;
2509     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2510                                    ZeroLHS, TLO, Depth + 1))
2511       return true;
2512 
2513     KnownZero = ZeroLHS;
2514     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2515     break;
2516   }
2517   case ISD::MUL:
2518   case ISD::AND: {
2519     APInt SrcUndef, SrcZero;
2520     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
2521                                    SrcZero, TLO, Depth + 1))
2522       return true;
2523     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2524                                    KnownZero, TLO, Depth + 1))
2525       return true;
2526 
2527     // If either side has a zero element, then the result element is zero, even
2528     // if the other is an UNDEF.
2529     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2530     // and then handle 'and' nodes with the rest of the binop opcodes.
2531     KnownZero |= SrcZero;
2532     KnownUndef &= SrcUndef;
2533     KnownUndef &= ~KnownZero;
2534     break;
2535   }
2536   case ISD::TRUNCATE:
2537   case ISD::SIGN_EXTEND:
2538   case ISD::ZERO_EXTEND:
2539     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2540                                    KnownZero, TLO, Depth + 1))
2541       return true;
2542 
2543     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2544       // zext(undef) upper bits are guaranteed to be zero.
2545       if (DemandedElts.isSubsetOf(KnownUndef))
2546         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2547       KnownUndef.clearAllBits();
2548     }
2549     break;
2550   default: {
2551     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2552       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2553                                                   KnownZero, TLO, Depth))
2554         return true;
2555     } else {
2556       KnownBits Known;
2557       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2558       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2559                                TLO, Depth, AssumeSingleUse))
2560         return true;
2561     }
2562     break;
2563   }
2564   }
2565   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2566 
2567   // Constant fold all undef cases.
2568   // TODO: Handle zero cases as well.
2569   if (DemandedElts.isSubsetOf(KnownUndef))
2570     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2571 
2572   return false;
2573 }
2574 
2575 /// Determine which of the bits specified in Mask are known to be either zero or
2576 /// one and return them in the Known.
2577 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2578                                                    KnownBits &Known,
2579                                                    const APInt &DemandedElts,
2580                                                    const SelectionDAG &DAG,
2581                                                    unsigned Depth) const {
2582   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2583           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2584           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2585           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2586          "Should use MaskedValueIsZero if you don't know whether Op"
2587          " is a target node!");
2588   Known.resetAll();
2589 }
2590 
2591 void TargetLowering::computeKnownBitsForTargetInstr(
2592     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2593     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2594     unsigned Depth) const {
2595   Known.resetAll();
2596 }
2597 
2598 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
2599                                                    KnownBits &Known,
2600                                                    const APInt &DemandedElts,
2601                                                    const SelectionDAG &DAG,
2602                                                    unsigned Depth) const {
2603   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
2604 
2605   if (unsigned Align = DAG.InferPtrAlignment(Op)) {
2606     // The low bits are known zero if the pointer is aligned.
2607     Known.Zero.setLowBits(Log2_32(Align));
2608   }
2609 }
2610 
2611 /// This method can be implemented by targets that want to expose additional
2612 /// information about sign bits to the DAG Combiner.
2613 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2614                                                          const APInt &,
2615                                                          const SelectionDAG &,
2616                                                          unsigned Depth) const {
2617   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2618           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2619           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2620           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2621          "Should use ComputeNumSignBits if you don't know whether Op"
2622          " is a target node!");
2623   return 1;
2624 }
2625 
2626 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2627     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2628     TargetLoweringOpt &TLO, unsigned Depth) const {
2629   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2630           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2631           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2632           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2633          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2634          " is a target node!");
2635   return false;
2636 }
2637 
2638 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2639     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2640     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2641   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2642           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2643           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2644           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2645          "Should use SimplifyDemandedBits if you don't know whether Op"
2646          " is a target node!");
2647   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2648   return false;
2649 }
2650 
2651 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2652     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2653     SelectionDAG &DAG, unsigned Depth) const {
2654   assert(
2655       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2656        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2657        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2658        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2659       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
2660       " is a target node!");
2661   return SDValue();
2662 }
2663 
2664 SDValue
2665 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
2666                                         SDValue N1, MutableArrayRef<int> Mask,
2667                                         SelectionDAG &DAG) const {
2668   bool LegalMask = isShuffleMaskLegal(Mask, VT);
2669   if (!LegalMask) {
2670     std::swap(N0, N1);
2671     ShuffleVectorSDNode::commuteMask(Mask);
2672     LegalMask = isShuffleMaskLegal(Mask, VT);
2673   }
2674 
2675   if (!LegalMask)
2676     return SDValue();
2677 
2678   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
2679 }
2680 
2681 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
2682   return nullptr;
2683 }
2684 
2685 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2686                                                   const SelectionDAG &DAG,
2687                                                   bool SNaN,
2688                                                   unsigned Depth) const {
2689   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2690           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2691           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2692           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2693          "Should use isKnownNeverNaN if you don't know whether Op"
2694          " is a target node!");
2695   return false;
2696 }
2697 
2698 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2699 // work with truncating build vectors and vectors with elements of less than
2700 // 8 bits.
2701 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2702   if (!N)
2703     return false;
2704 
2705   APInt CVal;
2706   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2707     CVal = CN->getAPIntValue();
2708   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2709     auto *CN = BV->getConstantSplatNode();
2710     if (!CN)
2711       return false;
2712 
2713     // If this is a truncating build vector, truncate the splat value.
2714     // Otherwise, we may fail to match the expected values below.
2715     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2716     CVal = CN->getAPIntValue();
2717     if (BVEltWidth < CVal.getBitWidth())
2718       CVal = CVal.trunc(BVEltWidth);
2719   } else {
2720     return false;
2721   }
2722 
2723   switch (getBooleanContents(N->getValueType(0))) {
2724   case UndefinedBooleanContent:
2725     return CVal[0];
2726   case ZeroOrOneBooleanContent:
2727     return CVal.isOneValue();
2728   case ZeroOrNegativeOneBooleanContent:
2729     return CVal.isAllOnesValue();
2730   }
2731 
2732   llvm_unreachable("Invalid boolean contents");
2733 }
2734 
2735 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2736   if (!N)
2737     return false;
2738 
2739   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2740   if (!CN) {
2741     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2742     if (!BV)
2743       return false;
2744 
2745     // Only interested in constant splats, we don't care about undef
2746     // elements in identifying boolean constants and getConstantSplatNode
2747     // returns NULL if all ops are undef;
2748     CN = BV->getConstantSplatNode();
2749     if (!CN)
2750       return false;
2751   }
2752 
2753   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2754     return !CN->getAPIntValue()[0];
2755 
2756   return CN->isNullValue();
2757 }
2758 
2759 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2760                                        bool SExt) const {
2761   if (VT == MVT::i1)
2762     return N->isOne();
2763 
2764   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2765   switch (Cnt) {
2766   case TargetLowering::ZeroOrOneBooleanContent:
2767     // An extended value of 1 is always true, unless its original type is i1,
2768     // in which case it will be sign extended to -1.
2769     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
2770   case TargetLowering::UndefinedBooleanContent:
2771   case TargetLowering::ZeroOrNegativeOneBooleanContent:
2772     return N->isAllOnesValue() && SExt;
2773   }
2774   llvm_unreachable("Unexpected enumeration.");
2775 }
2776 
2777 /// This helper function of SimplifySetCC tries to optimize the comparison when
2778 /// either operand of the SetCC node is a bitwise-and instruction.
2779 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
2780                                          ISD::CondCode Cond, const SDLoc &DL,
2781                                          DAGCombinerInfo &DCI) const {
2782   // Match these patterns in any of their permutations:
2783   // (X & Y) == Y
2784   // (X & Y) != Y
2785   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
2786     std::swap(N0, N1);
2787 
2788   EVT OpVT = N0.getValueType();
2789   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
2790       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
2791     return SDValue();
2792 
2793   SDValue X, Y;
2794   if (N0.getOperand(0) == N1) {
2795     X = N0.getOperand(1);
2796     Y = N0.getOperand(0);
2797   } else if (N0.getOperand(1) == N1) {
2798     X = N0.getOperand(0);
2799     Y = N0.getOperand(1);
2800   } else {
2801     return SDValue();
2802   }
2803 
2804   SelectionDAG &DAG = DCI.DAG;
2805   SDValue Zero = DAG.getConstant(0, DL, OpVT);
2806   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
2807     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2808     // Note that where Y is variable and is known to have at most one bit set
2809     // (for example, if it is Z & 1) we cannot do this; the expressions are not
2810     // equivalent when Y == 0.
2811     Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2812     if (DCI.isBeforeLegalizeOps() ||
2813         isCondCodeLegal(Cond, N0.getSimpleValueType()))
2814       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
2815   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
2816     // If the target supports an 'and-not' or 'and-complement' logic operation,
2817     // try to use that to make a comparison operation more efficient.
2818     // But don't do this transform if the mask is a single bit because there are
2819     // more efficient ways to deal with that case (for example, 'bt' on x86 or
2820     // 'rlwinm' on PPC).
2821 
2822     // Bail out if the compare operand that we want to turn into a zero is
2823     // already a zero (otherwise, infinite loop).
2824     auto *YConst = dyn_cast<ConstantSDNode>(Y);
2825     if (YConst && YConst->isNullValue())
2826       return SDValue();
2827 
2828     // Transform this into: ~X & Y == 0.
2829     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
2830     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
2831     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
2832   }
2833 
2834   return SDValue();
2835 }
2836 
2837 /// There are multiple IR patterns that could be checking whether certain
2838 /// truncation of a signed number would be lossy or not. The pattern which is
2839 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
2840 /// We are looking for the following pattern: (KeptBits is a constant)
2841 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
2842 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
2843 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
2844 /// We will unfold it into the natural trunc+sext pattern:
2845 ///   ((%x << C) a>> C) dstcond %x
2846 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
2847 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
2848     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
2849     const SDLoc &DL) const {
2850   // We must be comparing with a constant.
2851   ConstantSDNode *C1;
2852   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
2853     return SDValue();
2854 
2855   // N0 should be:  add %x, (1 << (KeptBits-1))
2856   if (N0->getOpcode() != ISD::ADD)
2857     return SDValue();
2858 
2859   // And we must be 'add'ing a constant.
2860   ConstantSDNode *C01;
2861   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
2862     return SDValue();
2863 
2864   SDValue X = N0->getOperand(0);
2865   EVT XVT = X.getValueType();
2866 
2867   // Validate constants ...
2868 
2869   APInt I1 = C1->getAPIntValue();
2870 
2871   ISD::CondCode NewCond;
2872   if (Cond == ISD::CondCode::SETULT) {
2873     NewCond = ISD::CondCode::SETEQ;
2874   } else if (Cond == ISD::CondCode::SETULE) {
2875     NewCond = ISD::CondCode::SETEQ;
2876     // But need to 'canonicalize' the constant.
2877     I1 += 1;
2878   } else if (Cond == ISD::CondCode::SETUGT) {
2879     NewCond = ISD::CondCode::SETNE;
2880     // But need to 'canonicalize' the constant.
2881     I1 += 1;
2882   } else if (Cond == ISD::CondCode::SETUGE) {
2883     NewCond = ISD::CondCode::SETNE;
2884   } else
2885     return SDValue();
2886 
2887   APInt I01 = C01->getAPIntValue();
2888 
2889   auto checkConstants = [&I1, &I01]() -> bool {
2890     // Both of them must be power-of-two, and the constant from setcc is bigger.
2891     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
2892   };
2893 
2894   if (checkConstants()) {
2895     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
2896   } else {
2897     // What if we invert constants? (and the target predicate)
2898     I1.negate();
2899     I01.negate();
2900     NewCond = getSetCCInverse(NewCond, /*isInteger=*/true);
2901     if (!checkConstants())
2902       return SDValue();
2903     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
2904   }
2905 
2906   // They are power-of-two, so which bit is set?
2907   const unsigned KeptBits = I1.logBase2();
2908   const unsigned KeptBitsMinusOne = I01.logBase2();
2909 
2910   // Magic!
2911   if (KeptBits != (KeptBitsMinusOne + 1))
2912     return SDValue();
2913   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
2914 
2915   // We don't want to do this in every single case.
2916   SelectionDAG &DAG = DCI.DAG;
2917   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
2918           XVT, KeptBits))
2919     return SDValue();
2920 
2921   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
2922   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
2923 
2924   // Unfold into:  ((%x << C) a>> C) cond %x
2925   // Where 'cond' will be either 'eq' or 'ne'.
2926   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
2927   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
2928   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
2929   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
2930 
2931   return T2;
2932 }
2933 
2934 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
2935 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
2936     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
2937     DAGCombinerInfo &DCI, const SDLoc &DL) const {
2938   assert(isConstOrConstSplat(N1C) &&
2939          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
2940          "Should be a comparison with 0.");
2941   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2942          "Valid only for [in]equality comparisons.");
2943 
2944   unsigned NewShiftOpcode;
2945   SDValue X, C, Y;
2946 
2947   SelectionDAG &DAG = DCI.DAG;
2948   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2949 
2950   // Look for '(C l>>/<< Y)'.
2951   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
2952     // The shift should be one-use.
2953     if (!V.hasOneUse())
2954       return false;
2955     unsigned OldShiftOpcode = V.getOpcode();
2956     switch (OldShiftOpcode) {
2957     case ISD::SHL:
2958       NewShiftOpcode = ISD::SRL;
2959       break;
2960     case ISD::SRL:
2961       NewShiftOpcode = ISD::SHL;
2962       break;
2963     default:
2964       return false; // must be a logical shift.
2965     }
2966     // We should be shifting a constant.
2967     // FIXME: best to use isConstantOrConstantVector().
2968     C = V.getOperand(0);
2969     ConstantSDNode *CC =
2970         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
2971     if (!CC)
2972       return false;
2973     Y = V.getOperand(1);
2974 
2975     ConstantSDNode *XC =
2976         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
2977     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
2978         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
2979   };
2980 
2981   // LHS of comparison should be an one-use 'and'.
2982   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
2983     return SDValue();
2984 
2985   X = N0.getOperand(0);
2986   SDValue Mask = N0.getOperand(1);
2987 
2988   // 'and' is commutative!
2989   if (!Match(Mask)) {
2990     std::swap(X, Mask);
2991     if (!Match(Mask))
2992       return SDValue();
2993   }
2994 
2995   EVT VT = X.getValueType();
2996 
2997   // Produce:
2998   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
2999   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3000   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3001   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3002   return T2;
3003 }
3004 
3005 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3006 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3007 /// handle the commuted versions of these patterns.
3008 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3009                                            ISD::CondCode Cond, const SDLoc &DL,
3010                                            DAGCombinerInfo &DCI) const {
3011   unsigned BOpcode = N0.getOpcode();
3012   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3013          "Unexpected binop");
3014   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3015 
3016   // (X + Y) == X --> Y == 0
3017   // (X - Y) == X --> Y == 0
3018   // (X ^ Y) == X --> Y == 0
3019   SelectionDAG &DAG = DCI.DAG;
3020   EVT OpVT = N0.getValueType();
3021   SDValue X = N0.getOperand(0);
3022   SDValue Y = N0.getOperand(1);
3023   if (X == N1)
3024     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3025 
3026   if (Y != N1)
3027     return SDValue();
3028 
3029   // (X + Y) == Y --> X == 0
3030   // (X ^ Y) == Y --> X == 0
3031   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3032     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3033 
3034   // The shift would not be valid if the operands are boolean (i1).
3035   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3036     return SDValue();
3037 
3038   // (X - Y) == Y --> X == Y << 1
3039   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3040                                  !DCI.isBeforeLegalize());
3041   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3042   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3043   if (!DCI.isCalledByLegalizer())
3044     DCI.AddToWorklist(YShl1.getNode());
3045   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3046 }
3047 
3048 /// Try to simplify a setcc built with the specified operands and cc. If it is
3049 /// unable to simplify it, return a null SDValue.
3050 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3051                                       ISD::CondCode Cond, bool foldBooleans,
3052                                       DAGCombinerInfo &DCI,
3053                                       const SDLoc &dl) const {
3054   SelectionDAG &DAG = DCI.DAG;
3055   EVT OpVT = N0.getValueType();
3056 
3057   // Constant fold or commute setcc.
3058   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3059     return Fold;
3060 
3061   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3062   // TODO: Handle non-splat vector constants. All undef causes trouble.
3063   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3064   if (isConstOrConstSplat(N0) &&
3065       (DCI.isBeforeLegalizeOps() ||
3066        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3067     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3068 
3069   // If we have a subtract with the same 2 non-constant operands as this setcc
3070   // -- but in reverse order -- then try to commute the operands of this setcc
3071   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3072   // instruction on some targets.
3073   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3074       (DCI.isBeforeLegalizeOps() ||
3075        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3076       DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) &&
3077       !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } ))
3078     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3079 
3080   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3081     const APInt &C1 = N1C->getAPIntValue();
3082 
3083     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3084     // equality comparison, then we're just comparing whether X itself is
3085     // zero.
3086     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3087         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3088         N0.getOperand(1).getOpcode() == ISD::Constant) {
3089       const APInt &ShAmt = N0.getConstantOperandAPInt(1);
3090       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3091           ShAmt == Log2_32(N0.getValueSizeInBits())) {
3092         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3093           // (srl (ctlz x), 5) == 0  -> X != 0
3094           // (srl (ctlz x), 5) != 1  -> X != 0
3095           Cond = ISD::SETNE;
3096         } else {
3097           // (srl (ctlz x), 5) != 0  -> X == 0
3098           // (srl (ctlz x), 5) == 1  -> X == 0
3099           Cond = ISD::SETEQ;
3100         }
3101         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3102         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
3103                             Zero, Cond);
3104       }
3105     }
3106 
3107     SDValue CTPOP = N0;
3108     // Look through truncs that don't change the value of a ctpop.
3109     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
3110       CTPOP = N0.getOperand(0);
3111 
3112     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
3113         (N0 == CTPOP ||
3114          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
3115       EVT CTVT = CTPOP.getValueType();
3116       SDValue CTOp = CTPOP.getOperand(0);
3117 
3118       // (ctpop x) u< 2 -> (x & x-1) == 0
3119       // (ctpop x) u> 1 -> (x & x-1) != 0
3120       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
3121         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3122         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3123         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3124         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3125         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
3126       }
3127 
3128       // If ctpop is not supported, expand a power-of-2 comparison based on it.
3129       if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) &&
3130           (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3131         // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3132         // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3133         SDValue Zero = DAG.getConstant(0, dl, CTVT);
3134         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3135         ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, true);
3136         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3137         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3138         SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3139         SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3140         unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3141         return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3142       }
3143     }
3144 
3145     // (zext x) == C --> x == (trunc C)
3146     // (sext x) == C --> x == (trunc C)
3147     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3148         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3149       unsigned MinBits = N0.getValueSizeInBits();
3150       SDValue PreExt;
3151       bool Signed = false;
3152       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3153         // ZExt
3154         MinBits = N0->getOperand(0).getValueSizeInBits();
3155         PreExt = N0->getOperand(0);
3156       } else if (N0->getOpcode() == ISD::AND) {
3157         // DAGCombine turns costly ZExts into ANDs
3158         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3159           if ((C->getAPIntValue()+1).isPowerOf2()) {
3160             MinBits = C->getAPIntValue().countTrailingOnes();
3161             PreExt = N0->getOperand(0);
3162           }
3163       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3164         // SExt
3165         MinBits = N0->getOperand(0).getValueSizeInBits();
3166         PreExt = N0->getOperand(0);
3167         Signed = true;
3168       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3169         // ZEXTLOAD / SEXTLOAD
3170         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3171           MinBits = LN0->getMemoryVT().getSizeInBits();
3172           PreExt = N0;
3173         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3174           Signed = true;
3175           MinBits = LN0->getMemoryVT().getSizeInBits();
3176           PreExt = N0;
3177         }
3178       }
3179 
3180       // Figure out how many bits we need to preserve this constant.
3181       unsigned ReqdBits = Signed ?
3182         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3183         C1.getActiveBits();
3184 
3185       // Make sure we're not losing bits from the constant.
3186       if (MinBits > 0 &&
3187           MinBits < C1.getBitWidth() &&
3188           MinBits >= ReqdBits) {
3189         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3190         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3191           // Will get folded away.
3192           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3193           if (MinBits == 1 && C1 == 1)
3194             // Invert the condition.
3195             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3196                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3197           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3198           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3199         }
3200 
3201         // If truncating the setcc operands is not desirable, we can still
3202         // simplify the expression in some cases:
3203         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3204         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3205         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3206         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3207         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3208         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3209         SDValue TopSetCC = N0->getOperand(0);
3210         unsigned N0Opc = N0->getOpcode();
3211         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3212         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3213             TopSetCC.getOpcode() == ISD::SETCC &&
3214             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3215             (isConstFalseVal(N1C) ||
3216              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3217 
3218           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3219                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3220 
3221           if (!Inverse)
3222             return TopSetCC;
3223 
3224           ISD::CondCode InvCond = ISD::getSetCCInverse(
3225               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3226               TopSetCC.getOperand(0).getValueType().isInteger());
3227           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3228                                       TopSetCC.getOperand(1),
3229                                       InvCond);
3230         }
3231       }
3232     }
3233 
3234     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3235     // equality or unsigned, and all 1 bits of the const are in the same
3236     // partial word, see if we can shorten the load.
3237     if (DCI.isBeforeLegalize() &&
3238         !ISD::isSignedIntSetCC(Cond) &&
3239         N0.getOpcode() == ISD::AND && C1 == 0 &&
3240         N0.getNode()->hasOneUse() &&
3241         isa<LoadSDNode>(N0.getOperand(0)) &&
3242         N0.getOperand(0).getNode()->hasOneUse() &&
3243         isa<ConstantSDNode>(N0.getOperand(1))) {
3244       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3245       APInt bestMask;
3246       unsigned bestWidth = 0, bestOffset = 0;
3247       if (Lod->isSimple() && Lod->isUnindexed()) {
3248         unsigned origWidth = N0.getValueSizeInBits();
3249         unsigned maskWidth = origWidth;
3250         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3251         // 8 bits, but have to be careful...
3252         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3253           origWidth = Lod->getMemoryVT().getSizeInBits();
3254         const APInt &Mask = N0.getConstantOperandAPInt(1);
3255         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3256           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3257           for (unsigned offset=0; offset<origWidth/width; offset++) {
3258             if (Mask.isSubsetOf(newMask)) {
3259               if (DAG.getDataLayout().isLittleEndian())
3260                 bestOffset = (uint64_t)offset * (width/8);
3261               else
3262                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3263               bestMask = Mask.lshr(offset * (width/8) * 8);
3264               bestWidth = width;
3265               break;
3266             }
3267             newMask <<= width;
3268           }
3269         }
3270       }
3271       if (bestWidth) {
3272         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3273         if (newVT.isRound() &&
3274             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3275           EVT PtrType = Lod->getOperand(1).getValueType();
3276           SDValue Ptr = Lod->getBasePtr();
3277           if (bestOffset != 0)
3278             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
3279                               DAG.getConstant(bestOffset, dl, PtrType));
3280           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
3281           SDValue NewLoad = DAG.getLoad(
3282               newVT, dl, Lod->getChain(), Ptr,
3283               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
3284           return DAG.getSetCC(dl, VT,
3285                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3286                                       DAG.getConstant(bestMask.trunc(bestWidth),
3287                                                       dl, newVT)),
3288                               DAG.getConstant(0LL, dl, newVT), Cond);
3289         }
3290       }
3291     }
3292 
3293     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3294     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3295       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3296 
3297       // If the comparison constant has bits in the upper part, the
3298       // zero-extended value could never match.
3299       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3300                                               C1.getBitWidth() - InSize))) {
3301         switch (Cond) {
3302         case ISD::SETUGT:
3303         case ISD::SETUGE:
3304         case ISD::SETEQ:
3305           return DAG.getConstant(0, dl, VT);
3306         case ISD::SETULT:
3307         case ISD::SETULE:
3308         case ISD::SETNE:
3309           return DAG.getConstant(1, dl, VT);
3310         case ISD::SETGT:
3311         case ISD::SETGE:
3312           // True if the sign bit of C1 is set.
3313           return DAG.getConstant(C1.isNegative(), dl, VT);
3314         case ISD::SETLT:
3315         case ISD::SETLE:
3316           // True if the sign bit of C1 isn't set.
3317           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3318         default:
3319           break;
3320         }
3321       }
3322 
3323       // Otherwise, we can perform the comparison with the low bits.
3324       switch (Cond) {
3325       case ISD::SETEQ:
3326       case ISD::SETNE:
3327       case ISD::SETUGT:
3328       case ISD::SETUGE:
3329       case ISD::SETULT:
3330       case ISD::SETULE: {
3331         EVT newVT = N0.getOperand(0).getValueType();
3332         if (DCI.isBeforeLegalizeOps() ||
3333             (isOperationLegal(ISD::SETCC, newVT) &&
3334              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3335           EVT NewSetCCVT =
3336               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
3337           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3338 
3339           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3340                                           NewConst, Cond);
3341           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3342         }
3343         break;
3344       }
3345       default:
3346         break; // todo, be more careful with signed comparisons
3347       }
3348     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3349                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3350       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3351       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3352       EVT ExtDstTy = N0.getValueType();
3353       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3354 
3355       // If the constant doesn't fit into the number of bits for the source of
3356       // the sign extension, it is impossible for both sides to be equal.
3357       if (C1.getMinSignedBits() > ExtSrcTyBits)
3358         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
3359 
3360       SDValue ZextOp;
3361       EVT Op0Ty = N0.getOperand(0).getValueType();
3362       if (Op0Ty == ExtSrcTy) {
3363         ZextOp = N0.getOperand(0);
3364       } else {
3365         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3366         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
3367                              DAG.getConstant(Imm, dl, Op0Ty));
3368       }
3369       if (!DCI.isCalledByLegalizer())
3370         DCI.AddToWorklist(ZextOp.getNode());
3371       // Otherwise, make this a use of a zext.
3372       return DAG.getSetCC(dl, VT, ZextOp,
3373                           DAG.getConstant(C1 & APInt::getLowBitsSet(
3374                                                               ExtDstTyBits,
3375                                                               ExtSrcTyBits),
3376                                           dl, ExtDstTy),
3377                           Cond);
3378     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3379                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3380       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3381       if (N0.getOpcode() == ISD::SETCC &&
3382           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3383           (N0.getValueType() == MVT::i1 ||
3384            getBooleanContents(N0.getOperand(0).getValueType()) ==
3385                        ZeroOrOneBooleanContent)) {
3386         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3387         if (TrueWhenTrue)
3388           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3389         // Invert the condition.
3390         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3391         CC = ISD::getSetCCInverse(CC,
3392                                   N0.getOperand(0).getValueType().isInteger());
3393         if (DCI.isBeforeLegalizeOps() ||
3394             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3395           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3396       }
3397 
3398       if ((N0.getOpcode() == ISD::XOR ||
3399            (N0.getOpcode() == ISD::AND &&
3400             N0.getOperand(0).getOpcode() == ISD::XOR &&
3401             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3402           isa<ConstantSDNode>(N0.getOperand(1)) &&
3403           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
3404         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3405         // can only do this if the top bits are known zero.
3406         unsigned BitWidth = N0.getValueSizeInBits();
3407         if (DAG.MaskedValueIsZero(N0,
3408                                   APInt::getHighBitsSet(BitWidth,
3409                                                         BitWidth-1))) {
3410           // Okay, get the un-inverted input value.
3411           SDValue Val;
3412           if (N0.getOpcode() == ISD::XOR) {
3413             Val = N0.getOperand(0);
3414           } else {
3415             assert(N0.getOpcode() == ISD::AND &&
3416                     N0.getOperand(0).getOpcode() == ISD::XOR);
3417             // ((X^1)&1)^1 -> X & 1
3418             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3419                               N0.getOperand(0).getOperand(0),
3420                               N0.getOperand(1));
3421           }
3422 
3423           return DAG.getSetCC(dl, VT, Val, N1,
3424                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3425         }
3426       } else if (N1C->isOne()) {
3427         SDValue Op0 = N0;
3428         if (Op0.getOpcode() == ISD::TRUNCATE)
3429           Op0 = Op0.getOperand(0);
3430 
3431         if ((Op0.getOpcode() == ISD::XOR) &&
3432             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3433             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3434           SDValue XorLHS = Op0.getOperand(0);
3435           SDValue XorRHS = Op0.getOperand(1);
3436           // Ensure that the input setccs return an i1 type or 0/1 value.
3437           if (Op0.getValueType() == MVT::i1 ||
3438               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3439                       ZeroOrOneBooleanContent &&
3440                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3441                         ZeroOrOneBooleanContent)) {
3442             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3443             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3444             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3445           }
3446         }
3447         if (Op0.getOpcode() == ISD::AND &&
3448             isa<ConstantSDNode>(Op0.getOperand(1)) &&
3449             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
3450           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3451           if (Op0.getValueType().bitsGT(VT))
3452             Op0 = DAG.getNode(ISD::AND, dl, VT,
3453                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3454                           DAG.getConstant(1, dl, VT));
3455           else if (Op0.getValueType().bitsLT(VT))
3456             Op0 = DAG.getNode(ISD::AND, dl, VT,
3457                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3458                         DAG.getConstant(1, dl, VT));
3459 
3460           return DAG.getSetCC(dl, VT, Op0,
3461                               DAG.getConstant(0, dl, Op0.getValueType()),
3462                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3463         }
3464         if (Op0.getOpcode() == ISD::AssertZext &&
3465             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3466           return DAG.getSetCC(dl, VT, Op0,
3467                               DAG.getConstant(0, dl, Op0.getValueType()),
3468                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3469       }
3470     }
3471 
3472     // Given:
3473     //   icmp eq/ne (urem %x, %y), 0
3474     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3475     //   icmp eq/ne %x, 0
3476     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3477         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3478       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3479       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3480       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3481         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3482     }
3483 
3484     if (SDValue V =
3485             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3486       return V;
3487   }
3488 
3489   // These simplifications apply to splat vectors as well.
3490   // TODO: Handle more splat vector cases.
3491   if (auto *N1C = isConstOrConstSplat(N1)) {
3492     const APInt &C1 = N1C->getAPIntValue();
3493 
3494     APInt MinVal, MaxVal;
3495     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3496     if (ISD::isSignedIntSetCC(Cond)) {
3497       MinVal = APInt::getSignedMinValue(OperandBitSize);
3498       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3499     } else {
3500       MinVal = APInt::getMinValue(OperandBitSize);
3501       MaxVal = APInt::getMaxValue(OperandBitSize);
3502     }
3503 
3504     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3505     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3506       // X >= MIN --> true
3507       if (C1 == MinVal)
3508         return DAG.getBoolConstant(true, dl, VT, OpVT);
3509 
3510       if (!VT.isVector()) { // TODO: Support this for vectors.
3511         // X >= C0 --> X > (C0 - 1)
3512         APInt C = C1 - 1;
3513         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3514         if ((DCI.isBeforeLegalizeOps() ||
3515              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3516             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3517                                   isLegalICmpImmediate(C.getSExtValue())))) {
3518           return DAG.getSetCC(dl, VT, N0,
3519                               DAG.getConstant(C, dl, N1.getValueType()),
3520                               NewCC);
3521         }
3522       }
3523     }
3524 
3525     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3526       // X <= MAX --> true
3527       if (C1 == MaxVal)
3528         return DAG.getBoolConstant(true, dl, VT, OpVT);
3529 
3530       // X <= C0 --> X < (C0 + 1)
3531       if (!VT.isVector()) { // TODO: Support this for vectors.
3532         APInt C = C1 + 1;
3533         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3534         if ((DCI.isBeforeLegalizeOps() ||
3535              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3536             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3537                                   isLegalICmpImmediate(C.getSExtValue())))) {
3538           return DAG.getSetCC(dl, VT, N0,
3539                               DAG.getConstant(C, dl, N1.getValueType()),
3540                               NewCC);
3541         }
3542       }
3543     }
3544 
3545     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3546       if (C1 == MinVal)
3547         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3548 
3549       // TODO: Support this for vectors after legalize ops.
3550       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3551         // Canonicalize setlt X, Max --> setne X, Max
3552         if (C1 == MaxVal)
3553           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3554 
3555         // If we have setult X, 1, turn it into seteq X, 0
3556         if (C1 == MinVal+1)
3557           return DAG.getSetCC(dl, VT, N0,
3558                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3559                               ISD::SETEQ);
3560       }
3561     }
3562 
3563     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3564       if (C1 == MaxVal)
3565         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3566 
3567       // TODO: Support this for vectors after legalize ops.
3568       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3569         // Canonicalize setgt X, Min --> setne X, Min
3570         if (C1 == MinVal)
3571           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3572 
3573         // If we have setugt X, Max-1, turn it into seteq X, Max
3574         if (C1 == MaxVal-1)
3575           return DAG.getSetCC(dl, VT, N0,
3576                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3577                               ISD::SETEQ);
3578       }
3579     }
3580 
3581     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3582       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3583       if (C1.isNullValue())
3584         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3585                 VT, N0, N1, Cond, DCI, dl))
3586           return CC;
3587     }
3588 
3589     // If we have "setcc X, C0", check to see if we can shrink the immediate
3590     // by changing cc.
3591     // TODO: Support this for vectors after legalize ops.
3592     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3593       // SETUGT X, SINTMAX  -> SETLT X, 0
3594       if (Cond == ISD::SETUGT &&
3595           C1 == APInt::getSignedMaxValue(OperandBitSize))
3596         return DAG.getSetCC(dl, VT, N0,
3597                             DAG.getConstant(0, dl, N1.getValueType()),
3598                             ISD::SETLT);
3599 
3600       // SETULT X, SINTMIN  -> SETGT X, -1
3601       if (Cond == ISD::SETULT &&
3602           C1 == APInt::getSignedMinValue(OperandBitSize)) {
3603         SDValue ConstMinusOne =
3604             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
3605                             N1.getValueType());
3606         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
3607       }
3608     }
3609   }
3610 
3611   // Back to non-vector simplifications.
3612   // TODO: Can we do these for vector splats?
3613   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3614     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3615     const APInt &C1 = N1C->getAPIntValue();
3616     EVT ShValTy = N0.getValueType();
3617 
3618     // Fold bit comparisons when we can.
3619     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3620         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
3621         N0.getOpcode() == ISD::AND) {
3622       auto &DL = DAG.getDataLayout();
3623       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3624         EVT ShiftTy = getShiftAmountTy(ShValTy, DL, !DCI.isBeforeLegalize());
3625         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
3626           // Perform the xform if the AND RHS is a single bit.
3627           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
3628           if (AndRHS->getAPIntValue().isPowerOf2() &&
3629               ShCt <= TLI.getShiftAmountThreshold(ShValTy)) {
3630             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3631                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3632                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3633           }
3634         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
3635           // (X & 8) == 8  -->  (X & 8) >> 3
3636           // Perform the xform if C1 is a single bit.
3637           unsigned ShCt = C1.logBase2();
3638           if (C1.isPowerOf2() &&
3639               ShCt <= TLI.getShiftAmountThreshold(ShValTy)) {
3640             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3641                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3642                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3643           }
3644         }
3645       }
3646     }
3647 
3648     if (C1.getMinSignedBits() <= 64 &&
3649         !isLegalICmpImmediate(C1.getSExtValue())) {
3650       // (X & -256) == 256 -> (X >> 8) == 1
3651       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3652           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
3653         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3654           const APInt &AndRHSC = AndRHS->getAPIntValue();
3655           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
3656             unsigned ShiftBits = AndRHSC.countTrailingZeros();
3657             auto &DL = DAG.getDataLayout();
3658             EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3659                                            !DCI.isBeforeLegalize());
3660             EVT CmpTy = N0.getValueType();
3661             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
3662                                         DAG.getConstant(ShiftBits, dl,
3663                                                         ShiftTy));
3664             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
3665             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
3666           }
3667         }
3668       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
3669                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
3670         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
3671         // X <  0x100000000 -> (X >> 32) <  1
3672         // X >= 0x100000000 -> (X >> 32) >= 1
3673         // X <= 0x0ffffffff -> (X >> 32) <  1
3674         // X >  0x0ffffffff -> (X >> 32) >= 1
3675         unsigned ShiftBits;
3676         APInt NewC = C1;
3677         ISD::CondCode NewCond = Cond;
3678         if (AdjOne) {
3679           ShiftBits = C1.countTrailingOnes();
3680           NewC = NewC + 1;
3681           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3682         } else {
3683           ShiftBits = C1.countTrailingZeros();
3684         }
3685         NewC.lshrInPlace(ShiftBits);
3686         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
3687           isLegalICmpImmediate(NewC.getSExtValue())) {
3688           auto &DL = DAG.getDataLayout();
3689           EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3690                                          !DCI.isBeforeLegalize());
3691           EVT CmpTy = N0.getValueType();
3692           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
3693                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
3694           SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
3695           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
3696         }
3697       }
3698     }
3699   }
3700 
3701   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
3702     auto *CFP = cast<ConstantFPSDNode>(N1);
3703     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
3704 
3705     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
3706     // constant if knowing that the operand is non-nan is enough.  We prefer to
3707     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3708     // materialize 0.0.
3709     if (Cond == ISD::SETO || Cond == ISD::SETUO)
3710       return DAG.getSetCC(dl, VT, N0, N0, Cond);
3711 
3712     // setcc (fneg x), C -> setcc swap(pred) x, -C
3713     if (N0.getOpcode() == ISD::FNEG) {
3714       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
3715       if (DCI.isBeforeLegalizeOps() ||
3716           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
3717         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
3718         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
3719       }
3720     }
3721 
3722     // If the condition is not legal, see if we can find an equivalent one
3723     // which is legal.
3724     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
3725       // If the comparison was an awkward floating-point == or != and one of
3726       // the comparison operands is infinity or negative infinity, convert the
3727       // condition to a less-awkward <= or >=.
3728       if (CFP->getValueAPF().isInfinity()) {
3729         if (CFP->getValueAPF().isNegative()) {
3730           if (Cond == ISD::SETOEQ &&
3731               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3732             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
3733           if (Cond == ISD::SETUEQ &&
3734               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3735             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
3736           if (Cond == ISD::SETUNE &&
3737               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3738             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
3739           if (Cond == ISD::SETONE &&
3740               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3741             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
3742         } else {
3743           if (Cond == ISD::SETOEQ &&
3744               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3745             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
3746           if (Cond == ISD::SETUEQ &&
3747               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3748             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
3749           if (Cond == ISD::SETUNE &&
3750               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3751             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
3752           if (Cond == ISD::SETONE &&
3753               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3754             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
3755         }
3756       }
3757     }
3758   }
3759 
3760   if (N0 == N1) {
3761     // The sext(setcc()) => setcc() optimization relies on the appropriate
3762     // constant being emitted.
3763     assert(!N0.getValueType().isInteger() &&
3764            "Integer types should be handled by FoldSetCC");
3765 
3766     bool EqTrue = ISD::isTrueWhenEqual(Cond);
3767     unsigned UOF = ISD::getUnorderedFlavor(Cond);
3768     if (UOF == 2) // FP operators that are undefined on NaNs.
3769       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3770     if (UOF == unsigned(EqTrue))
3771       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3772     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
3773     // if it is not already.
3774     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3775     if (NewCond != Cond &&
3776         (DCI.isBeforeLegalizeOps() ||
3777                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
3778       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3779   }
3780 
3781   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3782       N0.getValueType().isInteger()) {
3783     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
3784         N0.getOpcode() == ISD::XOR) {
3785       // Simplify (X+Y) == (X+Z) -->  Y == Z
3786       if (N0.getOpcode() == N1.getOpcode()) {
3787         if (N0.getOperand(0) == N1.getOperand(0))
3788           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
3789         if (N0.getOperand(1) == N1.getOperand(1))
3790           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
3791         if (isCommutativeBinOp(N0.getOpcode())) {
3792           // If X op Y == Y op X, try other combinations.
3793           if (N0.getOperand(0) == N1.getOperand(1))
3794             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
3795                                 Cond);
3796           if (N0.getOperand(1) == N1.getOperand(0))
3797             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
3798                                 Cond);
3799         }
3800       }
3801 
3802       // If RHS is a legal immediate value for a compare instruction, we need
3803       // to be careful about increasing register pressure needlessly.
3804       bool LegalRHSImm = false;
3805 
3806       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
3807         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3808           // Turn (X+C1) == C2 --> X == C2-C1
3809           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
3810             return DAG.getSetCC(dl, VT, N0.getOperand(0),
3811                                 DAG.getConstant(RHSC->getAPIntValue()-
3812                                                 LHSR->getAPIntValue(),
3813                                 dl, N0.getValueType()), Cond);
3814           }
3815 
3816           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3817           if (N0.getOpcode() == ISD::XOR)
3818             // If we know that all of the inverted bits are zero, don't bother
3819             // performing the inversion.
3820             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
3821               return
3822                 DAG.getSetCC(dl, VT, N0.getOperand(0),
3823                              DAG.getConstant(LHSR->getAPIntValue() ^
3824                                                RHSC->getAPIntValue(),
3825                                              dl, N0.getValueType()),
3826                              Cond);
3827         }
3828 
3829         // Turn (C1-X) == C2 --> X == C1-C2
3830         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3831           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
3832             return
3833               DAG.getSetCC(dl, VT, N0.getOperand(1),
3834                            DAG.getConstant(SUBC->getAPIntValue() -
3835                                              RHSC->getAPIntValue(),
3836                                            dl, N0.getValueType()),
3837                            Cond);
3838           }
3839         }
3840 
3841         // Could RHSC fold directly into a compare?
3842         if (RHSC->getValueType(0).getSizeInBits() <= 64)
3843           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
3844       }
3845 
3846       // (X+Y) == X --> Y == 0 and similar folds.
3847       // Don't do this if X is an immediate that can fold into a cmp
3848       // instruction and X+Y has other uses. It could be an induction variable
3849       // chain, and the transform would increase register pressure.
3850       if (!LegalRHSImm || N0.hasOneUse())
3851         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
3852           return V;
3853     }
3854 
3855     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
3856         N1.getOpcode() == ISD::XOR)
3857       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
3858         return V;
3859 
3860     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
3861       return V;
3862   }
3863 
3864   // Fold remainder of division by a constant.
3865   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
3866       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3867     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3868 
3869     // When division is cheap or optimizing for minimum size,
3870     // fall through to DIVREM creation by skipping this fold.
3871     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
3872       if (N0.getOpcode() == ISD::UREM) {
3873         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
3874           return Folded;
3875       } else if (N0.getOpcode() == ISD::SREM) {
3876         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
3877           return Folded;
3878       }
3879     }
3880   }
3881 
3882   // Fold away ALL boolean setcc's.
3883   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
3884     SDValue Temp;
3885     switch (Cond) {
3886     default: llvm_unreachable("Unknown integer setcc!");
3887     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
3888       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3889       N0 = DAG.getNOT(dl, Temp, OpVT);
3890       if (!DCI.isCalledByLegalizer())
3891         DCI.AddToWorklist(Temp.getNode());
3892       break;
3893     case ISD::SETNE:  // X != Y   -->  (X^Y)
3894       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3895       break;
3896     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
3897     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
3898       Temp = DAG.getNOT(dl, N0, OpVT);
3899       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
3900       if (!DCI.isCalledByLegalizer())
3901         DCI.AddToWorklist(Temp.getNode());
3902       break;
3903     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
3904     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
3905       Temp = DAG.getNOT(dl, N1, OpVT);
3906       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
3907       if (!DCI.isCalledByLegalizer())
3908         DCI.AddToWorklist(Temp.getNode());
3909       break;
3910     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
3911     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
3912       Temp = DAG.getNOT(dl, N0, OpVT);
3913       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
3914       if (!DCI.isCalledByLegalizer())
3915         DCI.AddToWorklist(Temp.getNode());
3916       break;
3917     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
3918     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
3919       Temp = DAG.getNOT(dl, N1, OpVT);
3920       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
3921       break;
3922     }
3923     if (VT.getScalarType() != MVT::i1) {
3924       if (!DCI.isCalledByLegalizer())
3925         DCI.AddToWorklist(N0.getNode());
3926       // FIXME: If running after legalize, we probably can't do this.
3927       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
3928       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
3929     }
3930     return N0;
3931   }
3932 
3933   // Could not fold it.
3934   return SDValue();
3935 }
3936 
3937 /// Returns true (and the GlobalValue and the offset) if the node is a
3938 /// GlobalAddress + offset.
3939 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
3940                                     int64_t &Offset) const {
3941 
3942   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
3943 
3944   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
3945     GA = GASD->getGlobal();
3946     Offset += GASD->getOffset();
3947     return true;
3948   }
3949 
3950   if (N->getOpcode() == ISD::ADD) {
3951     SDValue N1 = N->getOperand(0);
3952     SDValue N2 = N->getOperand(1);
3953     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
3954       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
3955         Offset += V->getSExtValue();
3956         return true;
3957       }
3958     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
3959       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
3960         Offset += V->getSExtValue();
3961         return true;
3962       }
3963     }
3964   }
3965 
3966   return false;
3967 }
3968 
3969 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
3970                                           DAGCombinerInfo &DCI) const {
3971   // Default implementation: no optimization.
3972   return SDValue();
3973 }
3974 
3975 //===----------------------------------------------------------------------===//
3976 //  Inline Assembler Implementation Methods
3977 //===----------------------------------------------------------------------===//
3978 
3979 TargetLowering::ConstraintType
3980 TargetLowering::getConstraintType(StringRef Constraint) const {
3981   unsigned S = Constraint.size();
3982 
3983   if (S == 1) {
3984     switch (Constraint[0]) {
3985     default: break;
3986     case 'r':
3987       return C_RegisterClass;
3988     case 'm': // memory
3989     case 'o': // offsetable
3990     case 'V': // not offsetable
3991       return C_Memory;
3992     case 'n': // Simple Integer
3993     case 'E': // Floating Point Constant
3994     case 'F': // Floating Point Constant
3995       return C_Immediate;
3996     case 'i': // Simple Integer or Relocatable Constant
3997     case 's': // Relocatable Constant
3998     case 'p': // Address.
3999     case 'X': // Allow ANY value.
4000     case 'I': // Target registers.
4001     case 'J':
4002     case 'K':
4003     case 'L':
4004     case 'M':
4005     case 'N':
4006     case 'O':
4007     case 'P':
4008     case '<':
4009     case '>':
4010       return C_Other;
4011     }
4012   }
4013 
4014   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4015     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4016       return C_Memory;
4017     return C_Register;
4018   }
4019   return C_Unknown;
4020 }
4021 
4022 /// Try to replace an X constraint, which matches anything, with another that
4023 /// has more specific requirements based on the type of the corresponding
4024 /// operand.
4025 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4026   if (ConstraintVT.isInteger())
4027     return "r";
4028   if (ConstraintVT.isFloatingPoint())
4029     return "f"; // works for many targets
4030   return nullptr;
4031 }
4032 
4033 SDValue TargetLowering::LowerAsmOutputForConstraint(
4034     SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
4035     SelectionDAG &DAG) const {
4036   return SDValue();
4037 }
4038 
4039 /// Lower the specified operand into the Ops vector.
4040 /// If it is invalid, don't add anything to Ops.
4041 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4042                                                   std::string &Constraint,
4043                                                   std::vector<SDValue> &Ops,
4044                                                   SelectionDAG &DAG) const {
4045 
4046   if (Constraint.length() > 1) return;
4047 
4048   char ConstraintLetter = Constraint[0];
4049   switch (ConstraintLetter) {
4050   default: break;
4051   case 'X':     // Allows any operand; labels (basic block) use this.
4052     if (Op.getOpcode() == ISD::BasicBlock ||
4053         Op.getOpcode() == ISD::TargetBlockAddress) {
4054       Ops.push_back(Op);
4055       return;
4056     }
4057     LLVM_FALLTHROUGH;
4058   case 'i':    // Simple Integer or Relocatable Constant
4059   case 'n':    // Simple Integer
4060   case 's': {  // Relocatable Constant
4061 
4062     GlobalAddressSDNode *GA;
4063     ConstantSDNode *C;
4064     BlockAddressSDNode *BA;
4065     uint64_t Offset = 0;
4066 
4067     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4068     // etc., since getelementpointer is variadic. We can't use
4069     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4070     // while in this case the GA may be furthest from the root node which is
4071     // likely an ISD::ADD.
4072     while (1) {
4073       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4074         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4075                                                  GA->getValueType(0),
4076                                                  Offset + GA->getOffset()));
4077         return;
4078       } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
4079                  ConstraintLetter != 's') {
4080         // gcc prints these as sign extended.  Sign extend value to 64 bits
4081         // now; without this it would get ZExt'd later in
4082         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4083         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4084         BooleanContent BCont = getBooleanContents(MVT::i64);
4085         ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
4086                                       : ISD::SIGN_EXTEND;
4087         int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
4088                                                     : C->getSExtValue();
4089         Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
4090                                             SDLoc(C), MVT::i64));
4091         return;
4092       } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
4093                  ConstraintLetter != 'n') {
4094         Ops.push_back(DAG.getTargetBlockAddress(
4095             BA->getBlockAddress(), BA->getValueType(0),
4096             Offset + BA->getOffset(), BA->getTargetFlags()));
4097         return;
4098       } else {
4099         const unsigned OpCode = Op.getOpcode();
4100         if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4101           if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4102             Op = Op.getOperand(1);
4103           // Subtraction is not commutative.
4104           else if (OpCode == ISD::ADD &&
4105                    (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4106             Op = Op.getOperand(0);
4107           else
4108             return;
4109           Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4110           continue;
4111         }
4112       }
4113       return;
4114     }
4115     break;
4116   }
4117   }
4118 }
4119 
4120 std::pair<unsigned, const TargetRegisterClass *>
4121 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4122                                              StringRef Constraint,
4123                                              MVT VT) const {
4124   if (Constraint.empty() || Constraint[0] != '{')
4125     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4126   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4127 
4128   // Remove the braces from around the name.
4129   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4130 
4131   std::pair<unsigned, const TargetRegisterClass *> R =
4132       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4133 
4134   // Figure out which register class contains this reg.
4135   for (const TargetRegisterClass *RC : RI->regclasses()) {
4136     // If none of the value types for this register class are valid, we
4137     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4138     if (!isLegalRC(*RI, *RC))
4139       continue;
4140 
4141     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4142          I != E; ++I) {
4143       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4144         std::pair<unsigned, const TargetRegisterClass *> S =
4145             std::make_pair(*I, RC);
4146 
4147         // If this register class has the requested value type, return it,
4148         // otherwise keep searching and return the first class found
4149         // if no other is found which explicitly has the requested type.
4150         if (RI->isTypeLegalForClass(*RC, VT))
4151           return S;
4152         if (!R.second)
4153           R = S;
4154       }
4155     }
4156   }
4157 
4158   return R;
4159 }
4160 
4161 //===----------------------------------------------------------------------===//
4162 // Constraint Selection.
4163 
4164 /// Return true of this is an input operand that is a matching constraint like
4165 /// "4".
4166 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4167   assert(!ConstraintCode.empty() && "No known constraint!");
4168   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4169 }
4170 
4171 /// If this is an input matching constraint, this method returns the output
4172 /// operand it matches.
4173 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4174   assert(!ConstraintCode.empty() && "No known constraint!");
4175   return atoi(ConstraintCode.c_str());
4176 }
4177 
4178 /// Split up the constraint string from the inline assembly value into the
4179 /// specific constraints and their prefixes, and also tie in the associated
4180 /// operand values.
4181 /// If this returns an empty vector, and if the constraint string itself
4182 /// isn't empty, there was an error parsing.
4183 TargetLowering::AsmOperandInfoVector
4184 TargetLowering::ParseConstraints(const DataLayout &DL,
4185                                  const TargetRegisterInfo *TRI,
4186                                  ImmutableCallSite CS) const {
4187   /// Information about all of the constraints.
4188   AsmOperandInfoVector ConstraintOperands;
4189   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4190   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4191 
4192   // Do a prepass over the constraints, canonicalizing them, and building up the
4193   // ConstraintOperands list.
4194   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4195   unsigned ResNo = 0; // ResNo - The result number of the next output.
4196 
4197   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4198     ConstraintOperands.emplace_back(std::move(CI));
4199     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4200 
4201     // Update multiple alternative constraint count.
4202     if (OpInfo.multipleAlternatives.size() > maCount)
4203       maCount = OpInfo.multipleAlternatives.size();
4204 
4205     OpInfo.ConstraintVT = MVT::Other;
4206 
4207     // Compute the value type for each operand.
4208     switch (OpInfo.Type) {
4209     case InlineAsm::isOutput:
4210       // Indirect outputs just consume an argument.
4211       if (OpInfo.isIndirect) {
4212         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4213         break;
4214       }
4215 
4216       // The return value of the call is this value.  As such, there is no
4217       // corresponding argument.
4218       assert(!CS.getType()->isVoidTy() &&
4219              "Bad inline asm!");
4220       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
4221         OpInfo.ConstraintVT =
4222             getSimpleValueType(DL, STy->getElementType(ResNo));
4223       } else {
4224         assert(ResNo == 0 && "Asm only has one result!");
4225         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
4226       }
4227       ++ResNo;
4228       break;
4229     case InlineAsm::isInput:
4230       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4231       break;
4232     case InlineAsm::isClobber:
4233       // Nothing to do.
4234       break;
4235     }
4236 
4237     if (OpInfo.CallOperandVal) {
4238       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4239       if (OpInfo.isIndirect) {
4240         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4241         if (!PtrTy)
4242           report_fatal_error("Indirect operand for inline asm not a pointer!");
4243         OpTy = PtrTy->getElementType();
4244       }
4245 
4246       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4247       if (StructType *STy = dyn_cast<StructType>(OpTy))
4248         if (STy->getNumElements() == 1)
4249           OpTy = STy->getElementType(0);
4250 
4251       // If OpTy is not a single value, it may be a struct/union that we
4252       // can tile with integers.
4253       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4254         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4255         switch (BitSize) {
4256         default: break;
4257         case 1:
4258         case 8:
4259         case 16:
4260         case 32:
4261         case 64:
4262         case 128:
4263           OpInfo.ConstraintVT =
4264               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4265           break;
4266         }
4267       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4268         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4269         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4270       } else {
4271         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4272       }
4273     }
4274   }
4275 
4276   // If we have multiple alternative constraints, select the best alternative.
4277   if (!ConstraintOperands.empty()) {
4278     if (maCount) {
4279       unsigned bestMAIndex = 0;
4280       int bestWeight = -1;
4281       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4282       int weight = -1;
4283       unsigned maIndex;
4284       // Compute the sums of the weights for each alternative, keeping track
4285       // of the best (highest weight) one so far.
4286       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4287         int weightSum = 0;
4288         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4289              cIndex != eIndex; ++cIndex) {
4290           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4291           if (OpInfo.Type == InlineAsm::isClobber)
4292             continue;
4293 
4294           // If this is an output operand with a matching input operand,
4295           // look up the matching input. If their types mismatch, e.g. one
4296           // is an integer, the other is floating point, or their sizes are
4297           // different, flag it as an maCantMatch.
4298           if (OpInfo.hasMatchingInput()) {
4299             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4300             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4301               if ((OpInfo.ConstraintVT.isInteger() !=
4302                    Input.ConstraintVT.isInteger()) ||
4303                   (OpInfo.ConstraintVT.getSizeInBits() !=
4304                    Input.ConstraintVT.getSizeInBits())) {
4305                 weightSum = -1; // Can't match.
4306                 break;
4307               }
4308             }
4309           }
4310           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4311           if (weight == -1) {
4312             weightSum = -1;
4313             break;
4314           }
4315           weightSum += weight;
4316         }
4317         // Update best.
4318         if (weightSum > bestWeight) {
4319           bestWeight = weightSum;
4320           bestMAIndex = maIndex;
4321         }
4322       }
4323 
4324       // Now select chosen alternative in each constraint.
4325       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4326            cIndex != eIndex; ++cIndex) {
4327         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4328         if (cInfo.Type == InlineAsm::isClobber)
4329           continue;
4330         cInfo.selectAlternative(bestMAIndex);
4331       }
4332     }
4333   }
4334 
4335   // Check and hook up tied operands, choose constraint code to use.
4336   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4337        cIndex != eIndex; ++cIndex) {
4338     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4339 
4340     // If this is an output operand with a matching input operand, look up the
4341     // matching input. If their types mismatch, e.g. one is an integer, the
4342     // other is floating point, or their sizes are different, flag it as an
4343     // error.
4344     if (OpInfo.hasMatchingInput()) {
4345       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4346 
4347       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4348         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4349             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4350                                          OpInfo.ConstraintVT);
4351         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4352             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4353                                          Input.ConstraintVT);
4354         if ((OpInfo.ConstraintVT.isInteger() !=
4355              Input.ConstraintVT.isInteger()) ||
4356             (MatchRC.second != InputRC.second)) {
4357           report_fatal_error("Unsupported asm: input constraint"
4358                              " with a matching output constraint of"
4359                              " incompatible type!");
4360         }
4361       }
4362     }
4363   }
4364 
4365   return ConstraintOperands;
4366 }
4367 
4368 /// Return an integer indicating how general CT is.
4369 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4370   switch (CT) {
4371   case TargetLowering::C_Immediate:
4372   case TargetLowering::C_Other:
4373   case TargetLowering::C_Unknown:
4374     return 0;
4375   case TargetLowering::C_Register:
4376     return 1;
4377   case TargetLowering::C_RegisterClass:
4378     return 2;
4379   case TargetLowering::C_Memory:
4380     return 3;
4381   }
4382   llvm_unreachable("Invalid constraint type");
4383 }
4384 
4385 /// Examine constraint type and operand type and determine a weight value.
4386 /// This object must already have been set up with the operand type
4387 /// and the current alternative constraint selected.
4388 TargetLowering::ConstraintWeight
4389   TargetLowering::getMultipleConstraintMatchWeight(
4390     AsmOperandInfo &info, int maIndex) const {
4391   InlineAsm::ConstraintCodeVector *rCodes;
4392   if (maIndex >= (int)info.multipleAlternatives.size())
4393     rCodes = &info.Codes;
4394   else
4395     rCodes = &info.multipleAlternatives[maIndex].Codes;
4396   ConstraintWeight BestWeight = CW_Invalid;
4397 
4398   // Loop over the options, keeping track of the most general one.
4399   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4400     ConstraintWeight weight =
4401       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4402     if (weight > BestWeight)
4403       BestWeight = weight;
4404   }
4405 
4406   return BestWeight;
4407 }
4408 
4409 /// Examine constraint type and operand type and determine a weight value.
4410 /// This object must already have been set up with the operand type
4411 /// and the current alternative constraint selected.
4412 TargetLowering::ConstraintWeight
4413   TargetLowering::getSingleConstraintMatchWeight(
4414     AsmOperandInfo &info, const char *constraint) const {
4415   ConstraintWeight weight = CW_Invalid;
4416   Value *CallOperandVal = info.CallOperandVal;
4417     // If we don't have a value, we can't do a match,
4418     // but allow it at the lowest weight.
4419   if (!CallOperandVal)
4420     return CW_Default;
4421   // Look at the constraint type.
4422   switch (*constraint) {
4423     case 'i': // immediate integer.
4424     case 'n': // immediate integer with a known value.
4425       if (isa<ConstantInt>(CallOperandVal))
4426         weight = CW_Constant;
4427       break;
4428     case 's': // non-explicit intregal immediate.
4429       if (isa<GlobalValue>(CallOperandVal))
4430         weight = CW_Constant;
4431       break;
4432     case 'E': // immediate float if host format.
4433     case 'F': // immediate float.
4434       if (isa<ConstantFP>(CallOperandVal))
4435         weight = CW_Constant;
4436       break;
4437     case '<': // memory operand with autodecrement.
4438     case '>': // memory operand with autoincrement.
4439     case 'm': // memory operand.
4440     case 'o': // offsettable memory operand
4441     case 'V': // non-offsettable memory operand
4442       weight = CW_Memory;
4443       break;
4444     case 'r': // general register.
4445     case 'g': // general register, memory operand or immediate integer.
4446               // note: Clang converts "g" to "imr".
4447       if (CallOperandVal->getType()->isIntegerTy())
4448         weight = CW_Register;
4449       break;
4450     case 'X': // any operand.
4451   default:
4452     weight = CW_Default;
4453     break;
4454   }
4455   return weight;
4456 }
4457 
4458 /// If there are multiple different constraints that we could pick for this
4459 /// operand (e.g. "imr") try to pick the 'best' one.
4460 /// This is somewhat tricky: constraints fall into four classes:
4461 ///    Other         -> immediates and magic values
4462 ///    Register      -> one specific register
4463 ///    RegisterClass -> a group of regs
4464 ///    Memory        -> memory
4465 /// Ideally, we would pick the most specific constraint possible: if we have
4466 /// something that fits into a register, we would pick it.  The problem here
4467 /// is that if we have something that could either be in a register or in
4468 /// memory that use of the register could cause selection of *other*
4469 /// operands to fail: they might only succeed if we pick memory.  Because of
4470 /// this the heuristic we use is:
4471 ///
4472 ///  1) If there is an 'other' constraint, and if the operand is valid for
4473 ///     that constraint, use it.  This makes us take advantage of 'i'
4474 ///     constraints when available.
4475 ///  2) Otherwise, pick the most general constraint present.  This prefers
4476 ///     'm' over 'r', for example.
4477 ///
4478 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4479                              const TargetLowering &TLI,
4480                              SDValue Op, SelectionDAG *DAG) {
4481   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4482   unsigned BestIdx = 0;
4483   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4484   int BestGenerality = -1;
4485 
4486   // Loop over the options, keeping track of the most general one.
4487   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4488     TargetLowering::ConstraintType CType =
4489       TLI.getConstraintType(OpInfo.Codes[i]);
4490 
4491     // If this is an 'other' or 'immediate' constraint, see if the operand is
4492     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4493     // the operand is an integer in the range [0..31] we want to use I (saving a
4494     // load of a register), otherwise we must use 'r'.
4495     if ((CType == TargetLowering::C_Other ||
4496          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4497       assert(OpInfo.Codes[i].size() == 1 &&
4498              "Unhandled multi-letter 'other' constraint");
4499       std::vector<SDValue> ResultOps;
4500       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4501                                        ResultOps, *DAG);
4502       if (!ResultOps.empty()) {
4503         BestType = CType;
4504         BestIdx = i;
4505         break;
4506       }
4507     }
4508 
4509     // Things with matching constraints can only be registers, per gcc
4510     // documentation.  This mainly affects "g" constraints.
4511     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4512       continue;
4513 
4514     // This constraint letter is more general than the previous one, use it.
4515     int Generality = getConstraintGenerality(CType);
4516     if (Generality > BestGenerality) {
4517       BestType = CType;
4518       BestIdx = i;
4519       BestGenerality = Generality;
4520     }
4521   }
4522 
4523   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4524   OpInfo.ConstraintType = BestType;
4525 }
4526 
4527 /// Determines the constraint code and constraint type to use for the specific
4528 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4529 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4530                                             SDValue Op,
4531                                             SelectionDAG *DAG) const {
4532   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4533 
4534   // Single-letter constraints ('r') are very common.
4535   if (OpInfo.Codes.size() == 1) {
4536     OpInfo.ConstraintCode = OpInfo.Codes[0];
4537     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4538   } else {
4539     ChooseConstraint(OpInfo, *this, Op, DAG);
4540   }
4541 
4542   // 'X' matches anything.
4543   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4544     // Labels and constants are handled elsewhere ('X' is the only thing
4545     // that matches labels).  For Functions, the type here is the type of
4546     // the result, which is not what we want to look at; leave them alone.
4547     Value *v = OpInfo.CallOperandVal;
4548     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4549       OpInfo.CallOperandVal = v;
4550       return;
4551     }
4552 
4553     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4554       return;
4555 
4556     // Otherwise, try to resolve it to something we know about by looking at
4557     // the actual operand type.
4558     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4559       OpInfo.ConstraintCode = Repl;
4560       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4561     }
4562   }
4563 }
4564 
4565 /// Given an exact SDIV by a constant, create a multiplication
4566 /// with the multiplicative inverse of the constant.
4567 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4568                               const SDLoc &dl, SelectionDAG &DAG,
4569                               SmallVectorImpl<SDNode *> &Created) {
4570   SDValue Op0 = N->getOperand(0);
4571   SDValue Op1 = N->getOperand(1);
4572   EVT VT = N->getValueType(0);
4573   EVT SVT = VT.getScalarType();
4574   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
4575   EVT ShSVT = ShVT.getScalarType();
4576 
4577   bool UseSRA = false;
4578   SmallVector<SDValue, 16> Shifts, Factors;
4579 
4580   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4581     if (C->isNullValue())
4582       return false;
4583     APInt Divisor = C->getAPIntValue();
4584     unsigned Shift = Divisor.countTrailingZeros();
4585     if (Shift) {
4586       Divisor.ashrInPlace(Shift);
4587       UseSRA = true;
4588     }
4589     // Calculate the multiplicative inverse, using Newton's method.
4590     APInt t;
4591     APInt Factor = Divisor;
4592     while ((t = Divisor * Factor) != 1)
4593       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
4594     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
4595     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
4596     return true;
4597   };
4598 
4599   // Collect all magic values from the build vector.
4600   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
4601     return SDValue();
4602 
4603   SDValue Shift, Factor;
4604   if (VT.isVector()) {
4605     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4606     Factor = DAG.getBuildVector(VT, dl, Factors);
4607   } else {
4608     Shift = Shifts[0];
4609     Factor = Factors[0];
4610   }
4611 
4612   SDValue Res = Op0;
4613 
4614   // Shift the value upfront if it is even, so the LSB is one.
4615   if (UseSRA) {
4616     // TODO: For UDIV use SRL instead of SRA.
4617     SDNodeFlags Flags;
4618     Flags.setExact(true);
4619     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
4620     Created.push_back(Res.getNode());
4621   }
4622 
4623   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
4624 }
4625 
4626 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4627                               SelectionDAG &DAG,
4628                               SmallVectorImpl<SDNode *> &Created) const {
4629   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4630   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4631   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
4632     return SDValue(N, 0); // Lower SDIV as SDIV
4633   return SDValue();
4634 }
4635 
4636 /// Given an ISD::SDIV node expressing a divide by constant,
4637 /// return a DAG expression to select that will generate the same value by
4638 /// multiplying by a magic number.
4639 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4640 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
4641                                   bool IsAfterLegalization,
4642                                   SmallVectorImpl<SDNode *> &Created) const {
4643   SDLoc dl(N);
4644   EVT VT = N->getValueType(0);
4645   EVT SVT = VT.getScalarType();
4646   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4647   EVT ShSVT = ShVT.getScalarType();
4648   unsigned EltBits = VT.getScalarSizeInBits();
4649 
4650   // Check to see if we can do this.
4651   // FIXME: We should be more aggressive here.
4652   if (!isTypeLegal(VT))
4653     return SDValue();
4654 
4655   // If the sdiv has an 'exact' bit we can use a simpler lowering.
4656   if (N->getFlags().hasExact())
4657     return BuildExactSDIV(*this, N, dl, DAG, Created);
4658 
4659   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
4660 
4661   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4662     if (C->isNullValue())
4663       return false;
4664 
4665     const APInt &Divisor = C->getAPIntValue();
4666     APInt::ms magics = Divisor.magic();
4667     int NumeratorFactor = 0;
4668     int ShiftMask = -1;
4669 
4670     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
4671       // If d is +1/-1, we just multiply the numerator by +1/-1.
4672       NumeratorFactor = Divisor.getSExtValue();
4673       magics.m = 0;
4674       magics.s = 0;
4675       ShiftMask = 0;
4676     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
4677       // If d > 0 and m < 0, add the numerator.
4678       NumeratorFactor = 1;
4679     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
4680       // If d < 0 and m > 0, subtract the numerator.
4681       NumeratorFactor = -1;
4682     }
4683 
4684     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
4685     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
4686     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
4687     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
4688     return true;
4689   };
4690 
4691   SDValue N0 = N->getOperand(0);
4692   SDValue N1 = N->getOperand(1);
4693 
4694   // Collect the shifts / magic values from each element.
4695   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
4696     return SDValue();
4697 
4698   SDValue MagicFactor, Factor, Shift, ShiftMask;
4699   if (VT.isVector()) {
4700     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4701     Factor = DAG.getBuildVector(VT, dl, Factors);
4702     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4703     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
4704   } else {
4705     MagicFactor = MagicFactors[0];
4706     Factor = Factors[0];
4707     Shift = Shifts[0];
4708     ShiftMask = ShiftMasks[0];
4709   }
4710 
4711   // Multiply the numerator (operand 0) by the magic value.
4712   // FIXME: We should support doing a MUL in a wider type.
4713   SDValue Q;
4714   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
4715                           : isOperationLegalOrCustom(ISD::MULHS, VT))
4716     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
4717   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
4718                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
4719     SDValue LoHi =
4720         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
4721     Q = SDValue(LoHi.getNode(), 1);
4722   } else
4723     return SDValue(); // No mulhs or equivalent.
4724   Created.push_back(Q.getNode());
4725 
4726   // (Optionally) Add/subtract the numerator using Factor.
4727   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
4728   Created.push_back(Factor.getNode());
4729   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
4730   Created.push_back(Q.getNode());
4731 
4732   // Shift right algebraic by shift value.
4733   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
4734   Created.push_back(Q.getNode());
4735 
4736   // Extract the sign bit, mask it and add it to the quotient.
4737   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
4738   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
4739   Created.push_back(T.getNode());
4740   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
4741   Created.push_back(T.getNode());
4742   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
4743 }
4744 
4745 /// Given an ISD::UDIV node expressing a divide by constant,
4746 /// return a DAG expression to select that will generate the same value by
4747 /// multiplying by a magic number.
4748 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4749 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
4750                                   bool IsAfterLegalization,
4751                                   SmallVectorImpl<SDNode *> &Created) const {
4752   SDLoc dl(N);
4753   EVT VT = N->getValueType(0);
4754   EVT SVT = VT.getScalarType();
4755   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4756   EVT ShSVT = ShVT.getScalarType();
4757   unsigned EltBits = VT.getScalarSizeInBits();
4758 
4759   // Check to see if we can do this.
4760   // FIXME: We should be more aggressive here.
4761   if (!isTypeLegal(VT))
4762     return SDValue();
4763 
4764   bool UseNPQ = false;
4765   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4766 
4767   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
4768     if (C->isNullValue())
4769       return false;
4770     // FIXME: We should use a narrower constant when the upper
4771     // bits are known to be zero.
4772     APInt Divisor = C->getAPIntValue();
4773     APInt::mu magics = Divisor.magicu();
4774     unsigned PreShift = 0, PostShift = 0;
4775 
4776     // If the divisor is even, we can avoid using the expensive fixup by
4777     // shifting the divided value upfront.
4778     if (magics.a != 0 && !Divisor[0]) {
4779       PreShift = Divisor.countTrailingZeros();
4780       // Get magic number for the shifted divisor.
4781       magics = Divisor.lshr(PreShift).magicu(PreShift);
4782       assert(magics.a == 0 && "Should use cheap fixup now");
4783     }
4784 
4785     APInt Magic = magics.m;
4786 
4787     unsigned SelNPQ;
4788     if (magics.a == 0 || Divisor.isOneValue()) {
4789       assert(magics.s < Divisor.getBitWidth() &&
4790              "We shouldn't generate an undefined shift!");
4791       PostShift = magics.s;
4792       SelNPQ = false;
4793     } else {
4794       PostShift = magics.s - 1;
4795       SelNPQ = true;
4796     }
4797 
4798     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
4799     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
4800     NPQFactors.push_back(
4801         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
4802                                : APInt::getNullValue(EltBits),
4803                         dl, SVT));
4804     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
4805     UseNPQ |= SelNPQ;
4806     return true;
4807   };
4808 
4809   SDValue N0 = N->getOperand(0);
4810   SDValue N1 = N->getOperand(1);
4811 
4812   // Collect the shifts/magic values from each element.
4813   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
4814     return SDValue();
4815 
4816   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
4817   if (VT.isVector()) {
4818     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
4819     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4820     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
4821     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
4822   } else {
4823     PreShift = PreShifts[0];
4824     MagicFactor = MagicFactors[0];
4825     PostShift = PostShifts[0];
4826   }
4827 
4828   SDValue Q = N0;
4829   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
4830   Created.push_back(Q.getNode());
4831 
4832   // FIXME: We should support doing a MUL in a wider type.
4833   auto GetMULHU = [&](SDValue X, SDValue Y) {
4834     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
4835                             : isOperationLegalOrCustom(ISD::MULHU, VT))
4836       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
4837     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
4838                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
4839       SDValue LoHi =
4840           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
4841       return SDValue(LoHi.getNode(), 1);
4842     }
4843     return SDValue(); // No mulhu or equivalent
4844   };
4845 
4846   // Multiply the numerator (operand 0) by the magic value.
4847   Q = GetMULHU(Q, MagicFactor);
4848   if (!Q)
4849     return SDValue();
4850 
4851   Created.push_back(Q.getNode());
4852 
4853   if (UseNPQ) {
4854     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
4855     Created.push_back(NPQ.getNode());
4856 
4857     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
4858     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
4859     if (VT.isVector())
4860       NPQ = GetMULHU(NPQ, NPQFactor);
4861     else
4862       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
4863 
4864     Created.push_back(NPQ.getNode());
4865 
4866     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
4867     Created.push_back(Q.getNode());
4868   }
4869 
4870   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
4871   Created.push_back(Q.getNode());
4872 
4873   SDValue One = DAG.getConstant(1, dl, VT);
4874   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
4875   return DAG.getSelect(dl, VT, IsOne, N0, Q);
4876 }
4877 
4878 /// If all values in Values that *don't* match the predicate are same 'splat'
4879 /// value, then replace all values with that splat value.
4880 /// Else, if AlternativeReplacement was provided, then replace all values that
4881 /// do match predicate with AlternativeReplacement value.
4882 static void
4883 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
4884                           std::function<bool(SDValue)> Predicate,
4885                           SDValue AlternativeReplacement = SDValue()) {
4886   SDValue Replacement;
4887   // Is there a value for which the Predicate does *NOT* match? What is it?
4888   auto SplatValue = llvm::find_if_not(Values, Predicate);
4889   if (SplatValue != Values.end()) {
4890     // Does Values consist only of SplatValue's and values matching Predicate?
4891     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
4892           return Value == *SplatValue || Predicate(Value);
4893         })) // Then we shall replace values matching predicate with SplatValue.
4894       Replacement = *SplatValue;
4895   }
4896   if (!Replacement) {
4897     // Oops, we did not find the "baseline" splat value.
4898     if (!AlternativeReplacement)
4899       return; // Nothing to do.
4900     // Let's replace with provided value then.
4901     Replacement = AlternativeReplacement;
4902   }
4903   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
4904 }
4905 
4906 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
4907 /// where the divisor is constant and the comparison target is zero,
4908 /// return a DAG expression that will generate the same comparison result
4909 /// using only multiplications, additions and shifts/rotations.
4910 /// Ref: "Hacker's Delight" 10-17.
4911 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
4912                                         SDValue CompTargetNode,
4913                                         ISD::CondCode Cond,
4914                                         DAGCombinerInfo &DCI,
4915                                         const SDLoc &DL) const {
4916   SmallVector<SDNode *, 2> Built;
4917   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
4918                                          DCI, DL, Built)) {
4919     for (SDNode *N : Built)
4920       DCI.AddToWorklist(N);
4921     return Folded;
4922   }
4923 
4924   return SDValue();
4925 }
4926 
4927 SDValue
4928 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
4929                                   SDValue CompTargetNode, ISD::CondCode Cond,
4930                                   DAGCombinerInfo &DCI, const SDLoc &DL,
4931                                   SmallVectorImpl<SDNode *> &Created) const {
4932   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
4933   // - D must be constant, with D = D0 * 2^K where D0 is odd
4934   // - P is the multiplicative inverse of D0 modulo 2^W
4935   // - Q = floor(((2^W) - 1) / D)
4936   // where W is the width of the common type of N and D.
4937   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4938          "Only applicable for (in)equality comparisons.");
4939 
4940   SelectionDAG &DAG = DCI.DAG;
4941 
4942   EVT VT = REMNode.getValueType();
4943   EVT SVT = VT.getScalarType();
4944   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4945   EVT ShSVT = ShVT.getScalarType();
4946 
4947   // If MUL is unavailable, we cannot proceed in any case.
4948   if (!isOperationLegalOrCustom(ISD::MUL, VT))
4949     return SDValue();
4950 
4951   // TODO: Could support comparing with non-zero too.
4952   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
4953   if (!CompTarget || !CompTarget->isNullValue())
4954     return SDValue();
4955 
4956   bool HadOneDivisor = false;
4957   bool AllDivisorsAreOnes = true;
4958   bool HadEvenDivisor = false;
4959   bool AllDivisorsArePowerOfTwo = true;
4960   SmallVector<SDValue, 16> PAmts, KAmts, QAmts;
4961 
4962   auto BuildUREMPattern = [&](ConstantSDNode *C) {
4963     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
4964     if (C->isNullValue())
4965       return false;
4966 
4967     const APInt &D = C->getAPIntValue();
4968     // If all divisors are ones, we will prefer to avoid the fold.
4969     HadOneDivisor |= D.isOneValue();
4970     AllDivisorsAreOnes &= D.isOneValue();
4971 
4972     // Decompose D into D0 * 2^K
4973     unsigned K = D.countTrailingZeros();
4974     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
4975     APInt D0 = D.lshr(K);
4976 
4977     // D is even if it has trailing zeros.
4978     HadEvenDivisor |= (K != 0);
4979     // D is a power-of-two if D0 is one.
4980     // If all divisors are power-of-two, we will prefer to avoid the fold.
4981     AllDivisorsArePowerOfTwo &= D0.isOneValue();
4982 
4983     // P = inv(D0, 2^W)
4984     // 2^W requires W + 1 bits, so we have to extend and then truncate.
4985     unsigned W = D.getBitWidth();
4986     APInt P = D0.zext(W + 1)
4987                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
4988                   .trunc(W);
4989     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
4990     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
4991 
4992     // Q = floor((2^W - 1) / D)
4993     APInt Q = APInt::getAllOnesValue(W).udiv(D);
4994 
4995     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
4996            "We are expecting that K is always less than all-ones for ShSVT");
4997 
4998     // If the divisor is 1 the result can be constant-folded.
4999     if (D.isOneValue()) {
5000       // Set P and K amount to a bogus values so we can try to splat them.
5001       P = 0;
5002       K = -1;
5003       assert(Q.isAllOnesValue() &&
5004              "Expecting all-ones comparison for one divisor");
5005     }
5006 
5007     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5008     KAmts.push_back(
5009         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5010     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5011     return true;
5012   };
5013 
5014   SDValue N = REMNode.getOperand(0);
5015   SDValue D = REMNode.getOperand(1);
5016 
5017   // Collect the values from each element.
5018   if (!ISD::matchUnaryPredicate(D, BuildUREMPattern))
5019     return SDValue();
5020 
5021   // If this is a urem by a one, avoid the fold since it can be constant-folded.
5022   if (AllDivisorsAreOnes)
5023     return SDValue();
5024 
5025   // If this is a urem by a powers-of-two, avoid the fold since it can be
5026   // best implemented as a bit test.
5027   if (AllDivisorsArePowerOfTwo)
5028     return SDValue();
5029 
5030   SDValue PVal, KVal, QVal;
5031   if (VT.isVector()) {
5032     if (HadOneDivisor) {
5033       // Try to turn PAmts into a splat, since we don't care about the values
5034       // that are currently '0'. If we can't, just keep '0'`s.
5035       turnVectorIntoSplatVector(PAmts, isNullConstant);
5036       // Try to turn KAmts into a splat, since we don't care about the values
5037       // that are currently '-1'. If we can't, change them to '0'`s.
5038       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5039                                 DAG.getConstant(0, DL, ShSVT));
5040     }
5041 
5042     PVal = DAG.getBuildVector(VT, DL, PAmts);
5043     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5044     QVal = DAG.getBuildVector(VT, DL, QAmts);
5045   } else {
5046     PVal = PAmts[0];
5047     KVal = KAmts[0];
5048     QVal = QAmts[0];
5049   }
5050 
5051   // (mul N, P)
5052   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5053   Created.push_back(Op0.getNode());
5054 
5055   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5056   // divisors as a performance improvement, since rotating by 0 is a no-op.
5057   if (HadEvenDivisor) {
5058     // We need ROTR to do this.
5059     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5060       return SDValue();
5061     SDNodeFlags Flags;
5062     Flags.setExact(true);
5063     // UREM: (rotr (mul N, P), K)
5064     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5065     Created.push_back(Op0.getNode());
5066   }
5067 
5068   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5069   return DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5070                       ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5071 }
5072 
5073 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5074 /// where the divisor is constant and the comparison target is zero,
5075 /// return a DAG expression that will generate the same comparison result
5076 /// using only multiplications, additions and shifts/rotations.
5077 /// Ref: "Hacker's Delight" 10-17.
5078 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5079                                         SDValue CompTargetNode,
5080                                         ISD::CondCode Cond,
5081                                         DAGCombinerInfo &DCI,
5082                                         const SDLoc &DL) const {
5083   SmallVector<SDNode *, 7> Built;
5084   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5085                                          DCI, DL, Built)) {
5086     assert(Built.size() <= 7 && "Max size prediction failed.");
5087     for (SDNode *N : Built)
5088       DCI.AddToWorklist(N);
5089     return Folded;
5090   }
5091 
5092   return SDValue();
5093 }
5094 
5095 SDValue
5096 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5097                                   SDValue CompTargetNode, ISD::CondCode Cond,
5098                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5099                                   SmallVectorImpl<SDNode *> &Created) const {
5100   // Fold:
5101   //   (seteq/ne (srem N, D), 0)
5102   // To:
5103   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5104   //
5105   // - D must be constant, with D = D0 * 2^K where D0 is odd
5106   // - P is the multiplicative inverse of D0 modulo 2^W
5107   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5108   // - Q = floor((2 * A) / (2^K))
5109   // where W is the width of the common type of N and D.
5110   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5111          "Only applicable for (in)equality comparisons.");
5112 
5113   SelectionDAG &DAG = DCI.DAG;
5114 
5115   EVT VT = REMNode.getValueType();
5116   EVT SVT = VT.getScalarType();
5117   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5118   EVT ShSVT = ShVT.getScalarType();
5119 
5120   // If MUL is unavailable, we cannot proceed in any case.
5121   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5122     return SDValue();
5123 
5124   // TODO: Could support comparing with non-zero too.
5125   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5126   if (!CompTarget || !CompTarget->isNullValue())
5127     return SDValue();
5128 
5129   bool HadIntMinDivisor = false;
5130   bool HadOneDivisor = false;
5131   bool AllDivisorsAreOnes = true;
5132   bool HadEvenDivisor = false;
5133   bool NeedToApplyOffset = false;
5134   bool AllDivisorsArePowerOfTwo = true;
5135   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5136 
5137   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5138     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5139     if (C->isNullValue())
5140       return false;
5141 
5142     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5143 
5144     // WARNING: this fold is only valid for positive divisors!
5145     APInt D = C->getAPIntValue();
5146     if (D.isNegative())
5147       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5148 
5149     HadIntMinDivisor |= D.isMinSignedValue();
5150 
5151     // If all divisors are ones, we will prefer to avoid the fold.
5152     HadOneDivisor |= D.isOneValue();
5153     AllDivisorsAreOnes &= D.isOneValue();
5154 
5155     // Decompose D into D0 * 2^K
5156     unsigned K = D.countTrailingZeros();
5157     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5158     APInt D0 = D.lshr(K);
5159 
5160     if (!D.isMinSignedValue()) {
5161       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5162       // we don't care about this lane in this fold, we'll special-handle it.
5163       HadEvenDivisor |= (K != 0);
5164     }
5165 
5166     // D is a power-of-two if D0 is one. This includes INT_MIN.
5167     // If all divisors are power-of-two, we will prefer to avoid the fold.
5168     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5169 
5170     // P = inv(D0, 2^W)
5171     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5172     unsigned W = D.getBitWidth();
5173     APInt P = D0.zext(W + 1)
5174                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5175                   .trunc(W);
5176     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5177     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5178 
5179     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5180     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5181     A.clearLowBits(K);
5182 
5183     if (!D.isMinSignedValue()) {
5184       // If divisor INT_MIN, then we don't care about this lane in this fold,
5185       // we'll special-handle it.
5186       NeedToApplyOffset |= A != 0;
5187     }
5188 
5189     // Q = floor((2 * A) / (2^K))
5190     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5191 
5192     assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5193            "We are expecting that A is always less than all-ones for SVT");
5194     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5195            "We are expecting that K is always less than all-ones for ShSVT");
5196 
5197     // If the divisor is 1 the result can be constant-folded. Likewise, we
5198     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5199     if (D.isOneValue()) {
5200       // Set P, A and K to a bogus values so we can try to splat them.
5201       P = 0;
5202       A = -1;
5203       K = -1;
5204 
5205       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5206       Q = -1;
5207     }
5208 
5209     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5210     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5211     KAmts.push_back(
5212         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5213     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5214     return true;
5215   };
5216 
5217   SDValue N = REMNode.getOperand(0);
5218   SDValue D = REMNode.getOperand(1);
5219 
5220   // Collect the values from each element.
5221   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5222     return SDValue();
5223 
5224   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5225   if (AllDivisorsAreOnes)
5226     return SDValue();
5227 
5228   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5229   // since it can be best implemented as a bit test.
5230   if (AllDivisorsArePowerOfTwo)
5231     return SDValue();
5232 
5233   SDValue PVal, AVal, KVal, QVal;
5234   if (VT.isVector()) {
5235     if (HadOneDivisor) {
5236       // Try to turn PAmts into a splat, since we don't care about the values
5237       // that are currently '0'. If we can't, just keep '0'`s.
5238       turnVectorIntoSplatVector(PAmts, isNullConstant);
5239       // Try to turn AAmts into a splat, since we don't care about the
5240       // values that are currently '-1'. If we can't, change them to '0'`s.
5241       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5242                                 DAG.getConstant(0, DL, SVT));
5243       // Try to turn KAmts into a splat, since we don't care about the values
5244       // that are currently '-1'. If we can't, change them to '0'`s.
5245       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5246                                 DAG.getConstant(0, DL, ShSVT));
5247     }
5248 
5249     PVal = DAG.getBuildVector(VT, DL, PAmts);
5250     AVal = DAG.getBuildVector(VT, DL, AAmts);
5251     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5252     QVal = DAG.getBuildVector(VT, DL, QAmts);
5253   } else {
5254     PVal = PAmts[0];
5255     AVal = AAmts[0];
5256     KVal = KAmts[0];
5257     QVal = QAmts[0];
5258   }
5259 
5260   // (mul N, P)
5261   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5262   Created.push_back(Op0.getNode());
5263 
5264   if (NeedToApplyOffset) {
5265     // We need ADD to do this.
5266     if (!isOperationLegalOrCustom(ISD::ADD, VT))
5267       return SDValue();
5268 
5269     // (add (mul N, P), A)
5270     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5271     Created.push_back(Op0.getNode());
5272   }
5273 
5274   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5275   // divisors as a performance improvement, since rotating by 0 is a no-op.
5276   if (HadEvenDivisor) {
5277     // We need ROTR to do this.
5278     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5279       return SDValue();
5280     SDNodeFlags Flags;
5281     Flags.setExact(true);
5282     // SREM: (rotr (add (mul N, P), A), K)
5283     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5284     Created.push_back(Op0.getNode());
5285   }
5286 
5287   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5288   SDValue Fold =
5289       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5290                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5291 
5292   // If we didn't have lanes with INT_MIN divisor, then we're done.
5293   if (!HadIntMinDivisor)
5294     return Fold;
5295 
5296   // That fold is only valid for positive divisors. Which effectively means,
5297   // it is invalid for INT_MIN divisors. So if we have such a lane,
5298   // we must fix-up results for said lanes.
5299   assert(VT.isVector() && "Can/should only get here for vectors.");
5300 
5301   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5302       !isOperationLegalOrCustom(ISD::AND, VT) ||
5303       !isOperationLegalOrCustom(Cond, VT) ||
5304       !isOperationLegalOrCustom(ISD::VSELECT, VT))
5305     return SDValue();
5306 
5307   Created.push_back(Fold.getNode());
5308 
5309   SDValue IntMin = DAG.getConstant(
5310       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5311   SDValue IntMax = DAG.getConstant(
5312       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5313   SDValue Zero =
5314       DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5315 
5316   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5317   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5318   Created.push_back(DivisorIsIntMin.getNode());
5319 
5320   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
5321   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5322   Created.push_back(Masked.getNode());
5323   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5324   Created.push_back(MaskedIsZero.getNode());
5325 
5326   // To produce final result we need to blend 2 vectors: 'SetCC' and
5327   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5328   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5329   // constant-folded, select can get lowered to a shuffle with constant mask.
5330   SDValue Blended =
5331       DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5332 
5333   return Blended;
5334 }
5335 
5336 bool TargetLowering::
5337 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5338   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5339     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5340                                 "be a constant integer");
5341     return true;
5342   }
5343 
5344   return false;
5345 }
5346 
5347 char TargetLowering::isNegatibleForFree(SDValue Op, SelectionDAG &DAG,
5348                                         bool LegalOperations, bool ForCodeSize,
5349                                         unsigned Depth) const {
5350   // fneg is removable even if it has multiple uses.
5351   if (Op.getOpcode() == ISD::FNEG)
5352     return 2;
5353 
5354   // Don't allow anything with multiple uses unless we know it is free.
5355   EVT VT = Op.getValueType();
5356   const SDNodeFlags Flags = Op->getFlags();
5357   const TargetOptions &Options = DAG.getTarget().Options;
5358   if (!Op.hasOneUse() && !(Op.getOpcode() == ISD::FP_EXTEND &&
5359                            isFPExtFree(VT, Op.getOperand(0).getValueType())))
5360     return 0;
5361 
5362   // Don't recurse exponentially.
5363   if (Depth > SelectionDAG::MaxRecursionDepth)
5364     return 0;
5365 
5366   switch (Op.getOpcode()) {
5367   case ISD::ConstantFP: {
5368     if (!LegalOperations)
5369       return 1;
5370 
5371     // Don't invert constant FP values after legalization unless the target says
5372     // the negated constant is legal.
5373     return isOperationLegal(ISD::ConstantFP, VT) ||
5374            isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
5375                         ForCodeSize);
5376   }
5377   case ISD::BUILD_VECTOR: {
5378     // Only permit BUILD_VECTOR of constants.
5379     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
5380           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
5381         }))
5382       return 0;
5383     if (!LegalOperations)
5384       return 1;
5385     if (isOperationLegal(ISD::ConstantFP, VT) &&
5386         isOperationLegal(ISD::BUILD_VECTOR, VT))
5387       return 1;
5388     return llvm::all_of(Op->op_values(), [&](SDValue N) {
5389       return N.isUndef() ||
5390              isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
5391                           ForCodeSize);
5392     });
5393   }
5394   case ISD::FADD:
5395     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5396       return 0;
5397 
5398     // After operation legalization, it might not be legal to create new FSUBs.
5399     if (LegalOperations && !isOperationLegalOrCustom(ISD::FSUB, VT))
5400       return 0;
5401 
5402     // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
5403     if (char V = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5404                                     ForCodeSize, Depth + 1))
5405       return V;
5406     // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
5407     return isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations,
5408                               ForCodeSize, Depth + 1);
5409   case ISD::FSUB:
5410     // We can't turn -(A-B) into B-A when we honor signed zeros.
5411     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5412       return 0;
5413 
5414     // fold (fneg (fsub A, B)) -> (fsub B, A)
5415     return 1;
5416 
5417   case ISD::FMUL:
5418   case ISD::FDIV:
5419     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
5420     if (char V = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5421                                     ForCodeSize, Depth + 1))
5422       return V;
5423 
5424     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
5425     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
5426       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
5427         return 0;
5428 
5429     return isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations,
5430                               ForCodeSize, Depth + 1);
5431 
5432   case ISD::FMA:
5433   case ISD::FMAD: {
5434     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5435       return 0;
5436 
5437     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5438     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5439     char V2 = isNegatibleForFree(Op.getOperand(2), DAG, LegalOperations,
5440                                  ForCodeSize, Depth + 1);
5441     if (!V2)
5442       return 0;
5443 
5444     // One of Op0/Op1 must be cheaply negatible, then select the cheapest.
5445     char V0 = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5446                                  ForCodeSize, Depth + 1);
5447     char V1 = isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations,
5448                                  ForCodeSize, Depth + 1);
5449     char V01 = std::max(V0, V1);
5450     return V01 ? std::max(V01, V2) : 0;
5451   }
5452 
5453   case ISD::FP_EXTEND:
5454   case ISD::FP_ROUND:
5455   case ISD::FSIN:
5456     return isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5457                               ForCodeSize, Depth + 1);
5458   }
5459 
5460   return 0;
5461 }
5462 
5463 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
5464                                              bool LegalOperations,
5465                                              bool ForCodeSize,
5466                                              unsigned Depth) const {
5467   // fneg is removable even if it has multiple uses.
5468   if (Op.getOpcode() == ISD::FNEG)
5469     return Op.getOperand(0);
5470 
5471   assert(Depth <= SelectionDAG::MaxRecursionDepth &&
5472          "getNegatedExpression doesn't match isNegatibleForFree");
5473   const SDNodeFlags Flags = Op->getFlags();
5474 
5475   switch (Op.getOpcode()) {
5476   case ISD::ConstantFP: {
5477     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
5478     V.changeSign();
5479     return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType());
5480   }
5481   case ISD::BUILD_VECTOR: {
5482     SmallVector<SDValue, 4> Ops;
5483     for (SDValue C : Op->op_values()) {
5484       if (C.isUndef()) {
5485         Ops.push_back(C);
5486         continue;
5487       }
5488       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
5489       V.changeSign();
5490       Ops.push_back(DAG.getConstantFP(V, SDLoc(Op), C.getValueType()));
5491     }
5492     return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Ops);
5493   }
5494   case ISD::FADD:
5495     assert((DAG.getTarget().Options.NoSignedZerosFPMath ||
5496             Flags.hasNoSignedZeros()) &&
5497            "Expected NSZ fp-flag");
5498 
5499     // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
5500     if (isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, ForCodeSize,
5501                            Depth + 1))
5502       return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5503                          getNegatedExpression(Op.getOperand(0), DAG,
5504                                               LegalOperations, ForCodeSize,
5505                                               Depth + 1),
5506                          Op.getOperand(1), Flags);
5507     // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
5508     return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5509                        getNegatedExpression(Op.getOperand(1), DAG,
5510                                             LegalOperations, ForCodeSize,
5511                                             Depth + 1),
5512                        Op.getOperand(0), Flags);
5513   case ISD::FSUB:
5514     // fold (fneg (fsub 0, B)) -> B
5515     if (ConstantFPSDNode *N0CFP =
5516             isConstOrConstSplatFP(Op.getOperand(0), /*AllowUndefs*/ true))
5517       if (N0CFP->isZero())
5518         return Op.getOperand(1);
5519 
5520     // fold (fneg (fsub A, B)) -> (fsub B, A)
5521     return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5522                        Op.getOperand(1), Op.getOperand(0), Flags);
5523 
5524   case ISD::FMUL:
5525   case ISD::FDIV:
5526     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
5527     if (isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, ForCodeSize,
5528                            Depth + 1))
5529       return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5530                          getNegatedExpression(Op.getOperand(0), DAG,
5531                                               LegalOperations, ForCodeSize,
5532                                               Depth + 1),
5533                          Op.getOperand(1), Flags);
5534 
5535     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
5536     return DAG.getNode(
5537         Op.getOpcode(), SDLoc(Op), Op.getValueType(), Op.getOperand(0),
5538         getNegatedExpression(Op.getOperand(1), DAG, LegalOperations,
5539                              ForCodeSize, Depth + 1),
5540         Flags);
5541 
5542   case ISD::FMA:
5543   case ISD::FMAD: {
5544     assert((DAG.getTarget().Options.NoSignedZerosFPMath ||
5545             Flags.hasNoSignedZeros()) &&
5546            "Expected NSZ fp-flag");
5547 
5548     SDValue Neg2 = getNegatedExpression(Op.getOperand(2), DAG, LegalOperations,
5549                                         ForCodeSize, Depth + 1);
5550 
5551     char V0 = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5552                                  ForCodeSize, Depth + 1);
5553     char V1 = isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations,
5554                                  ForCodeSize, Depth + 1);
5555     if (V0 >= V1) {
5556       // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5557       SDValue Neg0 = getNegatedExpression(
5558           Op.getOperand(0), DAG, LegalOperations, ForCodeSize, Depth + 1);
5559       return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Neg0,
5560                          Op.getOperand(1), Neg2, Flags);
5561     }
5562 
5563     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5564     SDValue Neg1 = getNegatedExpression(Op.getOperand(1), DAG, LegalOperations,
5565                                         ForCodeSize, Depth + 1);
5566     return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5567                        Op.getOperand(0), Neg1, Neg2, Flags);
5568   }
5569 
5570   case ISD::FP_EXTEND:
5571   case ISD::FSIN:
5572     return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5573                        getNegatedExpression(Op.getOperand(0), DAG,
5574                                             LegalOperations, ForCodeSize,
5575                                             Depth + 1));
5576   case ISD::FP_ROUND:
5577     return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(),
5578                        getNegatedExpression(Op.getOperand(0), DAG,
5579                                             LegalOperations, ForCodeSize,
5580                                             Depth + 1),
5581                        Op.getOperand(1));
5582   }
5583 
5584   llvm_unreachable("Unknown code");
5585 }
5586 
5587 //===----------------------------------------------------------------------===//
5588 // Legalization Utilities
5589 //===----------------------------------------------------------------------===//
5590 
5591 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
5592                                     SDValue LHS, SDValue RHS,
5593                                     SmallVectorImpl<SDValue> &Result,
5594                                     EVT HiLoVT, SelectionDAG &DAG,
5595                                     MulExpansionKind Kind, SDValue LL,
5596                                     SDValue LH, SDValue RL, SDValue RH) const {
5597   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
5598          Opcode == ISD::SMUL_LOHI);
5599 
5600   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
5601                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
5602   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
5603                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
5604   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5605                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
5606   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5607                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
5608 
5609   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
5610     return false;
5611 
5612   unsigned OuterBitSize = VT.getScalarSizeInBits();
5613   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
5614   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
5615   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
5616 
5617   // LL, LH, RL, and RH must be either all NULL or all set to a value.
5618   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
5619          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
5620 
5621   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
5622   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
5623                           bool Signed) -> bool {
5624     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
5625       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
5626       Hi = SDValue(Lo.getNode(), 1);
5627       return true;
5628     }
5629     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
5630       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
5631       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
5632       return true;
5633     }
5634     return false;
5635   };
5636 
5637   SDValue Lo, Hi;
5638 
5639   if (!LL.getNode() && !RL.getNode() &&
5640       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5641     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
5642     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
5643   }
5644 
5645   if (!LL.getNode())
5646     return false;
5647 
5648   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
5649   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
5650       DAG.MaskedValueIsZero(RHS, HighMask)) {
5651     // The inputs are both zero-extended.
5652     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
5653       Result.push_back(Lo);
5654       Result.push_back(Hi);
5655       if (Opcode != ISD::MUL) {
5656         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5657         Result.push_back(Zero);
5658         Result.push_back(Zero);
5659       }
5660       return true;
5661     }
5662   }
5663 
5664   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
5665       RHSSB > InnerBitSize) {
5666     // The input values are both sign-extended.
5667     // TODO non-MUL case?
5668     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
5669       Result.push_back(Lo);
5670       Result.push_back(Hi);
5671       return true;
5672     }
5673   }
5674 
5675   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
5676   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
5677   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
5678     // FIXME getShiftAmountTy does not always return a sensible result when VT
5679     // is an illegal type, and so the type may be too small to fit the shift
5680     // amount. Override it with i32. The shift will have to be legalized.
5681     ShiftAmountTy = MVT::i32;
5682   }
5683   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
5684 
5685   if (!LH.getNode() && !RH.getNode() &&
5686       isOperationLegalOrCustom(ISD::SRL, VT) &&
5687       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5688     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
5689     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
5690     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
5691     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
5692   }
5693 
5694   if (!LH.getNode())
5695     return false;
5696 
5697   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
5698     return false;
5699 
5700   Result.push_back(Lo);
5701 
5702   if (Opcode == ISD::MUL) {
5703     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
5704     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
5705     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
5706     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
5707     Result.push_back(Hi);
5708     return true;
5709   }
5710 
5711   // Compute the full width result.
5712   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
5713     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
5714     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5715     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
5716     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
5717   };
5718 
5719   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5720   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
5721     return false;
5722 
5723   // This is effectively the add part of a multiply-add of half-sized operands,
5724   // so it cannot overflow.
5725   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5726 
5727   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
5728     return false;
5729 
5730   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5731   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5732 
5733   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
5734                   isOperationLegalOrCustom(ISD::ADDE, VT));
5735   if (UseGlue)
5736     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
5737                        Merge(Lo, Hi));
5738   else
5739     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
5740                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
5741 
5742   SDValue Carry = Next.getValue(1);
5743   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5744   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5745 
5746   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
5747     return false;
5748 
5749   if (UseGlue)
5750     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
5751                      Carry);
5752   else
5753     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
5754                      Zero, Carry);
5755 
5756   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5757 
5758   if (Opcode == ISD::SMUL_LOHI) {
5759     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5760                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
5761     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
5762 
5763     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5764                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
5765     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
5766   }
5767 
5768   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5769   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5770   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5771   return true;
5772 }
5773 
5774 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
5775                                SelectionDAG &DAG, MulExpansionKind Kind,
5776                                SDValue LL, SDValue LH, SDValue RL,
5777                                SDValue RH) const {
5778   SmallVector<SDValue, 2> Result;
5779   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
5780                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
5781                            DAG, Kind, LL, LH, RL, RH);
5782   if (Ok) {
5783     assert(Result.size() == 2);
5784     Lo = Result[0];
5785     Hi = Result[1];
5786   }
5787   return Ok;
5788 }
5789 
5790 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
5791                                        SelectionDAG &DAG) const {
5792   EVT VT = Node->getValueType(0);
5793 
5794   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
5795                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
5796                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
5797                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
5798     return false;
5799 
5800   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5801   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5802   SDValue X = Node->getOperand(0);
5803   SDValue Y = Node->getOperand(1);
5804   SDValue Z = Node->getOperand(2);
5805 
5806   unsigned EltSizeInBits = VT.getScalarSizeInBits();
5807   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
5808   SDLoc DL(SDValue(Node, 0));
5809 
5810   EVT ShVT = Z.getValueType();
5811   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
5812   SDValue Zero = DAG.getConstant(0, DL, ShVT);
5813 
5814   SDValue ShAmt;
5815   if (isPowerOf2_32(EltSizeInBits)) {
5816     SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
5817     ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
5818   } else {
5819     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
5820   }
5821 
5822   SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
5823   SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
5824   SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
5825   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
5826 
5827   // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
5828   // and that is undefined. We must compare and select to avoid UB.
5829   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
5830 
5831   // For fshl, 0-shift returns the 1st arg (X).
5832   // For fshr, 0-shift returns the 2nd arg (Y).
5833   SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
5834   Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
5835   return true;
5836 }
5837 
5838 // TODO: Merge with expandFunnelShift.
5839 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
5840                                SelectionDAG &DAG) const {
5841   EVT VT = Node->getValueType(0);
5842   unsigned EltSizeInBits = VT.getScalarSizeInBits();
5843   bool IsLeft = Node->getOpcode() == ISD::ROTL;
5844   SDValue Op0 = Node->getOperand(0);
5845   SDValue Op1 = Node->getOperand(1);
5846   SDLoc DL(SDValue(Node, 0));
5847 
5848   EVT ShVT = Op1.getValueType();
5849   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
5850 
5851   // If a rotate in the other direction is legal, use it.
5852   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
5853   if (isOperationLegal(RevRot, VT)) {
5854     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
5855     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
5856     return true;
5857   }
5858 
5859   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
5860                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
5861                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
5862                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
5863                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
5864     return false;
5865 
5866   // Otherwise,
5867   //   (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
5868   //   (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
5869   //
5870   assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
5871          "Expecting the type bitwidth to be a power of 2");
5872   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
5873   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
5874   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
5875   SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
5876   SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
5877   SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
5878   Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
5879                        DAG.getNode(HsOpc, DL, VT, Op0, And1));
5880   return true;
5881 }
5882 
5883 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
5884                                       SelectionDAG &DAG) const {
5885   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
5886   SDValue Src = Node->getOperand(OpNo);
5887   EVT SrcVT = Src.getValueType();
5888   EVT DstVT = Node->getValueType(0);
5889   SDLoc dl(SDValue(Node, 0));
5890 
5891   // FIXME: Only f32 to i64 conversions are supported.
5892   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
5893     return false;
5894 
5895   if (Node->isStrictFPOpcode())
5896     // When a NaN is converted to an integer a trap is allowed. We can't
5897     // use this expansion here because it would eliminate that trap. Other
5898     // traps are also allowed and cannot be eliminated. See
5899     // IEEE 754-2008 sec 5.8.
5900     return false;
5901 
5902   // Expand f32 -> i64 conversion
5903   // This algorithm comes from compiler-rt's implementation of fixsfdi:
5904   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
5905   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
5906   EVT IntVT = SrcVT.changeTypeToInteger();
5907   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
5908 
5909   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
5910   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
5911   SDValue Bias = DAG.getConstant(127, dl, IntVT);
5912   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
5913   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
5914   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
5915 
5916   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
5917 
5918   SDValue ExponentBits = DAG.getNode(
5919       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
5920       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
5921   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
5922 
5923   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
5924                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
5925                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
5926   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
5927 
5928   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
5929                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
5930                           DAG.getConstant(0x00800000, dl, IntVT));
5931 
5932   R = DAG.getZExtOrTrunc(R, dl, DstVT);
5933 
5934   R = DAG.getSelectCC(
5935       dl, Exponent, ExponentLoBit,
5936       DAG.getNode(ISD::SHL, dl, DstVT, R,
5937                   DAG.getZExtOrTrunc(
5938                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
5939                       dl, IntShVT)),
5940       DAG.getNode(ISD::SRL, dl, DstVT, R,
5941                   DAG.getZExtOrTrunc(
5942                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
5943                       dl, IntShVT)),
5944       ISD::SETGT);
5945 
5946   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
5947                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
5948 
5949   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
5950                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
5951   return true;
5952 }
5953 
5954 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
5955                                       SDValue &Chain,
5956                                       SelectionDAG &DAG) const {
5957   SDLoc dl(SDValue(Node, 0));
5958   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
5959   SDValue Src = Node->getOperand(OpNo);
5960 
5961   EVT SrcVT = Src.getValueType();
5962   EVT DstVT = Node->getValueType(0);
5963   EVT SetCCVT =
5964       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
5965 
5966   // Only expand vector types if we have the appropriate vector bit operations.
5967   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
5968                                                    ISD::FP_TO_SINT;
5969   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
5970                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
5971     return false;
5972 
5973   // If the maximum float value is smaller then the signed integer range,
5974   // the destination signmask can't be represented by the float, so we can
5975   // just use FP_TO_SINT directly.
5976   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
5977   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
5978   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
5979   if (APFloat::opOverflow &
5980       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
5981     if (Node->isStrictFPOpcode()) {
5982       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
5983                            { Node->getOperand(0), Src });
5984       Chain = Result.getValue(1);
5985     } else
5986       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
5987     return true;
5988   }
5989 
5990   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
5991   SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
5992 
5993   bool Strict = Node->isStrictFPOpcode() ||
5994                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
5995 
5996   if (Strict) {
5997     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
5998     // signmask then offset (the result of which should be fully representable).
5999     // Sel = Src < 0x8000000000000000
6000     // Val = select Sel, Src, Src - 0x8000000000000000
6001     // Ofs = select Sel, 0, 0x8000000000000000
6002     // Result = fp_to_sint(Val) ^ Ofs
6003 
6004     // TODO: Should any fast-math-flags be set for the FSUB?
6005     SDValue SrcBiased;
6006     if (Node->isStrictFPOpcode())
6007       SrcBiased = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6008                               { Node->getOperand(0), Src, Cst });
6009     else
6010       SrcBiased = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst);
6011     SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src, SrcBiased);
6012     SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT),
6013                                 DAG.getConstant(SignMask, dl, DstVT));
6014     SDValue SInt;
6015     if (Node->isStrictFPOpcode()) {
6016       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6017                          { SrcBiased.getValue(1), Val });
6018       Chain = SInt.getValue(1);
6019     } else
6020       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6021     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, Ofs);
6022   } else {
6023     // Expand based on maximum range of FP_TO_SINT:
6024     // True = fp_to_sint(Src)
6025     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6026     // Result = select (Src < 0x8000000000000000), True, False
6027 
6028     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6029     // TODO: Should any fast-math-flags be set for the FSUB?
6030     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6031                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6032     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6033                         DAG.getConstant(SignMask, dl, DstVT));
6034     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6035   }
6036   return true;
6037 }
6038 
6039 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6040                                       SelectionDAG &DAG) const {
6041   SDValue Src = Node->getOperand(0);
6042   EVT SrcVT = Src.getValueType();
6043   EVT DstVT = Node->getValueType(0);
6044 
6045   if (SrcVT.getScalarType() != MVT::i64)
6046     return false;
6047 
6048   SDLoc dl(SDValue(Node, 0));
6049   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6050 
6051   if (DstVT.getScalarType() == MVT::f32) {
6052     // Only expand vector types if we have the appropriate vector bit
6053     // operations.
6054     if (SrcVT.isVector() &&
6055         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6056          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6057          !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) ||
6058          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6059          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6060       return false;
6061 
6062     // For unsigned conversions, convert them to signed conversions using the
6063     // algorithm from the x86_64 __floatundidf in compiler_rt.
6064     SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src);
6065 
6066     SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
6067     SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst);
6068     SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
6069     SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst);
6070     SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
6071 
6072     SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or);
6073     SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt);
6074 
6075     // TODO: This really should be implemented using a branch rather than a
6076     // select.  We happen to get lucky and machinesink does the right
6077     // thing most of the time.  This would be a good candidate for a
6078     // pseudo-op, or, even better, for whole-function isel.
6079     EVT SetCCVT =
6080         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6081 
6082     SDValue SignBitTest = DAG.getSetCC(
6083         dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
6084     Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast);
6085     return true;
6086   }
6087 
6088   if (DstVT.getScalarType() == MVT::f64) {
6089     // Only expand vector types if we have the appropriate vector bit
6090     // operations.
6091     if (SrcVT.isVector() &&
6092         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6093          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6094          !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6095          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6096          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6097       return false;
6098 
6099     // Implementation of unsigned i64 to f64 following the algorithm in
6100     // __floatundidf in compiler_rt. This implementation has the advantage
6101     // of performing rounding correctly, both in the default rounding mode
6102     // and in all alternate rounding modes.
6103     SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6104     SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6105         BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6106     SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6107     SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6108     SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6109 
6110     SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6111     SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6112     SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6113     SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6114     SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6115     SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6116     SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6117     Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6118     return true;
6119   }
6120 
6121   return false;
6122 }
6123 
6124 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6125                                               SelectionDAG &DAG) const {
6126   SDLoc dl(Node);
6127   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6128     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6129   EVT VT = Node->getValueType(0);
6130   if (isOperationLegalOrCustom(NewOp, VT)) {
6131     SDValue Quiet0 = Node->getOperand(0);
6132     SDValue Quiet1 = Node->getOperand(1);
6133 
6134     if (!Node->getFlags().hasNoNaNs()) {
6135       // Insert canonicalizes if it's possible we need to quiet to get correct
6136       // sNaN behavior.
6137       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6138         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6139                              Node->getFlags());
6140       }
6141       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6142         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6143                              Node->getFlags());
6144       }
6145     }
6146 
6147     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6148   }
6149 
6150   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6151   // instead if there are no NaNs.
6152   if (Node->getFlags().hasNoNaNs()) {
6153     unsigned IEEE2018Op =
6154         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6155     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6156       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6157                          Node->getOperand(1), Node->getFlags());
6158     }
6159   }
6160 
6161   return SDValue();
6162 }
6163 
6164 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
6165                                  SelectionDAG &DAG) const {
6166   SDLoc dl(Node);
6167   EVT VT = Node->getValueType(0);
6168   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6169   SDValue Op = Node->getOperand(0);
6170   unsigned Len = VT.getScalarSizeInBits();
6171   assert(VT.isInteger() && "CTPOP not implemented for this type.");
6172 
6173   // TODO: Add support for irregular type lengths.
6174   if (!(Len <= 128 && Len % 8 == 0))
6175     return false;
6176 
6177   // Only expand vector types if we have the appropriate vector bit operations.
6178   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
6179                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6180                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6181                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
6182                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6183     return false;
6184 
6185   // This is the "best" algorithm from
6186   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
6187   SDValue Mask55 =
6188       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
6189   SDValue Mask33 =
6190       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
6191   SDValue Mask0F =
6192       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
6193   SDValue Mask01 =
6194       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
6195 
6196   // v = v - ((v >> 1) & 0x55555555...)
6197   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
6198                    DAG.getNode(ISD::AND, dl, VT,
6199                                DAG.getNode(ISD::SRL, dl, VT, Op,
6200                                            DAG.getConstant(1, dl, ShVT)),
6201                                Mask55));
6202   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
6203   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
6204                    DAG.getNode(ISD::AND, dl, VT,
6205                                DAG.getNode(ISD::SRL, dl, VT, Op,
6206                                            DAG.getConstant(2, dl, ShVT)),
6207                                Mask33));
6208   // v = (v + (v >> 4)) & 0x0F0F0F0F...
6209   Op = DAG.getNode(ISD::AND, dl, VT,
6210                    DAG.getNode(ISD::ADD, dl, VT, Op,
6211                                DAG.getNode(ISD::SRL, dl, VT, Op,
6212                                            DAG.getConstant(4, dl, ShVT))),
6213                    Mask0F);
6214   // v = (v * 0x01010101...) >> (Len - 8)
6215   if (Len > 8)
6216     Op =
6217         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
6218                     DAG.getConstant(Len - 8, dl, ShVT));
6219 
6220   Result = Op;
6221   return true;
6222 }
6223 
6224 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
6225                                 SelectionDAG &DAG) const {
6226   SDLoc dl(Node);
6227   EVT VT = Node->getValueType(0);
6228   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6229   SDValue Op = Node->getOperand(0);
6230   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6231 
6232   // If the non-ZERO_UNDEF version is supported we can use that instead.
6233   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
6234       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
6235     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
6236     return true;
6237   }
6238 
6239   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6240   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
6241     EVT SetCCVT =
6242         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6243     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
6244     SDValue Zero = DAG.getConstant(0, dl, VT);
6245     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6246     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6247                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
6248     return true;
6249   }
6250 
6251   // Only expand vector types if we have the appropriate vector bit operations.
6252   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6253                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
6254                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6255                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6256     return false;
6257 
6258   // for now, we do this:
6259   // x = x | (x >> 1);
6260   // x = x | (x >> 2);
6261   // ...
6262   // x = x | (x >>16);
6263   // x = x | (x >>32); // for 64-bit input
6264   // return popcount(~x);
6265   //
6266   // Ref: "Hacker's Delight" by Henry Warren
6267   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
6268     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
6269     Op = DAG.getNode(ISD::OR, dl, VT, Op,
6270                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
6271   }
6272   Op = DAG.getNOT(dl, Op, VT);
6273   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
6274   return true;
6275 }
6276 
6277 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
6278                                 SelectionDAG &DAG) const {
6279   SDLoc dl(Node);
6280   EVT VT = Node->getValueType(0);
6281   SDValue Op = Node->getOperand(0);
6282   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6283 
6284   // If the non-ZERO_UNDEF version is supported we can use that instead.
6285   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
6286       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
6287     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
6288     return true;
6289   }
6290 
6291   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6292   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
6293     EVT SetCCVT =
6294         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6295     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
6296     SDValue Zero = DAG.getConstant(0, dl, VT);
6297     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6298     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6299                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
6300     return true;
6301   }
6302 
6303   // Only expand vector types if we have the appropriate vector bit operations.
6304   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6305                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
6306                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
6307                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6308                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
6309                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6310     return false;
6311 
6312   // for now, we use: { return popcount(~x & (x - 1)); }
6313   // unless the target has ctlz but not ctpop, in which case we use:
6314   // { return 32 - nlz(~x & (x-1)); }
6315   // Ref: "Hacker's Delight" by Henry Warren
6316   SDValue Tmp = DAG.getNode(
6317       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
6318       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
6319 
6320   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6321   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
6322     Result =
6323         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
6324                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
6325     return true;
6326   }
6327 
6328   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
6329   return true;
6330 }
6331 
6332 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
6333                                SelectionDAG &DAG) const {
6334   SDLoc dl(N);
6335   EVT VT = N->getValueType(0);
6336   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6337   SDValue Op = N->getOperand(0);
6338 
6339   // Only expand vector types if we have the appropriate vector operations.
6340   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
6341                         !isOperationLegalOrCustom(ISD::ADD, VT) ||
6342                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6343     return false;
6344 
6345   SDValue Shift =
6346       DAG.getNode(ISD::SRA, dl, VT, Op,
6347                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
6348   SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
6349   Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
6350   return true;
6351 }
6352 
6353 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
6354                                             SelectionDAG &DAG) const {
6355   SDLoc SL(LD);
6356   SDValue Chain = LD->getChain();
6357   SDValue BasePTR = LD->getBasePtr();
6358   EVT SrcVT = LD->getMemoryVT();
6359   ISD::LoadExtType ExtType = LD->getExtensionType();
6360 
6361   unsigned NumElem = SrcVT.getVectorNumElements();
6362 
6363   EVT SrcEltVT = SrcVT.getScalarType();
6364   EVT DstEltVT = LD->getValueType(0).getScalarType();
6365 
6366   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
6367   assert(SrcEltVT.isByteSized());
6368 
6369   SmallVector<SDValue, 8> Vals;
6370   SmallVector<SDValue, 8> LoadChains;
6371 
6372   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6373     SDValue ScalarLoad =
6374         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
6375                        LD->getPointerInfo().getWithOffset(Idx * Stride),
6376                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
6377                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6378 
6379     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
6380 
6381     Vals.push_back(ScalarLoad.getValue(0));
6382     LoadChains.push_back(ScalarLoad.getValue(1));
6383   }
6384 
6385   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
6386   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
6387 
6388   return DAG.getMergeValues({Value, NewChain}, SL);
6389 }
6390 
6391 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
6392                                              SelectionDAG &DAG) const {
6393   SDLoc SL(ST);
6394 
6395   SDValue Chain = ST->getChain();
6396   SDValue BasePtr = ST->getBasePtr();
6397   SDValue Value = ST->getValue();
6398   EVT StVT = ST->getMemoryVT();
6399 
6400   // The type of the data we want to save
6401   EVT RegVT = Value.getValueType();
6402   EVT RegSclVT = RegVT.getScalarType();
6403 
6404   // The type of data as saved in memory.
6405   EVT MemSclVT = StVT.getScalarType();
6406 
6407   EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
6408   unsigned NumElem = StVT.getVectorNumElements();
6409 
6410   // A vector must always be stored in memory as-is, i.e. without any padding
6411   // between the elements, since various code depend on it, e.g. in the
6412   // handling of a bitcast of a vector type to int, which may be done with a
6413   // vector store followed by an integer load. A vector that does not have
6414   // elements that are byte-sized must therefore be stored as an integer
6415   // built out of the extracted vector elements.
6416   if (!MemSclVT.isByteSized()) {
6417     unsigned NumBits = StVT.getSizeInBits();
6418     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
6419 
6420     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
6421 
6422     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6423       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6424                                 DAG.getConstant(Idx, SL, IdxVT));
6425       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
6426       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
6427       unsigned ShiftIntoIdx =
6428           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6429       SDValue ShiftAmount =
6430           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
6431       SDValue ShiftedElt =
6432           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
6433       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
6434     }
6435 
6436     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
6437                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
6438                         ST->getAAInfo());
6439   }
6440 
6441   // Store Stride in bytes
6442   unsigned Stride = MemSclVT.getSizeInBits() / 8;
6443   assert(Stride && "Zero stride!");
6444   // Extract each of the elements from the original vector and save them into
6445   // memory individually.
6446   SmallVector<SDValue, 8> Stores;
6447   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6448     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6449                               DAG.getConstant(Idx, SL, IdxVT));
6450 
6451     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
6452 
6453     // This scalar TruncStore may be illegal, but we legalize it later.
6454     SDValue Store = DAG.getTruncStore(
6455         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
6456         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
6457         ST->getMemOperand()->getFlags(), ST->getAAInfo());
6458 
6459     Stores.push_back(Store);
6460   }
6461 
6462   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
6463 }
6464 
6465 std::pair<SDValue, SDValue>
6466 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
6467   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
6468          "unaligned indexed loads not implemented!");
6469   SDValue Chain = LD->getChain();
6470   SDValue Ptr = LD->getBasePtr();
6471   EVT VT = LD->getValueType(0);
6472   EVT LoadedVT = LD->getMemoryVT();
6473   SDLoc dl(LD);
6474   auto &MF = DAG.getMachineFunction();
6475 
6476   if (VT.isFloatingPoint() || VT.isVector()) {
6477     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
6478     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
6479       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
6480           LoadedVT.isVector()) {
6481         // Scalarize the load and let the individual components be handled.
6482         SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
6483         if (Scalarized->getOpcode() == ISD::MERGE_VALUES)
6484           return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1));
6485         return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
6486       }
6487 
6488       // Expand to a (misaligned) integer load of the same size,
6489       // then bitconvert to floating point or vector.
6490       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
6491                                     LD->getMemOperand());
6492       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
6493       if (LoadedVT != VT)
6494         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
6495                              ISD::ANY_EXTEND, dl, VT, Result);
6496 
6497       return std::make_pair(Result, newLoad.getValue(1));
6498     }
6499 
6500     // Copy the value to a (aligned) stack slot using (unaligned) integer
6501     // loads and stores, then do a (aligned) load from the stack slot.
6502     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
6503     unsigned LoadedBytes = LoadedVT.getStoreSize();
6504     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6505     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
6506 
6507     // Make sure the stack slot is also aligned for the register type.
6508     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
6509     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
6510     SmallVector<SDValue, 8> Stores;
6511     SDValue StackPtr = StackBase;
6512     unsigned Offset = 0;
6513 
6514     EVT PtrVT = Ptr.getValueType();
6515     EVT StackPtrVT = StackPtr.getValueType();
6516 
6517     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6518     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6519 
6520     // Do all but one copies using the full register width.
6521     for (unsigned i = 1; i < NumRegs; i++) {
6522       // Load one integer register's worth from the original location.
6523       SDValue Load = DAG.getLoad(
6524           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
6525           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
6526           LD->getAAInfo());
6527       // Follow the load with a store to the stack slot.  Remember the store.
6528       Stores.push_back(DAG.getStore(
6529           Load.getValue(1), dl, Load, StackPtr,
6530           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
6531       // Increment the pointers.
6532       Offset += RegBytes;
6533 
6534       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6535       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6536     }
6537 
6538     // The last copy may be partial.  Do an extending load.
6539     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
6540                                   8 * (LoadedBytes - Offset));
6541     SDValue Load =
6542         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
6543                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
6544                        MinAlign(LD->getAlignment(), Offset),
6545                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6546     // Follow the load with a store to the stack slot.  Remember the store.
6547     // On big-endian machines this requires a truncating store to ensure
6548     // that the bits end up in the right place.
6549     Stores.push_back(DAG.getTruncStore(
6550         Load.getValue(1), dl, Load, StackPtr,
6551         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
6552 
6553     // The order of the stores doesn't matter - say it with a TokenFactor.
6554     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6555 
6556     // Finally, perform the original load only redirected to the stack slot.
6557     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
6558                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
6559                           LoadedVT);
6560 
6561     // Callers expect a MERGE_VALUES node.
6562     return std::make_pair(Load, TF);
6563   }
6564 
6565   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
6566          "Unaligned load of unsupported type.");
6567 
6568   // Compute the new VT that is half the size of the old one.  This is an
6569   // integer MVT.
6570   unsigned NumBits = LoadedVT.getSizeInBits();
6571   EVT NewLoadedVT;
6572   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
6573   NumBits >>= 1;
6574 
6575   unsigned Alignment = LD->getAlignment();
6576   unsigned IncrementSize = NumBits / 8;
6577   ISD::LoadExtType HiExtType = LD->getExtensionType();
6578 
6579   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
6580   if (HiExtType == ISD::NON_EXTLOAD)
6581     HiExtType = ISD::ZEXTLOAD;
6582 
6583   // Load the value in two parts
6584   SDValue Lo, Hi;
6585   if (DAG.getDataLayout().isLittleEndian()) {
6586     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6587                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6588                         LD->getAAInfo());
6589 
6590     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6591     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
6592                         LD->getPointerInfo().getWithOffset(IncrementSize),
6593                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6594                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6595   } else {
6596     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6597                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6598                         LD->getAAInfo());
6599 
6600     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6601     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
6602                         LD->getPointerInfo().getWithOffset(IncrementSize),
6603                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6604                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6605   }
6606 
6607   // aggregate the two parts
6608   SDValue ShiftAmount =
6609       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
6610                                                     DAG.getDataLayout()));
6611   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
6612   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
6613 
6614   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
6615                              Hi.getValue(1));
6616 
6617   return std::make_pair(Result, TF);
6618 }
6619 
6620 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
6621                                              SelectionDAG &DAG) const {
6622   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
6623          "unaligned indexed stores not implemented!");
6624   SDValue Chain = ST->getChain();
6625   SDValue Ptr = ST->getBasePtr();
6626   SDValue Val = ST->getValue();
6627   EVT VT = Val.getValueType();
6628   int Alignment = ST->getAlignment();
6629   auto &MF = DAG.getMachineFunction();
6630   EVT StoreMemVT = ST->getMemoryVT();
6631 
6632   SDLoc dl(ST);
6633   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
6634     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
6635     if (isTypeLegal(intVT)) {
6636       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
6637           StoreMemVT.isVector()) {
6638         // Scalarize the store and let the individual components be handled.
6639         SDValue Result = scalarizeVectorStore(ST, DAG);
6640         return Result;
6641       }
6642       // Expand to a bitconvert of the value to the integer type of the
6643       // same size, then a (misaligned) int store.
6644       // FIXME: Does not handle truncating floating point stores!
6645       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
6646       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
6647                             Alignment, ST->getMemOperand()->getFlags());
6648       return Result;
6649     }
6650     // Do a (aligned) store to a stack slot, then copy from the stack slot
6651     // to the final destination using (unaligned) integer loads and stores.
6652     MVT RegVT = getRegisterType(
6653         *DAG.getContext(),
6654         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
6655     EVT PtrVT = Ptr.getValueType();
6656     unsigned StoredBytes = StoreMemVT.getStoreSize();
6657     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6658     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
6659 
6660     // Make sure the stack slot is also aligned for the register type.
6661     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
6662     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
6663 
6664     // Perform the original store, only redirected to the stack slot.
6665     SDValue Store = DAG.getTruncStore(
6666         Chain, dl, Val, StackPtr,
6667         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
6668 
6669     EVT StackPtrVT = StackPtr.getValueType();
6670 
6671     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6672     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6673     SmallVector<SDValue, 8> Stores;
6674     unsigned Offset = 0;
6675 
6676     // Do all but one copies using the full register width.
6677     for (unsigned i = 1; i < NumRegs; i++) {
6678       // Load one integer register's worth from the stack slot.
6679       SDValue Load = DAG.getLoad(
6680           RegVT, dl, Store, StackPtr,
6681           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
6682       // Store it to the final location.  Remember the store.
6683       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
6684                                     ST->getPointerInfo().getWithOffset(Offset),
6685                                     MinAlign(ST->getAlignment(), Offset),
6686                                     ST->getMemOperand()->getFlags()));
6687       // Increment the pointers.
6688       Offset += RegBytes;
6689       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6690       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6691     }
6692 
6693     // The last store may be partial.  Do a truncating store.  On big-endian
6694     // machines this requires an extending load from the stack slot to ensure
6695     // that the bits are in the right place.
6696     EVT LoadMemVT =
6697         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
6698 
6699     // Load from the stack slot.
6700     SDValue Load = DAG.getExtLoad(
6701         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
6702         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
6703 
6704     Stores.push_back(
6705         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
6706                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
6707                           MinAlign(ST->getAlignment(), Offset),
6708                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
6709     // The order of the stores doesn't matter - say it with a TokenFactor.
6710     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6711     return Result;
6712   }
6713 
6714   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
6715          "Unaligned store of unknown type.");
6716   // Get the half-size VT
6717   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
6718   int NumBits = NewStoredVT.getSizeInBits();
6719   int IncrementSize = NumBits / 8;
6720 
6721   // Divide the stored value in two parts.
6722   SDValue ShiftAmount = DAG.getConstant(
6723       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
6724   SDValue Lo = Val;
6725   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
6726 
6727   // Store the two parts
6728   SDValue Store1, Store2;
6729   Store1 = DAG.getTruncStore(Chain, dl,
6730                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
6731                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
6732                              ST->getMemOperand()->getFlags());
6733 
6734   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6735   Alignment = MinAlign(Alignment, IncrementSize);
6736   Store2 = DAG.getTruncStore(
6737       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
6738       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
6739       ST->getMemOperand()->getFlags(), ST->getAAInfo());
6740 
6741   SDValue Result =
6742       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
6743   return Result;
6744 }
6745 
6746 SDValue
6747 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
6748                                        const SDLoc &DL, EVT DataVT,
6749                                        SelectionDAG &DAG,
6750                                        bool IsCompressedMemory) const {
6751   SDValue Increment;
6752   EVT AddrVT = Addr.getValueType();
6753   EVT MaskVT = Mask.getValueType();
6754   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
6755          "Incompatible types of Data and Mask");
6756   if (IsCompressedMemory) {
6757     // Incrementing the pointer according to number of '1's in the mask.
6758     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
6759     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
6760     if (MaskIntVT.getSizeInBits() < 32) {
6761       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
6762       MaskIntVT = MVT::i32;
6763     }
6764 
6765     // Count '1's with POPCNT.
6766     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
6767     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
6768     // Scale is an element size in bytes.
6769     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
6770                                     AddrVT);
6771     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
6772   } else
6773     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
6774 
6775   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
6776 }
6777 
6778 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
6779                                        SDValue Idx,
6780                                        EVT VecVT,
6781                                        const SDLoc &dl) {
6782   if (isa<ConstantSDNode>(Idx))
6783     return Idx;
6784 
6785   EVT IdxVT = Idx.getValueType();
6786   unsigned NElts = VecVT.getVectorNumElements();
6787   if (isPowerOf2_32(NElts)) {
6788     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
6789                                      Log2_32(NElts));
6790     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
6791                        DAG.getConstant(Imm, dl, IdxVT));
6792   }
6793 
6794   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
6795                      DAG.getConstant(NElts - 1, dl, IdxVT));
6796 }
6797 
6798 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
6799                                                 SDValue VecPtr, EVT VecVT,
6800                                                 SDValue Index) const {
6801   SDLoc dl(Index);
6802   // Make sure the index type is big enough to compute in.
6803   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
6804 
6805   EVT EltVT = VecVT.getVectorElementType();
6806 
6807   // Calculate the element offset and add it to the pointer.
6808   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
6809   assert(EltSize * 8 == EltVT.getSizeInBits() &&
6810          "Converting bits to bytes lost precision");
6811 
6812   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
6813 
6814   EVT IdxVT = Index.getValueType();
6815 
6816   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
6817                       DAG.getConstant(EltSize, dl, IdxVT));
6818   return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index);
6819 }
6820 
6821 //===----------------------------------------------------------------------===//
6822 // Implementation of Emulated TLS Model
6823 //===----------------------------------------------------------------------===//
6824 
6825 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
6826                                                 SelectionDAG &DAG) const {
6827   // Access to address of TLS varialbe xyz is lowered to a function call:
6828   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
6829   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6830   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
6831   SDLoc dl(GA);
6832 
6833   ArgListTy Args;
6834   ArgListEntry Entry;
6835   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
6836   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
6837   StringRef EmuTlsVarName(NameString);
6838   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
6839   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
6840   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
6841   Entry.Ty = VoidPtrType;
6842   Args.push_back(Entry);
6843 
6844   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
6845 
6846   TargetLowering::CallLoweringInfo CLI(DAG);
6847   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
6848   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
6849   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
6850 
6851   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6852   // At last for X86 targets, maybe good for other targets too?
6853   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6854   MFI.setAdjustsStack(true); // Is this only for X86 target?
6855   MFI.setHasCalls(true);
6856 
6857   assert((GA->getOffset() == 0) &&
6858          "Emulated TLS must have zero offset in GlobalAddressSDNode");
6859   return CallResult.first;
6860 }
6861 
6862 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
6863                                                 SelectionDAG &DAG) const {
6864   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
6865   if (!isCtlzFast())
6866     return SDValue();
6867   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6868   SDLoc dl(Op);
6869   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
6870     if (C->isNullValue() && CC == ISD::SETEQ) {
6871       EVT VT = Op.getOperand(0).getValueType();
6872       SDValue Zext = Op.getOperand(0);
6873       if (VT.bitsLT(MVT::i32)) {
6874         VT = MVT::i32;
6875         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
6876       }
6877       unsigned Log2b = Log2_32(VT.getSizeInBits());
6878       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
6879       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
6880                                 DAG.getConstant(Log2b, dl, MVT::i32));
6881       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
6882     }
6883   }
6884   return SDValue();
6885 }
6886 
6887 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
6888   unsigned Opcode = Node->getOpcode();
6889   SDValue LHS = Node->getOperand(0);
6890   SDValue RHS = Node->getOperand(1);
6891   EVT VT = LHS.getValueType();
6892   SDLoc dl(Node);
6893 
6894   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
6895   assert(VT.isInteger() && "Expected operands to be integers");
6896 
6897   // usub.sat(a, b) -> umax(a, b) - b
6898   if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
6899     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
6900     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
6901   }
6902 
6903   if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
6904     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
6905     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
6906     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
6907   }
6908 
6909   unsigned OverflowOp;
6910   switch (Opcode) {
6911   case ISD::SADDSAT:
6912     OverflowOp = ISD::SADDO;
6913     break;
6914   case ISD::UADDSAT:
6915     OverflowOp = ISD::UADDO;
6916     break;
6917   case ISD::SSUBSAT:
6918     OverflowOp = ISD::SSUBO;
6919     break;
6920   case ISD::USUBSAT:
6921     OverflowOp = ISD::USUBO;
6922     break;
6923   default:
6924     llvm_unreachable("Expected method to receive signed or unsigned saturation "
6925                      "addition or subtraction node.");
6926   }
6927 
6928   unsigned BitWidth = LHS.getScalarValueSizeInBits();
6929   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6930   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
6931                                LHS, RHS);
6932   SDValue SumDiff = Result.getValue(0);
6933   SDValue Overflow = Result.getValue(1);
6934   SDValue Zero = DAG.getConstant(0, dl, VT);
6935   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
6936 
6937   if (Opcode == ISD::UADDSAT) {
6938     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
6939       // (LHS + RHS) | OverflowMask
6940       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
6941       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
6942     }
6943     // Overflow ? 0xffff.... : (LHS + RHS)
6944     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
6945   } else if (Opcode == ISD::USUBSAT) {
6946     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
6947       // (LHS - RHS) & ~OverflowMask
6948       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
6949       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
6950       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
6951     }
6952     // Overflow ? 0 : (LHS - RHS)
6953     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
6954   } else {
6955     // SatMax -> Overflow && SumDiff < 0
6956     // SatMin -> Overflow && SumDiff >= 0
6957     APInt MinVal = APInt::getSignedMinValue(BitWidth);
6958     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
6959     SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
6960     SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
6961     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
6962     Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
6963     return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
6964   }
6965 }
6966 
6967 SDValue
6968 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
6969   assert((Node->getOpcode() == ISD::SMULFIX ||
6970           Node->getOpcode() == ISD::UMULFIX ||
6971           Node->getOpcode() == ISD::SMULFIXSAT ||
6972           Node->getOpcode() == ISD::UMULFIXSAT) &&
6973          "Expected a fixed point multiplication opcode");
6974 
6975   SDLoc dl(Node);
6976   SDValue LHS = Node->getOperand(0);
6977   SDValue RHS = Node->getOperand(1);
6978   EVT VT = LHS.getValueType();
6979   unsigned Scale = Node->getConstantOperandVal(2);
6980   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
6981                      Node->getOpcode() == ISD::UMULFIXSAT);
6982   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
6983                  Node->getOpcode() == ISD::SMULFIXSAT);
6984   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6985   unsigned VTSize = VT.getScalarSizeInBits();
6986 
6987   if (!Scale) {
6988     // [us]mul.fix(a, b, 0) -> mul(a, b)
6989     if (!Saturating) {
6990       if (isOperationLegalOrCustom(ISD::MUL, VT))
6991         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
6992     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
6993       SDValue Result =
6994           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
6995       SDValue Product = Result.getValue(0);
6996       SDValue Overflow = Result.getValue(1);
6997       SDValue Zero = DAG.getConstant(0, dl, VT);
6998 
6999       APInt MinVal = APInt::getSignedMinValue(VTSize);
7000       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
7001       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7002       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7003       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
7004       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
7005       return DAG.getSelect(dl, VT, Overflow, Result, Product);
7006     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
7007       SDValue Result =
7008           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7009       SDValue Product = Result.getValue(0);
7010       SDValue Overflow = Result.getValue(1);
7011 
7012       APInt MaxVal = APInt::getMaxValue(VTSize);
7013       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7014       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
7015     }
7016   }
7017 
7018   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
7019          "Expected scale to be less than the number of bits if signed or at "
7020          "most the number of bits if unsigned.");
7021   assert(LHS.getValueType() == RHS.getValueType() &&
7022          "Expected both operands to be the same type");
7023 
7024   // Get the upper and lower bits of the result.
7025   SDValue Lo, Hi;
7026   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
7027   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
7028   if (isOperationLegalOrCustom(LoHiOp, VT)) {
7029     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
7030     Lo = Result.getValue(0);
7031     Hi = Result.getValue(1);
7032   } else if (isOperationLegalOrCustom(HiOp, VT)) {
7033     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7034     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
7035   } else if (VT.isVector()) {
7036     return SDValue();
7037   } else {
7038     report_fatal_error("Unable to expand fixed point multiplication.");
7039   }
7040 
7041   if (Scale == VTSize)
7042     // Result is just the top half since we'd be shifting by the width of the
7043     // operand. Overflow impossible so this works for both UMULFIX and
7044     // UMULFIXSAT.
7045     return Hi;
7046 
7047   // The result will need to be shifted right by the scale since both operands
7048   // are scaled. The result is given to us in 2 halves, so we only want part of
7049   // both in the result.
7050   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7051   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
7052                                DAG.getConstant(Scale, dl, ShiftTy));
7053   if (!Saturating)
7054     return Result;
7055 
7056   if (!Signed) {
7057     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
7058     // widened multiplication) aren't all zeroes.
7059 
7060     // Saturate to max if ((Hi >> Scale) != 0),
7061     // which is the same as if (Hi > ((1 << Scale) - 1))
7062     APInt MaxVal = APInt::getMaxValue(VTSize);
7063     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
7064                                       dl, VT);
7065     Result = DAG.getSelectCC(dl, Hi, LowMask,
7066                              DAG.getConstant(MaxVal, dl, VT), Result,
7067                              ISD::SETUGT);
7068 
7069     return Result;
7070   }
7071 
7072   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
7073   // widened multiplication) aren't all ones or all zeroes.
7074 
7075   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
7076   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
7077 
7078   if (Scale == 0) {
7079     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
7080                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
7081     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
7082     // Saturated to SatMin if wide product is negative, and SatMax if wide
7083     // product is positive ...
7084     SDValue Zero = DAG.getConstant(0, dl, VT);
7085     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
7086                                                ISD::SETLT);
7087     // ... but only if we overflowed.
7088     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
7089   }
7090 
7091   //  We handled Scale==0 above so all the bits to examine is in Hi.
7092 
7093   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
7094   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
7095   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
7096                                     dl, VT);
7097   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
7098   // Saturate to min if (Hi >> (Scale - 1)) < -1),
7099   // which is the same as if (HI < (-1 << (Scale - 1))
7100   SDValue HighMask =
7101       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
7102                       dl, VT);
7103   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
7104   return Result;
7105 }
7106 
7107 void TargetLowering::expandUADDSUBO(
7108     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7109   SDLoc dl(Node);
7110   SDValue LHS = Node->getOperand(0);
7111   SDValue RHS = Node->getOperand(1);
7112   bool IsAdd = Node->getOpcode() == ISD::UADDO;
7113 
7114   // If ADD/SUBCARRY is legal, use that instead.
7115   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
7116   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
7117     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
7118     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
7119                                     { LHS, RHS, CarryIn });
7120     Result = SDValue(NodeCarry.getNode(), 0);
7121     Overflow = SDValue(NodeCarry.getNode(), 1);
7122     return;
7123   }
7124 
7125   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7126                             LHS.getValueType(), LHS, RHS);
7127 
7128   EVT ResultType = Node->getValueType(1);
7129   EVT SetCCType = getSetCCResultType(
7130       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7131   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
7132   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
7133   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7134 }
7135 
7136 void TargetLowering::expandSADDSUBO(
7137     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7138   SDLoc dl(Node);
7139   SDValue LHS = Node->getOperand(0);
7140   SDValue RHS = Node->getOperand(1);
7141   bool IsAdd = Node->getOpcode() == ISD::SADDO;
7142 
7143   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7144                             LHS.getValueType(), LHS, RHS);
7145 
7146   EVT ResultType = Node->getValueType(1);
7147   EVT OType = getSetCCResultType(
7148       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7149 
7150   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
7151   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
7152   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
7153     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
7154     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
7155     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7156     return;
7157   }
7158 
7159   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
7160 
7161   // For an addition, the result should be less than one of the operands (LHS)
7162   // if and only if the other operand (RHS) is negative, otherwise there will
7163   // be overflow.
7164   // For a subtraction, the result should be less than one of the operands
7165   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
7166   // otherwise there will be overflow.
7167   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
7168   SDValue ConditionRHS =
7169       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
7170 
7171   Overflow = DAG.getBoolExtOrTrunc(
7172       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
7173       ResultType, ResultType);
7174 }
7175 
7176 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
7177                                 SDValue &Overflow, SelectionDAG &DAG) const {
7178   SDLoc dl(Node);
7179   EVT VT = Node->getValueType(0);
7180   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7181   SDValue LHS = Node->getOperand(0);
7182   SDValue RHS = Node->getOperand(1);
7183   bool isSigned = Node->getOpcode() == ISD::SMULO;
7184 
7185   // For power-of-two multiplications we can use a simpler shift expansion.
7186   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
7187     const APInt &C = RHSC->getAPIntValue();
7188     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
7189     if (C.isPowerOf2()) {
7190       // smulo(x, signed_min) is same as umulo(x, signed_min).
7191       bool UseArithShift = isSigned && !C.isMinSignedValue();
7192       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
7193       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
7194       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
7195       Overflow = DAG.getSetCC(dl, SetCCVT,
7196           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
7197                       dl, VT, Result, ShiftAmt),
7198           LHS, ISD::SETNE);
7199       return true;
7200     }
7201   }
7202 
7203   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
7204   if (VT.isVector())
7205     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
7206                               VT.getVectorNumElements());
7207 
7208   SDValue BottomHalf;
7209   SDValue TopHalf;
7210   static const unsigned Ops[2][3] =
7211       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
7212         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
7213   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
7214     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7215     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
7216   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
7217     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
7218                              RHS);
7219     TopHalf = BottomHalf.getValue(1);
7220   } else if (isTypeLegal(WideVT)) {
7221     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
7222     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
7223     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
7224     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
7225     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
7226         getShiftAmountTy(WideVT, DAG.getDataLayout()));
7227     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
7228                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
7229   } else {
7230     if (VT.isVector())
7231       return false;
7232 
7233     // We can fall back to a libcall with an illegal type for the MUL if we
7234     // have a libcall big enough.
7235     // Also, we can fall back to a division in some cases, but that's a big
7236     // performance hit in the general case.
7237     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
7238     if (WideVT == MVT::i16)
7239       LC = RTLIB::MUL_I16;
7240     else if (WideVT == MVT::i32)
7241       LC = RTLIB::MUL_I32;
7242     else if (WideVT == MVT::i64)
7243       LC = RTLIB::MUL_I64;
7244     else if (WideVT == MVT::i128)
7245       LC = RTLIB::MUL_I128;
7246     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
7247 
7248     SDValue HiLHS;
7249     SDValue HiRHS;
7250     if (isSigned) {
7251       // The high part is obtained by SRA'ing all but one of the bits of low
7252       // part.
7253       unsigned LoSize = VT.getSizeInBits();
7254       HiLHS =
7255           DAG.getNode(ISD::SRA, dl, VT, LHS,
7256                       DAG.getConstant(LoSize - 1, dl,
7257                                       getPointerTy(DAG.getDataLayout())));
7258       HiRHS =
7259           DAG.getNode(ISD::SRA, dl, VT, RHS,
7260                       DAG.getConstant(LoSize - 1, dl,
7261                                       getPointerTy(DAG.getDataLayout())));
7262     } else {
7263         HiLHS = DAG.getConstant(0, dl, VT);
7264         HiRHS = DAG.getConstant(0, dl, VT);
7265     }
7266 
7267     // Here we're passing the 2 arguments explicitly as 4 arguments that are
7268     // pre-lowered to the correct types. This all depends upon WideVT not
7269     // being a legal type for the architecture and thus has to be split to
7270     // two arguments.
7271     SDValue Ret;
7272     TargetLowering::MakeLibCallOptions CallOptions;
7273     CallOptions.setSExt(isSigned);
7274     CallOptions.setIsPostTypeLegalization(true);
7275     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
7276       // Halves of WideVT are packed into registers in different order
7277       // depending on platform endianness. This is usually handled by
7278       // the C calling convention, but we can't defer to it in
7279       // the legalizer.
7280       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
7281       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7282     } else {
7283       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
7284       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7285     }
7286     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
7287            "Ret value is a collection of constituent nodes holding result.");
7288     if (DAG.getDataLayout().isLittleEndian()) {
7289       // Same as above.
7290       BottomHalf = Ret.getOperand(0);
7291       TopHalf = Ret.getOperand(1);
7292     } else {
7293       BottomHalf = Ret.getOperand(1);
7294       TopHalf = Ret.getOperand(0);
7295     }
7296   }
7297 
7298   Result = BottomHalf;
7299   if (isSigned) {
7300     SDValue ShiftAmt = DAG.getConstant(
7301         VT.getScalarSizeInBits() - 1, dl,
7302         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
7303     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
7304     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
7305   } else {
7306     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
7307                             DAG.getConstant(0, dl, VT), ISD::SETNE);
7308   }
7309 
7310   // Truncate the result if SetCC returns a larger type than needed.
7311   EVT RType = Node->getValueType(1);
7312   if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
7313     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
7314 
7315   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
7316          "Unexpected result type for S/UMULO legalization");
7317   return true;
7318 }
7319 
7320 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
7321   SDLoc dl(Node);
7322   bool NoNaN = Node->getFlags().hasNoNaNs();
7323   unsigned BaseOpcode = 0;
7324   switch (Node->getOpcode()) {
7325   default: llvm_unreachable("Expected VECREDUCE opcode");
7326   case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
7327   case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
7328   case ISD::VECREDUCE_ADD:  BaseOpcode = ISD::ADD; break;
7329   case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break;
7330   case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break;
7331   case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break;
7332   case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break;
7333   case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
7334   case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
7335   case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
7336   case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
7337   case ISD::VECREDUCE_FMAX:
7338     BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
7339     break;
7340   case ISD::VECREDUCE_FMIN:
7341     BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
7342     break;
7343   }
7344 
7345   SDValue Op = Node->getOperand(0);
7346   EVT VT = Op.getValueType();
7347 
7348   // Try to use a shuffle reduction for power of two vectors.
7349   if (VT.isPow2VectorType()) {
7350     while (VT.getVectorNumElements() > 1) {
7351       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
7352       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
7353         break;
7354 
7355       SDValue Lo, Hi;
7356       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
7357       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
7358       VT = HalfVT;
7359     }
7360   }
7361 
7362   EVT EltVT = VT.getVectorElementType();
7363   unsigned NumElts = VT.getVectorNumElements();
7364 
7365   SmallVector<SDValue, 8> Ops;
7366   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
7367 
7368   SDValue Res = Ops[0];
7369   for (unsigned i = 1; i < NumElts; i++)
7370     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
7371 
7372   // Result type may be wider than element type.
7373   if (EltVT != Node->getValueType(0))
7374     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
7375   return Res;
7376 }
7377