1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore following attributes because they don't affect the
61   // call sequence.
62   AttrBuilder CallerAttrs(F.getAttributes(), AttributeList::ReturnIndex);
63   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
64                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
65                            Attribute::NonNull})
66     CallerAttrs.removeAttribute(Attr);
67 
68   if (CallerAttrs.hasAttributes())
69     return false;
70 
71   // It's not safe to eliminate the sign / zero extension of the return value.
72   if (CallerAttrs.contains(Attribute::ZExt) ||
73       CallerAttrs.contains(Attribute::SExt))
74     return false;
75 
76   // Check if the only use is a function return node.
77   return isUsedByReturnOnly(Node, Chain);
78 }
79 
80 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
81     const uint32_t *CallerPreservedMask,
82     const SmallVectorImpl<CCValAssign> &ArgLocs,
83     const SmallVectorImpl<SDValue> &OutVals) const {
84   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
85     const CCValAssign &ArgLoc = ArgLocs[I];
86     if (!ArgLoc.isRegLoc())
87       continue;
88     MCRegister Reg = ArgLoc.getLocReg();
89     // Only look at callee saved registers.
90     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
91       continue;
92     // Check that we pass the value used for the caller.
93     // (We look for a CopyFromReg reading a virtual register that is used
94     //  for the function live-in value of register Reg)
95     SDValue Value = OutVals[I];
96     if (Value->getOpcode() != ISD::CopyFromReg)
97       return false;
98     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
99     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
100       return false;
101   }
102   return true;
103 }
104 
105 /// Set CallLoweringInfo attribute flags based on a call instruction
106 /// and called function attributes.
107 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
108                                                      unsigned ArgIdx) {
109   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
110   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
111   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
112   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
113   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
114   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
115   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
116   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
117   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
118   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
119   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
120   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
121   Alignment = Call->getParamStackAlign(ArgIdx);
122   IndirectType = nullptr;
123   assert(IsByVal + IsPreallocated + IsInAlloca <= 1 &&
124          "multiple ABI attributes?");
125   if (IsByVal) {
126     IndirectType = Call->getParamByValType(ArgIdx);
127     if (!Alignment)
128       Alignment = Call->getParamAlign(ArgIdx);
129   }
130   if (IsPreallocated)
131     IndirectType = Call->getParamPreallocatedType(ArgIdx);
132   if (IsInAlloca)
133     IndirectType = Call->getParamInAllocaType(ArgIdx);
134 }
135 
136 /// Generate a libcall taking the given operands as arguments and returning a
137 /// result of type RetVT.
138 std::pair<SDValue, SDValue>
139 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
140                             ArrayRef<SDValue> Ops,
141                             MakeLibCallOptions CallOptions,
142                             const SDLoc &dl,
143                             SDValue InChain) const {
144   if (!InChain)
145     InChain = DAG.getEntryNode();
146 
147   TargetLowering::ArgListTy Args;
148   Args.reserve(Ops.size());
149 
150   TargetLowering::ArgListEntry Entry;
151   for (unsigned i = 0; i < Ops.size(); ++i) {
152     SDValue NewOp = Ops[i];
153     Entry.Node = NewOp;
154     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
155     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
156                                                  CallOptions.IsSExt);
157     Entry.IsZExt = !Entry.IsSExt;
158 
159     if (CallOptions.IsSoften &&
160         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
161       Entry.IsSExt = Entry.IsZExt = false;
162     }
163     Args.push_back(Entry);
164   }
165 
166   if (LC == RTLIB::UNKNOWN_LIBCALL)
167     report_fatal_error("Unsupported library call operation!");
168   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
169                                          getPointerTy(DAG.getDataLayout()));
170 
171   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
172   TargetLowering::CallLoweringInfo CLI(DAG);
173   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
174   bool zeroExtend = !signExtend;
175 
176   if (CallOptions.IsSoften &&
177       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
178     signExtend = zeroExtend = false;
179   }
180 
181   CLI.setDebugLoc(dl)
182       .setChain(InChain)
183       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
184       .setNoReturn(CallOptions.DoesNotReturn)
185       .setDiscardResult(!CallOptions.IsReturnValueUsed)
186       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
187       .setSExtResult(signExtend)
188       .setZExtResult(zeroExtend);
189   return LowerCallTo(CLI);
190 }
191 
192 bool TargetLowering::findOptimalMemOpLowering(
193     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
194     unsigned SrcAS, const AttributeList &FuncAttributes) const {
195   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
196     return false;
197 
198   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
199 
200   if (VT == MVT::Other) {
201     // Use the largest integer type whose alignment constraints are satisfied.
202     // We only need to check DstAlign here as SrcAlign is always greater or
203     // equal to DstAlign (or zero).
204     VT = MVT::i64;
205     if (Op.isFixedDstAlign())
206       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
207              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
208         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
209     assert(VT.isInteger());
210 
211     // Find the largest legal integer type.
212     MVT LVT = MVT::i64;
213     while (!isTypeLegal(LVT))
214       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
215     assert(LVT.isInteger());
216 
217     // If the type we've chosen is larger than the largest legal integer type
218     // then use that instead.
219     if (VT.bitsGT(LVT))
220       VT = LVT;
221   }
222 
223   unsigned NumMemOps = 0;
224   uint64_t Size = Op.size();
225   while (Size) {
226     unsigned VTSize = VT.getSizeInBits() / 8;
227     while (VTSize > Size) {
228       // For now, only use non-vector load / store's for the left-over pieces.
229       EVT NewVT = VT;
230       unsigned NewVTSize;
231 
232       bool Found = false;
233       if (VT.isVector() || VT.isFloatingPoint()) {
234         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
235         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
236             isSafeMemOpType(NewVT.getSimpleVT()))
237           Found = true;
238         else if (NewVT == MVT::i64 &&
239                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
240                  isSafeMemOpType(MVT::f64)) {
241           // i64 is usually not legal on 32-bit targets, but f64 may be.
242           NewVT = MVT::f64;
243           Found = true;
244         }
245       }
246 
247       if (!Found) {
248         do {
249           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
250           if (NewVT == MVT::i8)
251             break;
252         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
253       }
254       NewVTSize = NewVT.getSizeInBits() / 8;
255 
256       // If the new VT cannot cover all of the remaining bits, then consider
257       // issuing a (or a pair of) unaligned and overlapping load / store.
258       bool Fast;
259       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
260           allowsMisalignedMemoryAccesses(
261               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
262               MachineMemOperand::MONone, &Fast) &&
263           Fast)
264         VTSize = Size;
265       else {
266         VT = NewVT;
267         VTSize = NewVTSize;
268       }
269     }
270 
271     if (++NumMemOps > Limit)
272       return false;
273 
274     MemOps.push_back(VT);
275     Size -= VTSize;
276   }
277 
278   return true;
279 }
280 
281 /// Soften the operands of a comparison. This code is shared among BR_CC,
282 /// SELECT_CC, and SETCC handlers.
283 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
284                                          SDValue &NewLHS, SDValue &NewRHS,
285                                          ISD::CondCode &CCCode,
286                                          const SDLoc &dl, const SDValue OldLHS,
287                                          const SDValue OldRHS) const {
288   SDValue Chain;
289   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
290                              OldRHS, Chain);
291 }
292 
293 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
294                                          SDValue &NewLHS, SDValue &NewRHS,
295                                          ISD::CondCode &CCCode,
296                                          const SDLoc &dl, const SDValue OldLHS,
297                                          const SDValue OldRHS,
298                                          SDValue &Chain,
299                                          bool IsSignaling) const {
300   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
301   // not supporting it. We can update this code when libgcc provides such
302   // functions.
303 
304   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
305          && "Unsupported setcc type!");
306 
307   // Expand into one or more soft-fp libcall(s).
308   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
309   bool ShouldInvertCC = false;
310   switch (CCCode) {
311   case ISD::SETEQ:
312   case ISD::SETOEQ:
313     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
314           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
315           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
316     break;
317   case ISD::SETNE:
318   case ISD::SETUNE:
319     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
320           (VT == MVT::f64) ? RTLIB::UNE_F64 :
321           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
322     break;
323   case ISD::SETGE:
324   case ISD::SETOGE:
325     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
326           (VT == MVT::f64) ? RTLIB::OGE_F64 :
327           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
328     break;
329   case ISD::SETLT:
330   case ISD::SETOLT:
331     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
332           (VT == MVT::f64) ? RTLIB::OLT_F64 :
333           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
334     break;
335   case ISD::SETLE:
336   case ISD::SETOLE:
337     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
338           (VT == MVT::f64) ? RTLIB::OLE_F64 :
339           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
340     break;
341   case ISD::SETGT:
342   case ISD::SETOGT:
343     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
344           (VT == MVT::f64) ? RTLIB::OGT_F64 :
345           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
346     break;
347   case ISD::SETO:
348     ShouldInvertCC = true;
349     LLVM_FALLTHROUGH;
350   case ISD::SETUO:
351     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
352           (VT == MVT::f64) ? RTLIB::UO_F64 :
353           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
354     break;
355   case ISD::SETONE:
356     // SETONE = O && UNE
357     ShouldInvertCC = true;
358     LLVM_FALLTHROUGH;
359   case ISD::SETUEQ:
360     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
361           (VT == MVT::f64) ? RTLIB::UO_F64 :
362           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
363     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
364           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
365           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
366     break;
367   default:
368     // Invert CC for unordered comparisons
369     ShouldInvertCC = true;
370     switch (CCCode) {
371     case ISD::SETULT:
372       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
373             (VT == MVT::f64) ? RTLIB::OGE_F64 :
374             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
375       break;
376     case ISD::SETULE:
377       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
378             (VT == MVT::f64) ? RTLIB::OGT_F64 :
379             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
380       break;
381     case ISD::SETUGT:
382       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
383             (VT == MVT::f64) ? RTLIB::OLE_F64 :
384             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
385       break;
386     case ISD::SETUGE:
387       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
388             (VT == MVT::f64) ? RTLIB::OLT_F64 :
389             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
390       break;
391     default: llvm_unreachable("Do not know how to soften this setcc!");
392     }
393   }
394 
395   // Use the target specific return value for comparions lib calls.
396   EVT RetVT = getCmpLibcallReturnType();
397   SDValue Ops[2] = {NewLHS, NewRHS};
398   TargetLowering::MakeLibCallOptions CallOptions;
399   EVT OpsVT[2] = { OldLHS.getValueType(),
400                    OldRHS.getValueType() };
401   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
402   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
403   NewLHS = Call.first;
404   NewRHS = DAG.getConstant(0, dl, RetVT);
405 
406   CCCode = getCmpLibcallCC(LC1);
407   if (ShouldInvertCC) {
408     assert(RetVT.isInteger());
409     CCCode = getSetCCInverse(CCCode, RetVT);
410   }
411 
412   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
413     // Update Chain.
414     Chain = Call.second;
415   } else {
416     EVT SetCCVT =
417         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
418     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
419     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
420     CCCode = getCmpLibcallCC(LC2);
421     if (ShouldInvertCC)
422       CCCode = getSetCCInverse(CCCode, RetVT);
423     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
424     if (Chain)
425       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
426                           Call2.second);
427     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
428                          Tmp.getValueType(), Tmp, NewLHS);
429     NewRHS = SDValue();
430   }
431 }
432 
433 /// Return the entry encoding for a jump table in the current function. The
434 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
435 unsigned TargetLowering::getJumpTableEncoding() const {
436   // In non-pic modes, just use the address of a block.
437   if (!isPositionIndependent())
438     return MachineJumpTableInfo::EK_BlockAddress;
439 
440   // In PIC mode, if the target supports a GPRel32 directive, use it.
441   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
442     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
443 
444   // Otherwise, use a label difference.
445   return MachineJumpTableInfo::EK_LabelDifference32;
446 }
447 
448 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
449                                                  SelectionDAG &DAG) const {
450   // If our PIC model is GP relative, use the global offset table as the base.
451   unsigned JTEncoding = getJumpTableEncoding();
452 
453   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
454       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
455     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
456 
457   return Table;
458 }
459 
460 /// This returns the relocation base for the given PIC jumptable, the same as
461 /// getPICJumpTableRelocBase, but as an MCExpr.
462 const MCExpr *
463 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
464                                              unsigned JTI,MCContext &Ctx) const{
465   // The normal PIC reloc base is the label at the start of the jump table.
466   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
467 }
468 
469 bool
470 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
471   const TargetMachine &TM = getTargetMachine();
472   const GlobalValue *GV = GA->getGlobal();
473 
474   // If the address is not even local to this DSO we will have to load it from
475   // a got and then add the offset.
476   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
477     return false;
478 
479   // If the code is position independent we will have to add a base register.
480   if (isPositionIndependent())
481     return false;
482 
483   // Otherwise we can do it.
484   return true;
485 }
486 
487 //===----------------------------------------------------------------------===//
488 //  Optimization Methods
489 //===----------------------------------------------------------------------===//
490 
491 /// If the specified instruction has a constant integer operand and there are
492 /// bits set in that constant that are not demanded, then clear those bits and
493 /// return true.
494 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
495                                             const APInt &DemandedBits,
496                                             const APInt &DemandedElts,
497                                             TargetLoweringOpt &TLO) const {
498   SDLoc DL(Op);
499   unsigned Opcode = Op.getOpcode();
500 
501   // Do target-specific constant optimization.
502   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
503     return TLO.New.getNode();
504 
505   // FIXME: ISD::SELECT, ISD::SELECT_CC
506   switch (Opcode) {
507   default:
508     break;
509   case ISD::XOR:
510   case ISD::AND:
511   case ISD::OR: {
512     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
513     if (!Op1C || Op1C->isOpaque())
514       return false;
515 
516     // If this is a 'not' op, don't touch it because that's a canonical form.
517     const APInt &C = Op1C->getAPIntValue();
518     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
519       return false;
520 
521     if (!C.isSubsetOf(DemandedBits)) {
522       EVT VT = Op.getValueType();
523       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
524       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
525       return TLO.CombineTo(Op, NewOp);
526     }
527 
528     break;
529   }
530   }
531 
532   return false;
533 }
534 
535 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
536                                             const APInt &DemandedBits,
537                                             TargetLoweringOpt &TLO) const {
538   EVT VT = Op.getValueType();
539   APInt DemandedElts = VT.isVector()
540                            ? APInt::getAllOnes(VT.getVectorNumElements())
541                            : APInt(1, 1);
542   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
543 }
544 
545 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
546 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
547 /// generalized for targets with other types of implicit widening casts.
548 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
549                                       const APInt &Demanded,
550                                       TargetLoweringOpt &TLO) const {
551   assert(Op.getNumOperands() == 2 &&
552          "ShrinkDemandedOp only supports binary operators!");
553   assert(Op.getNode()->getNumValues() == 1 &&
554          "ShrinkDemandedOp only supports nodes with one result!");
555 
556   SelectionDAG &DAG = TLO.DAG;
557   SDLoc dl(Op);
558 
559   // Early return, as this function cannot handle vector types.
560   if (Op.getValueType().isVector())
561     return false;
562 
563   // Don't do this if the node has another user, which may require the
564   // full value.
565   if (!Op.getNode()->hasOneUse())
566     return false;
567 
568   // Search for the smallest integer type with free casts to and from
569   // Op's type. For expedience, just check power-of-2 integer types.
570   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
571   unsigned DemandedSize = Demanded.getActiveBits();
572   unsigned SmallVTBits = DemandedSize;
573   if (!isPowerOf2_32(SmallVTBits))
574     SmallVTBits = NextPowerOf2(SmallVTBits);
575   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
576     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
577     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
578         TLI.isZExtFree(SmallVT, Op.getValueType())) {
579       // We found a type with free casts.
580       SDValue X = DAG.getNode(
581           Op.getOpcode(), dl, SmallVT,
582           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
583           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
584       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
585       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
586       return TLO.CombineTo(Op, Z);
587     }
588   }
589   return false;
590 }
591 
592 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
593                                           DAGCombinerInfo &DCI) const {
594   SelectionDAG &DAG = DCI.DAG;
595   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
596                         !DCI.isBeforeLegalizeOps());
597   KnownBits Known;
598 
599   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
600   if (Simplified) {
601     DCI.AddToWorklist(Op.getNode());
602     DCI.CommitTargetLoweringOpt(TLO);
603   }
604   return Simplified;
605 }
606 
607 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
608                                           KnownBits &Known,
609                                           TargetLoweringOpt &TLO,
610                                           unsigned Depth,
611                                           bool AssumeSingleUse) const {
612   EVT VT = Op.getValueType();
613 
614   // TODO: We can probably do more work on calculating the known bits and
615   // simplifying the operations for scalable vectors, but for now we just
616   // bail out.
617   if (VT.isScalableVector()) {
618     // Pretend we don't know anything for now.
619     Known = KnownBits(DemandedBits.getBitWidth());
620     return false;
621   }
622 
623   APInt DemandedElts = VT.isVector()
624                            ? APInt::getAllOnes(VT.getVectorNumElements())
625                            : APInt(1, 1);
626   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
627                               AssumeSingleUse);
628 }
629 
630 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
631 // TODO: Under what circumstances can we create nodes? Constant folding?
632 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
633     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
634     SelectionDAG &DAG, unsigned Depth) const {
635   // Limit search depth.
636   if (Depth >= SelectionDAG::MaxRecursionDepth)
637     return SDValue();
638 
639   // Ignore UNDEFs.
640   if (Op.isUndef())
641     return SDValue();
642 
643   // Not demanding any bits/elts from Op.
644   if (DemandedBits == 0 || DemandedElts == 0)
645     return DAG.getUNDEF(Op.getValueType());
646 
647   unsigned NumElts = DemandedElts.getBitWidth();
648   unsigned BitWidth = DemandedBits.getBitWidth();
649   KnownBits LHSKnown, RHSKnown;
650   switch (Op.getOpcode()) {
651   case ISD::BITCAST: {
652     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
653     EVT SrcVT = Src.getValueType();
654     EVT DstVT = Op.getValueType();
655     if (SrcVT == DstVT)
656       return Src;
657 
658     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
659     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
660     if (NumSrcEltBits == NumDstEltBits)
661       if (SDValue V = SimplifyMultipleUseDemandedBits(
662               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
663         return DAG.getBitcast(DstVT, V);
664 
665     // TODO - bigendian once we have test coverage.
666     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
667         DAG.getDataLayout().isLittleEndian()) {
668       unsigned Scale = NumDstEltBits / NumSrcEltBits;
669       unsigned NumSrcElts = SrcVT.getVectorNumElements();
670       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
671       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
672       for (unsigned i = 0; i != Scale; ++i) {
673         unsigned Offset = i * NumSrcEltBits;
674         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
675         if (!Sub.isNullValue()) {
676           DemandedSrcBits |= Sub;
677           for (unsigned j = 0; j != NumElts; ++j)
678             if (DemandedElts[j])
679               DemandedSrcElts.setBit((j * Scale) + i);
680         }
681       }
682 
683       if (SDValue V = SimplifyMultipleUseDemandedBits(
684               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
685         return DAG.getBitcast(DstVT, V);
686     }
687 
688     // TODO - bigendian once we have test coverage.
689     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
690         DAG.getDataLayout().isLittleEndian()) {
691       unsigned Scale = NumSrcEltBits / NumDstEltBits;
692       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
693       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
694       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
695       for (unsigned i = 0; i != NumElts; ++i)
696         if (DemandedElts[i]) {
697           unsigned Offset = (i % Scale) * NumDstEltBits;
698           DemandedSrcBits.insertBits(DemandedBits, Offset);
699           DemandedSrcElts.setBit(i / Scale);
700         }
701 
702       if (SDValue V = SimplifyMultipleUseDemandedBits(
703               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
704         return DAG.getBitcast(DstVT, V);
705     }
706 
707     break;
708   }
709   case ISD::AND: {
710     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
711     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
712 
713     // If all of the demanded bits are known 1 on one side, return the other.
714     // These bits cannot contribute to the result of the 'and' in this
715     // context.
716     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
717       return Op.getOperand(0);
718     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
719       return Op.getOperand(1);
720     break;
721   }
722   case ISD::OR: {
723     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
724     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
725 
726     // If all of the demanded bits are known zero on one side, return the
727     // other.  These bits cannot contribute to the result of the 'or' in this
728     // context.
729     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
730       return Op.getOperand(0);
731     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
732       return Op.getOperand(1);
733     break;
734   }
735   case ISD::XOR: {
736     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
737     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
738 
739     // If all of the demanded bits are known zero on one side, return the
740     // other.
741     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
742       return Op.getOperand(0);
743     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
744       return Op.getOperand(1);
745     break;
746   }
747   case ISD::SHL: {
748     // If we are only demanding sign bits then we can use the shift source
749     // directly.
750     if (const APInt *MaxSA =
751             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
752       SDValue Op0 = Op.getOperand(0);
753       unsigned ShAmt = MaxSA->getZExtValue();
754       unsigned NumSignBits =
755           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
756       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
757       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
758         return Op0;
759     }
760     break;
761   }
762   case ISD::SETCC: {
763     SDValue Op0 = Op.getOperand(0);
764     SDValue Op1 = Op.getOperand(1);
765     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
766     // If (1) we only need the sign-bit, (2) the setcc operands are the same
767     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
768     // -1, we may be able to bypass the setcc.
769     if (DemandedBits.isSignMask() &&
770         Op0.getScalarValueSizeInBits() == BitWidth &&
771         getBooleanContents(Op0.getValueType()) ==
772             BooleanContent::ZeroOrNegativeOneBooleanContent) {
773       // If we're testing X < 0, then this compare isn't needed - just use X!
774       // FIXME: We're limiting to integer types here, but this should also work
775       // if we don't care about FP signed-zero. The use of SETLT with FP means
776       // that we don't care about NaNs.
777       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
778           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
779         return Op0;
780     }
781     break;
782   }
783   case ISD::SIGN_EXTEND_INREG: {
784     // If none of the extended bits are demanded, eliminate the sextinreg.
785     SDValue Op0 = Op.getOperand(0);
786     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
787     unsigned ExBits = ExVT.getScalarSizeInBits();
788     if (DemandedBits.getActiveBits() <= ExBits)
789       return Op0;
790     // If the input is already sign extended, just drop the extension.
791     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
792     if (NumSignBits >= (BitWidth - ExBits + 1))
793       return Op0;
794     break;
795   }
796   case ISD::ANY_EXTEND_VECTOR_INREG:
797   case ISD::SIGN_EXTEND_VECTOR_INREG:
798   case ISD::ZERO_EXTEND_VECTOR_INREG: {
799     // If we only want the lowest element and none of extended bits, then we can
800     // return the bitcasted source vector.
801     SDValue Src = Op.getOperand(0);
802     EVT SrcVT = Src.getValueType();
803     EVT DstVT = Op.getValueType();
804     if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
805         DAG.getDataLayout().isLittleEndian() &&
806         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
807       return DAG.getBitcast(DstVT, Src);
808     }
809     break;
810   }
811   case ISD::INSERT_VECTOR_ELT: {
812     // If we don't demand the inserted element, return the base vector.
813     SDValue Vec = Op.getOperand(0);
814     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
815     EVT VecVT = Vec.getValueType();
816     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
817         !DemandedElts[CIdx->getZExtValue()])
818       return Vec;
819     break;
820   }
821   case ISD::INSERT_SUBVECTOR: {
822     SDValue Vec = Op.getOperand(0);
823     SDValue Sub = Op.getOperand(1);
824     uint64_t Idx = Op.getConstantOperandVal(2);
825     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
826     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
827     // If we don't demand the inserted subvector, return the base vector.
828     if (DemandedSubElts == 0)
829       return Vec;
830     // If this simply widens the lowest subvector, see if we can do it earlier.
831     if (Idx == 0 && Vec.isUndef()) {
832       if (SDValue NewSub = SimplifyMultipleUseDemandedBits(
833               Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1))
834         return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
835                            Op.getOperand(0), NewSub, Op.getOperand(2));
836     }
837     break;
838   }
839   case ISD::VECTOR_SHUFFLE: {
840     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
841 
842     // If all the demanded elts are from one operand and are inline,
843     // then we can use the operand directly.
844     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
845     for (unsigned i = 0; i != NumElts; ++i) {
846       int M = ShuffleMask[i];
847       if (M < 0 || !DemandedElts[i])
848         continue;
849       AllUndef = false;
850       IdentityLHS &= (M == (int)i);
851       IdentityRHS &= ((M - NumElts) == i);
852     }
853 
854     if (AllUndef)
855       return DAG.getUNDEF(Op.getValueType());
856     if (IdentityLHS)
857       return Op.getOperand(0);
858     if (IdentityRHS)
859       return Op.getOperand(1);
860     break;
861   }
862   default:
863     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
864       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
865               Op, DemandedBits, DemandedElts, DAG, Depth))
866         return V;
867     break;
868   }
869   return SDValue();
870 }
871 
872 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
873     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
874     unsigned Depth) const {
875   EVT VT = Op.getValueType();
876   APInt DemandedElts = VT.isVector()
877                            ? APInt::getAllOnes(VT.getVectorNumElements())
878                            : APInt(1, 1);
879   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
880                                          Depth);
881 }
882 
883 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
884     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
885     unsigned Depth) const {
886   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
887   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
888                                          Depth);
889 }
890 
891 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
892 /// result of Op are ever used downstream. If we can use this information to
893 /// simplify Op, create a new simplified DAG node and return true, returning the
894 /// original and new nodes in Old and New. Otherwise, analyze the expression and
895 /// return a mask of Known bits for the expression (used to simplify the
896 /// caller).  The Known bits may only be accurate for those bits in the
897 /// OriginalDemandedBits and OriginalDemandedElts.
898 bool TargetLowering::SimplifyDemandedBits(
899     SDValue Op, const APInt &OriginalDemandedBits,
900     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
901     unsigned Depth, bool AssumeSingleUse) const {
902   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
903   assert(Op.getScalarValueSizeInBits() == BitWidth &&
904          "Mask size mismatches value type size!");
905 
906   // Don't know anything.
907   Known = KnownBits(BitWidth);
908 
909   // TODO: We can probably do more work on calculating the known bits and
910   // simplifying the operations for scalable vectors, but for now we just
911   // bail out.
912   if (Op.getValueType().isScalableVector())
913     return false;
914 
915   unsigned NumElts = OriginalDemandedElts.getBitWidth();
916   assert((!Op.getValueType().isVector() ||
917           NumElts == Op.getValueType().getVectorNumElements()) &&
918          "Unexpected vector size");
919 
920   APInt DemandedBits = OriginalDemandedBits;
921   APInt DemandedElts = OriginalDemandedElts;
922   SDLoc dl(Op);
923   auto &DL = TLO.DAG.getDataLayout();
924 
925   // Undef operand.
926   if (Op.isUndef())
927     return false;
928 
929   if (Op.getOpcode() == ISD::Constant) {
930     // We know all of the bits for a constant!
931     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
932     return false;
933   }
934 
935   if (Op.getOpcode() == ISD::ConstantFP) {
936     // We know all of the bits for a floating point constant!
937     Known = KnownBits::makeConstant(
938         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
939     return false;
940   }
941 
942   // Other users may use these bits.
943   EVT VT = Op.getValueType();
944   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
945     if (Depth != 0) {
946       // If not at the root, Just compute the Known bits to
947       // simplify things downstream.
948       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
949       return false;
950     }
951     // If this is the root being simplified, allow it to have multiple uses,
952     // just set the DemandedBits/Elts to all bits.
953     DemandedBits = APInt::getAllOnes(BitWidth);
954     DemandedElts = APInt::getAllOnes(NumElts);
955   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
956     // Not demanding any bits/elts from Op.
957     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
958   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
959     // Limit search depth.
960     return false;
961   }
962 
963   KnownBits Known2;
964   switch (Op.getOpcode()) {
965   case ISD::TargetConstant:
966     llvm_unreachable("Can't simplify this node");
967   case ISD::SCALAR_TO_VECTOR: {
968     if (!DemandedElts[0])
969       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
970 
971     KnownBits SrcKnown;
972     SDValue Src = Op.getOperand(0);
973     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
974     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
975     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
976       return true;
977 
978     // Upper elements are undef, so only get the knownbits if we just demand
979     // the bottom element.
980     if (DemandedElts == 1)
981       Known = SrcKnown.anyextOrTrunc(BitWidth);
982     break;
983   }
984   case ISD::BUILD_VECTOR:
985     // Collect the known bits that are shared by every demanded element.
986     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
987     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
988     return false; // Don't fall through, will infinitely loop.
989   case ISD::LOAD: {
990     auto *LD = cast<LoadSDNode>(Op);
991     if (getTargetConstantFromLoad(LD)) {
992       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
993       return false; // Don't fall through, will infinitely loop.
994     }
995     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
996       // If this is a ZEXTLoad and we are looking at the loaded value.
997       EVT MemVT = LD->getMemoryVT();
998       unsigned MemBits = MemVT.getScalarSizeInBits();
999       Known.Zero.setBitsFrom(MemBits);
1000       return false; // Don't fall through, will infinitely loop.
1001     }
1002     break;
1003   }
1004   case ISD::INSERT_VECTOR_ELT: {
1005     SDValue Vec = Op.getOperand(0);
1006     SDValue Scl = Op.getOperand(1);
1007     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1008     EVT VecVT = Vec.getValueType();
1009 
1010     // If index isn't constant, assume we need all vector elements AND the
1011     // inserted element.
1012     APInt DemandedVecElts(DemandedElts);
1013     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1014       unsigned Idx = CIdx->getZExtValue();
1015       DemandedVecElts.clearBit(Idx);
1016 
1017       // Inserted element is not required.
1018       if (!DemandedElts[Idx])
1019         return TLO.CombineTo(Op, Vec);
1020     }
1021 
1022     KnownBits KnownScl;
1023     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1024     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1025     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1026       return true;
1027 
1028     Known = KnownScl.anyextOrTrunc(BitWidth);
1029 
1030     KnownBits KnownVec;
1031     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1032                              Depth + 1))
1033       return true;
1034 
1035     if (!!DemandedVecElts)
1036       Known = KnownBits::commonBits(Known, KnownVec);
1037 
1038     return false;
1039   }
1040   case ISD::INSERT_SUBVECTOR: {
1041     // Demand any elements from the subvector and the remainder from the src its
1042     // inserted into.
1043     SDValue Src = Op.getOperand(0);
1044     SDValue Sub = Op.getOperand(1);
1045     uint64_t Idx = Op.getConstantOperandVal(2);
1046     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1047     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1048     APInt DemandedSrcElts = DemandedElts;
1049     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1050 
1051     KnownBits KnownSub, KnownSrc;
1052     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1053                              Depth + 1))
1054       return true;
1055     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1056                              Depth + 1))
1057       return true;
1058 
1059     Known.Zero.setAllBits();
1060     Known.One.setAllBits();
1061     if (!!DemandedSubElts)
1062       Known = KnownBits::commonBits(Known, KnownSub);
1063     if (!!DemandedSrcElts)
1064       Known = KnownBits::commonBits(Known, KnownSrc);
1065 
1066     // Attempt to avoid multi-use src if we don't need anything from it.
1067     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1068         !DemandedSrcElts.isAllOnes()) {
1069       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1070           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1071       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1072           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1073       if (NewSub || NewSrc) {
1074         NewSub = NewSub ? NewSub : Sub;
1075         NewSrc = NewSrc ? NewSrc : Src;
1076         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1077                                         Op.getOperand(2));
1078         return TLO.CombineTo(Op, NewOp);
1079       }
1080     }
1081     break;
1082   }
1083   case ISD::EXTRACT_SUBVECTOR: {
1084     // Offset the demanded elts by the subvector index.
1085     SDValue Src = Op.getOperand(0);
1086     if (Src.getValueType().isScalableVector())
1087       break;
1088     uint64_t Idx = Op.getConstantOperandVal(1);
1089     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1090     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1091 
1092     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1093                              Depth + 1))
1094       return true;
1095 
1096     // Attempt to avoid multi-use src if we don't need anything from it.
1097     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1098       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1099           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1100       if (DemandedSrc) {
1101         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1102                                         Op.getOperand(1));
1103         return TLO.CombineTo(Op, NewOp);
1104       }
1105     }
1106     break;
1107   }
1108   case ISD::CONCAT_VECTORS: {
1109     Known.Zero.setAllBits();
1110     Known.One.setAllBits();
1111     EVT SubVT = Op.getOperand(0).getValueType();
1112     unsigned NumSubVecs = Op.getNumOperands();
1113     unsigned NumSubElts = SubVT.getVectorNumElements();
1114     for (unsigned i = 0; i != NumSubVecs; ++i) {
1115       APInt DemandedSubElts =
1116           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1117       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1118                                Known2, TLO, Depth + 1))
1119         return true;
1120       // Known bits are shared by every demanded subvector element.
1121       if (!!DemandedSubElts)
1122         Known = KnownBits::commonBits(Known, Known2);
1123     }
1124     break;
1125   }
1126   case ISD::VECTOR_SHUFFLE: {
1127     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1128 
1129     // Collect demanded elements from shuffle operands..
1130     APInt DemandedLHS(NumElts, 0);
1131     APInt DemandedRHS(NumElts, 0);
1132     for (unsigned i = 0; i != NumElts; ++i) {
1133       if (!DemandedElts[i])
1134         continue;
1135       int M = ShuffleMask[i];
1136       if (M < 0) {
1137         // For UNDEF elements, we don't know anything about the common state of
1138         // the shuffle result.
1139         DemandedLHS.clearAllBits();
1140         DemandedRHS.clearAllBits();
1141         break;
1142       }
1143       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1144       if (M < (int)NumElts)
1145         DemandedLHS.setBit(M);
1146       else
1147         DemandedRHS.setBit(M - NumElts);
1148     }
1149 
1150     if (!!DemandedLHS || !!DemandedRHS) {
1151       SDValue Op0 = Op.getOperand(0);
1152       SDValue Op1 = Op.getOperand(1);
1153 
1154       Known.Zero.setAllBits();
1155       Known.One.setAllBits();
1156       if (!!DemandedLHS) {
1157         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1158                                  Depth + 1))
1159           return true;
1160         Known = KnownBits::commonBits(Known, Known2);
1161       }
1162       if (!!DemandedRHS) {
1163         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1164                                  Depth + 1))
1165           return true;
1166         Known = KnownBits::commonBits(Known, Known2);
1167       }
1168 
1169       // Attempt to avoid multi-use ops if we don't need anything from them.
1170       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1171           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1172       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1173           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1174       if (DemandedOp0 || DemandedOp1) {
1175         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1176         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1177         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1178         return TLO.CombineTo(Op, NewOp);
1179       }
1180     }
1181     break;
1182   }
1183   case ISD::AND: {
1184     SDValue Op0 = Op.getOperand(0);
1185     SDValue Op1 = Op.getOperand(1);
1186 
1187     // If the RHS is a constant, check to see if the LHS would be zero without
1188     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1189     // simplify the LHS, here we're using information from the LHS to simplify
1190     // the RHS.
1191     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1192       // Do not increment Depth here; that can cause an infinite loop.
1193       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1194       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1195       if ((LHSKnown.Zero & DemandedBits) ==
1196           (~RHSC->getAPIntValue() & DemandedBits))
1197         return TLO.CombineTo(Op, Op0);
1198 
1199       // If any of the set bits in the RHS are known zero on the LHS, shrink
1200       // the constant.
1201       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1202                                  DemandedElts, TLO))
1203         return true;
1204 
1205       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1206       // constant, but if this 'and' is only clearing bits that were just set by
1207       // the xor, then this 'and' can be eliminated by shrinking the mask of
1208       // the xor. For example, for a 32-bit X:
1209       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1210       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1211           LHSKnown.One == ~RHSC->getAPIntValue()) {
1212         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1213         return TLO.CombineTo(Op, Xor);
1214       }
1215     }
1216 
1217     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1218                              Depth + 1))
1219       return true;
1220     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1221     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1222                              Known2, TLO, Depth + 1))
1223       return true;
1224     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1225 
1226     // Attempt to avoid multi-use ops if we don't need anything from them.
1227     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1228       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1229           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1230       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1231           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1232       if (DemandedOp0 || DemandedOp1) {
1233         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1234         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1235         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1236         return TLO.CombineTo(Op, NewOp);
1237       }
1238     }
1239 
1240     // If all of the demanded bits are known one on one side, return the other.
1241     // These bits cannot contribute to the result of the 'and'.
1242     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1243       return TLO.CombineTo(Op, Op0);
1244     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1245       return TLO.CombineTo(Op, Op1);
1246     // If all of the demanded bits in the inputs are known zeros, return zero.
1247     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1248       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1249     // If the RHS is a constant, see if we can simplify it.
1250     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1251                                TLO))
1252       return true;
1253     // If the operation can be done in a smaller type, do so.
1254     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1255       return true;
1256 
1257     Known &= Known2;
1258     break;
1259   }
1260   case ISD::OR: {
1261     SDValue Op0 = Op.getOperand(0);
1262     SDValue Op1 = Op.getOperand(1);
1263 
1264     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1265                              Depth + 1))
1266       return true;
1267     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1268     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1269                              Known2, TLO, Depth + 1))
1270       return true;
1271     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1272 
1273     // Attempt to avoid multi-use ops if we don't need anything from them.
1274     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1275       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1276           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1277       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1278           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1279       if (DemandedOp0 || DemandedOp1) {
1280         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1281         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1282         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1283         return TLO.CombineTo(Op, NewOp);
1284       }
1285     }
1286 
1287     // If all of the demanded bits are known zero on one side, return the other.
1288     // These bits cannot contribute to the result of the 'or'.
1289     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1290       return TLO.CombineTo(Op, Op0);
1291     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1292       return TLO.CombineTo(Op, Op1);
1293     // If the RHS is a constant, see if we can simplify it.
1294     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1295       return true;
1296     // If the operation can be done in a smaller type, do so.
1297     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1298       return true;
1299 
1300     Known |= Known2;
1301     break;
1302   }
1303   case ISD::XOR: {
1304     SDValue Op0 = Op.getOperand(0);
1305     SDValue Op1 = Op.getOperand(1);
1306 
1307     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1308                              Depth + 1))
1309       return true;
1310     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1311     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1312                              Depth + 1))
1313       return true;
1314     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1315 
1316     // Attempt to avoid multi-use ops if we don't need anything from them.
1317     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1318       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1319           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1320       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1321           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1322       if (DemandedOp0 || DemandedOp1) {
1323         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1324         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1325         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1326         return TLO.CombineTo(Op, NewOp);
1327       }
1328     }
1329 
1330     // If all of the demanded bits are known zero on one side, return the other.
1331     // These bits cannot contribute to the result of the 'xor'.
1332     if (DemandedBits.isSubsetOf(Known.Zero))
1333       return TLO.CombineTo(Op, Op0);
1334     if (DemandedBits.isSubsetOf(Known2.Zero))
1335       return TLO.CombineTo(Op, Op1);
1336     // If the operation can be done in a smaller type, do so.
1337     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1338       return true;
1339 
1340     // If all of the unknown bits are known to be zero on one side or the other
1341     // turn this into an *inclusive* or.
1342     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1343     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1344       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1345 
1346     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1347     if (C) {
1348       // If one side is a constant, and all of the set bits in the constant are
1349       // also known set on the other side, turn this into an AND, as we know
1350       // the bits will be cleared.
1351       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1352       // NB: it is okay if more bits are known than are requested
1353       if (C->getAPIntValue() == Known2.One) {
1354         SDValue ANDC =
1355             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1356         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1357       }
1358 
1359       // If the RHS is a constant, see if we can change it. Don't alter a -1
1360       // constant because that's a 'not' op, and that is better for combining
1361       // and codegen.
1362       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1363         // We're flipping all demanded bits. Flip the undemanded bits too.
1364         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1365         return TLO.CombineTo(Op, New);
1366       }
1367     }
1368 
1369     // If we can't turn this into a 'not', try to shrink the constant.
1370     if (!C || !C->isAllOnes())
1371       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1372         return true;
1373 
1374     Known ^= Known2;
1375     break;
1376   }
1377   case ISD::SELECT:
1378     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1379                              Depth + 1))
1380       return true;
1381     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1382                              Depth + 1))
1383       return true;
1384     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1385     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1386 
1387     // If the operands are constants, see if we can simplify them.
1388     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1389       return true;
1390 
1391     // Only known if known in both the LHS and RHS.
1392     Known = KnownBits::commonBits(Known, Known2);
1393     break;
1394   case ISD::SELECT_CC:
1395     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1396                              Depth + 1))
1397       return true;
1398     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1399                              Depth + 1))
1400       return true;
1401     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1402     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1403 
1404     // If the operands are constants, see if we can simplify them.
1405     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1406       return true;
1407 
1408     // Only known if known in both the LHS and RHS.
1409     Known = KnownBits::commonBits(Known, Known2);
1410     break;
1411   case ISD::SETCC: {
1412     SDValue Op0 = Op.getOperand(0);
1413     SDValue Op1 = Op.getOperand(1);
1414     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1415     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1416     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1417     // -1, we may be able to bypass the setcc.
1418     if (DemandedBits.isSignMask() &&
1419         Op0.getScalarValueSizeInBits() == BitWidth &&
1420         getBooleanContents(Op0.getValueType()) ==
1421             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1422       // If we're testing X < 0, then this compare isn't needed - just use X!
1423       // FIXME: We're limiting to integer types here, but this should also work
1424       // if we don't care about FP signed-zero. The use of SETLT with FP means
1425       // that we don't care about NaNs.
1426       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1427           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1428         return TLO.CombineTo(Op, Op0);
1429 
1430       // TODO: Should we check for other forms of sign-bit comparisons?
1431       // Examples: X <= -1, X >= 0
1432     }
1433     if (getBooleanContents(Op0.getValueType()) ==
1434             TargetLowering::ZeroOrOneBooleanContent &&
1435         BitWidth > 1)
1436       Known.Zero.setBitsFrom(1);
1437     break;
1438   }
1439   case ISD::SHL: {
1440     SDValue Op0 = Op.getOperand(0);
1441     SDValue Op1 = Op.getOperand(1);
1442     EVT ShiftVT = Op1.getValueType();
1443 
1444     if (const APInt *SA =
1445             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1446       unsigned ShAmt = SA->getZExtValue();
1447       if (ShAmt == 0)
1448         return TLO.CombineTo(Op, Op0);
1449 
1450       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1451       // single shift.  We can do this if the bottom bits (which are shifted
1452       // out) are never demanded.
1453       // TODO - support non-uniform vector amounts.
1454       if (Op0.getOpcode() == ISD::SRL) {
1455         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1456           if (const APInt *SA2 =
1457                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1458             unsigned C1 = SA2->getZExtValue();
1459             unsigned Opc = ISD::SHL;
1460             int Diff = ShAmt - C1;
1461             if (Diff < 0) {
1462               Diff = -Diff;
1463               Opc = ISD::SRL;
1464             }
1465             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1466             return TLO.CombineTo(
1467                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1468           }
1469         }
1470       }
1471 
1472       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1473       // are not demanded. This will likely allow the anyext to be folded away.
1474       // TODO - support non-uniform vector amounts.
1475       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1476         SDValue InnerOp = Op0.getOperand(0);
1477         EVT InnerVT = InnerOp.getValueType();
1478         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1479         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1480             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1481           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1482           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1483             ShTy = InnerVT;
1484           SDValue NarrowShl =
1485               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1486                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1487           return TLO.CombineTo(
1488               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1489         }
1490 
1491         // Repeat the SHL optimization above in cases where an extension
1492         // intervenes: (shl (anyext (shr x, c1)), c2) to
1493         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1494         // aren't demanded (as above) and that the shifted upper c1 bits of
1495         // x aren't demanded.
1496         // TODO - support non-uniform vector amounts.
1497         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1498             InnerOp.hasOneUse()) {
1499           if (const APInt *SA2 =
1500                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1501             unsigned InnerShAmt = SA2->getZExtValue();
1502             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1503                 DemandedBits.getActiveBits() <=
1504                     (InnerBits - InnerShAmt + ShAmt) &&
1505                 DemandedBits.countTrailingZeros() >= ShAmt) {
1506               SDValue NewSA =
1507                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1508               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1509                                                InnerOp.getOperand(0));
1510               return TLO.CombineTo(
1511                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1512             }
1513           }
1514         }
1515       }
1516 
1517       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1518       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1519                                Depth + 1))
1520         return true;
1521       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1522       Known.Zero <<= ShAmt;
1523       Known.One <<= ShAmt;
1524       // low bits known zero.
1525       Known.Zero.setLowBits(ShAmt);
1526 
1527       // Try shrinking the operation as long as the shift amount will still be
1528       // in range.
1529       if ((ShAmt < DemandedBits.getActiveBits()) &&
1530           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1531         return true;
1532     }
1533 
1534     // If we are only demanding sign bits then we can use the shift source
1535     // directly.
1536     if (const APInt *MaxSA =
1537             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1538       unsigned ShAmt = MaxSA->getZExtValue();
1539       unsigned NumSignBits =
1540           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1541       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1542       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1543         return TLO.CombineTo(Op, Op0);
1544     }
1545     break;
1546   }
1547   case ISD::SRL: {
1548     SDValue Op0 = Op.getOperand(0);
1549     SDValue Op1 = Op.getOperand(1);
1550     EVT ShiftVT = Op1.getValueType();
1551 
1552     if (const APInt *SA =
1553             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1554       unsigned ShAmt = SA->getZExtValue();
1555       if (ShAmt == 0)
1556         return TLO.CombineTo(Op, Op0);
1557 
1558       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1559       // single shift.  We can do this if the top bits (which are shifted out)
1560       // are never demanded.
1561       // TODO - support non-uniform vector amounts.
1562       if (Op0.getOpcode() == ISD::SHL) {
1563         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1564           if (const APInt *SA2 =
1565                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1566             unsigned C1 = SA2->getZExtValue();
1567             unsigned Opc = ISD::SRL;
1568             int Diff = ShAmt - C1;
1569             if (Diff < 0) {
1570               Diff = -Diff;
1571               Opc = ISD::SHL;
1572             }
1573             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1574             return TLO.CombineTo(
1575                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1576           }
1577         }
1578       }
1579 
1580       APInt InDemandedMask = (DemandedBits << ShAmt);
1581 
1582       // If the shift is exact, then it does demand the low bits (and knows that
1583       // they are zero).
1584       if (Op->getFlags().hasExact())
1585         InDemandedMask.setLowBits(ShAmt);
1586 
1587       // Compute the new bits that are at the top now.
1588       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1589                                Depth + 1))
1590         return true;
1591       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1592       Known.Zero.lshrInPlace(ShAmt);
1593       Known.One.lshrInPlace(ShAmt);
1594       // High bits known zero.
1595       Known.Zero.setHighBits(ShAmt);
1596     }
1597     break;
1598   }
1599   case ISD::SRA: {
1600     SDValue Op0 = Op.getOperand(0);
1601     SDValue Op1 = Op.getOperand(1);
1602     EVT ShiftVT = Op1.getValueType();
1603 
1604     // If we only want bits that already match the signbit then we don't need
1605     // to shift.
1606     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1607     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1608         NumHiDemandedBits)
1609       return TLO.CombineTo(Op, Op0);
1610 
1611     // If this is an arithmetic shift right and only the low-bit is set, we can
1612     // always convert this into a logical shr, even if the shift amount is
1613     // variable.  The low bit of the shift cannot be an input sign bit unless
1614     // the shift amount is >= the size of the datatype, which is undefined.
1615     if (DemandedBits.isOneValue())
1616       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1617 
1618     if (const APInt *SA =
1619             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1620       unsigned ShAmt = SA->getZExtValue();
1621       if (ShAmt == 0)
1622         return TLO.CombineTo(Op, Op0);
1623 
1624       APInt InDemandedMask = (DemandedBits << ShAmt);
1625 
1626       // If the shift is exact, then it does demand the low bits (and knows that
1627       // they are zero).
1628       if (Op->getFlags().hasExact())
1629         InDemandedMask.setLowBits(ShAmt);
1630 
1631       // If any of the demanded bits are produced by the sign extension, we also
1632       // demand the input sign bit.
1633       if (DemandedBits.countLeadingZeros() < ShAmt)
1634         InDemandedMask.setSignBit();
1635 
1636       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1637                                Depth + 1))
1638         return true;
1639       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1640       Known.Zero.lshrInPlace(ShAmt);
1641       Known.One.lshrInPlace(ShAmt);
1642 
1643       // If the input sign bit is known to be zero, or if none of the top bits
1644       // are demanded, turn this into an unsigned shift right.
1645       if (Known.Zero[BitWidth - ShAmt - 1] ||
1646           DemandedBits.countLeadingZeros() >= ShAmt) {
1647         SDNodeFlags Flags;
1648         Flags.setExact(Op->getFlags().hasExact());
1649         return TLO.CombineTo(
1650             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1651       }
1652 
1653       int Log2 = DemandedBits.exactLogBase2();
1654       if (Log2 >= 0) {
1655         // The bit must come from the sign.
1656         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1657         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1658       }
1659 
1660       if (Known.One[BitWidth - ShAmt - 1])
1661         // New bits are known one.
1662         Known.One.setHighBits(ShAmt);
1663 
1664       // Attempt to avoid multi-use ops if we don't need anything from them.
1665       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1666         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1667             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1668         if (DemandedOp0) {
1669           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1670           return TLO.CombineTo(Op, NewOp);
1671         }
1672       }
1673     }
1674     break;
1675   }
1676   case ISD::FSHL:
1677   case ISD::FSHR: {
1678     SDValue Op0 = Op.getOperand(0);
1679     SDValue Op1 = Op.getOperand(1);
1680     SDValue Op2 = Op.getOperand(2);
1681     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1682 
1683     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1684       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1685 
1686       // For fshl, 0-shift returns the 1st arg.
1687       // For fshr, 0-shift returns the 2nd arg.
1688       if (Amt == 0) {
1689         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1690                                  Known, TLO, Depth + 1))
1691           return true;
1692         break;
1693       }
1694 
1695       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1696       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1697       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1698       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1699       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1700                                Depth + 1))
1701         return true;
1702       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1703                                Depth + 1))
1704         return true;
1705 
1706       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1707       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1708       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1709       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1710       Known.One |= Known2.One;
1711       Known.Zero |= Known2.Zero;
1712     }
1713 
1714     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1715     if (isPowerOf2_32(BitWidth)) {
1716       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1717       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1718                                Known2, TLO, Depth + 1))
1719         return true;
1720     }
1721     break;
1722   }
1723   case ISD::ROTL:
1724   case ISD::ROTR: {
1725     SDValue Op0 = Op.getOperand(0);
1726     SDValue Op1 = Op.getOperand(1);
1727 
1728     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1729     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1730       return TLO.CombineTo(Op, Op0);
1731 
1732     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1733     if (isPowerOf2_32(BitWidth)) {
1734       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1735       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1736                                Depth + 1))
1737         return true;
1738     }
1739     break;
1740   }
1741   case ISD::UMIN: {
1742     // Check if one arg is always less than (or equal) to the other arg.
1743     SDValue Op0 = Op.getOperand(0);
1744     SDValue Op1 = Op.getOperand(1);
1745     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1746     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1747     Known = KnownBits::umin(Known0, Known1);
1748     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
1749       return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1);
1750     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
1751       return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1);
1752     break;
1753   }
1754   case ISD::UMAX: {
1755     // Check if one arg is always greater than (or equal) to the other arg.
1756     SDValue Op0 = Op.getOperand(0);
1757     SDValue Op1 = Op.getOperand(1);
1758     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1759     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1760     Known = KnownBits::umax(Known0, Known1);
1761     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
1762       return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1);
1763     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
1764       return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1);
1765     break;
1766   }
1767   case ISD::BITREVERSE: {
1768     SDValue Src = Op.getOperand(0);
1769     APInt DemandedSrcBits = DemandedBits.reverseBits();
1770     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1771                              Depth + 1))
1772       return true;
1773     Known.One = Known2.One.reverseBits();
1774     Known.Zero = Known2.Zero.reverseBits();
1775     break;
1776   }
1777   case ISD::BSWAP: {
1778     SDValue Src = Op.getOperand(0);
1779     APInt DemandedSrcBits = DemandedBits.byteSwap();
1780     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1781                              Depth + 1))
1782       return true;
1783     Known.One = Known2.One.byteSwap();
1784     Known.Zero = Known2.Zero.byteSwap();
1785     break;
1786   }
1787   case ISD::CTPOP: {
1788     // If only 1 bit is demanded, replace with PARITY as long as we're before
1789     // op legalization.
1790     // FIXME: Limit to scalars for now.
1791     if (DemandedBits.isOneValue() && !TLO.LegalOps && !VT.isVector())
1792       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
1793                                                Op.getOperand(0)));
1794 
1795     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1796     break;
1797   }
1798   case ISD::SIGN_EXTEND_INREG: {
1799     SDValue Op0 = Op.getOperand(0);
1800     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1801     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1802 
1803     // If we only care about the highest bit, don't bother shifting right.
1804     if (DemandedBits.isSignMask()) {
1805       unsigned NumSignBits =
1806           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1807       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1808       // However if the input is already sign extended we expect the sign
1809       // extension to be dropped altogether later and do not simplify.
1810       if (!AlreadySignExtended) {
1811         // Compute the correct shift amount type, which must be getShiftAmountTy
1812         // for scalar types after legalization.
1813         EVT ShiftAmtTy = VT;
1814         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1815           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1816 
1817         SDValue ShiftAmt =
1818             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1819         return TLO.CombineTo(Op,
1820                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1821       }
1822     }
1823 
1824     // If none of the extended bits are demanded, eliminate the sextinreg.
1825     if (DemandedBits.getActiveBits() <= ExVTBits)
1826       return TLO.CombineTo(Op, Op0);
1827 
1828     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1829 
1830     // Since the sign extended bits are demanded, we know that the sign
1831     // bit is demanded.
1832     InputDemandedBits.setBit(ExVTBits - 1);
1833 
1834     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1835       return true;
1836     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1837 
1838     // If the sign bit of the input is known set or clear, then we know the
1839     // top bits of the result.
1840 
1841     // If the input sign bit is known zero, convert this into a zero extension.
1842     if (Known.Zero[ExVTBits - 1])
1843       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
1844 
1845     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1846     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1847       Known.One.setBitsFrom(ExVTBits);
1848       Known.Zero &= Mask;
1849     } else { // Input sign bit unknown
1850       Known.Zero &= Mask;
1851       Known.One &= Mask;
1852     }
1853     break;
1854   }
1855   case ISD::BUILD_PAIR: {
1856     EVT HalfVT = Op.getOperand(0).getValueType();
1857     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1858 
1859     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1860     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1861 
1862     KnownBits KnownLo, KnownHi;
1863 
1864     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1865       return true;
1866 
1867     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1868       return true;
1869 
1870     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1871                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1872 
1873     Known.One = KnownLo.One.zext(BitWidth) |
1874                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1875     break;
1876   }
1877   case ISD::ZERO_EXTEND:
1878   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1879     SDValue Src = Op.getOperand(0);
1880     EVT SrcVT = Src.getValueType();
1881     unsigned InBits = SrcVT.getScalarSizeInBits();
1882     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1883     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1884 
1885     // If none of the top bits are demanded, convert this into an any_extend.
1886     if (DemandedBits.getActiveBits() <= InBits) {
1887       // If we only need the non-extended bits of the bottom element
1888       // then we can just bitcast to the result.
1889       if (IsVecInReg && DemandedElts == 1 &&
1890           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1891           TLO.DAG.getDataLayout().isLittleEndian())
1892         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1893 
1894       unsigned Opc =
1895           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1896       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1897         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1898     }
1899 
1900     APInt InDemandedBits = DemandedBits.trunc(InBits);
1901     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1902     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1903                              Depth + 1))
1904       return true;
1905     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1906     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1907     Known = Known.zext(BitWidth);
1908 
1909     // Attempt to avoid multi-use ops if we don't need anything from them.
1910     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1911             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1912       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1913     break;
1914   }
1915   case ISD::SIGN_EXTEND:
1916   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1917     SDValue Src = Op.getOperand(0);
1918     EVT SrcVT = Src.getValueType();
1919     unsigned InBits = SrcVT.getScalarSizeInBits();
1920     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1921     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1922 
1923     // If none of the top bits are demanded, convert this into an any_extend.
1924     if (DemandedBits.getActiveBits() <= InBits) {
1925       // If we only need the non-extended bits of the bottom element
1926       // then we can just bitcast to the result.
1927       if (IsVecInReg && DemandedElts == 1 &&
1928           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1929           TLO.DAG.getDataLayout().isLittleEndian())
1930         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1931 
1932       unsigned Opc =
1933           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1934       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1935         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1936     }
1937 
1938     APInt InDemandedBits = DemandedBits.trunc(InBits);
1939     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1940 
1941     // Since some of the sign extended bits are demanded, we know that the sign
1942     // bit is demanded.
1943     InDemandedBits.setBit(InBits - 1);
1944 
1945     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1946                              Depth + 1))
1947       return true;
1948     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1949     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1950 
1951     // If the sign bit is known one, the top bits match.
1952     Known = Known.sext(BitWidth);
1953 
1954     // If the sign bit is known zero, convert this to a zero extend.
1955     if (Known.isNonNegative()) {
1956       unsigned Opc =
1957           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1958       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1959         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1960     }
1961 
1962     // Attempt to avoid multi-use ops if we don't need anything from them.
1963     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1964             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1965       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1966     break;
1967   }
1968   case ISD::ANY_EXTEND:
1969   case ISD::ANY_EXTEND_VECTOR_INREG: {
1970     SDValue Src = Op.getOperand(0);
1971     EVT SrcVT = Src.getValueType();
1972     unsigned InBits = SrcVT.getScalarSizeInBits();
1973     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1974     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1975 
1976     // If we only need the bottom element then we can just bitcast.
1977     // TODO: Handle ANY_EXTEND?
1978     if (IsVecInReg && DemandedElts == 1 &&
1979         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1980         TLO.DAG.getDataLayout().isLittleEndian())
1981       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1982 
1983     APInt InDemandedBits = DemandedBits.trunc(InBits);
1984     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1985     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1986                              Depth + 1))
1987       return true;
1988     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1989     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1990     Known = Known.anyext(BitWidth);
1991 
1992     // Attempt to avoid multi-use ops if we don't need anything from them.
1993     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1994             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1995       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1996     break;
1997   }
1998   case ISD::TRUNCATE: {
1999     SDValue Src = Op.getOperand(0);
2000 
2001     // Simplify the input, using demanded bit information, and compute the known
2002     // zero/one bits live out.
2003     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2004     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2005     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2006                              Depth + 1))
2007       return true;
2008     Known = Known.trunc(BitWidth);
2009 
2010     // Attempt to avoid multi-use ops if we don't need anything from them.
2011     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2012             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2013       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2014 
2015     // If the input is only used by this truncate, see if we can shrink it based
2016     // on the known demanded bits.
2017     if (Src.getNode()->hasOneUse()) {
2018       switch (Src.getOpcode()) {
2019       default:
2020         break;
2021       case ISD::SRL:
2022         // Shrink SRL by a constant if none of the high bits shifted in are
2023         // demanded.
2024         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2025           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2026           // undesirable.
2027           break;
2028 
2029         const APInt *ShAmtC =
2030             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2031         if (!ShAmtC || ShAmtC->uge(BitWidth))
2032           break;
2033         uint64_t ShVal = ShAmtC->getZExtValue();
2034 
2035         APInt HighBits =
2036             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2037         HighBits.lshrInPlace(ShVal);
2038         HighBits = HighBits.trunc(BitWidth);
2039 
2040         if (!(HighBits & DemandedBits)) {
2041           // None of the shifted in bits are needed.  Add a truncate of the
2042           // shift input, then shift it.
2043           SDValue NewShAmt = TLO.DAG.getConstant(
2044               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2045           SDValue NewTrunc =
2046               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2047           return TLO.CombineTo(
2048               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2049         }
2050         break;
2051       }
2052     }
2053 
2054     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2055     break;
2056   }
2057   case ISD::AssertZext: {
2058     // AssertZext demands all of the high bits, plus any of the low bits
2059     // demanded by its users.
2060     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2061     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2062     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2063                              TLO, Depth + 1))
2064       return true;
2065     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2066 
2067     Known.Zero |= ~InMask;
2068     break;
2069   }
2070   case ISD::EXTRACT_VECTOR_ELT: {
2071     SDValue Src = Op.getOperand(0);
2072     SDValue Idx = Op.getOperand(1);
2073     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2074     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2075 
2076     if (SrcEltCnt.isScalable())
2077       return false;
2078 
2079     // Demand the bits from every vector element without a constant index.
2080     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2081     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2082     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2083       if (CIdx->getAPIntValue().ult(NumSrcElts))
2084         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2085 
2086     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2087     // anything about the extended bits.
2088     APInt DemandedSrcBits = DemandedBits;
2089     if (BitWidth > EltBitWidth)
2090       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2091 
2092     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2093                              Depth + 1))
2094       return true;
2095 
2096     // Attempt to avoid multi-use ops if we don't need anything from them.
2097     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2098       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2099               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2100         SDValue NewOp =
2101             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2102         return TLO.CombineTo(Op, NewOp);
2103       }
2104     }
2105 
2106     Known = Known2;
2107     if (BitWidth > EltBitWidth)
2108       Known = Known.anyext(BitWidth);
2109     break;
2110   }
2111   case ISD::BITCAST: {
2112     SDValue Src = Op.getOperand(0);
2113     EVT SrcVT = Src.getValueType();
2114     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2115 
2116     // If this is an FP->Int bitcast and if the sign bit is the only
2117     // thing demanded, turn this into a FGETSIGN.
2118     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2119         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2120         SrcVT.isFloatingPoint()) {
2121       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2122       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2123       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2124           SrcVT != MVT::f128) {
2125         // Cannot eliminate/lower SHL for f128 yet.
2126         EVT Ty = OpVTLegal ? VT : MVT::i32;
2127         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2128         // place.  We expect the SHL to be eliminated by other optimizations.
2129         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2130         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2131         if (!OpVTLegal && OpVTSizeInBits > 32)
2132           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2133         unsigned ShVal = Op.getValueSizeInBits() - 1;
2134         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2135         return TLO.CombineTo(Op,
2136                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2137       }
2138     }
2139 
2140     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2141     // Demand the elt/bit if any of the original elts/bits are demanded.
2142     // TODO - bigendian once we have test coverage.
2143     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
2144         TLO.DAG.getDataLayout().isLittleEndian()) {
2145       unsigned Scale = BitWidth / NumSrcEltBits;
2146       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2147       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2148       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2149       for (unsigned i = 0; i != Scale; ++i) {
2150         unsigned Offset = i * NumSrcEltBits;
2151         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
2152         if (!Sub.isNullValue()) {
2153           DemandedSrcBits |= Sub;
2154           for (unsigned j = 0; j != NumElts; ++j)
2155             if (DemandedElts[j])
2156               DemandedSrcElts.setBit((j * Scale) + i);
2157         }
2158       }
2159 
2160       APInt KnownSrcUndef, KnownSrcZero;
2161       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2162                                      KnownSrcZero, TLO, Depth + 1))
2163         return true;
2164 
2165       KnownBits KnownSrcBits;
2166       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2167                                KnownSrcBits, TLO, Depth + 1))
2168         return true;
2169     } else if ((NumSrcEltBits % BitWidth) == 0 &&
2170                TLO.DAG.getDataLayout().isLittleEndian()) {
2171       unsigned Scale = NumSrcEltBits / BitWidth;
2172       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2173       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2174       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2175       for (unsigned i = 0; i != NumElts; ++i)
2176         if (DemandedElts[i]) {
2177           unsigned Offset = (i % Scale) * BitWidth;
2178           DemandedSrcBits.insertBits(DemandedBits, Offset);
2179           DemandedSrcElts.setBit(i / Scale);
2180         }
2181 
2182       if (SrcVT.isVector()) {
2183         APInt KnownSrcUndef, KnownSrcZero;
2184         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2185                                        KnownSrcZero, TLO, Depth + 1))
2186           return true;
2187       }
2188 
2189       KnownBits KnownSrcBits;
2190       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2191                                KnownSrcBits, TLO, Depth + 1))
2192         return true;
2193     }
2194 
2195     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2196     // recursive call where Known may be useful to the caller.
2197     if (Depth > 0) {
2198       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2199       return false;
2200     }
2201     break;
2202   }
2203   case ISD::ADD:
2204   case ISD::MUL:
2205   case ISD::SUB: {
2206     // Add, Sub, and Mul don't demand any bits in positions beyond that
2207     // of the highest bit demanded of them.
2208     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2209     SDNodeFlags Flags = Op.getNode()->getFlags();
2210     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2211     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2212     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2213                              Depth + 1) ||
2214         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2215                              Depth + 1) ||
2216         // See if the operation should be performed at a smaller bit width.
2217         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2218       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2219         // Disable the nsw and nuw flags. We can no longer guarantee that we
2220         // won't wrap after simplification.
2221         Flags.setNoSignedWrap(false);
2222         Flags.setNoUnsignedWrap(false);
2223         SDValue NewOp =
2224             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2225         return TLO.CombineTo(Op, NewOp);
2226       }
2227       return true;
2228     }
2229 
2230     // Attempt to avoid multi-use ops if we don't need anything from them.
2231     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2232       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2233           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2234       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2235           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2236       if (DemandedOp0 || DemandedOp1) {
2237         Flags.setNoSignedWrap(false);
2238         Flags.setNoUnsignedWrap(false);
2239         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2240         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2241         SDValue NewOp =
2242             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2243         return TLO.CombineTo(Op, NewOp);
2244       }
2245     }
2246 
2247     // If we have a constant operand, we may be able to turn it into -1 if we
2248     // do not demand the high bits. This can make the constant smaller to
2249     // encode, allow more general folding, or match specialized instruction
2250     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2251     // is probably not useful (and could be detrimental).
2252     ConstantSDNode *C = isConstOrConstSplat(Op1);
2253     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2254     if (C && !C->isAllOnes() && !C->isOne() &&
2255         (C->getAPIntValue() | HighMask).isAllOnes()) {
2256       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2257       // Disable the nsw and nuw flags. We can no longer guarantee that we
2258       // won't wrap after simplification.
2259       Flags.setNoSignedWrap(false);
2260       Flags.setNoUnsignedWrap(false);
2261       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2262       return TLO.CombineTo(Op, NewOp);
2263     }
2264 
2265     LLVM_FALLTHROUGH;
2266   }
2267   default:
2268     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2269       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2270                                             Known, TLO, Depth))
2271         return true;
2272       break;
2273     }
2274 
2275     // Just use computeKnownBits to compute output bits.
2276     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2277     break;
2278   }
2279 
2280   // If we know the value of all of the demanded bits, return this as a
2281   // constant.
2282   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2283     // Avoid folding to a constant if any OpaqueConstant is involved.
2284     const SDNode *N = Op.getNode();
2285     for (SDNode *Op :
2286          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2287       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2288         if (C->isOpaque())
2289           return false;
2290     }
2291     if (VT.isInteger())
2292       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2293     if (VT.isFloatingPoint())
2294       return TLO.CombineTo(
2295           Op,
2296           TLO.DAG.getConstantFP(
2297               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2298   }
2299 
2300   return false;
2301 }
2302 
2303 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2304                                                 const APInt &DemandedElts,
2305                                                 APInt &KnownUndef,
2306                                                 APInt &KnownZero,
2307                                                 DAGCombinerInfo &DCI) const {
2308   SelectionDAG &DAG = DCI.DAG;
2309   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2310                         !DCI.isBeforeLegalizeOps());
2311 
2312   bool Simplified =
2313       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2314   if (Simplified) {
2315     DCI.AddToWorklist(Op.getNode());
2316     DCI.CommitTargetLoweringOpt(TLO);
2317   }
2318 
2319   return Simplified;
2320 }
2321 
2322 /// Given a vector binary operation and known undefined elements for each input
2323 /// operand, compute whether each element of the output is undefined.
2324 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2325                                          const APInt &UndefOp0,
2326                                          const APInt &UndefOp1) {
2327   EVT VT = BO.getValueType();
2328   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2329          "Vector binop only");
2330 
2331   EVT EltVT = VT.getVectorElementType();
2332   unsigned NumElts = VT.getVectorNumElements();
2333   assert(UndefOp0.getBitWidth() == NumElts &&
2334          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2335 
2336   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2337                                    const APInt &UndefVals) {
2338     if (UndefVals[Index])
2339       return DAG.getUNDEF(EltVT);
2340 
2341     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2342       // Try hard to make sure that the getNode() call is not creating temporary
2343       // nodes. Ignore opaque integers because they do not constant fold.
2344       SDValue Elt = BV->getOperand(Index);
2345       auto *C = dyn_cast<ConstantSDNode>(Elt);
2346       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2347         return Elt;
2348     }
2349 
2350     return SDValue();
2351   };
2352 
2353   APInt KnownUndef = APInt::getZero(NumElts);
2354   for (unsigned i = 0; i != NumElts; ++i) {
2355     // If both inputs for this element are either constant or undef and match
2356     // the element type, compute the constant/undef result for this element of
2357     // the vector.
2358     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2359     // not handle FP constants. The code within getNode() should be refactored
2360     // to avoid the danger of creating a bogus temporary node here.
2361     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2362     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2363     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2364       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2365         KnownUndef.setBit(i);
2366   }
2367   return KnownUndef;
2368 }
2369 
2370 bool TargetLowering::SimplifyDemandedVectorElts(
2371     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2372     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2373     bool AssumeSingleUse) const {
2374   EVT VT = Op.getValueType();
2375   unsigned Opcode = Op.getOpcode();
2376   APInt DemandedElts = OriginalDemandedElts;
2377   unsigned NumElts = DemandedElts.getBitWidth();
2378   assert(VT.isVector() && "Expected vector op");
2379 
2380   KnownUndef = KnownZero = APInt::getZero(NumElts);
2381 
2382   // TODO: For now we assume we know nothing about scalable vectors.
2383   if (VT.isScalableVector())
2384     return false;
2385 
2386   assert(VT.getVectorNumElements() == NumElts &&
2387          "Mask size mismatches value type element count!");
2388 
2389   // Undef operand.
2390   if (Op.isUndef()) {
2391     KnownUndef.setAllBits();
2392     return false;
2393   }
2394 
2395   // If Op has other users, assume that all elements are needed.
2396   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2397     DemandedElts.setAllBits();
2398 
2399   // Not demanding any elements from Op.
2400   if (DemandedElts == 0) {
2401     KnownUndef.setAllBits();
2402     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2403   }
2404 
2405   // Limit search depth.
2406   if (Depth >= SelectionDAG::MaxRecursionDepth)
2407     return false;
2408 
2409   SDLoc DL(Op);
2410   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2411 
2412   // Helper for demanding the specified elements and all the bits of both binary
2413   // operands.
2414   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2415     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2416                                                            TLO.DAG, Depth + 1);
2417     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2418                                                            TLO.DAG, Depth + 1);
2419     if (NewOp0 || NewOp1) {
2420       SDValue NewOp = TLO.DAG.getNode(
2421           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2422       return TLO.CombineTo(Op, NewOp);
2423     }
2424     return false;
2425   };
2426 
2427   switch (Opcode) {
2428   case ISD::SCALAR_TO_VECTOR: {
2429     if (!DemandedElts[0]) {
2430       KnownUndef.setAllBits();
2431       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2432     }
2433     SDValue ScalarSrc = Op.getOperand(0);
2434     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2435       SDValue Src = ScalarSrc.getOperand(0);
2436       SDValue Idx = ScalarSrc.getOperand(1);
2437       EVT SrcVT = Src.getValueType();
2438 
2439       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
2440 
2441       if (SrcEltCnt.isScalable())
2442         return false;
2443 
2444       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2445       if (isNullConstant(Idx)) {
2446         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
2447         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
2448         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
2449         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2450                                        TLO, Depth + 1))
2451           return true;
2452       }
2453     }
2454     KnownUndef.setHighBits(NumElts - 1);
2455     break;
2456   }
2457   case ISD::BITCAST: {
2458     SDValue Src = Op.getOperand(0);
2459     EVT SrcVT = Src.getValueType();
2460 
2461     // We only handle vectors here.
2462     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2463     if (!SrcVT.isVector())
2464       break;
2465 
2466     // Fast handling of 'identity' bitcasts.
2467     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2468     if (NumSrcElts == NumElts)
2469       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2470                                         KnownZero, TLO, Depth + 1);
2471 
2472     APInt SrcZero, SrcUndef;
2473     APInt SrcDemandedElts = APInt::getZero(NumSrcElts);
2474 
2475     // Bitcast from 'large element' src vector to 'small element' vector, we
2476     // must demand a source element if any DemandedElt maps to it.
2477     if ((NumElts % NumSrcElts) == 0) {
2478       unsigned Scale = NumElts / NumSrcElts;
2479       for (unsigned i = 0; i != NumElts; ++i)
2480         if (DemandedElts[i])
2481           SrcDemandedElts.setBit(i / Scale);
2482 
2483       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2484                                      TLO, Depth + 1))
2485         return true;
2486 
2487       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2488       // of the large element.
2489       // TODO - bigendian once we have test coverage.
2490       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2491         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2492         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
2493         for (unsigned i = 0; i != NumElts; ++i)
2494           if (DemandedElts[i]) {
2495             unsigned Ofs = (i % Scale) * EltSizeInBits;
2496             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2497           }
2498 
2499         KnownBits Known;
2500         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2501                                  TLO, Depth + 1))
2502           return true;
2503       }
2504 
2505       // If the src element is zero/undef then all the output elements will be -
2506       // only demanded elements are guaranteed to be correct.
2507       for (unsigned i = 0; i != NumSrcElts; ++i) {
2508         if (SrcDemandedElts[i]) {
2509           if (SrcZero[i])
2510             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2511           if (SrcUndef[i])
2512             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2513         }
2514       }
2515     }
2516 
2517     // Bitcast from 'small element' src vector to 'large element' vector, we
2518     // demand all smaller source elements covered by the larger demanded element
2519     // of this vector.
2520     if ((NumSrcElts % NumElts) == 0) {
2521       unsigned Scale = NumSrcElts / NumElts;
2522       for (unsigned i = 0; i != NumElts; ++i)
2523         if (DemandedElts[i])
2524           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2525 
2526       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2527                                      TLO, Depth + 1))
2528         return true;
2529 
2530       // If all the src elements covering an output element are zero/undef, then
2531       // the output element will be as well, assuming it was demanded.
2532       for (unsigned i = 0; i != NumElts; ++i) {
2533         if (DemandedElts[i]) {
2534           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
2535             KnownZero.setBit(i);
2536           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
2537             KnownUndef.setBit(i);
2538         }
2539       }
2540     }
2541     break;
2542   }
2543   case ISD::BUILD_VECTOR: {
2544     // Check all elements and simplify any unused elements with UNDEF.
2545     if (!DemandedElts.isAllOnes()) {
2546       // Don't simplify BROADCASTS.
2547       if (llvm::any_of(Op->op_values(),
2548                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2549         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2550         bool Updated = false;
2551         for (unsigned i = 0; i != NumElts; ++i) {
2552           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2553             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2554             KnownUndef.setBit(i);
2555             Updated = true;
2556           }
2557         }
2558         if (Updated)
2559           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2560       }
2561     }
2562     for (unsigned i = 0; i != NumElts; ++i) {
2563       SDValue SrcOp = Op.getOperand(i);
2564       if (SrcOp.isUndef()) {
2565         KnownUndef.setBit(i);
2566       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2567                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2568         KnownZero.setBit(i);
2569       }
2570     }
2571     break;
2572   }
2573   case ISD::CONCAT_VECTORS: {
2574     EVT SubVT = Op.getOperand(0).getValueType();
2575     unsigned NumSubVecs = Op.getNumOperands();
2576     unsigned NumSubElts = SubVT.getVectorNumElements();
2577     for (unsigned i = 0; i != NumSubVecs; ++i) {
2578       SDValue SubOp = Op.getOperand(i);
2579       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2580       APInt SubUndef, SubZero;
2581       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2582                                      Depth + 1))
2583         return true;
2584       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2585       KnownZero.insertBits(SubZero, i * NumSubElts);
2586     }
2587     break;
2588   }
2589   case ISD::INSERT_SUBVECTOR: {
2590     // Demand any elements from the subvector and the remainder from the src its
2591     // inserted into.
2592     SDValue Src = Op.getOperand(0);
2593     SDValue Sub = Op.getOperand(1);
2594     uint64_t Idx = Op.getConstantOperandVal(2);
2595     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2596     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2597     APInt DemandedSrcElts = DemandedElts;
2598     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2599 
2600     APInt SubUndef, SubZero;
2601     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2602                                    Depth + 1))
2603       return true;
2604 
2605     // If none of the src operand elements are demanded, replace it with undef.
2606     if (!DemandedSrcElts && !Src.isUndef())
2607       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2608                                                TLO.DAG.getUNDEF(VT), Sub,
2609                                                Op.getOperand(2)));
2610 
2611     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2612                                    TLO, Depth + 1))
2613       return true;
2614     KnownUndef.insertBits(SubUndef, Idx);
2615     KnownZero.insertBits(SubZero, Idx);
2616 
2617     // Attempt to avoid multi-use ops if we don't need anything from them.
2618     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
2619       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2620           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2621       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2622           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2623       if (NewSrc || NewSub) {
2624         NewSrc = NewSrc ? NewSrc : Src;
2625         NewSub = NewSub ? NewSub : Sub;
2626         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2627                                         NewSub, Op.getOperand(2));
2628         return TLO.CombineTo(Op, NewOp);
2629       }
2630     }
2631     break;
2632   }
2633   case ISD::EXTRACT_SUBVECTOR: {
2634     // Offset the demanded elts by the subvector index.
2635     SDValue Src = Op.getOperand(0);
2636     if (Src.getValueType().isScalableVector())
2637       break;
2638     uint64_t Idx = Op.getConstantOperandVal(1);
2639     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2640     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2641 
2642     APInt SrcUndef, SrcZero;
2643     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2644                                    Depth + 1))
2645       return true;
2646     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2647     KnownZero = SrcZero.extractBits(NumElts, Idx);
2648 
2649     // Attempt to avoid multi-use ops if we don't need anything from them.
2650     if (!DemandedElts.isAllOnes()) {
2651       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2652           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2653       if (NewSrc) {
2654         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2655                                         Op.getOperand(1));
2656         return TLO.CombineTo(Op, NewOp);
2657       }
2658     }
2659     break;
2660   }
2661   case ISD::INSERT_VECTOR_ELT: {
2662     SDValue Vec = Op.getOperand(0);
2663     SDValue Scl = Op.getOperand(1);
2664     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2665 
2666     // For a legal, constant insertion index, if we don't need this insertion
2667     // then strip it, else remove it from the demanded elts.
2668     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2669       unsigned Idx = CIdx->getZExtValue();
2670       if (!DemandedElts[Idx])
2671         return TLO.CombineTo(Op, Vec);
2672 
2673       APInt DemandedVecElts(DemandedElts);
2674       DemandedVecElts.clearBit(Idx);
2675       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2676                                      KnownZero, TLO, Depth + 1))
2677         return true;
2678 
2679       KnownUndef.setBitVal(Idx, Scl.isUndef());
2680 
2681       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
2682       break;
2683     }
2684 
2685     APInt VecUndef, VecZero;
2686     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2687                                    Depth + 1))
2688       return true;
2689     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2690     break;
2691   }
2692   case ISD::VSELECT: {
2693     // Try to transform the select condition based on the current demanded
2694     // elements.
2695     // TODO: If a condition element is undef, we can choose from one arm of the
2696     //       select (and if one arm is undef, then we can propagate that to the
2697     //       result).
2698     // TODO - add support for constant vselect masks (see IR version of this).
2699     APInt UnusedUndef, UnusedZero;
2700     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2701                                    UnusedZero, TLO, Depth + 1))
2702       return true;
2703 
2704     // See if we can simplify either vselect operand.
2705     APInt DemandedLHS(DemandedElts);
2706     APInt DemandedRHS(DemandedElts);
2707     APInt UndefLHS, ZeroLHS;
2708     APInt UndefRHS, ZeroRHS;
2709     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2710                                    ZeroLHS, TLO, Depth + 1))
2711       return true;
2712     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2713                                    ZeroRHS, TLO, Depth + 1))
2714       return true;
2715 
2716     KnownUndef = UndefLHS & UndefRHS;
2717     KnownZero = ZeroLHS & ZeroRHS;
2718     break;
2719   }
2720   case ISD::VECTOR_SHUFFLE: {
2721     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2722 
2723     // Collect demanded elements from shuffle operands..
2724     APInt DemandedLHS(NumElts, 0);
2725     APInt DemandedRHS(NumElts, 0);
2726     for (unsigned i = 0; i != NumElts; ++i) {
2727       int M = ShuffleMask[i];
2728       if (M < 0 || !DemandedElts[i])
2729         continue;
2730       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2731       if (M < (int)NumElts)
2732         DemandedLHS.setBit(M);
2733       else
2734         DemandedRHS.setBit(M - NumElts);
2735     }
2736 
2737     // See if we can simplify either shuffle operand.
2738     APInt UndefLHS, ZeroLHS;
2739     APInt UndefRHS, ZeroRHS;
2740     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2741                                    ZeroLHS, TLO, Depth + 1))
2742       return true;
2743     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2744                                    ZeroRHS, TLO, Depth + 1))
2745       return true;
2746 
2747     // Simplify mask using undef elements from LHS/RHS.
2748     bool Updated = false;
2749     bool IdentityLHS = true, IdentityRHS = true;
2750     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2751     for (unsigned i = 0; i != NumElts; ++i) {
2752       int &M = NewMask[i];
2753       if (M < 0)
2754         continue;
2755       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2756           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2757         Updated = true;
2758         M = -1;
2759       }
2760       IdentityLHS &= (M < 0) || (M == (int)i);
2761       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2762     }
2763 
2764     // Update legal shuffle masks based on demanded elements if it won't reduce
2765     // to Identity which can cause premature removal of the shuffle mask.
2766     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2767       SDValue LegalShuffle =
2768           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2769                                   NewMask, TLO.DAG);
2770       if (LegalShuffle)
2771         return TLO.CombineTo(Op, LegalShuffle);
2772     }
2773 
2774     // Propagate undef/zero elements from LHS/RHS.
2775     for (unsigned i = 0; i != NumElts; ++i) {
2776       int M = ShuffleMask[i];
2777       if (M < 0) {
2778         KnownUndef.setBit(i);
2779       } else if (M < (int)NumElts) {
2780         if (UndefLHS[M])
2781           KnownUndef.setBit(i);
2782         if (ZeroLHS[M])
2783           KnownZero.setBit(i);
2784       } else {
2785         if (UndefRHS[M - NumElts])
2786           KnownUndef.setBit(i);
2787         if (ZeroRHS[M - NumElts])
2788           KnownZero.setBit(i);
2789       }
2790     }
2791     break;
2792   }
2793   case ISD::ANY_EXTEND_VECTOR_INREG:
2794   case ISD::SIGN_EXTEND_VECTOR_INREG:
2795   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2796     APInt SrcUndef, SrcZero;
2797     SDValue Src = Op.getOperand(0);
2798     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2799     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2800     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2801                                    Depth + 1))
2802       return true;
2803     KnownZero = SrcZero.zextOrTrunc(NumElts);
2804     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2805 
2806     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2807         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2808         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2809       // aext - if we just need the bottom element then we can bitcast.
2810       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2811     }
2812 
2813     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2814       // zext(undef) upper bits are guaranteed to be zero.
2815       if (DemandedElts.isSubsetOf(KnownUndef))
2816         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2817       KnownUndef.clearAllBits();
2818     }
2819     break;
2820   }
2821 
2822   // TODO: There are more binop opcodes that could be handled here - MIN,
2823   // MAX, saturated math, etc.
2824   case ISD::OR:
2825   case ISD::XOR:
2826   case ISD::ADD:
2827   case ISD::SUB:
2828   case ISD::FADD:
2829   case ISD::FSUB:
2830   case ISD::FMUL:
2831   case ISD::FDIV:
2832   case ISD::FREM: {
2833     SDValue Op0 = Op.getOperand(0);
2834     SDValue Op1 = Op.getOperand(1);
2835 
2836     APInt UndefRHS, ZeroRHS;
2837     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2838                                    Depth + 1))
2839       return true;
2840     APInt UndefLHS, ZeroLHS;
2841     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2842                                    Depth + 1))
2843       return true;
2844 
2845     KnownZero = ZeroLHS & ZeroRHS;
2846     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2847 
2848     // Attempt to avoid multi-use ops if we don't need anything from them.
2849     // TODO - use KnownUndef to relax the demandedelts?
2850     if (!DemandedElts.isAllOnes())
2851       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2852         return true;
2853     break;
2854   }
2855   case ISD::SHL:
2856   case ISD::SRL:
2857   case ISD::SRA:
2858   case ISD::ROTL:
2859   case ISD::ROTR: {
2860     SDValue Op0 = Op.getOperand(0);
2861     SDValue Op1 = Op.getOperand(1);
2862 
2863     APInt UndefRHS, ZeroRHS;
2864     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2865                                    Depth + 1))
2866       return true;
2867     APInt UndefLHS, ZeroLHS;
2868     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2869                                    Depth + 1))
2870       return true;
2871 
2872     KnownZero = ZeroLHS;
2873     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2874 
2875     // Attempt to avoid multi-use ops if we don't need anything from them.
2876     // TODO - use KnownUndef to relax the demandedelts?
2877     if (!DemandedElts.isAllOnes())
2878       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2879         return true;
2880     break;
2881   }
2882   case ISD::MUL:
2883   case ISD::AND: {
2884     SDValue Op0 = Op.getOperand(0);
2885     SDValue Op1 = Op.getOperand(1);
2886 
2887     APInt SrcUndef, SrcZero;
2888     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
2889                                    Depth + 1))
2890       return true;
2891     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
2892                                    TLO, Depth + 1))
2893       return true;
2894 
2895     // If either side has a zero element, then the result element is zero, even
2896     // if the other is an UNDEF.
2897     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2898     // and then handle 'and' nodes with the rest of the binop opcodes.
2899     KnownZero |= SrcZero;
2900     KnownUndef &= SrcUndef;
2901     KnownUndef &= ~KnownZero;
2902 
2903     // Attempt to avoid multi-use ops if we don't need anything from them.
2904     // TODO - use KnownUndef to relax the demandedelts?
2905     if (!DemandedElts.isAllOnes())
2906       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2907         return true;
2908     break;
2909   }
2910   case ISD::TRUNCATE:
2911   case ISD::SIGN_EXTEND:
2912   case ISD::ZERO_EXTEND:
2913     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2914                                    KnownZero, TLO, Depth + 1))
2915       return true;
2916 
2917     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2918       // zext(undef) upper bits are guaranteed to be zero.
2919       if (DemandedElts.isSubsetOf(KnownUndef))
2920         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2921       KnownUndef.clearAllBits();
2922     }
2923     break;
2924   default: {
2925     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2926       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2927                                                   KnownZero, TLO, Depth))
2928         return true;
2929     } else {
2930       KnownBits Known;
2931       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
2932       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2933                                TLO, Depth, AssumeSingleUse))
2934         return true;
2935     }
2936     break;
2937   }
2938   }
2939   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2940 
2941   // Constant fold all undef cases.
2942   // TODO: Handle zero cases as well.
2943   if (DemandedElts.isSubsetOf(KnownUndef))
2944     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2945 
2946   return false;
2947 }
2948 
2949 /// Determine which of the bits specified in Mask are known to be either zero or
2950 /// one and return them in the Known.
2951 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2952                                                    KnownBits &Known,
2953                                                    const APInt &DemandedElts,
2954                                                    const SelectionDAG &DAG,
2955                                                    unsigned Depth) const {
2956   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2957           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2958           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2959           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2960          "Should use MaskedValueIsZero if you don't know whether Op"
2961          " is a target node!");
2962   Known.resetAll();
2963 }
2964 
2965 void TargetLowering::computeKnownBitsForTargetInstr(
2966     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2967     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2968     unsigned Depth) const {
2969   Known.resetAll();
2970 }
2971 
2972 void TargetLowering::computeKnownBitsForFrameIndex(
2973   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
2974   // The low bits are known zero if the pointer is aligned.
2975   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
2976 }
2977 
2978 Align TargetLowering::computeKnownAlignForTargetInstr(
2979   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
2980   unsigned Depth) const {
2981   return Align(1);
2982 }
2983 
2984 /// This method can be implemented by targets that want to expose additional
2985 /// information about sign bits to the DAG Combiner.
2986 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2987                                                          const APInt &,
2988                                                          const SelectionDAG &,
2989                                                          unsigned Depth) const {
2990   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2991           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2992           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2993           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2994          "Should use ComputeNumSignBits if you don't know whether Op"
2995          " is a target node!");
2996   return 1;
2997 }
2998 
2999 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3000   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3001   const MachineRegisterInfo &MRI, unsigned Depth) const {
3002   return 1;
3003 }
3004 
3005 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3006     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3007     TargetLoweringOpt &TLO, unsigned Depth) const {
3008   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3009           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3010           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3011           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3012          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3013          " is a target node!");
3014   return false;
3015 }
3016 
3017 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3018     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3019     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3020   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3021           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3022           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3023           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3024          "Should use SimplifyDemandedBits if you don't know whether Op"
3025          " is a target node!");
3026   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3027   return false;
3028 }
3029 
3030 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3031     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3032     SelectionDAG &DAG, unsigned Depth) const {
3033   assert(
3034       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3035        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3036        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3037        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3038       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3039       " is a target node!");
3040   return SDValue();
3041 }
3042 
3043 SDValue
3044 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3045                                         SDValue N1, MutableArrayRef<int> Mask,
3046                                         SelectionDAG &DAG) const {
3047   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3048   if (!LegalMask) {
3049     std::swap(N0, N1);
3050     ShuffleVectorSDNode::commuteMask(Mask);
3051     LegalMask = isShuffleMaskLegal(Mask, VT);
3052   }
3053 
3054   if (!LegalMask)
3055     return SDValue();
3056 
3057   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3058 }
3059 
3060 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3061   return nullptr;
3062 }
3063 
3064 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3065     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3066     bool PoisonOnly, unsigned Depth) const {
3067   assert(
3068       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3069        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3070        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3071        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3072       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3073       " is a target node!");
3074   return false;
3075 }
3076 
3077 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3078                                                   const SelectionDAG &DAG,
3079                                                   bool SNaN,
3080                                                   unsigned Depth) const {
3081   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3082           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3083           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3084           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3085          "Should use isKnownNeverNaN if you don't know whether Op"
3086          " is a target node!");
3087   return false;
3088 }
3089 
3090 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3091 // work with truncating build vectors and vectors with elements of less than
3092 // 8 bits.
3093 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
3094   if (!N)
3095     return false;
3096 
3097   APInt CVal;
3098   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
3099     CVal = CN->getAPIntValue();
3100   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
3101     auto *CN = BV->getConstantSplatNode();
3102     if (!CN)
3103       return false;
3104 
3105     // If this is a truncating build vector, truncate the splat value.
3106     // Otherwise, we may fail to match the expected values below.
3107     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
3108     CVal = CN->getAPIntValue();
3109     if (BVEltWidth < CVal.getBitWidth())
3110       CVal = CVal.trunc(BVEltWidth);
3111   } else {
3112     return false;
3113   }
3114 
3115   switch (getBooleanContents(N->getValueType(0))) {
3116   case UndefinedBooleanContent:
3117     return CVal[0];
3118   case ZeroOrOneBooleanContent:
3119     return CVal.isOneValue();
3120   case ZeroOrNegativeOneBooleanContent:
3121     return CVal.isAllOnes();
3122   }
3123 
3124   llvm_unreachable("Invalid boolean contents");
3125 }
3126 
3127 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
3128   if (!N)
3129     return false;
3130 
3131   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3132   if (!CN) {
3133     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3134     if (!BV)
3135       return false;
3136 
3137     // Only interested in constant splats, we don't care about undef
3138     // elements in identifying boolean constants and getConstantSplatNode
3139     // returns NULL if all ops are undef;
3140     CN = BV->getConstantSplatNode();
3141     if (!CN)
3142       return false;
3143   }
3144 
3145   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3146     return !CN->getAPIntValue()[0];
3147 
3148   return CN->isZero();
3149 }
3150 
3151 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3152                                        bool SExt) const {
3153   if (VT == MVT::i1)
3154     return N->isOne();
3155 
3156   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3157   switch (Cnt) {
3158   case TargetLowering::ZeroOrOneBooleanContent:
3159     // An extended value of 1 is always true, unless its original type is i1,
3160     // in which case it will be sign extended to -1.
3161     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3162   case TargetLowering::UndefinedBooleanContent:
3163   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3164     return N->isAllOnes() && SExt;
3165   }
3166   llvm_unreachable("Unexpected enumeration.");
3167 }
3168 
3169 /// This helper function of SimplifySetCC tries to optimize the comparison when
3170 /// either operand of the SetCC node is a bitwise-and instruction.
3171 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3172                                          ISD::CondCode Cond, const SDLoc &DL,
3173                                          DAGCombinerInfo &DCI) const {
3174   // Match these patterns in any of their permutations:
3175   // (X & Y) == Y
3176   // (X & Y) != Y
3177   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3178     std::swap(N0, N1);
3179 
3180   EVT OpVT = N0.getValueType();
3181   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3182       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3183     return SDValue();
3184 
3185   SDValue X, Y;
3186   if (N0.getOperand(0) == N1) {
3187     X = N0.getOperand(1);
3188     Y = N0.getOperand(0);
3189   } else if (N0.getOperand(1) == N1) {
3190     X = N0.getOperand(0);
3191     Y = N0.getOperand(1);
3192   } else {
3193     return SDValue();
3194   }
3195 
3196   SelectionDAG &DAG = DCI.DAG;
3197   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3198   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3199     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3200     // Note that where Y is variable and is known to have at most one bit set
3201     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3202     // equivalent when Y == 0.
3203     assert(OpVT.isInteger());
3204     Cond = ISD::getSetCCInverse(Cond, OpVT);
3205     if (DCI.isBeforeLegalizeOps() ||
3206         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3207       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3208   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3209     // If the target supports an 'and-not' or 'and-complement' logic operation,
3210     // try to use that to make a comparison operation more efficient.
3211     // But don't do this transform if the mask is a single bit because there are
3212     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3213     // 'rlwinm' on PPC).
3214 
3215     // Bail out if the compare operand that we want to turn into a zero is
3216     // already a zero (otherwise, infinite loop).
3217     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3218     if (YConst && YConst->isZero())
3219       return SDValue();
3220 
3221     // Transform this into: ~X & Y == 0.
3222     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3223     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3224     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3225   }
3226 
3227   return SDValue();
3228 }
3229 
3230 /// There are multiple IR patterns that could be checking whether certain
3231 /// truncation of a signed number would be lossy or not. The pattern which is
3232 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3233 /// We are looking for the following pattern: (KeptBits is a constant)
3234 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3235 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3236 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3237 /// We will unfold it into the natural trunc+sext pattern:
3238 ///   ((%x << C) a>> C) dstcond %x
3239 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3240 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3241     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3242     const SDLoc &DL) const {
3243   // We must be comparing with a constant.
3244   ConstantSDNode *C1;
3245   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3246     return SDValue();
3247 
3248   // N0 should be:  add %x, (1 << (KeptBits-1))
3249   if (N0->getOpcode() != ISD::ADD)
3250     return SDValue();
3251 
3252   // And we must be 'add'ing a constant.
3253   ConstantSDNode *C01;
3254   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3255     return SDValue();
3256 
3257   SDValue X = N0->getOperand(0);
3258   EVT XVT = X.getValueType();
3259 
3260   // Validate constants ...
3261 
3262   APInt I1 = C1->getAPIntValue();
3263 
3264   ISD::CondCode NewCond;
3265   if (Cond == ISD::CondCode::SETULT) {
3266     NewCond = ISD::CondCode::SETEQ;
3267   } else if (Cond == ISD::CondCode::SETULE) {
3268     NewCond = ISD::CondCode::SETEQ;
3269     // But need to 'canonicalize' the constant.
3270     I1 += 1;
3271   } else if (Cond == ISD::CondCode::SETUGT) {
3272     NewCond = ISD::CondCode::SETNE;
3273     // But need to 'canonicalize' the constant.
3274     I1 += 1;
3275   } else if (Cond == ISD::CondCode::SETUGE) {
3276     NewCond = ISD::CondCode::SETNE;
3277   } else
3278     return SDValue();
3279 
3280   APInt I01 = C01->getAPIntValue();
3281 
3282   auto checkConstants = [&I1, &I01]() -> bool {
3283     // Both of them must be power-of-two, and the constant from setcc is bigger.
3284     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3285   };
3286 
3287   if (checkConstants()) {
3288     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3289   } else {
3290     // What if we invert constants? (and the target predicate)
3291     I1.negate();
3292     I01.negate();
3293     assert(XVT.isInteger());
3294     NewCond = getSetCCInverse(NewCond, XVT);
3295     if (!checkConstants())
3296       return SDValue();
3297     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3298   }
3299 
3300   // They are power-of-two, so which bit is set?
3301   const unsigned KeptBits = I1.logBase2();
3302   const unsigned KeptBitsMinusOne = I01.logBase2();
3303 
3304   // Magic!
3305   if (KeptBits != (KeptBitsMinusOne + 1))
3306     return SDValue();
3307   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3308 
3309   // We don't want to do this in every single case.
3310   SelectionDAG &DAG = DCI.DAG;
3311   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3312           XVT, KeptBits))
3313     return SDValue();
3314 
3315   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3316   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3317 
3318   // Unfold into:  ((%x << C) a>> C) cond %x
3319   // Where 'cond' will be either 'eq' or 'ne'.
3320   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3321   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3322   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3323   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3324 
3325   return T2;
3326 }
3327 
3328 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3329 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3330     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3331     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3332   assert(isConstOrConstSplat(N1C) &&
3333          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
3334          "Should be a comparison with 0.");
3335   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3336          "Valid only for [in]equality comparisons.");
3337 
3338   unsigned NewShiftOpcode;
3339   SDValue X, C, Y;
3340 
3341   SelectionDAG &DAG = DCI.DAG;
3342   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3343 
3344   // Look for '(C l>>/<< Y)'.
3345   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3346     // The shift should be one-use.
3347     if (!V.hasOneUse())
3348       return false;
3349     unsigned OldShiftOpcode = V.getOpcode();
3350     switch (OldShiftOpcode) {
3351     case ISD::SHL:
3352       NewShiftOpcode = ISD::SRL;
3353       break;
3354     case ISD::SRL:
3355       NewShiftOpcode = ISD::SHL;
3356       break;
3357     default:
3358       return false; // must be a logical shift.
3359     }
3360     // We should be shifting a constant.
3361     // FIXME: best to use isConstantOrConstantVector().
3362     C = V.getOperand(0);
3363     ConstantSDNode *CC =
3364         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3365     if (!CC)
3366       return false;
3367     Y = V.getOperand(1);
3368 
3369     ConstantSDNode *XC =
3370         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3371     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3372         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3373   };
3374 
3375   // LHS of comparison should be an one-use 'and'.
3376   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3377     return SDValue();
3378 
3379   X = N0.getOperand(0);
3380   SDValue Mask = N0.getOperand(1);
3381 
3382   // 'and' is commutative!
3383   if (!Match(Mask)) {
3384     std::swap(X, Mask);
3385     if (!Match(Mask))
3386       return SDValue();
3387   }
3388 
3389   EVT VT = X.getValueType();
3390 
3391   // Produce:
3392   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3393   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3394   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3395   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3396   return T2;
3397 }
3398 
3399 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3400 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3401 /// handle the commuted versions of these patterns.
3402 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3403                                            ISD::CondCode Cond, const SDLoc &DL,
3404                                            DAGCombinerInfo &DCI) const {
3405   unsigned BOpcode = N0.getOpcode();
3406   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3407          "Unexpected binop");
3408   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3409 
3410   // (X + Y) == X --> Y == 0
3411   // (X - Y) == X --> Y == 0
3412   // (X ^ Y) == X --> Y == 0
3413   SelectionDAG &DAG = DCI.DAG;
3414   EVT OpVT = N0.getValueType();
3415   SDValue X = N0.getOperand(0);
3416   SDValue Y = N0.getOperand(1);
3417   if (X == N1)
3418     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3419 
3420   if (Y != N1)
3421     return SDValue();
3422 
3423   // (X + Y) == Y --> X == 0
3424   // (X ^ Y) == Y --> X == 0
3425   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3426     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3427 
3428   // The shift would not be valid if the operands are boolean (i1).
3429   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3430     return SDValue();
3431 
3432   // (X - Y) == Y --> X == Y << 1
3433   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3434                                  !DCI.isBeforeLegalize());
3435   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3436   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3437   if (!DCI.isCalledByLegalizer())
3438     DCI.AddToWorklist(YShl1.getNode());
3439   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3440 }
3441 
3442 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3443                                       SDValue N0, const APInt &C1,
3444                                       ISD::CondCode Cond, const SDLoc &dl,
3445                                       SelectionDAG &DAG) {
3446   // Look through truncs that don't change the value of a ctpop.
3447   // FIXME: Add vector support? Need to be careful with setcc result type below.
3448   SDValue CTPOP = N0;
3449   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3450       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3451     CTPOP = N0.getOperand(0);
3452 
3453   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3454     return SDValue();
3455 
3456   EVT CTVT = CTPOP.getValueType();
3457   SDValue CTOp = CTPOP.getOperand(0);
3458 
3459   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3460   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3461   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3462     return SDValue();
3463 
3464   // (ctpop x) u< 2 -> (x & x-1) == 0
3465   // (ctpop x) u> 1 -> (x & x-1) != 0
3466   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3467     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3468     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3469       return SDValue();
3470     if (C1 == 0 && (Cond == ISD::SETULT))
3471       return SDValue(); // This is handled elsewhere.
3472 
3473     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3474 
3475     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3476     SDValue Result = CTOp;
3477     for (unsigned i = 0; i < Passes; i++) {
3478       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3479       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3480     }
3481     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3482     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3483   }
3484 
3485   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3486   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3487     // For scalars, keep CTPOP if it is legal or custom.
3488     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3489       return SDValue();
3490     // This is based on X86's custom lowering for CTPOP which produces more
3491     // instructions than the expansion here.
3492 
3493     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3494     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3495     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3496     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3497     assert(CTVT.isInteger());
3498     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3499     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3500     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3501     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3502     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3503     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3504     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3505   }
3506 
3507   return SDValue();
3508 }
3509 
3510 /// Try to simplify a setcc built with the specified operands and cc. If it is
3511 /// unable to simplify it, return a null SDValue.
3512 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3513                                       ISD::CondCode Cond, bool foldBooleans,
3514                                       DAGCombinerInfo &DCI,
3515                                       const SDLoc &dl) const {
3516   SelectionDAG &DAG = DCI.DAG;
3517   const DataLayout &Layout = DAG.getDataLayout();
3518   EVT OpVT = N0.getValueType();
3519 
3520   // Constant fold or commute setcc.
3521   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3522     return Fold;
3523 
3524   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3525   // TODO: Handle non-splat vector constants. All undef causes trouble.
3526   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
3527   // infinite loop here when we encounter one.
3528   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3529   if (isConstOrConstSplat(N0) &&
3530       (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) &&
3531       (DCI.isBeforeLegalizeOps() ||
3532        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3533     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3534 
3535   // If we have a subtract with the same 2 non-constant operands as this setcc
3536   // -- but in reverse order -- then try to commute the operands of this setcc
3537   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3538   // instruction on some targets.
3539   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3540       (DCI.isBeforeLegalizeOps() ||
3541        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3542       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
3543       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
3544     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3545 
3546   if (auto *N1C = isConstOrConstSplat(N1)) {
3547     const APInt &C1 = N1C->getAPIntValue();
3548 
3549     // Optimize some CTPOP cases.
3550     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
3551       return V;
3552 
3553     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3554     // equality comparison, then we're just comparing whether X itself is
3555     // zero.
3556     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3557         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3558         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
3559       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
3560         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3561             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
3562           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3563             // (srl (ctlz x), 5) == 0  -> X != 0
3564             // (srl (ctlz x), 5) != 1  -> X != 0
3565             Cond = ISD::SETNE;
3566           } else {
3567             // (srl (ctlz x), 5) != 0  -> X == 0
3568             // (srl (ctlz x), 5) == 1  -> X == 0
3569             Cond = ISD::SETEQ;
3570           }
3571           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3572           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
3573                               Cond);
3574         }
3575       }
3576     }
3577   }
3578 
3579   // FIXME: Support vectors.
3580   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3581     const APInt &C1 = N1C->getAPIntValue();
3582 
3583     // (zext x) == C --> x == (trunc C)
3584     // (sext x) == C --> x == (trunc C)
3585     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3586         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3587       unsigned MinBits = N0.getValueSizeInBits();
3588       SDValue PreExt;
3589       bool Signed = false;
3590       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3591         // ZExt
3592         MinBits = N0->getOperand(0).getValueSizeInBits();
3593         PreExt = N0->getOperand(0);
3594       } else if (N0->getOpcode() == ISD::AND) {
3595         // DAGCombine turns costly ZExts into ANDs
3596         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3597           if ((C->getAPIntValue()+1).isPowerOf2()) {
3598             MinBits = C->getAPIntValue().countTrailingOnes();
3599             PreExt = N0->getOperand(0);
3600           }
3601       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3602         // SExt
3603         MinBits = N0->getOperand(0).getValueSizeInBits();
3604         PreExt = N0->getOperand(0);
3605         Signed = true;
3606       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3607         // ZEXTLOAD / SEXTLOAD
3608         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3609           MinBits = LN0->getMemoryVT().getSizeInBits();
3610           PreExt = N0;
3611         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3612           Signed = true;
3613           MinBits = LN0->getMemoryVT().getSizeInBits();
3614           PreExt = N0;
3615         }
3616       }
3617 
3618       // Figure out how many bits we need to preserve this constant.
3619       unsigned ReqdBits = Signed ?
3620         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3621         C1.getActiveBits();
3622 
3623       // Make sure we're not losing bits from the constant.
3624       if (MinBits > 0 &&
3625           MinBits < C1.getBitWidth() &&
3626           MinBits >= ReqdBits) {
3627         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3628         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3629           // Will get folded away.
3630           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3631           if (MinBits == 1 && C1 == 1)
3632             // Invert the condition.
3633             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3634                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3635           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3636           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3637         }
3638 
3639         // If truncating the setcc operands is not desirable, we can still
3640         // simplify the expression in some cases:
3641         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3642         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3643         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3644         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3645         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3646         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3647         SDValue TopSetCC = N0->getOperand(0);
3648         unsigned N0Opc = N0->getOpcode();
3649         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3650         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3651             TopSetCC.getOpcode() == ISD::SETCC &&
3652             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3653             (isConstFalseVal(N1C) ||
3654              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3655 
3656           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
3657                          (!N1C->isZero() && Cond == ISD::SETNE);
3658 
3659           if (!Inverse)
3660             return TopSetCC;
3661 
3662           ISD::CondCode InvCond = ISD::getSetCCInverse(
3663               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3664               TopSetCC.getOperand(0).getValueType());
3665           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3666                                       TopSetCC.getOperand(1),
3667                                       InvCond);
3668         }
3669       }
3670     }
3671 
3672     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3673     // equality or unsigned, and all 1 bits of the const are in the same
3674     // partial word, see if we can shorten the load.
3675     if (DCI.isBeforeLegalize() &&
3676         !ISD::isSignedIntSetCC(Cond) &&
3677         N0.getOpcode() == ISD::AND && C1 == 0 &&
3678         N0.getNode()->hasOneUse() &&
3679         isa<LoadSDNode>(N0.getOperand(0)) &&
3680         N0.getOperand(0).getNode()->hasOneUse() &&
3681         isa<ConstantSDNode>(N0.getOperand(1))) {
3682       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3683       APInt bestMask;
3684       unsigned bestWidth = 0, bestOffset = 0;
3685       if (Lod->isSimple() && Lod->isUnindexed()) {
3686         unsigned origWidth = N0.getValueSizeInBits();
3687         unsigned maskWidth = origWidth;
3688         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3689         // 8 bits, but have to be careful...
3690         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3691           origWidth = Lod->getMemoryVT().getSizeInBits();
3692         const APInt &Mask = N0.getConstantOperandAPInt(1);
3693         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3694           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3695           for (unsigned offset=0; offset<origWidth/width; offset++) {
3696             if (Mask.isSubsetOf(newMask)) {
3697               if (Layout.isLittleEndian())
3698                 bestOffset = (uint64_t)offset * (width/8);
3699               else
3700                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3701               bestMask = Mask.lshr(offset * (width/8) * 8);
3702               bestWidth = width;
3703               break;
3704             }
3705             newMask <<= width;
3706           }
3707         }
3708       }
3709       if (bestWidth) {
3710         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3711         if (newVT.isRound() &&
3712             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3713           SDValue Ptr = Lod->getBasePtr();
3714           if (bestOffset != 0)
3715             Ptr =
3716                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
3717           SDValue NewLoad =
3718               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
3719                           Lod->getPointerInfo().getWithOffset(bestOffset),
3720                           Lod->getOriginalAlign());
3721           return DAG.getSetCC(dl, VT,
3722                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3723                                       DAG.getConstant(bestMask.trunc(bestWidth),
3724                                                       dl, newVT)),
3725                               DAG.getConstant(0LL, dl, newVT), Cond);
3726         }
3727       }
3728     }
3729 
3730     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3731     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3732       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3733 
3734       // If the comparison constant has bits in the upper part, the
3735       // zero-extended value could never match.
3736       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3737                                               C1.getBitWidth() - InSize))) {
3738         switch (Cond) {
3739         case ISD::SETUGT:
3740         case ISD::SETUGE:
3741         case ISD::SETEQ:
3742           return DAG.getConstant(0, dl, VT);
3743         case ISD::SETULT:
3744         case ISD::SETULE:
3745         case ISD::SETNE:
3746           return DAG.getConstant(1, dl, VT);
3747         case ISD::SETGT:
3748         case ISD::SETGE:
3749           // True if the sign bit of C1 is set.
3750           return DAG.getConstant(C1.isNegative(), dl, VT);
3751         case ISD::SETLT:
3752         case ISD::SETLE:
3753           // True if the sign bit of C1 isn't set.
3754           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3755         default:
3756           break;
3757         }
3758       }
3759 
3760       // Otherwise, we can perform the comparison with the low bits.
3761       switch (Cond) {
3762       case ISD::SETEQ:
3763       case ISD::SETNE:
3764       case ISD::SETUGT:
3765       case ISD::SETUGE:
3766       case ISD::SETULT:
3767       case ISD::SETULE: {
3768         EVT newVT = N0.getOperand(0).getValueType();
3769         if (DCI.isBeforeLegalizeOps() ||
3770             (isOperationLegal(ISD::SETCC, newVT) &&
3771              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3772           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3773           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3774 
3775           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3776                                           NewConst, Cond);
3777           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3778         }
3779         break;
3780       }
3781       default:
3782         break; // todo, be more careful with signed comparisons
3783       }
3784     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3785                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3786                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
3787                                       OpVT)) {
3788       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3789       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3790       EVT ExtDstTy = N0.getValueType();
3791       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3792 
3793       // If the constant doesn't fit into the number of bits for the source of
3794       // the sign extension, it is impossible for both sides to be equal.
3795       if (C1.getMinSignedBits() > ExtSrcTyBits)
3796         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
3797 
3798       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
3799              ExtDstTy != ExtSrcTy && "Unexpected types!");
3800       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3801       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
3802                                    DAG.getConstant(Imm, dl, ExtDstTy));
3803       if (!DCI.isCalledByLegalizer())
3804         DCI.AddToWorklist(ZextOp.getNode());
3805       // Otherwise, make this a use of a zext.
3806       return DAG.getSetCC(dl, VT, ZextOp,
3807                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
3808     } else if ((N1C->isZero() || N1C->isOne()) &&
3809                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3810       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3811       if (N0.getOpcode() == ISD::SETCC &&
3812           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3813           (N0.getValueType() == MVT::i1 ||
3814            getBooleanContents(N0.getOperand(0).getValueType()) ==
3815                        ZeroOrOneBooleanContent)) {
3816         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3817         if (TrueWhenTrue)
3818           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3819         // Invert the condition.
3820         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3821         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3822         if (DCI.isBeforeLegalizeOps() ||
3823             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3824           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3825       }
3826 
3827       if ((N0.getOpcode() == ISD::XOR ||
3828            (N0.getOpcode() == ISD::AND &&
3829             N0.getOperand(0).getOpcode() == ISD::XOR &&
3830             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3831           isOneConstant(N0.getOperand(1))) {
3832         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3833         // can only do this if the top bits are known zero.
3834         unsigned BitWidth = N0.getValueSizeInBits();
3835         if (DAG.MaskedValueIsZero(N0,
3836                                   APInt::getHighBitsSet(BitWidth,
3837                                                         BitWidth-1))) {
3838           // Okay, get the un-inverted input value.
3839           SDValue Val;
3840           if (N0.getOpcode() == ISD::XOR) {
3841             Val = N0.getOperand(0);
3842           } else {
3843             assert(N0.getOpcode() == ISD::AND &&
3844                     N0.getOperand(0).getOpcode() == ISD::XOR);
3845             // ((X^1)&1)^1 -> X & 1
3846             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3847                               N0.getOperand(0).getOperand(0),
3848                               N0.getOperand(1));
3849           }
3850 
3851           return DAG.getSetCC(dl, VT, Val, N1,
3852                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3853         }
3854       } else if (N1C->isOne()) {
3855         SDValue Op0 = N0;
3856         if (Op0.getOpcode() == ISD::TRUNCATE)
3857           Op0 = Op0.getOperand(0);
3858 
3859         if ((Op0.getOpcode() == ISD::XOR) &&
3860             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3861             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3862           SDValue XorLHS = Op0.getOperand(0);
3863           SDValue XorRHS = Op0.getOperand(1);
3864           // Ensure that the input setccs return an i1 type or 0/1 value.
3865           if (Op0.getValueType() == MVT::i1 ||
3866               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3867                       ZeroOrOneBooleanContent &&
3868                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3869                         ZeroOrOneBooleanContent)) {
3870             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3871             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3872             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3873           }
3874         }
3875         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
3876           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3877           if (Op0.getValueType().bitsGT(VT))
3878             Op0 = DAG.getNode(ISD::AND, dl, VT,
3879                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3880                           DAG.getConstant(1, dl, VT));
3881           else if (Op0.getValueType().bitsLT(VT))
3882             Op0 = DAG.getNode(ISD::AND, dl, VT,
3883                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3884                         DAG.getConstant(1, dl, VT));
3885 
3886           return DAG.getSetCC(dl, VT, Op0,
3887                               DAG.getConstant(0, dl, Op0.getValueType()),
3888                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3889         }
3890         if (Op0.getOpcode() == ISD::AssertZext &&
3891             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3892           return DAG.getSetCC(dl, VT, Op0,
3893                               DAG.getConstant(0, dl, Op0.getValueType()),
3894                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3895       }
3896     }
3897 
3898     // Given:
3899     //   icmp eq/ne (urem %x, %y), 0
3900     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3901     //   icmp eq/ne %x, 0
3902     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
3903         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3904       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3905       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3906       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3907         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3908     }
3909 
3910     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
3911     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
3912     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3913         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
3914         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
3915         N1C && N1C->isAllOnes()) {
3916       return DAG.getSetCC(dl, VT, N0.getOperand(0),
3917                           DAG.getConstant(0, dl, OpVT),
3918                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
3919     }
3920 
3921     if (SDValue V =
3922             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3923       return V;
3924   }
3925 
3926   // These simplifications apply to splat vectors as well.
3927   // TODO: Handle more splat vector cases.
3928   if (auto *N1C = isConstOrConstSplat(N1)) {
3929     const APInt &C1 = N1C->getAPIntValue();
3930 
3931     APInt MinVal, MaxVal;
3932     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3933     if (ISD::isSignedIntSetCC(Cond)) {
3934       MinVal = APInt::getSignedMinValue(OperandBitSize);
3935       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3936     } else {
3937       MinVal = APInt::getMinValue(OperandBitSize);
3938       MaxVal = APInt::getMaxValue(OperandBitSize);
3939     }
3940 
3941     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3942     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3943       // X >= MIN --> true
3944       if (C1 == MinVal)
3945         return DAG.getBoolConstant(true, dl, VT, OpVT);
3946 
3947       if (!VT.isVector()) { // TODO: Support this for vectors.
3948         // X >= C0 --> X > (C0 - 1)
3949         APInt C = C1 - 1;
3950         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3951         if ((DCI.isBeforeLegalizeOps() ||
3952              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3953             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3954                                   isLegalICmpImmediate(C.getSExtValue())))) {
3955           return DAG.getSetCC(dl, VT, N0,
3956                               DAG.getConstant(C, dl, N1.getValueType()),
3957                               NewCC);
3958         }
3959       }
3960     }
3961 
3962     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3963       // X <= MAX --> true
3964       if (C1 == MaxVal)
3965         return DAG.getBoolConstant(true, dl, VT, OpVT);
3966 
3967       // X <= C0 --> X < (C0 + 1)
3968       if (!VT.isVector()) { // TODO: Support this for vectors.
3969         APInt C = C1 + 1;
3970         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3971         if ((DCI.isBeforeLegalizeOps() ||
3972              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3973             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3974                                   isLegalICmpImmediate(C.getSExtValue())))) {
3975           return DAG.getSetCC(dl, VT, N0,
3976                               DAG.getConstant(C, dl, N1.getValueType()),
3977                               NewCC);
3978         }
3979       }
3980     }
3981 
3982     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3983       if (C1 == MinVal)
3984         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3985 
3986       // TODO: Support this for vectors after legalize ops.
3987       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3988         // Canonicalize setlt X, Max --> setne X, Max
3989         if (C1 == MaxVal)
3990           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3991 
3992         // If we have setult X, 1, turn it into seteq X, 0
3993         if (C1 == MinVal+1)
3994           return DAG.getSetCC(dl, VT, N0,
3995                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3996                               ISD::SETEQ);
3997       }
3998     }
3999 
4000     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
4001       if (C1 == MaxVal)
4002         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
4003 
4004       // TODO: Support this for vectors after legalize ops.
4005       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4006         // Canonicalize setgt X, Min --> setne X, Min
4007         if (C1 == MinVal)
4008           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4009 
4010         // If we have setugt X, Max-1, turn it into seteq X, Max
4011         if (C1 == MaxVal-1)
4012           return DAG.getSetCC(dl, VT, N0,
4013                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
4014                               ISD::SETEQ);
4015       }
4016     }
4017 
4018     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
4019       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4020       if (C1.isZero())
4021         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
4022                 VT, N0, N1, Cond, DCI, dl))
4023           return CC;
4024 
4025       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
4026       // For example, when high 32-bits of i64 X are known clear:
4027       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
4028       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
4029       bool CmpZero = N1C->getAPIntValue().isNullValue();
4030       bool CmpNegOne = N1C->getAPIntValue().isAllOnes();
4031       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
4032         // Match or(lo,shl(hi,bw/2)) pattern.
4033         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
4034           unsigned EltBits = V.getScalarValueSizeInBits();
4035           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
4036             return false;
4037           SDValue LHS = V.getOperand(0);
4038           SDValue RHS = V.getOperand(1);
4039           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
4040           // Unshifted element must have zero upperbits.
4041           if (RHS.getOpcode() == ISD::SHL &&
4042               isa<ConstantSDNode>(RHS.getOperand(1)) &&
4043               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4044               DAG.MaskedValueIsZero(LHS, HiBits)) {
4045             Lo = LHS;
4046             Hi = RHS.getOperand(0);
4047             return true;
4048           }
4049           if (LHS.getOpcode() == ISD::SHL &&
4050               isa<ConstantSDNode>(LHS.getOperand(1)) &&
4051               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4052               DAG.MaskedValueIsZero(RHS, HiBits)) {
4053             Lo = RHS;
4054             Hi = LHS.getOperand(0);
4055             return true;
4056           }
4057           return false;
4058         };
4059 
4060         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4061           unsigned EltBits = N0.getScalarValueSizeInBits();
4062           unsigned HalfBits = EltBits / 2;
4063           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4064           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4065           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4066           SDValue NewN0 =
4067               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4068           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4069           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4070         };
4071 
4072         SDValue Lo, Hi;
4073         if (IsConcat(N0, Lo, Hi))
4074           return MergeConcat(Lo, Hi);
4075 
4076         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4077           SDValue Lo0, Lo1, Hi0, Hi1;
4078           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4079               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4080             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4081                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4082           }
4083         }
4084       }
4085     }
4086 
4087     // If we have "setcc X, C0", check to see if we can shrink the immediate
4088     // by changing cc.
4089     // TODO: Support this for vectors after legalize ops.
4090     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4091       // SETUGT X, SINTMAX  -> SETLT X, 0
4092       // SETUGE X, SINTMIN -> SETLT X, 0
4093       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4094           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4095         return DAG.getSetCC(dl, VT, N0,
4096                             DAG.getConstant(0, dl, N1.getValueType()),
4097                             ISD::SETLT);
4098 
4099       // SETULT X, SINTMIN  -> SETGT X, -1
4100       // SETULE X, SINTMAX  -> SETGT X, -1
4101       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4102           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4103         return DAG.getSetCC(dl, VT, N0,
4104                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4105                             ISD::SETGT);
4106     }
4107   }
4108 
4109   // Back to non-vector simplifications.
4110   // TODO: Can we do these for vector splats?
4111   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4112     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4113     const APInt &C1 = N1C->getAPIntValue();
4114     EVT ShValTy = N0.getValueType();
4115 
4116     // Fold bit comparisons when we can. This will result in an
4117     // incorrect value when boolean false is negative one, unless
4118     // the bitsize is 1 in which case the false value is the same
4119     // in practice regardless of the representation.
4120     if ((VT.getSizeInBits() == 1 ||
4121          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4122         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4123         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4124         N0.getOpcode() == ISD::AND) {
4125       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4126         EVT ShiftTy =
4127             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4128         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4129           // Perform the xform if the AND RHS is a single bit.
4130           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4131           if (AndRHS->getAPIntValue().isPowerOf2() &&
4132               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4133             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4134                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4135                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4136           }
4137         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4138           // (X & 8) == 8  -->  (X & 8) >> 3
4139           // Perform the xform if C1 is a single bit.
4140           unsigned ShCt = C1.logBase2();
4141           if (C1.isPowerOf2() &&
4142               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4143             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4144                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4145                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4146           }
4147         }
4148       }
4149     }
4150 
4151     if (C1.getMinSignedBits() <= 64 &&
4152         !isLegalICmpImmediate(C1.getSExtValue())) {
4153       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4154       // (X & -256) == 256 -> (X >> 8) == 1
4155       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4156           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4157         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4158           const APInt &AndRHSC = AndRHS->getAPIntValue();
4159           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
4160             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4161             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4162               SDValue Shift =
4163                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4164                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4165               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4166               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4167             }
4168           }
4169         }
4170       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4171                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4172         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4173         // X <  0x100000000 -> (X >> 32) <  1
4174         // X >= 0x100000000 -> (X >> 32) >= 1
4175         // X <= 0x0ffffffff -> (X >> 32) <  1
4176         // X >  0x0ffffffff -> (X >> 32) >= 1
4177         unsigned ShiftBits;
4178         APInt NewC = C1;
4179         ISD::CondCode NewCond = Cond;
4180         if (AdjOne) {
4181           ShiftBits = C1.countTrailingOnes();
4182           NewC = NewC + 1;
4183           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4184         } else {
4185           ShiftBits = C1.countTrailingZeros();
4186         }
4187         NewC.lshrInPlace(ShiftBits);
4188         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4189             isLegalICmpImmediate(NewC.getSExtValue()) &&
4190             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4191           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4192                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4193           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4194           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4195         }
4196       }
4197     }
4198   }
4199 
4200   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4201     auto *CFP = cast<ConstantFPSDNode>(N1);
4202     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4203 
4204     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4205     // constant if knowing that the operand is non-nan is enough.  We prefer to
4206     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4207     // materialize 0.0.
4208     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4209       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4210 
4211     // setcc (fneg x), C -> setcc swap(pred) x, -C
4212     if (N0.getOpcode() == ISD::FNEG) {
4213       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4214       if (DCI.isBeforeLegalizeOps() ||
4215           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4216         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4217         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4218       }
4219     }
4220 
4221     // If the condition is not legal, see if we can find an equivalent one
4222     // which is legal.
4223     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4224       // If the comparison was an awkward floating-point == or != and one of
4225       // the comparison operands is infinity or negative infinity, convert the
4226       // condition to a less-awkward <= or >=.
4227       if (CFP->getValueAPF().isInfinity()) {
4228         bool IsNegInf = CFP->getValueAPF().isNegative();
4229         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4230         switch (Cond) {
4231         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4232         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4233         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4234         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4235         default: break;
4236         }
4237         if (NewCond != ISD::SETCC_INVALID &&
4238             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4239           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4240       }
4241     }
4242   }
4243 
4244   if (N0 == N1) {
4245     // The sext(setcc()) => setcc() optimization relies on the appropriate
4246     // constant being emitted.
4247     assert(!N0.getValueType().isInteger() &&
4248            "Integer types should be handled by FoldSetCC");
4249 
4250     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4251     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4252     if (UOF == 2) // FP operators that are undefined on NaNs.
4253       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4254     if (UOF == unsigned(EqTrue))
4255       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4256     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4257     // if it is not already.
4258     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4259     if (NewCond != Cond &&
4260         (DCI.isBeforeLegalizeOps() ||
4261                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4262       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4263   }
4264 
4265   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4266       N0.getValueType().isInteger()) {
4267     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4268         N0.getOpcode() == ISD::XOR) {
4269       // Simplify (X+Y) == (X+Z) -->  Y == Z
4270       if (N0.getOpcode() == N1.getOpcode()) {
4271         if (N0.getOperand(0) == N1.getOperand(0))
4272           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4273         if (N0.getOperand(1) == N1.getOperand(1))
4274           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4275         if (isCommutativeBinOp(N0.getOpcode())) {
4276           // If X op Y == Y op X, try other combinations.
4277           if (N0.getOperand(0) == N1.getOperand(1))
4278             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4279                                 Cond);
4280           if (N0.getOperand(1) == N1.getOperand(0))
4281             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4282                                 Cond);
4283         }
4284       }
4285 
4286       // If RHS is a legal immediate value for a compare instruction, we need
4287       // to be careful about increasing register pressure needlessly.
4288       bool LegalRHSImm = false;
4289 
4290       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4291         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4292           // Turn (X+C1) == C2 --> X == C2-C1
4293           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
4294             return DAG.getSetCC(dl, VT, N0.getOperand(0),
4295                                 DAG.getConstant(RHSC->getAPIntValue()-
4296                                                 LHSR->getAPIntValue(),
4297                                 dl, N0.getValueType()), Cond);
4298           }
4299 
4300           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
4301           if (N0.getOpcode() == ISD::XOR)
4302             // If we know that all of the inverted bits are zero, don't bother
4303             // performing the inversion.
4304             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
4305               return
4306                 DAG.getSetCC(dl, VT, N0.getOperand(0),
4307                              DAG.getConstant(LHSR->getAPIntValue() ^
4308                                                RHSC->getAPIntValue(),
4309                                              dl, N0.getValueType()),
4310                              Cond);
4311         }
4312 
4313         // Turn (C1-X) == C2 --> X == C1-C2
4314         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
4315           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
4316             return
4317               DAG.getSetCC(dl, VT, N0.getOperand(1),
4318                            DAG.getConstant(SUBC->getAPIntValue() -
4319                                              RHSC->getAPIntValue(),
4320                                            dl, N0.getValueType()),
4321                            Cond);
4322           }
4323         }
4324 
4325         // Could RHSC fold directly into a compare?
4326         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4327           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4328       }
4329 
4330       // (X+Y) == X --> Y == 0 and similar folds.
4331       // Don't do this if X is an immediate that can fold into a cmp
4332       // instruction and X+Y has other uses. It could be an induction variable
4333       // chain, and the transform would increase register pressure.
4334       if (!LegalRHSImm || N0.hasOneUse())
4335         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4336           return V;
4337     }
4338 
4339     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4340         N1.getOpcode() == ISD::XOR)
4341       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4342         return V;
4343 
4344     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4345       return V;
4346   }
4347 
4348   // Fold remainder of division by a constant.
4349   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4350       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4351     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4352 
4353     // When division is cheap or optimizing for minimum size,
4354     // fall through to DIVREM creation by skipping this fold.
4355     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
4356       if (N0.getOpcode() == ISD::UREM) {
4357         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4358           return Folded;
4359       } else if (N0.getOpcode() == ISD::SREM) {
4360         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4361           return Folded;
4362       }
4363     }
4364   }
4365 
4366   // Fold away ALL boolean setcc's.
4367   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4368     SDValue Temp;
4369     switch (Cond) {
4370     default: llvm_unreachable("Unknown integer setcc!");
4371     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4372       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4373       N0 = DAG.getNOT(dl, Temp, OpVT);
4374       if (!DCI.isCalledByLegalizer())
4375         DCI.AddToWorklist(Temp.getNode());
4376       break;
4377     case ISD::SETNE:  // X != Y   -->  (X^Y)
4378       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4379       break;
4380     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4381     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4382       Temp = DAG.getNOT(dl, N0, OpVT);
4383       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4384       if (!DCI.isCalledByLegalizer())
4385         DCI.AddToWorklist(Temp.getNode());
4386       break;
4387     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4388     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4389       Temp = DAG.getNOT(dl, N1, OpVT);
4390       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4391       if (!DCI.isCalledByLegalizer())
4392         DCI.AddToWorklist(Temp.getNode());
4393       break;
4394     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4395     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4396       Temp = DAG.getNOT(dl, N0, OpVT);
4397       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4398       if (!DCI.isCalledByLegalizer())
4399         DCI.AddToWorklist(Temp.getNode());
4400       break;
4401     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4402     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4403       Temp = DAG.getNOT(dl, N1, OpVT);
4404       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4405       break;
4406     }
4407     if (VT.getScalarType() != MVT::i1) {
4408       if (!DCI.isCalledByLegalizer())
4409         DCI.AddToWorklist(N0.getNode());
4410       // FIXME: If running after legalize, we probably can't do this.
4411       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4412       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4413     }
4414     return N0;
4415   }
4416 
4417   // Could not fold it.
4418   return SDValue();
4419 }
4420 
4421 /// Returns true (and the GlobalValue and the offset) if the node is a
4422 /// GlobalAddress + offset.
4423 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4424                                     int64_t &Offset) const {
4425 
4426   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4427 
4428   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4429     GA = GASD->getGlobal();
4430     Offset += GASD->getOffset();
4431     return true;
4432   }
4433 
4434   if (N->getOpcode() == ISD::ADD) {
4435     SDValue N1 = N->getOperand(0);
4436     SDValue N2 = N->getOperand(1);
4437     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4438       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4439         Offset += V->getSExtValue();
4440         return true;
4441       }
4442     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4443       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4444         Offset += V->getSExtValue();
4445         return true;
4446       }
4447     }
4448   }
4449 
4450   return false;
4451 }
4452 
4453 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4454                                           DAGCombinerInfo &DCI) const {
4455   // Default implementation: no optimization.
4456   return SDValue();
4457 }
4458 
4459 //===----------------------------------------------------------------------===//
4460 //  Inline Assembler Implementation Methods
4461 //===----------------------------------------------------------------------===//
4462 
4463 TargetLowering::ConstraintType
4464 TargetLowering::getConstraintType(StringRef Constraint) const {
4465   unsigned S = Constraint.size();
4466 
4467   if (S == 1) {
4468     switch (Constraint[0]) {
4469     default: break;
4470     case 'r':
4471       return C_RegisterClass;
4472     case 'm': // memory
4473     case 'o': // offsetable
4474     case 'V': // not offsetable
4475       return C_Memory;
4476     case 'n': // Simple Integer
4477     case 'E': // Floating Point Constant
4478     case 'F': // Floating Point Constant
4479       return C_Immediate;
4480     case 'i': // Simple Integer or Relocatable Constant
4481     case 's': // Relocatable Constant
4482     case 'p': // Address.
4483     case 'X': // Allow ANY value.
4484     case 'I': // Target registers.
4485     case 'J':
4486     case 'K':
4487     case 'L':
4488     case 'M':
4489     case 'N':
4490     case 'O':
4491     case 'P':
4492     case '<':
4493     case '>':
4494       return C_Other;
4495     }
4496   }
4497 
4498   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4499     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4500       return C_Memory;
4501     return C_Register;
4502   }
4503   return C_Unknown;
4504 }
4505 
4506 /// Try to replace an X constraint, which matches anything, with another that
4507 /// has more specific requirements based on the type of the corresponding
4508 /// operand.
4509 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4510   if (ConstraintVT.isInteger())
4511     return "r";
4512   if (ConstraintVT.isFloatingPoint())
4513     return "f"; // works for many targets
4514   return nullptr;
4515 }
4516 
4517 SDValue TargetLowering::LowerAsmOutputForConstraint(
4518     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
4519     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
4520   return SDValue();
4521 }
4522 
4523 /// Lower the specified operand into the Ops vector.
4524 /// If it is invalid, don't add anything to Ops.
4525 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4526                                                   std::string &Constraint,
4527                                                   std::vector<SDValue> &Ops,
4528                                                   SelectionDAG &DAG) const {
4529 
4530   if (Constraint.length() > 1) return;
4531 
4532   char ConstraintLetter = Constraint[0];
4533   switch (ConstraintLetter) {
4534   default: break;
4535   case 'X':     // Allows any operand; labels (basic block) use this.
4536     if (Op.getOpcode() == ISD::BasicBlock ||
4537         Op.getOpcode() == ISD::TargetBlockAddress) {
4538       Ops.push_back(Op);
4539       return;
4540     }
4541     LLVM_FALLTHROUGH;
4542   case 'i':    // Simple Integer or Relocatable Constant
4543   case 'n':    // Simple Integer
4544   case 's': {  // Relocatable Constant
4545 
4546     GlobalAddressSDNode *GA;
4547     ConstantSDNode *C;
4548     BlockAddressSDNode *BA;
4549     uint64_t Offset = 0;
4550 
4551     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4552     // etc., since getelementpointer is variadic. We can't use
4553     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4554     // while in this case the GA may be furthest from the root node which is
4555     // likely an ISD::ADD.
4556     while (1) {
4557       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4558         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4559                                                  GA->getValueType(0),
4560                                                  Offset + GA->getOffset()));
4561         return;
4562       }
4563       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
4564         // gcc prints these as sign extended.  Sign extend value to 64 bits
4565         // now; without this it would get ZExt'd later in
4566         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4567         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4568         BooleanContent BCont = getBooleanContents(MVT::i64);
4569         ISD::NodeType ExtOpc =
4570             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
4571         int64_t ExtVal =
4572             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
4573         Ops.push_back(
4574             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
4575         return;
4576       }
4577       if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4578         Ops.push_back(DAG.getTargetBlockAddress(
4579             BA->getBlockAddress(), BA->getValueType(0),
4580             Offset + BA->getOffset(), BA->getTargetFlags()));
4581         return;
4582       }
4583       const unsigned OpCode = Op.getOpcode();
4584       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4585         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4586           Op = Op.getOperand(1);
4587         // Subtraction is not commutative.
4588         else if (OpCode == ISD::ADD &&
4589                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4590           Op = Op.getOperand(0);
4591         else
4592           return;
4593         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4594         continue;
4595       }
4596       return;
4597     }
4598     break;
4599   }
4600   }
4601 }
4602 
4603 std::pair<unsigned, const TargetRegisterClass *>
4604 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4605                                              StringRef Constraint,
4606                                              MVT VT) const {
4607   if (Constraint.empty() || Constraint[0] != '{')
4608     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4609   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4610 
4611   // Remove the braces from around the name.
4612   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4613 
4614   std::pair<unsigned, const TargetRegisterClass *> R =
4615       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4616 
4617   // Figure out which register class contains this reg.
4618   for (const TargetRegisterClass *RC : RI->regclasses()) {
4619     // If none of the value types for this register class are valid, we
4620     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4621     if (!isLegalRC(*RI, *RC))
4622       continue;
4623 
4624     for (const MCPhysReg &PR : *RC) {
4625       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
4626         std::pair<unsigned, const TargetRegisterClass *> S =
4627             std::make_pair(PR, RC);
4628 
4629         // If this register class has the requested value type, return it,
4630         // otherwise keep searching and return the first class found
4631         // if no other is found which explicitly has the requested type.
4632         if (RI->isTypeLegalForClass(*RC, VT))
4633           return S;
4634         if (!R.second)
4635           R = S;
4636       }
4637     }
4638   }
4639 
4640   return R;
4641 }
4642 
4643 //===----------------------------------------------------------------------===//
4644 // Constraint Selection.
4645 
4646 /// Return true of this is an input operand that is a matching constraint like
4647 /// "4".
4648 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4649   assert(!ConstraintCode.empty() && "No known constraint!");
4650   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4651 }
4652 
4653 /// If this is an input matching constraint, this method returns the output
4654 /// operand it matches.
4655 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4656   assert(!ConstraintCode.empty() && "No known constraint!");
4657   return atoi(ConstraintCode.c_str());
4658 }
4659 
4660 /// Split up the constraint string from the inline assembly value into the
4661 /// specific constraints and their prefixes, and also tie in the associated
4662 /// operand values.
4663 /// If this returns an empty vector, and if the constraint string itself
4664 /// isn't empty, there was an error parsing.
4665 TargetLowering::AsmOperandInfoVector
4666 TargetLowering::ParseConstraints(const DataLayout &DL,
4667                                  const TargetRegisterInfo *TRI,
4668                                  const CallBase &Call) const {
4669   /// Information about all of the constraints.
4670   AsmOperandInfoVector ConstraintOperands;
4671   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
4672   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4673 
4674   // Do a prepass over the constraints, canonicalizing them, and building up the
4675   // ConstraintOperands list.
4676   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4677   unsigned ResNo = 0; // ResNo - The result number of the next output.
4678 
4679   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4680     ConstraintOperands.emplace_back(std::move(CI));
4681     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4682 
4683     // Update multiple alternative constraint count.
4684     if (OpInfo.multipleAlternatives.size() > maCount)
4685       maCount = OpInfo.multipleAlternatives.size();
4686 
4687     OpInfo.ConstraintVT = MVT::Other;
4688 
4689     // Compute the value type for each operand.
4690     switch (OpInfo.Type) {
4691     case InlineAsm::isOutput:
4692       // Indirect outputs just consume an argument.
4693       if (OpInfo.isIndirect) {
4694         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4695         break;
4696       }
4697 
4698       // The return value of the call is this value.  As such, there is no
4699       // corresponding argument.
4700       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
4701       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
4702         OpInfo.ConstraintVT =
4703             getSimpleValueType(DL, STy->getElementType(ResNo));
4704       } else {
4705         assert(ResNo == 0 && "Asm only has one result!");
4706         OpInfo.ConstraintVT =
4707             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
4708       }
4709       ++ResNo;
4710       break;
4711     case InlineAsm::isInput:
4712       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4713       break;
4714     case InlineAsm::isClobber:
4715       // Nothing to do.
4716       break;
4717     }
4718 
4719     if (OpInfo.CallOperandVal) {
4720       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4721       if (OpInfo.isIndirect) {
4722         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4723         if (!PtrTy)
4724           report_fatal_error("Indirect operand for inline asm not a pointer!");
4725         OpTy = PtrTy->getElementType();
4726       }
4727 
4728       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4729       if (StructType *STy = dyn_cast<StructType>(OpTy))
4730         if (STy->getNumElements() == 1)
4731           OpTy = STy->getElementType(0);
4732 
4733       // If OpTy is not a single value, it may be a struct/union that we
4734       // can tile with integers.
4735       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4736         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4737         switch (BitSize) {
4738         default: break;
4739         case 1:
4740         case 8:
4741         case 16:
4742         case 32:
4743         case 64:
4744         case 128:
4745           OpInfo.ConstraintVT =
4746               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4747           break;
4748         }
4749       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4750         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4751         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4752       } else {
4753         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4754       }
4755     }
4756   }
4757 
4758   // If we have multiple alternative constraints, select the best alternative.
4759   if (!ConstraintOperands.empty()) {
4760     if (maCount) {
4761       unsigned bestMAIndex = 0;
4762       int bestWeight = -1;
4763       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4764       int weight = -1;
4765       unsigned maIndex;
4766       // Compute the sums of the weights for each alternative, keeping track
4767       // of the best (highest weight) one so far.
4768       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4769         int weightSum = 0;
4770         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4771              cIndex != eIndex; ++cIndex) {
4772           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4773           if (OpInfo.Type == InlineAsm::isClobber)
4774             continue;
4775 
4776           // If this is an output operand with a matching input operand,
4777           // look up the matching input. If their types mismatch, e.g. one
4778           // is an integer, the other is floating point, or their sizes are
4779           // different, flag it as an maCantMatch.
4780           if (OpInfo.hasMatchingInput()) {
4781             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4782             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4783               if ((OpInfo.ConstraintVT.isInteger() !=
4784                    Input.ConstraintVT.isInteger()) ||
4785                   (OpInfo.ConstraintVT.getSizeInBits() !=
4786                    Input.ConstraintVT.getSizeInBits())) {
4787                 weightSum = -1; // Can't match.
4788                 break;
4789               }
4790             }
4791           }
4792           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4793           if (weight == -1) {
4794             weightSum = -1;
4795             break;
4796           }
4797           weightSum += weight;
4798         }
4799         // Update best.
4800         if (weightSum > bestWeight) {
4801           bestWeight = weightSum;
4802           bestMAIndex = maIndex;
4803         }
4804       }
4805 
4806       // Now select chosen alternative in each constraint.
4807       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4808            cIndex != eIndex; ++cIndex) {
4809         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4810         if (cInfo.Type == InlineAsm::isClobber)
4811           continue;
4812         cInfo.selectAlternative(bestMAIndex);
4813       }
4814     }
4815   }
4816 
4817   // Check and hook up tied operands, choose constraint code to use.
4818   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4819        cIndex != eIndex; ++cIndex) {
4820     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4821 
4822     // If this is an output operand with a matching input operand, look up the
4823     // matching input. If their types mismatch, e.g. one is an integer, the
4824     // other is floating point, or their sizes are different, flag it as an
4825     // error.
4826     if (OpInfo.hasMatchingInput()) {
4827       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4828 
4829       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4830         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4831             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4832                                          OpInfo.ConstraintVT);
4833         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4834             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4835                                          Input.ConstraintVT);
4836         if ((OpInfo.ConstraintVT.isInteger() !=
4837              Input.ConstraintVT.isInteger()) ||
4838             (MatchRC.second != InputRC.second)) {
4839           report_fatal_error("Unsupported asm: input constraint"
4840                              " with a matching output constraint of"
4841                              " incompatible type!");
4842         }
4843       }
4844     }
4845   }
4846 
4847   return ConstraintOperands;
4848 }
4849 
4850 /// Return an integer indicating how general CT is.
4851 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4852   switch (CT) {
4853   case TargetLowering::C_Immediate:
4854   case TargetLowering::C_Other:
4855   case TargetLowering::C_Unknown:
4856     return 0;
4857   case TargetLowering::C_Register:
4858     return 1;
4859   case TargetLowering::C_RegisterClass:
4860     return 2;
4861   case TargetLowering::C_Memory:
4862     return 3;
4863   }
4864   llvm_unreachable("Invalid constraint type");
4865 }
4866 
4867 /// Examine constraint type and operand type and determine a weight value.
4868 /// This object must already have been set up with the operand type
4869 /// and the current alternative constraint selected.
4870 TargetLowering::ConstraintWeight
4871   TargetLowering::getMultipleConstraintMatchWeight(
4872     AsmOperandInfo &info, int maIndex) const {
4873   InlineAsm::ConstraintCodeVector *rCodes;
4874   if (maIndex >= (int)info.multipleAlternatives.size())
4875     rCodes = &info.Codes;
4876   else
4877     rCodes = &info.multipleAlternatives[maIndex].Codes;
4878   ConstraintWeight BestWeight = CW_Invalid;
4879 
4880   // Loop over the options, keeping track of the most general one.
4881   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4882     ConstraintWeight weight =
4883       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4884     if (weight > BestWeight)
4885       BestWeight = weight;
4886   }
4887 
4888   return BestWeight;
4889 }
4890 
4891 /// Examine constraint type and operand type and determine a weight value.
4892 /// This object must already have been set up with the operand type
4893 /// and the current alternative constraint selected.
4894 TargetLowering::ConstraintWeight
4895   TargetLowering::getSingleConstraintMatchWeight(
4896     AsmOperandInfo &info, const char *constraint) const {
4897   ConstraintWeight weight = CW_Invalid;
4898   Value *CallOperandVal = info.CallOperandVal;
4899     // If we don't have a value, we can't do a match,
4900     // but allow it at the lowest weight.
4901   if (!CallOperandVal)
4902     return CW_Default;
4903   // Look at the constraint type.
4904   switch (*constraint) {
4905     case 'i': // immediate integer.
4906     case 'n': // immediate integer with a known value.
4907       if (isa<ConstantInt>(CallOperandVal))
4908         weight = CW_Constant;
4909       break;
4910     case 's': // non-explicit intregal immediate.
4911       if (isa<GlobalValue>(CallOperandVal))
4912         weight = CW_Constant;
4913       break;
4914     case 'E': // immediate float if host format.
4915     case 'F': // immediate float.
4916       if (isa<ConstantFP>(CallOperandVal))
4917         weight = CW_Constant;
4918       break;
4919     case '<': // memory operand with autodecrement.
4920     case '>': // memory operand with autoincrement.
4921     case 'm': // memory operand.
4922     case 'o': // offsettable memory operand
4923     case 'V': // non-offsettable memory operand
4924       weight = CW_Memory;
4925       break;
4926     case 'r': // general register.
4927     case 'g': // general register, memory operand or immediate integer.
4928               // note: Clang converts "g" to "imr".
4929       if (CallOperandVal->getType()->isIntegerTy())
4930         weight = CW_Register;
4931       break;
4932     case 'X': // any operand.
4933   default:
4934     weight = CW_Default;
4935     break;
4936   }
4937   return weight;
4938 }
4939 
4940 /// If there are multiple different constraints that we could pick for this
4941 /// operand (e.g. "imr") try to pick the 'best' one.
4942 /// This is somewhat tricky: constraints fall into four classes:
4943 ///    Other         -> immediates and magic values
4944 ///    Register      -> one specific register
4945 ///    RegisterClass -> a group of regs
4946 ///    Memory        -> memory
4947 /// Ideally, we would pick the most specific constraint possible: if we have
4948 /// something that fits into a register, we would pick it.  The problem here
4949 /// is that if we have something that could either be in a register or in
4950 /// memory that use of the register could cause selection of *other*
4951 /// operands to fail: they might only succeed if we pick memory.  Because of
4952 /// this the heuristic we use is:
4953 ///
4954 ///  1) If there is an 'other' constraint, and if the operand is valid for
4955 ///     that constraint, use it.  This makes us take advantage of 'i'
4956 ///     constraints when available.
4957 ///  2) Otherwise, pick the most general constraint present.  This prefers
4958 ///     'm' over 'r', for example.
4959 ///
4960 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4961                              const TargetLowering &TLI,
4962                              SDValue Op, SelectionDAG *DAG) {
4963   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4964   unsigned BestIdx = 0;
4965   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4966   int BestGenerality = -1;
4967 
4968   // Loop over the options, keeping track of the most general one.
4969   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4970     TargetLowering::ConstraintType CType =
4971       TLI.getConstraintType(OpInfo.Codes[i]);
4972 
4973     // Indirect 'other' or 'immediate' constraints are not allowed.
4974     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4975                                CType == TargetLowering::C_Register ||
4976                                CType == TargetLowering::C_RegisterClass))
4977       continue;
4978 
4979     // If this is an 'other' or 'immediate' constraint, see if the operand is
4980     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4981     // the operand is an integer in the range [0..31] we want to use I (saving a
4982     // load of a register), otherwise we must use 'r'.
4983     if ((CType == TargetLowering::C_Other ||
4984          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4985       assert(OpInfo.Codes[i].size() == 1 &&
4986              "Unhandled multi-letter 'other' constraint");
4987       std::vector<SDValue> ResultOps;
4988       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4989                                        ResultOps, *DAG);
4990       if (!ResultOps.empty()) {
4991         BestType = CType;
4992         BestIdx = i;
4993         break;
4994       }
4995     }
4996 
4997     // Things with matching constraints can only be registers, per gcc
4998     // documentation.  This mainly affects "g" constraints.
4999     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
5000       continue;
5001 
5002     // This constraint letter is more general than the previous one, use it.
5003     int Generality = getConstraintGenerality(CType);
5004     if (Generality > BestGenerality) {
5005       BestType = CType;
5006       BestIdx = i;
5007       BestGenerality = Generality;
5008     }
5009   }
5010 
5011   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
5012   OpInfo.ConstraintType = BestType;
5013 }
5014 
5015 /// Determines the constraint code and constraint type to use for the specific
5016 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5017 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5018                                             SDValue Op,
5019                                             SelectionDAG *DAG) const {
5020   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
5021 
5022   // Single-letter constraints ('r') are very common.
5023   if (OpInfo.Codes.size() == 1) {
5024     OpInfo.ConstraintCode = OpInfo.Codes[0];
5025     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5026   } else {
5027     ChooseConstraint(OpInfo, *this, Op, DAG);
5028   }
5029 
5030   // 'X' matches anything.
5031   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
5032     // Labels and constants are handled elsewhere ('X' is the only thing
5033     // that matches labels).  For Functions, the type here is the type of
5034     // the result, which is not what we want to look at; leave them alone.
5035     Value *v = OpInfo.CallOperandVal;
5036     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
5037       OpInfo.CallOperandVal = v;
5038       return;
5039     }
5040 
5041     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
5042       return;
5043 
5044     // Otherwise, try to resolve it to something we know about by looking at
5045     // the actual operand type.
5046     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5047       OpInfo.ConstraintCode = Repl;
5048       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5049     }
5050   }
5051 }
5052 
5053 /// Given an exact SDIV by a constant, create a multiplication
5054 /// with the multiplicative inverse of the constant.
5055 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5056                               const SDLoc &dl, SelectionDAG &DAG,
5057                               SmallVectorImpl<SDNode *> &Created) {
5058   SDValue Op0 = N->getOperand(0);
5059   SDValue Op1 = N->getOperand(1);
5060   EVT VT = N->getValueType(0);
5061   EVT SVT = VT.getScalarType();
5062   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5063   EVT ShSVT = ShVT.getScalarType();
5064 
5065   bool UseSRA = false;
5066   SmallVector<SDValue, 16> Shifts, Factors;
5067 
5068   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5069     if (C->isZero())
5070       return false;
5071     APInt Divisor = C->getAPIntValue();
5072     unsigned Shift = Divisor.countTrailingZeros();
5073     if (Shift) {
5074       Divisor.ashrInPlace(Shift);
5075       UseSRA = true;
5076     }
5077     // Calculate the multiplicative inverse, using Newton's method.
5078     APInt t;
5079     APInt Factor = Divisor;
5080     while ((t = Divisor * Factor) != 1)
5081       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5082     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5083     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5084     return true;
5085   };
5086 
5087   // Collect all magic values from the build vector.
5088   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5089     return SDValue();
5090 
5091   SDValue Shift, Factor;
5092   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5093     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5094     Factor = DAG.getBuildVector(VT, dl, Factors);
5095   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5096     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5097            "Expected matchUnaryPredicate to return one element for scalable "
5098            "vectors");
5099     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5100     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5101   } else {
5102     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5103     Shift = Shifts[0];
5104     Factor = Factors[0];
5105   }
5106 
5107   SDValue Res = Op0;
5108 
5109   // Shift the value upfront if it is even, so the LSB is one.
5110   if (UseSRA) {
5111     // TODO: For UDIV use SRL instead of SRA.
5112     SDNodeFlags Flags;
5113     Flags.setExact(true);
5114     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5115     Created.push_back(Res.getNode());
5116   }
5117 
5118   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5119 }
5120 
5121 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5122                               SelectionDAG &DAG,
5123                               SmallVectorImpl<SDNode *> &Created) const {
5124   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5125   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5126   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5127     return SDValue(N, 0); // Lower SDIV as SDIV
5128   return SDValue();
5129 }
5130 
5131 namespace {
5132 /// Magic data for optimising signed division by a constant.
5133 struct ms {
5134   APInt m;    ///< magic number
5135   unsigned s; ///< shift amount
5136 };
5137 
5138 /// Magic data for optimising unsigned division by a constant.
5139 struct mu {
5140   APInt m;    ///< magic number
5141   bool a;     ///< add indicator
5142   unsigned s; ///< shift amount
5143 };
5144 } // namespace
5145 
5146 /// Calculate the magic numbers required to implement an unsigned integer
5147 /// division by a constant as a sequence of multiplies, adds and shifts.
5148 /// Requires that the divisor not be 0.  Taken from "Hacker's Delight", Henry
5149 /// S. Warren, Jr., chapter 10.
5150 /// LeadingZeros can be used to simplify the calculation if the upper bits
5151 /// of the divided value are known zero.
5152 static mu magicu(const APInt &d, unsigned LeadingZeros = 0) {
5153   unsigned p;
5154   APInt nc, delta, q1, r1, q2, r2;
5155   struct mu magu;
5156   magu.a = 0; // initialize "add" indicator
5157   APInt allOnes = APInt::getAllOnes(d.getBitWidth()).lshr(LeadingZeros);
5158   APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
5159   APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
5160 
5161   nc = allOnes - (allOnes - d).urem(d);
5162   p = d.getBitWidth() - 1;  // initialize p
5163   q1 = signedMin.udiv(nc);  // initialize q1 = 2p/nc
5164   r1 = signedMin - q1 * nc; // initialize r1 = rem(2p,nc)
5165   q2 = signedMax.udiv(d);   // initialize q2 = (2p-1)/d
5166   r2 = signedMax - q2 * d;  // initialize r2 = rem((2p-1),d)
5167   do {
5168     p = p + 1;
5169     if (r1.uge(nc - r1)) {
5170       q1 = q1 + q1 + 1;  // update q1
5171       r1 = r1 + r1 - nc; // update r1
5172     } else {
5173       q1 = q1 + q1; // update q1
5174       r1 = r1 + r1; // update r1
5175     }
5176     if ((r2 + 1).uge(d - r2)) {
5177       if (q2.uge(signedMax))
5178         magu.a = 1;
5179       q2 = q2 + q2 + 1;     // update q2
5180       r2 = r2 + r2 + 1 - d; // update r2
5181     } else {
5182       if (q2.uge(signedMin))
5183         magu.a = 1;
5184       q2 = q2 + q2;     // update q2
5185       r2 = r2 + r2 + 1; // update r2
5186     }
5187     delta = d - 1 - r2;
5188   } while (p < d.getBitWidth() * 2 &&
5189            (q1.ult(delta) || (q1 == delta && r1 == 0)));
5190   magu.m = q2 + 1;              // resulting magic number
5191   magu.s = p - d.getBitWidth(); // resulting shift
5192   return magu;
5193 }
5194 
5195 /// Calculate the magic numbers required to implement a signed integer division
5196 /// by a constant as a sequence of multiplies, adds and shifts.  Requires that
5197 /// the divisor not be 0, 1, or -1.  Taken from "Hacker's Delight", Henry S.
5198 /// Warren, Jr., Chapter 10.
5199 static ms magic(const APInt &d) {
5200   unsigned p;
5201   APInt ad, anc, delta, q1, r1, q2, r2, t;
5202   APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
5203   struct ms mag;
5204 
5205   ad = d.abs();
5206   t = signedMin + (d.lshr(d.getBitWidth() - 1));
5207   anc = t - 1 - t.urem(ad);  // absolute value of nc
5208   p = d.getBitWidth() - 1;   // initialize p
5209   q1 = signedMin.udiv(anc);  // initialize q1 = 2p/abs(nc)
5210   r1 = signedMin - q1 * anc; // initialize r1 = rem(2p,abs(nc))
5211   q2 = signedMin.udiv(ad);   // initialize q2 = 2p/abs(d)
5212   r2 = signedMin - q2 * ad;  // initialize r2 = rem(2p,abs(d))
5213   do {
5214     p = p + 1;
5215     q1 = q1 << 1;      // update q1 = 2p/abs(nc)
5216     r1 = r1 << 1;      // update r1 = rem(2p/abs(nc))
5217     if (r1.uge(anc)) { // must be unsigned comparison
5218       q1 = q1 + 1;
5219       r1 = r1 - anc;
5220     }
5221     q2 = q2 << 1;     // update q2 = 2p/abs(d)
5222     r2 = r2 << 1;     // update r2 = rem(2p/abs(d))
5223     if (r2.uge(ad)) { // must be unsigned comparison
5224       q2 = q2 + 1;
5225       r2 = r2 - ad;
5226     }
5227     delta = ad - r2;
5228   } while (q1.ult(delta) || (q1 == delta && r1 == 0));
5229 
5230   mag.m = q2 + 1;
5231   if (d.isNegative())
5232     mag.m = -mag.m;            // resulting magic number
5233   mag.s = p - d.getBitWidth(); // resulting shift
5234   return mag;
5235 }
5236 
5237 /// Given an ISD::SDIV node expressing a divide by constant,
5238 /// return a DAG expression to select that will generate the same value by
5239 /// multiplying by a magic number.
5240 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5241 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5242                                   bool IsAfterLegalization,
5243                                   SmallVectorImpl<SDNode *> &Created) const {
5244   SDLoc dl(N);
5245   EVT VT = N->getValueType(0);
5246   EVT SVT = VT.getScalarType();
5247   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5248   EVT ShSVT = ShVT.getScalarType();
5249   unsigned EltBits = VT.getScalarSizeInBits();
5250   EVT MulVT;
5251 
5252   // Check to see if we can do this.
5253   // FIXME: We should be more aggressive here.
5254   if (!isTypeLegal(VT)) {
5255     // Limit this to simple scalars for now.
5256     if (VT.isVector() || !VT.isSimple())
5257       return SDValue();
5258 
5259     // If this type will be promoted to a large enough type with a legal
5260     // multiply operation, we can go ahead and do this transform.
5261     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5262       return SDValue();
5263 
5264     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5265     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5266         !isOperationLegal(ISD::MUL, MulVT))
5267       return SDValue();
5268   }
5269 
5270   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5271   if (N->getFlags().hasExact())
5272     return BuildExactSDIV(*this, N, dl, DAG, Created);
5273 
5274   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5275 
5276   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5277     if (C->isZero())
5278       return false;
5279 
5280     const APInt &Divisor = C->getAPIntValue();
5281     ms magics = magic(Divisor);
5282     int NumeratorFactor = 0;
5283     int ShiftMask = -1;
5284 
5285     if (Divisor.isOneValue() || Divisor.isAllOnes()) {
5286       // If d is +1/-1, we just multiply the numerator by +1/-1.
5287       NumeratorFactor = Divisor.getSExtValue();
5288       magics.m = 0;
5289       magics.s = 0;
5290       ShiftMask = 0;
5291     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
5292       // If d > 0 and m < 0, add the numerator.
5293       NumeratorFactor = 1;
5294     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
5295       // If d < 0 and m > 0, subtract the numerator.
5296       NumeratorFactor = -1;
5297     }
5298 
5299     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
5300     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5301     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
5302     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5303     return true;
5304   };
5305 
5306   SDValue N0 = N->getOperand(0);
5307   SDValue N1 = N->getOperand(1);
5308 
5309   // Collect the shifts / magic values from each element.
5310   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5311     return SDValue();
5312 
5313   SDValue MagicFactor, Factor, Shift, ShiftMask;
5314   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5315     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5316     Factor = DAG.getBuildVector(VT, dl, Factors);
5317     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5318     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5319   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5320     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5321            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5322            "Expected matchUnaryPredicate to return one element for scalable "
5323            "vectors");
5324     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5325     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5326     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5327     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5328   } else {
5329     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5330     MagicFactor = MagicFactors[0];
5331     Factor = Factors[0];
5332     Shift = Shifts[0];
5333     ShiftMask = ShiftMasks[0];
5334   }
5335 
5336   // Multiply the numerator (operand 0) by the magic value.
5337   // FIXME: We should support doing a MUL in a wider type.
5338   auto GetMULHS = [&](SDValue X, SDValue Y) {
5339     // If the type isn't legal, use a wider mul of the the type calculated
5340     // earlier.
5341     if (!isTypeLegal(VT)) {
5342       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5343       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5344       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5345       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5346                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5347       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5348     }
5349 
5350     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5351       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5352     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5353       SDValue LoHi =
5354           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5355       return SDValue(LoHi.getNode(), 1);
5356     }
5357     return SDValue();
5358   };
5359 
5360   SDValue Q = GetMULHS(N0, MagicFactor);
5361   if (!Q)
5362     return SDValue();
5363 
5364   Created.push_back(Q.getNode());
5365 
5366   // (Optionally) Add/subtract the numerator using Factor.
5367   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5368   Created.push_back(Factor.getNode());
5369   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5370   Created.push_back(Q.getNode());
5371 
5372   // Shift right algebraic by shift value.
5373   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5374   Created.push_back(Q.getNode());
5375 
5376   // Extract the sign bit, mask it and add it to the quotient.
5377   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5378   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5379   Created.push_back(T.getNode());
5380   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5381   Created.push_back(T.getNode());
5382   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5383 }
5384 
5385 /// Given an ISD::UDIV node expressing a divide by constant,
5386 /// return a DAG expression to select that will generate the same value by
5387 /// multiplying by a magic number.
5388 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5389 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5390                                   bool IsAfterLegalization,
5391                                   SmallVectorImpl<SDNode *> &Created) const {
5392   SDLoc dl(N);
5393   EVT VT = N->getValueType(0);
5394   EVT SVT = VT.getScalarType();
5395   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5396   EVT ShSVT = ShVT.getScalarType();
5397   unsigned EltBits = VT.getScalarSizeInBits();
5398   EVT MulVT;
5399 
5400   // Check to see if we can do this.
5401   // FIXME: We should be more aggressive here.
5402   if (!isTypeLegal(VT)) {
5403     // Limit this to simple scalars for now.
5404     if (VT.isVector() || !VT.isSimple())
5405       return SDValue();
5406 
5407     // If this type will be promoted to a large enough type with a legal
5408     // multiply operation, we can go ahead and do this transform.
5409     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5410       return SDValue();
5411 
5412     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5413     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5414         !isOperationLegal(ISD::MUL, MulVT))
5415       return SDValue();
5416   }
5417 
5418   bool UseNPQ = false;
5419   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5420 
5421   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5422     if (C->isZero())
5423       return false;
5424     // FIXME: We should use a narrower constant when the upper
5425     // bits are known to be zero.
5426     const APInt& Divisor = C->getAPIntValue();
5427     mu magics = magicu(Divisor);
5428     unsigned PreShift = 0, PostShift = 0;
5429 
5430     // If the divisor is even, we can avoid using the expensive fixup by
5431     // shifting the divided value upfront.
5432     if (magics.a != 0 && !Divisor[0]) {
5433       PreShift = Divisor.countTrailingZeros();
5434       // Get magic number for the shifted divisor.
5435       magics = magicu(Divisor.lshr(PreShift), PreShift);
5436       assert(magics.a == 0 && "Should use cheap fixup now");
5437     }
5438 
5439     APInt Magic = magics.m;
5440 
5441     unsigned SelNPQ;
5442     if (magics.a == 0 || Divisor.isOneValue()) {
5443       assert(magics.s < Divisor.getBitWidth() &&
5444              "We shouldn't generate an undefined shift!");
5445       PostShift = magics.s;
5446       SelNPQ = false;
5447     } else {
5448       PostShift = magics.s - 1;
5449       SelNPQ = true;
5450     }
5451 
5452     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5453     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5454     NPQFactors.push_back(
5455         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5456                                : APInt::getZero(EltBits),
5457                         dl, SVT));
5458     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5459     UseNPQ |= SelNPQ;
5460     return true;
5461   };
5462 
5463   SDValue N0 = N->getOperand(0);
5464   SDValue N1 = N->getOperand(1);
5465 
5466   // Collect the shifts/magic values from each element.
5467   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5468     return SDValue();
5469 
5470   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5471   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5472     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5473     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5474     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5475     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5476   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5477     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
5478            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
5479            "Expected matchUnaryPredicate to return one for scalable vectors");
5480     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5481     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5482     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5483     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5484   } else {
5485     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5486     PreShift = PreShifts[0];
5487     MagicFactor = MagicFactors[0];
5488     PostShift = PostShifts[0];
5489   }
5490 
5491   SDValue Q = N0;
5492   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5493   Created.push_back(Q.getNode());
5494 
5495   // FIXME: We should support doing a MUL in a wider type.
5496   auto GetMULHU = [&](SDValue X, SDValue Y) {
5497     // If the type isn't legal, use a wider mul of the the type calculated
5498     // earlier.
5499     if (!isTypeLegal(VT)) {
5500       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
5501       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
5502       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5503       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5504                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5505       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5506     }
5507 
5508     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
5509       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5510     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
5511       SDValue LoHi =
5512           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5513       return SDValue(LoHi.getNode(), 1);
5514     }
5515     return SDValue(); // No mulhu or equivalent
5516   };
5517 
5518   // Multiply the numerator (operand 0) by the magic value.
5519   Q = GetMULHU(Q, MagicFactor);
5520   if (!Q)
5521     return SDValue();
5522 
5523   Created.push_back(Q.getNode());
5524 
5525   if (UseNPQ) {
5526     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5527     Created.push_back(NPQ.getNode());
5528 
5529     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5530     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5531     if (VT.isVector())
5532       NPQ = GetMULHU(NPQ, NPQFactor);
5533     else
5534       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5535 
5536     Created.push_back(NPQ.getNode());
5537 
5538     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5539     Created.push_back(Q.getNode());
5540   }
5541 
5542   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5543   Created.push_back(Q.getNode());
5544 
5545   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5546 
5547   SDValue One = DAG.getConstant(1, dl, VT);
5548   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
5549   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5550 }
5551 
5552 /// If all values in Values that *don't* match the predicate are same 'splat'
5553 /// value, then replace all values with that splat value.
5554 /// Else, if AlternativeReplacement was provided, then replace all values that
5555 /// do match predicate with AlternativeReplacement value.
5556 static void
5557 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5558                           std::function<bool(SDValue)> Predicate,
5559                           SDValue AlternativeReplacement = SDValue()) {
5560   SDValue Replacement;
5561   // Is there a value for which the Predicate does *NOT* match? What is it?
5562   auto SplatValue = llvm::find_if_not(Values, Predicate);
5563   if (SplatValue != Values.end()) {
5564     // Does Values consist only of SplatValue's and values matching Predicate?
5565     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5566           return Value == *SplatValue || Predicate(Value);
5567         })) // Then we shall replace values matching predicate with SplatValue.
5568       Replacement = *SplatValue;
5569   }
5570   if (!Replacement) {
5571     // Oops, we did not find the "baseline" splat value.
5572     if (!AlternativeReplacement)
5573       return; // Nothing to do.
5574     // Let's replace with provided value then.
5575     Replacement = AlternativeReplacement;
5576   }
5577   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5578 }
5579 
5580 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5581 /// where the divisor is constant and the comparison target is zero,
5582 /// return a DAG expression that will generate the same comparison result
5583 /// using only multiplications, additions and shifts/rotations.
5584 /// Ref: "Hacker's Delight" 10-17.
5585 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5586                                         SDValue CompTargetNode,
5587                                         ISD::CondCode Cond,
5588                                         DAGCombinerInfo &DCI,
5589                                         const SDLoc &DL) const {
5590   SmallVector<SDNode *, 5> Built;
5591   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5592                                          DCI, DL, Built)) {
5593     for (SDNode *N : Built)
5594       DCI.AddToWorklist(N);
5595     return Folded;
5596   }
5597 
5598   return SDValue();
5599 }
5600 
5601 SDValue
5602 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5603                                   SDValue CompTargetNode, ISD::CondCode Cond,
5604                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5605                                   SmallVectorImpl<SDNode *> &Created) const {
5606   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5607   // - D must be constant, with D = D0 * 2^K where D0 is odd
5608   // - P is the multiplicative inverse of D0 modulo 2^W
5609   // - Q = floor(((2^W) - 1) / D)
5610   // where W is the width of the common type of N and D.
5611   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5612          "Only applicable for (in)equality comparisons.");
5613 
5614   SelectionDAG &DAG = DCI.DAG;
5615 
5616   EVT VT = REMNode.getValueType();
5617   EVT SVT = VT.getScalarType();
5618   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5619   EVT ShSVT = ShVT.getScalarType();
5620 
5621   // If MUL is unavailable, we cannot proceed in any case.
5622   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5623     return SDValue();
5624 
5625   bool ComparingWithAllZeros = true;
5626   bool AllComparisonsWithNonZerosAreTautological = true;
5627   bool HadTautologicalLanes = false;
5628   bool AllLanesAreTautological = true;
5629   bool HadEvenDivisor = false;
5630   bool AllDivisorsArePowerOfTwo = true;
5631   bool HadTautologicalInvertedLanes = false;
5632   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5633 
5634   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5635     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5636     if (CDiv->isZero())
5637       return false;
5638 
5639     const APInt &D = CDiv->getAPIntValue();
5640     const APInt &Cmp = CCmp->getAPIntValue();
5641 
5642     ComparingWithAllZeros &= Cmp.isNullValue();
5643 
5644     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5645     // if C2 is not less than C1, the comparison is always false.
5646     // But we will only be able to produce the comparison that will give the
5647     // opposive tautological answer. So this lane would need to be fixed up.
5648     bool TautologicalInvertedLane = D.ule(Cmp);
5649     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5650 
5651     // If all lanes are tautological (either all divisors are ones, or divisor
5652     // is not greater than the constant we are comparing with),
5653     // we will prefer to avoid the fold.
5654     bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane;
5655     HadTautologicalLanes |= TautologicalLane;
5656     AllLanesAreTautological &= TautologicalLane;
5657 
5658     // If we are comparing with non-zero, we need'll need  to subtract said
5659     // comparison value from the LHS. But there is no point in doing that if
5660     // every lane where we are comparing with non-zero is tautological..
5661     if (!Cmp.isNullValue())
5662       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5663 
5664     // Decompose D into D0 * 2^K
5665     unsigned K = D.countTrailingZeros();
5666     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5667     APInt D0 = D.lshr(K);
5668 
5669     // D is even if it has trailing zeros.
5670     HadEvenDivisor |= (K != 0);
5671     // D is a power-of-two if D0 is one.
5672     // If all divisors are power-of-two, we will prefer to avoid the fold.
5673     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5674 
5675     // P = inv(D0, 2^W)
5676     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5677     unsigned W = D.getBitWidth();
5678     APInt P = D0.zext(W + 1)
5679                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5680                   .trunc(W);
5681     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5682     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5683 
5684     // Q = floor((2^W - 1) u/ D)
5685     // R = ((2^W - 1) u% D)
5686     APInt Q, R;
5687     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
5688 
5689     // If we are comparing with zero, then that comparison constant is okay,
5690     // else it may need to be one less than that.
5691     if (Cmp.ugt(R))
5692       Q -= 1;
5693 
5694     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
5695            "We are expecting that K is always less than all-ones for ShSVT");
5696 
5697     // If the lane is tautological the result can be constant-folded.
5698     if (TautologicalLane) {
5699       // Set P and K amount to a bogus values so we can try to splat them.
5700       P = 0;
5701       K = -1;
5702       // And ensure that comparison constant is tautological,
5703       // it will always compare true/false.
5704       Q = -1;
5705     }
5706 
5707     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5708     KAmts.push_back(
5709         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5710     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5711     return true;
5712   };
5713 
5714   SDValue N = REMNode.getOperand(0);
5715   SDValue D = REMNode.getOperand(1);
5716 
5717   // Collect the values from each element.
5718   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5719     return SDValue();
5720 
5721   // If all lanes are tautological, the result can be constant-folded.
5722   if (AllLanesAreTautological)
5723     return SDValue();
5724 
5725   // If this is a urem by a powers-of-two, avoid the fold since it can be
5726   // best implemented as a bit test.
5727   if (AllDivisorsArePowerOfTwo)
5728     return SDValue();
5729 
5730   SDValue PVal, KVal, QVal;
5731   if (D.getOpcode() == ISD::BUILD_VECTOR) {
5732     if (HadTautologicalLanes) {
5733       // Try to turn PAmts into a splat, since we don't care about the values
5734       // that are currently '0'. If we can't, just keep '0'`s.
5735       turnVectorIntoSplatVector(PAmts, isNullConstant);
5736       // Try to turn KAmts into a splat, since we don't care about the values
5737       // that are currently '-1'. If we can't, change them to '0'`s.
5738       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5739                                 DAG.getConstant(0, DL, ShSVT));
5740     }
5741 
5742     PVal = DAG.getBuildVector(VT, DL, PAmts);
5743     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5744     QVal = DAG.getBuildVector(VT, DL, QAmts);
5745   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
5746     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
5747            "Expected matchBinaryPredicate to return one element for "
5748            "SPLAT_VECTORs");
5749     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
5750     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
5751     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
5752   } else {
5753     PVal = PAmts[0];
5754     KVal = KAmts[0];
5755     QVal = QAmts[0];
5756   }
5757 
5758   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5759     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
5760       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5761     assert(CompTargetNode.getValueType() == N.getValueType() &&
5762            "Expecting that the types on LHS and RHS of comparisons match.");
5763     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5764   }
5765 
5766   // (mul N, P)
5767   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5768   Created.push_back(Op0.getNode());
5769 
5770   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5771   // divisors as a performance improvement, since rotating by 0 is a no-op.
5772   if (HadEvenDivisor) {
5773     // We need ROTR to do this.
5774     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
5775       return SDValue();
5776     // UREM: (rotr (mul N, P), K)
5777     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
5778     Created.push_back(Op0.getNode());
5779   }
5780 
5781   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5782   SDValue NewCC =
5783       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5784                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5785   if (!HadTautologicalInvertedLanes)
5786     return NewCC;
5787 
5788   // If any lanes previously compared always-false, the NewCC will give
5789   // always-true result for them, so we need to fixup those lanes.
5790   // Or the other way around for inequality predicate.
5791   assert(VT.isVector() && "Can/should only get here for vectors.");
5792   Created.push_back(NewCC.getNode());
5793 
5794   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5795   // if C2 is not less than C1, the comparison is always false.
5796   // But we have produced the comparison that will give the
5797   // opposive tautological answer. So these lanes would need to be fixed up.
5798   SDValue TautologicalInvertedChannels =
5799       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5800   Created.push_back(TautologicalInvertedChannels.getNode());
5801 
5802   // NOTE: we avoid letting illegal types through even if we're before legalize
5803   // ops – legalization has a hard time producing good code for this.
5804   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5805     // If we have a vector select, let's replace the comparison results in the
5806     // affected lanes with the correct tautological result.
5807     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5808                                               DL, SETCCVT, SETCCVT);
5809     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5810                        Replacement, NewCC);
5811   }
5812 
5813   // Else, we can just invert the comparison result in the appropriate lanes.
5814   //
5815   // NOTE: see the note above VSELECT above.
5816   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5817     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5818                        TautologicalInvertedChannels);
5819 
5820   return SDValue(); // Don't know how to lower.
5821 }
5822 
5823 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5824 /// where the divisor is constant and the comparison target is zero,
5825 /// return a DAG expression that will generate the same comparison result
5826 /// using only multiplications, additions and shifts/rotations.
5827 /// Ref: "Hacker's Delight" 10-17.
5828 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5829                                         SDValue CompTargetNode,
5830                                         ISD::CondCode Cond,
5831                                         DAGCombinerInfo &DCI,
5832                                         const SDLoc &DL) const {
5833   SmallVector<SDNode *, 7> Built;
5834   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5835                                          DCI, DL, Built)) {
5836     assert(Built.size() <= 7 && "Max size prediction failed.");
5837     for (SDNode *N : Built)
5838       DCI.AddToWorklist(N);
5839     return Folded;
5840   }
5841 
5842   return SDValue();
5843 }
5844 
5845 SDValue
5846 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5847                                   SDValue CompTargetNode, ISD::CondCode Cond,
5848                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5849                                   SmallVectorImpl<SDNode *> &Created) const {
5850   // Fold:
5851   //   (seteq/ne (srem N, D), 0)
5852   // To:
5853   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5854   //
5855   // - D must be constant, with D = D0 * 2^K where D0 is odd
5856   // - P is the multiplicative inverse of D0 modulo 2^W
5857   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5858   // - Q = floor((2 * A) / (2^K))
5859   // where W is the width of the common type of N and D.
5860   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5861          "Only applicable for (in)equality comparisons.");
5862 
5863   SelectionDAG &DAG = DCI.DAG;
5864 
5865   EVT VT = REMNode.getValueType();
5866   EVT SVT = VT.getScalarType();
5867   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5868   EVT ShSVT = ShVT.getScalarType();
5869 
5870   // If we are after ops legalization, and MUL is unavailable, we can not
5871   // proceed.
5872   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5873     return SDValue();
5874 
5875   // TODO: Could support comparing with non-zero too.
5876   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5877   if (!CompTarget || !CompTarget->isZero())
5878     return SDValue();
5879 
5880   bool HadIntMinDivisor = false;
5881   bool HadOneDivisor = false;
5882   bool AllDivisorsAreOnes = true;
5883   bool HadEvenDivisor = false;
5884   bool NeedToApplyOffset = false;
5885   bool AllDivisorsArePowerOfTwo = true;
5886   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5887 
5888   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5889     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5890     if (C->isZero())
5891       return false;
5892 
5893     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5894 
5895     // WARNING: this fold is only valid for positive divisors!
5896     APInt D = C->getAPIntValue();
5897     if (D.isNegative())
5898       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5899 
5900     HadIntMinDivisor |= D.isMinSignedValue();
5901 
5902     // If all divisors are ones, we will prefer to avoid the fold.
5903     HadOneDivisor |= D.isOneValue();
5904     AllDivisorsAreOnes &= D.isOneValue();
5905 
5906     // Decompose D into D0 * 2^K
5907     unsigned K = D.countTrailingZeros();
5908     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5909     APInt D0 = D.lshr(K);
5910 
5911     if (!D.isMinSignedValue()) {
5912       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5913       // we don't care about this lane in this fold, we'll special-handle it.
5914       HadEvenDivisor |= (K != 0);
5915     }
5916 
5917     // D is a power-of-two if D0 is one. This includes INT_MIN.
5918     // If all divisors are power-of-two, we will prefer to avoid the fold.
5919     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5920 
5921     // P = inv(D0, 2^W)
5922     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5923     unsigned W = D.getBitWidth();
5924     APInt P = D0.zext(W + 1)
5925                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5926                   .trunc(W);
5927     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5928     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5929 
5930     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5931     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5932     A.clearLowBits(K);
5933 
5934     if (!D.isMinSignedValue()) {
5935       // If divisor INT_MIN, then we don't care about this lane in this fold,
5936       // we'll special-handle it.
5937       NeedToApplyOffset |= A != 0;
5938     }
5939 
5940     // Q = floor((2 * A) / (2^K))
5941     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5942 
5943     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
5944            "We are expecting that A is always less than all-ones for SVT");
5945     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
5946            "We are expecting that K is always less than all-ones for ShSVT");
5947 
5948     // If the divisor is 1 the result can be constant-folded. Likewise, we
5949     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5950     if (D.isOneValue()) {
5951       // Set P, A and K to a bogus values so we can try to splat them.
5952       P = 0;
5953       A = -1;
5954       K = -1;
5955 
5956       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5957       Q = -1;
5958     }
5959 
5960     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5961     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5962     KAmts.push_back(
5963         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5964     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5965     return true;
5966   };
5967 
5968   SDValue N = REMNode.getOperand(0);
5969   SDValue D = REMNode.getOperand(1);
5970 
5971   // Collect the values from each element.
5972   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5973     return SDValue();
5974 
5975   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5976   if (AllDivisorsAreOnes)
5977     return SDValue();
5978 
5979   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5980   // since it can be best implemented as a bit test.
5981   if (AllDivisorsArePowerOfTwo)
5982     return SDValue();
5983 
5984   SDValue PVal, AVal, KVal, QVal;
5985   if (D.getOpcode() == ISD::BUILD_VECTOR) {
5986     if (HadOneDivisor) {
5987       // Try to turn PAmts into a splat, since we don't care about the values
5988       // that are currently '0'. If we can't, just keep '0'`s.
5989       turnVectorIntoSplatVector(PAmts, isNullConstant);
5990       // Try to turn AAmts into a splat, since we don't care about the
5991       // values that are currently '-1'. If we can't, change them to '0'`s.
5992       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5993                                 DAG.getConstant(0, DL, SVT));
5994       // Try to turn KAmts into a splat, since we don't care about the values
5995       // that are currently '-1'. If we can't, change them to '0'`s.
5996       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5997                                 DAG.getConstant(0, DL, ShSVT));
5998     }
5999 
6000     PVal = DAG.getBuildVector(VT, DL, PAmts);
6001     AVal = DAG.getBuildVector(VT, DL, AAmts);
6002     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6003     QVal = DAG.getBuildVector(VT, DL, QAmts);
6004   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6005     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
6006            QAmts.size() == 1 &&
6007            "Expected matchUnaryPredicate to return one element for scalable "
6008            "vectors");
6009     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6010     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
6011     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6012     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6013   } else {
6014     assert(isa<ConstantSDNode>(D) && "Expected a constant");
6015     PVal = PAmts[0];
6016     AVal = AAmts[0];
6017     KVal = KAmts[0];
6018     QVal = QAmts[0];
6019   }
6020 
6021   // (mul N, P)
6022   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6023   Created.push_back(Op0.getNode());
6024 
6025   if (NeedToApplyOffset) {
6026     // We need ADD to do this.
6027     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
6028       return SDValue();
6029 
6030     // (add (mul N, P), A)
6031     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
6032     Created.push_back(Op0.getNode());
6033   }
6034 
6035   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6036   // divisors as a performance improvement, since rotating by 0 is a no-op.
6037   if (HadEvenDivisor) {
6038     // We need ROTR to do this.
6039     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6040       return SDValue();
6041     // SREM: (rotr (add (mul N, P), A), K)
6042     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6043     Created.push_back(Op0.getNode());
6044   }
6045 
6046   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
6047   SDValue Fold =
6048       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6049                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6050 
6051   // If we didn't have lanes with INT_MIN divisor, then we're done.
6052   if (!HadIntMinDivisor)
6053     return Fold;
6054 
6055   // That fold is only valid for positive divisors. Which effectively means,
6056   // it is invalid for INT_MIN divisors. So if we have such a lane,
6057   // we must fix-up results for said lanes.
6058   assert(VT.isVector() && "Can/should only get here for vectors.");
6059 
6060   // NOTE: we avoid letting illegal types through even if we're before legalize
6061   // ops – legalization has a hard time producing good code for the code that
6062   // follows.
6063   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
6064       !isOperationLegalOrCustom(ISD::AND, VT) ||
6065       !isOperationLegalOrCustom(Cond, VT) ||
6066       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
6067     return SDValue();
6068 
6069   Created.push_back(Fold.getNode());
6070 
6071   SDValue IntMin = DAG.getConstant(
6072       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
6073   SDValue IntMax = DAG.getConstant(
6074       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
6075   SDValue Zero =
6076       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
6077 
6078   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
6079   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
6080   Created.push_back(DivisorIsIntMin.getNode());
6081 
6082   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
6083   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
6084   Created.push_back(Masked.getNode());
6085   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
6086   Created.push_back(MaskedIsZero.getNode());
6087 
6088   // To produce final result we need to blend 2 vectors: 'SetCC' and
6089   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
6090   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
6091   // constant-folded, select can get lowered to a shuffle with constant mask.
6092   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
6093                                 MaskedIsZero, Fold);
6094 
6095   return Blended;
6096 }
6097 
6098 bool TargetLowering::
6099 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
6100   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
6101     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
6102                                 "be a constant integer");
6103     return true;
6104   }
6105 
6106   return false;
6107 }
6108 
6109 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
6110                                          const DenormalMode &Mode) const {
6111   SDLoc DL(Op);
6112   EVT VT = Op.getValueType();
6113   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6114   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
6115   // Testing it with denormal inputs to avoid wrong estimate.
6116   if (Mode.Input == DenormalMode::IEEE) {
6117     // This is specifically a check for the handling of denormal inputs,
6118     // not the result.
6119 
6120     // Test = fabs(X) < SmallestNormal
6121     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
6122     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
6123     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
6124     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
6125     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
6126   }
6127   // Test = X == 0.0
6128   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
6129 }
6130 
6131 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
6132                                              bool LegalOps, bool OptForSize,
6133                                              NegatibleCost &Cost,
6134                                              unsigned Depth) const {
6135   // fneg is removable even if it has multiple uses.
6136   if (Op.getOpcode() == ISD::FNEG) {
6137     Cost = NegatibleCost::Cheaper;
6138     return Op.getOperand(0);
6139   }
6140 
6141   // Don't recurse exponentially.
6142   if (Depth > SelectionDAG::MaxRecursionDepth)
6143     return SDValue();
6144 
6145   // Pre-increment recursion depth for use in recursive calls.
6146   ++Depth;
6147   const SDNodeFlags Flags = Op->getFlags();
6148   const TargetOptions &Options = DAG.getTarget().Options;
6149   EVT VT = Op.getValueType();
6150   unsigned Opcode = Op.getOpcode();
6151 
6152   // Don't allow anything with multiple uses unless we know it is free.
6153   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6154     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6155                         isFPExtFree(VT, Op.getOperand(0).getValueType());
6156     if (!IsFreeExtend)
6157       return SDValue();
6158   }
6159 
6160   auto RemoveDeadNode = [&](SDValue N) {
6161     if (N && N.getNode()->use_empty())
6162       DAG.RemoveDeadNode(N.getNode());
6163   };
6164 
6165   SDLoc DL(Op);
6166 
6167   // Because getNegatedExpression can delete nodes we need a handle to keep
6168   // temporary nodes alive in case the recursion manages to create an identical
6169   // node.
6170   std::list<HandleSDNode> Handles;
6171 
6172   switch (Opcode) {
6173   case ISD::ConstantFP: {
6174     // Don't invert constant FP values after legalization unless the target says
6175     // the negated constant is legal.
6176     bool IsOpLegal =
6177         isOperationLegal(ISD::ConstantFP, VT) ||
6178         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6179                      OptForSize);
6180 
6181     if (LegalOps && !IsOpLegal)
6182       break;
6183 
6184     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6185     V.changeSign();
6186     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6187 
6188     // If we already have the use of the negated floating constant, it is free
6189     // to negate it even it has multiple uses.
6190     if (!Op.hasOneUse() && CFP.use_empty())
6191       break;
6192     Cost = NegatibleCost::Neutral;
6193     return CFP;
6194   }
6195   case ISD::BUILD_VECTOR: {
6196     // Only permit BUILD_VECTOR of constants.
6197     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6198           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6199         }))
6200       break;
6201 
6202     bool IsOpLegal =
6203         (isOperationLegal(ISD::ConstantFP, VT) &&
6204          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6205         llvm::all_of(Op->op_values(), [&](SDValue N) {
6206           return N.isUndef() ||
6207                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6208                               OptForSize);
6209         });
6210 
6211     if (LegalOps && !IsOpLegal)
6212       break;
6213 
6214     SmallVector<SDValue, 4> Ops;
6215     for (SDValue C : Op->op_values()) {
6216       if (C.isUndef()) {
6217         Ops.push_back(C);
6218         continue;
6219       }
6220       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6221       V.changeSign();
6222       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6223     }
6224     Cost = NegatibleCost::Neutral;
6225     return DAG.getBuildVector(VT, DL, Ops);
6226   }
6227   case ISD::FADD: {
6228     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6229       break;
6230 
6231     // After operation legalization, it might not be legal to create new FSUBs.
6232     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6233       break;
6234     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6235 
6236     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6237     NegatibleCost CostX = NegatibleCost::Expensive;
6238     SDValue NegX =
6239         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6240     // Prevent this node from being deleted by the next call.
6241     if (NegX)
6242       Handles.emplace_back(NegX);
6243 
6244     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6245     NegatibleCost CostY = NegatibleCost::Expensive;
6246     SDValue NegY =
6247         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6248 
6249     // We're done with the handles.
6250     Handles.clear();
6251 
6252     // Negate the X if its cost is less or equal than Y.
6253     if (NegX && (CostX <= CostY)) {
6254       Cost = CostX;
6255       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6256       if (NegY != N)
6257         RemoveDeadNode(NegY);
6258       return N;
6259     }
6260 
6261     // Negate the Y if it is not expensive.
6262     if (NegY) {
6263       Cost = CostY;
6264       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6265       if (NegX != N)
6266         RemoveDeadNode(NegX);
6267       return N;
6268     }
6269     break;
6270   }
6271   case ISD::FSUB: {
6272     // We can't turn -(A-B) into B-A when we honor signed zeros.
6273     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6274       break;
6275 
6276     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6277     // fold (fneg (fsub 0, Y)) -> Y
6278     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6279       if (C->isZero()) {
6280         Cost = NegatibleCost::Cheaper;
6281         return Y;
6282       }
6283 
6284     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6285     Cost = NegatibleCost::Neutral;
6286     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6287   }
6288   case ISD::FMUL:
6289   case ISD::FDIV: {
6290     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6291 
6292     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6293     NegatibleCost CostX = NegatibleCost::Expensive;
6294     SDValue NegX =
6295         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6296     // Prevent this node from being deleted by the next call.
6297     if (NegX)
6298       Handles.emplace_back(NegX);
6299 
6300     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6301     NegatibleCost CostY = NegatibleCost::Expensive;
6302     SDValue NegY =
6303         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6304 
6305     // We're done with the handles.
6306     Handles.clear();
6307 
6308     // Negate the X if its cost is less or equal than Y.
6309     if (NegX && (CostX <= CostY)) {
6310       Cost = CostX;
6311       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6312       if (NegY != N)
6313         RemoveDeadNode(NegY);
6314       return N;
6315     }
6316 
6317     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6318     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6319       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6320         break;
6321 
6322     // Negate the Y if it is not expensive.
6323     if (NegY) {
6324       Cost = CostY;
6325       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6326       if (NegX != N)
6327         RemoveDeadNode(NegX);
6328       return N;
6329     }
6330     break;
6331   }
6332   case ISD::FMA:
6333   case ISD::FMAD: {
6334     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6335       break;
6336 
6337     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6338     NegatibleCost CostZ = NegatibleCost::Expensive;
6339     SDValue NegZ =
6340         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6341     // Give up if fail to negate the Z.
6342     if (!NegZ)
6343       break;
6344 
6345     // Prevent this node from being deleted by the next two calls.
6346     Handles.emplace_back(NegZ);
6347 
6348     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6349     NegatibleCost CostX = NegatibleCost::Expensive;
6350     SDValue NegX =
6351         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6352     // Prevent this node from being deleted by the next call.
6353     if (NegX)
6354       Handles.emplace_back(NegX);
6355 
6356     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6357     NegatibleCost CostY = NegatibleCost::Expensive;
6358     SDValue NegY =
6359         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6360 
6361     // We're done with the handles.
6362     Handles.clear();
6363 
6364     // Negate the X if its cost is less or equal than Y.
6365     if (NegX && (CostX <= CostY)) {
6366       Cost = std::min(CostX, CostZ);
6367       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6368       if (NegY != N)
6369         RemoveDeadNode(NegY);
6370       return N;
6371     }
6372 
6373     // Negate the Y if it is not expensive.
6374     if (NegY) {
6375       Cost = std::min(CostY, CostZ);
6376       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6377       if (NegX != N)
6378         RemoveDeadNode(NegX);
6379       return N;
6380     }
6381     break;
6382   }
6383 
6384   case ISD::FP_EXTEND:
6385   case ISD::FSIN:
6386     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6387                                             OptForSize, Cost, Depth))
6388       return DAG.getNode(Opcode, DL, VT, NegV);
6389     break;
6390   case ISD::FP_ROUND:
6391     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6392                                             OptForSize, Cost, Depth))
6393       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6394     break;
6395   }
6396 
6397   return SDValue();
6398 }
6399 
6400 //===----------------------------------------------------------------------===//
6401 // Legalization Utilities
6402 //===----------------------------------------------------------------------===//
6403 
6404 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6405                                     SDValue LHS, SDValue RHS,
6406                                     SmallVectorImpl<SDValue> &Result,
6407                                     EVT HiLoVT, SelectionDAG &DAG,
6408                                     MulExpansionKind Kind, SDValue LL,
6409                                     SDValue LH, SDValue RL, SDValue RH) const {
6410   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6411          Opcode == ISD::SMUL_LOHI);
6412 
6413   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6414                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6415   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6416                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6417   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6418                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6419   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6420                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6421 
6422   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6423     return false;
6424 
6425   unsigned OuterBitSize = VT.getScalarSizeInBits();
6426   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6427 
6428   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6429   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6430          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6431 
6432   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6433   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6434                           bool Signed) -> bool {
6435     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6436       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6437       Hi = SDValue(Lo.getNode(), 1);
6438       return true;
6439     }
6440     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6441       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6442       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6443       return true;
6444     }
6445     return false;
6446   };
6447 
6448   SDValue Lo, Hi;
6449 
6450   if (!LL.getNode() && !RL.getNode() &&
6451       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6452     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6453     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6454   }
6455 
6456   if (!LL.getNode())
6457     return false;
6458 
6459   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6460   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6461       DAG.MaskedValueIsZero(RHS, HighMask)) {
6462     // The inputs are both zero-extended.
6463     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6464       Result.push_back(Lo);
6465       Result.push_back(Hi);
6466       if (Opcode != ISD::MUL) {
6467         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6468         Result.push_back(Zero);
6469         Result.push_back(Zero);
6470       }
6471       return true;
6472     }
6473   }
6474 
6475   if (!VT.isVector() && Opcode == ISD::MUL &&
6476       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6477       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6478     // The input values are both sign-extended.
6479     // TODO non-MUL case?
6480     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6481       Result.push_back(Lo);
6482       Result.push_back(Hi);
6483       return true;
6484     }
6485   }
6486 
6487   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6488   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6489   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
6490     // FIXME getShiftAmountTy does not always return a sensible result when VT
6491     // is an illegal type, and so the type may be too small to fit the shift
6492     // amount. Override it with i32. The shift will have to be legalized.
6493     ShiftAmountTy = MVT::i32;
6494   }
6495   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6496 
6497   if (!LH.getNode() && !RH.getNode() &&
6498       isOperationLegalOrCustom(ISD::SRL, VT) &&
6499       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6500     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6501     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6502     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6503     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6504   }
6505 
6506   if (!LH.getNode())
6507     return false;
6508 
6509   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6510     return false;
6511 
6512   Result.push_back(Lo);
6513 
6514   if (Opcode == ISD::MUL) {
6515     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6516     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6517     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6518     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6519     Result.push_back(Hi);
6520     return true;
6521   }
6522 
6523   // Compute the full width result.
6524   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6525     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6526     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6527     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6528     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6529   };
6530 
6531   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6532   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6533     return false;
6534 
6535   // This is effectively the add part of a multiply-add of half-sized operands,
6536   // so it cannot overflow.
6537   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6538 
6539   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6540     return false;
6541 
6542   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6543   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6544 
6545   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6546                   isOperationLegalOrCustom(ISD::ADDE, VT));
6547   if (UseGlue)
6548     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6549                        Merge(Lo, Hi));
6550   else
6551     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6552                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6553 
6554   SDValue Carry = Next.getValue(1);
6555   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6556   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6557 
6558   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6559     return false;
6560 
6561   if (UseGlue)
6562     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6563                      Carry);
6564   else
6565     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6566                      Zero, Carry);
6567 
6568   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6569 
6570   if (Opcode == ISD::SMUL_LOHI) {
6571     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6572                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6573     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6574 
6575     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6576                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6577     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6578   }
6579 
6580   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6581   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6582   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6583   return true;
6584 }
6585 
6586 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6587                                SelectionDAG &DAG, MulExpansionKind Kind,
6588                                SDValue LL, SDValue LH, SDValue RL,
6589                                SDValue RH) const {
6590   SmallVector<SDValue, 2> Result;
6591   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6592                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6593                            DAG, Kind, LL, LH, RL, RH);
6594   if (Ok) {
6595     assert(Result.size() == 2);
6596     Lo = Result[0];
6597     Hi = Result[1];
6598   }
6599   return Ok;
6600 }
6601 
6602 // Check that (every element of) Z is undef or not an exact multiple of BW.
6603 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
6604   return ISD::matchUnaryPredicate(
6605       Z,
6606       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
6607       true);
6608 }
6609 
6610 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
6611                                        SelectionDAG &DAG) const {
6612   EVT VT = Node->getValueType(0);
6613 
6614   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6615                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6616                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6617                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6618     return false;
6619 
6620   SDValue X = Node->getOperand(0);
6621   SDValue Y = Node->getOperand(1);
6622   SDValue Z = Node->getOperand(2);
6623 
6624   unsigned BW = VT.getScalarSizeInBits();
6625   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6626   SDLoc DL(SDValue(Node, 0));
6627 
6628   EVT ShVT = Z.getValueType();
6629 
6630   // If a funnel shift in the other direction is more supported, use it.
6631   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
6632   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6633       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
6634     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6635       // fshl X, Y, Z -> fshr X, Y, -Z
6636       // fshr X, Y, Z -> fshl X, Y, -Z
6637       SDValue Zero = DAG.getConstant(0, DL, ShVT);
6638       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
6639     } else {
6640       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
6641       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
6642       SDValue One = DAG.getConstant(1, DL, ShVT);
6643       if (IsFSHL) {
6644         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6645         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
6646       } else {
6647         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6648         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
6649       }
6650       Z = DAG.getNOT(DL, Z, ShVT);
6651     }
6652     Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
6653     return true;
6654   }
6655 
6656   SDValue ShX, ShY;
6657   SDValue ShAmt, InvShAmt;
6658   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6659     // fshl: X << C | Y >> (BW - C)
6660     // fshr: X << (BW - C) | Y >> C
6661     // where C = Z % BW is not zero
6662     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6663     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6664     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6665     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6666     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6667   } else {
6668     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6669     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6670     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
6671     if (isPowerOf2_32(BW)) {
6672       // Z % BW -> Z & (BW - 1)
6673       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6674       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
6675       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
6676     } else {
6677       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6678       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6679       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
6680     }
6681 
6682     SDValue One = DAG.getConstant(1, DL, ShVT);
6683     if (IsFSHL) {
6684       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
6685       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
6686       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
6687     } else {
6688       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
6689       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
6690       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
6691     }
6692   }
6693   Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6694   return true;
6695 }
6696 
6697 // TODO: Merge with expandFunnelShift.
6698 bool TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
6699                                SDValue &Result, SelectionDAG &DAG) const {
6700   EVT VT = Node->getValueType(0);
6701   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6702   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6703   SDValue Op0 = Node->getOperand(0);
6704   SDValue Op1 = Node->getOperand(1);
6705   SDLoc DL(SDValue(Node, 0));
6706 
6707   EVT ShVT = Op1.getValueType();
6708   SDValue Zero = DAG.getConstant(0, DL, ShVT);
6709 
6710   // If a rotate in the other direction is supported, use it.
6711   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6712   if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
6713     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6714     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6715     return true;
6716   }
6717 
6718   if (!AllowVectorOps && VT.isVector() &&
6719       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6720        !isOperationLegalOrCustom(ISD::SRL, VT) ||
6721        !isOperationLegalOrCustom(ISD::SUB, VT) ||
6722        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6723        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6724     return false;
6725 
6726   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6727   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6728   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6729   SDValue ShVal;
6730   SDValue HsVal;
6731   if (isPowerOf2_32(EltSizeInBits)) {
6732     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
6733     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
6734     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6735     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6736     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6737     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6738     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
6739   } else {
6740     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
6741     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
6742     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6743     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
6744     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6745     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
6746     SDValue One = DAG.getConstant(1, DL, ShVT);
6747     HsVal =
6748         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
6749   }
6750   Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
6751   return true;
6752 }
6753 
6754 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
6755                                       SelectionDAG &DAG) const {
6756   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
6757   EVT VT = Node->getValueType(0);
6758   unsigned VTBits = VT.getScalarSizeInBits();
6759   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
6760 
6761   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
6762   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
6763   SDValue ShOpLo = Node->getOperand(0);
6764   SDValue ShOpHi = Node->getOperand(1);
6765   SDValue ShAmt = Node->getOperand(2);
6766   EVT ShAmtVT = ShAmt.getValueType();
6767   EVT ShAmtCCVT =
6768       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
6769   SDLoc dl(Node);
6770 
6771   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
6772   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
6773   // away during isel.
6774   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6775                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
6776   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6777                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
6778                        : DAG.getConstant(0, dl, VT);
6779 
6780   SDValue Tmp2, Tmp3;
6781   if (IsSHL) {
6782     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
6783     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
6784   } else {
6785     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
6786     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
6787   }
6788 
6789   // If the shift amount is larger or equal than the width of a part we don't
6790   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
6791   // values for large shift amounts.
6792   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6793                                 DAG.getConstant(VTBits, dl, ShAmtVT));
6794   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
6795                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
6796 
6797   if (IsSHL) {
6798     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6799     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6800   } else {
6801     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6802     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6803   }
6804 }
6805 
6806 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6807                                       SelectionDAG &DAG) const {
6808   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6809   SDValue Src = Node->getOperand(OpNo);
6810   EVT SrcVT = Src.getValueType();
6811   EVT DstVT = Node->getValueType(0);
6812   SDLoc dl(SDValue(Node, 0));
6813 
6814   // FIXME: Only f32 to i64 conversions are supported.
6815   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6816     return false;
6817 
6818   if (Node->isStrictFPOpcode())
6819     // When a NaN is converted to an integer a trap is allowed. We can't
6820     // use this expansion here because it would eliminate that trap. Other
6821     // traps are also allowed and cannot be eliminated. See
6822     // IEEE 754-2008 sec 5.8.
6823     return false;
6824 
6825   // Expand f32 -> i64 conversion
6826   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6827   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
6828   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6829   EVT IntVT = SrcVT.changeTypeToInteger();
6830   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6831 
6832   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6833   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6834   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6835   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6836   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6837   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6838 
6839   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6840 
6841   SDValue ExponentBits = DAG.getNode(
6842       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6843       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6844   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6845 
6846   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6847                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6848                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6849   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6850 
6851   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6852                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6853                           DAG.getConstant(0x00800000, dl, IntVT));
6854 
6855   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6856 
6857   R = DAG.getSelectCC(
6858       dl, Exponent, ExponentLoBit,
6859       DAG.getNode(ISD::SHL, dl, DstVT, R,
6860                   DAG.getZExtOrTrunc(
6861                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6862                       dl, IntShVT)),
6863       DAG.getNode(ISD::SRL, dl, DstVT, R,
6864                   DAG.getZExtOrTrunc(
6865                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6866                       dl, IntShVT)),
6867       ISD::SETGT);
6868 
6869   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6870                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6871 
6872   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6873                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6874   return true;
6875 }
6876 
6877 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6878                                       SDValue &Chain,
6879                                       SelectionDAG &DAG) const {
6880   SDLoc dl(SDValue(Node, 0));
6881   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6882   SDValue Src = Node->getOperand(OpNo);
6883 
6884   EVT SrcVT = Src.getValueType();
6885   EVT DstVT = Node->getValueType(0);
6886   EVT SetCCVT =
6887       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6888   EVT DstSetCCVT =
6889       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6890 
6891   // Only expand vector types if we have the appropriate vector bit operations.
6892   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6893                                                    ISD::FP_TO_SINT;
6894   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6895                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6896     return false;
6897 
6898   // If the maximum float value is smaller then the signed integer range,
6899   // the destination signmask can't be represented by the float, so we can
6900   // just use FP_TO_SINT directly.
6901   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6902   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
6903   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6904   if (APFloat::opOverflow &
6905       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6906     if (Node->isStrictFPOpcode()) {
6907       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6908                            { Node->getOperand(0), Src });
6909       Chain = Result.getValue(1);
6910     } else
6911       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6912     return true;
6913   }
6914 
6915   // Don't expand it if there isn't cheap fsub instruction.
6916   if (!isOperationLegalOrCustom(
6917           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
6918     return false;
6919 
6920   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6921   SDValue Sel;
6922 
6923   if (Node->isStrictFPOpcode()) {
6924     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6925                        Node->getOperand(0), /*IsSignaling*/ true);
6926     Chain = Sel.getValue(1);
6927   } else {
6928     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6929   }
6930 
6931   bool Strict = Node->isStrictFPOpcode() ||
6932                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6933 
6934   if (Strict) {
6935     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6936     // signmask then offset (the result of which should be fully representable).
6937     // Sel = Src < 0x8000000000000000
6938     // FltOfs = select Sel, 0, 0x8000000000000000
6939     // IntOfs = select Sel, 0, 0x8000000000000000
6940     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6941 
6942     // TODO: Should any fast-math-flags be set for the FSUB?
6943     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6944                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6945     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6946     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6947                                    DAG.getConstant(0, dl, DstVT),
6948                                    DAG.getConstant(SignMask, dl, DstVT));
6949     SDValue SInt;
6950     if (Node->isStrictFPOpcode()) {
6951       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6952                                 { Chain, Src, FltOfs });
6953       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6954                          { Val.getValue(1), Val });
6955       Chain = SInt.getValue(1);
6956     } else {
6957       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6958       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6959     }
6960     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6961   } else {
6962     // Expand based on maximum range of FP_TO_SINT:
6963     // True = fp_to_sint(Src)
6964     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6965     // Result = select (Src < 0x8000000000000000), True, False
6966 
6967     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6968     // TODO: Should any fast-math-flags be set for the FSUB?
6969     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6970                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6971     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6972                         DAG.getConstant(SignMask, dl, DstVT));
6973     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6974     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6975   }
6976   return true;
6977 }
6978 
6979 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6980                                       SDValue &Chain,
6981                                       SelectionDAG &DAG) const {
6982   // This transform is not correct for converting 0 when rounding mode is set
6983   // to round toward negative infinity which will produce -0.0. So disable under
6984   // strictfp.
6985   if (Node->isStrictFPOpcode())
6986     return false;
6987 
6988   SDValue Src = Node->getOperand(0);
6989   EVT SrcVT = Src.getValueType();
6990   EVT DstVT = Node->getValueType(0);
6991 
6992   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6993     return false;
6994 
6995   // Only expand vector types if we have the appropriate vector bit operations.
6996   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6997                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6998                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6999                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
7000                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
7001     return false;
7002 
7003   SDLoc dl(SDValue(Node, 0));
7004   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
7005 
7006   // Implementation of unsigned i64 to f64 following the algorithm in
7007   // __floatundidf in compiler_rt.  This implementation performs rounding
7008   // correctly in all rounding modes with the exception of converting 0
7009   // when rounding toward negative infinity. In that case the fsub will produce
7010   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
7011   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
7012   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
7013       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
7014   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
7015   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
7016   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
7017 
7018   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
7019   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
7020   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
7021   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
7022   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
7023   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
7024   SDValue HiSub =
7025       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
7026   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
7027   return true;
7028 }
7029 
7030 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
7031                                               SelectionDAG &DAG) const {
7032   SDLoc dl(Node);
7033   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
7034     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
7035   EVT VT = Node->getValueType(0);
7036 
7037   if (VT.isScalableVector())
7038     report_fatal_error(
7039         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
7040 
7041   if (isOperationLegalOrCustom(NewOp, VT)) {
7042     SDValue Quiet0 = Node->getOperand(0);
7043     SDValue Quiet1 = Node->getOperand(1);
7044 
7045     if (!Node->getFlags().hasNoNaNs()) {
7046       // Insert canonicalizes if it's possible we need to quiet to get correct
7047       // sNaN behavior.
7048       if (!DAG.isKnownNeverSNaN(Quiet0)) {
7049         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
7050                              Node->getFlags());
7051       }
7052       if (!DAG.isKnownNeverSNaN(Quiet1)) {
7053         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
7054                              Node->getFlags());
7055       }
7056     }
7057 
7058     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
7059   }
7060 
7061   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
7062   // instead if there are no NaNs.
7063   if (Node->getFlags().hasNoNaNs()) {
7064     unsigned IEEE2018Op =
7065         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
7066     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
7067       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
7068                          Node->getOperand(1), Node->getFlags());
7069     }
7070   }
7071 
7072   // If none of the above worked, but there are no NaNs, then expand to
7073   // a compare/select sequence.  This is required for correctness since
7074   // InstCombine might have canonicalized a fcmp+select sequence to a
7075   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
7076   // expansion to libcall, we might introduce a link-time dependency
7077   // on libm into a file that originally did not have one.
7078   if (Node->getFlags().hasNoNaNs()) {
7079     ISD::CondCode Pred =
7080         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
7081     SDValue Op1 = Node->getOperand(0);
7082     SDValue Op2 = Node->getOperand(1);
7083     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
7084     // Copy FMF flags, but always set the no-signed-zeros flag
7085     // as this is implied by the FMINNUM/FMAXNUM semantics.
7086     SDNodeFlags Flags = Node->getFlags();
7087     Flags.setNoSignedZeros(true);
7088     SelCC->setFlags(Flags);
7089     return SelCC;
7090   }
7091 
7092   return SDValue();
7093 }
7094 
7095 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
7096                                  SelectionDAG &DAG) const {
7097   SDLoc dl(Node);
7098   EVT VT = Node->getValueType(0);
7099   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7100   SDValue Op = Node->getOperand(0);
7101   unsigned Len = VT.getScalarSizeInBits();
7102   assert(VT.isInteger() && "CTPOP not implemented for this type.");
7103 
7104   // TODO: Add support for irregular type lengths.
7105   if (!(Len <= 128 && Len % 8 == 0))
7106     return false;
7107 
7108   // Only expand vector types if we have the appropriate vector bit operations.
7109   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
7110                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7111                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7112                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
7113                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
7114     return false;
7115 
7116   // This is the "best" algorithm from
7117   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
7118   SDValue Mask55 =
7119       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
7120   SDValue Mask33 =
7121       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
7122   SDValue Mask0F =
7123       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
7124   SDValue Mask01 =
7125       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
7126 
7127   // v = v - ((v >> 1) & 0x55555555...)
7128   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
7129                    DAG.getNode(ISD::AND, dl, VT,
7130                                DAG.getNode(ISD::SRL, dl, VT, Op,
7131                                            DAG.getConstant(1, dl, ShVT)),
7132                                Mask55));
7133   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
7134   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
7135                    DAG.getNode(ISD::AND, dl, VT,
7136                                DAG.getNode(ISD::SRL, dl, VT, Op,
7137                                            DAG.getConstant(2, dl, ShVT)),
7138                                Mask33));
7139   // v = (v + (v >> 4)) & 0x0F0F0F0F...
7140   Op = DAG.getNode(ISD::AND, dl, VT,
7141                    DAG.getNode(ISD::ADD, dl, VT, Op,
7142                                DAG.getNode(ISD::SRL, dl, VT, Op,
7143                                            DAG.getConstant(4, dl, ShVT))),
7144                    Mask0F);
7145   // v = (v * 0x01010101...) >> (Len - 8)
7146   if (Len > 8)
7147     Op =
7148         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
7149                     DAG.getConstant(Len - 8, dl, ShVT));
7150 
7151   Result = Op;
7152   return true;
7153 }
7154 
7155 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
7156                                 SelectionDAG &DAG) const {
7157   SDLoc dl(Node);
7158   EVT VT = Node->getValueType(0);
7159   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7160   SDValue Op = Node->getOperand(0);
7161   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7162 
7163   // If the non-ZERO_UNDEF version is supported we can use that instead.
7164   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
7165       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
7166     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
7167     return true;
7168   }
7169 
7170   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7171   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
7172     EVT SetCCVT =
7173         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7174     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
7175     SDValue Zero = DAG.getConstant(0, dl, VT);
7176     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7177     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
7178                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
7179     return true;
7180   }
7181 
7182   // Only expand vector types if we have the appropriate vector bit operations.
7183   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7184                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
7185                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7186                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7187     return false;
7188 
7189   // for now, we do this:
7190   // x = x | (x >> 1);
7191   // x = x | (x >> 2);
7192   // ...
7193   // x = x | (x >>16);
7194   // x = x | (x >>32); // for 64-bit input
7195   // return popcount(~x);
7196   //
7197   // Ref: "Hacker's Delight" by Henry Warren
7198   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
7199     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
7200     Op = DAG.getNode(ISD::OR, dl, VT, Op,
7201                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
7202   }
7203   Op = DAG.getNOT(dl, Op, VT);
7204   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
7205   return true;
7206 }
7207 
7208 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
7209                                 SelectionDAG &DAG) const {
7210   SDLoc dl(Node);
7211   EVT VT = Node->getValueType(0);
7212   SDValue Op = Node->getOperand(0);
7213   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7214 
7215   // If the non-ZERO_UNDEF version is supported we can use that instead.
7216   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
7217       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
7218     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
7219     return true;
7220   }
7221 
7222   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7223   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7224     EVT SetCCVT =
7225         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7226     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7227     SDValue Zero = DAG.getConstant(0, dl, VT);
7228     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7229     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
7230                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7231     return true;
7232   }
7233 
7234   // Only expand vector types if we have the appropriate vector bit operations.
7235   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7236                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7237                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
7238                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7239                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
7240                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7241     return false;
7242 
7243   // for now, we use: { return popcount(~x & (x - 1)); }
7244   // unless the target has ctlz but not ctpop, in which case we use:
7245   // { return 32 - nlz(~x & (x-1)); }
7246   // Ref: "Hacker's Delight" by Henry Warren
7247   SDValue Tmp = DAG.getNode(
7248       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
7249       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
7250 
7251   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
7252   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
7253     Result =
7254         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
7255                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
7256     return true;
7257   }
7258 
7259   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
7260   return true;
7261 }
7262 
7263 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
7264                                SelectionDAG &DAG, bool IsNegative) const {
7265   SDLoc dl(N);
7266   EVT VT = N->getValueType(0);
7267   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7268   SDValue Op = N->getOperand(0);
7269 
7270   // abs(x) -> smax(x,sub(0,x))
7271   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7272       isOperationLegal(ISD::SMAX, VT)) {
7273     SDValue Zero = DAG.getConstant(0, dl, VT);
7274     Result = DAG.getNode(ISD::SMAX, dl, VT, Op,
7275                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7276     return true;
7277   }
7278 
7279   // abs(x) -> umin(x,sub(0,x))
7280   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7281       isOperationLegal(ISD::UMIN, VT)) {
7282     SDValue Zero = DAG.getConstant(0, dl, VT);
7283     Result = DAG.getNode(ISD::UMIN, dl, VT, Op,
7284                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7285     return true;
7286   }
7287 
7288   // 0 - abs(x) -> smin(x, sub(0,x))
7289   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
7290       isOperationLegal(ISD::SMIN, VT)) {
7291     SDValue Zero = DAG.getConstant(0, dl, VT);
7292     Result = DAG.getNode(ISD::SMIN, dl, VT, Op,
7293                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7294     return true;
7295   }
7296 
7297   // Only expand vector types if we have the appropriate vector operations.
7298   if (VT.isVector() &&
7299       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
7300        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
7301        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
7302        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7303     return false;
7304 
7305   SDValue Shift =
7306       DAG.getNode(ISD::SRA, dl, VT, Op,
7307                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
7308   if (!IsNegative) {
7309     SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
7310     Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
7311   } else {
7312     // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
7313     SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
7314     Result = DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
7315   }
7316   return true;
7317 }
7318 
7319 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
7320   SDLoc dl(N);
7321   EVT VT = N->getValueType(0);
7322   SDValue Op = N->getOperand(0);
7323 
7324   if (!VT.isSimple())
7325     return SDValue();
7326 
7327   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7328   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
7329   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
7330   default:
7331     return SDValue();
7332   case MVT::i16:
7333     // Use a rotate by 8. This can be further expanded if necessary.
7334     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7335   case MVT::i32:
7336     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7337     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7338     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7339     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7340     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7341                        DAG.getConstant(0xFF0000, dl, VT));
7342     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
7343     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7344     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7345     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7346   case MVT::i64:
7347     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7348     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7349     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7350     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7351     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7352     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7353     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7354     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7355     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
7356                        DAG.getConstant(255ULL<<48, dl, VT));
7357     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
7358                        DAG.getConstant(255ULL<<40, dl, VT));
7359     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
7360                        DAG.getConstant(255ULL<<32, dl, VT));
7361     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
7362                        DAG.getConstant(255ULL<<24, dl, VT));
7363     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7364                        DAG.getConstant(255ULL<<16, dl, VT));
7365     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
7366                        DAG.getConstant(255ULL<<8 , dl, VT));
7367     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
7368     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
7369     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7370     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7371     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
7372     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7373     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
7374   }
7375 }
7376 
7377 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
7378   SDLoc dl(N);
7379   EVT VT = N->getValueType(0);
7380   SDValue Op = N->getOperand(0);
7381   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7382   unsigned Sz = VT.getScalarSizeInBits();
7383 
7384   SDValue Tmp, Tmp2, Tmp3;
7385 
7386   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
7387   // and finally the i1 pairs.
7388   // TODO: We can easily support i4/i2 legal types if any target ever does.
7389   if (Sz >= 8 && isPowerOf2_32(Sz)) {
7390     // Create the masks - repeating the pattern every byte.
7391     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
7392     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
7393     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
7394 
7395     // BSWAP if the type is wider than a single byte.
7396     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
7397 
7398     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
7399     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
7400     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
7401     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
7402     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
7403     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7404 
7405     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
7406     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
7407     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
7408     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
7409     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
7410     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7411 
7412     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
7413     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
7414     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
7415     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
7416     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
7417     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7418     return Tmp;
7419   }
7420 
7421   Tmp = DAG.getConstant(0, dl, VT);
7422   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
7423     if (I < J)
7424       Tmp2 =
7425           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
7426     else
7427       Tmp2 =
7428           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
7429 
7430     APInt Shift(Sz, 1);
7431     Shift <<= J;
7432     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
7433     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
7434   }
7435 
7436   return Tmp;
7437 }
7438 
7439 std::pair<SDValue, SDValue>
7440 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
7441                                     SelectionDAG &DAG) const {
7442   SDLoc SL(LD);
7443   SDValue Chain = LD->getChain();
7444   SDValue BasePTR = LD->getBasePtr();
7445   EVT SrcVT = LD->getMemoryVT();
7446   EVT DstVT = LD->getValueType(0);
7447   ISD::LoadExtType ExtType = LD->getExtensionType();
7448 
7449   if (SrcVT.isScalableVector())
7450     report_fatal_error("Cannot scalarize scalable vector loads");
7451 
7452   unsigned NumElem = SrcVT.getVectorNumElements();
7453 
7454   EVT SrcEltVT = SrcVT.getScalarType();
7455   EVT DstEltVT = DstVT.getScalarType();
7456 
7457   // A vector must always be stored in memory as-is, i.e. without any padding
7458   // between the elements, since various code depend on it, e.g. in the
7459   // handling of a bitcast of a vector type to int, which may be done with a
7460   // vector store followed by an integer load. A vector that does not have
7461   // elements that are byte-sized must therefore be stored as an integer
7462   // built out of the extracted vector elements.
7463   if (!SrcEltVT.isByteSized()) {
7464     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
7465     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
7466 
7467     unsigned NumSrcBits = SrcVT.getSizeInBits();
7468     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
7469 
7470     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
7471     SDValue SrcEltBitMask = DAG.getConstant(
7472         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
7473 
7474     // Load the whole vector and avoid masking off the top bits as it makes
7475     // the codegen worse.
7476     SDValue Load =
7477         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
7478                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
7479                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7480 
7481     SmallVector<SDValue, 8> Vals;
7482     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7483       unsigned ShiftIntoIdx =
7484           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7485       SDValue ShiftAmount =
7486           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
7487                                      LoadVT, SL, /*LegalTypes=*/false);
7488       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
7489       SDValue Elt =
7490           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
7491       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
7492 
7493       if (ExtType != ISD::NON_EXTLOAD) {
7494         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
7495         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
7496       }
7497 
7498       Vals.push_back(Scalar);
7499     }
7500 
7501     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7502     return std::make_pair(Value, Load.getValue(1));
7503   }
7504 
7505   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
7506   assert(SrcEltVT.isByteSized());
7507 
7508   SmallVector<SDValue, 8> Vals;
7509   SmallVector<SDValue, 8> LoadChains;
7510 
7511   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7512     SDValue ScalarLoad =
7513         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
7514                        LD->getPointerInfo().getWithOffset(Idx * Stride),
7515                        SrcEltVT, LD->getOriginalAlign(),
7516                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7517 
7518     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
7519 
7520     Vals.push_back(ScalarLoad.getValue(0));
7521     LoadChains.push_back(ScalarLoad.getValue(1));
7522   }
7523 
7524   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
7525   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7526 
7527   return std::make_pair(Value, NewChain);
7528 }
7529 
7530 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
7531                                              SelectionDAG &DAG) const {
7532   SDLoc SL(ST);
7533 
7534   SDValue Chain = ST->getChain();
7535   SDValue BasePtr = ST->getBasePtr();
7536   SDValue Value = ST->getValue();
7537   EVT StVT = ST->getMemoryVT();
7538 
7539   if (StVT.isScalableVector())
7540     report_fatal_error("Cannot scalarize scalable vector stores");
7541 
7542   // The type of the data we want to save
7543   EVT RegVT = Value.getValueType();
7544   EVT RegSclVT = RegVT.getScalarType();
7545 
7546   // The type of data as saved in memory.
7547   EVT MemSclVT = StVT.getScalarType();
7548 
7549   unsigned NumElem = StVT.getVectorNumElements();
7550 
7551   // A vector must always be stored in memory as-is, i.e. without any padding
7552   // between the elements, since various code depend on it, e.g. in the
7553   // handling of a bitcast of a vector type to int, which may be done with a
7554   // vector store followed by an integer load. A vector that does not have
7555   // elements that are byte-sized must therefore be stored as an integer
7556   // built out of the extracted vector elements.
7557   if (!MemSclVT.isByteSized()) {
7558     unsigned NumBits = StVT.getSizeInBits();
7559     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
7560 
7561     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
7562 
7563     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7564       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7565                                 DAG.getVectorIdxConstant(Idx, SL));
7566       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
7567       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
7568       unsigned ShiftIntoIdx =
7569           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7570       SDValue ShiftAmount =
7571           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
7572       SDValue ShiftedElt =
7573           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
7574       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
7575     }
7576 
7577     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
7578                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7579                         ST->getAAInfo());
7580   }
7581 
7582   // Store Stride in bytes
7583   unsigned Stride = MemSclVT.getSizeInBits() / 8;
7584   assert(Stride && "Zero stride!");
7585   // Extract each of the elements from the original vector and save them into
7586   // memory individually.
7587   SmallVector<SDValue, 8> Stores;
7588   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7589     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7590                               DAG.getVectorIdxConstant(Idx, SL));
7591 
7592     SDValue Ptr =
7593         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
7594 
7595     // This scalar TruncStore may be illegal, but we legalize it later.
7596     SDValue Store = DAG.getTruncStore(
7597         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
7598         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7599         ST->getAAInfo());
7600 
7601     Stores.push_back(Store);
7602   }
7603 
7604   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
7605 }
7606 
7607 std::pair<SDValue, SDValue>
7608 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
7609   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
7610          "unaligned indexed loads not implemented!");
7611   SDValue Chain = LD->getChain();
7612   SDValue Ptr = LD->getBasePtr();
7613   EVT VT = LD->getValueType(0);
7614   EVT LoadedVT = LD->getMemoryVT();
7615   SDLoc dl(LD);
7616   auto &MF = DAG.getMachineFunction();
7617 
7618   if (VT.isFloatingPoint() || VT.isVector()) {
7619     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
7620     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
7621       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
7622           LoadedVT.isVector()) {
7623         // Scalarize the load and let the individual components be handled.
7624         return scalarizeVectorLoad(LD, DAG);
7625       }
7626 
7627       // Expand to a (misaligned) integer load of the same size,
7628       // then bitconvert to floating point or vector.
7629       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
7630                                     LD->getMemOperand());
7631       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
7632       if (LoadedVT != VT)
7633         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
7634                              ISD::ANY_EXTEND, dl, VT, Result);
7635 
7636       return std::make_pair(Result, newLoad.getValue(1));
7637     }
7638 
7639     // Copy the value to a (aligned) stack slot using (unaligned) integer
7640     // loads and stores, then do a (aligned) load from the stack slot.
7641     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
7642     unsigned LoadedBytes = LoadedVT.getStoreSize();
7643     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7644     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
7645 
7646     // Make sure the stack slot is also aligned for the register type.
7647     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
7648     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
7649     SmallVector<SDValue, 8> Stores;
7650     SDValue StackPtr = StackBase;
7651     unsigned Offset = 0;
7652 
7653     EVT PtrVT = Ptr.getValueType();
7654     EVT StackPtrVT = StackPtr.getValueType();
7655 
7656     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7657     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7658 
7659     // Do all but one copies using the full register width.
7660     for (unsigned i = 1; i < NumRegs; i++) {
7661       // Load one integer register's worth from the original location.
7662       SDValue Load = DAG.getLoad(
7663           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
7664           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7665           LD->getAAInfo());
7666       // Follow the load with a store to the stack slot.  Remember the store.
7667       Stores.push_back(DAG.getStore(
7668           Load.getValue(1), dl, Load, StackPtr,
7669           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
7670       // Increment the pointers.
7671       Offset += RegBytes;
7672 
7673       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7674       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7675     }
7676 
7677     // The last copy may be partial.  Do an extending load.
7678     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
7679                                   8 * (LoadedBytes - Offset));
7680     SDValue Load =
7681         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
7682                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
7683                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7684                        LD->getAAInfo());
7685     // Follow the load with a store to the stack slot.  Remember the store.
7686     // On big-endian machines this requires a truncating store to ensure
7687     // that the bits end up in the right place.
7688     Stores.push_back(DAG.getTruncStore(
7689         Load.getValue(1), dl, Load, StackPtr,
7690         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
7691 
7692     // The order of the stores doesn't matter - say it with a TokenFactor.
7693     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7694 
7695     // Finally, perform the original load only redirected to the stack slot.
7696     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
7697                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
7698                           LoadedVT);
7699 
7700     // Callers expect a MERGE_VALUES node.
7701     return std::make_pair(Load, TF);
7702   }
7703 
7704   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
7705          "Unaligned load of unsupported type.");
7706 
7707   // Compute the new VT that is half the size of the old one.  This is an
7708   // integer MVT.
7709   unsigned NumBits = LoadedVT.getSizeInBits();
7710   EVT NewLoadedVT;
7711   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
7712   NumBits >>= 1;
7713 
7714   Align Alignment = LD->getOriginalAlign();
7715   unsigned IncrementSize = NumBits / 8;
7716   ISD::LoadExtType HiExtType = LD->getExtensionType();
7717 
7718   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
7719   if (HiExtType == ISD::NON_EXTLOAD)
7720     HiExtType = ISD::ZEXTLOAD;
7721 
7722   // Load the value in two parts
7723   SDValue Lo, Hi;
7724   if (DAG.getDataLayout().isLittleEndian()) {
7725     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7726                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7727                         LD->getAAInfo());
7728 
7729     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7730     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
7731                         LD->getPointerInfo().getWithOffset(IncrementSize),
7732                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7733                         LD->getAAInfo());
7734   } else {
7735     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7736                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7737                         LD->getAAInfo());
7738 
7739     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7740     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
7741                         LD->getPointerInfo().getWithOffset(IncrementSize),
7742                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7743                         LD->getAAInfo());
7744   }
7745 
7746   // aggregate the two parts
7747   SDValue ShiftAmount =
7748       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
7749                                                     DAG.getDataLayout()));
7750   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
7751   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
7752 
7753   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
7754                              Hi.getValue(1));
7755 
7756   return std::make_pair(Result, TF);
7757 }
7758 
7759 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
7760                                              SelectionDAG &DAG) const {
7761   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
7762          "unaligned indexed stores not implemented!");
7763   SDValue Chain = ST->getChain();
7764   SDValue Ptr = ST->getBasePtr();
7765   SDValue Val = ST->getValue();
7766   EVT VT = Val.getValueType();
7767   Align Alignment = ST->getOriginalAlign();
7768   auto &MF = DAG.getMachineFunction();
7769   EVT StoreMemVT = ST->getMemoryVT();
7770 
7771   SDLoc dl(ST);
7772   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
7773     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7774     if (isTypeLegal(intVT)) {
7775       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
7776           StoreMemVT.isVector()) {
7777         // Scalarize the store and let the individual components be handled.
7778         SDValue Result = scalarizeVectorStore(ST, DAG);
7779         return Result;
7780       }
7781       // Expand to a bitconvert of the value to the integer type of the
7782       // same size, then a (misaligned) int store.
7783       // FIXME: Does not handle truncating floating point stores!
7784       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
7785       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
7786                             Alignment, ST->getMemOperand()->getFlags());
7787       return Result;
7788     }
7789     // Do a (aligned) store to a stack slot, then copy from the stack slot
7790     // to the final destination using (unaligned) integer loads and stores.
7791     MVT RegVT = getRegisterType(
7792         *DAG.getContext(),
7793         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
7794     EVT PtrVT = Ptr.getValueType();
7795     unsigned StoredBytes = StoreMemVT.getStoreSize();
7796     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7797     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
7798 
7799     // Make sure the stack slot is also aligned for the register type.
7800     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
7801     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
7802 
7803     // Perform the original store, only redirected to the stack slot.
7804     SDValue Store = DAG.getTruncStore(
7805         Chain, dl, Val, StackPtr,
7806         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
7807 
7808     EVT StackPtrVT = StackPtr.getValueType();
7809 
7810     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7811     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7812     SmallVector<SDValue, 8> Stores;
7813     unsigned Offset = 0;
7814 
7815     // Do all but one copies using the full register width.
7816     for (unsigned i = 1; i < NumRegs; i++) {
7817       // Load one integer register's worth from the stack slot.
7818       SDValue Load = DAG.getLoad(
7819           RegVT, dl, Store, StackPtr,
7820           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
7821       // Store it to the final location.  Remember the store.
7822       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
7823                                     ST->getPointerInfo().getWithOffset(Offset),
7824                                     ST->getOriginalAlign(),
7825                                     ST->getMemOperand()->getFlags()));
7826       // Increment the pointers.
7827       Offset += RegBytes;
7828       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7829       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7830     }
7831 
7832     // The last store may be partial.  Do a truncating store.  On big-endian
7833     // machines this requires an extending load from the stack slot to ensure
7834     // that the bits are in the right place.
7835     EVT LoadMemVT =
7836         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
7837 
7838     // Load from the stack slot.
7839     SDValue Load = DAG.getExtLoad(
7840         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
7841         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
7842 
7843     Stores.push_back(
7844         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
7845                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
7846                           ST->getOriginalAlign(),
7847                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
7848     // The order of the stores doesn't matter - say it with a TokenFactor.
7849     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7850     return Result;
7851   }
7852 
7853   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
7854          "Unaligned store of unknown type.");
7855   // Get the half-size VT
7856   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
7857   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
7858   unsigned IncrementSize = NumBits / 8;
7859 
7860   // Divide the stored value in two parts.
7861   SDValue ShiftAmount = DAG.getConstant(
7862       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
7863   SDValue Lo = Val;
7864   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
7865 
7866   // Store the two parts
7867   SDValue Store1, Store2;
7868   Store1 = DAG.getTruncStore(Chain, dl,
7869                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
7870                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
7871                              ST->getMemOperand()->getFlags());
7872 
7873   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7874   Store2 = DAG.getTruncStore(
7875       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
7876       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
7877       ST->getMemOperand()->getFlags(), ST->getAAInfo());
7878 
7879   SDValue Result =
7880       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
7881   return Result;
7882 }
7883 
7884 SDValue
7885 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
7886                                        const SDLoc &DL, EVT DataVT,
7887                                        SelectionDAG &DAG,
7888                                        bool IsCompressedMemory) const {
7889   SDValue Increment;
7890   EVT AddrVT = Addr.getValueType();
7891   EVT MaskVT = Mask.getValueType();
7892   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
7893          "Incompatible types of Data and Mask");
7894   if (IsCompressedMemory) {
7895     if (DataVT.isScalableVector())
7896       report_fatal_error(
7897           "Cannot currently handle compressed memory with scalable vectors");
7898     // Incrementing the pointer according to number of '1's in the mask.
7899     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7900     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7901     if (MaskIntVT.getSizeInBits() < 32) {
7902       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7903       MaskIntVT = MVT::i32;
7904     }
7905 
7906     // Count '1's with POPCNT.
7907     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7908     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7909     // Scale is an element size in bytes.
7910     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7911                                     AddrVT);
7912     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7913   } else if (DataVT.isScalableVector()) {
7914     Increment = DAG.getVScale(DL, AddrVT,
7915                               APInt(AddrVT.getFixedSizeInBits(),
7916                                     DataVT.getStoreSize().getKnownMinSize()));
7917   } else
7918     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7919 
7920   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7921 }
7922 
7923 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
7924                                        EVT VecVT, const SDLoc &dl,
7925                                        unsigned NumSubElts) {
7926   if (!VecVT.isScalableVector() && isa<ConstantSDNode>(Idx))
7927     return Idx;
7928 
7929   EVT IdxVT = Idx.getValueType();
7930   unsigned NElts = VecVT.getVectorMinNumElements();
7931   if (VecVT.isScalableVector()) {
7932     // If this is a constant index and we know the value plus the number of the
7933     // elements in the subvector minus one is less than the minimum number of
7934     // elements then it's safe to return Idx.
7935     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
7936       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
7937         return Idx;
7938     SDValue VS =
7939         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
7940     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
7941     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
7942                               DAG.getConstant(NumSubElts, dl, IdxVT));
7943     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
7944   }
7945   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
7946     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
7947     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7948                        DAG.getConstant(Imm, dl, IdxVT));
7949   }
7950   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
7951   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7952                      DAG.getConstant(MaxIndex, dl, IdxVT));
7953 }
7954 
7955 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7956                                                 SDValue VecPtr, EVT VecVT,
7957                                                 SDValue Index) const {
7958   return getVectorSubVecPointer(
7959       DAG, VecPtr, VecVT,
7960       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
7961       Index);
7962 }
7963 
7964 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
7965                                                SDValue VecPtr, EVT VecVT,
7966                                                EVT SubVecVT,
7967                                                SDValue Index) const {
7968   SDLoc dl(Index);
7969   // Make sure the index type is big enough to compute in.
7970   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7971 
7972   EVT EltVT = VecVT.getVectorElementType();
7973 
7974   // Calculate the element offset and add it to the pointer.
7975   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
7976   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
7977          "Converting bits to bytes lost precision");
7978 
7979   // Scalable vectors don't need clamping as these are checked at compile time
7980   if (SubVecVT.isFixedLengthVector()) {
7981     assert(SubVecVT.getVectorElementType() == EltVT &&
7982            "Sub-vector must be a fixed vector with matching element type");
7983     Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
7984                                     SubVecVT.getVectorNumElements());
7985   }
7986 
7987   EVT IdxVT = Index.getValueType();
7988 
7989   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7990                       DAG.getConstant(EltSize, dl, IdxVT));
7991   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7992 }
7993 
7994 //===----------------------------------------------------------------------===//
7995 // Implementation of Emulated TLS Model
7996 //===----------------------------------------------------------------------===//
7997 
7998 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7999                                                 SelectionDAG &DAG) const {
8000   // Access to address of TLS varialbe xyz is lowered to a function call:
8001   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
8002   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8003   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
8004   SDLoc dl(GA);
8005 
8006   ArgListTy Args;
8007   ArgListEntry Entry;
8008   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
8009   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
8010   StringRef EmuTlsVarName(NameString);
8011   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
8012   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
8013   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
8014   Entry.Ty = VoidPtrType;
8015   Args.push_back(Entry);
8016 
8017   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
8018 
8019   TargetLowering::CallLoweringInfo CLI(DAG);
8020   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
8021   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
8022   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
8023 
8024   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
8025   // At last for X86 targets, maybe good for other targets too?
8026   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8027   MFI.setAdjustsStack(true); // Is this only for X86 target?
8028   MFI.setHasCalls(true);
8029 
8030   assert((GA->getOffset() == 0) &&
8031          "Emulated TLS must have zero offset in GlobalAddressSDNode");
8032   return CallResult.first;
8033 }
8034 
8035 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
8036                                                 SelectionDAG &DAG) const {
8037   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
8038   if (!isCtlzFast())
8039     return SDValue();
8040   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8041   SDLoc dl(Op);
8042   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8043     if (C->isZero() && CC == ISD::SETEQ) {
8044       EVT VT = Op.getOperand(0).getValueType();
8045       SDValue Zext = Op.getOperand(0);
8046       if (VT.bitsLT(MVT::i32)) {
8047         VT = MVT::i32;
8048         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
8049       }
8050       unsigned Log2b = Log2_32(VT.getSizeInBits());
8051       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
8052       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
8053                                 DAG.getConstant(Log2b, dl, MVT::i32));
8054       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
8055     }
8056   }
8057   return SDValue();
8058 }
8059 
8060 // Convert redundant addressing modes (e.g. scaling is redundant
8061 // when accessing bytes).
8062 ISD::MemIndexType
8063 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT,
8064                                       SDValue Offsets) const {
8065   bool IsScaledIndex =
8066       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED);
8067   bool IsSignedIndex =
8068       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED);
8069 
8070   // Scaling is unimportant for bytes, canonicalize to unscaled.
8071   if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) {
8072     IsScaledIndex = false;
8073     IndexType = IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED;
8074   }
8075 
8076   return IndexType;
8077 }
8078 
8079 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
8080   SDValue Op0 = Node->getOperand(0);
8081   SDValue Op1 = Node->getOperand(1);
8082   EVT VT = Op0.getValueType();
8083   unsigned Opcode = Node->getOpcode();
8084   SDLoc DL(Node);
8085 
8086   // umin(x,y) -> sub(x,usubsat(x,y))
8087   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
8088       isOperationLegal(ISD::USUBSAT, VT)) {
8089     return DAG.getNode(ISD::SUB, DL, VT, Op0,
8090                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
8091   }
8092 
8093   // umax(x,y) -> add(x,usubsat(y,x))
8094   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
8095       isOperationLegal(ISD::USUBSAT, VT)) {
8096     return DAG.getNode(ISD::ADD, DL, VT, Op0,
8097                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
8098   }
8099 
8100   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
8101   ISD::CondCode CC;
8102   switch (Opcode) {
8103   default: llvm_unreachable("How did we get here?");
8104   case ISD::SMAX: CC = ISD::SETGT; break;
8105   case ISD::SMIN: CC = ISD::SETLT; break;
8106   case ISD::UMAX: CC = ISD::SETUGT; break;
8107   case ISD::UMIN: CC = ISD::SETULT; break;
8108   }
8109 
8110   // FIXME: Should really try to split the vector in case it's legal on a
8111   // subvector.
8112   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8113     return DAG.UnrollVectorOp(Node);
8114 
8115   SDValue Cond = DAG.getSetCC(DL, VT, Op0, Op1, CC);
8116   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
8117 }
8118 
8119 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
8120   unsigned Opcode = Node->getOpcode();
8121   SDValue LHS = Node->getOperand(0);
8122   SDValue RHS = Node->getOperand(1);
8123   EVT VT = LHS.getValueType();
8124   SDLoc dl(Node);
8125 
8126   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8127   assert(VT.isInteger() && "Expected operands to be integers");
8128 
8129   // usub.sat(a, b) -> umax(a, b) - b
8130   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
8131     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
8132     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
8133   }
8134 
8135   // uadd.sat(a, b) -> umin(a, ~b) + b
8136   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
8137     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
8138     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
8139     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
8140   }
8141 
8142   unsigned OverflowOp;
8143   switch (Opcode) {
8144   case ISD::SADDSAT:
8145     OverflowOp = ISD::SADDO;
8146     break;
8147   case ISD::UADDSAT:
8148     OverflowOp = ISD::UADDO;
8149     break;
8150   case ISD::SSUBSAT:
8151     OverflowOp = ISD::SSUBO;
8152     break;
8153   case ISD::USUBSAT:
8154     OverflowOp = ISD::USUBO;
8155     break;
8156   default:
8157     llvm_unreachable("Expected method to receive signed or unsigned saturation "
8158                      "addition or subtraction node.");
8159   }
8160 
8161   // FIXME: Should really try to split the vector in case it's legal on a
8162   // subvector.
8163   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8164     return DAG.UnrollVectorOp(Node);
8165 
8166   unsigned BitWidth = LHS.getScalarValueSizeInBits();
8167   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8168   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8169   SDValue SumDiff = Result.getValue(0);
8170   SDValue Overflow = Result.getValue(1);
8171   SDValue Zero = DAG.getConstant(0, dl, VT);
8172   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
8173 
8174   if (Opcode == ISD::UADDSAT) {
8175     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8176       // (LHS + RHS) | OverflowMask
8177       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8178       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
8179     }
8180     // Overflow ? 0xffff.... : (LHS + RHS)
8181     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
8182   }
8183 
8184   if (Opcode == ISD::USUBSAT) {
8185     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8186       // (LHS - RHS) & ~OverflowMask
8187       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8188       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
8189       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
8190     }
8191     // Overflow ? 0 : (LHS - RHS)
8192     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
8193   }
8194 
8195   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
8196   APInt MinVal = APInt::getSignedMinValue(BitWidth);
8197   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8198   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
8199                               DAG.getConstant(BitWidth - 1, dl, VT));
8200   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
8201   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
8202 }
8203 
8204 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
8205   unsigned Opcode = Node->getOpcode();
8206   bool IsSigned = Opcode == ISD::SSHLSAT;
8207   SDValue LHS = Node->getOperand(0);
8208   SDValue RHS = Node->getOperand(1);
8209   EVT VT = LHS.getValueType();
8210   SDLoc dl(Node);
8211 
8212   assert((Node->getOpcode() == ISD::SSHLSAT ||
8213           Node->getOpcode() == ISD::USHLSAT) &&
8214           "Expected a SHLSAT opcode");
8215   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8216   assert(VT.isInteger() && "Expected operands to be integers");
8217 
8218   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
8219 
8220   unsigned BW = VT.getScalarSizeInBits();
8221   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
8222   SDValue Orig =
8223       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
8224 
8225   SDValue SatVal;
8226   if (IsSigned) {
8227     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8228     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8229     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8230                              SatMin, SatMax, ISD::SETLT);
8231   } else {
8232     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8233   }
8234   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8235 
8236   return Result;
8237 }
8238 
8239 SDValue
8240 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8241   assert((Node->getOpcode() == ISD::SMULFIX ||
8242           Node->getOpcode() == ISD::UMULFIX ||
8243           Node->getOpcode() == ISD::SMULFIXSAT ||
8244           Node->getOpcode() == ISD::UMULFIXSAT) &&
8245          "Expected a fixed point multiplication opcode");
8246 
8247   SDLoc dl(Node);
8248   SDValue LHS = Node->getOperand(0);
8249   SDValue RHS = Node->getOperand(1);
8250   EVT VT = LHS.getValueType();
8251   unsigned Scale = Node->getConstantOperandVal(2);
8252   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8253                      Node->getOpcode() == ISD::UMULFIXSAT);
8254   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8255                  Node->getOpcode() == ISD::SMULFIXSAT);
8256   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8257   unsigned VTSize = VT.getScalarSizeInBits();
8258 
8259   if (!Scale) {
8260     // [us]mul.fix(a, b, 0) -> mul(a, b)
8261     if (!Saturating) {
8262       if (isOperationLegalOrCustom(ISD::MUL, VT))
8263         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8264     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
8265       SDValue Result =
8266           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8267       SDValue Product = Result.getValue(0);
8268       SDValue Overflow = Result.getValue(1);
8269       SDValue Zero = DAG.getConstant(0, dl, VT);
8270 
8271       APInt MinVal = APInt::getSignedMinValue(VTSize);
8272       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
8273       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8274       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8275       // Xor the inputs, if resulting sign bit is 0 the product will be
8276       // positive, else negative.
8277       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
8278       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
8279       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
8280       return DAG.getSelect(dl, VT, Overflow, Result, Product);
8281     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
8282       SDValue Result =
8283           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8284       SDValue Product = Result.getValue(0);
8285       SDValue Overflow = Result.getValue(1);
8286 
8287       APInt MaxVal = APInt::getMaxValue(VTSize);
8288       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8289       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
8290     }
8291   }
8292 
8293   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
8294          "Expected scale to be less than the number of bits if signed or at "
8295          "most the number of bits if unsigned.");
8296   assert(LHS.getValueType() == RHS.getValueType() &&
8297          "Expected both operands to be the same type");
8298 
8299   // Get the upper and lower bits of the result.
8300   SDValue Lo, Hi;
8301   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
8302   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
8303   if (isOperationLegalOrCustom(LoHiOp, VT)) {
8304     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
8305     Lo = Result.getValue(0);
8306     Hi = Result.getValue(1);
8307   } else if (isOperationLegalOrCustom(HiOp, VT)) {
8308     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8309     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
8310   } else if (VT.isVector()) {
8311     return SDValue();
8312   } else {
8313     report_fatal_error("Unable to expand fixed point multiplication.");
8314   }
8315 
8316   if (Scale == VTSize)
8317     // Result is just the top half since we'd be shifting by the width of the
8318     // operand. Overflow impossible so this works for both UMULFIX and
8319     // UMULFIXSAT.
8320     return Hi;
8321 
8322   // The result will need to be shifted right by the scale since both operands
8323   // are scaled. The result is given to us in 2 halves, so we only want part of
8324   // both in the result.
8325   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8326   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
8327                                DAG.getConstant(Scale, dl, ShiftTy));
8328   if (!Saturating)
8329     return Result;
8330 
8331   if (!Signed) {
8332     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
8333     // widened multiplication) aren't all zeroes.
8334 
8335     // Saturate to max if ((Hi >> Scale) != 0),
8336     // which is the same as if (Hi > ((1 << Scale) - 1))
8337     APInt MaxVal = APInt::getMaxValue(VTSize);
8338     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
8339                                       dl, VT);
8340     Result = DAG.getSelectCC(dl, Hi, LowMask,
8341                              DAG.getConstant(MaxVal, dl, VT), Result,
8342                              ISD::SETUGT);
8343 
8344     return Result;
8345   }
8346 
8347   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
8348   // widened multiplication) aren't all ones or all zeroes.
8349 
8350   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
8351   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
8352 
8353   if (Scale == 0) {
8354     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
8355                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
8356     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
8357     // Saturated to SatMin if wide product is negative, and SatMax if wide
8358     // product is positive ...
8359     SDValue Zero = DAG.getConstant(0, dl, VT);
8360     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
8361                                                ISD::SETLT);
8362     // ... but only if we overflowed.
8363     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
8364   }
8365 
8366   //  We handled Scale==0 above so all the bits to examine is in Hi.
8367 
8368   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
8369   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
8370   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
8371                                     dl, VT);
8372   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
8373   // Saturate to min if (Hi >> (Scale - 1)) < -1),
8374   // which is the same as if (HI < (-1 << (Scale - 1))
8375   SDValue HighMask =
8376       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
8377                       dl, VT);
8378   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
8379   return Result;
8380 }
8381 
8382 SDValue
8383 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
8384                                     SDValue LHS, SDValue RHS,
8385                                     unsigned Scale, SelectionDAG &DAG) const {
8386   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
8387           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
8388          "Expected a fixed point division opcode");
8389 
8390   EVT VT = LHS.getValueType();
8391   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
8392   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
8393   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8394 
8395   // If there is enough room in the type to upscale the LHS or downscale the
8396   // RHS before the division, we can perform it in this type without having to
8397   // resize. For signed operations, the LHS headroom is the number of
8398   // redundant sign bits, and for unsigned ones it is the number of zeroes.
8399   // The headroom for the RHS is the number of trailing zeroes.
8400   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
8401                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
8402   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
8403 
8404   // For signed saturating operations, we need to be able to detect true integer
8405   // division overflow; that is, when you have MIN / -EPS. However, this
8406   // is undefined behavior and if we emit divisions that could take such
8407   // values it may cause undesired behavior (arithmetic exceptions on x86, for
8408   // example).
8409   // Avoid this by requiring an extra bit so that we never get this case.
8410   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
8411   // signed saturating division, we need to emit a whopping 32-bit division.
8412   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
8413     return SDValue();
8414 
8415   unsigned LHSShift = std::min(LHSLead, Scale);
8416   unsigned RHSShift = Scale - LHSShift;
8417 
8418   // At this point, we know that if we shift the LHS up by LHSShift and the
8419   // RHS down by RHSShift, we can emit a regular division with a final scaling
8420   // factor of Scale.
8421 
8422   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8423   if (LHSShift)
8424     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
8425                       DAG.getConstant(LHSShift, dl, ShiftTy));
8426   if (RHSShift)
8427     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
8428                       DAG.getConstant(RHSShift, dl, ShiftTy));
8429 
8430   SDValue Quot;
8431   if (Signed) {
8432     // For signed operations, if the resulting quotient is negative and the
8433     // remainder is nonzero, subtract 1 from the quotient to round towards
8434     // negative infinity.
8435     SDValue Rem;
8436     // FIXME: Ideally we would always produce an SDIVREM here, but if the
8437     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
8438     // we couldn't just form a libcall, but the type legalizer doesn't do it.
8439     if (isTypeLegal(VT) &&
8440         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
8441       Quot = DAG.getNode(ISD::SDIVREM, dl,
8442                          DAG.getVTList(VT, VT),
8443                          LHS, RHS);
8444       Rem = Quot.getValue(1);
8445       Quot = Quot.getValue(0);
8446     } else {
8447       Quot = DAG.getNode(ISD::SDIV, dl, VT,
8448                          LHS, RHS);
8449       Rem = DAG.getNode(ISD::SREM, dl, VT,
8450                         LHS, RHS);
8451     }
8452     SDValue Zero = DAG.getConstant(0, dl, VT);
8453     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
8454     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
8455     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
8456     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
8457     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
8458                                DAG.getConstant(1, dl, VT));
8459     Quot = DAG.getSelect(dl, VT,
8460                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
8461                          Sub1, Quot);
8462   } else
8463     Quot = DAG.getNode(ISD::UDIV, dl, VT,
8464                        LHS, RHS);
8465 
8466   return Quot;
8467 }
8468 
8469 void TargetLowering::expandUADDSUBO(
8470     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8471   SDLoc dl(Node);
8472   SDValue LHS = Node->getOperand(0);
8473   SDValue RHS = Node->getOperand(1);
8474   bool IsAdd = Node->getOpcode() == ISD::UADDO;
8475 
8476   // If ADD/SUBCARRY is legal, use that instead.
8477   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
8478   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
8479     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
8480     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
8481                                     { LHS, RHS, CarryIn });
8482     Result = SDValue(NodeCarry.getNode(), 0);
8483     Overflow = SDValue(NodeCarry.getNode(), 1);
8484     return;
8485   }
8486 
8487   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8488                             LHS.getValueType(), LHS, RHS);
8489 
8490   EVT ResultType = Node->getValueType(1);
8491   EVT SetCCType = getSetCCResultType(
8492       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8493   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
8494   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
8495   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8496 }
8497 
8498 void TargetLowering::expandSADDSUBO(
8499     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8500   SDLoc dl(Node);
8501   SDValue LHS = Node->getOperand(0);
8502   SDValue RHS = Node->getOperand(1);
8503   bool IsAdd = Node->getOpcode() == ISD::SADDO;
8504 
8505   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8506                             LHS.getValueType(), LHS, RHS);
8507 
8508   EVT ResultType = Node->getValueType(1);
8509   EVT OType = getSetCCResultType(
8510       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8511 
8512   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
8513   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
8514   if (isOperationLegal(OpcSat, LHS.getValueType())) {
8515     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
8516     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
8517     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8518     return;
8519   }
8520 
8521   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
8522 
8523   // For an addition, the result should be less than one of the operands (LHS)
8524   // if and only if the other operand (RHS) is negative, otherwise there will
8525   // be overflow.
8526   // For a subtraction, the result should be less than one of the operands
8527   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
8528   // otherwise there will be overflow.
8529   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
8530   SDValue ConditionRHS =
8531       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
8532 
8533   Overflow = DAG.getBoolExtOrTrunc(
8534       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
8535       ResultType, ResultType);
8536 }
8537 
8538 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
8539                                 SDValue &Overflow, SelectionDAG &DAG) const {
8540   SDLoc dl(Node);
8541   EVT VT = Node->getValueType(0);
8542   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8543   SDValue LHS = Node->getOperand(0);
8544   SDValue RHS = Node->getOperand(1);
8545   bool isSigned = Node->getOpcode() == ISD::SMULO;
8546 
8547   // For power-of-two multiplications we can use a simpler shift expansion.
8548   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
8549     const APInt &C = RHSC->getAPIntValue();
8550     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
8551     if (C.isPowerOf2()) {
8552       // smulo(x, signed_min) is same as umulo(x, signed_min).
8553       bool UseArithShift = isSigned && !C.isMinSignedValue();
8554       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
8555       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
8556       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
8557       Overflow = DAG.getSetCC(dl, SetCCVT,
8558           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
8559                       dl, VT, Result, ShiftAmt),
8560           LHS, ISD::SETNE);
8561       return true;
8562     }
8563   }
8564 
8565   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
8566   if (VT.isVector())
8567     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
8568                               VT.getVectorNumElements());
8569 
8570   SDValue BottomHalf;
8571   SDValue TopHalf;
8572   static const unsigned Ops[2][3] =
8573       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
8574         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
8575   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
8576     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8577     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
8578   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
8579     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
8580                              RHS);
8581     TopHalf = BottomHalf.getValue(1);
8582   } else if (isTypeLegal(WideVT)) {
8583     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
8584     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
8585     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
8586     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
8587     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
8588         getShiftAmountTy(WideVT, DAG.getDataLayout()));
8589     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
8590                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
8591   } else {
8592     if (VT.isVector())
8593       return false;
8594 
8595     // We can fall back to a libcall with an illegal type for the MUL if we
8596     // have a libcall big enough.
8597     // Also, we can fall back to a division in some cases, but that's a big
8598     // performance hit in the general case.
8599     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
8600     if (WideVT == MVT::i16)
8601       LC = RTLIB::MUL_I16;
8602     else if (WideVT == MVT::i32)
8603       LC = RTLIB::MUL_I32;
8604     else if (WideVT == MVT::i64)
8605       LC = RTLIB::MUL_I64;
8606     else if (WideVT == MVT::i128)
8607       LC = RTLIB::MUL_I128;
8608     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
8609 
8610     SDValue HiLHS;
8611     SDValue HiRHS;
8612     if (isSigned) {
8613       // The high part is obtained by SRA'ing all but one of the bits of low
8614       // part.
8615       unsigned LoSize = VT.getFixedSizeInBits();
8616       HiLHS =
8617           DAG.getNode(ISD::SRA, dl, VT, LHS,
8618                       DAG.getConstant(LoSize - 1, dl,
8619                                       getPointerTy(DAG.getDataLayout())));
8620       HiRHS =
8621           DAG.getNode(ISD::SRA, dl, VT, RHS,
8622                       DAG.getConstant(LoSize - 1, dl,
8623                                       getPointerTy(DAG.getDataLayout())));
8624     } else {
8625         HiLHS = DAG.getConstant(0, dl, VT);
8626         HiRHS = DAG.getConstant(0, dl, VT);
8627     }
8628 
8629     // Here we're passing the 2 arguments explicitly as 4 arguments that are
8630     // pre-lowered to the correct types. This all depends upon WideVT not
8631     // being a legal type for the architecture and thus has to be split to
8632     // two arguments.
8633     SDValue Ret;
8634     TargetLowering::MakeLibCallOptions CallOptions;
8635     CallOptions.setSExt(isSigned);
8636     CallOptions.setIsPostTypeLegalization(true);
8637     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
8638       // Halves of WideVT are packed into registers in different order
8639       // depending on platform endianness. This is usually handled by
8640       // the C calling convention, but we can't defer to it in
8641       // the legalizer.
8642       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
8643       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8644     } else {
8645       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
8646       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8647     }
8648     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
8649            "Ret value is a collection of constituent nodes holding result.");
8650     if (DAG.getDataLayout().isLittleEndian()) {
8651       // Same as above.
8652       BottomHalf = Ret.getOperand(0);
8653       TopHalf = Ret.getOperand(1);
8654     } else {
8655       BottomHalf = Ret.getOperand(1);
8656       TopHalf = Ret.getOperand(0);
8657     }
8658   }
8659 
8660   Result = BottomHalf;
8661   if (isSigned) {
8662     SDValue ShiftAmt = DAG.getConstant(
8663         VT.getScalarSizeInBits() - 1, dl,
8664         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
8665     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
8666     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
8667   } else {
8668     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
8669                             DAG.getConstant(0, dl, VT), ISD::SETNE);
8670   }
8671 
8672   // Truncate the result if SetCC returns a larger type than needed.
8673   EVT RType = Node->getValueType(1);
8674   if (RType.bitsLT(Overflow.getValueType()))
8675     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
8676 
8677   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
8678          "Unexpected result type for S/UMULO legalization");
8679   return true;
8680 }
8681 
8682 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
8683   SDLoc dl(Node);
8684   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8685   SDValue Op = Node->getOperand(0);
8686   EVT VT = Op.getValueType();
8687 
8688   if (VT.isScalableVector())
8689     report_fatal_error(
8690         "Expanding reductions for scalable vectors is undefined.");
8691 
8692   // Try to use a shuffle reduction for power of two vectors.
8693   if (VT.isPow2VectorType()) {
8694     while (VT.getVectorNumElements() > 1) {
8695       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
8696       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
8697         break;
8698 
8699       SDValue Lo, Hi;
8700       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
8701       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
8702       VT = HalfVT;
8703     }
8704   }
8705 
8706   EVT EltVT = VT.getVectorElementType();
8707   unsigned NumElts = VT.getVectorNumElements();
8708 
8709   SmallVector<SDValue, 8> Ops;
8710   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
8711 
8712   SDValue Res = Ops[0];
8713   for (unsigned i = 1; i < NumElts; i++)
8714     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
8715 
8716   // Result type may be wider than element type.
8717   if (EltVT != Node->getValueType(0))
8718     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
8719   return Res;
8720 }
8721 
8722 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
8723   SDLoc dl(Node);
8724   SDValue AccOp = Node->getOperand(0);
8725   SDValue VecOp = Node->getOperand(1);
8726   SDNodeFlags Flags = Node->getFlags();
8727 
8728   EVT VT = VecOp.getValueType();
8729   EVT EltVT = VT.getVectorElementType();
8730 
8731   if (VT.isScalableVector())
8732     report_fatal_error(
8733         "Expanding reductions for scalable vectors is undefined.");
8734 
8735   unsigned NumElts = VT.getVectorNumElements();
8736 
8737   SmallVector<SDValue, 8> Ops;
8738   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
8739 
8740   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8741 
8742   SDValue Res = AccOp;
8743   for (unsigned i = 0; i < NumElts; i++)
8744     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
8745 
8746   return Res;
8747 }
8748 
8749 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
8750                                SelectionDAG &DAG) const {
8751   EVT VT = Node->getValueType(0);
8752   SDLoc dl(Node);
8753   bool isSigned = Node->getOpcode() == ISD::SREM;
8754   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
8755   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
8756   SDValue Dividend = Node->getOperand(0);
8757   SDValue Divisor = Node->getOperand(1);
8758   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
8759     SDVTList VTs = DAG.getVTList(VT, VT);
8760     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
8761     return true;
8762   }
8763   if (isOperationLegalOrCustom(DivOpc, VT)) {
8764     // X % Y -> X-X/Y*Y
8765     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
8766     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
8767     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
8768     return true;
8769   }
8770   return false;
8771 }
8772 
8773 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
8774                                             SelectionDAG &DAG) const {
8775   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
8776   SDLoc dl(SDValue(Node, 0));
8777   SDValue Src = Node->getOperand(0);
8778 
8779   // DstVT is the result type, while SatVT is the size to which we saturate
8780   EVT SrcVT = Src.getValueType();
8781   EVT DstVT = Node->getValueType(0);
8782 
8783   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
8784   unsigned SatWidth = SatVT.getScalarSizeInBits();
8785   unsigned DstWidth = DstVT.getScalarSizeInBits();
8786   assert(SatWidth <= DstWidth &&
8787          "Expected saturation width smaller than result width");
8788 
8789   // Determine minimum and maximum integer values and their corresponding
8790   // floating-point values.
8791   APInt MinInt, MaxInt;
8792   if (IsSigned) {
8793     MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth);
8794     MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth);
8795   } else {
8796     MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth);
8797     MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth);
8798   }
8799 
8800   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
8801   // libcall emission cannot handle this. Large result types will fail.
8802   if (SrcVT == MVT::f16) {
8803     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
8804     SrcVT = Src.getValueType();
8805   }
8806 
8807   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8808   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8809 
8810   APFloat::opStatus MinStatus =
8811       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
8812   APFloat::opStatus MaxStatus =
8813       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
8814   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
8815                              !(MaxStatus & APFloat::opStatus::opInexact);
8816 
8817   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
8818   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
8819 
8820   // If the integer bounds are exactly representable as floats and min/max are
8821   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
8822   // of comparisons and selects.
8823   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
8824                      isOperationLegal(ISD::FMAXNUM, SrcVT);
8825   if (AreExactFloatBounds && MinMaxLegal) {
8826     SDValue Clamped = Src;
8827 
8828     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
8829     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
8830     // Clamp by MaxFloat from above. NaN cannot occur.
8831     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
8832     // Convert clamped value to integer.
8833     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
8834                                   dl, DstVT, Clamped);
8835 
8836     // In the unsigned case we're done, because we mapped NaN to MinFloat,
8837     // which will cast to zero.
8838     if (!IsSigned)
8839       return FpToInt;
8840 
8841     // Otherwise, select 0 if Src is NaN.
8842     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8843     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
8844                            ISD::CondCode::SETUO);
8845   }
8846 
8847   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
8848   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
8849 
8850   // Result of direct conversion. The assumption here is that the operation is
8851   // non-trapping and it's fine to apply it to an out-of-range value if we
8852   // select it away later.
8853   SDValue FpToInt =
8854       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
8855 
8856   SDValue Select = FpToInt;
8857 
8858   // If Src ULT MinFloat, select MinInt. In particular, this also selects
8859   // MinInt if Src is NaN.
8860   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
8861                            ISD::CondCode::SETULT);
8862   // If Src OGT MaxFloat, select MaxInt.
8863   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
8864                            ISD::CondCode::SETOGT);
8865 
8866   // In the unsigned case we are done, because we mapped NaN to MinInt, which
8867   // is already zero.
8868   if (!IsSigned)
8869     return Select;
8870 
8871   // Otherwise, select 0 if Src is NaN.
8872   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8873   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
8874 }
8875 
8876 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
8877                                            SelectionDAG &DAG) const {
8878   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
8879   assert(Node->getValueType(0).isScalableVector() &&
8880          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
8881 
8882   EVT VT = Node->getValueType(0);
8883   SDValue V1 = Node->getOperand(0);
8884   SDValue V2 = Node->getOperand(1);
8885   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
8886   SDLoc DL(Node);
8887 
8888   // Expand through memory thusly:
8889   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
8890   //  Store V1, Ptr
8891   //  Store V2, Ptr + sizeof(V1)
8892   //  If (Imm < 0)
8893   //    TrailingElts = -Imm
8894   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
8895   //  else
8896   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
8897   //  Res = Load Ptr
8898 
8899   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
8900 
8901   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
8902                                VT.getVectorElementCount() * 2);
8903   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
8904   EVT PtrVT = StackPtr.getValueType();
8905   auto &MF = DAG.getMachineFunction();
8906   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
8907   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
8908 
8909   // Store the lo part of CONCAT_VECTORS(V1, V2)
8910   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
8911   // Store the hi part of CONCAT_VECTORS(V1, V2)
8912   SDValue OffsetToV2 = DAG.getVScale(
8913       DL, PtrVT,
8914       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8915   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
8916   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
8917 
8918   if (Imm >= 0) {
8919     // Load back the required element. getVectorElementPointer takes care of
8920     // clamping the index if it's out-of-bounds.
8921     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
8922     // Load the spliced result
8923     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
8924                        MachinePointerInfo::getUnknownStack(MF));
8925   }
8926 
8927   uint64_t TrailingElts = -Imm;
8928 
8929   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
8930   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
8931   SDValue TrailingBytes =
8932       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
8933 
8934   if (TrailingElts > VT.getVectorMinNumElements()) {
8935     SDValue VLBytes = DAG.getVScale(
8936         DL, PtrVT,
8937         APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8938     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
8939   }
8940 
8941   // Calculate the start address of the spliced result.
8942   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
8943 
8944   // Load the spliced result
8945   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
8946                      MachinePointerInfo::getUnknownStack(MF));
8947 }
8948 
8949 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
8950                                            SDValue &LHS, SDValue &RHS,
8951                                            SDValue &CC, bool &NeedInvert,
8952                                            const SDLoc &dl, SDValue &Chain,
8953                                            bool IsSignaling) const {
8954   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8955   MVT OpVT = LHS.getSimpleValueType();
8956   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
8957   NeedInvert = false;
8958   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
8959   default:
8960     llvm_unreachable("Unknown condition code action!");
8961   case TargetLowering::Legal:
8962     // Nothing to do.
8963     break;
8964   case TargetLowering::Expand: {
8965     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
8966     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8967       std::swap(LHS, RHS);
8968       CC = DAG.getCondCode(InvCC);
8969       return true;
8970     }
8971     // Swapping operands didn't work. Try inverting the condition.
8972     bool NeedSwap = false;
8973     InvCC = getSetCCInverse(CCCode, OpVT);
8974     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8975       // If inverting the condition is not enough, try swapping operands
8976       // on top of it.
8977       InvCC = ISD::getSetCCSwappedOperands(InvCC);
8978       NeedSwap = true;
8979     }
8980     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8981       CC = DAG.getCondCode(InvCC);
8982       NeedInvert = true;
8983       if (NeedSwap)
8984         std::swap(LHS, RHS);
8985       return true;
8986     }
8987 
8988     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
8989     unsigned Opc = 0;
8990     switch (CCCode) {
8991     default:
8992       llvm_unreachable("Don't know how to expand this condition!");
8993     case ISD::SETUO:
8994       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
8995         CC1 = ISD::SETUNE;
8996         CC2 = ISD::SETUNE;
8997         Opc = ISD::OR;
8998         break;
8999       }
9000       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9001              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
9002       NeedInvert = true;
9003       LLVM_FALLTHROUGH;
9004     case ISD::SETO:
9005       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9006              "If SETO is expanded, SETOEQ must be legal!");
9007       CC1 = ISD::SETOEQ;
9008       CC2 = ISD::SETOEQ;
9009       Opc = ISD::AND;
9010       break;
9011     case ISD::SETONE:
9012     case ISD::SETUEQ:
9013       // If the SETUO or SETO CC isn't legal, we might be able to use
9014       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
9015       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
9016       // the operands.
9017       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9018       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
9019           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
9020            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
9021         CC1 = ISD::SETOGT;
9022         CC2 = ISD::SETOLT;
9023         Opc = ISD::OR;
9024         NeedInvert = ((unsigned)CCCode & 0x8U);
9025         break;
9026       }
9027       LLVM_FALLTHROUGH;
9028     case ISD::SETOEQ:
9029     case ISD::SETOGT:
9030     case ISD::SETOGE:
9031     case ISD::SETOLT:
9032     case ISD::SETOLE:
9033     case ISD::SETUNE:
9034     case ISD::SETUGT:
9035     case ISD::SETUGE:
9036     case ISD::SETULT:
9037     case ISD::SETULE:
9038       // If we are floating point, assign and break, otherwise fall through.
9039       if (!OpVT.isInteger()) {
9040         // We can use the 4th bit to tell if we are the unordered
9041         // or ordered version of the opcode.
9042         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9043         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
9044         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
9045         break;
9046       }
9047       // Fallthrough if we are unsigned integer.
9048       LLVM_FALLTHROUGH;
9049     case ISD::SETLE:
9050     case ISD::SETGT:
9051     case ISD::SETGE:
9052     case ISD::SETLT:
9053     case ISD::SETNE:
9054     case ISD::SETEQ:
9055       // If all combinations of inverting the condition and swapping operands
9056       // didn't work then we have no means to expand the condition.
9057       llvm_unreachable("Don't know how to expand this condition!");
9058     }
9059 
9060     SDValue SetCC1, SetCC2;
9061     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
9062       // If we aren't the ordered or unorder operation,
9063       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
9064       SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
9065       SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
9066     } else {
9067       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
9068       SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
9069       SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
9070     }
9071     if (Chain)
9072       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
9073                           SetCC2.getValue(1));
9074     LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
9075     RHS = SDValue();
9076     CC = SDValue();
9077     return true;
9078   }
9079   }
9080   return false;
9081 }
9082