1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // Conservatively require the attributes of the call to match those of 56 // the return. Ignore NoAlias and NonNull because they don't affect the 57 // call sequence. 58 AttributeList CallerAttrs = F.getAttributes(); 59 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 60 .removeAttribute(Attribute::NoAlias) 61 .removeAttribute(Attribute::NonNull) 62 .hasAttributes()) 63 return false; 64 65 // It's not safe to eliminate the sign / zero extension of the return value. 66 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 67 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 68 return false; 69 70 // Check if the only use is a function return node. 71 return isUsedByReturnOnly(Node, Chain); 72 } 73 74 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 75 const uint32_t *CallerPreservedMask, 76 const SmallVectorImpl<CCValAssign> &ArgLocs, 77 const SmallVectorImpl<SDValue> &OutVals) const { 78 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 79 const CCValAssign &ArgLoc = ArgLocs[I]; 80 if (!ArgLoc.isRegLoc()) 81 continue; 82 Register Reg = ArgLoc.getLocReg(); 83 // Only look at callee saved registers. 84 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 85 continue; 86 // Check that we pass the value used for the caller. 87 // (We look for a CopyFromReg reading a virtual register that is used 88 // for the function live-in value of register Reg) 89 SDValue Value = OutVals[I]; 90 if (Value->getOpcode() != ISD::CopyFromReg) 91 return false; 92 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 93 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 94 return false; 95 } 96 return true; 97 } 98 99 /// Set CallLoweringInfo attribute flags based on a call instruction 100 /// and called function attributes. 101 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 102 unsigned ArgIdx) { 103 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 104 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 105 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 106 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 107 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 108 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 109 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 110 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 111 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 112 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 113 Alignment = Call->getParamAlignment(ArgIdx); 114 ByValType = nullptr; 115 if (Call->paramHasAttr(ArgIdx, Attribute::ByVal)) 116 ByValType = Call->getParamByValType(ArgIdx); 117 } 118 119 /// Generate a libcall taking the given operands as arguments and returning a 120 /// result of type RetVT. 121 std::pair<SDValue, SDValue> 122 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 123 ArrayRef<SDValue> Ops, 124 MakeLibCallOptions CallOptions, 125 const SDLoc &dl) const { 126 TargetLowering::ArgListTy Args; 127 Args.reserve(Ops.size()); 128 129 TargetLowering::ArgListEntry Entry; 130 for (unsigned i = 0; i < Ops.size(); ++i) { 131 SDValue NewOp = Ops[i]; 132 Entry.Node = NewOp; 133 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 134 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 135 CallOptions.IsSExt); 136 Entry.IsZExt = !Entry.IsSExt; 137 138 if (CallOptions.IsSoften && 139 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 140 Entry.IsSExt = Entry.IsZExt = false; 141 } 142 Args.push_back(Entry); 143 } 144 145 if (LC == RTLIB::UNKNOWN_LIBCALL) 146 report_fatal_error("Unsupported library call operation!"); 147 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 148 getPointerTy(DAG.getDataLayout())); 149 150 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 151 TargetLowering::CallLoweringInfo CLI(DAG); 152 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 153 bool zeroExtend = !signExtend; 154 155 if (CallOptions.IsSoften && 156 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 157 signExtend = zeroExtend = false; 158 } 159 160 CLI.setDebugLoc(dl) 161 .setChain(DAG.getEntryNode()) 162 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 163 .setNoReturn(CallOptions.DoesNotReturn) 164 .setDiscardResult(!CallOptions.IsReturnValueUsed) 165 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 166 .setSExtResult(signExtend) 167 .setZExtResult(zeroExtend); 168 return LowerCallTo(CLI); 169 } 170 171 bool 172 TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps, 173 unsigned Limit, uint64_t Size, 174 unsigned DstAlign, unsigned SrcAlign, 175 bool IsMemset, 176 bool ZeroMemset, 177 bool MemcpyStrSrc, 178 bool AllowOverlap, 179 unsigned DstAS, unsigned SrcAS, 180 const AttributeList &FuncAttributes) const { 181 // If 'SrcAlign' is zero, that means the memory operation does not need to 182 // load the value, i.e. memset or memcpy from constant string. Otherwise, 183 // it's the inferred alignment of the source. 'DstAlign', on the other hand, 184 // is the specified alignment of the memory operation. If it is zero, that 185 // means it's possible to change the alignment of the destination. 186 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does 187 // not need to be loaded. 188 if (!(SrcAlign == 0 || SrcAlign >= DstAlign)) 189 return false; 190 191 EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign, 192 IsMemset, ZeroMemset, MemcpyStrSrc, 193 FuncAttributes); 194 195 if (VT == MVT::Other) { 196 // Use the largest integer type whose alignment constraints are satisfied. 197 // We only need to check DstAlign here as SrcAlign is always greater or 198 // equal to DstAlign (or zero). 199 VT = MVT::i64; 200 while (DstAlign && DstAlign < VT.getSizeInBits() / 8 && 201 !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) 202 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 203 assert(VT.isInteger()); 204 205 // Find the largest legal integer type. 206 MVT LVT = MVT::i64; 207 while (!isTypeLegal(LVT)) 208 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 209 assert(LVT.isInteger()); 210 211 // If the type we've chosen is larger than the largest legal integer type 212 // then use that instead. 213 if (VT.bitsGT(LVT)) 214 VT = LVT; 215 } 216 217 unsigned NumMemOps = 0; 218 while (Size != 0) { 219 unsigned VTSize = VT.getSizeInBits() / 8; 220 while (VTSize > Size) { 221 // For now, only use non-vector load / store's for the left-over pieces. 222 EVT NewVT = VT; 223 unsigned NewVTSize; 224 225 bool Found = false; 226 if (VT.isVector() || VT.isFloatingPoint()) { 227 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 228 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 229 isSafeMemOpType(NewVT.getSimpleVT())) 230 Found = true; 231 else if (NewVT == MVT::i64 && 232 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 233 isSafeMemOpType(MVT::f64)) { 234 // i64 is usually not legal on 32-bit targets, but f64 may be. 235 NewVT = MVT::f64; 236 Found = true; 237 } 238 } 239 240 if (!Found) { 241 do { 242 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 243 if (NewVT == MVT::i8) 244 break; 245 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 246 } 247 NewVTSize = NewVT.getSizeInBits() / 8; 248 249 // If the new VT cannot cover all of the remaining bits, then consider 250 // issuing a (or a pair of) unaligned and overlapping load / store. 251 bool Fast; 252 if (NumMemOps && AllowOverlap && NewVTSize < Size && 253 allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, 254 MachineMemOperand::MONone, &Fast) && 255 Fast) 256 VTSize = Size; 257 else { 258 VT = NewVT; 259 VTSize = NewVTSize; 260 } 261 } 262 263 if (++NumMemOps > Limit) 264 return false; 265 266 MemOps.push_back(VT); 267 Size -= VTSize; 268 } 269 270 return true; 271 } 272 273 /// Soften the operands of a comparison. This code is shared among BR_CC, 274 /// SELECT_CC, and SETCC handlers. 275 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 276 SDValue &NewLHS, SDValue &NewRHS, 277 ISD::CondCode &CCCode, 278 const SDLoc &dl, const SDValue OldLHS, 279 const SDValue OldRHS) const { 280 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 281 && "Unsupported setcc type!"); 282 283 // Expand into one or more soft-fp libcall(s). 284 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 285 bool ShouldInvertCC = false; 286 switch (CCCode) { 287 case ISD::SETEQ: 288 case ISD::SETOEQ: 289 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 290 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 291 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 292 break; 293 case ISD::SETNE: 294 case ISD::SETUNE: 295 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 296 (VT == MVT::f64) ? RTLIB::UNE_F64 : 297 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 298 break; 299 case ISD::SETGE: 300 case ISD::SETOGE: 301 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 302 (VT == MVT::f64) ? RTLIB::OGE_F64 : 303 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 304 break; 305 case ISD::SETLT: 306 case ISD::SETOLT: 307 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 308 (VT == MVT::f64) ? RTLIB::OLT_F64 : 309 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 310 break; 311 case ISD::SETLE: 312 case ISD::SETOLE: 313 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 314 (VT == MVT::f64) ? RTLIB::OLE_F64 : 315 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 316 break; 317 case ISD::SETGT: 318 case ISD::SETOGT: 319 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 320 (VT == MVT::f64) ? RTLIB::OGT_F64 : 321 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 322 break; 323 case ISD::SETUO: 324 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 325 (VT == MVT::f64) ? RTLIB::UO_F64 : 326 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 327 break; 328 case ISD::SETO: 329 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 330 (VT == MVT::f64) ? RTLIB::O_F64 : 331 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 332 break; 333 case ISD::SETONE: 334 // SETONE = SETOLT | SETOGT 335 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 336 (VT == MVT::f64) ? RTLIB::OLT_F64 : 337 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 338 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 339 (VT == MVT::f64) ? RTLIB::OGT_F64 : 340 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 341 break; 342 case ISD::SETUEQ: 343 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 344 (VT == MVT::f64) ? RTLIB::UO_F64 : 345 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 346 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 347 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 348 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 349 break; 350 default: 351 // Invert CC for unordered comparisons 352 ShouldInvertCC = true; 353 switch (CCCode) { 354 case ISD::SETULT: 355 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 356 (VT == MVT::f64) ? RTLIB::OGE_F64 : 357 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 358 break; 359 case ISD::SETULE: 360 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 361 (VT == MVT::f64) ? RTLIB::OGT_F64 : 362 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 363 break; 364 case ISD::SETUGT: 365 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 366 (VT == MVT::f64) ? RTLIB::OLE_F64 : 367 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 368 break; 369 case ISD::SETUGE: 370 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 371 (VT == MVT::f64) ? RTLIB::OLT_F64 : 372 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 373 break; 374 default: llvm_unreachable("Do not know how to soften this setcc!"); 375 } 376 } 377 378 // Use the target specific return value for comparions lib calls. 379 EVT RetVT = getCmpLibcallReturnType(); 380 SDValue Ops[2] = {NewLHS, NewRHS}; 381 TargetLowering::MakeLibCallOptions CallOptions; 382 EVT OpsVT[2] = { OldLHS.getValueType(), 383 OldRHS.getValueType() }; 384 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 385 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl).first; 386 NewRHS = DAG.getConstant(0, dl, RetVT); 387 388 CCCode = getCmpLibcallCC(LC1); 389 if (ShouldInvertCC) 390 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); 391 392 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 393 SDValue Tmp = DAG.getNode( 394 ISD::SETCC, dl, 395 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 396 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 397 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl).first; 398 NewLHS = DAG.getNode( 399 ISD::SETCC, dl, 400 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 401 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 402 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 403 NewRHS = SDValue(); 404 } 405 } 406 407 /// Return the entry encoding for a jump table in the current function. The 408 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 409 unsigned TargetLowering::getJumpTableEncoding() const { 410 // In non-pic modes, just use the address of a block. 411 if (!isPositionIndependent()) 412 return MachineJumpTableInfo::EK_BlockAddress; 413 414 // In PIC mode, if the target supports a GPRel32 directive, use it. 415 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 416 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 417 418 // Otherwise, use a label difference. 419 return MachineJumpTableInfo::EK_LabelDifference32; 420 } 421 422 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 423 SelectionDAG &DAG) const { 424 // If our PIC model is GP relative, use the global offset table as the base. 425 unsigned JTEncoding = getJumpTableEncoding(); 426 427 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 428 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 429 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 430 431 return Table; 432 } 433 434 /// This returns the relocation base for the given PIC jumptable, the same as 435 /// getPICJumpTableRelocBase, but as an MCExpr. 436 const MCExpr * 437 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 438 unsigned JTI,MCContext &Ctx) const{ 439 // The normal PIC reloc base is the label at the start of the jump table. 440 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 441 } 442 443 bool 444 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 445 const TargetMachine &TM = getTargetMachine(); 446 const GlobalValue *GV = GA->getGlobal(); 447 448 // If the address is not even local to this DSO we will have to load it from 449 // a got and then add the offset. 450 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 451 return false; 452 453 // If the code is position independent we will have to add a base register. 454 if (isPositionIndependent()) 455 return false; 456 457 // Otherwise we can do it. 458 return true; 459 } 460 461 //===----------------------------------------------------------------------===// 462 // Optimization Methods 463 //===----------------------------------------------------------------------===// 464 465 /// If the specified instruction has a constant integer operand and there are 466 /// bits set in that constant that are not demanded, then clear those bits and 467 /// return true. 468 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 469 TargetLoweringOpt &TLO) const { 470 SDLoc DL(Op); 471 unsigned Opcode = Op.getOpcode(); 472 473 // Do target-specific constant optimization. 474 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 475 return TLO.New.getNode(); 476 477 // FIXME: ISD::SELECT, ISD::SELECT_CC 478 switch (Opcode) { 479 default: 480 break; 481 case ISD::XOR: 482 case ISD::AND: 483 case ISD::OR: { 484 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 485 if (!Op1C) 486 return false; 487 488 // If this is a 'not' op, don't touch it because that's a canonical form. 489 const APInt &C = Op1C->getAPIntValue(); 490 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 491 return false; 492 493 if (!C.isSubsetOf(Demanded)) { 494 EVT VT = Op.getValueType(); 495 SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT); 496 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 497 return TLO.CombineTo(Op, NewOp); 498 } 499 500 break; 501 } 502 } 503 504 return false; 505 } 506 507 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 508 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 509 /// generalized for targets with other types of implicit widening casts. 510 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 511 const APInt &Demanded, 512 TargetLoweringOpt &TLO) const { 513 assert(Op.getNumOperands() == 2 && 514 "ShrinkDemandedOp only supports binary operators!"); 515 assert(Op.getNode()->getNumValues() == 1 && 516 "ShrinkDemandedOp only supports nodes with one result!"); 517 518 SelectionDAG &DAG = TLO.DAG; 519 SDLoc dl(Op); 520 521 // Early return, as this function cannot handle vector types. 522 if (Op.getValueType().isVector()) 523 return false; 524 525 // Don't do this if the node has another user, which may require the 526 // full value. 527 if (!Op.getNode()->hasOneUse()) 528 return false; 529 530 // Search for the smallest integer type with free casts to and from 531 // Op's type. For expedience, just check power-of-2 integer types. 532 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 533 unsigned DemandedSize = Demanded.getActiveBits(); 534 unsigned SmallVTBits = DemandedSize; 535 if (!isPowerOf2_32(SmallVTBits)) 536 SmallVTBits = NextPowerOf2(SmallVTBits); 537 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 538 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 539 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 540 TLI.isZExtFree(SmallVT, Op.getValueType())) { 541 // We found a type with free casts. 542 SDValue X = DAG.getNode( 543 Op.getOpcode(), dl, SmallVT, 544 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 545 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 546 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 547 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 548 return TLO.CombineTo(Op, Z); 549 } 550 } 551 return false; 552 } 553 554 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 555 DAGCombinerInfo &DCI) const { 556 SelectionDAG &DAG = DCI.DAG; 557 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 558 !DCI.isBeforeLegalizeOps()); 559 KnownBits Known; 560 561 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 562 if (Simplified) { 563 DCI.AddToWorklist(Op.getNode()); 564 DCI.CommitTargetLoweringOpt(TLO); 565 } 566 return Simplified; 567 } 568 569 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 570 KnownBits &Known, 571 TargetLoweringOpt &TLO, 572 unsigned Depth, 573 bool AssumeSingleUse) const { 574 EVT VT = Op.getValueType(); 575 APInt DemandedElts = VT.isVector() 576 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 577 : APInt(1, 1); 578 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 579 AssumeSingleUse); 580 } 581 582 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 583 // TODO: Under what circumstances can we create nodes? Constant folding? 584 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 585 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 586 SelectionDAG &DAG, unsigned Depth) const { 587 // Limit search depth. 588 if (Depth >= SelectionDAG::MaxRecursionDepth) 589 return SDValue(); 590 591 // Ignore UNDEFs. 592 if (Op.isUndef()) 593 return SDValue(); 594 595 // Not demanding any bits/elts from Op. 596 if (DemandedBits == 0 || DemandedElts == 0) 597 return DAG.getUNDEF(Op.getValueType()); 598 599 unsigned NumElts = DemandedElts.getBitWidth(); 600 KnownBits LHSKnown, RHSKnown; 601 switch (Op.getOpcode()) { 602 case ISD::BITCAST: { 603 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 604 EVT SrcVT = Src.getValueType(); 605 EVT DstVT = Op.getValueType(); 606 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 607 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 608 609 if (NumSrcEltBits == NumDstEltBits) 610 if (SDValue V = SimplifyMultipleUseDemandedBits( 611 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 612 return DAG.getBitcast(DstVT, V); 613 614 // TODO - bigendian once we have test coverage. 615 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 616 DAG.getDataLayout().isLittleEndian()) { 617 unsigned Scale = NumDstEltBits / NumSrcEltBits; 618 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 619 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 620 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 621 for (unsigned i = 0; i != Scale; ++i) { 622 unsigned Offset = i * NumSrcEltBits; 623 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 624 if (!Sub.isNullValue()) { 625 DemandedSrcBits |= Sub; 626 for (unsigned j = 0; j != NumElts; ++j) 627 if (DemandedElts[j]) 628 DemandedSrcElts.setBit((j * Scale) + i); 629 } 630 } 631 632 if (SDValue V = SimplifyMultipleUseDemandedBits( 633 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 634 return DAG.getBitcast(DstVT, V); 635 } 636 637 // TODO - bigendian once we have test coverage. 638 if ((NumSrcEltBits % NumDstEltBits) == 0 && 639 DAG.getDataLayout().isLittleEndian()) { 640 unsigned Scale = NumSrcEltBits / NumDstEltBits; 641 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 642 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 643 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 644 for (unsigned i = 0; i != NumElts; ++i) 645 if (DemandedElts[i]) { 646 unsigned Offset = (i % Scale) * NumDstEltBits; 647 DemandedSrcBits.insertBits(DemandedBits, Offset); 648 DemandedSrcElts.setBit(i / Scale); 649 } 650 651 if (SDValue V = SimplifyMultipleUseDemandedBits( 652 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 653 return DAG.getBitcast(DstVT, V); 654 } 655 656 break; 657 } 658 case ISD::AND: { 659 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 660 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 661 662 // If all of the demanded bits are known 1 on one side, return the other. 663 // These bits cannot contribute to the result of the 'and' in this 664 // context. 665 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 666 return Op.getOperand(0); 667 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 668 return Op.getOperand(1); 669 break; 670 } 671 case ISD::OR: { 672 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 673 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 674 675 // If all of the demanded bits are known zero on one side, return the 676 // other. These bits cannot contribute to the result of the 'or' in this 677 // context. 678 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 679 return Op.getOperand(0); 680 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 681 return Op.getOperand(1); 682 break; 683 } 684 case ISD::XOR: { 685 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 686 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 687 688 // If all of the demanded bits are known zero on one side, return the 689 // other. 690 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 691 return Op.getOperand(0); 692 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 693 return Op.getOperand(1); 694 break; 695 } 696 case ISD::SIGN_EXTEND_INREG: { 697 // If none of the extended bits are demanded, eliminate the sextinreg. 698 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 699 if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits()) 700 return Op.getOperand(0); 701 break; 702 } 703 case ISD::INSERT_VECTOR_ELT: { 704 // If we don't demand the inserted element, return the base vector. 705 SDValue Vec = Op.getOperand(0); 706 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 707 EVT VecVT = Vec.getValueType(); 708 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 709 !DemandedElts[CIdx->getZExtValue()]) 710 return Vec; 711 break; 712 } 713 case ISD::VECTOR_SHUFFLE: { 714 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 715 716 // If all the demanded elts are from one operand and are inline, 717 // then we can use the operand directly. 718 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 719 for (unsigned i = 0; i != NumElts; ++i) { 720 int M = ShuffleMask[i]; 721 if (M < 0 || !DemandedElts[i]) 722 continue; 723 AllUndef = false; 724 IdentityLHS &= (M == (int)i); 725 IdentityRHS &= ((M - NumElts) == i); 726 } 727 728 if (AllUndef) 729 return DAG.getUNDEF(Op.getValueType()); 730 if (IdentityLHS) 731 return Op.getOperand(0); 732 if (IdentityRHS) 733 return Op.getOperand(1); 734 break; 735 } 736 default: 737 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 738 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 739 Op, DemandedBits, DemandedElts, DAG, Depth)) 740 return V; 741 break; 742 } 743 return SDValue(); 744 } 745 746 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 747 /// result of Op are ever used downstream. If we can use this information to 748 /// simplify Op, create a new simplified DAG node and return true, returning the 749 /// original and new nodes in Old and New. Otherwise, analyze the expression and 750 /// return a mask of Known bits for the expression (used to simplify the 751 /// caller). The Known bits may only be accurate for those bits in the 752 /// OriginalDemandedBits and OriginalDemandedElts. 753 bool TargetLowering::SimplifyDemandedBits( 754 SDValue Op, const APInt &OriginalDemandedBits, 755 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 756 unsigned Depth, bool AssumeSingleUse) const { 757 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 758 assert(Op.getScalarValueSizeInBits() == BitWidth && 759 "Mask size mismatches value type size!"); 760 761 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 762 assert((!Op.getValueType().isVector() || 763 NumElts == Op.getValueType().getVectorNumElements()) && 764 "Unexpected vector size"); 765 766 APInt DemandedBits = OriginalDemandedBits; 767 APInt DemandedElts = OriginalDemandedElts; 768 SDLoc dl(Op); 769 auto &DL = TLO.DAG.getDataLayout(); 770 771 // Don't know anything. 772 Known = KnownBits(BitWidth); 773 774 // Undef operand. 775 if (Op.isUndef()) 776 return false; 777 778 if (Op.getOpcode() == ISD::Constant) { 779 // We know all of the bits for a constant! 780 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 781 Known.Zero = ~Known.One; 782 return false; 783 } 784 785 // Other users may use these bits. 786 EVT VT = Op.getValueType(); 787 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 788 if (Depth != 0) { 789 // If not at the root, Just compute the Known bits to 790 // simplify things downstream. 791 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 792 return false; 793 } 794 // If this is the root being simplified, allow it to have multiple uses, 795 // just set the DemandedBits/Elts to all bits. 796 DemandedBits = APInt::getAllOnesValue(BitWidth); 797 DemandedElts = APInt::getAllOnesValue(NumElts); 798 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 799 // Not demanding any bits/elts from Op. 800 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 801 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 802 // Limit search depth. 803 return false; 804 } 805 806 KnownBits Known2, KnownOut; 807 switch (Op.getOpcode()) { 808 case ISD::TargetConstant: 809 llvm_unreachable("Can't simplify this node"); 810 case ISD::SCALAR_TO_VECTOR: { 811 if (!DemandedElts[0]) 812 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 813 814 KnownBits SrcKnown; 815 SDValue Src = Op.getOperand(0); 816 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 817 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 818 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 819 return true; 820 Known = SrcKnown.zextOrTrunc(BitWidth, false); 821 break; 822 } 823 case ISD::BUILD_VECTOR: 824 // Collect the known bits that are shared by every demanded element. 825 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 826 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 827 return false; // Don't fall through, will infinitely loop. 828 case ISD::LOAD: { 829 LoadSDNode *LD = cast<LoadSDNode>(Op); 830 if (getTargetConstantFromLoad(LD)) { 831 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 832 return false; // Don't fall through, will infinitely loop. 833 } 834 break; 835 } 836 case ISD::INSERT_VECTOR_ELT: { 837 SDValue Vec = Op.getOperand(0); 838 SDValue Scl = Op.getOperand(1); 839 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 840 EVT VecVT = Vec.getValueType(); 841 842 // If index isn't constant, assume we need all vector elements AND the 843 // inserted element. 844 APInt DemandedVecElts(DemandedElts); 845 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 846 unsigned Idx = CIdx->getZExtValue(); 847 DemandedVecElts.clearBit(Idx); 848 849 // Inserted element is not required. 850 if (!DemandedElts[Idx]) 851 return TLO.CombineTo(Op, Vec); 852 } 853 854 KnownBits KnownScl; 855 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 856 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 857 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 858 return true; 859 860 Known = KnownScl.zextOrTrunc(BitWidth, false); 861 862 KnownBits KnownVec; 863 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 864 Depth + 1)) 865 return true; 866 867 if (!!DemandedVecElts) { 868 Known.One &= KnownVec.One; 869 Known.Zero &= KnownVec.Zero; 870 } 871 872 return false; 873 } 874 case ISD::INSERT_SUBVECTOR: { 875 SDValue Base = Op.getOperand(0); 876 SDValue Sub = Op.getOperand(1); 877 EVT SubVT = Sub.getValueType(); 878 unsigned NumSubElts = SubVT.getVectorNumElements(); 879 880 // If index isn't constant, assume we need the original demanded base 881 // elements and ALL the inserted subvector elements. 882 APInt BaseElts = DemandedElts; 883 APInt SubElts = APInt::getAllOnesValue(NumSubElts); 884 if (isa<ConstantSDNode>(Op.getOperand(2))) { 885 const APInt &Idx = Op.getConstantOperandAPInt(2); 886 if (Idx.ule(NumElts - NumSubElts)) { 887 unsigned SubIdx = Idx.getZExtValue(); 888 SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 889 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 890 } 891 } 892 893 KnownBits KnownSub, KnownBase; 894 if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO, 895 Depth + 1)) 896 return true; 897 if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO, 898 Depth + 1)) 899 return true; 900 901 Known.Zero.setAllBits(); 902 Known.One.setAllBits(); 903 if (!!SubElts) { 904 Known.One &= KnownSub.One; 905 Known.Zero &= KnownSub.Zero; 906 } 907 if (!!BaseElts) { 908 Known.One &= KnownBase.One; 909 Known.Zero &= KnownBase.Zero; 910 } 911 break; 912 } 913 case ISD::EXTRACT_SUBVECTOR: { 914 // If index isn't constant, assume we need all the source vector elements. 915 SDValue Src = Op.getOperand(0); 916 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 917 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 918 APInt SrcElts = APInt::getAllOnesValue(NumSrcElts); 919 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 920 // Offset the demanded elts by the subvector index. 921 uint64_t Idx = SubIdx->getZExtValue(); 922 SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 923 } 924 if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1)) 925 return true; 926 break; 927 } 928 case ISD::CONCAT_VECTORS: { 929 Known.Zero.setAllBits(); 930 Known.One.setAllBits(); 931 EVT SubVT = Op.getOperand(0).getValueType(); 932 unsigned NumSubVecs = Op.getNumOperands(); 933 unsigned NumSubElts = SubVT.getVectorNumElements(); 934 for (unsigned i = 0; i != NumSubVecs; ++i) { 935 APInt DemandedSubElts = 936 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 937 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 938 Known2, TLO, Depth + 1)) 939 return true; 940 // Known bits are shared by every demanded subvector element. 941 if (!!DemandedSubElts) { 942 Known.One &= Known2.One; 943 Known.Zero &= Known2.Zero; 944 } 945 } 946 break; 947 } 948 case ISD::VECTOR_SHUFFLE: { 949 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 950 951 // Collect demanded elements from shuffle operands.. 952 APInt DemandedLHS(NumElts, 0); 953 APInt DemandedRHS(NumElts, 0); 954 for (unsigned i = 0; i != NumElts; ++i) { 955 if (!DemandedElts[i]) 956 continue; 957 int M = ShuffleMask[i]; 958 if (M < 0) { 959 // For UNDEF elements, we don't know anything about the common state of 960 // the shuffle result. 961 DemandedLHS.clearAllBits(); 962 DemandedRHS.clearAllBits(); 963 break; 964 } 965 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 966 if (M < (int)NumElts) 967 DemandedLHS.setBit(M); 968 else 969 DemandedRHS.setBit(M - NumElts); 970 } 971 972 if (!!DemandedLHS || !!DemandedRHS) { 973 SDValue Op0 = Op.getOperand(0); 974 SDValue Op1 = Op.getOperand(1); 975 976 Known.Zero.setAllBits(); 977 Known.One.setAllBits(); 978 if (!!DemandedLHS) { 979 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 980 Depth + 1)) 981 return true; 982 Known.One &= Known2.One; 983 Known.Zero &= Known2.Zero; 984 } 985 if (!!DemandedRHS) { 986 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 987 Depth + 1)) 988 return true; 989 Known.One &= Known2.One; 990 Known.Zero &= Known2.Zero; 991 } 992 993 // Attempt to avoid multi-use ops if we don't need anything from them. 994 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 995 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 996 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 997 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 998 if (DemandedOp0 || DemandedOp1) { 999 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1000 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1001 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1002 return TLO.CombineTo(Op, NewOp); 1003 } 1004 } 1005 break; 1006 } 1007 case ISD::AND: { 1008 SDValue Op0 = Op.getOperand(0); 1009 SDValue Op1 = Op.getOperand(1); 1010 1011 // If the RHS is a constant, check to see if the LHS would be zero without 1012 // using the bits from the RHS. Below, we use knowledge about the RHS to 1013 // simplify the LHS, here we're using information from the LHS to simplify 1014 // the RHS. 1015 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1016 // Do not increment Depth here; that can cause an infinite loop. 1017 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1018 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1019 if ((LHSKnown.Zero & DemandedBits) == 1020 (~RHSC->getAPIntValue() & DemandedBits)) 1021 return TLO.CombineTo(Op, Op0); 1022 1023 // If any of the set bits in the RHS are known zero on the LHS, shrink 1024 // the constant. 1025 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 1026 return true; 1027 1028 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1029 // constant, but if this 'and' is only clearing bits that were just set by 1030 // the xor, then this 'and' can be eliminated by shrinking the mask of 1031 // the xor. For example, for a 32-bit X: 1032 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1033 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1034 LHSKnown.One == ~RHSC->getAPIntValue()) { 1035 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1036 return TLO.CombineTo(Op, Xor); 1037 } 1038 } 1039 1040 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1041 Depth + 1)) 1042 return true; 1043 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1044 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1045 Known2, TLO, Depth + 1)) 1046 return true; 1047 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1048 1049 // Attempt to avoid multi-use ops if we don't need anything from them. 1050 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1051 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1052 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1053 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1054 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1055 if (DemandedOp0 || DemandedOp1) { 1056 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1057 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1058 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1059 return TLO.CombineTo(Op, NewOp); 1060 } 1061 } 1062 1063 // If all of the demanded bits are known one on one side, return the other. 1064 // These bits cannot contribute to the result of the 'and'. 1065 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1066 return TLO.CombineTo(Op, Op0); 1067 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1068 return TLO.CombineTo(Op, Op1); 1069 // If all of the demanded bits in the inputs are known zeros, return zero. 1070 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1071 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1072 // If the RHS is a constant, see if we can simplify it. 1073 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 1074 return true; 1075 // If the operation can be done in a smaller type, do so. 1076 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1077 return true; 1078 1079 // Output known-1 bits are only known if set in both the LHS & RHS. 1080 Known.One &= Known2.One; 1081 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1082 Known.Zero |= Known2.Zero; 1083 break; 1084 } 1085 case ISD::OR: { 1086 SDValue Op0 = Op.getOperand(0); 1087 SDValue Op1 = Op.getOperand(1); 1088 1089 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1090 Depth + 1)) 1091 return true; 1092 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1093 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1094 Known2, TLO, Depth + 1)) 1095 return true; 1096 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1097 1098 // Attempt to avoid multi-use ops if we don't need anything from them. 1099 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1100 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1101 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1102 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1103 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1104 if (DemandedOp0 || DemandedOp1) { 1105 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1106 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1107 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1108 return TLO.CombineTo(Op, NewOp); 1109 } 1110 } 1111 1112 // If all of the demanded bits are known zero on one side, return the other. 1113 // These bits cannot contribute to the result of the 'or'. 1114 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1115 return TLO.CombineTo(Op, Op0); 1116 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1117 return TLO.CombineTo(Op, Op1); 1118 // If the RHS is a constant, see if we can simplify it. 1119 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1120 return true; 1121 // If the operation can be done in a smaller type, do so. 1122 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1123 return true; 1124 1125 // Output known-0 bits are only known if clear in both the LHS & RHS. 1126 Known.Zero &= Known2.Zero; 1127 // Output known-1 are known to be set if set in either the LHS | RHS. 1128 Known.One |= Known2.One; 1129 break; 1130 } 1131 case ISD::XOR: { 1132 SDValue Op0 = Op.getOperand(0); 1133 SDValue Op1 = Op.getOperand(1); 1134 1135 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1136 Depth + 1)) 1137 return true; 1138 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1139 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1140 Depth + 1)) 1141 return true; 1142 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1143 1144 // Attempt to avoid multi-use ops if we don't need anything from them. 1145 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1146 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1147 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1148 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1149 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1150 if (DemandedOp0 || DemandedOp1) { 1151 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1152 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1153 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1154 return TLO.CombineTo(Op, NewOp); 1155 } 1156 } 1157 1158 // If all of the demanded bits are known zero on one side, return the other. 1159 // These bits cannot contribute to the result of the 'xor'. 1160 if (DemandedBits.isSubsetOf(Known.Zero)) 1161 return TLO.CombineTo(Op, Op0); 1162 if (DemandedBits.isSubsetOf(Known2.Zero)) 1163 return TLO.CombineTo(Op, Op1); 1164 // If the operation can be done in a smaller type, do so. 1165 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1166 return true; 1167 1168 // If all of the unknown bits are known to be zero on one side or the other 1169 // (but not both) turn this into an *inclusive* or. 1170 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1171 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1172 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1173 1174 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1175 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1176 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1177 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1178 1179 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 1180 // If one side is a constant, and all of the known set bits on the other 1181 // side are also set in the constant, turn this into an AND, as we know 1182 // the bits will be cleared. 1183 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1184 // NB: it is okay if more bits are known than are requested 1185 if (C->getAPIntValue() == Known2.One) { 1186 SDValue ANDC = 1187 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1188 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1189 } 1190 1191 // If the RHS is a constant, see if we can change it. Don't alter a -1 1192 // constant because that's a 'not' op, and that is better for combining 1193 // and codegen. 1194 if (!C->isAllOnesValue()) { 1195 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 1196 // We're flipping all demanded bits. Flip the undemanded bits too. 1197 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1198 return TLO.CombineTo(Op, New); 1199 } 1200 // If we can't turn this into a 'not', try to shrink the constant. 1201 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1202 return true; 1203 } 1204 } 1205 1206 Known = std::move(KnownOut); 1207 break; 1208 } 1209 case ISD::SELECT: 1210 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1211 Depth + 1)) 1212 return true; 1213 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1214 Depth + 1)) 1215 return true; 1216 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1217 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1218 1219 // If the operands are constants, see if we can simplify them. 1220 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1221 return true; 1222 1223 // Only known if known in both the LHS and RHS. 1224 Known.One &= Known2.One; 1225 Known.Zero &= Known2.Zero; 1226 break; 1227 case ISD::SELECT_CC: 1228 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1229 Depth + 1)) 1230 return true; 1231 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1232 Depth + 1)) 1233 return true; 1234 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1235 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1236 1237 // If the operands are constants, see if we can simplify them. 1238 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1239 return true; 1240 1241 // Only known if known in both the LHS and RHS. 1242 Known.One &= Known2.One; 1243 Known.Zero &= Known2.Zero; 1244 break; 1245 case ISD::SETCC: { 1246 SDValue Op0 = Op.getOperand(0); 1247 SDValue Op1 = Op.getOperand(1); 1248 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1249 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1250 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1251 // -1, we may be able to bypass the setcc. 1252 if (DemandedBits.isSignMask() && 1253 Op0.getScalarValueSizeInBits() == BitWidth && 1254 getBooleanContents(VT) == 1255 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1256 // If we're testing X < 0, then this compare isn't needed - just use X! 1257 // FIXME: We're limiting to integer types here, but this should also work 1258 // if we don't care about FP signed-zero. The use of SETLT with FP means 1259 // that we don't care about NaNs. 1260 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1261 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1262 return TLO.CombineTo(Op, Op0); 1263 1264 // TODO: Should we check for other forms of sign-bit comparisons? 1265 // Examples: X <= -1, X >= 0 1266 } 1267 if (getBooleanContents(Op0.getValueType()) == 1268 TargetLowering::ZeroOrOneBooleanContent && 1269 BitWidth > 1) 1270 Known.Zero.setBitsFrom(1); 1271 break; 1272 } 1273 case ISD::SHL: { 1274 SDValue Op0 = Op.getOperand(0); 1275 SDValue Op1 = Op.getOperand(1); 1276 1277 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1278 // If the shift count is an invalid immediate, don't do anything. 1279 if (SA->getAPIntValue().uge(BitWidth)) 1280 break; 1281 1282 unsigned ShAmt = SA->getZExtValue(); 1283 if (ShAmt == 0) 1284 return TLO.CombineTo(Op, Op0); 1285 1286 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1287 // single shift. We can do this if the bottom bits (which are shifted 1288 // out) are never demanded. 1289 // TODO - support non-uniform vector amounts. 1290 if (Op0.getOpcode() == ISD::SRL) { 1291 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1292 if (ConstantSDNode *SA2 = 1293 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1294 if (SA2->getAPIntValue().ult(BitWidth)) { 1295 unsigned C1 = SA2->getZExtValue(); 1296 unsigned Opc = ISD::SHL; 1297 int Diff = ShAmt - C1; 1298 if (Diff < 0) { 1299 Diff = -Diff; 1300 Opc = ISD::SRL; 1301 } 1302 1303 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); 1304 return TLO.CombineTo( 1305 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1306 } 1307 } 1308 } 1309 } 1310 1311 if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts, 1312 Known, TLO, Depth + 1)) 1313 return true; 1314 1315 // Try shrinking the operation as long as the shift amount will still be 1316 // in range. 1317 if ((ShAmt < DemandedBits.getActiveBits()) && 1318 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1319 return true; 1320 1321 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1322 // are not demanded. This will likely allow the anyext to be folded away. 1323 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1324 SDValue InnerOp = Op0.getOperand(0); 1325 EVT InnerVT = InnerOp.getValueType(); 1326 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1327 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1328 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1329 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1330 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1331 ShTy = InnerVT; 1332 SDValue NarrowShl = 1333 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1334 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1335 return TLO.CombineTo( 1336 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1337 } 1338 // Repeat the SHL optimization above in cases where an extension 1339 // intervenes: (shl (anyext (shr x, c1)), c2) to 1340 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1341 // aren't demanded (as above) and that the shifted upper c1 bits of 1342 // x aren't demanded. 1343 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1344 InnerOp.hasOneUse()) { 1345 if (ConstantSDNode *SA2 = 1346 isConstOrConstSplat(InnerOp.getOperand(1))) { 1347 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 1348 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1349 DemandedBits.getActiveBits() <= 1350 (InnerBits - InnerShAmt + ShAmt) && 1351 DemandedBits.countTrailingZeros() >= ShAmt) { 1352 SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 1353 Op1.getValueType()); 1354 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1355 InnerOp.getOperand(0)); 1356 return TLO.CombineTo( 1357 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1358 } 1359 } 1360 } 1361 } 1362 1363 Known.Zero <<= ShAmt; 1364 Known.One <<= ShAmt; 1365 // low bits known zero. 1366 Known.Zero.setLowBits(ShAmt); 1367 } 1368 break; 1369 } 1370 case ISD::SRL: { 1371 SDValue Op0 = Op.getOperand(0); 1372 SDValue Op1 = Op.getOperand(1); 1373 1374 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1375 // If the shift count is an invalid immediate, don't do anything. 1376 if (SA->getAPIntValue().uge(BitWidth)) 1377 break; 1378 1379 unsigned ShAmt = SA->getZExtValue(); 1380 if (ShAmt == 0) 1381 return TLO.CombineTo(Op, Op0); 1382 1383 EVT ShiftVT = Op1.getValueType(); 1384 APInt InDemandedMask = (DemandedBits << ShAmt); 1385 1386 // If the shift is exact, then it does demand the low bits (and knows that 1387 // they are zero). 1388 if (Op->getFlags().hasExact()) 1389 InDemandedMask.setLowBits(ShAmt); 1390 1391 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1392 // single shift. We can do this if the top bits (which are shifted out) 1393 // are never demanded. 1394 // TODO - support non-uniform vector amounts. 1395 if (Op0.getOpcode() == ISD::SHL) { 1396 if (ConstantSDNode *SA2 = 1397 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1398 if (!DemandedBits.intersects( 1399 APInt::getHighBitsSet(BitWidth, ShAmt))) { 1400 if (SA2->getAPIntValue().ult(BitWidth)) { 1401 unsigned C1 = SA2->getZExtValue(); 1402 unsigned Opc = ISD::SRL; 1403 int Diff = ShAmt - C1; 1404 if (Diff < 0) { 1405 Diff = -Diff; 1406 Opc = ISD::SHL; 1407 } 1408 1409 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1410 return TLO.CombineTo( 1411 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1412 } 1413 } 1414 } 1415 } 1416 1417 // Compute the new bits that are at the top now. 1418 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1419 Depth + 1)) 1420 return true; 1421 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1422 Known.Zero.lshrInPlace(ShAmt); 1423 Known.One.lshrInPlace(ShAmt); 1424 1425 Known.Zero.setHighBits(ShAmt); // High bits known zero. 1426 } 1427 break; 1428 } 1429 case ISD::SRA: { 1430 SDValue Op0 = Op.getOperand(0); 1431 SDValue Op1 = Op.getOperand(1); 1432 1433 // If this is an arithmetic shift right and only the low-bit is set, we can 1434 // always convert this into a logical shr, even if the shift amount is 1435 // variable. The low bit of the shift cannot be an input sign bit unless 1436 // the shift amount is >= the size of the datatype, which is undefined. 1437 if (DemandedBits.isOneValue()) 1438 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1439 1440 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1441 // If the shift count is an invalid immediate, don't do anything. 1442 if (SA->getAPIntValue().uge(BitWidth)) 1443 break; 1444 1445 unsigned ShAmt = SA->getZExtValue(); 1446 if (ShAmt == 0) 1447 return TLO.CombineTo(Op, Op0); 1448 1449 APInt InDemandedMask = (DemandedBits << ShAmt); 1450 1451 // If the shift is exact, then it does demand the low bits (and knows that 1452 // they are zero). 1453 if (Op->getFlags().hasExact()) 1454 InDemandedMask.setLowBits(ShAmt); 1455 1456 // If any of the demanded bits are produced by the sign extension, we also 1457 // demand the input sign bit. 1458 if (DemandedBits.countLeadingZeros() < ShAmt) 1459 InDemandedMask.setSignBit(); 1460 1461 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1462 Depth + 1)) 1463 return true; 1464 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1465 Known.Zero.lshrInPlace(ShAmt); 1466 Known.One.lshrInPlace(ShAmt); 1467 1468 // If the input sign bit is known to be zero, or if none of the top bits 1469 // are demanded, turn this into an unsigned shift right. 1470 if (Known.Zero[BitWidth - ShAmt - 1] || 1471 DemandedBits.countLeadingZeros() >= ShAmt) { 1472 SDNodeFlags Flags; 1473 Flags.setExact(Op->getFlags().hasExact()); 1474 return TLO.CombineTo( 1475 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1476 } 1477 1478 int Log2 = DemandedBits.exactLogBase2(); 1479 if (Log2 >= 0) { 1480 // The bit must come from the sign. 1481 SDValue NewSA = 1482 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType()); 1483 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1484 } 1485 1486 if (Known.One[BitWidth - ShAmt - 1]) 1487 // New bits are known one. 1488 Known.One.setHighBits(ShAmt); 1489 } 1490 break; 1491 } 1492 case ISD::FSHL: 1493 case ISD::FSHR: { 1494 SDValue Op0 = Op.getOperand(0); 1495 SDValue Op1 = Op.getOperand(1); 1496 SDValue Op2 = Op.getOperand(2); 1497 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1498 1499 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1500 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1501 1502 // For fshl, 0-shift returns the 1st arg. 1503 // For fshr, 0-shift returns the 2nd arg. 1504 if (Amt == 0) { 1505 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1506 Known, TLO, Depth + 1)) 1507 return true; 1508 break; 1509 } 1510 1511 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1512 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1513 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1514 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1515 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1516 Depth + 1)) 1517 return true; 1518 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1519 Depth + 1)) 1520 return true; 1521 1522 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1523 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1524 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1525 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1526 Known.One |= Known2.One; 1527 Known.Zero |= Known2.Zero; 1528 } 1529 break; 1530 } 1531 case ISD::BITREVERSE: { 1532 SDValue Src = Op.getOperand(0); 1533 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1534 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1535 Depth + 1)) 1536 return true; 1537 Known.One = Known2.One.reverseBits(); 1538 Known.Zero = Known2.Zero.reverseBits(); 1539 break; 1540 } 1541 case ISD::SIGN_EXTEND_INREG: { 1542 SDValue Op0 = Op.getOperand(0); 1543 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1544 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1545 1546 // If we only care about the highest bit, don't bother shifting right. 1547 if (DemandedBits.isSignMask()) { 1548 unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0); 1549 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1550 // However if the input is already sign extended we expect the sign 1551 // extension to be dropped altogether later and do not simplify. 1552 if (!AlreadySignExtended) { 1553 // Compute the correct shift amount type, which must be getShiftAmountTy 1554 // for scalar types after legalization. 1555 EVT ShiftAmtTy = VT; 1556 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1557 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1558 1559 SDValue ShiftAmt = 1560 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1561 return TLO.CombineTo(Op, 1562 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1563 } 1564 } 1565 1566 // If none of the extended bits are demanded, eliminate the sextinreg. 1567 if (DemandedBits.getActiveBits() <= ExVTBits) 1568 return TLO.CombineTo(Op, Op0); 1569 1570 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1571 1572 // Since the sign extended bits are demanded, we know that the sign 1573 // bit is demanded. 1574 InputDemandedBits.setBit(ExVTBits - 1); 1575 1576 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1577 return true; 1578 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1579 1580 // If the sign bit of the input is known set or clear, then we know the 1581 // top bits of the result. 1582 1583 // If the input sign bit is known zero, convert this into a zero extension. 1584 if (Known.Zero[ExVTBits - 1]) 1585 return TLO.CombineTo( 1586 Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType())); 1587 1588 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1589 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1590 Known.One.setBitsFrom(ExVTBits); 1591 Known.Zero &= Mask; 1592 } else { // Input sign bit unknown 1593 Known.Zero &= Mask; 1594 Known.One &= Mask; 1595 } 1596 break; 1597 } 1598 case ISD::BUILD_PAIR: { 1599 EVT HalfVT = Op.getOperand(0).getValueType(); 1600 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1601 1602 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1603 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1604 1605 KnownBits KnownLo, KnownHi; 1606 1607 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1608 return true; 1609 1610 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1611 return true; 1612 1613 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1614 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1615 1616 Known.One = KnownLo.One.zext(BitWidth) | 1617 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1618 break; 1619 } 1620 case ISD::ZERO_EXTEND: 1621 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1622 SDValue Src = Op.getOperand(0); 1623 EVT SrcVT = Src.getValueType(); 1624 unsigned InBits = SrcVT.getScalarSizeInBits(); 1625 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1626 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1627 1628 // If none of the top bits are demanded, convert this into an any_extend. 1629 if (DemandedBits.getActiveBits() <= InBits) { 1630 // If we only need the non-extended bits of the bottom element 1631 // then we can just bitcast to the result. 1632 if (IsVecInReg && DemandedElts == 1 && 1633 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1634 TLO.DAG.getDataLayout().isLittleEndian()) 1635 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1636 1637 unsigned Opc = 1638 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1639 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1640 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1641 } 1642 1643 APInt InDemandedBits = DemandedBits.trunc(InBits); 1644 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1645 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1646 Depth + 1)) 1647 return true; 1648 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1649 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1650 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 1651 break; 1652 } 1653 case ISD::SIGN_EXTEND: 1654 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1655 SDValue Src = Op.getOperand(0); 1656 EVT SrcVT = Src.getValueType(); 1657 unsigned InBits = SrcVT.getScalarSizeInBits(); 1658 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1659 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1660 1661 // If none of the top bits are demanded, convert this into an any_extend. 1662 if (DemandedBits.getActiveBits() <= InBits) { 1663 // If we only need the non-extended bits of the bottom element 1664 // then we can just bitcast to the result. 1665 if (IsVecInReg && DemandedElts == 1 && 1666 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1667 TLO.DAG.getDataLayout().isLittleEndian()) 1668 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1669 1670 unsigned Opc = 1671 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1672 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1673 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1674 } 1675 1676 APInt InDemandedBits = DemandedBits.trunc(InBits); 1677 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1678 1679 // Since some of the sign extended bits are demanded, we know that the sign 1680 // bit is demanded. 1681 InDemandedBits.setBit(InBits - 1); 1682 1683 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1684 Depth + 1)) 1685 return true; 1686 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1687 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1688 1689 // If the sign bit is known one, the top bits match. 1690 Known = Known.sext(BitWidth); 1691 1692 // If the sign bit is known zero, convert this to a zero extend. 1693 if (Known.isNonNegative()) { 1694 unsigned Opc = 1695 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1696 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1697 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1698 } 1699 break; 1700 } 1701 case ISD::ANY_EXTEND: 1702 case ISD::ANY_EXTEND_VECTOR_INREG: { 1703 SDValue Src = Op.getOperand(0); 1704 EVT SrcVT = Src.getValueType(); 1705 unsigned InBits = SrcVT.getScalarSizeInBits(); 1706 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1707 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1708 1709 // If we only need the bottom element then we can just bitcast. 1710 // TODO: Handle ANY_EXTEND? 1711 if (IsVecInReg && DemandedElts == 1 && 1712 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1713 TLO.DAG.getDataLayout().isLittleEndian()) 1714 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1715 1716 APInt InDemandedBits = DemandedBits.trunc(InBits); 1717 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1718 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1719 Depth + 1)) 1720 return true; 1721 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1722 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1723 Known = Known.zext(BitWidth, false /* => any extend */); 1724 break; 1725 } 1726 case ISD::TRUNCATE: { 1727 SDValue Src = Op.getOperand(0); 1728 1729 // Simplify the input, using demanded bit information, and compute the known 1730 // zero/one bits live out. 1731 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1732 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1733 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1734 return true; 1735 Known = Known.trunc(BitWidth); 1736 1737 // Attempt to avoid multi-use ops if we don't need anything from them. 1738 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1739 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 1740 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 1741 1742 // If the input is only used by this truncate, see if we can shrink it based 1743 // on the known demanded bits. 1744 if (Src.getNode()->hasOneUse()) { 1745 switch (Src.getOpcode()) { 1746 default: 1747 break; 1748 case ISD::SRL: 1749 // Shrink SRL by a constant if none of the high bits shifted in are 1750 // demanded. 1751 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1752 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1753 // undesirable. 1754 break; 1755 1756 auto *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); 1757 if (!ShAmt || ShAmt->getAPIntValue().uge(BitWidth)) 1758 break; 1759 1760 SDValue Shift = Src.getOperand(1); 1761 uint64_t ShVal = ShAmt->getZExtValue(); 1762 1763 if (TLO.LegalTypes()) 1764 Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1765 1766 APInt HighBits = 1767 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 1768 HighBits.lshrInPlace(ShVal); 1769 HighBits = HighBits.trunc(BitWidth); 1770 1771 if (!(HighBits & DemandedBits)) { 1772 // None of the shifted in bits are needed. Add a truncate of the 1773 // shift input, then shift it. 1774 SDValue NewTrunc = 1775 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1776 return TLO.CombineTo( 1777 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift)); 1778 } 1779 break; 1780 } 1781 } 1782 1783 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1784 break; 1785 } 1786 case ISD::AssertZext: { 1787 // AssertZext demands all of the high bits, plus any of the low bits 1788 // demanded by its users. 1789 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1790 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1791 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 1792 TLO, Depth + 1)) 1793 return true; 1794 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1795 1796 Known.Zero |= ~InMask; 1797 break; 1798 } 1799 case ISD::EXTRACT_VECTOR_ELT: { 1800 SDValue Src = Op.getOperand(0); 1801 SDValue Idx = Op.getOperand(1); 1802 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1803 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 1804 1805 // Demand the bits from every vector element without a constant index. 1806 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 1807 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 1808 if (CIdx->getAPIntValue().ult(NumSrcElts)) 1809 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 1810 1811 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 1812 // anything about the extended bits. 1813 APInt DemandedSrcBits = DemandedBits; 1814 if (BitWidth > EltBitWidth) 1815 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 1816 1817 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 1818 Depth + 1)) 1819 return true; 1820 1821 Known = Known2; 1822 if (BitWidth > EltBitWidth) 1823 Known = Known.zext(BitWidth, false /* => any extend */); 1824 break; 1825 } 1826 case ISD::BITCAST: { 1827 SDValue Src = Op.getOperand(0); 1828 EVT SrcVT = Src.getValueType(); 1829 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 1830 1831 // If this is an FP->Int bitcast and if the sign bit is the only 1832 // thing demanded, turn this into a FGETSIGN. 1833 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 1834 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 1835 SrcVT.isFloatingPoint()) { 1836 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1837 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1838 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 1839 SrcVT != MVT::f128) { 1840 // Cannot eliminate/lower SHL for f128 yet. 1841 EVT Ty = OpVTLegal ? VT : MVT::i32; 1842 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1843 // place. We expect the SHL to be eliminated by other optimizations. 1844 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 1845 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1846 if (!OpVTLegal && OpVTSizeInBits > 32) 1847 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 1848 unsigned ShVal = Op.getValueSizeInBits() - 1; 1849 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 1850 return TLO.CombineTo(Op, 1851 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 1852 } 1853 } 1854 1855 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 1856 // Demand the elt/bit if any of the original elts/bits are demanded. 1857 // TODO - bigendian once we have test coverage. 1858 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 1859 TLO.DAG.getDataLayout().isLittleEndian()) { 1860 unsigned Scale = BitWidth / NumSrcEltBits; 1861 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1862 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 1863 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 1864 for (unsigned i = 0; i != Scale; ++i) { 1865 unsigned Offset = i * NumSrcEltBits; 1866 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 1867 if (!Sub.isNullValue()) { 1868 DemandedSrcBits |= Sub; 1869 for (unsigned j = 0; j != NumElts; ++j) 1870 if (DemandedElts[j]) 1871 DemandedSrcElts.setBit((j * Scale) + i); 1872 } 1873 } 1874 1875 APInt KnownSrcUndef, KnownSrcZero; 1876 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 1877 KnownSrcZero, TLO, Depth + 1)) 1878 return true; 1879 1880 KnownBits KnownSrcBits; 1881 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 1882 KnownSrcBits, TLO, Depth + 1)) 1883 return true; 1884 } else if ((NumSrcEltBits % BitWidth) == 0 && 1885 TLO.DAG.getDataLayout().isLittleEndian()) { 1886 unsigned Scale = NumSrcEltBits / BitWidth; 1887 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1888 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 1889 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 1890 for (unsigned i = 0; i != NumElts; ++i) 1891 if (DemandedElts[i]) { 1892 unsigned Offset = (i % Scale) * BitWidth; 1893 DemandedSrcBits.insertBits(DemandedBits, Offset); 1894 DemandedSrcElts.setBit(i / Scale); 1895 } 1896 1897 if (SrcVT.isVector()) { 1898 APInt KnownSrcUndef, KnownSrcZero; 1899 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 1900 KnownSrcZero, TLO, Depth + 1)) 1901 return true; 1902 } 1903 1904 KnownBits KnownSrcBits; 1905 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 1906 KnownSrcBits, TLO, Depth + 1)) 1907 return true; 1908 } 1909 1910 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 1911 // recursive call where Known may be useful to the caller. 1912 if (Depth > 0) { 1913 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1914 return false; 1915 } 1916 break; 1917 } 1918 case ISD::ADD: 1919 case ISD::MUL: 1920 case ISD::SUB: { 1921 // Add, Sub, and Mul don't demand any bits in positions beyond that 1922 // of the highest bit demanded of them. 1923 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 1924 SDNodeFlags Flags = Op.getNode()->getFlags(); 1925 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 1926 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 1927 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 1928 Depth + 1) || 1929 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 1930 Depth + 1) || 1931 // See if the operation should be performed at a smaller bit width. 1932 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 1933 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 1934 // Disable the nsw and nuw flags. We can no longer guarantee that we 1935 // won't wrap after simplification. 1936 Flags.setNoSignedWrap(false); 1937 Flags.setNoUnsignedWrap(false); 1938 SDValue NewOp = 1939 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 1940 return TLO.CombineTo(Op, NewOp); 1941 } 1942 return true; 1943 } 1944 1945 // Attempt to avoid multi-use ops if we don't need anything from them. 1946 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1947 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1948 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 1949 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1950 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 1951 if (DemandedOp0 || DemandedOp1) { 1952 Flags.setNoSignedWrap(false); 1953 Flags.setNoUnsignedWrap(false); 1954 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1955 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1956 SDValue NewOp = 1957 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 1958 return TLO.CombineTo(Op, NewOp); 1959 } 1960 } 1961 1962 // If we have a constant operand, we may be able to turn it into -1 if we 1963 // do not demand the high bits. This can make the constant smaller to 1964 // encode, allow more general folding, or match specialized instruction 1965 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 1966 // is probably not useful (and could be detrimental). 1967 ConstantSDNode *C = isConstOrConstSplat(Op1); 1968 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 1969 if (C && !C->isAllOnesValue() && !C->isOne() && 1970 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 1971 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 1972 // Disable the nsw and nuw flags. We can no longer guarantee that we 1973 // won't wrap after simplification. 1974 Flags.setNoSignedWrap(false); 1975 Flags.setNoUnsignedWrap(false); 1976 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 1977 return TLO.CombineTo(Op, NewOp); 1978 } 1979 1980 LLVM_FALLTHROUGH; 1981 } 1982 default: 1983 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 1984 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 1985 Known, TLO, Depth)) 1986 return true; 1987 break; 1988 } 1989 1990 // Just use computeKnownBits to compute output bits. 1991 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1992 break; 1993 } 1994 1995 // If we know the value of all of the demanded bits, return this as a 1996 // constant. 1997 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 1998 // Avoid folding to a constant if any OpaqueConstant is involved. 1999 const SDNode *N = Op.getNode(); 2000 for (SDNodeIterator I = SDNodeIterator::begin(N), 2001 E = SDNodeIterator::end(N); 2002 I != E; ++I) { 2003 SDNode *Op = *I; 2004 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2005 if (C->isOpaque()) 2006 return false; 2007 } 2008 // TODO: Handle float bits as well. 2009 if (VT.isInteger()) 2010 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2011 } 2012 2013 return false; 2014 } 2015 2016 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2017 const APInt &DemandedElts, 2018 APInt &KnownUndef, 2019 APInt &KnownZero, 2020 DAGCombinerInfo &DCI) const { 2021 SelectionDAG &DAG = DCI.DAG; 2022 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2023 !DCI.isBeforeLegalizeOps()); 2024 2025 bool Simplified = 2026 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2027 if (Simplified) { 2028 DCI.AddToWorklist(Op.getNode()); 2029 DCI.CommitTargetLoweringOpt(TLO); 2030 } 2031 2032 return Simplified; 2033 } 2034 2035 /// Given a vector binary operation and known undefined elements for each input 2036 /// operand, compute whether each element of the output is undefined. 2037 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2038 const APInt &UndefOp0, 2039 const APInt &UndefOp1) { 2040 EVT VT = BO.getValueType(); 2041 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2042 "Vector binop only"); 2043 2044 EVT EltVT = VT.getVectorElementType(); 2045 unsigned NumElts = VT.getVectorNumElements(); 2046 assert(UndefOp0.getBitWidth() == NumElts && 2047 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2048 2049 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2050 const APInt &UndefVals) { 2051 if (UndefVals[Index]) 2052 return DAG.getUNDEF(EltVT); 2053 2054 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2055 // Try hard to make sure that the getNode() call is not creating temporary 2056 // nodes. Ignore opaque integers because they do not constant fold. 2057 SDValue Elt = BV->getOperand(Index); 2058 auto *C = dyn_cast<ConstantSDNode>(Elt); 2059 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2060 return Elt; 2061 } 2062 2063 return SDValue(); 2064 }; 2065 2066 APInt KnownUndef = APInt::getNullValue(NumElts); 2067 for (unsigned i = 0; i != NumElts; ++i) { 2068 // If both inputs for this element are either constant or undef and match 2069 // the element type, compute the constant/undef result for this element of 2070 // the vector. 2071 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2072 // not handle FP constants. The code within getNode() should be refactored 2073 // to avoid the danger of creating a bogus temporary node here. 2074 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2075 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2076 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2077 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2078 KnownUndef.setBit(i); 2079 } 2080 return KnownUndef; 2081 } 2082 2083 bool TargetLowering::SimplifyDemandedVectorElts( 2084 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2085 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2086 bool AssumeSingleUse) const { 2087 EVT VT = Op.getValueType(); 2088 APInt DemandedElts = OriginalDemandedElts; 2089 unsigned NumElts = DemandedElts.getBitWidth(); 2090 assert(VT.isVector() && "Expected vector op"); 2091 assert(VT.getVectorNumElements() == NumElts && 2092 "Mask size mismatches value type element count!"); 2093 2094 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2095 2096 // Undef operand. 2097 if (Op.isUndef()) { 2098 KnownUndef.setAllBits(); 2099 return false; 2100 } 2101 2102 // If Op has other users, assume that all elements are needed. 2103 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2104 DemandedElts.setAllBits(); 2105 2106 // Not demanding any elements from Op. 2107 if (DemandedElts == 0) { 2108 KnownUndef.setAllBits(); 2109 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2110 } 2111 2112 // Limit search depth. 2113 if (Depth >= SelectionDAG::MaxRecursionDepth) 2114 return false; 2115 2116 SDLoc DL(Op); 2117 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2118 2119 switch (Op.getOpcode()) { 2120 case ISD::SCALAR_TO_VECTOR: { 2121 if (!DemandedElts[0]) { 2122 KnownUndef.setAllBits(); 2123 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2124 } 2125 KnownUndef.setHighBits(NumElts - 1); 2126 break; 2127 } 2128 case ISD::BITCAST: { 2129 SDValue Src = Op.getOperand(0); 2130 EVT SrcVT = Src.getValueType(); 2131 2132 // We only handle vectors here. 2133 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2134 if (!SrcVT.isVector()) 2135 break; 2136 2137 // Fast handling of 'identity' bitcasts. 2138 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2139 if (NumSrcElts == NumElts) 2140 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2141 KnownZero, TLO, Depth + 1); 2142 2143 APInt SrcZero, SrcUndef; 2144 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2145 2146 // Bitcast from 'large element' src vector to 'small element' vector, we 2147 // must demand a source element if any DemandedElt maps to it. 2148 if ((NumElts % NumSrcElts) == 0) { 2149 unsigned Scale = NumElts / NumSrcElts; 2150 for (unsigned i = 0; i != NumElts; ++i) 2151 if (DemandedElts[i]) 2152 SrcDemandedElts.setBit(i / Scale); 2153 2154 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2155 TLO, Depth + 1)) 2156 return true; 2157 2158 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2159 // of the large element. 2160 // TODO - bigendian once we have test coverage. 2161 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2162 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2163 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2164 for (unsigned i = 0; i != NumElts; ++i) 2165 if (DemandedElts[i]) { 2166 unsigned Ofs = (i % Scale) * EltSizeInBits; 2167 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2168 } 2169 2170 KnownBits Known; 2171 if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1)) 2172 return true; 2173 } 2174 2175 // If the src element is zero/undef then all the output elements will be - 2176 // only demanded elements are guaranteed to be correct. 2177 for (unsigned i = 0; i != NumSrcElts; ++i) { 2178 if (SrcDemandedElts[i]) { 2179 if (SrcZero[i]) 2180 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2181 if (SrcUndef[i]) 2182 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2183 } 2184 } 2185 } 2186 2187 // Bitcast from 'small element' src vector to 'large element' vector, we 2188 // demand all smaller source elements covered by the larger demanded element 2189 // of this vector. 2190 if ((NumSrcElts % NumElts) == 0) { 2191 unsigned Scale = NumSrcElts / NumElts; 2192 for (unsigned i = 0; i != NumElts; ++i) 2193 if (DemandedElts[i]) 2194 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2195 2196 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2197 TLO, Depth + 1)) 2198 return true; 2199 2200 // If all the src elements covering an output element are zero/undef, then 2201 // the output element will be as well, assuming it was demanded. 2202 for (unsigned i = 0; i != NumElts; ++i) { 2203 if (DemandedElts[i]) { 2204 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2205 KnownZero.setBit(i); 2206 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2207 KnownUndef.setBit(i); 2208 } 2209 } 2210 } 2211 break; 2212 } 2213 case ISD::BUILD_VECTOR: { 2214 // Check all elements and simplify any unused elements with UNDEF. 2215 if (!DemandedElts.isAllOnesValue()) { 2216 // Don't simplify BROADCASTS. 2217 if (llvm::any_of(Op->op_values(), 2218 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2219 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2220 bool Updated = false; 2221 for (unsigned i = 0; i != NumElts; ++i) { 2222 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2223 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2224 KnownUndef.setBit(i); 2225 Updated = true; 2226 } 2227 } 2228 if (Updated) 2229 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2230 } 2231 } 2232 for (unsigned i = 0; i != NumElts; ++i) { 2233 SDValue SrcOp = Op.getOperand(i); 2234 if (SrcOp.isUndef()) { 2235 KnownUndef.setBit(i); 2236 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2237 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2238 KnownZero.setBit(i); 2239 } 2240 } 2241 break; 2242 } 2243 case ISD::CONCAT_VECTORS: { 2244 EVT SubVT = Op.getOperand(0).getValueType(); 2245 unsigned NumSubVecs = Op.getNumOperands(); 2246 unsigned NumSubElts = SubVT.getVectorNumElements(); 2247 for (unsigned i = 0; i != NumSubVecs; ++i) { 2248 SDValue SubOp = Op.getOperand(i); 2249 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2250 APInt SubUndef, SubZero; 2251 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2252 Depth + 1)) 2253 return true; 2254 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2255 KnownZero.insertBits(SubZero, i * NumSubElts); 2256 } 2257 break; 2258 } 2259 case ISD::INSERT_SUBVECTOR: { 2260 if (!isa<ConstantSDNode>(Op.getOperand(2))) 2261 break; 2262 SDValue Base = Op.getOperand(0); 2263 SDValue Sub = Op.getOperand(1); 2264 EVT SubVT = Sub.getValueType(); 2265 unsigned NumSubElts = SubVT.getVectorNumElements(); 2266 const APInt &Idx = Op.getConstantOperandAPInt(2); 2267 if (Idx.ugt(NumElts - NumSubElts)) 2268 break; 2269 unsigned SubIdx = Idx.getZExtValue(); 2270 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 2271 APInt SubUndef, SubZero; 2272 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 2273 Depth + 1)) 2274 return true; 2275 APInt BaseElts = DemandedElts; 2276 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 2277 2278 // If none of the base operand elements are demanded, replace it with undef. 2279 if (!BaseElts && !Base.isUndef()) 2280 return TLO.CombineTo(Op, 2281 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2282 TLO.DAG.getUNDEF(VT), 2283 Op.getOperand(1), 2284 Op.getOperand(2))); 2285 2286 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 2287 Depth + 1)) 2288 return true; 2289 KnownUndef.insertBits(SubUndef, SubIdx); 2290 KnownZero.insertBits(SubZero, SubIdx); 2291 break; 2292 } 2293 case ISD::EXTRACT_SUBVECTOR: { 2294 SDValue Src = Op.getOperand(0); 2295 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2296 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2297 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2298 // Offset the demanded elts by the subvector index. 2299 uint64_t Idx = SubIdx->getZExtValue(); 2300 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2301 APInt SrcUndef, SrcZero; 2302 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, 2303 Depth + 1)) 2304 return true; 2305 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2306 KnownZero = SrcZero.extractBits(NumElts, Idx); 2307 } 2308 break; 2309 } 2310 case ISD::INSERT_VECTOR_ELT: { 2311 SDValue Vec = Op.getOperand(0); 2312 SDValue Scl = Op.getOperand(1); 2313 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2314 2315 // For a legal, constant insertion index, if we don't need this insertion 2316 // then strip it, else remove it from the demanded elts. 2317 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2318 unsigned Idx = CIdx->getZExtValue(); 2319 if (!DemandedElts[Idx]) 2320 return TLO.CombineTo(Op, Vec); 2321 2322 APInt DemandedVecElts(DemandedElts); 2323 DemandedVecElts.clearBit(Idx); 2324 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2325 KnownZero, TLO, Depth + 1)) 2326 return true; 2327 2328 KnownUndef.clearBit(Idx); 2329 if (Scl.isUndef()) 2330 KnownUndef.setBit(Idx); 2331 2332 KnownZero.clearBit(Idx); 2333 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 2334 KnownZero.setBit(Idx); 2335 break; 2336 } 2337 2338 APInt VecUndef, VecZero; 2339 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2340 Depth + 1)) 2341 return true; 2342 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2343 break; 2344 } 2345 case ISD::VSELECT: { 2346 // Try to transform the select condition based on the current demanded 2347 // elements. 2348 // TODO: If a condition element is undef, we can choose from one arm of the 2349 // select (and if one arm is undef, then we can propagate that to the 2350 // result). 2351 // TODO - add support for constant vselect masks (see IR version of this). 2352 APInt UnusedUndef, UnusedZero; 2353 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2354 UnusedZero, TLO, Depth + 1)) 2355 return true; 2356 2357 // See if we can simplify either vselect operand. 2358 APInt DemandedLHS(DemandedElts); 2359 APInt DemandedRHS(DemandedElts); 2360 APInt UndefLHS, ZeroLHS; 2361 APInt UndefRHS, ZeroRHS; 2362 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2363 ZeroLHS, TLO, Depth + 1)) 2364 return true; 2365 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2366 ZeroRHS, TLO, Depth + 1)) 2367 return true; 2368 2369 KnownUndef = UndefLHS & UndefRHS; 2370 KnownZero = ZeroLHS & ZeroRHS; 2371 break; 2372 } 2373 case ISD::VECTOR_SHUFFLE: { 2374 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2375 2376 // Collect demanded elements from shuffle operands.. 2377 APInt DemandedLHS(NumElts, 0); 2378 APInt DemandedRHS(NumElts, 0); 2379 for (unsigned i = 0; i != NumElts; ++i) { 2380 int M = ShuffleMask[i]; 2381 if (M < 0 || !DemandedElts[i]) 2382 continue; 2383 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2384 if (M < (int)NumElts) 2385 DemandedLHS.setBit(M); 2386 else 2387 DemandedRHS.setBit(M - NumElts); 2388 } 2389 2390 // See if we can simplify either shuffle operand. 2391 APInt UndefLHS, ZeroLHS; 2392 APInt UndefRHS, ZeroRHS; 2393 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2394 ZeroLHS, TLO, Depth + 1)) 2395 return true; 2396 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2397 ZeroRHS, TLO, Depth + 1)) 2398 return true; 2399 2400 // Simplify mask using undef elements from LHS/RHS. 2401 bool Updated = false; 2402 bool IdentityLHS = true, IdentityRHS = true; 2403 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2404 for (unsigned i = 0; i != NumElts; ++i) { 2405 int &M = NewMask[i]; 2406 if (M < 0) 2407 continue; 2408 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2409 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2410 Updated = true; 2411 M = -1; 2412 } 2413 IdentityLHS &= (M < 0) || (M == (int)i); 2414 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2415 } 2416 2417 // Update legal shuffle masks based on demanded elements if it won't reduce 2418 // to Identity which can cause premature removal of the shuffle mask. 2419 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2420 SDValue LegalShuffle = 2421 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2422 NewMask, TLO.DAG); 2423 if (LegalShuffle) 2424 return TLO.CombineTo(Op, LegalShuffle); 2425 } 2426 2427 // Propagate undef/zero elements from LHS/RHS. 2428 for (unsigned i = 0; i != NumElts; ++i) { 2429 int M = ShuffleMask[i]; 2430 if (M < 0) { 2431 KnownUndef.setBit(i); 2432 } else if (M < (int)NumElts) { 2433 if (UndefLHS[M]) 2434 KnownUndef.setBit(i); 2435 if (ZeroLHS[M]) 2436 KnownZero.setBit(i); 2437 } else { 2438 if (UndefRHS[M - NumElts]) 2439 KnownUndef.setBit(i); 2440 if (ZeroRHS[M - NumElts]) 2441 KnownZero.setBit(i); 2442 } 2443 } 2444 break; 2445 } 2446 case ISD::ANY_EXTEND_VECTOR_INREG: 2447 case ISD::SIGN_EXTEND_VECTOR_INREG: 2448 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2449 APInt SrcUndef, SrcZero; 2450 SDValue Src = Op.getOperand(0); 2451 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2452 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2453 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2454 Depth + 1)) 2455 return true; 2456 KnownZero = SrcZero.zextOrTrunc(NumElts); 2457 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2458 2459 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2460 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2461 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2462 // aext - if we just need the bottom element then we can bitcast. 2463 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2464 } 2465 2466 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2467 // zext(undef) upper bits are guaranteed to be zero. 2468 if (DemandedElts.isSubsetOf(KnownUndef)) 2469 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2470 KnownUndef.clearAllBits(); 2471 } 2472 break; 2473 } 2474 2475 // TODO: There are more binop opcodes that could be handled here - MUL, MIN, 2476 // MAX, saturated math, etc. 2477 case ISD::OR: 2478 case ISD::XOR: 2479 case ISD::ADD: 2480 case ISD::SUB: 2481 case ISD::FADD: 2482 case ISD::FSUB: 2483 case ISD::FMUL: 2484 case ISD::FDIV: 2485 case ISD::FREM: { 2486 APInt UndefRHS, ZeroRHS; 2487 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2488 ZeroRHS, TLO, Depth + 1)) 2489 return true; 2490 APInt UndefLHS, ZeroLHS; 2491 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2492 ZeroLHS, TLO, Depth + 1)) 2493 return true; 2494 2495 KnownZero = ZeroLHS & ZeroRHS; 2496 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2497 break; 2498 } 2499 case ISD::SHL: 2500 case ISD::SRL: 2501 case ISD::SRA: 2502 case ISD::ROTL: 2503 case ISD::ROTR: { 2504 APInt UndefRHS, ZeroRHS; 2505 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2506 ZeroRHS, TLO, Depth + 1)) 2507 return true; 2508 APInt UndefLHS, ZeroLHS; 2509 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2510 ZeroLHS, TLO, Depth + 1)) 2511 return true; 2512 2513 KnownZero = ZeroLHS; 2514 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2515 break; 2516 } 2517 case ISD::MUL: 2518 case ISD::AND: { 2519 APInt SrcUndef, SrcZero; 2520 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 2521 SrcZero, TLO, Depth + 1)) 2522 return true; 2523 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2524 KnownZero, TLO, Depth + 1)) 2525 return true; 2526 2527 // If either side has a zero element, then the result element is zero, even 2528 // if the other is an UNDEF. 2529 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2530 // and then handle 'and' nodes with the rest of the binop opcodes. 2531 KnownZero |= SrcZero; 2532 KnownUndef &= SrcUndef; 2533 KnownUndef &= ~KnownZero; 2534 break; 2535 } 2536 case ISD::TRUNCATE: 2537 case ISD::SIGN_EXTEND: 2538 case ISD::ZERO_EXTEND: 2539 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2540 KnownZero, TLO, Depth + 1)) 2541 return true; 2542 2543 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2544 // zext(undef) upper bits are guaranteed to be zero. 2545 if (DemandedElts.isSubsetOf(KnownUndef)) 2546 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2547 KnownUndef.clearAllBits(); 2548 } 2549 break; 2550 default: { 2551 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2552 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2553 KnownZero, TLO, Depth)) 2554 return true; 2555 } else { 2556 KnownBits Known; 2557 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2558 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2559 TLO, Depth, AssumeSingleUse)) 2560 return true; 2561 } 2562 break; 2563 } 2564 } 2565 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2566 2567 // Constant fold all undef cases. 2568 // TODO: Handle zero cases as well. 2569 if (DemandedElts.isSubsetOf(KnownUndef)) 2570 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2571 2572 return false; 2573 } 2574 2575 /// Determine which of the bits specified in Mask are known to be either zero or 2576 /// one and return them in the Known. 2577 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2578 KnownBits &Known, 2579 const APInt &DemandedElts, 2580 const SelectionDAG &DAG, 2581 unsigned Depth) const { 2582 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2583 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2584 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2585 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2586 "Should use MaskedValueIsZero if you don't know whether Op" 2587 " is a target node!"); 2588 Known.resetAll(); 2589 } 2590 2591 void TargetLowering::computeKnownBitsForTargetInstr( 2592 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2593 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2594 unsigned Depth) const { 2595 Known.resetAll(); 2596 } 2597 2598 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 2599 KnownBits &Known, 2600 const APInt &DemandedElts, 2601 const SelectionDAG &DAG, 2602 unsigned Depth) const { 2603 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 2604 2605 if (unsigned Align = DAG.InferPtrAlignment(Op)) { 2606 // The low bits are known zero if the pointer is aligned. 2607 Known.Zero.setLowBits(Log2_32(Align)); 2608 } 2609 } 2610 2611 /// This method can be implemented by targets that want to expose additional 2612 /// information about sign bits to the DAG Combiner. 2613 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2614 const APInt &, 2615 const SelectionDAG &, 2616 unsigned Depth) const { 2617 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2618 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2619 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2620 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2621 "Should use ComputeNumSignBits if you don't know whether Op" 2622 " is a target node!"); 2623 return 1; 2624 } 2625 2626 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2627 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2628 TargetLoweringOpt &TLO, unsigned Depth) const { 2629 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2630 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2631 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2632 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2633 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2634 " is a target node!"); 2635 return false; 2636 } 2637 2638 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2639 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2640 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2641 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2642 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2643 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2644 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2645 "Should use SimplifyDemandedBits if you don't know whether Op" 2646 " is a target node!"); 2647 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2648 return false; 2649 } 2650 2651 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 2652 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2653 SelectionDAG &DAG, unsigned Depth) const { 2654 assert( 2655 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2656 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2657 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2658 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2659 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 2660 " is a target node!"); 2661 return SDValue(); 2662 } 2663 2664 SDValue 2665 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 2666 SDValue N1, MutableArrayRef<int> Mask, 2667 SelectionDAG &DAG) const { 2668 bool LegalMask = isShuffleMaskLegal(Mask, VT); 2669 if (!LegalMask) { 2670 std::swap(N0, N1); 2671 ShuffleVectorSDNode::commuteMask(Mask); 2672 LegalMask = isShuffleMaskLegal(Mask, VT); 2673 } 2674 2675 if (!LegalMask) 2676 return SDValue(); 2677 2678 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 2679 } 2680 2681 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 2682 return nullptr; 2683 } 2684 2685 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 2686 const SelectionDAG &DAG, 2687 bool SNaN, 2688 unsigned Depth) const { 2689 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2690 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2691 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2692 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2693 "Should use isKnownNeverNaN if you don't know whether Op" 2694 " is a target node!"); 2695 return false; 2696 } 2697 2698 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 2699 // work with truncating build vectors and vectors with elements of less than 2700 // 8 bits. 2701 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 2702 if (!N) 2703 return false; 2704 2705 APInt CVal; 2706 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 2707 CVal = CN->getAPIntValue(); 2708 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 2709 auto *CN = BV->getConstantSplatNode(); 2710 if (!CN) 2711 return false; 2712 2713 // If this is a truncating build vector, truncate the splat value. 2714 // Otherwise, we may fail to match the expected values below. 2715 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 2716 CVal = CN->getAPIntValue(); 2717 if (BVEltWidth < CVal.getBitWidth()) 2718 CVal = CVal.trunc(BVEltWidth); 2719 } else { 2720 return false; 2721 } 2722 2723 switch (getBooleanContents(N->getValueType(0))) { 2724 case UndefinedBooleanContent: 2725 return CVal[0]; 2726 case ZeroOrOneBooleanContent: 2727 return CVal.isOneValue(); 2728 case ZeroOrNegativeOneBooleanContent: 2729 return CVal.isAllOnesValue(); 2730 } 2731 2732 llvm_unreachable("Invalid boolean contents"); 2733 } 2734 2735 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 2736 if (!N) 2737 return false; 2738 2739 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 2740 if (!CN) { 2741 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 2742 if (!BV) 2743 return false; 2744 2745 // Only interested in constant splats, we don't care about undef 2746 // elements in identifying boolean constants and getConstantSplatNode 2747 // returns NULL if all ops are undef; 2748 CN = BV->getConstantSplatNode(); 2749 if (!CN) 2750 return false; 2751 } 2752 2753 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 2754 return !CN->getAPIntValue()[0]; 2755 2756 return CN->isNullValue(); 2757 } 2758 2759 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 2760 bool SExt) const { 2761 if (VT == MVT::i1) 2762 return N->isOne(); 2763 2764 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 2765 switch (Cnt) { 2766 case TargetLowering::ZeroOrOneBooleanContent: 2767 // An extended value of 1 is always true, unless its original type is i1, 2768 // in which case it will be sign extended to -1. 2769 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 2770 case TargetLowering::UndefinedBooleanContent: 2771 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2772 return N->isAllOnesValue() && SExt; 2773 } 2774 llvm_unreachable("Unexpected enumeration."); 2775 } 2776 2777 /// This helper function of SimplifySetCC tries to optimize the comparison when 2778 /// either operand of the SetCC node is a bitwise-and instruction. 2779 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 2780 ISD::CondCode Cond, const SDLoc &DL, 2781 DAGCombinerInfo &DCI) const { 2782 // Match these patterns in any of their permutations: 2783 // (X & Y) == Y 2784 // (X & Y) != Y 2785 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 2786 std::swap(N0, N1); 2787 2788 EVT OpVT = N0.getValueType(); 2789 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 2790 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 2791 return SDValue(); 2792 2793 SDValue X, Y; 2794 if (N0.getOperand(0) == N1) { 2795 X = N0.getOperand(1); 2796 Y = N0.getOperand(0); 2797 } else if (N0.getOperand(1) == N1) { 2798 X = N0.getOperand(0); 2799 Y = N0.getOperand(1); 2800 } else { 2801 return SDValue(); 2802 } 2803 2804 SelectionDAG &DAG = DCI.DAG; 2805 SDValue Zero = DAG.getConstant(0, DL, OpVT); 2806 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 2807 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 2808 // Note that where Y is variable and is known to have at most one bit set 2809 // (for example, if it is Z & 1) we cannot do this; the expressions are not 2810 // equivalent when Y == 0. 2811 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 2812 if (DCI.isBeforeLegalizeOps() || 2813 isCondCodeLegal(Cond, N0.getSimpleValueType())) 2814 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 2815 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 2816 // If the target supports an 'and-not' or 'and-complement' logic operation, 2817 // try to use that to make a comparison operation more efficient. 2818 // But don't do this transform if the mask is a single bit because there are 2819 // more efficient ways to deal with that case (for example, 'bt' on x86 or 2820 // 'rlwinm' on PPC). 2821 2822 // Bail out if the compare operand that we want to turn into a zero is 2823 // already a zero (otherwise, infinite loop). 2824 auto *YConst = dyn_cast<ConstantSDNode>(Y); 2825 if (YConst && YConst->isNullValue()) 2826 return SDValue(); 2827 2828 // Transform this into: ~X & Y == 0. 2829 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 2830 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 2831 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 2832 } 2833 2834 return SDValue(); 2835 } 2836 2837 /// There are multiple IR patterns that could be checking whether certain 2838 /// truncation of a signed number would be lossy or not. The pattern which is 2839 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 2840 /// We are looking for the following pattern: (KeptBits is a constant) 2841 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 2842 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 2843 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 2844 /// We will unfold it into the natural trunc+sext pattern: 2845 /// ((%x << C) a>> C) dstcond %x 2846 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 2847 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 2848 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 2849 const SDLoc &DL) const { 2850 // We must be comparing with a constant. 2851 ConstantSDNode *C1; 2852 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 2853 return SDValue(); 2854 2855 // N0 should be: add %x, (1 << (KeptBits-1)) 2856 if (N0->getOpcode() != ISD::ADD) 2857 return SDValue(); 2858 2859 // And we must be 'add'ing a constant. 2860 ConstantSDNode *C01; 2861 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 2862 return SDValue(); 2863 2864 SDValue X = N0->getOperand(0); 2865 EVT XVT = X.getValueType(); 2866 2867 // Validate constants ... 2868 2869 APInt I1 = C1->getAPIntValue(); 2870 2871 ISD::CondCode NewCond; 2872 if (Cond == ISD::CondCode::SETULT) { 2873 NewCond = ISD::CondCode::SETEQ; 2874 } else if (Cond == ISD::CondCode::SETULE) { 2875 NewCond = ISD::CondCode::SETEQ; 2876 // But need to 'canonicalize' the constant. 2877 I1 += 1; 2878 } else if (Cond == ISD::CondCode::SETUGT) { 2879 NewCond = ISD::CondCode::SETNE; 2880 // But need to 'canonicalize' the constant. 2881 I1 += 1; 2882 } else if (Cond == ISD::CondCode::SETUGE) { 2883 NewCond = ISD::CondCode::SETNE; 2884 } else 2885 return SDValue(); 2886 2887 APInt I01 = C01->getAPIntValue(); 2888 2889 auto checkConstants = [&I1, &I01]() -> bool { 2890 // Both of them must be power-of-two, and the constant from setcc is bigger. 2891 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 2892 }; 2893 2894 if (checkConstants()) { 2895 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 2896 } else { 2897 // What if we invert constants? (and the target predicate) 2898 I1.negate(); 2899 I01.negate(); 2900 NewCond = getSetCCInverse(NewCond, /*isInteger=*/true); 2901 if (!checkConstants()) 2902 return SDValue(); 2903 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 2904 } 2905 2906 // They are power-of-two, so which bit is set? 2907 const unsigned KeptBits = I1.logBase2(); 2908 const unsigned KeptBitsMinusOne = I01.logBase2(); 2909 2910 // Magic! 2911 if (KeptBits != (KeptBitsMinusOne + 1)) 2912 return SDValue(); 2913 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 2914 2915 // We don't want to do this in every single case. 2916 SelectionDAG &DAG = DCI.DAG; 2917 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 2918 XVT, KeptBits)) 2919 return SDValue(); 2920 2921 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 2922 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 2923 2924 // Unfold into: ((%x << C) a>> C) cond %x 2925 // Where 'cond' will be either 'eq' or 'ne'. 2926 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 2927 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 2928 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 2929 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 2930 2931 return T2; 2932 } 2933 2934 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 2935 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 2936 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 2937 DAGCombinerInfo &DCI, const SDLoc &DL) const { 2938 assert(isConstOrConstSplat(N1C) && 2939 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 2940 "Should be a comparison with 0."); 2941 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2942 "Valid only for [in]equality comparisons."); 2943 2944 unsigned NewShiftOpcode; 2945 SDValue X, C, Y; 2946 2947 SelectionDAG &DAG = DCI.DAG; 2948 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2949 2950 // Look for '(C l>>/<< Y)'. 2951 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 2952 // The shift should be one-use. 2953 if (!V.hasOneUse()) 2954 return false; 2955 unsigned OldShiftOpcode = V.getOpcode(); 2956 switch (OldShiftOpcode) { 2957 case ISD::SHL: 2958 NewShiftOpcode = ISD::SRL; 2959 break; 2960 case ISD::SRL: 2961 NewShiftOpcode = ISD::SHL; 2962 break; 2963 default: 2964 return false; // must be a logical shift. 2965 } 2966 // We should be shifting a constant. 2967 // FIXME: best to use isConstantOrConstantVector(). 2968 C = V.getOperand(0); 2969 ConstantSDNode *CC = 2970 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 2971 if (!CC) 2972 return false; 2973 Y = V.getOperand(1); 2974 2975 ConstantSDNode *XC = 2976 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 2977 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 2978 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 2979 }; 2980 2981 // LHS of comparison should be an one-use 'and'. 2982 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 2983 return SDValue(); 2984 2985 X = N0.getOperand(0); 2986 SDValue Mask = N0.getOperand(1); 2987 2988 // 'and' is commutative! 2989 if (!Match(Mask)) { 2990 std::swap(X, Mask); 2991 if (!Match(Mask)) 2992 return SDValue(); 2993 } 2994 2995 EVT VT = X.getValueType(); 2996 2997 // Produce: 2998 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 2999 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3000 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3001 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3002 return T2; 3003 } 3004 3005 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3006 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3007 /// handle the commuted versions of these patterns. 3008 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3009 ISD::CondCode Cond, const SDLoc &DL, 3010 DAGCombinerInfo &DCI) const { 3011 unsigned BOpcode = N0.getOpcode(); 3012 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3013 "Unexpected binop"); 3014 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3015 3016 // (X + Y) == X --> Y == 0 3017 // (X - Y) == X --> Y == 0 3018 // (X ^ Y) == X --> Y == 0 3019 SelectionDAG &DAG = DCI.DAG; 3020 EVT OpVT = N0.getValueType(); 3021 SDValue X = N0.getOperand(0); 3022 SDValue Y = N0.getOperand(1); 3023 if (X == N1) 3024 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3025 3026 if (Y != N1) 3027 return SDValue(); 3028 3029 // (X + Y) == Y --> X == 0 3030 // (X ^ Y) == Y --> X == 0 3031 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3032 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3033 3034 // The shift would not be valid if the operands are boolean (i1). 3035 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3036 return SDValue(); 3037 3038 // (X - Y) == Y --> X == Y << 1 3039 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3040 !DCI.isBeforeLegalize()); 3041 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3042 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3043 if (!DCI.isCalledByLegalizer()) 3044 DCI.AddToWorklist(YShl1.getNode()); 3045 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3046 } 3047 3048 /// Try to simplify a setcc built with the specified operands and cc. If it is 3049 /// unable to simplify it, return a null SDValue. 3050 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3051 ISD::CondCode Cond, bool foldBooleans, 3052 DAGCombinerInfo &DCI, 3053 const SDLoc &dl) const { 3054 SelectionDAG &DAG = DCI.DAG; 3055 const DataLayout &Layout = DAG.getDataLayout(); 3056 EVT OpVT = N0.getValueType(); 3057 3058 // Constant fold or commute setcc. 3059 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3060 return Fold; 3061 3062 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3063 // TODO: Handle non-splat vector constants. All undef causes trouble. 3064 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3065 if (isConstOrConstSplat(N0) && 3066 (DCI.isBeforeLegalizeOps() || 3067 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3068 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3069 3070 // If we have a subtract with the same 2 non-constant operands as this setcc 3071 // -- but in reverse order -- then try to commute the operands of this setcc 3072 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3073 // instruction on some targets. 3074 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3075 (DCI.isBeforeLegalizeOps() || 3076 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3077 DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) && 3078 !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } )) 3079 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3080 3081 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3082 const APInt &C1 = N1C->getAPIntValue(); 3083 3084 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3085 // equality comparison, then we're just comparing whether X itself is 3086 // zero. 3087 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3088 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3089 N0.getOperand(1).getOpcode() == ISD::Constant) { 3090 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 3091 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3092 ShAmt == Log2_32(N0.getValueSizeInBits())) { 3093 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3094 // (srl (ctlz x), 5) == 0 -> X != 0 3095 // (srl (ctlz x), 5) != 1 -> X != 0 3096 Cond = ISD::SETNE; 3097 } else { 3098 // (srl (ctlz x), 5) != 0 -> X == 0 3099 // (srl (ctlz x), 5) == 1 -> X == 0 3100 Cond = ISD::SETEQ; 3101 } 3102 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3103 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 3104 Zero, Cond); 3105 } 3106 } 3107 3108 SDValue CTPOP = N0; 3109 // Look through truncs that don't change the value of a ctpop. 3110 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 3111 CTPOP = N0.getOperand(0); 3112 3113 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 3114 (N0 == CTPOP || 3115 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 3116 EVT CTVT = CTPOP.getValueType(); 3117 SDValue CTOp = CTPOP.getOperand(0); 3118 3119 // (ctpop x) u< 2 -> (x & x-1) == 0 3120 // (ctpop x) u> 1 -> (x & x-1) != 0 3121 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 3122 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3123 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3124 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3125 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3126 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 3127 } 3128 3129 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3130 if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) && 3131 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3132 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3133 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3134 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3135 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3136 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, true); 3137 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3138 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3139 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3140 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3141 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3142 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3143 } 3144 } 3145 3146 // (zext x) == C --> x == (trunc C) 3147 // (sext x) == C --> x == (trunc C) 3148 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3149 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3150 unsigned MinBits = N0.getValueSizeInBits(); 3151 SDValue PreExt; 3152 bool Signed = false; 3153 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3154 // ZExt 3155 MinBits = N0->getOperand(0).getValueSizeInBits(); 3156 PreExt = N0->getOperand(0); 3157 } else if (N0->getOpcode() == ISD::AND) { 3158 // DAGCombine turns costly ZExts into ANDs 3159 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3160 if ((C->getAPIntValue()+1).isPowerOf2()) { 3161 MinBits = C->getAPIntValue().countTrailingOnes(); 3162 PreExt = N0->getOperand(0); 3163 } 3164 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3165 // SExt 3166 MinBits = N0->getOperand(0).getValueSizeInBits(); 3167 PreExt = N0->getOperand(0); 3168 Signed = true; 3169 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3170 // ZEXTLOAD / SEXTLOAD 3171 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3172 MinBits = LN0->getMemoryVT().getSizeInBits(); 3173 PreExt = N0; 3174 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3175 Signed = true; 3176 MinBits = LN0->getMemoryVT().getSizeInBits(); 3177 PreExt = N0; 3178 } 3179 } 3180 3181 // Figure out how many bits we need to preserve this constant. 3182 unsigned ReqdBits = Signed ? 3183 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3184 C1.getActiveBits(); 3185 3186 // Make sure we're not losing bits from the constant. 3187 if (MinBits > 0 && 3188 MinBits < C1.getBitWidth() && 3189 MinBits >= ReqdBits) { 3190 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3191 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3192 // Will get folded away. 3193 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3194 if (MinBits == 1 && C1 == 1) 3195 // Invert the condition. 3196 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3197 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3198 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3199 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3200 } 3201 3202 // If truncating the setcc operands is not desirable, we can still 3203 // simplify the expression in some cases: 3204 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3205 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3206 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3207 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3208 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3209 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3210 SDValue TopSetCC = N0->getOperand(0); 3211 unsigned N0Opc = N0->getOpcode(); 3212 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3213 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3214 TopSetCC.getOpcode() == ISD::SETCC && 3215 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3216 (isConstFalseVal(N1C) || 3217 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3218 3219 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3220 (!N1C->isNullValue() && Cond == ISD::SETNE); 3221 3222 if (!Inverse) 3223 return TopSetCC; 3224 3225 ISD::CondCode InvCond = ISD::getSetCCInverse( 3226 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3227 TopSetCC.getOperand(0).getValueType().isInteger()); 3228 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3229 TopSetCC.getOperand(1), 3230 InvCond); 3231 } 3232 } 3233 } 3234 3235 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3236 // equality or unsigned, and all 1 bits of the const are in the same 3237 // partial word, see if we can shorten the load. 3238 if (DCI.isBeforeLegalize() && 3239 !ISD::isSignedIntSetCC(Cond) && 3240 N0.getOpcode() == ISD::AND && C1 == 0 && 3241 N0.getNode()->hasOneUse() && 3242 isa<LoadSDNode>(N0.getOperand(0)) && 3243 N0.getOperand(0).getNode()->hasOneUse() && 3244 isa<ConstantSDNode>(N0.getOperand(1))) { 3245 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3246 APInt bestMask; 3247 unsigned bestWidth = 0, bestOffset = 0; 3248 if (Lod->isSimple() && Lod->isUnindexed()) { 3249 unsigned origWidth = N0.getValueSizeInBits(); 3250 unsigned maskWidth = origWidth; 3251 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3252 // 8 bits, but have to be careful... 3253 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3254 origWidth = Lod->getMemoryVT().getSizeInBits(); 3255 const APInt &Mask = N0.getConstantOperandAPInt(1); 3256 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3257 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3258 for (unsigned offset=0; offset<origWidth/width; offset++) { 3259 if (Mask.isSubsetOf(newMask)) { 3260 if (Layout.isLittleEndian()) 3261 bestOffset = (uint64_t)offset * (width/8); 3262 else 3263 bestOffset = (origWidth/width - offset - 1) * (width/8); 3264 bestMask = Mask.lshr(offset * (width/8) * 8); 3265 bestWidth = width; 3266 break; 3267 } 3268 newMask <<= width; 3269 } 3270 } 3271 } 3272 if (bestWidth) { 3273 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3274 if (newVT.isRound() && 3275 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3276 EVT PtrType = Lod->getOperand(1).getValueType(); 3277 SDValue Ptr = Lod->getBasePtr(); 3278 if (bestOffset != 0) 3279 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 3280 DAG.getConstant(bestOffset, dl, PtrType)); 3281 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 3282 SDValue NewLoad = DAG.getLoad( 3283 newVT, dl, Lod->getChain(), Ptr, 3284 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 3285 return DAG.getSetCC(dl, VT, 3286 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3287 DAG.getConstant(bestMask.trunc(bestWidth), 3288 dl, newVT)), 3289 DAG.getConstant(0LL, dl, newVT), Cond); 3290 } 3291 } 3292 } 3293 3294 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3295 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3296 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3297 3298 // If the comparison constant has bits in the upper part, the 3299 // zero-extended value could never match. 3300 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3301 C1.getBitWidth() - InSize))) { 3302 switch (Cond) { 3303 case ISD::SETUGT: 3304 case ISD::SETUGE: 3305 case ISD::SETEQ: 3306 return DAG.getConstant(0, dl, VT); 3307 case ISD::SETULT: 3308 case ISD::SETULE: 3309 case ISD::SETNE: 3310 return DAG.getConstant(1, dl, VT); 3311 case ISD::SETGT: 3312 case ISD::SETGE: 3313 // True if the sign bit of C1 is set. 3314 return DAG.getConstant(C1.isNegative(), dl, VT); 3315 case ISD::SETLT: 3316 case ISD::SETLE: 3317 // True if the sign bit of C1 isn't set. 3318 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3319 default: 3320 break; 3321 } 3322 } 3323 3324 // Otherwise, we can perform the comparison with the low bits. 3325 switch (Cond) { 3326 case ISD::SETEQ: 3327 case ISD::SETNE: 3328 case ISD::SETUGT: 3329 case ISD::SETUGE: 3330 case ISD::SETULT: 3331 case ISD::SETULE: { 3332 EVT newVT = N0.getOperand(0).getValueType(); 3333 if (DCI.isBeforeLegalizeOps() || 3334 (isOperationLegal(ISD::SETCC, newVT) && 3335 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3336 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3337 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3338 3339 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3340 NewConst, Cond); 3341 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3342 } 3343 break; 3344 } 3345 default: 3346 break; // todo, be more careful with signed comparisons 3347 } 3348 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3349 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3350 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3351 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3352 EVT ExtDstTy = N0.getValueType(); 3353 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3354 3355 // If the constant doesn't fit into the number of bits for the source of 3356 // the sign extension, it is impossible for both sides to be equal. 3357 if (C1.getMinSignedBits() > ExtSrcTyBits) 3358 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 3359 3360 SDValue ZextOp; 3361 EVT Op0Ty = N0.getOperand(0).getValueType(); 3362 if (Op0Ty == ExtSrcTy) { 3363 ZextOp = N0.getOperand(0); 3364 } else { 3365 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3366 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 3367 DAG.getConstant(Imm, dl, Op0Ty)); 3368 } 3369 if (!DCI.isCalledByLegalizer()) 3370 DCI.AddToWorklist(ZextOp.getNode()); 3371 // Otherwise, make this a use of a zext. 3372 return DAG.getSetCC(dl, VT, ZextOp, 3373 DAG.getConstant(C1 & APInt::getLowBitsSet( 3374 ExtDstTyBits, 3375 ExtSrcTyBits), 3376 dl, ExtDstTy), 3377 Cond); 3378 } else if ((N1C->isNullValue() || N1C->isOne()) && 3379 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3380 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3381 if (N0.getOpcode() == ISD::SETCC && 3382 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3383 (N0.getValueType() == MVT::i1 || 3384 getBooleanContents(N0.getOperand(0).getValueType()) == 3385 ZeroOrOneBooleanContent)) { 3386 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3387 if (TrueWhenTrue) 3388 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3389 // Invert the condition. 3390 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3391 CC = ISD::getSetCCInverse(CC, 3392 N0.getOperand(0).getValueType().isInteger()); 3393 if (DCI.isBeforeLegalizeOps() || 3394 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3395 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3396 } 3397 3398 if ((N0.getOpcode() == ISD::XOR || 3399 (N0.getOpcode() == ISD::AND && 3400 N0.getOperand(0).getOpcode() == ISD::XOR && 3401 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3402 isa<ConstantSDNode>(N0.getOperand(1)) && 3403 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 3404 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3405 // can only do this if the top bits are known zero. 3406 unsigned BitWidth = N0.getValueSizeInBits(); 3407 if (DAG.MaskedValueIsZero(N0, 3408 APInt::getHighBitsSet(BitWidth, 3409 BitWidth-1))) { 3410 // Okay, get the un-inverted input value. 3411 SDValue Val; 3412 if (N0.getOpcode() == ISD::XOR) { 3413 Val = N0.getOperand(0); 3414 } else { 3415 assert(N0.getOpcode() == ISD::AND && 3416 N0.getOperand(0).getOpcode() == ISD::XOR); 3417 // ((X^1)&1)^1 -> X & 1 3418 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3419 N0.getOperand(0).getOperand(0), 3420 N0.getOperand(1)); 3421 } 3422 3423 return DAG.getSetCC(dl, VT, Val, N1, 3424 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3425 } 3426 } else if (N1C->isOne()) { 3427 SDValue Op0 = N0; 3428 if (Op0.getOpcode() == ISD::TRUNCATE) 3429 Op0 = Op0.getOperand(0); 3430 3431 if ((Op0.getOpcode() == ISD::XOR) && 3432 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3433 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3434 SDValue XorLHS = Op0.getOperand(0); 3435 SDValue XorRHS = Op0.getOperand(1); 3436 // Ensure that the input setccs return an i1 type or 0/1 value. 3437 if (Op0.getValueType() == MVT::i1 || 3438 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3439 ZeroOrOneBooleanContent && 3440 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3441 ZeroOrOneBooleanContent)) { 3442 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3443 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3444 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3445 } 3446 } 3447 if (Op0.getOpcode() == ISD::AND && 3448 isa<ConstantSDNode>(Op0.getOperand(1)) && 3449 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 3450 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3451 if (Op0.getValueType().bitsGT(VT)) 3452 Op0 = DAG.getNode(ISD::AND, dl, VT, 3453 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3454 DAG.getConstant(1, dl, VT)); 3455 else if (Op0.getValueType().bitsLT(VT)) 3456 Op0 = DAG.getNode(ISD::AND, dl, VT, 3457 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3458 DAG.getConstant(1, dl, VT)); 3459 3460 return DAG.getSetCC(dl, VT, Op0, 3461 DAG.getConstant(0, dl, Op0.getValueType()), 3462 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3463 } 3464 if (Op0.getOpcode() == ISD::AssertZext && 3465 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3466 return DAG.getSetCC(dl, VT, Op0, 3467 DAG.getConstant(0, dl, Op0.getValueType()), 3468 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3469 } 3470 } 3471 3472 // Given: 3473 // icmp eq/ne (urem %x, %y), 0 3474 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3475 // icmp eq/ne %x, 0 3476 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3477 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3478 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3479 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3480 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3481 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3482 } 3483 3484 if (SDValue V = 3485 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3486 return V; 3487 } 3488 3489 // These simplifications apply to splat vectors as well. 3490 // TODO: Handle more splat vector cases. 3491 if (auto *N1C = isConstOrConstSplat(N1)) { 3492 const APInt &C1 = N1C->getAPIntValue(); 3493 3494 APInt MinVal, MaxVal; 3495 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3496 if (ISD::isSignedIntSetCC(Cond)) { 3497 MinVal = APInt::getSignedMinValue(OperandBitSize); 3498 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3499 } else { 3500 MinVal = APInt::getMinValue(OperandBitSize); 3501 MaxVal = APInt::getMaxValue(OperandBitSize); 3502 } 3503 3504 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3505 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3506 // X >= MIN --> true 3507 if (C1 == MinVal) 3508 return DAG.getBoolConstant(true, dl, VT, OpVT); 3509 3510 if (!VT.isVector()) { // TODO: Support this for vectors. 3511 // X >= C0 --> X > (C0 - 1) 3512 APInt C = C1 - 1; 3513 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3514 if ((DCI.isBeforeLegalizeOps() || 3515 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3516 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3517 isLegalICmpImmediate(C.getSExtValue())))) { 3518 return DAG.getSetCC(dl, VT, N0, 3519 DAG.getConstant(C, dl, N1.getValueType()), 3520 NewCC); 3521 } 3522 } 3523 } 3524 3525 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3526 // X <= MAX --> true 3527 if (C1 == MaxVal) 3528 return DAG.getBoolConstant(true, dl, VT, OpVT); 3529 3530 // X <= C0 --> X < (C0 + 1) 3531 if (!VT.isVector()) { // TODO: Support this for vectors. 3532 APInt C = C1 + 1; 3533 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3534 if ((DCI.isBeforeLegalizeOps() || 3535 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3536 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3537 isLegalICmpImmediate(C.getSExtValue())))) { 3538 return DAG.getSetCC(dl, VT, N0, 3539 DAG.getConstant(C, dl, N1.getValueType()), 3540 NewCC); 3541 } 3542 } 3543 } 3544 3545 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3546 if (C1 == MinVal) 3547 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3548 3549 // TODO: Support this for vectors after legalize ops. 3550 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3551 // Canonicalize setlt X, Max --> setne X, Max 3552 if (C1 == MaxVal) 3553 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3554 3555 // If we have setult X, 1, turn it into seteq X, 0 3556 if (C1 == MinVal+1) 3557 return DAG.getSetCC(dl, VT, N0, 3558 DAG.getConstant(MinVal, dl, N0.getValueType()), 3559 ISD::SETEQ); 3560 } 3561 } 3562 3563 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3564 if (C1 == MaxVal) 3565 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3566 3567 // TODO: Support this for vectors after legalize ops. 3568 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3569 // Canonicalize setgt X, Min --> setne X, Min 3570 if (C1 == MinVal) 3571 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3572 3573 // If we have setugt X, Max-1, turn it into seteq X, Max 3574 if (C1 == MaxVal-1) 3575 return DAG.getSetCC(dl, VT, N0, 3576 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3577 ISD::SETEQ); 3578 } 3579 } 3580 3581 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3582 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3583 if (C1.isNullValue()) 3584 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3585 VT, N0, N1, Cond, DCI, dl)) 3586 return CC; 3587 } 3588 3589 // If we have "setcc X, C0", check to see if we can shrink the immediate 3590 // by changing cc. 3591 // TODO: Support this for vectors after legalize ops. 3592 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3593 // SETUGT X, SINTMAX -> SETLT X, 0 3594 if (Cond == ISD::SETUGT && 3595 C1 == APInt::getSignedMaxValue(OperandBitSize)) 3596 return DAG.getSetCC(dl, VT, N0, 3597 DAG.getConstant(0, dl, N1.getValueType()), 3598 ISD::SETLT); 3599 3600 // SETULT X, SINTMIN -> SETGT X, -1 3601 if (Cond == ISD::SETULT && 3602 C1 == APInt::getSignedMinValue(OperandBitSize)) { 3603 SDValue ConstMinusOne = 3604 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 3605 N1.getValueType()); 3606 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 3607 } 3608 } 3609 } 3610 3611 // Back to non-vector simplifications. 3612 // TODO: Can we do these for vector splats? 3613 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3614 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3615 const APInt &C1 = N1C->getAPIntValue(); 3616 EVT ShValTy = N0.getValueType(); 3617 3618 // Fold bit comparisons when we can. 3619 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3620 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 3621 N0.getOpcode() == ISD::AND) { 3622 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3623 EVT ShiftTy = 3624 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3625 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 3626 // Perform the xform if the AND RHS is a single bit. 3627 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 3628 if (AndRHS->getAPIntValue().isPowerOf2() && 3629 ShCt <= TLI.getShiftAmountThreshold(ShValTy)) { 3630 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3631 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3632 DAG.getConstant(ShCt, dl, ShiftTy))); 3633 } 3634 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 3635 // (X & 8) == 8 --> (X & 8) >> 3 3636 // Perform the xform if C1 is a single bit. 3637 unsigned ShCt = C1.logBase2(); 3638 if (C1.isPowerOf2() && 3639 ShCt <= TLI.getShiftAmountThreshold(ShValTy)) { 3640 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3641 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3642 DAG.getConstant(ShCt, dl, ShiftTy))); 3643 } 3644 } 3645 } 3646 } 3647 3648 if (C1.getMinSignedBits() <= 64 && 3649 !isLegalICmpImmediate(C1.getSExtValue())) { 3650 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3651 // (X & -256) == 256 -> (X >> 8) == 1 3652 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3653 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 3654 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3655 const APInt &AndRHSC = AndRHS->getAPIntValue(); 3656 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 3657 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 3658 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 3659 DAG.getConstant(ShiftBits, dl, 3660 ShiftTy)); 3661 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 3662 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 3663 } 3664 } 3665 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 3666 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 3667 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 3668 // X < 0x100000000 -> (X >> 32) < 1 3669 // X >= 0x100000000 -> (X >> 32) >= 1 3670 // X <= 0x0ffffffff -> (X >> 32) < 1 3671 // X > 0x0ffffffff -> (X >> 32) >= 1 3672 unsigned ShiftBits; 3673 APInt NewC = C1; 3674 ISD::CondCode NewCond = Cond; 3675 if (AdjOne) { 3676 ShiftBits = C1.countTrailingOnes(); 3677 NewC = NewC + 1; 3678 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 3679 } else { 3680 ShiftBits = C1.countTrailingZeros(); 3681 } 3682 NewC.lshrInPlace(ShiftBits); 3683 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 3684 isLegalICmpImmediate(NewC.getSExtValue())) { 3685 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3686 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3687 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 3688 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 3689 } 3690 } 3691 } 3692 } 3693 3694 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 3695 auto *CFP = cast<ConstantFPSDNode>(N1); 3696 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 3697 3698 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 3699 // constant if knowing that the operand is non-nan is enough. We prefer to 3700 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 3701 // materialize 0.0. 3702 if (Cond == ISD::SETO || Cond == ISD::SETUO) 3703 return DAG.getSetCC(dl, VT, N0, N0, Cond); 3704 3705 // setcc (fneg x), C -> setcc swap(pred) x, -C 3706 if (N0.getOpcode() == ISD::FNEG) { 3707 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 3708 if (DCI.isBeforeLegalizeOps() || 3709 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 3710 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 3711 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 3712 } 3713 } 3714 3715 // If the condition is not legal, see if we can find an equivalent one 3716 // which is legal. 3717 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 3718 // If the comparison was an awkward floating-point == or != and one of 3719 // the comparison operands is infinity or negative infinity, convert the 3720 // condition to a less-awkward <= or >=. 3721 if (CFP->getValueAPF().isInfinity()) { 3722 if (CFP->getValueAPF().isNegative()) { 3723 if (Cond == ISD::SETOEQ && 3724 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3725 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 3726 if (Cond == ISD::SETUEQ && 3727 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3728 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 3729 if (Cond == ISD::SETUNE && 3730 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3731 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 3732 if (Cond == ISD::SETONE && 3733 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3734 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 3735 } else { 3736 if (Cond == ISD::SETOEQ && 3737 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3738 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 3739 if (Cond == ISD::SETUEQ && 3740 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3741 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 3742 if (Cond == ISD::SETUNE && 3743 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3744 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 3745 if (Cond == ISD::SETONE && 3746 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3747 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 3748 } 3749 } 3750 } 3751 } 3752 3753 if (N0 == N1) { 3754 // The sext(setcc()) => setcc() optimization relies on the appropriate 3755 // constant being emitted. 3756 assert(!N0.getValueType().isInteger() && 3757 "Integer types should be handled by FoldSetCC"); 3758 3759 bool EqTrue = ISD::isTrueWhenEqual(Cond); 3760 unsigned UOF = ISD::getUnorderedFlavor(Cond); 3761 if (UOF == 2) // FP operators that are undefined on NaNs. 3762 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3763 if (UOF == unsigned(EqTrue)) 3764 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3765 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 3766 // if it is not already. 3767 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 3768 if (NewCond != Cond && 3769 (DCI.isBeforeLegalizeOps() || 3770 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 3771 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3772 } 3773 3774 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3775 N0.getValueType().isInteger()) { 3776 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 3777 N0.getOpcode() == ISD::XOR) { 3778 // Simplify (X+Y) == (X+Z) --> Y == Z 3779 if (N0.getOpcode() == N1.getOpcode()) { 3780 if (N0.getOperand(0) == N1.getOperand(0)) 3781 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 3782 if (N0.getOperand(1) == N1.getOperand(1)) 3783 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 3784 if (isCommutativeBinOp(N0.getOpcode())) { 3785 // If X op Y == Y op X, try other combinations. 3786 if (N0.getOperand(0) == N1.getOperand(1)) 3787 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 3788 Cond); 3789 if (N0.getOperand(1) == N1.getOperand(0)) 3790 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 3791 Cond); 3792 } 3793 } 3794 3795 // If RHS is a legal immediate value for a compare instruction, we need 3796 // to be careful about increasing register pressure needlessly. 3797 bool LegalRHSImm = false; 3798 3799 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 3800 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3801 // Turn (X+C1) == C2 --> X == C2-C1 3802 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 3803 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3804 DAG.getConstant(RHSC->getAPIntValue()- 3805 LHSR->getAPIntValue(), 3806 dl, N0.getValueType()), Cond); 3807 } 3808 3809 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 3810 if (N0.getOpcode() == ISD::XOR) 3811 // If we know that all of the inverted bits are zero, don't bother 3812 // performing the inversion. 3813 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 3814 return 3815 DAG.getSetCC(dl, VT, N0.getOperand(0), 3816 DAG.getConstant(LHSR->getAPIntValue() ^ 3817 RHSC->getAPIntValue(), 3818 dl, N0.getValueType()), 3819 Cond); 3820 } 3821 3822 // Turn (C1-X) == C2 --> X == C1-C2 3823 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 3824 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 3825 return 3826 DAG.getSetCC(dl, VT, N0.getOperand(1), 3827 DAG.getConstant(SUBC->getAPIntValue() - 3828 RHSC->getAPIntValue(), 3829 dl, N0.getValueType()), 3830 Cond); 3831 } 3832 } 3833 3834 // Could RHSC fold directly into a compare? 3835 if (RHSC->getValueType(0).getSizeInBits() <= 64) 3836 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 3837 } 3838 3839 // (X+Y) == X --> Y == 0 and similar folds. 3840 // Don't do this if X is an immediate that can fold into a cmp 3841 // instruction and X+Y has other uses. It could be an induction variable 3842 // chain, and the transform would increase register pressure. 3843 if (!LegalRHSImm || N0.hasOneUse()) 3844 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 3845 return V; 3846 } 3847 3848 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 3849 N1.getOpcode() == ISD::XOR) 3850 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 3851 return V; 3852 3853 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 3854 return V; 3855 } 3856 3857 // Fold remainder of division by a constant. 3858 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 3859 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3860 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 3861 3862 // When division is cheap or optimizing for minimum size, 3863 // fall through to DIVREM creation by skipping this fold. 3864 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 3865 if (N0.getOpcode() == ISD::UREM) { 3866 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 3867 return Folded; 3868 } else if (N0.getOpcode() == ISD::SREM) { 3869 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 3870 return Folded; 3871 } 3872 } 3873 } 3874 3875 // Fold away ALL boolean setcc's. 3876 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 3877 SDValue Temp; 3878 switch (Cond) { 3879 default: llvm_unreachable("Unknown integer setcc!"); 3880 case ISD::SETEQ: // X == Y -> ~(X^Y) 3881 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3882 N0 = DAG.getNOT(dl, Temp, OpVT); 3883 if (!DCI.isCalledByLegalizer()) 3884 DCI.AddToWorklist(Temp.getNode()); 3885 break; 3886 case ISD::SETNE: // X != Y --> (X^Y) 3887 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3888 break; 3889 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 3890 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 3891 Temp = DAG.getNOT(dl, N0, OpVT); 3892 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 3893 if (!DCI.isCalledByLegalizer()) 3894 DCI.AddToWorklist(Temp.getNode()); 3895 break; 3896 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 3897 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 3898 Temp = DAG.getNOT(dl, N1, OpVT); 3899 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 3900 if (!DCI.isCalledByLegalizer()) 3901 DCI.AddToWorklist(Temp.getNode()); 3902 break; 3903 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 3904 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 3905 Temp = DAG.getNOT(dl, N0, OpVT); 3906 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 3907 if (!DCI.isCalledByLegalizer()) 3908 DCI.AddToWorklist(Temp.getNode()); 3909 break; 3910 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 3911 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 3912 Temp = DAG.getNOT(dl, N1, OpVT); 3913 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 3914 break; 3915 } 3916 if (VT.getScalarType() != MVT::i1) { 3917 if (!DCI.isCalledByLegalizer()) 3918 DCI.AddToWorklist(N0.getNode()); 3919 // FIXME: If running after legalize, we probably can't do this. 3920 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 3921 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 3922 } 3923 return N0; 3924 } 3925 3926 // Could not fold it. 3927 return SDValue(); 3928 } 3929 3930 /// Returns true (and the GlobalValue and the offset) if the node is a 3931 /// GlobalAddress + offset. 3932 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 3933 int64_t &Offset) const { 3934 3935 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 3936 3937 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 3938 GA = GASD->getGlobal(); 3939 Offset += GASD->getOffset(); 3940 return true; 3941 } 3942 3943 if (N->getOpcode() == ISD::ADD) { 3944 SDValue N1 = N->getOperand(0); 3945 SDValue N2 = N->getOperand(1); 3946 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 3947 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 3948 Offset += V->getSExtValue(); 3949 return true; 3950 } 3951 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 3952 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 3953 Offset += V->getSExtValue(); 3954 return true; 3955 } 3956 } 3957 } 3958 3959 return false; 3960 } 3961 3962 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 3963 DAGCombinerInfo &DCI) const { 3964 // Default implementation: no optimization. 3965 return SDValue(); 3966 } 3967 3968 //===----------------------------------------------------------------------===// 3969 // Inline Assembler Implementation Methods 3970 //===----------------------------------------------------------------------===// 3971 3972 TargetLowering::ConstraintType 3973 TargetLowering::getConstraintType(StringRef Constraint) const { 3974 unsigned S = Constraint.size(); 3975 3976 if (S == 1) { 3977 switch (Constraint[0]) { 3978 default: break; 3979 case 'r': 3980 return C_RegisterClass; 3981 case 'm': // memory 3982 case 'o': // offsetable 3983 case 'V': // not offsetable 3984 return C_Memory; 3985 case 'n': // Simple Integer 3986 case 'E': // Floating Point Constant 3987 case 'F': // Floating Point Constant 3988 return C_Immediate; 3989 case 'i': // Simple Integer or Relocatable Constant 3990 case 's': // Relocatable Constant 3991 case 'p': // Address. 3992 case 'X': // Allow ANY value. 3993 case 'I': // Target registers. 3994 case 'J': 3995 case 'K': 3996 case 'L': 3997 case 'M': 3998 case 'N': 3999 case 'O': 4000 case 'P': 4001 case '<': 4002 case '>': 4003 return C_Other; 4004 } 4005 } 4006 4007 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4008 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4009 return C_Memory; 4010 return C_Register; 4011 } 4012 return C_Unknown; 4013 } 4014 4015 /// Try to replace an X constraint, which matches anything, with another that 4016 /// has more specific requirements based on the type of the corresponding 4017 /// operand. 4018 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4019 if (ConstraintVT.isInteger()) 4020 return "r"; 4021 if (ConstraintVT.isFloatingPoint()) 4022 return "f"; // works for many targets 4023 return nullptr; 4024 } 4025 4026 SDValue TargetLowering::LowerAsmOutputForConstraint( 4027 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, 4028 SelectionDAG &DAG) const { 4029 return SDValue(); 4030 } 4031 4032 /// Lower the specified operand into the Ops vector. 4033 /// If it is invalid, don't add anything to Ops. 4034 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4035 std::string &Constraint, 4036 std::vector<SDValue> &Ops, 4037 SelectionDAG &DAG) const { 4038 4039 if (Constraint.length() > 1) return; 4040 4041 char ConstraintLetter = Constraint[0]; 4042 switch (ConstraintLetter) { 4043 default: break; 4044 case 'X': // Allows any operand; labels (basic block) use this. 4045 if (Op.getOpcode() == ISD::BasicBlock || 4046 Op.getOpcode() == ISD::TargetBlockAddress) { 4047 Ops.push_back(Op); 4048 return; 4049 } 4050 LLVM_FALLTHROUGH; 4051 case 'i': // Simple Integer or Relocatable Constant 4052 case 'n': // Simple Integer 4053 case 's': { // Relocatable Constant 4054 4055 GlobalAddressSDNode *GA; 4056 ConstantSDNode *C; 4057 BlockAddressSDNode *BA; 4058 uint64_t Offset = 0; 4059 4060 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4061 // etc., since getelementpointer is variadic. We can't use 4062 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4063 // while in this case the GA may be furthest from the root node which is 4064 // likely an ISD::ADD. 4065 while (1) { 4066 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4067 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4068 GA->getValueType(0), 4069 Offset + GA->getOffset())); 4070 return; 4071 } else if ((C = dyn_cast<ConstantSDNode>(Op)) && 4072 ConstraintLetter != 's') { 4073 // gcc prints these as sign extended. Sign extend value to 64 bits 4074 // now; without this it would get ZExt'd later in 4075 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4076 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4077 BooleanContent BCont = getBooleanContents(MVT::i64); 4078 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont) 4079 : ISD::SIGN_EXTEND; 4080 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() 4081 : C->getSExtValue(); 4082 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal, 4083 SDLoc(C), MVT::i64)); 4084 return; 4085 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && 4086 ConstraintLetter != 'n') { 4087 Ops.push_back(DAG.getTargetBlockAddress( 4088 BA->getBlockAddress(), BA->getValueType(0), 4089 Offset + BA->getOffset(), BA->getTargetFlags())); 4090 return; 4091 } else { 4092 const unsigned OpCode = Op.getOpcode(); 4093 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4094 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4095 Op = Op.getOperand(1); 4096 // Subtraction is not commutative. 4097 else if (OpCode == ISD::ADD && 4098 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4099 Op = Op.getOperand(0); 4100 else 4101 return; 4102 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4103 continue; 4104 } 4105 } 4106 return; 4107 } 4108 break; 4109 } 4110 } 4111 } 4112 4113 std::pair<unsigned, const TargetRegisterClass *> 4114 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4115 StringRef Constraint, 4116 MVT VT) const { 4117 if (Constraint.empty() || Constraint[0] != '{') 4118 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4119 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4120 4121 // Remove the braces from around the name. 4122 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4123 4124 std::pair<unsigned, const TargetRegisterClass *> R = 4125 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4126 4127 // Figure out which register class contains this reg. 4128 for (const TargetRegisterClass *RC : RI->regclasses()) { 4129 // If none of the value types for this register class are valid, we 4130 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4131 if (!isLegalRC(*RI, *RC)) 4132 continue; 4133 4134 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 4135 I != E; ++I) { 4136 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 4137 std::pair<unsigned, const TargetRegisterClass *> S = 4138 std::make_pair(*I, RC); 4139 4140 // If this register class has the requested value type, return it, 4141 // otherwise keep searching and return the first class found 4142 // if no other is found which explicitly has the requested type. 4143 if (RI->isTypeLegalForClass(*RC, VT)) 4144 return S; 4145 if (!R.second) 4146 R = S; 4147 } 4148 } 4149 } 4150 4151 return R; 4152 } 4153 4154 //===----------------------------------------------------------------------===// 4155 // Constraint Selection. 4156 4157 /// Return true of this is an input operand that is a matching constraint like 4158 /// "4". 4159 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4160 assert(!ConstraintCode.empty() && "No known constraint!"); 4161 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4162 } 4163 4164 /// If this is an input matching constraint, this method returns the output 4165 /// operand it matches. 4166 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4167 assert(!ConstraintCode.empty() && "No known constraint!"); 4168 return atoi(ConstraintCode.c_str()); 4169 } 4170 4171 /// Split up the constraint string from the inline assembly value into the 4172 /// specific constraints and their prefixes, and also tie in the associated 4173 /// operand values. 4174 /// If this returns an empty vector, and if the constraint string itself 4175 /// isn't empty, there was an error parsing. 4176 TargetLowering::AsmOperandInfoVector 4177 TargetLowering::ParseConstraints(const DataLayout &DL, 4178 const TargetRegisterInfo *TRI, 4179 ImmutableCallSite CS) const { 4180 /// Information about all of the constraints. 4181 AsmOperandInfoVector ConstraintOperands; 4182 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 4183 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4184 4185 // Do a prepass over the constraints, canonicalizing them, and building up the 4186 // ConstraintOperands list. 4187 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4188 unsigned ResNo = 0; // ResNo - The result number of the next output. 4189 4190 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4191 ConstraintOperands.emplace_back(std::move(CI)); 4192 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4193 4194 // Update multiple alternative constraint count. 4195 if (OpInfo.multipleAlternatives.size() > maCount) 4196 maCount = OpInfo.multipleAlternatives.size(); 4197 4198 OpInfo.ConstraintVT = MVT::Other; 4199 4200 // Compute the value type for each operand. 4201 switch (OpInfo.Type) { 4202 case InlineAsm::isOutput: 4203 // Indirect outputs just consume an argument. 4204 if (OpInfo.isIndirect) { 4205 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 4206 break; 4207 } 4208 4209 // The return value of the call is this value. As such, there is no 4210 // corresponding argument. 4211 assert(!CS.getType()->isVoidTy() && 4212 "Bad inline asm!"); 4213 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 4214 OpInfo.ConstraintVT = 4215 getSimpleValueType(DL, STy->getElementType(ResNo)); 4216 } else { 4217 assert(ResNo == 0 && "Asm only has one result!"); 4218 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 4219 } 4220 ++ResNo; 4221 break; 4222 case InlineAsm::isInput: 4223 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 4224 break; 4225 case InlineAsm::isClobber: 4226 // Nothing to do. 4227 break; 4228 } 4229 4230 if (OpInfo.CallOperandVal) { 4231 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4232 if (OpInfo.isIndirect) { 4233 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4234 if (!PtrTy) 4235 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4236 OpTy = PtrTy->getElementType(); 4237 } 4238 4239 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4240 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4241 if (STy->getNumElements() == 1) 4242 OpTy = STy->getElementType(0); 4243 4244 // If OpTy is not a single value, it may be a struct/union that we 4245 // can tile with integers. 4246 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4247 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4248 switch (BitSize) { 4249 default: break; 4250 case 1: 4251 case 8: 4252 case 16: 4253 case 32: 4254 case 64: 4255 case 128: 4256 OpInfo.ConstraintVT = 4257 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4258 break; 4259 } 4260 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4261 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4262 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4263 } else { 4264 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4265 } 4266 } 4267 } 4268 4269 // If we have multiple alternative constraints, select the best alternative. 4270 if (!ConstraintOperands.empty()) { 4271 if (maCount) { 4272 unsigned bestMAIndex = 0; 4273 int bestWeight = -1; 4274 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4275 int weight = -1; 4276 unsigned maIndex; 4277 // Compute the sums of the weights for each alternative, keeping track 4278 // of the best (highest weight) one so far. 4279 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4280 int weightSum = 0; 4281 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4282 cIndex != eIndex; ++cIndex) { 4283 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4284 if (OpInfo.Type == InlineAsm::isClobber) 4285 continue; 4286 4287 // If this is an output operand with a matching input operand, 4288 // look up the matching input. If their types mismatch, e.g. one 4289 // is an integer, the other is floating point, or their sizes are 4290 // different, flag it as an maCantMatch. 4291 if (OpInfo.hasMatchingInput()) { 4292 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4293 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4294 if ((OpInfo.ConstraintVT.isInteger() != 4295 Input.ConstraintVT.isInteger()) || 4296 (OpInfo.ConstraintVT.getSizeInBits() != 4297 Input.ConstraintVT.getSizeInBits())) { 4298 weightSum = -1; // Can't match. 4299 break; 4300 } 4301 } 4302 } 4303 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4304 if (weight == -1) { 4305 weightSum = -1; 4306 break; 4307 } 4308 weightSum += weight; 4309 } 4310 // Update best. 4311 if (weightSum > bestWeight) { 4312 bestWeight = weightSum; 4313 bestMAIndex = maIndex; 4314 } 4315 } 4316 4317 // Now select chosen alternative in each constraint. 4318 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4319 cIndex != eIndex; ++cIndex) { 4320 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4321 if (cInfo.Type == InlineAsm::isClobber) 4322 continue; 4323 cInfo.selectAlternative(bestMAIndex); 4324 } 4325 } 4326 } 4327 4328 // Check and hook up tied operands, choose constraint code to use. 4329 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4330 cIndex != eIndex; ++cIndex) { 4331 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4332 4333 // If this is an output operand with a matching input operand, look up the 4334 // matching input. If their types mismatch, e.g. one is an integer, the 4335 // other is floating point, or their sizes are different, flag it as an 4336 // error. 4337 if (OpInfo.hasMatchingInput()) { 4338 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4339 4340 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4341 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4342 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4343 OpInfo.ConstraintVT); 4344 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4345 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4346 Input.ConstraintVT); 4347 if ((OpInfo.ConstraintVT.isInteger() != 4348 Input.ConstraintVT.isInteger()) || 4349 (MatchRC.second != InputRC.second)) { 4350 report_fatal_error("Unsupported asm: input constraint" 4351 " with a matching output constraint of" 4352 " incompatible type!"); 4353 } 4354 } 4355 } 4356 } 4357 4358 return ConstraintOperands; 4359 } 4360 4361 /// Return an integer indicating how general CT is. 4362 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4363 switch (CT) { 4364 case TargetLowering::C_Immediate: 4365 case TargetLowering::C_Other: 4366 case TargetLowering::C_Unknown: 4367 return 0; 4368 case TargetLowering::C_Register: 4369 return 1; 4370 case TargetLowering::C_RegisterClass: 4371 return 2; 4372 case TargetLowering::C_Memory: 4373 return 3; 4374 } 4375 llvm_unreachable("Invalid constraint type"); 4376 } 4377 4378 /// Examine constraint type and operand type and determine a weight value. 4379 /// This object must already have been set up with the operand type 4380 /// and the current alternative constraint selected. 4381 TargetLowering::ConstraintWeight 4382 TargetLowering::getMultipleConstraintMatchWeight( 4383 AsmOperandInfo &info, int maIndex) const { 4384 InlineAsm::ConstraintCodeVector *rCodes; 4385 if (maIndex >= (int)info.multipleAlternatives.size()) 4386 rCodes = &info.Codes; 4387 else 4388 rCodes = &info.multipleAlternatives[maIndex].Codes; 4389 ConstraintWeight BestWeight = CW_Invalid; 4390 4391 // Loop over the options, keeping track of the most general one. 4392 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4393 ConstraintWeight weight = 4394 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4395 if (weight > BestWeight) 4396 BestWeight = weight; 4397 } 4398 4399 return BestWeight; 4400 } 4401 4402 /// Examine constraint type and operand type and determine a weight value. 4403 /// This object must already have been set up with the operand type 4404 /// and the current alternative constraint selected. 4405 TargetLowering::ConstraintWeight 4406 TargetLowering::getSingleConstraintMatchWeight( 4407 AsmOperandInfo &info, const char *constraint) const { 4408 ConstraintWeight weight = CW_Invalid; 4409 Value *CallOperandVal = info.CallOperandVal; 4410 // If we don't have a value, we can't do a match, 4411 // but allow it at the lowest weight. 4412 if (!CallOperandVal) 4413 return CW_Default; 4414 // Look at the constraint type. 4415 switch (*constraint) { 4416 case 'i': // immediate integer. 4417 case 'n': // immediate integer with a known value. 4418 if (isa<ConstantInt>(CallOperandVal)) 4419 weight = CW_Constant; 4420 break; 4421 case 's': // non-explicit intregal immediate. 4422 if (isa<GlobalValue>(CallOperandVal)) 4423 weight = CW_Constant; 4424 break; 4425 case 'E': // immediate float if host format. 4426 case 'F': // immediate float. 4427 if (isa<ConstantFP>(CallOperandVal)) 4428 weight = CW_Constant; 4429 break; 4430 case '<': // memory operand with autodecrement. 4431 case '>': // memory operand with autoincrement. 4432 case 'm': // memory operand. 4433 case 'o': // offsettable memory operand 4434 case 'V': // non-offsettable memory operand 4435 weight = CW_Memory; 4436 break; 4437 case 'r': // general register. 4438 case 'g': // general register, memory operand or immediate integer. 4439 // note: Clang converts "g" to "imr". 4440 if (CallOperandVal->getType()->isIntegerTy()) 4441 weight = CW_Register; 4442 break; 4443 case 'X': // any operand. 4444 default: 4445 weight = CW_Default; 4446 break; 4447 } 4448 return weight; 4449 } 4450 4451 /// If there are multiple different constraints that we could pick for this 4452 /// operand (e.g. "imr") try to pick the 'best' one. 4453 /// This is somewhat tricky: constraints fall into four classes: 4454 /// Other -> immediates and magic values 4455 /// Register -> one specific register 4456 /// RegisterClass -> a group of regs 4457 /// Memory -> memory 4458 /// Ideally, we would pick the most specific constraint possible: if we have 4459 /// something that fits into a register, we would pick it. The problem here 4460 /// is that if we have something that could either be in a register or in 4461 /// memory that use of the register could cause selection of *other* 4462 /// operands to fail: they might only succeed if we pick memory. Because of 4463 /// this the heuristic we use is: 4464 /// 4465 /// 1) If there is an 'other' constraint, and if the operand is valid for 4466 /// that constraint, use it. This makes us take advantage of 'i' 4467 /// constraints when available. 4468 /// 2) Otherwise, pick the most general constraint present. This prefers 4469 /// 'm' over 'r', for example. 4470 /// 4471 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4472 const TargetLowering &TLI, 4473 SDValue Op, SelectionDAG *DAG) { 4474 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4475 unsigned BestIdx = 0; 4476 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4477 int BestGenerality = -1; 4478 4479 // Loop over the options, keeping track of the most general one. 4480 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4481 TargetLowering::ConstraintType CType = 4482 TLI.getConstraintType(OpInfo.Codes[i]); 4483 4484 // If this is an 'other' or 'immediate' constraint, see if the operand is 4485 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4486 // the operand is an integer in the range [0..31] we want to use I (saving a 4487 // load of a register), otherwise we must use 'r'. 4488 if ((CType == TargetLowering::C_Other || 4489 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4490 assert(OpInfo.Codes[i].size() == 1 && 4491 "Unhandled multi-letter 'other' constraint"); 4492 std::vector<SDValue> ResultOps; 4493 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4494 ResultOps, *DAG); 4495 if (!ResultOps.empty()) { 4496 BestType = CType; 4497 BestIdx = i; 4498 break; 4499 } 4500 } 4501 4502 // Things with matching constraints can only be registers, per gcc 4503 // documentation. This mainly affects "g" constraints. 4504 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4505 continue; 4506 4507 // This constraint letter is more general than the previous one, use it. 4508 int Generality = getConstraintGenerality(CType); 4509 if (Generality > BestGenerality) { 4510 BestType = CType; 4511 BestIdx = i; 4512 BestGenerality = Generality; 4513 } 4514 } 4515 4516 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4517 OpInfo.ConstraintType = BestType; 4518 } 4519 4520 /// Determines the constraint code and constraint type to use for the specific 4521 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4522 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4523 SDValue Op, 4524 SelectionDAG *DAG) const { 4525 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4526 4527 // Single-letter constraints ('r') are very common. 4528 if (OpInfo.Codes.size() == 1) { 4529 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4530 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4531 } else { 4532 ChooseConstraint(OpInfo, *this, Op, DAG); 4533 } 4534 4535 // 'X' matches anything. 4536 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4537 // Labels and constants are handled elsewhere ('X' is the only thing 4538 // that matches labels). For Functions, the type here is the type of 4539 // the result, which is not what we want to look at; leave them alone. 4540 Value *v = OpInfo.CallOperandVal; 4541 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4542 OpInfo.CallOperandVal = v; 4543 return; 4544 } 4545 4546 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4547 return; 4548 4549 // Otherwise, try to resolve it to something we know about by looking at 4550 // the actual operand type. 4551 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4552 OpInfo.ConstraintCode = Repl; 4553 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4554 } 4555 } 4556 } 4557 4558 /// Given an exact SDIV by a constant, create a multiplication 4559 /// with the multiplicative inverse of the constant. 4560 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 4561 const SDLoc &dl, SelectionDAG &DAG, 4562 SmallVectorImpl<SDNode *> &Created) { 4563 SDValue Op0 = N->getOperand(0); 4564 SDValue Op1 = N->getOperand(1); 4565 EVT VT = N->getValueType(0); 4566 EVT SVT = VT.getScalarType(); 4567 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 4568 EVT ShSVT = ShVT.getScalarType(); 4569 4570 bool UseSRA = false; 4571 SmallVector<SDValue, 16> Shifts, Factors; 4572 4573 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4574 if (C->isNullValue()) 4575 return false; 4576 APInt Divisor = C->getAPIntValue(); 4577 unsigned Shift = Divisor.countTrailingZeros(); 4578 if (Shift) { 4579 Divisor.ashrInPlace(Shift); 4580 UseSRA = true; 4581 } 4582 // Calculate the multiplicative inverse, using Newton's method. 4583 APInt t; 4584 APInt Factor = Divisor; 4585 while ((t = Divisor * Factor) != 1) 4586 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 4587 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 4588 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 4589 return true; 4590 }; 4591 4592 // Collect all magic values from the build vector. 4593 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 4594 return SDValue(); 4595 4596 SDValue Shift, Factor; 4597 if (VT.isVector()) { 4598 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4599 Factor = DAG.getBuildVector(VT, dl, Factors); 4600 } else { 4601 Shift = Shifts[0]; 4602 Factor = Factors[0]; 4603 } 4604 4605 SDValue Res = Op0; 4606 4607 // Shift the value upfront if it is even, so the LSB is one. 4608 if (UseSRA) { 4609 // TODO: For UDIV use SRL instead of SRA. 4610 SDNodeFlags Flags; 4611 Flags.setExact(true); 4612 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 4613 Created.push_back(Res.getNode()); 4614 } 4615 4616 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 4617 } 4618 4619 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 4620 SelectionDAG &DAG, 4621 SmallVectorImpl<SDNode *> &Created) const { 4622 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4623 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4624 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 4625 return SDValue(N, 0); // Lower SDIV as SDIV 4626 return SDValue(); 4627 } 4628 4629 /// Given an ISD::SDIV node expressing a divide by constant, 4630 /// return a DAG expression to select that will generate the same value by 4631 /// multiplying by a magic number. 4632 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4633 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 4634 bool IsAfterLegalization, 4635 SmallVectorImpl<SDNode *> &Created) const { 4636 SDLoc dl(N); 4637 EVT VT = N->getValueType(0); 4638 EVT SVT = VT.getScalarType(); 4639 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4640 EVT ShSVT = ShVT.getScalarType(); 4641 unsigned EltBits = VT.getScalarSizeInBits(); 4642 4643 // Check to see if we can do this. 4644 // FIXME: We should be more aggressive here. 4645 if (!isTypeLegal(VT)) 4646 return SDValue(); 4647 4648 // If the sdiv has an 'exact' bit we can use a simpler lowering. 4649 if (N->getFlags().hasExact()) 4650 return BuildExactSDIV(*this, N, dl, DAG, Created); 4651 4652 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 4653 4654 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4655 if (C->isNullValue()) 4656 return false; 4657 4658 const APInt &Divisor = C->getAPIntValue(); 4659 APInt::ms magics = Divisor.magic(); 4660 int NumeratorFactor = 0; 4661 int ShiftMask = -1; 4662 4663 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 4664 // If d is +1/-1, we just multiply the numerator by +1/-1. 4665 NumeratorFactor = Divisor.getSExtValue(); 4666 magics.m = 0; 4667 magics.s = 0; 4668 ShiftMask = 0; 4669 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 4670 // If d > 0 and m < 0, add the numerator. 4671 NumeratorFactor = 1; 4672 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 4673 // If d < 0 and m > 0, subtract the numerator. 4674 NumeratorFactor = -1; 4675 } 4676 4677 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 4678 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 4679 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 4680 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 4681 return true; 4682 }; 4683 4684 SDValue N0 = N->getOperand(0); 4685 SDValue N1 = N->getOperand(1); 4686 4687 // Collect the shifts / magic values from each element. 4688 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 4689 return SDValue(); 4690 4691 SDValue MagicFactor, Factor, Shift, ShiftMask; 4692 if (VT.isVector()) { 4693 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4694 Factor = DAG.getBuildVector(VT, dl, Factors); 4695 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4696 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 4697 } else { 4698 MagicFactor = MagicFactors[0]; 4699 Factor = Factors[0]; 4700 Shift = Shifts[0]; 4701 ShiftMask = ShiftMasks[0]; 4702 } 4703 4704 // Multiply the numerator (operand 0) by the magic value. 4705 // FIXME: We should support doing a MUL in a wider type. 4706 SDValue Q; 4707 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 4708 : isOperationLegalOrCustom(ISD::MULHS, VT)) 4709 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 4710 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 4711 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 4712 SDValue LoHi = 4713 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 4714 Q = SDValue(LoHi.getNode(), 1); 4715 } else 4716 return SDValue(); // No mulhs or equivalent. 4717 Created.push_back(Q.getNode()); 4718 4719 // (Optionally) Add/subtract the numerator using Factor. 4720 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 4721 Created.push_back(Factor.getNode()); 4722 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 4723 Created.push_back(Q.getNode()); 4724 4725 // Shift right algebraic by shift value. 4726 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 4727 Created.push_back(Q.getNode()); 4728 4729 // Extract the sign bit, mask it and add it to the quotient. 4730 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 4731 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 4732 Created.push_back(T.getNode()); 4733 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 4734 Created.push_back(T.getNode()); 4735 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 4736 } 4737 4738 /// Given an ISD::UDIV node expressing a divide by constant, 4739 /// return a DAG expression to select that will generate the same value by 4740 /// multiplying by a magic number. 4741 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4742 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 4743 bool IsAfterLegalization, 4744 SmallVectorImpl<SDNode *> &Created) const { 4745 SDLoc dl(N); 4746 EVT VT = N->getValueType(0); 4747 EVT SVT = VT.getScalarType(); 4748 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4749 EVT ShSVT = ShVT.getScalarType(); 4750 unsigned EltBits = VT.getScalarSizeInBits(); 4751 4752 // Check to see if we can do this. 4753 // FIXME: We should be more aggressive here. 4754 if (!isTypeLegal(VT)) 4755 return SDValue(); 4756 4757 bool UseNPQ = false; 4758 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4759 4760 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 4761 if (C->isNullValue()) 4762 return false; 4763 // FIXME: We should use a narrower constant when the upper 4764 // bits are known to be zero. 4765 APInt Divisor = C->getAPIntValue(); 4766 APInt::mu magics = Divisor.magicu(); 4767 unsigned PreShift = 0, PostShift = 0; 4768 4769 // If the divisor is even, we can avoid using the expensive fixup by 4770 // shifting the divided value upfront. 4771 if (magics.a != 0 && !Divisor[0]) { 4772 PreShift = Divisor.countTrailingZeros(); 4773 // Get magic number for the shifted divisor. 4774 magics = Divisor.lshr(PreShift).magicu(PreShift); 4775 assert(magics.a == 0 && "Should use cheap fixup now"); 4776 } 4777 4778 APInt Magic = magics.m; 4779 4780 unsigned SelNPQ; 4781 if (magics.a == 0 || Divisor.isOneValue()) { 4782 assert(magics.s < Divisor.getBitWidth() && 4783 "We shouldn't generate an undefined shift!"); 4784 PostShift = magics.s; 4785 SelNPQ = false; 4786 } else { 4787 PostShift = magics.s - 1; 4788 SelNPQ = true; 4789 } 4790 4791 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 4792 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 4793 NPQFactors.push_back( 4794 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4795 : APInt::getNullValue(EltBits), 4796 dl, SVT)); 4797 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 4798 UseNPQ |= SelNPQ; 4799 return true; 4800 }; 4801 4802 SDValue N0 = N->getOperand(0); 4803 SDValue N1 = N->getOperand(1); 4804 4805 // Collect the shifts/magic values from each element. 4806 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 4807 return SDValue(); 4808 4809 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 4810 if (VT.isVector()) { 4811 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 4812 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4813 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 4814 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 4815 } else { 4816 PreShift = PreShifts[0]; 4817 MagicFactor = MagicFactors[0]; 4818 PostShift = PostShifts[0]; 4819 } 4820 4821 SDValue Q = N0; 4822 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 4823 Created.push_back(Q.getNode()); 4824 4825 // FIXME: We should support doing a MUL in a wider type. 4826 auto GetMULHU = [&](SDValue X, SDValue Y) { 4827 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 4828 : isOperationLegalOrCustom(ISD::MULHU, VT)) 4829 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 4830 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 4831 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 4832 SDValue LoHi = 4833 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 4834 return SDValue(LoHi.getNode(), 1); 4835 } 4836 return SDValue(); // No mulhu or equivalent 4837 }; 4838 4839 // Multiply the numerator (operand 0) by the magic value. 4840 Q = GetMULHU(Q, MagicFactor); 4841 if (!Q) 4842 return SDValue(); 4843 4844 Created.push_back(Q.getNode()); 4845 4846 if (UseNPQ) { 4847 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 4848 Created.push_back(NPQ.getNode()); 4849 4850 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 4851 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 4852 if (VT.isVector()) 4853 NPQ = GetMULHU(NPQ, NPQFactor); 4854 else 4855 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 4856 4857 Created.push_back(NPQ.getNode()); 4858 4859 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 4860 Created.push_back(Q.getNode()); 4861 } 4862 4863 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 4864 Created.push_back(Q.getNode()); 4865 4866 SDValue One = DAG.getConstant(1, dl, VT); 4867 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 4868 return DAG.getSelect(dl, VT, IsOne, N0, Q); 4869 } 4870 4871 /// If all values in Values that *don't* match the predicate are same 'splat' 4872 /// value, then replace all values with that splat value. 4873 /// Else, if AlternativeReplacement was provided, then replace all values that 4874 /// do match predicate with AlternativeReplacement value. 4875 static void 4876 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 4877 std::function<bool(SDValue)> Predicate, 4878 SDValue AlternativeReplacement = SDValue()) { 4879 SDValue Replacement; 4880 // Is there a value for which the Predicate does *NOT* match? What is it? 4881 auto SplatValue = llvm::find_if_not(Values, Predicate); 4882 if (SplatValue != Values.end()) { 4883 // Does Values consist only of SplatValue's and values matching Predicate? 4884 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 4885 return Value == *SplatValue || Predicate(Value); 4886 })) // Then we shall replace values matching predicate with SplatValue. 4887 Replacement = *SplatValue; 4888 } 4889 if (!Replacement) { 4890 // Oops, we did not find the "baseline" splat value. 4891 if (!AlternativeReplacement) 4892 return; // Nothing to do. 4893 // Let's replace with provided value then. 4894 Replacement = AlternativeReplacement; 4895 } 4896 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 4897 } 4898 4899 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 4900 /// where the divisor is constant and the comparison target is zero, 4901 /// return a DAG expression that will generate the same comparison result 4902 /// using only multiplications, additions and shifts/rotations. 4903 /// Ref: "Hacker's Delight" 10-17. 4904 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 4905 SDValue CompTargetNode, 4906 ISD::CondCode Cond, 4907 DAGCombinerInfo &DCI, 4908 const SDLoc &DL) const { 4909 SmallVector<SDNode *, 2> Built; 4910 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 4911 DCI, DL, Built)) { 4912 for (SDNode *N : Built) 4913 DCI.AddToWorklist(N); 4914 return Folded; 4915 } 4916 4917 return SDValue(); 4918 } 4919 4920 SDValue 4921 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 4922 SDValue CompTargetNode, ISD::CondCode Cond, 4923 DAGCombinerInfo &DCI, const SDLoc &DL, 4924 SmallVectorImpl<SDNode *> &Created) const { 4925 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 4926 // - D must be constant, with D = D0 * 2^K where D0 is odd 4927 // - P is the multiplicative inverse of D0 modulo 2^W 4928 // - Q = floor(((2^W) - 1) / D) 4929 // where W is the width of the common type of N and D. 4930 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4931 "Only applicable for (in)equality comparisons."); 4932 4933 SelectionDAG &DAG = DCI.DAG; 4934 4935 EVT VT = REMNode.getValueType(); 4936 EVT SVT = VT.getScalarType(); 4937 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4938 EVT ShSVT = ShVT.getScalarType(); 4939 4940 // If MUL is unavailable, we cannot proceed in any case. 4941 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 4942 return SDValue(); 4943 4944 // TODO: Could support comparing with non-zero too. 4945 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 4946 if (!CompTarget || !CompTarget->isNullValue()) 4947 return SDValue(); 4948 4949 bool HadOneDivisor = false; 4950 bool AllDivisorsAreOnes = true; 4951 bool HadEvenDivisor = false; 4952 bool AllDivisorsArePowerOfTwo = true; 4953 SmallVector<SDValue, 16> PAmts, KAmts, QAmts; 4954 4955 auto BuildUREMPattern = [&](ConstantSDNode *C) { 4956 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 4957 if (C->isNullValue()) 4958 return false; 4959 4960 const APInt &D = C->getAPIntValue(); 4961 // If all divisors are ones, we will prefer to avoid the fold. 4962 HadOneDivisor |= D.isOneValue(); 4963 AllDivisorsAreOnes &= D.isOneValue(); 4964 4965 // Decompose D into D0 * 2^K 4966 unsigned K = D.countTrailingZeros(); 4967 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 4968 APInt D0 = D.lshr(K); 4969 4970 // D is even if it has trailing zeros. 4971 HadEvenDivisor |= (K != 0); 4972 // D is a power-of-two if D0 is one. 4973 // If all divisors are power-of-two, we will prefer to avoid the fold. 4974 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 4975 4976 // P = inv(D0, 2^W) 4977 // 2^W requires W + 1 bits, so we have to extend and then truncate. 4978 unsigned W = D.getBitWidth(); 4979 APInt P = D0.zext(W + 1) 4980 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 4981 .trunc(W); 4982 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 4983 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 4984 4985 // Q = floor((2^W - 1) / D) 4986 APInt Q = APInt::getAllOnesValue(W).udiv(D); 4987 4988 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 4989 "We are expecting that K is always less than all-ones for ShSVT"); 4990 4991 // If the divisor is 1 the result can be constant-folded. 4992 if (D.isOneValue()) { 4993 // Set P and K amount to a bogus values so we can try to splat them. 4994 P = 0; 4995 K = -1; 4996 assert(Q.isAllOnesValue() && 4997 "Expecting all-ones comparison for one divisor"); 4998 } 4999 5000 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5001 KAmts.push_back( 5002 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5003 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5004 return true; 5005 }; 5006 5007 SDValue N = REMNode.getOperand(0); 5008 SDValue D = REMNode.getOperand(1); 5009 5010 // Collect the values from each element. 5011 if (!ISD::matchUnaryPredicate(D, BuildUREMPattern)) 5012 return SDValue(); 5013 5014 // If this is a urem by a one, avoid the fold since it can be constant-folded. 5015 if (AllDivisorsAreOnes) 5016 return SDValue(); 5017 5018 // If this is a urem by a powers-of-two, avoid the fold since it can be 5019 // best implemented as a bit test. 5020 if (AllDivisorsArePowerOfTwo) 5021 return SDValue(); 5022 5023 SDValue PVal, KVal, QVal; 5024 if (VT.isVector()) { 5025 if (HadOneDivisor) { 5026 // Try to turn PAmts into a splat, since we don't care about the values 5027 // that are currently '0'. If we can't, just keep '0'`s. 5028 turnVectorIntoSplatVector(PAmts, isNullConstant); 5029 // Try to turn KAmts into a splat, since we don't care about the values 5030 // that are currently '-1'. If we can't, change them to '0'`s. 5031 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5032 DAG.getConstant(0, DL, ShSVT)); 5033 } 5034 5035 PVal = DAG.getBuildVector(VT, DL, PAmts); 5036 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5037 QVal = DAG.getBuildVector(VT, DL, QAmts); 5038 } else { 5039 PVal = PAmts[0]; 5040 KVal = KAmts[0]; 5041 QVal = QAmts[0]; 5042 } 5043 5044 // (mul N, P) 5045 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5046 Created.push_back(Op0.getNode()); 5047 5048 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5049 // divisors as a performance improvement, since rotating by 0 is a no-op. 5050 if (HadEvenDivisor) { 5051 // We need ROTR to do this. 5052 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5053 return SDValue(); 5054 SDNodeFlags Flags; 5055 Flags.setExact(true); 5056 // UREM: (rotr (mul N, P), K) 5057 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5058 Created.push_back(Op0.getNode()); 5059 } 5060 5061 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5062 return DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5063 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5064 } 5065 5066 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5067 /// where the divisor is constant and the comparison target is zero, 5068 /// return a DAG expression that will generate the same comparison result 5069 /// using only multiplications, additions and shifts/rotations. 5070 /// Ref: "Hacker's Delight" 10-17. 5071 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5072 SDValue CompTargetNode, 5073 ISD::CondCode Cond, 5074 DAGCombinerInfo &DCI, 5075 const SDLoc &DL) const { 5076 SmallVector<SDNode *, 7> Built; 5077 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5078 DCI, DL, Built)) { 5079 assert(Built.size() <= 7 && "Max size prediction failed."); 5080 for (SDNode *N : Built) 5081 DCI.AddToWorklist(N); 5082 return Folded; 5083 } 5084 5085 return SDValue(); 5086 } 5087 5088 SDValue 5089 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5090 SDValue CompTargetNode, ISD::CondCode Cond, 5091 DAGCombinerInfo &DCI, const SDLoc &DL, 5092 SmallVectorImpl<SDNode *> &Created) const { 5093 // Fold: 5094 // (seteq/ne (srem N, D), 0) 5095 // To: 5096 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5097 // 5098 // - D must be constant, with D = D0 * 2^K where D0 is odd 5099 // - P is the multiplicative inverse of D0 modulo 2^W 5100 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5101 // - Q = floor((2 * A) / (2^K)) 5102 // where W is the width of the common type of N and D. 5103 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5104 "Only applicable for (in)equality comparisons."); 5105 5106 SelectionDAG &DAG = DCI.DAG; 5107 5108 EVT VT = REMNode.getValueType(); 5109 EVT SVT = VT.getScalarType(); 5110 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5111 EVT ShSVT = ShVT.getScalarType(); 5112 5113 // If MUL is unavailable, we cannot proceed in any case. 5114 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5115 return SDValue(); 5116 5117 // TODO: Could support comparing with non-zero too. 5118 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5119 if (!CompTarget || !CompTarget->isNullValue()) 5120 return SDValue(); 5121 5122 bool HadIntMinDivisor = false; 5123 bool HadOneDivisor = false; 5124 bool AllDivisorsAreOnes = true; 5125 bool HadEvenDivisor = false; 5126 bool NeedToApplyOffset = false; 5127 bool AllDivisorsArePowerOfTwo = true; 5128 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5129 5130 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5131 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5132 if (C->isNullValue()) 5133 return false; 5134 5135 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5136 5137 // WARNING: this fold is only valid for positive divisors! 5138 APInt D = C->getAPIntValue(); 5139 if (D.isNegative()) 5140 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5141 5142 HadIntMinDivisor |= D.isMinSignedValue(); 5143 5144 // If all divisors are ones, we will prefer to avoid the fold. 5145 HadOneDivisor |= D.isOneValue(); 5146 AllDivisorsAreOnes &= D.isOneValue(); 5147 5148 // Decompose D into D0 * 2^K 5149 unsigned K = D.countTrailingZeros(); 5150 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5151 APInt D0 = D.lshr(K); 5152 5153 if (!D.isMinSignedValue()) { 5154 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5155 // we don't care about this lane in this fold, we'll special-handle it. 5156 HadEvenDivisor |= (K != 0); 5157 } 5158 5159 // D is a power-of-two if D0 is one. This includes INT_MIN. 5160 // If all divisors are power-of-two, we will prefer to avoid the fold. 5161 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5162 5163 // P = inv(D0, 2^W) 5164 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5165 unsigned W = D.getBitWidth(); 5166 APInt P = D0.zext(W + 1) 5167 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5168 .trunc(W); 5169 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5170 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5171 5172 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5173 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5174 A.clearLowBits(K); 5175 5176 if (!D.isMinSignedValue()) { 5177 // If divisor INT_MIN, then we don't care about this lane in this fold, 5178 // we'll special-handle it. 5179 NeedToApplyOffset |= A != 0; 5180 } 5181 5182 // Q = floor((2 * A) / (2^K)) 5183 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5184 5185 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5186 "We are expecting that A is always less than all-ones for SVT"); 5187 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5188 "We are expecting that K is always less than all-ones for ShSVT"); 5189 5190 // If the divisor is 1 the result can be constant-folded. Likewise, we 5191 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5192 if (D.isOneValue()) { 5193 // Set P, A and K to a bogus values so we can try to splat them. 5194 P = 0; 5195 A = -1; 5196 K = -1; 5197 5198 // x ?% 1 == 0 <--> true <--> x u<= -1 5199 Q = -1; 5200 } 5201 5202 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5203 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5204 KAmts.push_back( 5205 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5206 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5207 return true; 5208 }; 5209 5210 SDValue N = REMNode.getOperand(0); 5211 SDValue D = REMNode.getOperand(1); 5212 5213 // Collect the values from each element. 5214 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5215 return SDValue(); 5216 5217 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5218 if (AllDivisorsAreOnes) 5219 return SDValue(); 5220 5221 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5222 // since it can be best implemented as a bit test. 5223 if (AllDivisorsArePowerOfTwo) 5224 return SDValue(); 5225 5226 SDValue PVal, AVal, KVal, QVal; 5227 if (VT.isVector()) { 5228 if (HadOneDivisor) { 5229 // Try to turn PAmts into a splat, since we don't care about the values 5230 // that are currently '0'. If we can't, just keep '0'`s. 5231 turnVectorIntoSplatVector(PAmts, isNullConstant); 5232 // Try to turn AAmts into a splat, since we don't care about the 5233 // values that are currently '-1'. If we can't, change them to '0'`s. 5234 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5235 DAG.getConstant(0, DL, SVT)); 5236 // Try to turn KAmts into a splat, since we don't care about the values 5237 // that are currently '-1'. If we can't, change them to '0'`s. 5238 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5239 DAG.getConstant(0, DL, ShSVT)); 5240 } 5241 5242 PVal = DAG.getBuildVector(VT, DL, PAmts); 5243 AVal = DAG.getBuildVector(VT, DL, AAmts); 5244 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5245 QVal = DAG.getBuildVector(VT, DL, QAmts); 5246 } else { 5247 PVal = PAmts[0]; 5248 AVal = AAmts[0]; 5249 KVal = KAmts[0]; 5250 QVal = QAmts[0]; 5251 } 5252 5253 // (mul N, P) 5254 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5255 Created.push_back(Op0.getNode()); 5256 5257 if (NeedToApplyOffset) { 5258 // We need ADD to do this. 5259 if (!isOperationLegalOrCustom(ISD::ADD, VT)) 5260 return SDValue(); 5261 5262 // (add (mul N, P), A) 5263 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5264 Created.push_back(Op0.getNode()); 5265 } 5266 5267 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5268 // divisors as a performance improvement, since rotating by 0 is a no-op. 5269 if (HadEvenDivisor) { 5270 // We need ROTR to do this. 5271 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5272 return SDValue(); 5273 SDNodeFlags Flags; 5274 Flags.setExact(true); 5275 // SREM: (rotr (add (mul N, P), A), K) 5276 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5277 Created.push_back(Op0.getNode()); 5278 } 5279 5280 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5281 SDValue Fold = 5282 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5283 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5284 5285 // If we didn't have lanes with INT_MIN divisor, then we're done. 5286 if (!HadIntMinDivisor) 5287 return Fold; 5288 5289 // That fold is only valid for positive divisors. Which effectively means, 5290 // it is invalid for INT_MIN divisors. So if we have such a lane, 5291 // we must fix-up results for said lanes. 5292 assert(VT.isVector() && "Can/should only get here for vectors."); 5293 5294 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5295 !isOperationLegalOrCustom(ISD::AND, VT) || 5296 !isOperationLegalOrCustom(Cond, VT) || 5297 !isOperationLegalOrCustom(ISD::VSELECT, VT)) 5298 return SDValue(); 5299 5300 Created.push_back(Fold.getNode()); 5301 5302 SDValue IntMin = DAG.getConstant( 5303 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5304 SDValue IntMax = DAG.getConstant( 5305 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5306 SDValue Zero = 5307 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5308 5309 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5310 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5311 Created.push_back(DivisorIsIntMin.getNode()); 5312 5313 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5314 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5315 Created.push_back(Masked.getNode()); 5316 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5317 Created.push_back(MaskedIsZero.getNode()); 5318 5319 // To produce final result we need to blend 2 vectors: 'SetCC' and 5320 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5321 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5322 // constant-folded, select can get lowered to a shuffle with constant mask. 5323 SDValue Blended = 5324 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); 5325 5326 return Blended; 5327 } 5328 5329 bool TargetLowering:: 5330 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5331 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5332 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5333 "be a constant integer"); 5334 return true; 5335 } 5336 5337 return false; 5338 } 5339 5340 char TargetLowering::isNegatibleForFree(SDValue Op, SelectionDAG &DAG, 5341 bool LegalOperations, bool ForCodeSize, 5342 unsigned Depth) const { 5343 // fneg is removable even if it has multiple uses. 5344 if (Op.getOpcode() == ISD::FNEG) 5345 return 2; 5346 5347 // Don't allow anything with multiple uses unless we know it is free. 5348 EVT VT = Op.getValueType(); 5349 const SDNodeFlags Flags = Op->getFlags(); 5350 const TargetOptions &Options = DAG.getTarget().Options; 5351 if (!Op.hasOneUse() && !(Op.getOpcode() == ISD::FP_EXTEND && 5352 isFPExtFree(VT, Op.getOperand(0).getValueType()))) 5353 return 0; 5354 5355 // Don't recurse exponentially. 5356 if (Depth > SelectionDAG::MaxRecursionDepth) 5357 return 0; 5358 5359 switch (Op.getOpcode()) { 5360 case ISD::ConstantFP: { 5361 if (!LegalOperations) 5362 return 1; 5363 5364 // Don't invert constant FP values after legalization unless the target says 5365 // the negated constant is legal. 5366 return isOperationLegal(ISD::ConstantFP, VT) || 5367 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 5368 ForCodeSize); 5369 } 5370 case ISD::BUILD_VECTOR: { 5371 // Only permit BUILD_VECTOR of constants. 5372 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 5373 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 5374 })) 5375 return 0; 5376 if (!LegalOperations) 5377 return 1; 5378 if (isOperationLegal(ISD::ConstantFP, VT) && 5379 isOperationLegal(ISD::BUILD_VECTOR, VT)) 5380 return 1; 5381 return llvm::all_of(Op->op_values(), [&](SDValue N) { 5382 return N.isUndef() || 5383 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 5384 ForCodeSize); 5385 }); 5386 } 5387 case ISD::FADD: 5388 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5389 return 0; 5390 5391 // After operation legalization, it might not be legal to create new FSUBs. 5392 if (LegalOperations && !isOperationLegalOrCustom(ISD::FSUB, VT)) 5393 return 0; 5394 5395 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 5396 if (char V = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5397 ForCodeSize, Depth + 1)) 5398 return V; 5399 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 5400 return isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations, 5401 ForCodeSize, Depth + 1); 5402 case ISD::FSUB: 5403 // We can't turn -(A-B) into B-A when we honor signed zeros. 5404 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5405 return 0; 5406 5407 // fold (fneg (fsub A, B)) -> (fsub B, A) 5408 return 1; 5409 5410 case ISD::FMUL: 5411 case ISD::FDIV: 5412 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) 5413 if (char V = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5414 ForCodeSize, Depth + 1)) 5415 return V; 5416 5417 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 5418 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 5419 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 5420 return 0; 5421 5422 return isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations, 5423 ForCodeSize, Depth + 1); 5424 5425 case ISD::FMA: 5426 case ISD::FMAD: { 5427 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5428 return 0; 5429 5430 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5431 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5432 char V2 = isNegatibleForFree(Op.getOperand(2), DAG, LegalOperations, 5433 ForCodeSize, Depth + 1); 5434 if (!V2) 5435 return 0; 5436 5437 // One of Op0/Op1 must be cheaply negatible, then select the cheapest. 5438 char V0 = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5439 ForCodeSize, Depth + 1); 5440 char V1 = isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations, 5441 ForCodeSize, Depth + 1); 5442 char V01 = std::max(V0, V1); 5443 return V01 ? std::max(V01, V2) : 0; 5444 } 5445 5446 case ISD::FP_EXTEND: 5447 case ISD::FP_ROUND: 5448 case ISD::FSIN: 5449 return isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5450 ForCodeSize, Depth + 1); 5451 } 5452 5453 return 0; 5454 } 5455 5456 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 5457 bool LegalOperations, 5458 bool ForCodeSize, 5459 unsigned Depth) const { 5460 // fneg is removable even if it has multiple uses. 5461 if (Op.getOpcode() == ISD::FNEG) 5462 return Op.getOperand(0); 5463 5464 assert(Depth <= SelectionDAG::MaxRecursionDepth && 5465 "getNegatedExpression doesn't match isNegatibleForFree"); 5466 const SDNodeFlags Flags = Op->getFlags(); 5467 5468 switch (Op.getOpcode()) { 5469 case ISD::ConstantFP: { 5470 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 5471 V.changeSign(); 5472 return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType()); 5473 } 5474 case ISD::BUILD_VECTOR: { 5475 SmallVector<SDValue, 4> Ops; 5476 for (SDValue C : Op->op_values()) { 5477 if (C.isUndef()) { 5478 Ops.push_back(C); 5479 continue; 5480 } 5481 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 5482 V.changeSign(); 5483 Ops.push_back(DAG.getConstantFP(V, SDLoc(Op), C.getValueType())); 5484 } 5485 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Ops); 5486 } 5487 case ISD::FADD: 5488 assert((DAG.getTarget().Options.NoSignedZerosFPMath || 5489 Flags.hasNoSignedZeros()) && 5490 "Expected NSZ fp-flag"); 5491 5492 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 5493 if (isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, ForCodeSize, 5494 Depth + 1)) 5495 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5496 getNegatedExpression(Op.getOperand(0), DAG, 5497 LegalOperations, ForCodeSize, 5498 Depth + 1), 5499 Op.getOperand(1), Flags); 5500 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 5501 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5502 getNegatedExpression(Op.getOperand(1), DAG, 5503 LegalOperations, ForCodeSize, 5504 Depth + 1), 5505 Op.getOperand(0), Flags); 5506 case ISD::FSUB: 5507 // fold (fneg (fsub 0, B)) -> B 5508 if (ConstantFPSDNode *N0CFP = 5509 isConstOrConstSplatFP(Op.getOperand(0), /*AllowUndefs*/ true)) 5510 if (N0CFP->isZero()) 5511 return Op.getOperand(1); 5512 5513 // fold (fneg (fsub A, B)) -> (fsub B, A) 5514 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5515 Op.getOperand(1), Op.getOperand(0), Flags); 5516 5517 case ISD::FMUL: 5518 case ISD::FDIV: 5519 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 5520 if (isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, ForCodeSize, 5521 Depth + 1)) 5522 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5523 getNegatedExpression(Op.getOperand(0), DAG, 5524 LegalOperations, ForCodeSize, 5525 Depth + 1), 5526 Op.getOperand(1), Flags); 5527 5528 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 5529 return DAG.getNode( 5530 Op.getOpcode(), SDLoc(Op), Op.getValueType(), Op.getOperand(0), 5531 getNegatedExpression(Op.getOperand(1), DAG, LegalOperations, 5532 ForCodeSize, Depth + 1), 5533 Flags); 5534 5535 case ISD::FMA: 5536 case ISD::FMAD: { 5537 assert((DAG.getTarget().Options.NoSignedZerosFPMath || 5538 Flags.hasNoSignedZeros()) && 5539 "Expected NSZ fp-flag"); 5540 5541 SDValue Neg2 = getNegatedExpression(Op.getOperand(2), DAG, LegalOperations, 5542 ForCodeSize, Depth + 1); 5543 5544 char V0 = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5545 ForCodeSize, Depth + 1); 5546 char V1 = isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations, 5547 ForCodeSize, Depth + 1); 5548 if (V0 >= V1) { 5549 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5550 SDValue Neg0 = getNegatedExpression( 5551 Op.getOperand(0), DAG, LegalOperations, ForCodeSize, Depth + 1); 5552 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Neg0, 5553 Op.getOperand(1), Neg2, Flags); 5554 } 5555 5556 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5557 SDValue Neg1 = getNegatedExpression(Op.getOperand(1), DAG, LegalOperations, 5558 ForCodeSize, Depth + 1); 5559 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5560 Op.getOperand(0), Neg1, Neg2, Flags); 5561 } 5562 5563 case ISD::FP_EXTEND: 5564 case ISD::FSIN: 5565 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5566 getNegatedExpression(Op.getOperand(0), DAG, 5567 LegalOperations, ForCodeSize, 5568 Depth + 1)); 5569 case ISD::FP_ROUND: 5570 return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(), 5571 getNegatedExpression(Op.getOperand(0), DAG, 5572 LegalOperations, ForCodeSize, 5573 Depth + 1), 5574 Op.getOperand(1)); 5575 } 5576 5577 llvm_unreachable("Unknown code"); 5578 } 5579 5580 //===----------------------------------------------------------------------===// 5581 // Legalization Utilities 5582 //===----------------------------------------------------------------------===// 5583 5584 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 5585 SDValue LHS, SDValue RHS, 5586 SmallVectorImpl<SDValue> &Result, 5587 EVT HiLoVT, SelectionDAG &DAG, 5588 MulExpansionKind Kind, SDValue LL, 5589 SDValue LH, SDValue RL, SDValue RH) const { 5590 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 5591 Opcode == ISD::SMUL_LOHI); 5592 5593 bool HasMULHS = (Kind == MulExpansionKind::Always) || 5594 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 5595 bool HasMULHU = (Kind == MulExpansionKind::Always) || 5596 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 5597 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 5598 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 5599 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 5600 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 5601 5602 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 5603 return false; 5604 5605 unsigned OuterBitSize = VT.getScalarSizeInBits(); 5606 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 5607 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 5608 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 5609 5610 // LL, LH, RL, and RH must be either all NULL or all set to a value. 5611 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 5612 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 5613 5614 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 5615 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 5616 bool Signed) -> bool { 5617 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 5618 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 5619 Hi = SDValue(Lo.getNode(), 1); 5620 return true; 5621 } 5622 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 5623 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 5624 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 5625 return true; 5626 } 5627 return false; 5628 }; 5629 5630 SDValue Lo, Hi; 5631 5632 if (!LL.getNode() && !RL.getNode() && 5633 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5634 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 5635 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 5636 } 5637 5638 if (!LL.getNode()) 5639 return false; 5640 5641 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 5642 if (DAG.MaskedValueIsZero(LHS, HighMask) && 5643 DAG.MaskedValueIsZero(RHS, HighMask)) { 5644 // The inputs are both zero-extended. 5645 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 5646 Result.push_back(Lo); 5647 Result.push_back(Hi); 5648 if (Opcode != ISD::MUL) { 5649 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5650 Result.push_back(Zero); 5651 Result.push_back(Zero); 5652 } 5653 return true; 5654 } 5655 } 5656 5657 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 5658 RHSSB > InnerBitSize) { 5659 // The input values are both sign-extended. 5660 // TODO non-MUL case? 5661 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 5662 Result.push_back(Lo); 5663 Result.push_back(Hi); 5664 return true; 5665 } 5666 } 5667 5668 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 5669 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5670 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 5671 // FIXME getShiftAmountTy does not always return a sensible result when VT 5672 // is an illegal type, and so the type may be too small to fit the shift 5673 // amount. Override it with i32. The shift will have to be legalized. 5674 ShiftAmountTy = MVT::i32; 5675 } 5676 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 5677 5678 if (!LH.getNode() && !RH.getNode() && 5679 isOperationLegalOrCustom(ISD::SRL, VT) && 5680 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5681 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 5682 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 5683 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 5684 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 5685 } 5686 5687 if (!LH.getNode()) 5688 return false; 5689 5690 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 5691 return false; 5692 5693 Result.push_back(Lo); 5694 5695 if (Opcode == ISD::MUL) { 5696 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 5697 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 5698 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 5699 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 5700 Result.push_back(Hi); 5701 return true; 5702 } 5703 5704 // Compute the full width result. 5705 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 5706 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 5707 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5708 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 5709 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 5710 }; 5711 5712 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5713 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 5714 return false; 5715 5716 // This is effectively the add part of a multiply-add of half-sized operands, 5717 // so it cannot overflow. 5718 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5719 5720 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 5721 return false; 5722 5723 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5724 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5725 5726 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 5727 isOperationLegalOrCustom(ISD::ADDE, VT)); 5728 if (UseGlue) 5729 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 5730 Merge(Lo, Hi)); 5731 else 5732 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 5733 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 5734 5735 SDValue Carry = Next.getValue(1); 5736 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5737 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5738 5739 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 5740 return false; 5741 5742 if (UseGlue) 5743 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 5744 Carry); 5745 else 5746 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 5747 Zero, Carry); 5748 5749 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5750 5751 if (Opcode == ISD::SMUL_LOHI) { 5752 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5753 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 5754 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 5755 5756 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5757 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 5758 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 5759 } 5760 5761 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5762 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5763 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5764 return true; 5765 } 5766 5767 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 5768 SelectionDAG &DAG, MulExpansionKind Kind, 5769 SDValue LL, SDValue LH, SDValue RL, 5770 SDValue RH) const { 5771 SmallVector<SDValue, 2> Result; 5772 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 5773 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 5774 DAG, Kind, LL, LH, RL, RH); 5775 if (Ok) { 5776 assert(Result.size() == 2); 5777 Lo = Result[0]; 5778 Hi = Result[1]; 5779 } 5780 return Ok; 5781 } 5782 5783 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 5784 SelectionDAG &DAG) const { 5785 EVT VT = Node->getValueType(0); 5786 5787 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 5788 !isOperationLegalOrCustom(ISD::SRL, VT) || 5789 !isOperationLegalOrCustom(ISD::SUB, VT) || 5790 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 5791 return false; 5792 5793 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 5794 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 5795 SDValue X = Node->getOperand(0); 5796 SDValue Y = Node->getOperand(1); 5797 SDValue Z = Node->getOperand(2); 5798 5799 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 5800 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 5801 SDLoc DL(SDValue(Node, 0)); 5802 5803 EVT ShVT = Z.getValueType(); 5804 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 5805 SDValue Zero = DAG.getConstant(0, DL, ShVT); 5806 5807 SDValue ShAmt; 5808 if (isPowerOf2_32(EltSizeInBits)) { 5809 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 5810 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 5811 } else { 5812 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 5813 } 5814 5815 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 5816 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 5817 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 5818 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 5819 5820 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 5821 // and that is undefined. We must compare and select to avoid UB. 5822 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT); 5823 5824 // For fshl, 0-shift returns the 1st arg (X). 5825 // For fshr, 0-shift returns the 2nd arg (Y). 5826 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ); 5827 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or); 5828 return true; 5829 } 5830 5831 // TODO: Merge with expandFunnelShift. 5832 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 5833 SelectionDAG &DAG) const { 5834 EVT VT = Node->getValueType(0); 5835 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 5836 bool IsLeft = Node->getOpcode() == ISD::ROTL; 5837 SDValue Op0 = Node->getOperand(0); 5838 SDValue Op1 = Node->getOperand(1); 5839 SDLoc DL(SDValue(Node, 0)); 5840 5841 EVT ShVT = Op1.getValueType(); 5842 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 5843 5844 // If a rotate in the other direction is legal, use it. 5845 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 5846 if (isOperationLegal(RevRot, VT)) { 5847 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 5848 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 5849 return true; 5850 } 5851 5852 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 5853 !isOperationLegalOrCustom(ISD::SRL, VT) || 5854 !isOperationLegalOrCustom(ISD::SUB, VT) || 5855 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 5856 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 5857 return false; 5858 5859 // Otherwise, 5860 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) 5861 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) 5862 // 5863 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && 5864 "Expecting the type bitwidth to be a power of 2"); 5865 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 5866 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 5867 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 5868 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 5869 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 5870 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 5871 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), 5872 DAG.getNode(HsOpc, DL, VT, Op0, And1)); 5873 return true; 5874 } 5875 5876 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 5877 SelectionDAG &DAG) const { 5878 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 5879 SDValue Src = Node->getOperand(OpNo); 5880 EVT SrcVT = Src.getValueType(); 5881 EVT DstVT = Node->getValueType(0); 5882 SDLoc dl(SDValue(Node, 0)); 5883 5884 // FIXME: Only f32 to i64 conversions are supported. 5885 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 5886 return false; 5887 5888 if (Node->isStrictFPOpcode()) 5889 // When a NaN is converted to an integer a trap is allowed. We can't 5890 // use this expansion here because it would eliminate that trap. Other 5891 // traps are also allowed and cannot be eliminated. See 5892 // IEEE 754-2008 sec 5.8. 5893 return false; 5894 5895 // Expand f32 -> i64 conversion 5896 // This algorithm comes from compiler-rt's implementation of fixsfdi: 5897 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 5898 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 5899 EVT IntVT = SrcVT.changeTypeToInteger(); 5900 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 5901 5902 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 5903 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 5904 SDValue Bias = DAG.getConstant(127, dl, IntVT); 5905 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 5906 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 5907 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 5908 5909 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 5910 5911 SDValue ExponentBits = DAG.getNode( 5912 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 5913 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 5914 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 5915 5916 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 5917 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 5918 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 5919 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 5920 5921 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 5922 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 5923 DAG.getConstant(0x00800000, dl, IntVT)); 5924 5925 R = DAG.getZExtOrTrunc(R, dl, DstVT); 5926 5927 R = DAG.getSelectCC( 5928 dl, Exponent, ExponentLoBit, 5929 DAG.getNode(ISD::SHL, dl, DstVT, R, 5930 DAG.getZExtOrTrunc( 5931 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 5932 dl, IntShVT)), 5933 DAG.getNode(ISD::SRL, dl, DstVT, R, 5934 DAG.getZExtOrTrunc( 5935 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 5936 dl, IntShVT)), 5937 ISD::SETGT); 5938 5939 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 5940 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 5941 5942 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 5943 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 5944 return true; 5945 } 5946 5947 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 5948 SDValue &Chain, 5949 SelectionDAG &DAG) const { 5950 SDLoc dl(SDValue(Node, 0)); 5951 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 5952 SDValue Src = Node->getOperand(OpNo); 5953 5954 EVT SrcVT = Src.getValueType(); 5955 EVT DstVT = Node->getValueType(0); 5956 EVT SetCCVT = 5957 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 5958 5959 // Only expand vector types if we have the appropriate vector bit operations. 5960 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 5961 ISD::FP_TO_SINT; 5962 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 5963 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 5964 return false; 5965 5966 // If the maximum float value is smaller then the signed integer range, 5967 // the destination signmask can't be represented by the float, so we can 5968 // just use FP_TO_SINT directly. 5969 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 5970 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 5971 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 5972 if (APFloat::opOverflow & 5973 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 5974 if (Node->isStrictFPOpcode()) { 5975 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 5976 { Node->getOperand(0), Src }); 5977 Chain = Result.getValue(1); 5978 } else 5979 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 5980 return true; 5981 } 5982 5983 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 5984 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 5985 5986 bool Strict = Node->isStrictFPOpcode() || 5987 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 5988 5989 if (Strict) { 5990 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 5991 // signmask then offset (the result of which should be fully representable). 5992 // Sel = Src < 0x8000000000000000 5993 // Val = select Sel, Src, Src - 0x8000000000000000 5994 // Ofs = select Sel, 0, 0x8000000000000000 5995 // Result = fp_to_sint(Val) ^ Ofs 5996 5997 // TODO: Should any fast-math-flags be set for the FSUB? 5998 SDValue SrcBiased; 5999 if (Node->isStrictFPOpcode()) 6000 SrcBiased = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6001 { Node->getOperand(0), Src, Cst }); 6002 else 6003 SrcBiased = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst); 6004 SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src, SrcBiased); 6005 SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), 6006 DAG.getConstant(SignMask, dl, DstVT)); 6007 SDValue SInt; 6008 if (Node->isStrictFPOpcode()) { 6009 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6010 { SrcBiased.getValue(1), Val }); 6011 Chain = SInt.getValue(1); 6012 } else 6013 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6014 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, Ofs); 6015 } else { 6016 // Expand based on maximum range of FP_TO_SINT: 6017 // True = fp_to_sint(Src) 6018 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6019 // Result = select (Src < 0x8000000000000000), True, False 6020 6021 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6022 // TODO: Should any fast-math-flags be set for the FSUB? 6023 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6024 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6025 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6026 DAG.getConstant(SignMask, dl, DstVT)); 6027 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6028 } 6029 return true; 6030 } 6031 6032 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6033 SelectionDAG &DAG) const { 6034 SDValue Src = Node->getOperand(0); 6035 EVT SrcVT = Src.getValueType(); 6036 EVT DstVT = Node->getValueType(0); 6037 6038 if (SrcVT.getScalarType() != MVT::i64) 6039 return false; 6040 6041 SDLoc dl(SDValue(Node, 0)); 6042 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6043 6044 if (DstVT.getScalarType() == MVT::f32) { 6045 // Only expand vector types if we have the appropriate vector bit 6046 // operations. 6047 if (SrcVT.isVector() && 6048 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6049 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6050 !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) || 6051 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6052 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6053 return false; 6054 6055 // For unsigned conversions, convert them to signed conversions using the 6056 // algorithm from the x86_64 __floatundidf in compiler_rt. 6057 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src); 6058 6059 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 6060 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst); 6061 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 6062 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst); 6063 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 6064 6065 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or); 6066 SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt); 6067 6068 // TODO: This really should be implemented using a branch rather than a 6069 // select. We happen to get lucky and machinesink does the right 6070 // thing most of the time. This would be a good candidate for a 6071 // pseudo-op, or, even better, for whole-function isel. 6072 EVT SetCCVT = 6073 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6074 6075 SDValue SignBitTest = DAG.getSetCC( 6076 dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 6077 Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast); 6078 return true; 6079 } 6080 6081 if (DstVT.getScalarType() == MVT::f64) { 6082 // Only expand vector types if we have the appropriate vector bit 6083 // operations. 6084 if (SrcVT.isVector() && 6085 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6086 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6087 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6088 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6089 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6090 return false; 6091 6092 // Implementation of unsigned i64 to f64 following the algorithm in 6093 // __floatundidf in compiler_rt. This implementation has the advantage 6094 // of performing rounding correctly, both in the default rounding mode 6095 // and in all alternate rounding modes. 6096 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6097 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6098 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6099 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6100 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6101 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6102 6103 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6104 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6105 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6106 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6107 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6108 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6109 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6110 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6111 return true; 6112 } 6113 6114 return false; 6115 } 6116 6117 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6118 SelectionDAG &DAG) const { 6119 SDLoc dl(Node); 6120 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6121 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6122 EVT VT = Node->getValueType(0); 6123 if (isOperationLegalOrCustom(NewOp, VT)) { 6124 SDValue Quiet0 = Node->getOperand(0); 6125 SDValue Quiet1 = Node->getOperand(1); 6126 6127 if (!Node->getFlags().hasNoNaNs()) { 6128 // Insert canonicalizes if it's possible we need to quiet to get correct 6129 // sNaN behavior. 6130 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6131 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6132 Node->getFlags()); 6133 } 6134 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6135 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6136 Node->getFlags()); 6137 } 6138 } 6139 6140 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6141 } 6142 6143 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6144 // instead if there are no NaNs. 6145 if (Node->getFlags().hasNoNaNs()) { 6146 unsigned IEEE2018Op = 6147 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6148 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6149 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6150 Node->getOperand(1), Node->getFlags()); 6151 } 6152 } 6153 6154 return SDValue(); 6155 } 6156 6157 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 6158 SelectionDAG &DAG) const { 6159 SDLoc dl(Node); 6160 EVT VT = Node->getValueType(0); 6161 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6162 SDValue Op = Node->getOperand(0); 6163 unsigned Len = VT.getScalarSizeInBits(); 6164 assert(VT.isInteger() && "CTPOP not implemented for this type."); 6165 6166 // TODO: Add support for irregular type lengths. 6167 if (!(Len <= 128 && Len % 8 == 0)) 6168 return false; 6169 6170 // Only expand vector types if we have the appropriate vector bit operations. 6171 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 6172 !isOperationLegalOrCustom(ISD::SUB, VT) || 6173 !isOperationLegalOrCustom(ISD::SRL, VT) || 6174 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 6175 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6176 return false; 6177 6178 // This is the "best" algorithm from 6179 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 6180 SDValue Mask55 = 6181 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 6182 SDValue Mask33 = 6183 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 6184 SDValue Mask0F = 6185 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 6186 SDValue Mask01 = 6187 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 6188 6189 // v = v - ((v >> 1) & 0x55555555...) 6190 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 6191 DAG.getNode(ISD::AND, dl, VT, 6192 DAG.getNode(ISD::SRL, dl, VT, Op, 6193 DAG.getConstant(1, dl, ShVT)), 6194 Mask55)); 6195 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 6196 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 6197 DAG.getNode(ISD::AND, dl, VT, 6198 DAG.getNode(ISD::SRL, dl, VT, Op, 6199 DAG.getConstant(2, dl, ShVT)), 6200 Mask33)); 6201 // v = (v + (v >> 4)) & 0x0F0F0F0F... 6202 Op = DAG.getNode(ISD::AND, dl, VT, 6203 DAG.getNode(ISD::ADD, dl, VT, Op, 6204 DAG.getNode(ISD::SRL, dl, VT, Op, 6205 DAG.getConstant(4, dl, ShVT))), 6206 Mask0F); 6207 // v = (v * 0x01010101...) >> (Len - 8) 6208 if (Len > 8) 6209 Op = 6210 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 6211 DAG.getConstant(Len - 8, dl, ShVT)); 6212 6213 Result = Op; 6214 return true; 6215 } 6216 6217 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 6218 SelectionDAG &DAG) const { 6219 SDLoc dl(Node); 6220 EVT VT = Node->getValueType(0); 6221 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6222 SDValue Op = Node->getOperand(0); 6223 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6224 6225 // If the non-ZERO_UNDEF version is supported we can use that instead. 6226 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 6227 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 6228 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 6229 return true; 6230 } 6231 6232 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6233 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 6234 EVT SetCCVT = 6235 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6236 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 6237 SDValue Zero = DAG.getConstant(0, dl, VT); 6238 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6239 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6240 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 6241 return true; 6242 } 6243 6244 // Only expand vector types if we have the appropriate vector bit operations. 6245 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6246 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 6247 !isOperationLegalOrCustom(ISD::SRL, VT) || 6248 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6249 return false; 6250 6251 // for now, we do this: 6252 // x = x | (x >> 1); 6253 // x = x | (x >> 2); 6254 // ... 6255 // x = x | (x >>16); 6256 // x = x | (x >>32); // for 64-bit input 6257 // return popcount(~x); 6258 // 6259 // Ref: "Hacker's Delight" by Henry Warren 6260 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 6261 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 6262 Op = DAG.getNode(ISD::OR, dl, VT, Op, 6263 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 6264 } 6265 Op = DAG.getNOT(dl, Op, VT); 6266 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 6267 return true; 6268 } 6269 6270 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 6271 SelectionDAG &DAG) const { 6272 SDLoc dl(Node); 6273 EVT VT = Node->getValueType(0); 6274 SDValue Op = Node->getOperand(0); 6275 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6276 6277 // If the non-ZERO_UNDEF version is supported we can use that instead. 6278 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 6279 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 6280 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 6281 return true; 6282 } 6283 6284 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6285 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 6286 EVT SetCCVT = 6287 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6288 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 6289 SDValue Zero = DAG.getConstant(0, dl, VT); 6290 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6291 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6292 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 6293 return true; 6294 } 6295 6296 // Only expand vector types if we have the appropriate vector bit operations. 6297 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6298 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 6299 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 6300 !isOperationLegalOrCustom(ISD::SUB, VT) || 6301 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 6302 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6303 return false; 6304 6305 // for now, we use: { return popcount(~x & (x - 1)); } 6306 // unless the target has ctlz but not ctpop, in which case we use: 6307 // { return 32 - nlz(~x & (x-1)); } 6308 // Ref: "Hacker's Delight" by Henry Warren 6309 SDValue Tmp = DAG.getNode( 6310 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 6311 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 6312 6313 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 6314 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 6315 Result = 6316 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 6317 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 6318 return true; 6319 } 6320 6321 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 6322 return true; 6323 } 6324 6325 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 6326 SelectionDAG &DAG) const { 6327 SDLoc dl(N); 6328 EVT VT = N->getValueType(0); 6329 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6330 SDValue Op = N->getOperand(0); 6331 6332 // Only expand vector types if we have the appropriate vector operations. 6333 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 6334 !isOperationLegalOrCustom(ISD::ADD, VT) || 6335 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6336 return false; 6337 6338 SDValue Shift = 6339 DAG.getNode(ISD::SRA, dl, VT, Op, 6340 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 6341 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 6342 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 6343 return true; 6344 } 6345 6346 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 6347 SelectionDAG &DAG) const { 6348 SDLoc SL(LD); 6349 SDValue Chain = LD->getChain(); 6350 SDValue BasePTR = LD->getBasePtr(); 6351 EVT SrcVT = LD->getMemoryVT(); 6352 ISD::LoadExtType ExtType = LD->getExtensionType(); 6353 6354 unsigned NumElem = SrcVT.getVectorNumElements(); 6355 6356 EVT SrcEltVT = SrcVT.getScalarType(); 6357 EVT DstEltVT = LD->getValueType(0).getScalarType(); 6358 6359 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 6360 assert(SrcEltVT.isByteSized()); 6361 6362 SmallVector<SDValue, 8> Vals; 6363 SmallVector<SDValue, 8> LoadChains; 6364 6365 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6366 SDValue ScalarLoad = 6367 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 6368 LD->getPointerInfo().getWithOffset(Idx * Stride), 6369 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 6370 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6371 6372 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 6373 6374 Vals.push_back(ScalarLoad.getValue(0)); 6375 LoadChains.push_back(ScalarLoad.getValue(1)); 6376 } 6377 6378 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 6379 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); 6380 6381 return DAG.getMergeValues({Value, NewChain}, SL); 6382 } 6383 6384 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 6385 SelectionDAG &DAG) const { 6386 SDLoc SL(ST); 6387 6388 SDValue Chain = ST->getChain(); 6389 SDValue BasePtr = ST->getBasePtr(); 6390 SDValue Value = ST->getValue(); 6391 EVT StVT = ST->getMemoryVT(); 6392 6393 // The type of the data we want to save 6394 EVT RegVT = Value.getValueType(); 6395 EVT RegSclVT = RegVT.getScalarType(); 6396 6397 // The type of data as saved in memory. 6398 EVT MemSclVT = StVT.getScalarType(); 6399 6400 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 6401 unsigned NumElem = StVT.getVectorNumElements(); 6402 6403 // A vector must always be stored in memory as-is, i.e. without any padding 6404 // between the elements, since various code depend on it, e.g. in the 6405 // handling of a bitcast of a vector type to int, which may be done with a 6406 // vector store followed by an integer load. A vector that does not have 6407 // elements that are byte-sized must therefore be stored as an integer 6408 // built out of the extracted vector elements. 6409 if (!MemSclVT.isByteSized()) { 6410 unsigned NumBits = StVT.getSizeInBits(); 6411 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 6412 6413 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 6414 6415 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6416 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6417 DAG.getConstant(Idx, SL, IdxVT)); 6418 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 6419 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 6420 unsigned ShiftIntoIdx = 6421 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6422 SDValue ShiftAmount = 6423 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 6424 SDValue ShiftedElt = 6425 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 6426 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 6427 } 6428 6429 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 6430 ST->getAlignment(), ST->getMemOperand()->getFlags(), 6431 ST->getAAInfo()); 6432 } 6433 6434 // Store Stride in bytes 6435 unsigned Stride = MemSclVT.getSizeInBits() / 8; 6436 assert(Stride && "Zero stride!"); 6437 // Extract each of the elements from the original vector and save them into 6438 // memory individually. 6439 SmallVector<SDValue, 8> Stores; 6440 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6441 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6442 DAG.getConstant(Idx, SL, IdxVT)); 6443 6444 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 6445 6446 // This scalar TruncStore may be illegal, but we legalize it later. 6447 SDValue Store = DAG.getTruncStore( 6448 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 6449 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 6450 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6451 6452 Stores.push_back(Store); 6453 } 6454 6455 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 6456 } 6457 6458 std::pair<SDValue, SDValue> 6459 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 6460 assert(LD->getAddressingMode() == ISD::UNINDEXED && 6461 "unaligned indexed loads not implemented!"); 6462 SDValue Chain = LD->getChain(); 6463 SDValue Ptr = LD->getBasePtr(); 6464 EVT VT = LD->getValueType(0); 6465 EVT LoadedVT = LD->getMemoryVT(); 6466 SDLoc dl(LD); 6467 auto &MF = DAG.getMachineFunction(); 6468 6469 if (VT.isFloatingPoint() || VT.isVector()) { 6470 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 6471 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 6472 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 6473 LoadedVT.isVector()) { 6474 // Scalarize the load and let the individual components be handled. 6475 SDValue Scalarized = scalarizeVectorLoad(LD, DAG); 6476 if (Scalarized->getOpcode() == ISD::MERGE_VALUES) 6477 return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1)); 6478 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); 6479 } 6480 6481 // Expand to a (misaligned) integer load of the same size, 6482 // then bitconvert to floating point or vector. 6483 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 6484 LD->getMemOperand()); 6485 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 6486 if (LoadedVT != VT) 6487 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 6488 ISD::ANY_EXTEND, dl, VT, Result); 6489 6490 return std::make_pair(Result, newLoad.getValue(1)); 6491 } 6492 6493 // Copy the value to a (aligned) stack slot using (unaligned) integer 6494 // loads and stores, then do a (aligned) load from the stack slot. 6495 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 6496 unsigned LoadedBytes = LoadedVT.getStoreSize(); 6497 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6498 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 6499 6500 // Make sure the stack slot is also aligned for the register type. 6501 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 6502 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 6503 SmallVector<SDValue, 8> Stores; 6504 SDValue StackPtr = StackBase; 6505 unsigned Offset = 0; 6506 6507 EVT PtrVT = Ptr.getValueType(); 6508 EVT StackPtrVT = StackPtr.getValueType(); 6509 6510 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6511 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6512 6513 // Do all but one copies using the full register width. 6514 for (unsigned i = 1; i < NumRegs; i++) { 6515 // Load one integer register's worth from the original location. 6516 SDValue Load = DAG.getLoad( 6517 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 6518 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 6519 LD->getAAInfo()); 6520 // Follow the load with a store to the stack slot. Remember the store. 6521 Stores.push_back(DAG.getStore( 6522 Load.getValue(1), dl, Load, StackPtr, 6523 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 6524 // Increment the pointers. 6525 Offset += RegBytes; 6526 6527 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6528 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6529 } 6530 6531 // The last copy may be partial. Do an extending load. 6532 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 6533 8 * (LoadedBytes - Offset)); 6534 SDValue Load = 6535 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 6536 LD->getPointerInfo().getWithOffset(Offset), MemVT, 6537 MinAlign(LD->getAlignment(), Offset), 6538 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6539 // Follow the load with a store to the stack slot. Remember the store. 6540 // On big-endian machines this requires a truncating store to ensure 6541 // that the bits end up in the right place. 6542 Stores.push_back(DAG.getTruncStore( 6543 Load.getValue(1), dl, Load, StackPtr, 6544 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 6545 6546 // The order of the stores doesn't matter - say it with a TokenFactor. 6547 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6548 6549 // Finally, perform the original load only redirected to the stack slot. 6550 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 6551 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 6552 LoadedVT); 6553 6554 // Callers expect a MERGE_VALUES node. 6555 return std::make_pair(Load, TF); 6556 } 6557 6558 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 6559 "Unaligned load of unsupported type."); 6560 6561 // Compute the new VT that is half the size of the old one. This is an 6562 // integer MVT. 6563 unsigned NumBits = LoadedVT.getSizeInBits(); 6564 EVT NewLoadedVT; 6565 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 6566 NumBits >>= 1; 6567 6568 unsigned Alignment = LD->getAlignment(); 6569 unsigned IncrementSize = NumBits / 8; 6570 ISD::LoadExtType HiExtType = LD->getExtensionType(); 6571 6572 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 6573 if (HiExtType == ISD::NON_EXTLOAD) 6574 HiExtType = ISD::ZEXTLOAD; 6575 6576 // Load the value in two parts 6577 SDValue Lo, Hi; 6578 if (DAG.getDataLayout().isLittleEndian()) { 6579 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6580 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6581 LD->getAAInfo()); 6582 6583 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6584 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 6585 LD->getPointerInfo().getWithOffset(IncrementSize), 6586 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6587 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6588 } else { 6589 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6590 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6591 LD->getAAInfo()); 6592 6593 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6594 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 6595 LD->getPointerInfo().getWithOffset(IncrementSize), 6596 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6597 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6598 } 6599 6600 // aggregate the two parts 6601 SDValue ShiftAmount = 6602 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 6603 DAG.getDataLayout())); 6604 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 6605 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 6606 6607 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 6608 Hi.getValue(1)); 6609 6610 return std::make_pair(Result, TF); 6611 } 6612 6613 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 6614 SelectionDAG &DAG) const { 6615 assert(ST->getAddressingMode() == ISD::UNINDEXED && 6616 "unaligned indexed stores not implemented!"); 6617 SDValue Chain = ST->getChain(); 6618 SDValue Ptr = ST->getBasePtr(); 6619 SDValue Val = ST->getValue(); 6620 EVT VT = Val.getValueType(); 6621 int Alignment = ST->getAlignment(); 6622 auto &MF = DAG.getMachineFunction(); 6623 EVT StoreMemVT = ST->getMemoryVT(); 6624 6625 SDLoc dl(ST); 6626 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 6627 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 6628 if (isTypeLegal(intVT)) { 6629 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 6630 StoreMemVT.isVector()) { 6631 // Scalarize the store and let the individual components be handled. 6632 SDValue Result = scalarizeVectorStore(ST, DAG); 6633 return Result; 6634 } 6635 // Expand to a bitconvert of the value to the integer type of the 6636 // same size, then a (misaligned) int store. 6637 // FIXME: Does not handle truncating floating point stores! 6638 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 6639 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 6640 Alignment, ST->getMemOperand()->getFlags()); 6641 return Result; 6642 } 6643 // Do a (aligned) store to a stack slot, then copy from the stack slot 6644 // to the final destination using (unaligned) integer loads and stores. 6645 MVT RegVT = getRegisterType( 6646 *DAG.getContext(), 6647 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 6648 EVT PtrVT = Ptr.getValueType(); 6649 unsigned StoredBytes = StoreMemVT.getStoreSize(); 6650 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6651 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 6652 6653 // Make sure the stack slot is also aligned for the register type. 6654 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 6655 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 6656 6657 // Perform the original store, only redirected to the stack slot. 6658 SDValue Store = DAG.getTruncStore( 6659 Chain, dl, Val, StackPtr, 6660 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 6661 6662 EVT StackPtrVT = StackPtr.getValueType(); 6663 6664 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6665 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6666 SmallVector<SDValue, 8> Stores; 6667 unsigned Offset = 0; 6668 6669 // Do all but one copies using the full register width. 6670 for (unsigned i = 1; i < NumRegs; i++) { 6671 // Load one integer register's worth from the stack slot. 6672 SDValue Load = DAG.getLoad( 6673 RegVT, dl, Store, StackPtr, 6674 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 6675 // Store it to the final location. Remember the store. 6676 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 6677 ST->getPointerInfo().getWithOffset(Offset), 6678 MinAlign(ST->getAlignment(), Offset), 6679 ST->getMemOperand()->getFlags())); 6680 // Increment the pointers. 6681 Offset += RegBytes; 6682 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6683 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6684 } 6685 6686 // The last store may be partial. Do a truncating store. On big-endian 6687 // machines this requires an extending load from the stack slot to ensure 6688 // that the bits are in the right place. 6689 EVT LoadMemVT = 6690 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 6691 6692 // Load from the stack slot. 6693 SDValue Load = DAG.getExtLoad( 6694 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 6695 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 6696 6697 Stores.push_back( 6698 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 6699 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 6700 MinAlign(ST->getAlignment(), Offset), 6701 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 6702 // The order of the stores doesn't matter - say it with a TokenFactor. 6703 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6704 return Result; 6705 } 6706 6707 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 6708 "Unaligned store of unknown type."); 6709 // Get the half-size VT 6710 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 6711 int NumBits = NewStoredVT.getSizeInBits(); 6712 int IncrementSize = NumBits / 8; 6713 6714 // Divide the stored value in two parts. 6715 SDValue ShiftAmount = DAG.getConstant( 6716 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 6717 SDValue Lo = Val; 6718 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 6719 6720 // Store the two parts 6721 SDValue Store1, Store2; 6722 Store1 = DAG.getTruncStore(Chain, dl, 6723 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 6724 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 6725 ST->getMemOperand()->getFlags()); 6726 6727 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6728 Alignment = MinAlign(Alignment, IncrementSize); 6729 Store2 = DAG.getTruncStore( 6730 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 6731 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 6732 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6733 6734 SDValue Result = 6735 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 6736 return Result; 6737 } 6738 6739 SDValue 6740 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 6741 const SDLoc &DL, EVT DataVT, 6742 SelectionDAG &DAG, 6743 bool IsCompressedMemory) const { 6744 SDValue Increment; 6745 EVT AddrVT = Addr.getValueType(); 6746 EVT MaskVT = Mask.getValueType(); 6747 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 6748 "Incompatible types of Data and Mask"); 6749 if (IsCompressedMemory) { 6750 // Incrementing the pointer according to number of '1's in the mask. 6751 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 6752 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 6753 if (MaskIntVT.getSizeInBits() < 32) { 6754 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 6755 MaskIntVT = MVT::i32; 6756 } 6757 6758 // Count '1's with POPCNT. 6759 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 6760 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 6761 // Scale is an element size in bytes. 6762 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 6763 AddrVT); 6764 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 6765 } else 6766 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 6767 6768 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 6769 } 6770 6771 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 6772 SDValue Idx, 6773 EVT VecVT, 6774 const SDLoc &dl) { 6775 if (isa<ConstantSDNode>(Idx)) 6776 return Idx; 6777 6778 EVT IdxVT = Idx.getValueType(); 6779 unsigned NElts = VecVT.getVectorNumElements(); 6780 if (isPowerOf2_32(NElts)) { 6781 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 6782 Log2_32(NElts)); 6783 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 6784 DAG.getConstant(Imm, dl, IdxVT)); 6785 } 6786 6787 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 6788 DAG.getConstant(NElts - 1, dl, IdxVT)); 6789 } 6790 6791 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 6792 SDValue VecPtr, EVT VecVT, 6793 SDValue Index) const { 6794 SDLoc dl(Index); 6795 // Make sure the index type is big enough to compute in. 6796 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 6797 6798 EVT EltVT = VecVT.getVectorElementType(); 6799 6800 // Calculate the element offset and add it to the pointer. 6801 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 6802 assert(EltSize * 8 == EltVT.getSizeInBits() && 6803 "Converting bits to bytes lost precision"); 6804 6805 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 6806 6807 EVT IdxVT = Index.getValueType(); 6808 6809 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 6810 DAG.getConstant(EltSize, dl, IdxVT)); 6811 return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index); 6812 } 6813 6814 //===----------------------------------------------------------------------===// 6815 // Implementation of Emulated TLS Model 6816 //===----------------------------------------------------------------------===// 6817 6818 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 6819 SelectionDAG &DAG) const { 6820 // Access to address of TLS varialbe xyz is lowered to a function call: 6821 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 6822 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6823 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 6824 SDLoc dl(GA); 6825 6826 ArgListTy Args; 6827 ArgListEntry Entry; 6828 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 6829 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 6830 StringRef EmuTlsVarName(NameString); 6831 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 6832 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 6833 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 6834 Entry.Ty = VoidPtrType; 6835 Args.push_back(Entry); 6836 6837 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 6838 6839 TargetLowering::CallLoweringInfo CLI(DAG); 6840 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 6841 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 6842 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 6843 6844 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 6845 // At last for X86 targets, maybe good for other targets too? 6846 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6847 MFI.setAdjustsStack(true); // Is this only for X86 target? 6848 MFI.setHasCalls(true); 6849 6850 assert((GA->getOffset() == 0) && 6851 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 6852 return CallResult.first; 6853 } 6854 6855 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 6856 SelectionDAG &DAG) const { 6857 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 6858 if (!isCtlzFast()) 6859 return SDValue(); 6860 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 6861 SDLoc dl(Op); 6862 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 6863 if (C->isNullValue() && CC == ISD::SETEQ) { 6864 EVT VT = Op.getOperand(0).getValueType(); 6865 SDValue Zext = Op.getOperand(0); 6866 if (VT.bitsLT(MVT::i32)) { 6867 VT = MVT::i32; 6868 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 6869 } 6870 unsigned Log2b = Log2_32(VT.getSizeInBits()); 6871 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 6872 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 6873 DAG.getConstant(Log2b, dl, MVT::i32)); 6874 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 6875 } 6876 } 6877 return SDValue(); 6878 } 6879 6880 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 6881 unsigned Opcode = Node->getOpcode(); 6882 SDValue LHS = Node->getOperand(0); 6883 SDValue RHS = Node->getOperand(1); 6884 EVT VT = LHS.getValueType(); 6885 SDLoc dl(Node); 6886 6887 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 6888 assert(VT.isInteger() && "Expected operands to be integers"); 6889 6890 // usub.sat(a, b) -> umax(a, b) - b 6891 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 6892 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 6893 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 6894 } 6895 6896 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 6897 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 6898 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 6899 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 6900 } 6901 6902 unsigned OverflowOp; 6903 switch (Opcode) { 6904 case ISD::SADDSAT: 6905 OverflowOp = ISD::SADDO; 6906 break; 6907 case ISD::UADDSAT: 6908 OverflowOp = ISD::UADDO; 6909 break; 6910 case ISD::SSUBSAT: 6911 OverflowOp = ISD::SSUBO; 6912 break; 6913 case ISD::USUBSAT: 6914 OverflowOp = ISD::USUBO; 6915 break; 6916 default: 6917 llvm_unreachable("Expected method to receive signed or unsigned saturation " 6918 "addition or subtraction node."); 6919 } 6920 6921 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 6922 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6923 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 6924 LHS, RHS); 6925 SDValue SumDiff = Result.getValue(0); 6926 SDValue Overflow = Result.getValue(1); 6927 SDValue Zero = DAG.getConstant(0, dl, VT); 6928 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 6929 6930 if (Opcode == ISD::UADDSAT) { 6931 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 6932 // (LHS + RHS) | OverflowMask 6933 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 6934 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 6935 } 6936 // Overflow ? 0xffff.... : (LHS + RHS) 6937 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 6938 } else if (Opcode == ISD::USUBSAT) { 6939 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 6940 // (LHS - RHS) & ~OverflowMask 6941 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 6942 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 6943 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 6944 } 6945 // Overflow ? 0 : (LHS - RHS) 6946 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 6947 } else { 6948 // SatMax -> Overflow && SumDiff < 0 6949 // SatMin -> Overflow && SumDiff >= 0 6950 APInt MinVal = APInt::getSignedMinValue(BitWidth); 6951 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 6952 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 6953 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 6954 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 6955 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 6956 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 6957 } 6958 } 6959 6960 SDValue 6961 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 6962 assert((Node->getOpcode() == ISD::SMULFIX || 6963 Node->getOpcode() == ISD::UMULFIX || 6964 Node->getOpcode() == ISD::SMULFIXSAT || 6965 Node->getOpcode() == ISD::UMULFIXSAT) && 6966 "Expected a fixed point multiplication opcode"); 6967 6968 SDLoc dl(Node); 6969 SDValue LHS = Node->getOperand(0); 6970 SDValue RHS = Node->getOperand(1); 6971 EVT VT = LHS.getValueType(); 6972 unsigned Scale = Node->getConstantOperandVal(2); 6973 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 6974 Node->getOpcode() == ISD::UMULFIXSAT); 6975 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 6976 Node->getOpcode() == ISD::SMULFIXSAT); 6977 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6978 unsigned VTSize = VT.getScalarSizeInBits(); 6979 6980 if (!Scale) { 6981 // [us]mul.fix(a, b, 0) -> mul(a, b) 6982 if (!Saturating) { 6983 if (isOperationLegalOrCustom(ISD::MUL, VT)) 6984 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 6985 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 6986 SDValue Result = 6987 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 6988 SDValue Product = Result.getValue(0); 6989 SDValue Overflow = Result.getValue(1); 6990 SDValue Zero = DAG.getConstant(0, dl, VT); 6991 6992 APInt MinVal = APInt::getSignedMinValue(VTSize); 6993 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 6994 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 6995 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 6996 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 6997 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 6998 return DAG.getSelect(dl, VT, Overflow, Result, Product); 6999 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 7000 SDValue Result = 7001 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7002 SDValue Product = Result.getValue(0); 7003 SDValue Overflow = Result.getValue(1); 7004 7005 APInt MaxVal = APInt::getMaxValue(VTSize); 7006 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7007 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 7008 } 7009 } 7010 7011 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 7012 "Expected scale to be less than the number of bits if signed or at " 7013 "most the number of bits if unsigned."); 7014 assert(LHS.getValueType() == RHS.getValueType() && 7015 "Expected both operands to be the same type"); 7016 7017 // Get the upper and lower bits of the result. 7018 SDValue Lo, Hi; 7019 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 7020 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 7021 if (isOperationLegalOrCustom(LoHiOp, VT)) { 7022 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 7023 Lo = Result.getValue(0); 7024 Hi = Result.getValue(1); 7025 } else if (isOperationLegalOrCustom(HiOp, VT)) { 7026 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7027 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 7028 } else if (VT.isVector()) { 7029 return SDValue(); 7030 } else { 7031 report_fatal_error("Unable to expand fixed point multiplication."); 7032 } 7033 7034 if (Scale == VTSize) 7035 // Result is just the top half since we'd be shifting by the width of the 7036 // operand. Overflow impossible so this works for both UMULFIX and 7037 // UMULFIXSAT. 7038 return Hi; 7039 7040 // The result will need to be shifted right by the scale since both operands 7041 // are scaled. The result is given to us in 2 halves, so we only want part of 7042 // both in the result. 7043 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7044 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 7045 DAG.getConstant(Scale, dl, ShiftTy)); 7046 if (!Saturating) 7047 return Result; 7048 7049 if (!Signed) { 7050 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 7051 // widened multiplication) aren't all zeroes. 7052 7053 // Saturate to max if ((Hi >> Scale) != 0), 7054 // which is the same as if (Hi > ((1 << Scale) - 1)) 7055 APInt MaxVal = APInt::getMaxValue(VTSize); 7056 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 7057 dl, VT); 7058 Result = DAG.getSelectCC(dl, Hi, LowMask, 7059 DAG.getConstant(MaxVal, dl, VT), Result, 7060 ISD::SETUGT); 7061 7062 return Result; 7063 } 7064 7065 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 7066 // widened multiplication) aren't all ones or all zeroes. 7067 7068 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 7069 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 7070 7071 if (Scale == 0) { 7072 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 7073 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 7074 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 7075 // Saturated to SatMin if wide product is negative, and SatMax if wide 7076 // product is positive ... 7077 SDValue Zero = DAG.getConstant(0, dl, VT); 7078 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 7079 ISD::SETLT); 7080 // ... but only if we overflowed. 7081 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 7082 } 7083 7084 // We handled Scale==0 above so all the bits to examine is in Hi. 7085 7086 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 7087 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 7088 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 7089 dl, VT); 7090 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 7091 // Saturate to min if (Hi >> (Scale - 1)) < -1), 7092 // which is the same as if (HI < (-1 << (Scale - 1)) 7093 SDValue HighMask = 7094 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 7095 dl, VT); 7096 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 7097 return Result; 7098 } 7099 7100 void TargetLowering::expandUADDSUBO( 7101 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7102 SDLoc dl(Node); 7103 SDValue LHS = Node->getOperand(0); 7104 SDValue RHS = Node->getOperand(1); 7105 bool IsAdd = Node->getOpcode() == ISD::UADDO; 7106 7107 // If ADD/SUBCARRY is legal, use that instead. 7108 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 7109 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 7110 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 7111 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 7112 { LHS, RHS, CarryIn }); 7113 Result = SDValue(NodeCarry.getNode(), 0); 7114 Overflow = SDValue(NodeCarry.getNode(), 1); 7115 return; 7116 } 7117 7118 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7119 LHS.getValueType(), LHS, RHS); 7120 7121 EVT ResultType = Node->getValueType(1); 7122 EVT SetCCType = getSetCCResultType( 7123 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7124 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 7125 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 7126 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7127 } 7128 7129 void TargetLowering::expandSADDSUBO( 7130 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7131 SDLoc dl(Node); 7132 SDValue LHS = Node->getOperand(0); 7133 SDValue RHS = Node->getOperand(1); 7134 bool IsAdd = Node->getOpcode() == ISD::SADDO; 7135 7136 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7137 LHS.getValueType(), LHS, RHS); 7138 7139 EVT ResultType = Node->getValueType(1); 7140 EVT OType = getSetCCResultType( 7141 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7142 7143 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 7144 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 7145 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 7146 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 7147 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 7148 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7149 return; 7150 } 7151 7152 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 7153 7154 // For an addition, the result should be less than one of the operands (LHS) 7155 // if and only if the other operand (RHS) is negative, otherwise there will 7156 // be overflow. 7157 // For a subtraction, the result should be less than one of the operands 7158 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 7159 // otherwise there will be overflow. 7160 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 7161 SDValue ConditionRHS = 7162 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 7163 7164 Overflow = DAG.getBoolExtOrTrunc( 7165 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 7166 ResultType, ResultType); 7167 } 7168 7169 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 7170 SDValue &Overflow, SelectionDAG &DAG) const { 7171 SDLoc dl(Node); 7172 EVT VT = Node->getValueType(0); 7173 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7174 SDValue LHS = Node->getOperand(0); 7175 SDValue RHS = Node->getOperand(1); 7176 bool isSigned = Node->getOpcode() == ISD::SMULO; 7177 7178 // For power-of-two multiplications we can use a simpler shift expansion. 7179 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 7180 const APInt &C = RHSC->getAPIntValue(); 7181 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 7182 if (C.isPowerOf2()) { 7183 // smulo(x, signed_min) is same as umulo(x, signed_min). 7184 bool UseArithShift = isSigned && !C.isMinSignedValue(); 7185 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7186 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 7187 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 7188 Overflow = DAG.getSetCC(dl, SetCCVT, 7189 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 7190 dl, VT, Result, ShiftAmt), 7191 LHS, ISD::SETNE); 7192 return true; 7193 } 7194 } 7195 7196 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 7197 if (VT.isVector()) 7198 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 7199 VT.getVectorNumElements()); 7200 7201 SDValue BottomHalf; 7202 SDValue TopHalf; 7203 static const unsigned Ops[2][3] = 7204 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 7205 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 7206 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 7207 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7208 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 7209 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 7210 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 7211 RHS); 7212 TopHalf = BottomHalf.getValue(1); 7213 } else if (isTypeLegal(WideVT)) { 7214 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 7215 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 7216 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 7217 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 7218 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 7219 getShiftAmountTy(WideVT, DAG.getDataLayout())); 7220 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 7221 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 7222 } else { 7223 if (VT.isVector()) 7224 return false; 7225 7226 // We can fall back to a libcall with an illegal type for the MUL if we 7227 // have a libcall big enough. 7228 // Also, we can fall back to a division in some cases, but that's a big 7229 // performance hit in the general case. 7230 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 7231 if (WideVT == MVT::i16) 7232 LC = RTLIB::MUL_I16; 7233 else if (WideVT == MVT::i32) 7234 LC = RTLIB::MUL_I32; 7235 else if (WideVT == MVT::i64) 7236 LC = RTLIB::MUL_I64; 7237 else if (WideVT == MVT::i128) 7238 LC = RTLIB::MUL_I128; 7239 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 7240 7241 SDValue HiLHS; 7242 SDValue HiRHS; 7243 if (isSigned) { 7244 // The high part is obtained by SRA'ing all but one of the bits of low 7245 // part. 7246 unsigned LoSize = VT.getSizeInBits(); 7247 HiLHS = 7248 DAG.getNode(ISD::SRA, dl, VT, LHS, 7249 DAG.getConstant(LoSize - 1, dl, 7250 getPointerTy(DAG.getDataLayout()))); 7251 HiRHS = 7252 DAG.getNode(ISD::SRA, dl, VT, RHS, 7253 DAG.getConstant(LoSize - 1, dl, 7254 getPointerTy(DAG.getDataLayout()))); 7255 } else { 7256 HiLHS = DAG.getConstant(0, dl, VT); 7257 HiRHS = DAG.getConstant(0, dl, VT); 7258 } 7259 7260 // Here we're passing the 2 arguments explicitly as 4 arguments that are 7261 // pre-lowered to the correct types. This all depends upon WideVT not 7262 // being a legal type for the architecture and thus has to be split to 7263 // two arguments. 7264 SDValue Ret; 7265 TargetLowering::MakeLibCallOptions CallOptions; 7266 CallOptions.setSExt(isSigned); 7267 CallOptions.setIsPostTypeLegalization(true); 7268 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 7269 // Halves of WideVT are packed into registers in different order 7270 // depending on platform endianness. This is usually handled by 7271 // the C calling convention, but we can't defer to it in 7272 // the legalizer. 7273 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 7274 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7275 } else { 7276 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 7277 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7278 } 7279 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 7280 "Ret value is a collection of constituent nodes holding result."); 7281 if (DAG.getDataLayout().isLittleEndian()) { 7282 // Same as above. 7283 BottomHalf = Ret.getOperand(0); 7284 TopHalf = Ret.getOperand(1); 7285 } else { 7286 BottomHalf = Ret.getOperand(1); 7287 TopHalf = Ret.getOperand(0); 7288 } 7289 } 7290 7291 Result = BottomHalf; 7292 if (isSigned) { 7293 SDValue ShiftAmt = DAG.getConstant( 7294 VT.getScalarSizeInBits() - 1, dl, 7295 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 7296 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 7297 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 7298 } else { 7299 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 7300 DAG.getConstant(0, dl, VT), ISD::SETNE); 7301 } 7302 7303 // Truncate the result if SetCC returns a larger type than needed. 7304 EVT RType = Node->getValueType(1); 7305 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 7306 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 7307 7308 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 7309 "Unexpected result type for S/UMULO legalization"); 7310 return true; 7311 } 7312 7313 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 7314 SDLoc dl(Node); 7315 bool NoNaN = Node->getFlags().hasNoNaNs(); 7316 unsigned BaseOpcode = 0; 7317 switch (Node->getOpcode()) { 7318 default: llvm_unreachable("Expected VECREDUCE opcode"); 7319 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 7320 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 7321 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; 7322 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 7323 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 7324 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 7325 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 7326 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; 7327 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; 7328 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; 7329 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; 7330 case ISD::VECREDUCE_FMAX: 7331 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM; 7332 break; 7333 case ISD::VECREDUCE_FMIN: 7334 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM; 7335 break; 7336 } 7337 7338 SDValue Op = Node->getOperand(0); 7339 EVT VT = Op.getValueType(); 7340 7341 // Try to use a shuffle reduction for power of two vectors. 7342 if (VT.isPow2VectorType()) { 7343 while (VT.getVectorNumElements() > 1) { 7344 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 7345 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 7346 break; 7347 7348 SDValue Lo, Hi; 7349 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 7350 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 7351 VT = HalfVT; 7352 } 7353 } 7354 7355 EVT EltVT = VT.getVectorElementType(); 7356 unsigned NumElts = VT.getVectorNumElements(); 7357 7358 SmallVector<SDValue, 8> Ops; 7359 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 7360 7361 SDValue Res = Ops[0]; 7362 for (unsigned i = 1; i < NumElts; i++) 7363 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 7364 7365 // Result type may be wider than element type. 7366 if (EltVT != Node->getValueType(0)) 7367 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 7368 return Res; 7369 } 7370