1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetLowering.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/CodeGen/Analysis.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/SelectionDAG.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/GlobalVariable.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/MC/MCAsmInfo.h" 27 #include "llvm/MC/MCExpr.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Target/TargetLoweringObjectFile.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include "llvm/Target/TargetRegisterInfo.h" 34 #include "llvm/Target/TargetSubtargetInfo.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 /// Check whether a given call node is in tail position within its function. If 47 /// so, it sets Chain to the input chain of the tail call. 48 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 49 SDValue &Chain) const { 50 const Function *F = DAG.getMachineFunction().getFunction(); 51 52 // Conservatively require the attributes of the call to match those of 53 // the return. Ignore noalias because it doesn't affect the call sequence. 54 AttributeSet CallerAttrs = F->getAttributes(); 55 if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex) 56 .removeAttribute(Attribute::NoAlias).hasAttributes()) 57 return false; 58 59 // It's not safe to eliminate the sign / zero extension of the return value. 60 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 61 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 62 return false; 63 64 // Check if the only use is a function return node. 65 return isUsedByReturnOnly(Node, Chain); 66 } 67 68 /// \brief Set CallLoweringInfo attribute flags based on a call instruction 69 /// and called function attributes. 70 void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS, 71 unsigned AttrIdx) { 72 isSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); 73 isZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); 74 isInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); 75 isSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); 76 isNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); 77 isByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); 78 isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); 79 isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); 80 Alignment = CS->getParamAlignment(AttrIdx); 81 } 82 83 /// Generate a libcall taking the given operands as arguments and returning a 84 /// result of type RetVT. 85 std::pair<SDValue, SDValue> 86 TargetLowering::makeLibCall(SelectionDAG &DAG, 87 RTLIB::Libcall LC, EVT RetVT, 88 const SDValue *Ops, unsigned NumOps, 89 bool isSigned, SDLoc dl, 90 bool doesNotReturn, 91 bool isReturnValueUsed) const { 92 TargetLowering::ArgListTy Args; 93 Args.reserve(NumOps); 94 95 TargetLowering::ArgListEntry Entry; 96 for (unsigned i = 0; i != NumOps; ++i) { 97 Entry.Node = Ops[i]; 98 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 99 Entry.isSExt = isSigned; 100 Entry.isZExt = !isSigned; 101 Args.push_back(Entry); 102 } 103 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), getPointerTy()); 104 105 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 106 TargetLowering::CallLoweringInfo CLI(DAG); 107 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()) 108 .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0) 109 .setNoReturn(doesNotReturn).setDiscardResult(!isReturnValueUsed) 110 .setSExtResult(isSigned).setZExtResult(!isSigned); 111 return LowerCallTo(CLI); 112 } 113 114 115 /// SoftenSetCCOperands - Soften the operands of a comparison. This code is 116 /// shared among BR_CC, SELECT_CC, and SETCC handlers. 117 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 118 SDValue &NewLHS, SDValue &NewRHS, 119 ISD::CondCode &CCCode, 120 SDLoc dl) const { 121 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 122 && "Unsupported setcc type!"); 123 124 // Expand into one or more soft-fp libcall(s). 125 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 126 switch (CCCode) { 127 case ISD::SETEQ: 128 case ISD::SETOEQ: 129 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 130 (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128; 131 break; 132 case ISD::SETNE: 133 case ISD::SETUNE: 134 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 135 (VT == MVT::f64) ? RTLIB::UNE_F64 : RTLIB::UNE_F128; 136 break; 137 case ISD::SETGE: 138 case ISD::SETOGE: 139 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 140 (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128; 141 break; 142 case ISD::SETLT: 143 case ISD::SETOLT: 144 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 145 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; 146 break; 147 case ISD::SETLE: 148 case ISD::SETOLE: 149 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 150 (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128; 151 break; 152 case ISD::SETGT: 153 case ISD::SETOGT: 154 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 155 (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128; 156 break; 157 case ISD::SETUO: 158 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 159 (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128; 160 break; 161 case ISD::SETO: 162 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 163 (VT == MVT::f64) ? RTLIB::O_F64 : RTLIB::O_F128; 164 break; 165 default: 166 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 167 (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128; 168 switch (CCCode) { 169 case ISD::SETONE: 170 // SETONE = SETOLT | SETOGT 171 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 172 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; 173 // Fallthrough 174 case ISD::SETUGT: 175 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 176 (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128; 177 break; 178 case ISD::SETUGE: 179 LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 180 (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128; 181 break; 182 case ISD::SETULT: 183 LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 184 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; 185 break; 186 case ISD::SETULE: 187 LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 188 (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128; 189 break; 190 case ISD::SETUEQ: 191 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 192 (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128; 193 break; 194 default: llvm_unreachable("Do not know how to soften this setcc!"); 195 } 196 } 197 198 // Use the target specific return value for comparions lib calls. 199 EVT RetVT = getCmpLibcallReturnType(); 200 SDValue Ops[2] = { NewLHS, NewRHS }; 201 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, 2, false/*sign irrelevant*/, 202 dl).first; 203 NewRHS = DAG.getConstant(0, RetVT); 204 CCCode = getCmpLibcallCC(LC1); 205 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 206 SDValue Tmp = DAG.getNode(ISD::SETCC, dl, 207 getSetCCResultType(*DAG.getContext(), RetVT), 208 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 209 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, 2, false/*sign irrelevant*/, 210 dl).first; 211 NewLHS = DAG.getNode(ISD::SETCC, dl, 212 getSetCCResultType(*DAG.getContext(), RetVT), NewLHS, 213 NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 214 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 215 NewRHS = SDValue(); 216 } 217 } 218 219 /// getJumpTableEncoding - Return the entry encoding for a jump table in the 220 /// current function. The returned value is a member of the 221 /// MachineJumpTableInfo::JTEntryKind enum. 222 unsigned TargetLowering::getJumpTableEncoding() const { 223 // In non-pic modes, just use the address of a block. 224 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 225 return MachineJumpTableInfo::EK_BlockAddress; 226 227 // In PIC mode, if the target supports a GPRel32 directive, use it. 228 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 229 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 230 231 // Otherwise, use a label difference. 232 return MachineJumpTableInfo::EK_LabelDifference32; 233 } 234 235 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 236 SelectionDAG &DAG) const { 237 // If our PIC model is GP relative, use the global offset table as the base. 238 unsigned JTEncoding = getJumpTableEncoding(); 239 240 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 241 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 242 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(0)); 243 244 return Table; 245 } 246 247 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the 248 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an 249 /// MCExpr. 250 const MCExpr * 251 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 252 unsigned JTI,MCContext &Ctx) const{ 253 // The normal PIC reloc base is the label at the start of the jump table. 254 return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx); 255 } 256 257 bool 258 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 259 // Assume that everything is safe in static mode. 260 if (getTargetMachine().getRelocationModel() == Reloc::Static) 261 return true; 262 263 // In dynamic-no-pic mode, assume that known defined values are safe. 264 if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC && 265 GA && 266 !GA->getGlobal()->isDeclaration() && 267 !GA->getGlobal()->isWeakForLinker()) 268 return true; 269 270 // Otherwise assume nothing is safe. 271 return false; 272 } 273 274 //===----------------------------------------------------------------------===// 275 // Optimization Methods 276 //===----------------------------------------------------------------------===// 277 278 /// ShrinkDemandedConstant - Check to see if the specified operand of the 279 /// specified instruction is a constant integer. If so, check to see if there 280 /// are any bits set in the constant that are not demanded. If so, shrink the 281 /// constant and return true. 282 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op, 283 const APInt &Demanded) { 284 SDLoc dl(Op); 285 286 // FIXME: ISD::SELECT, ISD::SELECT_CC 287 switch (Op.getOpcode()) { 288 default: break; 289 case ISD::XOR: 290 case ISD::AND: 291 case ISD::OR: { 292 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 293 if (!C) return false; 294 295 if (Op.getOpcode() == ISD::XOR && 296 (C->getAPIntValue() | (~Demanded)).isAllOnesValue()) 297 return false; 298 299 // if we can expand it to have all bits set, do it 300 if (C->getAPIntValue().intersects(~Demanded)) { 301 EVT VT = Op.getValueType(); 302 SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0), 303 DAG.getConstant(Demanded & 304 C->getAPIntValue(), 305 VT)); 306 return CombineTo(Op, New); 307 } 308 309 break; 310 } 311 } 312 313 return false; 314 } 315 316 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the 317 /// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening 318 /// cast, but it could be generalized for targets with other types of 319 /// implicit widening casts. 320 bool 321 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op, 322 unsigned BitWidth, 323 const APInt &Demanded, 324 SDLoc dl) { 325 assert(Op.getNumOperands() == 2 && 326 "ShrinkDemandedOp only supports binary operators!"); 327 assert(Op.getNode()->getNumValues() == 1 && 328 "ShrinkDemandedOp only supports nodes with one result!"); 329 330 // Early return, as this function cannot handle vector types. 331 if (Op.getValueType().isVector()) 332 return false; 333 334 // Don't do this if the node has another user, which may require the 335 // full value. 336 if (!Op.getNode()->hasOneUse()) 337 return false; 338 339 // Search for the smallest integer type with free casts to and from 340 // Op's type. For expedience, just check power-of-2 integer types. 341 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 342 unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros(); 343 unsigned SmallVTBits = DemandedSize; 344 if (!isPowerOf2_32(SmallVTBits)) 345 SmallVTBits = NextPowerOf2(SmallVTBits); 346 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 347 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 348 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 349 TLI.isZExtFree(SmallVT, Op.getValueType())) { 350 // We found a type with free casts. 351 SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT, 352 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 353 Op.getNode()->getOperand(0)), 354 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 355 Op.getNode()->getOperand(1))); 356 bool NeedZext = DemandedSize > SmallVTBits; 357 SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, 358 dl, Op.getValueType(), X); 359 return CombineTo(Op, Z); 360 } 361 } 362 return false; 363 } 364 365 /// SimplifyDemandedBits - Look at Op. At this point, we know that only the 366 /// DemandedMask bits of the result of Op are ever used downstream. If we can 367 /// use this information to simplify Op, create a new simplified DAG node and 368 /// return true, returning the original and new nodes in Old and New. Otherwise, 369 /// analyze the expression and return a mask of KnownOne and KnownZero bits for 370 /// the expression (used to simplify the caller). The KnownZero/One bits may 371 /// only be accurate for those bits in the DemandedMask. 372 bool TargetLowering::SimplifyDemandedBits(SDValue Op, 373 const APInt &DemandedMask, 374 APInt &KnownZero, 375 APInt &KnownOne, 376 TargetLoweringOpt &TLO, 377 unsigned Depth) const { 378 unsigned BitWidth = DemandedMask.getBitWidth(); 379 assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth && 380 "Mask size mismatches value type size!"); 381 APInt NewMask = DemandedMask; 382 SDLoc dl(Op); 383 384 // Don't know anything. 385 KnownZero = KnownOne = APInt(BitWidth, 0); 386 387 // Other users may use these bits. 388 if (!Op.getNode()->hasOneUse()) { 389 if (Depth != 0) { 390 // If not at the root, Just compute the KnownZero/KnownOne bits to 391 // simplify things downstream. 392 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 393 return false; 394 } 395 // If this is the root being simplified, allow it to have multiple uses, 396 // just set the NewMask to all bits. 397 NewMask = APInt::getAllOnesValue(BitWidth); 398 } else if (DemandedMask == 0) { 399 // Not demanding any bits from Op. 400 if (Op.getOpcode() != ISD::UNDEF) 401 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType())); 402 return false; 403 } else if (Depth == 6) { // Limit search depth. 404 return false; 405 } 406 407 APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; 408 switch (Op.getOpcode()) { 409 case ISD::Constant: 410 // We know all of the bits for a constant! 411 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); 412 KnownZero = ~KnownOne; 413 return false; // Don't fall through, will infinitely loop. 414 case ISD::AND: 415 // If the RHS is a constant, check to see if the LHS would be zero without 416 // using the bits from the RHS. Below, we use knowledge about the RHS to 417 // simplify the LHS, here we're using information from the LHS to simplify 418 // the RHS. 419 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 420 APInt LHSZero, LHSOne; 421 // Do not increment Depth here; that can cause an infinite loop. 422 TLO.DAG.computeKnownBits(Op.getOperand(0), LHSZero, LHSOne, Depth); 423 // If the LHS already has zeros where RHSC does, this and is dead. 424 if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) 425 return TLO.CombineTo(Op, Op.getOperand(0)); 426 // If any of the set bits in the RHS are known zero on the LHS, shrink 427 // the constant. 428 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask)) 429 return true; 430 } 431 432 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 433 KnownOne, TLO, Depth+1)) 434 return true; 435 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 436 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask, 437 KnownZero2, KnownOne2, TLO, Depth+1)) 438 return true; 439 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 440 441 // If all of the demanded bits are known one on one side, return the other. 442 // These bits cannot contribute to the result of the 'and'. 443 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 444 return TLO.CombineTo(Op, Op.getOperand(0)); 445 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 446 return TLO.CombineTo(Op, Op.getOperand(1)); 447 // If all of the demanded bits in the inputs are known zeros, return zero. 448 if ((NewMask & (KnownZero|KnownZero2)) == NewMask) 449 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType())); 450 // If the RHS is a constant, see if we can simplify it. 451 if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask)) 452 return true; 453 // If the operation can be done in a smaller type, do so. 454 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 455 return true; 456 457 // Output known-1 bits are only known if set in both the LHS & RHS. 458 KnownOne &= KnownOne2; 459 // Output known-0 are known to be clear if zero in either the LHS | RHS. 460 KnownZero |= KnownZero2; 461 break; 462 case ISD::OR: 463 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 464 KnownOne, TLO, Depth+1)) 465 return true; 466 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 467 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask, 468 KnownZero2, KnownOne2, TLO, Depth+1)) 469 return true; 470 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 471 472 // If all of the demanded bits are known zero on one side, return the other. 473 // These bits cannot contribute to the result of the 'or'. 474 if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask)) 475 return TLO.CombineTo(Op, Op.getOperand(0)); 476 if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask)) 477 return TLO.CombineTo(Op, Op.getOperand(1)); 478 // If all of the potentially set bits on one side are known to be set on 479 // the other side, just use the 'other' side. 480 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 481 return TLO.CombineTo(Op, Op.getOperand(0)); 482 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 483 return TLO.CombineTo(Op, Op.getOperand(1)); 484 // If the RHS is a constant, see if we can simplify it. 485 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 486 return true; 487 // If the operation can be done in a smaller type, do so. 488 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 489 return true; 490 491 // Output known-0 bits are only known if clear in both the LHS & RHS. 492 KnownZero &= KnownZero2; 493 // Output known-1 are known to be set if set in either the LHS | RHS. 494 KnownOne |= KnownOne2; 495 break; 496 case ISD::XOR: 497 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 498 KnownOne, TLO, Depth+1)) 499 return true; 500 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 501 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2, 502 KnownOne2, TLO, Depth+1)) 503 return true; 504 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 505 506 // If all of the demanded bits are known zero on one side, return the other. 507 // These bits cannot contribute to the result of the 'xor'. 508 if ((KnownZero & NewMask) == NewMask) 509 return TLO.CombineTo(Op, Op.getOperand(0)); 510 if ((KnownZero2 & NewMask) == NewMask) 511 return TLO.CombineTo(Op, Op.getOperand(1)); 512 // If the operation can be done in a smaller type, do so. 513 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 514 return true; 515 516 // If all of the unknown bits are known to be zero on one side or the other 517 // (but not both) turn this into an *inclusive* or. 518 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 519 if ((NewMask & ~KnownZero & ~KnownZero2) == 0) 520 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(), 521 Op.getOperand(0), 522 Op.getOperand(1))); 523 524 // Output known-0 bits are known if clear or set in both the LHS & RHS. 525 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 526 // Output known-1 are known to be set if set in only one of the LHS, RHS. 527 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 528 529 // If all of the demanded bits on one side are known, and all of the set 530 // bits on that side are also known to be set on the other side, turn this 531 // into an AND, as we know the bits will be cleared. 532 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 533 // NB: it is okay if more bits are known than are requested 534 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side 535 if (KnownOne == KnownOne2) { // set bits are the same on both sides 536 EVT VT = Op.getValueType(); 537 SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT); 538 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, 539 Op.getOperand(0), ANDC)); 540 } 541 } 542 543 // If the RHS is a constant, see if we can simplify it. 544 // for XOR, we prefer to force bits to 1 if they will make a -1. 545 // if we can't force bits, try to shrink constant 546 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 547 APInt Expanded = C->getAPIntValue() | (~NewMask); 548 // if we can expand it to have all bits set, do it 549 if (Expanded.isAllOnesValue()) { 550 if (Expanded != C->getAPIntValue()) { 551 EVT VT = Op.getValueType(); 552 SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0), 553 TLO.DAG.getConstant(Expanded, VT)); 554 return TLO.CombineTo(Op, New); 555 } 556 // if it already has all the bits set, nothing to change 557 // but don't shrink either! 558 } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) { 559 return true; 560 } 561 } 562 563 KnownZero = KnownZeroOut; 564 KnownOne = KnownOneOut; 565 break; 566 case ISD::SELECT: 567 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero, 568 KnownOne, TLO, Depth+1)) 569 return true; 570 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2, 571 KnownOne2, TLO, Depth+1)) 572 return true; 573 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 574 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 575 576 // If the operands are constants, see if we can simplify them. 577 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 578 return true; 579 580 // Only known if known in both the LHS and RHS. 581 KnownOne &= KnownOne2; 582 KnownZero &= KnownZero2; 583 break; 584 case ISD::SELECT_CC: 585 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero, 586 KnownOne, TLO, Depth+1)) 587 return true; 588 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2, 589 KnownOne2, TLO, Depth+1)) 590 return true; 591 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 592 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 593 594 // If the operands are constants, see if we can simplify them. 595 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 596 return true; 597 598 // Only known if known in both the LHS and RHS. 599 KnownOne &= KnownOne2; 600 KnownZero &= KnownZero2; 601 break; 602 case ISD::SHL: 603 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 604 unsigned ShAmt = SA->getZExtValue(); 605 SDValue InOp = Op.getOperand(0); 606 607 // If the shift count is an invalid immediate, don't do anything. 608 if (ShAmt >= BitWidth) 609 break; 610 611 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 612 // single shift. We can do this if the bottom bits (which are shifted 613 // out) are never demanded. 614 if (InOp.getOpcode() == ISD::SRL && 615 isa<ConstantSDNode>(InOp.getOperand(1))) { 616 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 617 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 618 unsigned Opc = ISD::SHL; 619 int Diff = ShAmt-C1; 620 if (Diff < 0) { 621 Diff = -Diff; 622 Opc = ISD::SRL; 623 } 624 625 SDValue NewSA = 626 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType()); 627 EVT VT = Op.getValueType(); 628 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 629 InOp.getOperand(0), NewSA)); 630 } 631 } 632 633 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), 634 KnownZero, KnownOne, TLO, Depth+1)) 635 return true; 636 637 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 638 // are not demanded. This will likely allow the anyext to be folded away. 639 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { 640 SDValue InnerOp = InOp.getNode()->getOperand(0); 641 EVT InnerVT = InnerOp.getValueType(); 642 unsigned InnerBits = InnerVT.getSizeInBits(); 643 if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 && 644 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 645 EVT ShTy = getShiftAmountTy(InnerVT); 646 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 647 ShTy = InnerVT; 648 SDValue NarrowShl = 649 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 650 TLO.DAG.getConstant(ShAmt, ShTy)); 651 return 652 TLO.CombineTo(Op, 653 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), 654 NarrowShl)); 655 } 656 // Repeat the SHL optimization above in cases where an extension 657 // intervenes: (shl (anyext (shr x, c1)), c2) to 658 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 659 // aren't demanded (as above) and that the shifted upper c1 bits of 660 // x aren't demanded. 661 if (InOp.hasOneUse() && 662 InnerOp.getOpcode() == ISD::SRL && 663 InnerOp.hasOneUse() && 664 isa<ConstantSDNode>(InnerOp.getOperand(1))) { 665 uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1)) 666 ->getZExtValue(); 667 if (InnerShAmt < ShAmt && 668 InnerShAmt < InnerBits && 669 NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 && 670 NewMask.trunc(ShAmt) == 0) { 671 SDValue NewSA = 672 TLO.DAG.getConstant(ShAmt - InnerShAmt, 673 Op.getOperand(1).getValueType()); 674 EVT VT = Op.getValueType(); 675 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 676 InnerOp.getOperand(0)); 677 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, 678 NewExt, NewSA)); 679 } 680 } 681 } 682 683 KnownZero <<= SA->getZExtValue(); 684 KnownOne <<= SA->getZExtValue(); 685 // low bits known zero. 686 KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue()); 687 } 688 break; 689 case ISD::SRL: 690 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 691 EVT VT = Op.getValueType(); 692 unsigned ShAmt = SA->getZExtValue(); 693 unsigned VTSize = VT.getSizeInBits(); 694 SDValue InOp = Op.getOperand(0); 695 696 // If the shift count is an invalid immediate, don't do anything. 697 if (ShAmt >= BitWidth) 698 break; 699 700 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 701 // single shift. We can do this if the top bits (which are shifted out) 702 // are never demanded. 703 if (InOp.getOpcode() == ISD::SHL && 704 isa<ConstantSDNode>(InOp.getOperand(1))) { 705 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) { 706 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 707 unsigned Opc = ISD::SRL; 708 int Diff = ShAmt-C1; 709 if (Diff < 0) { 710 Diff = -Diff; 711 Opc = ISD::SHL; 712 } 713 714 SDValue NewSA = 715 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType()); 716 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 717 InOp.getOperand(0), NewSA)); 718 } 719 } 720 721 // Compute the new bits that are at the top now. 722 if (SimplifyDemandedBits(InOp, (NewMask << ShAmt), 723 KnownZero, KnownOne, TLO, Depth+1)) 724 return true; 725 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 726 KnownZero = KnownZero.lshr(ShAmt); 727 KnownOne = KnownOne.lshr(ShAmt); 728 729 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 730 KnownZero |= HighBits; // High bits known zero. 731 } 732 break; 733 case ISD::SRA: 734 // If this is an arithmetic shift right and only the low-bit is set, we can 735 // always convert this into a logical shr, even if the shift amount is 736 // variable. The low bit of the shift cannot be an input sign bit unless 737 // the shift amount is >= the size of the datatype, which is undefined. 738 if (NewMask == 1) 739 return TLO.CombineTo(Op, 740 TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), 741 Op.getOperand(0), Op.getOperand(1))); 742 743 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 744 EVT VT = Op.getValueType(); 745 unsigned ShAmt = SA->getZExtValue(); 746 747 // If the shift count is an invalid immediate, don't do anything. 748 if (ShAmt >= BitWidth) 749 break; 750 751 APInt InDemandedMask = (NewMask << ShAmt); 752 753 // If any of the demanded bits are produced by the sign extension, we also 754 // demand the input sign bit. 755 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 756 if (HighBits.intersects(NewMask)) 757 InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits()); 758 759 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, 760 KnownZero, KnownOne, TLO, Depth+1)) 761 return true; 762 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 763 KnownZero = KnownZero.lshr(ShAmt); 764 KnownOne = KnownOne.lshr(ShAmt); 765 766 // Handle the sign bit, adjusted to where it is now in the mask. 767 APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt); 768 769 // If the input sign bit is known to be zero, or if none of the top bits 770 // are demanded, turn this into an unsigned shift right. 771 if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) 772 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 773 Op.getOperand(0), 774 Op.getOperand(1))); 775 776 int Log2 = NewMask.exactLogBase2(); 777 if (Log2 >= 0) { 778 // The bit must come from the sign. 779 SDValue NewSA = 780 TLO.DAG.getConstant(BitWidth - 1 - Log2, 781 Op.getOperand(1).getValueType()); 782 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 783 Op.getOperand(0), NewSA)); 784 } 785 786 if (KnownOne.intersects(SignBit)) 787 // New bits are known one. 788 KnownOne |= HighBits; 789 } 790 break; 791 case ISD::SIGN_EXTEND_INREG: { 792 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 793 794 APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1); 795 // If we only care about the highest bit, don't bother shifting right. 796 if (MsbMask == NewMask) { 797 unsigned ShAmt = ExVT.getScalarType().getSizeInBits(); 798 SDValue InOp = Op.getOperand(0); 799 unsigned VTBits = Op->getValueType(0).getScalarType().getSizeInBits(); 800 bool AlreadySignExtended = 801 TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1; 802 // However if the input is already sign extended we expect the sign 803 // extension to be dropped altogether later and do not simplify. 804 if (!AlreadySignExtended) { 805 // Compute the correct shift amount type, which must be getShiftAmountTy 806 // for scalar types after legalization. 807 EVT ShiftAmtTy = Op.getValueType(); 808 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 809 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy); 810 811 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, ShiftAmtTy); 812 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 813 Op.getValueType(), InOp, 814 ShiftAmt)); 815 } 816 } 817 818 // Sign extension. Compute the demanded bits in the result that are not 819 // present in the input. 820 APInt NewBits = 821 APInt::getHighBitsSet(BitWidth, 822 BitWidth - ExVT.getScalarType().getSizeInBits()); 823 824 // If none of the extended bits are demanded, eliminate the sextinreg. 825 if ((NewBits & NewMask) == 0) 826 return TLO.CombineTo(Op, Op.getOperand(0)); 827 828 APInt InSignBit = 829 APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth); 830 APInt InputDemandedBits = 831 APInt::getLowBitsSet(BitWidth, 832 ExVT.getScalarType().getSizeInBits()) & 833 NewMask; 834 835 // Since the sign extended bits are demanded, we know that the sign 836 // bit is demanded. 837 InputDemandedBits |= InSignBit; 838 839 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, 840 KnownZero, KnownOne, TLO, Depth+1)) 841 return true; 842 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 843 844 // If the sign bit of the input is known set or clear, then we know the 845 // top bits of the result. 846 847 // If the input sign bit is known zero, convert this into a zero extension. 848 if (KnownZero.intersects(InSignBit)) 849 return TLO.CombineTo(Op, 850 TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT)); 851 852 if (KnownOne.intersects(InSignBit)) { // Input sign bit known set 853 KnownOne |= NewBits; 854 KnownZero &= ~NewBits; 855 } else { // Input sign bit unknown 856 KnownZero &= ~NewBits; 857 KnownOne &= ~NewBits; 858 } 859 break; 860 } 861 case ISD::BUILD_PAIR: { 862 EVT HalfVT = Op.getOperand(0).getValueType(); 863 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 864 865 APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 866 APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 867 868 APInt KnownZeroLo, KnownOneLo; 869 APInt KnownZeroHi, KnownOneHi; 870 871 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo, 872 KnownOneLo, TLO, Depth + 1)) 873 return true; 874 875 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi, 876 KnownOneHi, TLO, Depth + 1)) 877 return true; 878 879 KnownZero = KnownZeroLo.zext(BitWidth) | 880 KnownZeroHi.zext(BitWidth).shl(HalfBitWidth); 881 882 KnownOne = KnownOneLo.zext(BitWidth) | 883 KnownOneHi.zext(BitWidth).shl(HalfBitWidth); 884 break; 885 } 886 case ISD::ZERO_EXTEND: { 887 unsigned OperandBitWidth = 888 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 889 APInt InMask = NewMask.trunc(OperandBitWidth); 890 891 // If none of the top bits are demanded, convert this into an any_extend. 892 APInt NewBits = 893 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask; 894 if (!NewBits.intersects(NewMask)) 895 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 896 Op.getValueType(), 897 Op.getOperand(0))); 898 899 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 900 KnownZero, KnownOne, TLO, Depth+1)) 901 return true; 902 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 903 KnownZero = KnownZero.zext(BitWidth); 904 KnownOne = KnownOne.zext(BitWidth); 905 KnownZero |= NewBits; 906 break; 907 } 908 case ISD::SIGN_EXTEND: { 909 EVT InVT = Op.getOperand(0).getValueType(); 910 unsigned InBits = InVT.getScalarType().getSizeInBits(); 911 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits); 912 APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits); 913 APInt NewBits = ~InMask & NewMask; 914 915 // If none of the top bits are demanded, convert this into an any_extend. 916 if (NewBits == 0) 917 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 918 Op.getValueType(), 919 Op.getOperand(0))); 920 921 // Since some of the sign extended bits are demanded, we know that the sign 922 // bit is demanded. 923 APInt InDemandedBits = InMask & NewMask; 924 InDemandedBits |= InSignBit; 925 InDemandedBits = InDemandedBits.trunc(InBits); 926 927 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, 928 KnownOne, TLO, Depth+1)) 929 return true; 930 KnownZero = KnownZero.zext(BitWidth); 931 KnownOne = KnownOne.zext(BitWidth); 932 933 // If the sign bit is known zero, convert this to a zero extend. 934 if (KnownZero.intersects(InSignBit)) 935 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, 936 Op.getValueType(), 937 Op.getOperand(0))); 938 939 // If the sign bit is known one, the top bits match. 940 if (KnownOne.intersects(InSignBit)) { 941 KnownOne |= NewBits; 942 assert((KnownZero & NewBits) == 0); 943 } else { // Otherwise, top bits aren't known. 944 assert((KnownOne & NewBits) == 0); 945 assert((KnownZero & NewBits) == 0); 946 } 947 break; 948 } 949 case ISD::ANY_EXTEND: { 950 unsigned OperandBitWidth = 951 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 952 APInt InMask = NewMask.trunc(OperandBitWidth); 953 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 954 KnownZero, KnownOne, TLO, Depth+1)) 955 return true; 956 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 957 KnownZero = KnownZero.zext(BitWidth); 958 KnownOne = KnownOne.zext(BitWidth); 959 break; 960 } 961 case ISD::TRUNCATE: { 962 // Simplify the input, using demanded bit information, and compute the known 963 // zero/one bits live out. 964 unsigned OperandBitWidth = 965 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 966 APInt TruncMask = NewMask.zext(OperandBitWidth); 967 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, 968 KnownZero, KnownOne, TLO, Depth+1)) 969 return true; 970 KnownZero = KnownZero.trunc(BitWidth); 971 KnownOne = KnownOne.trunc(BitWidth); 972 973 // If the input is only used by this truncate, see if we can shrink it based 974 // on the known demanded bits. 975 if (Op.getOperand(0).getNode()->hasOneUse()) { 976 SDValue In = Op.getOperand(0); 977 switch (In.getOpcode()) { 978 default: break; 979 case ISD::SRL: 980 // Shrink SRL by a constant if none of the high bits shifted in are 981 // demanded. 982 if (TLO.LegalTypes() && 983 !isTypeDesirableForOp(ISD::SRL, Op.getValueType())) 984 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 985 // undesirable. 986 break; 987 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); 988 if (!ShAmt) 989 break; 990 SDValue Shift = In.getOperand(1); 991 if (TLO.LegalTypes()) { 992 uint64_t ShVal = ShAmt->getZExtValue(); 993 Shift = 994 TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType())); 995 } 996 997 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 998 OperandBitWidth - BitWidth); 999 HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth); 1000 1001 if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) { 1002 // None of the shifted in bits are needed. Add a truncate of the 1003 // shift input, then shift it. 1004 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, 1005 Op.getValueType(), 1006 In.getOperand(0)); 1007 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, 1008 Op.getValueType(), 1009 NewTrunc, 1010 Shift)); 1011 } 1012 break; 1013 } 1014 } 1015 1016 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1017 break; 1018 } 1019 case ISD::AssertZext: { 1020 // AssertZext demands all of the high bits, plus any of the low bits 1021 // demanded by its users. 1022 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1023 APInt InMask = APInt::getLowBitsSet(BitWidth, 1024 VT.getSizeInBits()); 1025 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask, 1026 KnownZero, KnownOne, TLO, Depth+1)) 1027 return true; 1028 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1029 1030 KnownZero |= ~InMask & NewMask; 1031 break; 1032 } 1033 case ISD::BITCAST: 1034 // If this is an FP->Int bitcast and if the sign bit is the only 1035 // thing demanded, turn this into a FGETSIGN. 1036 if (!TLO.LegalOperations() && 1037 !Op.getValueType().isVector() && 1038 !Op.getOperand(0).getValueType().isVector() && 1039 NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) && 1040 Op.getOperand(0).getValueType().isFloatingPoint()) { 1041 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType()); 1042 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1043 if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) { 1044 EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32; 1045 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1046 // place. We expect the SHL to be eliminated by other optimizations. 1047 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0)); 1048 unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits(); 1049 if (!OpVTLegal && OpVTSizeInBits > 32) 1050 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign); 1051 unsigned ShVal = Op.getValueType().getSizeInBits()-1; 1052 SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType()); 1053 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 1054 Op.getValueType(), 1055 Sign, ShAmt)); 1056 } 1057 } 1058 break; 1059 case ISD::ADD: 1060 case ISD::MUL: 1061 case ISD::SUB: { 1062 // Add, Sub, and Mul don't demand any bits in positions beyond that 1063 // of the highest bit demanded of them. 1064 APInt LoMask = APInt::getLowBitsSet(BitWidth, 1065 BitWidth - NewMask.countLeadingZeros()); 1066 if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2, 1067 KnownOne2, TLO, Depth+1)) 1068 return true; 1069 if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2, 1070 KnownOne2, TLO, Depth+1)) 1071 return true; 1072 // See if the operation should be performed at a smaller bit width. 1073 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 1074 return true; 1075 } 1076 // FALL THROUGH 1077 default: 1078 // Just use computeKnownBits to compute output bits. 1079 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 1080 break; 1081 } 1082 1083 // If we know the value of all of the demanded bits, return this as a 1084 // constant. 1085 if ((NewMask & (KnownZero|KnownOne)) == NewMask) 1086 return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType())); 1087 1088 return false; 1089 } 1090 1091 /// computeKnownBitsForTargetNode - Determine which of the bits specified 1092 /// in Mask are known to be either zero or one and return them in the 1093 /// KnownZero/KnownOne bitsets. 1094 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1095 APInt &KnownZero, 1096 APInt &KnownOne, 1097 const SelectionDAG &DAG, 1098 unsigned Depth) const { 1099 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1100 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1101 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1102 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1103 "Should use MaskedValueIsZero if you don't know whether Op" 1104 " is a target node!"); 1105 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); 1106 } 1107 1108 /// ComputeNumSignBitsForTargetNode - This method can be implemented by 1109 /// targets that want to expose additional information about sign bits to the 1110 /// DAG Combiner. 1111 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 1112 const SelectionDAG &, 1113 unsigned Depth) const { 1114 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1115 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1116 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1117 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1118 "Should use ComputeNumSignBits if you don't know whether Op" 1119 " is a target node!"); 1120 return 1; 1121 } 1122 1123 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly 1124 /// one bit set. This differs from computeKnownBits in that it doesn't need to 1125 /// determine which bit is set. 1126 /// 1127 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) { 1128 // A left-shift of a constant one will have exactly one bit set, because 1129 // shifting the bit off the end is undefined. 1130 if (Val.getOpcode() == ISD::SHL) 1131 if (ConstantSDNode *C = 1132 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) 1133 if (C->getAPIntValue() == 1) 1134 return true; 1135 1136 // Similarly, a right-shift of a constant sign-bit will have exactly 1137 // one bit set. 1138 if (Val.getOpcode() == ISD::SRL) 1139 if (ConstantSDNode *C = 1140 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) 1141 if (C->getAPIntValue().isSignBit()) 1142 return true; 1143 1144 // More could be done here, though the above checks are enough 1145 // to handle some common cases. 1146 1147 // Fall back to computeKnownBits to catch other known cases. 1148 EVT OpVT = Val.getValueType(); 1149 unsigned BitWidth = OpVT.getScalarType().getSizeInBits(); 1150 APInt KnownZero, KnownOne; 1151 DAG.computeKnownBits(Val, KnownZero, KnownOne); 1152 return (KnownZero.countPopulation() == BitWidth - 1) && 1153 (KnownOne.countPopulation() == 1); 1154 } 1155 1156 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 1157 if (!N) 1158 return false; 1159 1160 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1161 if (!CN) { 1162 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1163 if (!BV) 1164 return false; 1165 1166 BitVector UndefElements; 1167 CN = BV->getConstantSplatNode(&UndefElements); 1168 // Only interested in constant splats, and we don't try to handle undef 1169 // elements in identifying boolean constants. 1170 if (!CN || UndefElements.none()) 1171 return false; 1172 } 1173 1174 switch (getBooleanContents(N->getValueType(0))) { 1175 case UndefinedBooleanContent: 1176 return CN->getAPIntValue()[0]; 1177 case ZeroOrOneBooleanContent: 1178 return CN->isOne(); 1179 case ZeroOrNegativeOneBooleanContent: 1180 return CN->isAllOnesValue(); 1181 } 1182 1183 llvm_unreachable("Invalid boolean contents"); 1184 } 1185 1186 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 1187 if (!N) 1188 return false; 1189 1190 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1191 if (!CN) { 1192 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1193 if (!BV) 1194 return false; 1195 1196 BitVector UndefElements; 1197 CN = BV->getConstantSplatNode(&UndefElements); 1198 // Only interested in constant splats, and we don't try to handle undef 1199 // elements in identifying boolean constants. 1200 if (!CN || UndefElements.none()) 1201 return false; 1202 } 1203 1204 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 1205 return !CN->getAPIntValue()[0]; 1206 1207 return CN->isNullValue(); 1208 } 1209 1210 /// SimplifySetCC - Try to simplify a setcc built with the specified operands 1211 /// and cc. If it is unable to simplify it, return a null SDValue. 1212 SDValue 1213 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 1214 ISD::CondCode Cond, bool foldBooleans, 1215 DAGCombinerInfo &DCI, SDLoc dl) const { 1216 SelectionDAG &DAG = DCI.DAG; 1217 1218 // These setcc operations always fold. 1219 switch (Cond) { 1220 default: break; 1221 case ISD::SETFALSE: 1222 case ISD::SETFALSE2: return DAG.getConstant(0, VT); 1223 case ISD::SETTRUE: 1224 case ISD::SETTRUE2: { 1225 TargetLowering::BooleanContent Cnt = 1226 getBooleanContents(N0->getValueType(0)); 1227 return DAG.getConstant( 1228 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, VT); 1229 } 1230 } 1231 1232 // Ensure that the constant occurs on the RHS, and fold constant 1233 // comparisons. 1234 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 1235 if (isa<ConstantSDNode>(N0.getNode()) && 1236 (DCI.isBeforeLegalizeOps() || 1237 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 1238 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 1239 1240 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 1241 const APInt &C1 = N1C->getAPIntValue(); 1242 1243 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 1244 // equality comparison, then we're just comparing whether X itself is 1245 // zero. 1246 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) && 1247 N0.getOperand(0).getOpcode() == ISD::CTLZ && 1248 N0.getOperand(1).getOpcode() == ISD::Constant) { 1249 const APInt &ShAmt 1250 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1251 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1252 ShAmt == Log2_32(N0.getValueType().getSizeInBits())) { 1253 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 1254 // (srl (ctlz x), 5) == 0 -> X != 0 1255 // (srl (ctlz x), 5) != 1 -> X != 0 1256 Cond = ISD::SETNE; 1257 } else { 1258 // (srl (ctlz x), 5) != 0 -> X == 0 1259 // (srl (ctlz x), 5) == 1 -> X == 0 1260 Cond = ISD::SETEQ; 1261 } 1262 SDValue Zero = DAG.getConstant(0, N0.getValueType()); 1263 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 1264 Zero, Cond); 1265 } 1266 } 1267 1268 SDValue CTPOP = N0; 1269 // Look through truncs that don't change the value of a ctpop. 1270 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 1271 CTPOP = N0.getOperand(0); 1272 1273 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 1274 (N0 == CTPOP || N0.getValueType().getSizeInBits() > 1275 Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) { 1276 EVT CTVT = CTPOP.getValueType(); 1277 SDValue CTOp = CTPOP.getOperand(0); 1278 1279 // (ctpop x) u< 2 -> (x & x-1) == 0 1280 // (ctpop x) u> 1 -> (x & x-1) != 0 1281 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 1282 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 1283 DAG.getConstant(1, CTVT)); 1284 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 1285 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 1286 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC); 1287 } 1288 1289 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 1290 } 1291 1292 // (zext x) == C --> x == (trunc C) 1293 // (sext x) == C --> x == (trunc C) 1294 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1295 DCI.isBeforeLegalize() && N0->hasOneUse()) { 1296 unsigned MinBits = N0.getValueSizeInBits(); 1297 SDValue PreExt; 1298 bool Signed = false; 1299 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 1300 // ZExt 1301 MinBits = N0->getOperand(0).getValueSizeInBits(); 1302 PreExt = N0->getOperand(0); 1303 } else if (N0->getOpcode() == ISD::AND) { 1304 // DAGCombine turns costly ZExts into ANDs 1305 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 1306 if ((C->getAPIntValue()+1).isPowerOf2()) { 1307 MinBits = C->getAPIntValue().countTrailingOnes(); 1308 PreExt = N0->getOperand(0); 1309 } 1310 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 1311 // SExt 1312 MinBits = N0->getOperand(0).getValueSizeInBits(); 1313 PreExt = N0->getOperand(0); 1314 Signed = true; 1315 } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) { 1316 // ZEXTLOAD / SEXTLOAD 1317 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 1318 MinBits = LN0->getMemoryVT().getSizeInBits(); 1319 PreExt = N0; 1320 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 1321 Signed = true; 1322 MinBits = LN0->getMemoryVT().getSizeInBits(); 1323 PreExt = N0; 1324 } 1325 } 1326 1327 // Figure out how many bits we need to preserve this constant. 1328 unsigned ReqdBits = Signed ? 1329 C1.getBitWidth() - C1.getNumSignBits() + 1 : 1330 C1.getActiveBits(); 1331 1332 // Make sure we're not losing bits from the constant. 1333 if (MinBits > 0 && 1334 MinBits < C1.getBitWidth() && 1335 MinBits >= ReqdBits) { 1336 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 1337 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 1338 // Will get folded away. 1339 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 1340 SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT); 1341 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 1342 } 1343 } 1344 } 1345 1346 // If the LHS is '(and load, const)', the RHS is 0, 1347 // the test is for equality or unsigned, and all 1 bits of the const are 1348 // in the same partial word, see if we can shorten the load. 1349 if (DCI.isBeforeLegalize() && 1350 !ISD::isSignedIntSetCC(Cond) && 1351 N0.getOpcode() == ISD::AND && C1 == 0 && 1352 N0.getNode()->hasOneUse() && 1353 isa<LoadSDNode>(N0.getOperand(0)) && 1354 N0.getOperand(0).getNode()->hasOneUse() && 1355 isa<ConstantSDNode>(N0.getOperand(1))) { 1356 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 1357 APInt bestMask; 1358 unsigned bestWidth = 0, bestOffset = 0; 1359 if (!Lod->isVolatile() && Lod->isUnindexed()) { 1360 unsigned origWidth = N0.getValueType().getSizeInBits(); 1361 unsigned maskWidth = origWidth; 1362 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 1363 // 8 bits, but have to be careful... 1364 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 1365 origWidth = Lod->getMemoryVT().getSizeInBits(); 1366 const APInt &Mask = 1367 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1368 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 1369 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 1370 for (unsigned offset=0; offset<origWidth/width; offset++) { 1371 if ((newMask & Mask) == Mask) { 1372 if (!getDataLayout()->isLittleEndian()) 1373 bestOffset = (origWidth/width - offset - 1) * (width/8); 1374 else 1375 bestOffset = (uint64_t)offset * (width/8); 1376 bestMask = Mask.lshr(offset * (width/8) * 8); 1377 bestWidth = width; 1378 break; 1379 } 1380 newMask = newMask << width; 1381 } 1382 } 1383 } 1384 if (bestWidth) { 1385 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 1386 if (newVT.isRound()) { 1387 EVT PtrType = Lod->getOperand(1).getValueType(); 1388 SDValue Ptr = Lod->getBasePtr(); 1389 if (bestOffset != 0) 1390 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 1391 DAG.getConstant(bestOffset, PtrType)); 1392 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 1393 SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 1394 Lod->getPointerInfo().getWithOffset(bestOffset), 1395 false, false, false, NewAlign); 1396 return DAG.getSetCC(dl, VT, 1397 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 1398 DAG.getConstant(bestMask.trunc(bestWidth), 1399 newVT)), 1400 DAG.getConstant(0LL, newVT), Cond); 1401 } 1402 } 1403 } 1404 1405 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 1406 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 1407 unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits(); 1408 1409 // If the comparison constant has bits in the upper part, the 1410 // zero-extended value could never match. 1411 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 1412 C1.getBitWidth() - InSize))) { 1413 switch (Cond) { 1414 case ISD::SETUGT: 1415 case ISD::SETUGE: 1416 case ISD::SETEQ: return DAG.getConstant(0, VT); 1417 case ISD::SETULT: 1418 case ISD::SETULE: 1419 case ISD::SETNE: return DAG.getConstant(1, VT); 1420 case ISD::SETGT: 1421 case ISD::SETGE: 1422 // True if the sign bit of C1 is set. 1423 return DAG.getConstant(C1.isNegative(), VT); 1424 case ISD::SETLT: 1425 case ISD::SETLE: 1426 // True if the sign bit of C1 isn't set. 1427 return DAG.getConstant(C1.isNonNegative(), VT); 1428 default: 1429 break; 1430 } 1431 } 1432 1433 // Otherwise, we can perform the comparison with the low bits. 1434 switch (Cond) { 1435 case ISD::SETEQ: 1436 case ISD::SETNE: 1437 case ISD::SETUGT: 1438 case ISD::SETUGE: 1439 case ISD::SETULT: 1440 case ISD::SETULE: { 1441 EVT newVT = N0.getOperand(0).getValueType(); 1442 if (DCI.isBeforeLegalizeOps() || 1443 (isOperationLegal(ISD::SETCC, newVT) && 1444 getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) { 1445 EVT NewSetCCVT = getSetCCResultType(*DAG.getContext(), newVT); 1446 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), newVT); 1447 1448 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 1449 NewConst, Cond); 1450 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 1451 } 1452 break; 1453 } 1454 default: 1455 break; // todo, be more careful with signed comparisons 1456 } 1457 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 1458 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1459 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 1460 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 1461 EVT ExtDstTy = N0.getValueType(); 1462 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 1463 1464 // If the constant doesn't fit into the number of bits for the source of 1465 // the sign extension, it is impossible for both sides to be equal. 1466 if (C1.getMinSignedBits() > ExtSrcTyBits) 1467 return DAG.getConstant(Cond == ISD::SETNE, VT); 1468 1469 SDValue ZextOp; 1470 EVT Op0Ty = N0.getOperand(0).getValueType(); 1471 if (Op0Ty == ExtSrcTy) { 1472 ZextOp = N0.getOperand(0); 1473 } else { 1474 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 1475 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 1476 DAG.getConstant(Imm, Op0Ty)); 1477 } 1478 if (!DCI.isCalledByLegalizer()) 1479 DCI.AddToWorklist(ZextOp.getNode()); 1480 // Otherwise, make this a use of a zext. 1481 return DAG.getSetCC(dl, VT, ZextOp, 1482 DAG.getConstant(C1 & APInt::getLowBitsSet( 1483 ExtDstTyBits, 1484 ExtSrcTyBits), 1485 ExtDstTy), 1486 Cond); 1487 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) && 1488 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1489 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 1490 if (N0.getOpcode() == ISD::SETCC && 1491 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 1492 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1); 1493 if (TrueWhenTrue) 1494 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 1495 // Invert the condition. 1496 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 1497 CC = ISD::getSetCCInverse(CC, 1498 N0.getOperand(0).getValueType().isInteger()); 1499 if (DCI.isBeforeLegalizeOps() || 1500 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 1501 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 1502 } 1503 1504 if ((N0.getOpcode() == ISD::XOR || 1505 (N0.getOpcode() == ISD::AND && 1506 N0.getOperand(0).getOpcode() == ISD::XOR && 1507 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 1508 isa<ConstantSDNode>(N0.getOperand(1)) && 1509 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) { 1510 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 1511 // can only do this if the top bits are known zero. 1512 unsigned BitWidth = N0.getValueSizeInBits(); 1513 if (DAG.MaskedValueIsZero(N0, 1514 APInt::getHighBitsSet(BitWidth, 1515 BitWidth-1))) { 1516 // Okay, get the un-inverted input value. 1517 SDValue Val; 1518 if (N0.getOpcode() == ISD::XOR) 1519 Val = N0.getOperand(0); 1520 else { 1521 assert(N0.getOpcode() == ISD::AND && 1522 N0.getOperand(0).getOpcode() == ISD::XOR); 1523 // ((X^1)&1)^1 -> X & 1 1524 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 1525 N0.getOperand(0).getOperand(0), 1526 N0.getOperand(1)); 1527 } 1528 1529 return DAG.getSetCC(dl, VT, Val, N1, 1530 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1531 } 1532 } else if (N1C->getAPIntValue() == 1 && 1533 (VT == MVT::i1 || 1534 getBooleanContents(N0->getValueType(0)) == 1535 ZeroOrOneBooleanContent)) { 1536 SDValue Op0 = N0; 1537 if (Op0.getOpcode() == ISD::TRUNCATE) 1538 Op0 = Op0.getOperand(0); 1539 1540 if ((Op0.getOpcode() == ISD::XOR) && 1541 Op0.getOperand(0).getOpcode() == ISD::SETCC && 1542 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 1543 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 1544 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 1545 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 1546 Cond); 1547 } 1548 if (Op0.getOpcode() == ISD::AND && 1549 isa<ConstantSDNode>(Op0.getOperand(1)) && 1550 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) { 1551 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 1552 if (Op0.getValueType().bitsGT(VT)) 1553 Op0 = DAG.getNode(ISD::AND, dl, VT, 1554 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 1555 DAG.getConstant(1, VT)); 1556 else if (Op0.getValueType().bitsLT(VT)) 1557 Op0 = DAG.getNode(ISD::AND, dl, VT, 1558 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 1559 DAG.getConstant(1, VT)); 1560 1561 return DAG.getSetCC(dl, VT, Op0, 1562 DAG.getConstant(0, Op0.getValueType()), 1563 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1564 } 1565 if (Op0.getOpcode() == ISD::AssertZext && 1566 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 1567 return DAG.getSetCC(dl, VT, Op0, 1568 DAG.getConstant(0, Op0.getValueType()), 1569 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1570 } 1571 } 1572 1573 APInt MinVal, MaxVal; 1574 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits(); 1575 if (ISD::isSignedIntSetCC(Cond)) { 1576 MinVal = APInt::getSignedMinValue(OperandBitSize); 1577 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 1578 } else { 1579 MinVal = APInt::getMinValue(OperandBitSize); 1580 MaxVal = APInt::getMaxValue(OperandBitSize); 1581 } 1582 1583 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 1584 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 1585 if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true 1586 // X >= C0 --> X > (C0 - 1) 1587 APInt C = C1 - 1; 1588 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 1589 if ((DCI.isBeforeLegalizeOps() || 1590 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1591 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1592 isLegalICmpImmediate(C.getSExtValue())))) { 1593 return DAG.getSetCC(dl, VT, N0, 1594 DAG.getConstant(C, N1.getValueType()), 1595 NewCC); 1596 } 1597 } 1598 1599 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 1600 if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true 1601 // X <= C0 --> X < (C0 + 1) 1602 APInt C = C1 + 1; 1603 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 1604 if ((DCI.isBeforeLegalizeOps() || 1605 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1606 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1607 isLegalICmpImmediate(C.getSExtValue())))) { 1608 return DAG.getSetCC(dl, VT, N0, 1609 DAG.getConstant(C, N1.getValueType()), 1610 NewCC); 1611 } 1612 } 1613 1614 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) 1615 return DAG.getConstant(0, VT); // X < MIN --> false 1616 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal) 1617 return DAG.getConstant(1, VT); // X >= MIN --> true 1618 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal) 1619 return DAG.getConstant(0, VT); // X > MAX --> false 1620 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal) 1621 return DAG.getConstant(1, VT); // X <= MAX --> true 1622 1623 // Canonicalize setgt X, Min --> setne X, Min 1624 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) 1625 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1626 // Canonicalize setlt X, Max --> setne X, Max 1627 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) 1628 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1629 1630 // If we have setult X, 1, turn it into seteq X, 0 1631 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) 1632 return DAG.getSetCC(dl, VT, N0, 1633 DAG.getConstant(MinVal, N0.getValueType()), 1634 ISD::SETEQ); 1635 // If we have setugt X, Max-1, turn it into seteq X, Max 1636 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) 1637 return DAG.getSetCC(dl, VT, N0, 1638 DAG.getConstant(MaxVal, N0.getValueType()), 1639 ISD::SETEQ); 1640 1641 // If we have "setcc X, C0", check to see if we can shrink the immediate 1642 // by changing cc. 1643 1644 // SETUGT X, SINTMAX -> SETLT X, 0 1645 if (Cond == ISD::SETUGT && 1646 C1 == APInt::getSignedMaxValue(OperandBitSize)) 1647 return DAG.getSetCC(dl, VT, N0, 1648 DAG.getConstant(0, N1.getValueType()), 1649 ISD::SETLT); 1650 1651 // SETULT X, SINTMIN -> SETGT X, -1 1652 if (Cond == ISD::SETULT && 1653 C1 == APInt::getSignedMinValue(OperandBitSize)) { 1654 SDValue ConstMinusOne = 1655 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), 1656 N1.getValueType()); 1657 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 1658 } 1659 1660 // Fold bit comparisons when we can. 1661 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1662 (VT == N0.getValueType() || 1663 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 1664 N0.getOpcode() == ISD::AND) 1665 if (ConstantSDNode *AndRHS = 1666 dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1667 EVT ShiftTy = DCI.isBeforeLegalize() ? 1668 getPointerTy() : getShiftAmountTy(N0.getValueType()); 1669 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 1670 // Perform the xform if the AND RHS is a single bit. 1671 if (AndRHS->getAPIntValue().isPowerOf2()) { 1672 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1673 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1674 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy))); 1675 } 1676 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 1677 // (X & 8) == 8 --> (X & 8) >> 3 1678 // Perform the xform if C1 is a single bit. 1679 if (C1.isPowerOf2()) { 1680 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1681 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1682 DAG.getConstant(C1.logBase2(), ShiftTy))); 1683 } 1684 } 1685 } 1686 1687 if (C1.getMinSignedBits() <= 64 && 1688 !isLegalICmpImmediate(C1.getSExtValue())) { 1689 // (X & -256) == 256 -> (X >> 8) == 1 1690 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1691 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 1692 if (ConstantSDNode *AndRHS = 1693 dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1694 const APInt &AndRHSC = AndRHS->getAPIntValue(); 1695 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 1696 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 1697 EVT ShiftTy = DCI.isBeforeLegalize() ? 1698 getPointerTy() : getShiftAmountTy(N0.getValueType()); 1699 EVT CmpTy = N0.getValueType(); 1700 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 1701 DAG.getConstant(ShiftBits, ShiftTy)); 1702 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), CmpTy); 1703 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 1704 } 1705 } 1706 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 1707 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 1708 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 1709 // X < 0x100000000 -> (X >> 32) < 1 1710 // X >= 0x100000000 -> (X >> 32) >= 1 1711 // X <= 0x0ffffffff -> (X >> 32) < 1 1712 // X > 0x0ffffffff -> (X >> 32) >= 1 1713 unsigned ShiftBits; 1714 APInt NewC = C1; 1715 ISD::CondCode NewCond = Cond; 1716 if (AdjOne) { 1717 ShiftBits = C1.countTrailingOnes(); 1718 NewC = NewC + 1; 1719 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 1720 } else { 1721 ShiftBits = C1.countTrailingZeros(); 1722 } 1723 NewC = NewC.lshr(ShiftBits); 1724 if (ShiftBits && isLegalICmpImmediate(NewC.getSExtValue())) { 1725 EVT ShiftTy = DCI.isBeforeLegalize() ? 1726 getPointerTy() : getShiftAmountTy(N0.getValueType()); 1727 EVT CmpTy = N0.getValueType(); 1728 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 1729 DAG.getConstant(ShiftBits, ShiftTy)); 1730 SDValue CmpRHS = DAG.getConstant(NewC, CmpTy); 1731 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 1732 } 1733 } 1734 } 1735 } 1736 1737 if (isa<ConstantFPSDNode>(N0.getNode())) { 1738 // Constant fold or commute setcc. 1739 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); 1740 if (O.getNode()) return O; 1741 } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { 1742 // If the RHS of an FP comparison is a constant, simplify it away in 1743 // some cases. 1744 if (CFP->getValueAPF().isNaN()) { 1745 // If an operand is known to be a nan, we can fold it. 1746 switch (ISD::getUnorderedFlavor(Cond)) { 1747 default: llvm_unreachable("Unknown flavor!"); 1748 case 0: // Known false. 1749 return DAG.getConstant(0, VT); 1750 case 1: // Known true. 1751 return DAG.getConstant(1, VT); 1752 case 2: // Undefined. 1753 return DAG.getUNDEF(VT); 1754 } 1755 } 1756 1757 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 1758 // constant if knowing that the operand is non-nan is enough. We prefer to 1759 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 1760 // materialize 0.0. 1761 if (Cond == ISD::SETO || Cond == ISD::SETUO) 1762 return DAG.getSetCC(dl, VT, N0, N0, Cond); 1763 1764 // If the condition is not legal, see if we can find an equivalent one 1765 // which is legal. 1766 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 1767 // If the comparison was an awkward floating-point == or != and one of 1768 // the comparison operands is infinity or negative infinity, convert the 1769 // condition to a less-awkward <= or >=. 1770 if (CFP->getValueAPF().isInfinity()) { 1771 if (CFP->getValueAPF().isNegative()) { 1772 if (Cond == ISD::SETOEQ && 1773 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 1774 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 1775 if (Cond == ISD::SETUEQ && 1776 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 1777 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 1778 if (Cond == ISD::SETUNE && 1779 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 1780 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 1781 if (Cond == ISD::SETONE && 1782 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 1783 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 1784 } else { 1785 if (Cond == ISD::SETOEQ && 1786 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 1787 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 1788 if (Cond == ISD::SETUEQ && 1789 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 1790 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 1791 if (Cond == ISD::SETUNE && 1792 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 1793 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 1794 if (Cond == ISD::SETONE && 1795 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 1796 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 1797 } 1798 } 1799 } 1800 } 1801 1802 if (N0 == N1) { 1803 // The sext(setcc()) => setcc() optimization relies on the appropriate 1804 // constant being emitted. 1805 uint64_t EqVal = 0; 1806 switch (getBooleanContents(N0.getValueType())) { 1807 case UndefinedBooleanContent: 1808 case ZeroOrOneBooleanContent: 1809 EqVal = ISD::isTrueWhenEqual(Cond); 1810 break; 1811 case ZeroOrNegativeOneBooleanContent: 1812 EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0; 1813 break; 1814 } 1815 1816 // We can always fold X == X for integer setcc's. 1817 if (N0.getValueType().isInteger()) { 1818 return DAG.getConstant(EqVal, VT); 1819 } 1820 unsigned UOF = ISD::getUnorderedFlavor(Cond); 1821 if (UOF == 2) // FP operators that are undefined on NaNs. 1822 return DAG.getConstant(EqVal, VT); 1823 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) 1824 return DAG.getConstant(EqVal, VT); 1825 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 1826 // if it is not already. 1827 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 1828 if (NewCond != Cond && (DCI.isBeforeLegalizeOps() || 1829 getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal)) 1830 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 1831 } 1832 1833 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1834 N0.getValueType().isInteger()) { 1835 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 1836 N0.getOpcode() == ISD::XOR) { 1837 // Simplify (X+Y) == (X+Z) --> Y == Z 1838 if (N0.getOpcode() == N1.getOpcode()) { 1839 if (N0.getOperand(0) == N1.getOperand(0)) 1840 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 1841 if (N0.getOperand(1) == N1.getOperand(1)) 1842 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 1843 if (DAG.isCommutativeBinOp(N0.getOpcode())) { 1844 // If X op Y == Y op X, try other combinations. 1845 if (N0.getOperand(0) == N1.getOperand(1)) 1846 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 1847 Cond); 1848 if (N0.getOperand(1) == N1.getOperand(0)) 1849 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 1850 Cond); 1851 } 1852 } 1853 1854 // If RHS is a legal immediate value for a compare instruction, we need 1855 // to be careful about increasing register pressure needlessly. 1856 bool LegalRHSImm = false; 1857 1858 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) { 1859 if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1860 // Turn (X+C1) == C2 --> X == C2-C1 1861 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 1862 return DAG.getSetCC(dl, VT, N0.getOperand(0), 1863 DAG.getConstant(RHSC->getAPIntValue()- 1864 LHSR->getAPIntValue(), 1865 N0.getValueType()), Cond); 1866 } 1867 1868 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 1869 if (N0.getOpcode() == ISD::XOR) 1870 // If we know that all of the inverted bits are zero, don't bother 1871 // performing the inversion. 1872 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 1873 return 1874 DAG.getSetCC(dl, VT, N0.getOperand(0), 1875 DAG.getConstant(LHSR->getAPIntValue() ^ 1876 RHSC->getAPIntValue(), 1877 N0.getValueType()), 1878 Cond); 1879 } 1880 1881 // Turn (C1-X) == C2 --> X == C1-C2 1882 if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 1883 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 1884 return 1885 DAG.getSetCC(dl, VT, N0.getOperand(1), 1886 DAG.getConstant(SUBC->getAPIntValue() - 1887 RHSC->getAPIntValue(), 1888 N0.getValueType()), 1889 Cond); 1890 } 1891 } 1892 1893 // Could RHSC fold directly into a compare? 1894 if (RHSC->getValueType(0).getSizeInBits() <= 64) 1895 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 1896 } 1897 1898 // Simplify (X+Z) == X --> Z == 0 1899 // Don't do this if X is an immediate that can fold into a cmp 1900 // instruction and X+Z has other uses. It could be an induction variable 1901 // chain, and the transform would increase register pressure. 1902 if (!LegalRHSImm || N0.getNode()->hasOneUse()) { 1903 if (N0.getOperand(0) == N1) 1904 return DAG.getSetCC(dl, VT, N0.getOperand(1), 1905 DAG.getConstant(0, N0.getValueType()), Cond); 1906 if (N0.getOperand(1) == N1) { 1907 if (DAG.isCommutativeBinOp(N0.getOpcode())) 1908 return DAG.getSetCC(dl, VT, N0.getOperand(0), 1909 DAG.getConstant(0, N0.getValueType()), Cond); 1910 if (N0.getNode()->hasOneUse()) { 1911 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); 1912 // (Z-X) == X --> Z == X<<1 1913 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N1, 1914 DAG.getConstant(1, getShiftAmountTy(N1.getValueType()))); 1915 if (!DCI.isCalledByLegalizer()) 1916 DCI.AddToWorklist(SH.getNode()); 1917 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); 1918 } 1919 } 1920 } 1921 } 1922 1923 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 1924 N1.getOpcode() == ISD::XOR) { 1925 // Simplify X == (X+Z) --> Z == 0 1926 if (N1.getOperand(0) == N0) 1927 return DAG.getSetCC(dl, VT, N1.getOperand(1), 1928 DAG.getConstant(0, N1.getValueType()), Cond); 1929 if (N1.getOperand(1) == N0) { 1930 if (DAG.isCommutativeBinOp(N1.getOpcode())) 1931 return DAG.getSetCC(dl, VT, N1.getOperand(0), 1932 DAG.getConstant(0, N1.getValueType()), Cond); 1933 if (N1.getNode()->hasOneUse()) { 1934 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); 1935 // X == (Z-X) --> X<<1 == Z 1936 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0, 1937 DAG.getConstant(1, getShiftAmountTy(N0.getValueType()))); 1938 if (!DCI.isCalledByLegalizer()) 1939 DCI.AddToWorklist(SH.getNode()); 1940 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); 1941 } 1942 } 1943 } 1944 1945 // Simplify x&y == y to x&y != 0 if y has exactly one bit set. 1946 // Note that where y is variable and is known to have at most 1947 // one bit set (for example, if it is z&1) we cannot do this; 1948 // the expressions are not equivalent when y==0. 1949 if (N0.getOpcode() == ISD::AND) 1950 if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) { 1951 if (ValueHasExactlyOneBitSet(N1, DAG)) { 1952 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 1953 if (DCI.isBeforeLegalizeOps() || 1954 isCondCodeLegal(Cond, N0.getSimpleValueType())) { 1955 SDValue Zero = DAG.getConstant(0, N1.getValueType()); 1956 return DAG.getSetCC(dl, VT, N0, Zero, Cond); 1957 } 1958 } 1959 } 1960 if (N1.getOpcode() == ISD::AND) 1961 if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) { 1962 if (ValueHasExactlyOneBitSet(N0, DAG)) { 1963 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 1964 if (DCI.isBeforeLegalizeOps() || 1965 isCondCodeLegal(Cond, N1.getSimpleValueType())) { 1966 SDValue Zero = DAG.getConstant(0, N0.getValueType()); 1967 return DAG.getSetCC(dl, VT, N1, Zero, Cond); 1968 } 1969 } 1970 } 1971 } 1972 1973 // Fold away ALL boolean setcc's. 1974 SDValue Temp; 1975 if (N0.getValueType() == MVT::i1 && foldBooleans) { 1976 switch (Cond) { 1977 default: llvm_unreachable("Unknown integer setcc!"); 1978 case ISD::SETEQ: // X == Y -> ~(X^Y) 1979 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 1980 N0 = DAG.getNOT(dl, Temp, MVT::i1); 1981 if (!DCI.isCalledByLegalizer()) 1982 DCI.AddToWorklist(Temp.getNode()); 1983 break; 1984 case ISD::SETNE: // X != Y --> (X^Y) 1985 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 1986 break; 1987 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 1988 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 1989 Temp = DAG.getNOT(dl, N0, MVT::i1); 1990 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp); 1991 if (!DCI.isCalledByLegalizer()) 1992 DCI.AddToWorklist(Temp.getNode()); 1993 break; 1994 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 1995 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 1996 Temp = DAG.getNOT(dl, N1, MVT::i1); 1997 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp); 1998 if (!DCI.isCalledByLegalizer()) 1999 DCI.AddToWorklist(Temp.getNode()); 2000 break; 2001 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 2002 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 2003 Temp = DAG.getNOT(dl, N0, MVT::i1); 2004 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp); 2005 if (!DCI.isCalledByLegalizer()) 2006 DCI.AddToWorklist(Temp.getNode()); 2007 break; 2008 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 2009 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 2010 Temp = DAG.getNOT(dl, N1, MVT::i1); 2011 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp); 2012 break; 2013 } 2014 if (VT != MVT::i1) { 2015 if (!DCI.isCalledByLegalizer()) 2016 DCI.AddToWorklist(N0.getNode()); 2017 // FIXME: If running after legalize, we probably can't do this. 2018 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0); 2019 } 2020 return N0; 2021 } 2022 2023 // Could not fold it. 2024 return SDValue(); 2025 } 2026 2027 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the 2028 /// node is a GlobalAddress + offset. 2029 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, 2030 int64_t &Offset) const { 2031 if (isa<GlobalAddressSDNode>(N)) { 2032 GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N); 2033 GA = GASD->getGlobal(); 2034 Offset += GASD->getOffset(); 2035 return true; 2036 } 2037 2038 if (N->getOpcode() == ISD::ADD) { 2039 SDValue N1 = N->getOperand(0); 2040 SDValue N2 = N->getOperand(1); 2041 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 2042 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2); 2043 if (V) { 2044 Offset += V->getSExtValue(); 2045 return true; 2046 } 2047 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 2048 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1); 2049 if (V) { 2050 Offset += V->getSExtValue(); 2051 return true; 2052 } 2053 } 2054 } 2055 2056 return false; 2057 } 2058 2059 2060 SDValue TargetLowering:: 2061 PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { 2062 // Default implementation: no optimization. 2063 return SDValue(); 2064 } 2065 2066 //===----------------------------------------------------------------------===// 2067 // Inline Assembler Implementation Methods 2068 //===----------------------------------------------------------------------===// 2069 2070 2071 TargetLowering::ConstraintType 2072 TargetLowering::getConstraintType(const std::string &Constraint) const { 2073 unsigned S = Constraint.size(); 2074 2075 if (S == 1) { 2076 switch (Constraint[0]) { 2077 default: break; 2078 case 'r': return C_RegisterClass; 2079 case 'm': // memory 2080 case 'o': // offsetable 2081 case 'V': // not offsetable 2082 return C_Memory; 2083 case 'i': // Simple Integer or Relocatable Constant 2084 case 'n': // Simple Integer 2085 case 'E': // Floating Point Constant 2086 case 'F': // Floating Point Constant 2087 case 's': // Relocatable Constant 2088 case 'p': // Address. 2089 case 'X': // Allow ANY value. 2090 case 'I': // Target registers. 2091 case 'J': 2092 case 'K': 2093 case 'L': 2094 case 'M': 2095 case 'N': 2096 case 'O': 2097 case 'P': 2098 case '<': 2099 case '>': 2100 return C_Other; 2101 } 2102 } 2103 2104 if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { 2105 if (S == 8 && !Constraint.compare(1, 6, "memory", 6)) // "{memory}" 2106 return C_Memory; 2107 return C_Register; 2108 } 2109 return C_Unknown; 2110 } 2111 2112 /// LowerXConstraint - try to replace an X constraint, which matches anything, 2113 /// with another that has more specific requirements based on the type of the 2114 /// corresponding operand. 2115 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ 2116 if (ConstraintVT.isInteger()) 2117 return "r"; 2118 if (ConstraintVT.isFloatingPoint()) 2119 return "f"; // works for many targets 2120 return nullptr; 2121 } 2122 2123 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 2124 /// vector. If it is invalid, don't add anything to Ops. 2125 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 2126 std::string &Constraint, 2127 std::vector<SDValue> &Ops, 2128 SelectionDAG &DAG) const { 2129 2130 if (Constraint.length() > 1) return; 2131 2132 char ConstraintLetter = Constraint[0]; 2133 switch (ConstraintLetter) { 2134 default: break; 2135 case 'X': // Allows any operand; labels (basic block) use this. 2136 if (Op.getOpcode() == ISD::BasicBlock) { 2137 Ops.push_back(Op); 2138 return; 2139 } 2140 // fall through 2141 case 'i': // Simple Integer or Relocatable Constant 2142 case 'n': // Simple Integer 2143 case 's': { // Relocatable Constant 2144 // These operands are interested in values of the form (GV+C), where C may 2145 // be folded in as an offset of GV, or it may be explicitly added. Also, it 2146 // is possible and fine if either GV or C are missing. 2147 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2148 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 2149 2150 // If we have "(add GV, C)", pull out GV/C 2151 if (Op.getOpcode() == ISD::ADD) { 2152 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2153 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 2154 if (!C || !GA) { 2155 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 2156 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 2157 } 2158 if (!C || !GA) 2159 C = nullptr, GA = nullptr; 2160 } 2161 2162 // If we find a valid operand, map to the TargetXXX version so that the 2163 // value itself doesn't get selected. 2164 if (GA) { // Either &GV or &GV+C 2165 if (ConstraintLetter != 'n') { 2166 int64_t Offs = GA->getOffset(); 2167 if (C) Offs += C->getZExtValue(); 2168 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 2169 C ? SDLoc(C) : SDLoc(), 2170 Op.getValueType(), Offs)); 2171 return; 2172 } 2173 } 2174 if (C) { // just C, no GV. 2175 // Simple constants are not allowed for 's'. 2176 if (ConstraintLetter != 's') { 2177 // gcc prints these as sign extended. Sign extend value to 64 bits 2178 // now; without this it would get ZExt'd later in 2179 // ScheduleDAGSDNodes::EmitNode, which is very generic. 2180 Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(), 2181 MVT::i64)); 2182 return; 2183 } 2184 } 2185 break; 2186 } 2187 } 2188 } 2189 2190 std::pair<unsigned, const TargetRegisterClass *> 2191 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 2192 const std::string &Constraint, 2193 MVT VT) const { 2194 if (Constraint.empty() || Constraint[0] != '{') 2195 return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr)); 2196 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); 2197 2198 // Remove the braces from around the name. 2199 StringRef RegName(Constraint.data()+1, Constraint.size()-2); 2200 2201 std::pair<unsigned, const TargetRegisterClass*> R = 2202 std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr)); 2203 2204 // Figure out which register class contains this reg. 2205 for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(), 2206 E = RI->regclass_end(); RCI != E; ++RCI) { 2207 const TargetRegisterClass *RC = *RCI; 2208 2209 // If none of the value types for this register class are valid, we 2210 // can't use it. For example, 64-bit reg classes on 32-bit targets. 2211 if (!isLegalRC(RC)) 2212 continue; 2213 2214 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 2215 I != E; ++I) { 2216 if (RegName.equals_lower(RI->getName(*I))) { 2217 std::pair<unsigned, const TargetRegisterClass*> S = 2218 std::make_pair(*I, RC); 2219 2220 // If this register class has the requested value type, return it, 2221 // otherwise keep searching and return the first class found 2222 // if no other is found which explicitly has the requested type. 2223 if (RC->hasType(VT)) 2224 return S; 2225 else if (!R.second) 2226 R = S; 2227 } 2228 } 2229 } 2230 2231 return R; 2232 } 2233 2234 //===----------------------------------------------------------------------===// 2235 // Constraint Selection. 2236 2237 /// isMatchingInputConstraint - Return true of this is an input operand that is 2238 /// a matching constraint like "4". 2239 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 2240 assert(!ConstraintCode.empty() && "No known constraint!"); 2241 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 2242 } 2243 2244 /// getMatchedOperand - If this is an input matching constraint, this method 2245 /// returns the output operand it matches. 2246 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 2247 assert(!ConstraintCode.empty() && "No known constraint!"); 2248 return atoi(ConstraintCode.c_str()); 2249 } 2250 2251 2252 /// ParseConstraints - Split up the constraint string from the inline 2253 /// assembly value into the specific constraints and their prefixes, 2254 /// and also tie in the associated operand values. 2255 /// If this returns an empty vector, and if the constraint string itself 2256 /// isn't empty, there was an error parsing. 2257 TargetLowering::AsmOperandInfoVector 2258 TargetLowering::ParseConstraints(const TargetRegisterInfo *TRI, 2259 ImmutableCallSite CS) const { 2260 /// ConstraintOperands - Information about all of the constraints. 2261 AsmOperandInfoVector ConstraintOperands; 2262 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 2263 unsigned maCount = 0; // Largest number of multiple alternative constraints. 2264 2265 // Do a prepass over the constraints, canonicalizing them, and building up the 2266 // ConstraintOperands list. 2267 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 2268 unsigned ResNo = 0; // ResNo - The result number of the next output. 2269 2270 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 2271 ConstraintOperands.emplace_back(std::move(CI)); 2272 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 2273 2274 // Update multiple alternative constraint count. 2275 if (OpInfo.multipleAlternatives.size() > maCount) 2276 maCount = OpInfo.multipleAlternatives.size(); 2277 2278 OpInfo.ConstraintVT = MVT::Other; 2279 2280 // Compute the value type for each operand. 2281 switch (OpInfo.Type) { 2282 case InlineAsm::isOutput: 2283 // Indirect outputs just consume an argument. 2284 if (OpInfo.isIndirect) { 2285 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2286 break; 2287 } 2288 2289 // The return value of the call is this value. As such, there is no 2290 // corresponding argument. 2291 assert(!CS.getType()->isVoidTy() && 2292 "Bad inline asm!"); 2293 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 2294 OpInfo.ConstraintVT = getSimpleValueType(STy->getElementType(ResNo)); 2295 } else { 2296 assert(ResNo == 0 && "Asm only has one result!"); 2297 OpInfo.ConstraintVT = getSimpleValueType(CS.getType()); 2298 } 2299 ++ResNo; 2300 break; 2301 case InlineAsm::isInput: 2302 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2303 break; 2304 case InlineAsm::isClobber: 2305 // Nothing to do. 2306 break; 2307 } 2308 2309 if (OpInfo.CallOperandVal) { 2310 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 2311 if (OpInfo.isIndirect) { 2312 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 2313 if (!PtrTy) 2314 report_fatal_error("Indirect operand for inline asm not a pointer!"); 2315 OpTy = PtrTy->getElementType(); 2316 } 2317 2318 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 2319 if (StructType *STy = dyn_cast<StructType>(OpTy)) 2320 if (STy->getNumElements() == 1) 2321 OpTy = STy->getElementType(0); 2322 2323 // If OpTy is not a single value, it may be a struct/union that we 2324 // can tile with integers. 2325 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 2326 unsigned BitSize = getDataLayout()->getTypeSizeInBits(OpTy); 2327 switch (BitSize) { 2328 default: break; 2329 case 1: 2330 case 8: 2331 case 16: 2332 case 32: 2333 case 64: 2334 case 128: 2335 OpInfo.ConstraintVT = 2336 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 2337 break; 2338 } 2339 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 2340 unsigned PtrSize 2341 = getDataLayout()->getPointerSizeInBits(PT->getAddressSpace()); 2342 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 2343 } else { 2344 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 2345 } 2346 } 2347 } 2348 2349 // If we have multiple alternative constraints, select the best alternative. 2350 if (!ConstraintOperands.empty()) { 2351 if (maCount) { 2352 unsigned bestMAIndex = 0; 2353 int bestWeight = -1; 2354 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 2355 int weight = -1; 2356 unsigned maIndex; 2357 // Compute the sums of the weights for each alternative, keeping track 2358 // of the best (highest weight) one so far. 2359 for (maIndex = 0; maIndex < maCount; ++maIndex) { 2360 int weightSum = 0; 2361 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2362 cIndex != eIndex; ++cIndex) { 2363 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2364 if (OpInfo.Type == InlineAsm::isClobber) 2365 continue; 2366 2367 // If this is an output operand with a matching input operand, 2368 // look up the matching input. If their types mismatch, e.g. one 2369 // is an integer, the other is floating point, or their sizes are 2370 // different, flag it as an maCantMatch. 2371 if (OpInfo.hasMatchingInput()) { 2372 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2373 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2374 if ((OpInfo.ConstraintVT.isInteger() != 2375 Input.ConstraintVT.isInteger()) || 2376 (OpInfo.ConstraintVT.getSizeInBits() != 2377 Input.ConstraintVT.getSizeInBits())) { 2378 weightSum = -1; // Can't match. 2379 break; 2380 } 2381 } 2382 } 2383 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 2384 if (weight == -1) { 2385 weightSum = -1; 2386 break; 2387 } 2388 weightSum += weight; 2389 } 2390 // Update best. 2391 if (weightSum > bestWeight) { 2392 bestWeight = weightSum; 2393 bestMAIndex = maIndex; 2394 } 2395 } 2396 2397 // Now select chosen alternative in each constraint. 2398 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2399 cIndex != eIndex; ++cIndex) { 2400 AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; 2401 if (cInfo.Type == InlineAsm::isClobber) 2402 continue; 2403 cInfo.selectAlternative(bestMAIndex); 2404 } 2405 } 2406 } 2407 2408 // Check and hook up tied operands, choose constraint code to use. 2409 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2410 cIndex != eIndex; ++cIndex) { 2411 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2412 2413 // If this is an output operand with a matching input operand, look up the 2414 // matching input. If their types mismatch, e.g. one is an integer, the 2415 // other is floating point, or their sizes are different, flag it as an 2416 // error. 2417 if (OpInfo.hasMatchingInput()) { 2418 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2419 2420 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2421 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 2422 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 2423 OpInfo.ConstraintVT); 2424 std::pair<unsigned, const TargetRegisterClass *> InputRC = 2425 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 2426 Input.ConstraintVT); 2427 if ((OpInfo.ConstraintVT.isInteger() != 2428 Input.ConstraintVT.isInteger()) || 2429 (MatchRC.second != InputRC.second)) { 2430 report_fatal_error("Unsupported asm: input constraint" 2431 " with a matching output constraint of" 2432 " incompatible type!"); 2433 } 2434 } 2435 2436 } 2437 } 2438 2439 return ConstraintOperands; 2440 } 2441 2442 2443 /// getConstraintGenerality - Return an integer indicating how general CT 2444 /// is. 2445 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 2446 switch (CT) { 2447 case TargetLowering::C_Other: 2448 case TargetLowering::C_Unknown: 2449 return 0; 2450 case TargetLowering::C_Register: 2451 return 1; 2452 case TargetLowering::C_RegisterClass: 2453 return 2; 2454 case TargetLowering::C_Memory: 2455 return 3; 2456 } 2457 llvm_unreachable("Invalid constraint type"); 2458 } 2459 2460 /// Examine constraint type and operand type and determine a weight value. 2461 /// This object must already have been set up with the operand type 2462 /// and the current alternative constraint selected. 2463 TargetLowering::ConstraintWeight 2464 TargetLowering::getMultipleConstraintMatchWeight( 2465 AsmOperandInfo &info, int maIndex) const { 2466 InlineAsm::ConstraintCodeVector *rCodes; 2467 if (maIndex >= (int)info.multipleAlternatives.size()) 2468 rCodes = &info.Codes; 2469 else 2470 rCodes = &info.multipleAlternatives[maIndex].Codes; 2471 ConstraintWeight BestWeight = CW_Invalid; 2472 2473 // Loop over the options, keeping track of the most general one. 2474 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 2475 ConstraintWeight weight = 2476 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 2477 if (weight > BestWeight) 2478 BestWeight = weight; 2479 } 2480 2481 return BestWeight; 2482 } 2483 2484 /// Examine constraint type and operand type and determine a weight value. 2485 /// This object must already have been set up with the operand type 2486 /// and the current alternative constraint selected. 2487 TargetLowering::ConstraintWeight 2488 TargetLowering::getSingleConstraintMatchWeight( 2489 AsmOperandInfo &info, const char *constraint) const { 2490 ConstraintWeight weight = CW_Invalid; 2491 Value *CallOperandVal = info.CallOperandVal; 2492 // If we don't have a value, we can't do a match, 2493 // but allow it at the lowest weight. 2494 if (!CallOperandVal) 2495 return CW_Default; 2496 // Look at the constraint type. 2497 switch (*constraint) { 2498 case 'i': // immediate integer. 2499 case 'n': // immediate integer with a known value. 2500 if (isa<ConstantInt>(CallOperandVal)) 2501 weight = CW_Constant; 2502 break; 2503 case 's': // non-explicit intregal immediate. 2504 if (isa<GlobalValue>(CallOperandVal)) 2505 weight = CW_Constant; 2506 break; 2507 case 'E': // immediate float if host format. 2508 case 'F': // immediate float. 2509 if (isa<ConstantFP>(CallOperandVal)) 2510 weight = CW_Constant; 2511 break; 2512 case '<': // memory operand with autodecrement. 2513 case '>': // memory operand with autoincrement. 2514 case 'm': // memory operand. 2515 case 'o': // offsettable memory operand 2516 case 'V': // non-offsettable memory operand 2517 weight = CW_Memory; 2518 break; 2519 case 'r': // general register. 2520 case 'g': // general register, memory operand or immediate integer. 2521 // note: Clang converts "g" to "imr". 2522 if (CallOperandVal->getType()->isIntegerTy()) 2523 weight = CW_Register; 2524 break; 2525 case 'X': // any operand. 2526 default: 2527 weight = CW_Default; 2528 break; 2529 } 2530 return weight; 2531 } 2532 2533 /// ChooseConstraint - If there are multiple different constraints that we 2534 /// could pick for this operand (e.g. "imr") try to pick the 'best' one. 2535 /// This is somewhat tricky: constraints fall into four classes: 2536 /// Other -> immediates and magic values 2537 /// Register -> one specific register 2538 /// RegisterClass -> a group of regs 2539 /// Memory -> memory 2540 /// Ideally, we would pick the most specific constraint possible: if we have 2541 /// something that fits into a register, we would pick it. The problem here 2542 /// is that if we have something that could either be in a register or in 2543 /// memory that use of the register could cause selection of *other* 2544 /// operands to fail: they might only succeed if we pick memory. Because of 2545 /// this the heuristic we use is: 2546 /// 2547 /// 1) If there is an 'other' constraint, and if the operand is valid for 2548 /// that constraint, use it. This makes us take advantage of 'i' 2549 /// constraints when available. 2550 /// 2) Otherwise, pick the most general constraint present. This prefers 2551 /// 'm' over 'r', for example. 2552 /// 2553 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 2554 const TargetLowering &TLI, 2555 SDValue Op, SelectionDAG *DAG) { 2556 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 2557 unsigned BestIdx = 0; 2558 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 2559 int BestGenerality = -1; 2560 2561 // Loop over the options, keeping track of the most general one. 2562 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 2563 TargetLowering::ConstraintType CType = 2564 TLI.getConstraintType(OpInfo.Codes[i]); 2565 2566 // If this is an 'other' constraint, see if the operand is valid for it. 2567 // For example, on X86 we might have an 'rI' constraint. If the operand 2568 // is an integer in the range [0..31] we want to use I (saving a load 2569 // of a register), otherwise we must use 'r'. 2570 if (CType == TargetLowering::C_Other && Op.getNode()) { 2571 assert(OpInfo.Codes[i].size() == 1 && 2572 "Unhandled multi-letter 'other' constraint"); 2573 std::vector<SDValue> ResultOps; 2574 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 2575 ResultOps, *DAG); 2576 if (!ResultOps.empty()) { 2577 BestType = CType; 2578 BestIdx = i; 2579 break; 2580 } 2581 } 2582 2583 // Things with matching constraints can only be registers, per gcc 2584 // documentation. This mainly affects "g" constraints. 2585 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 2586 continue; 2587 2588 // This constraint letter is more general than the previous one, use it. 2589 int Generality = getConstraintGenerality(CType); 2590 if (Generality > BestGenerality) { 2591 BestType = CType; 2592 BestIdx = i; 2593 BestGenerality = Generality; 2594 } 2595 } 2596 2597 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 2598 OpInfo.ConstraintType = BestType; 2599 } 2600 2601 /// ComputeConstraintToUse - Determines the constraint code and constraint 2602 /// type to use for the specific AsmOperandInfo, setting 2603 /// OpInfo.ConstraintCode and OpInfo.ConstraintType. 2604 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 2605 SDValue Op, 2606 SelectionDAG *DAG) const { 2607 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 2608 2609 // Single-letter constraints ('r') are very common. 2610 if (OpInfo.Codes.size() == 1) { 2611 OpInfo.ConstraintCode = OpInfo.Codes[0]; 2612 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2613 } else { 2614 ChooseConstraint(OpInfo, *this, Op, DAG); 2615 } 2616 2617 // 'X' matches anything. 2618 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 2619 // Labels and constants are handled elsewhere ('X' is the only thing 2620 // that matches labels). For Functions, the type here is the type of 2621 // the result, which is not what we want to look at; leave them alone. 2622 Value *v = OpInfo.CallOperandVal; 2623 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 2624 OpInfo.CallOperandVal = v; 2625 return; 2626 } 2627 2628 // Otherwise, try to resolve it to something we know about by looking at 2629 // the actual operand type. 2630 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 2631 OpInfo.ConstraintCode = Repl; 2632 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2633 } 2634 } 2635 } 2636 2637 /// \brief Given an exact SDIV by a constant, create a multiplication 2638 /// with the multiplicative inverse of the constant. 2639 SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, SDLoc dl, 2640 SelectionDAG &DAG) const { 2641 ConstantSDNode *C = cast<ConstantSDNode>(Op2); 2642 APInt d = C->getAPIntValue(); 2643 assert(d != 0 && "Division by zero!"); 2644 2645 // Shift the value upfront if it is even, so the LSB is one. 2646 unsigned ShAmt = d.countTrailingZeros(); 2647 if (ShAmt) { 2648 // TODO: For UDIV use SRL instead of SRA. 2649 SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType())); 2650 Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, false, false, 2651 true); 2652 d = d.ashr(ShAmt); 2653 } 2654 2655 // Calculate the multiplicative inverse, using Newton's method. 2656 APInt t, xn = d; 2657 while ((t = d*xn) != 1) 2658 xn *= APInt(d.getBitWidth(), 2) - t; 2659 2660 Op2 = DAG.getConstant(xn, Op1.getValueType()); 2661 return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2); 2662 } 2663 2664 /// \brief Given an ISD::SDIV node expressing a divide by constant, 2665 /// return a DAG expression to select that will generate the same value by 2666 /// multiplying by a magic number. 2667 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 2668 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor, 2669 SelectionDAG &DAG, bool IsAfterLegalization, 2670 std::vector<SDNode *> *Created) const { 2671 assert(Created && "No vector to hold sdiv ops."); 2672 2673 EVT VT = N->getValueType(0); 2674 SDLoc dl(N); 2675 2676 // Check to see if we can do this. 2677 // FIXME: We should be more aggressive here. 2678 if (!isTypeLegal(VT)) 2679 return SDValue(); 2680 2681 APInt::ms magics = Divisor.magic(); 2682 2683 // Multiply the numerator (operand 0) by the magic value 2684 // FIXME: We should support doing a MUL in a wider type 2685 SDValue Q; 2686 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) : 2687 isOperationLegalOrCustom(ISD::MULHS, VT)) 2688 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0), 2689 DAG.getConstant(magics.m, VT)); 2690 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) : 2691 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) 2692 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), 2693 N->getOperand(0), 2694 DAG.getConstant(magics.m, VT)).getNode(), 1); 2695 else 2696 return SDValue(); // No mulhs or equvialent 2697 // If d > 0 and m < 0, add the numerator 2698 if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 2699 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); 2700 Created->push_back(Q.getNode()); 2701 } 2702 // If d < 0 and m > 0, subtract the numerator. 2703 if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 2704 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0)); 2705 Created->push_back(Q.getNode()); 2706 } 2707 // Shift right algebraic if shift value is nonzero 2708 if (magics.s > 0) { 2709 Q = DAG.getNode(ISD::SRA, dl, VT, Q, 2710 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType()))); 2711 Created->push_back(Q.getNode()); 2712 } 2713 // Extract the sign bit and add it to the quotient 2714 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, 2715 DAG.getConstant(VT.getScalarSizeInBits() - 1, 2716 getShiftAmountTy(Q.getValueType()))); 2717 Created->push_back(T.getNode()); 2718 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 2719 } 2720 2721 /// \brief Given an ISD::UDIV node expressing a divide by constant, 2722 /// return a DAG expression to select that will generate the same value by 2723 /// multiplying by a magic number. 2724 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 2725 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor, 2726 SelectionDAG &DAG, bool IsAfterLegalization, 2727 std::vector<SDNode *> *Created) const { 2728 assert(Created && "No vector to hold udiv ops."); 2729 2730 EVT VT = N->getValueType(0); 2731 SDLoc dl(N); 2732 2733 // Check to see if we can do this. 2734 // FIXME: We should be more aggressive here. 2735 if (!isTypeLegal(VT)) 2736 return SDValue(); 2737 2738 // FIXME: We should use a narrower constant when the upper 2739 // bits are known to be zero. 2740 APInt::mu magics = Divisor.magicu(); 2741 2742 SDValue Q = N->getOperand(0); 2743 2744 // If the divisor is even, we can avoid using the expensive fixup by shifting 2745 // the divided value upfront. 2746 if (magics.a != 0 && !Divisor[0]) { 2747 unsigned Shift = Divisor.countTrailingZeros(); 2748 Q = DAG.getNode(ISD::SRL, dl, VT, Q, 2749 DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType()))); 2750 Created->push_back(Q.getNode()); 2751 2752 // Get magic number for the shifted divisor. 2753 magics = Divisor.lshr(Shift).magicu(Shift); 2754 assert(magics.a == 0 && "Should use cheap fixup now"); 2755 } 2756 2757 // Multiply the numerator (operand 0) by the magic value 2758 // FIXME: We should support doing a MUL in a wider type 2759 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) : 2760 isOperationLegalOrCustom(ISD::MULHU, VT)) 2761 Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT)); 2762 else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) : 2763 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) 2764 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q, 2765 DAG.getConstant(magics.m, VT)).getNode(), 1); 2766 else 2767 return SDValue(); // No mulhu or equvialent 2768 2769 Created->push_back(Q.getNode()); 2770 2771 if (magics.a == 0) { 2772 assert(magics.s < Divisor.getBitWidth() && 2773 "We shouldn't generate an undefined shift!"); 2774 return DAG.getNode(ISD::SRL, dl, VT, Q, 2775 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType()))); 2776 } else { 2777 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); 2778 Created->push_back(NPQ.getNode()); 2779 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, 2780 DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType()))); 2781 Created->push_back(NPQ.getNode()); 2782 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 2783 Created->push_back(NPQ.getNode()); 2784 return DAG.getNode(ISD::SRL, dl, VT, NPQ, 2785 DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType()))); 2786 } 2787 } 2788 2789 bool TargetLowering:: 2790 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 2791 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 2792 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 2793 "be a constant integer"); 2794 return true; 2795 } 2796 2797 return false; 2798 } 2799 2800 //===----------------------------------------------------------------------===// 2801 // Legalization Utilities 2802 //===----------------------------------------------------------------------===// 2803 2804 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 2805 SelectionDAG &DAG, SDValue LL, SDValue LH, 2806 SDValue RL, SDValue RH) const { 2807 EVT VT = N->getValueType(0); 2808 SDLoc dl(N); 2809 2810 bool HasMULHS = isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 2811 bool HasMULHU = isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 2812 bool HasSMUL_LOHI = isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 2813 bool HasUMUL_LOHI = isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 2814 if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { 2815 unsigned OuterBitSize = VT.getSizeInBits(); 2816 unsigned InnerBitSize = HiLoVT.getSizeInBits(); 2817 unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0)); 2818 unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1)); 2819 2820 // LL, LH, RL, and RH must be either all NULL or all set to a value. 2821 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 2822 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 2823 2824 if (!LL.getNode() && !RL.getNode() && 2825 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 2826 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(0)); 2827 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(1)); 2828 } 2829 2830 if (!LL.getNode()) 2831 return false; 2832 2833 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 2834 if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) && 2835 DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) { 2836 // The inputs are both zero-extended. 2837 if (HasUMUL_LOHI) { 2838 // We can emit a umul_lohi. 2839 Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL, 2840 RL); 2841 Hi = SDValue(Lo.getNode(), 1); 2842 return true; 2843 } 2844 if (HasMULHU) { 2845 // We can emit a mulhu+mul. 2846 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 2847 Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL); 2848 return true; 2849 } 2850 } 2851 if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) { 2852 // The input values are both sign-extended. 2853 if (HasSMUL_LOHI) { 2854 // We can emit a smul_lohi. 2855 Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL, 2856 RL); 2857 Hi = SDValue(Lo.getNode(), 1); 2858 return true; 2859 } 2860 if (HasMULHS) { 2861 // We can emit a mulhs+mul. 2862 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 2863 Hi = DAG.getNode(ISD::MULHS, dl, HiLoVT, LL, RL); 2864 return true; 2865 } 2866 } 2867 2868 if (!LH.getNode() && !RH.getNode() && 2869 isOperationLegalOrCustom(ISD::SRL, VT) && 2870 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 2871 unsigned ShiftAmt = VT.getSizeInBits() - HiLoVT.getSizeInBits(); 2872 SDValue Shift = DAG.getConstant(ShiftAmt, getShiftAmountTy(VT)); 2873 LH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(0), Shift); 2874 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 2875 RH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(1), Shift); 2876 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 2877 } 2878 2879 if (!LH.getNode()) 2880 return false; 2881 2882 if (HasUMUL_LOHI) { 2883 // Lo,Hi = umul LHS, RHS. 2884 SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl, 2885 DAG.getVTList(HiLoVT, HiLoVT), LL, RL); 2886 Lo = UMulLOHI; 2887 Hi = UMulLOHI.getValue(1); 2888 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 2889 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 2890 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 2891 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 2892 return true; 2893 } 2894 if (HasMULHU) { 2895 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 2896 Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL); 2897 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 2898 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 2899 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 2900 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 2901 return true; 2902 } 2903 } 2904 return false; 2905 } 2906 2907 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 2908 SelectionDAG &DAG) const { 2909 EVT VT = Node->getOperand(0).getValueType(); 2910 EVT NVT = Node->getValueType(0); 2911 SDLoc dl(SDValue(Node, 0)); 2912 2913 // FIXME: Only f32 to i64 conversions are supported. 2914 if (VT != MVT::f32 || NVT != MVT::i64) 2915 return false; 2916 2917 // Expand f32 -> i64 conversion 2918 // This algorithm comes from compiler-rt's implementation of fixsfdi: 2919 // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c 2920 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), 2921 VT.getSizeInBits()); 2922 SDValue ExponentMask = DAG.getConstant(0x7F800000, IntVT); 2923 SDValue ExponentLoBit = DAG.getConstant(23, IntVT); 2924 SDValue Bias = DAG.getConstant(127, IntVT); 2925 SDValue SignMask = DAG.getConstant(APInt::getSignBit(VT.getSizeInBits()), 2926 IntVT); 2927 SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, IntVT); 2928 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, IntVT); 2929 2930 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0)); 2931 2932 SDValue ExponentBits = DAG.getNode(ISD::SRL, dl, IntVT, 2933 DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 2934 DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT))); 2935 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 2936 2937 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 2938 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 2939 DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT))); 2940 Sign = DAG.getSExtOrTrunc(Sign, dl, NVT); 2941 2942 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 2943 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 2944 DAG.getConstant(0x00800000, IntVT)); 2945 2946 R = DAG.getZExtOrTrunc(R, dl, NVT); 2947 2948 2949 R = DAG.getSelectCC(dl, Exponent, ExponentLoBit, 2950 DAG.getNode(ISD::SHL, dl, NVT, R, 2951 DAG.getZExtOrTrunc( 2952 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 2953 dl, getShiftAmountTy(IntVT))), 2954 DAG.getNode(ISD::SRL, dl, NVT, R, 2955 DAG.getZExtOrTrunc( 2956 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 2957 dl, getShiftAmountTy(IntVT))), 2958 ISD::SETGT); 2959 2960 SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT, 2961 DAG.getNode(ISD::XOR, dl, NVT, R, Sign), 2962 Sign); 2963 2964 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, IntVT), 2965 DAG.getConstant(0, NVT), Ret, ISD::SETLT); 2966 return true; 2967 } 2968