1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetLowering.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/CodeGen/Analysis.h" 18 #include "llvm/CodeGen/CallingConvLower.h" 19 #include "llvm/CodeGen/MachineFrameInfo.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineJumpTableInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/SelectionDAG.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCExpr.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/Target/TargetRegisterInfo.h" 35 #include "llvm/Target/TargetSubtargetInfo.h" 36 #include <cctype> 37 using namespace llvm; 38 39 /// NOTE: The TargetMachine owns TLOF. 40 TargetLowering::TargetLowering(const TargetMachine &tm) 41 : TargetLoweringBase(tm) {} 42 43 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 44 return nullptr; 45 } 46 47 /// Check whether a given call node is in tail position within its function. If 48 /// so, it sets Chain to the input chain of the tail call. 49 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 50 SDValue &Chain) const { 51 const Function *F = DAG.getMachineFunction().getFunction(); 52 53 // Conservatively require the attributes of the call to match those of 54 // the return. Ignore noalias because it doesn't affect the call sequence. 55 AttributeSet CallerAttrs = F->getAttributes(); 56 if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex) 57 .removeAttribute(Attribute::NoAlias).hasAttributes()) 58 return false; 59 60 // It's not safe to eliminate the sign / zero extension of the return value. 61 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 62 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 63 return false; 64 65 // Check if the only use is a function return node. 66 return isUsedByReturnOnly(Node, Chain); 67 } 68 69 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 70 const uint32_t *CallerPreservedMask, 71 const SmallVectorImpl<CCValAssign> &ArgLocs, 72 const SmallVectorImpl<SDValue> &OutVals) const { 73 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 74 const CCValAssign &ArgLoc = ArgLocs[I]; 75 if (!ArgLoc.isRegLoc()) 76 continue; 77 unsigned Reg = ArgLoc.getLocReg(); 78 // Only look at callee saved registers. 79 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 80 continue; 81 // Check that we pass the value used for the caller. 82 // (We look for a CopyFromReg reading a virtual register that is used 83 // for the function live-in value of register Reg) 84 SDValue Value = OutVals[I]; 85 if (Value->getOpcode() != ISD::CopyFromReg) 86 return false; 87 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 88 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 89 return false; 90 } 91 return true; 92 } 93 94 /// \brief Set CallLoweringInfo attribute flags based on a call instruction 95 /// and called function attributes. 96 void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS, 97 unsigned AttrIdx) { 98 isSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); 99 isZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); 100 isInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); 101 isSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); 102 isNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); 103 isByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); 104 isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); 105 isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); 106 isSwiftSelf = CS->paramHasAttr(AttrIdx, Attribute::SwiftSelf); 107 isSwiftError = CS->paramHasAttr(AttrIdx, Attribute::SwiftError); 108 Alignment = CS->getParamAlignment(AttrIdx); 109 } 110 111 /// Generate a libcall taking the given operands as arguments and returning a 112 /// result of type RetVT. 113 std::pair<SDValue, SDValue> 114 TargetLowering::makeLibCall(SelectionDAG &DAG, 115 RTLIB::Libcall LC, EVT RetVT, 116 ArrayRef<SDValue> Ops, 117 bool isSigned, SDLoc dl, 118 bool doesNotReturn, 119 bool isReturnValueUsed) const { 120 TargetLowering::ArgListTy Args; 121 Args.reserve(Ops.size()); 122 123 TargetLowering::ArgListEntry Entry; 124 for (SDValue Op : Ops) { 125 Entry.Node = Op; 126 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 127 Entry.isSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 128 Entry.isZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 129 Args.push_back(Entry); 130 } 131 132 if (LC == RTLIB::UNKNOWN_LIBCALL) 133 report_fatal_error("Unsupported library call operation!"); 134 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 135 getPointerTy(DAG.getDataLayout())); 136 137 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 138 TargetLowering::CallLoweringInfo CLI(DAG); 139 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); 140 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()) 141 .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0) 142 .setNoReturn(doesNotReturn).setDiscardResult(!isReturnValueUsed) 143 .setSExtResult(signExtend).setZExtResult(!signExtend); 144 return LowerCallTo(CLI); 145 } 146 147 /// Soften the operands of a comparison. This code is shared among BR_CC, 148 /// SELECT_CC, and SETCC handlers. 149 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 150 SDValue &NewLHS, SDValue &NewRHS, 151 ISD::CondCode &CCCode, 152 SDLoc dl) const { 153 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 154 && "Unsupported setcc type!"); 155 156 // Expand into one or more soft-fp libcall(s). 157 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 158 bool ShouldInvertCC = false; 159 switch (CCCode) { 160 case ISD::SETEQ: 161 case ISD::SETOEQ: 162 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 163 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 164 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 165 break; 166 case ISD::SETNE: 167 case ISD::SETUNE: 168 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 169 (VT == MVT::f64) ? RTLIB::UNE_F64 : 170 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 171 break; 172 case ISD::SETGE: 173 case ISD::SETOGE: 174 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 175 (VT == MVT::f64) ? RTLIB::OGE_F64 : 176 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 177 break; 178 case ISD::SETLT: 179 case ISD::SETOLT: 180 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 181 (VT == MVT::f64) ? RTLIB::OLT_F64 : 182 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 183 break; 184 case ISD::SETLE: 185 case ISD::SETOLE: 186 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 187 (VT == MVT::f64) ? RTLIB::OLE_F64 : 188 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 189 break; 190 case ISD::SETGT: 191 case ISD::SETOGT: 192 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 193 (VT == MVT::f64) ? RTLIB::OGT_F64 : 194 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 195 break; 196 case ISD::SETUO: 197 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 198 (VT == MVT::f64) ? RTLIB::UO_F64 : 199 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 200 break; 201 case ISD::SETO: 202 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 203 (VT == MVT::f64) ? RTLIB::O_F64 : 204 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 205 break; 206 case ISD::SETONE: 207 // SETONE = SETOLT | SETOGT 208 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 209 (VT == MVT::f64) ? RTLIB::OLT_F64 : 210 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 211 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 212 (VT == MVT::f64) ? RTLIB::OGT_F64 : 213 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 214 break; 215 case ISD::SETUEQ: 216 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 217 (VT == MVT::f64) ? RTLIB::UO_F64 : 218 (VT == MVT::f128) ? RTLIB::UO_F64 : RTLIB::UO_PPCF128; 219 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 220 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 221 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 222 break; 223 default: 224 // Invert CC for unordered comparisons 225 ShouldInvertCC = true; 226 switch (CCCode) { 227 case ISD::SETULT: 228 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 229 (VT == MVT::f64) ? RTLIB::OGE_F64 : 230 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 231 break; 232 case ISD::SETULE: 233 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 234 (VT == MVT::f64) ? RTLIB::OGT_F64 : 235 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 236 break; 237 case ISD::SETUGT: 238 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 239 (VT == MVT::f64) ? RTLIB::OLE_F64 : 240 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 241 break; 242 case ISD::SETUGE: 243 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 244 (VT == MVT::f64) ? RTLIB::OLT_F64 : 245 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 246 break; 247 default: llvm_unreachable("Do not know how to soften this setcc!"); 248 } 249 } 250 251 // Use the target specific return value for comparions lib calls. 252 EVT RetVT = getCmpLibcallReturnType(); 253 SDValue Ops[2] = {NewLHS, NewRHS}; 254 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/, 255 dl).first; 256 NewRHS = DAG.getConstant(0, dl, RetVT); 257 258 CCCode = getCmpLibcallCC(LC1); 259 if (ShouldInvertCC) 260 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); 261 262 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 263 SDValue Tmp = DAG.getNode( 264 ISD::SETCC, dl, 265 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 266 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 267 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/, 268 dl).first; 269 NewLHS = DAG.getNode( 270 ISD::SETCC, dl, 271 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 272 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 273 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 274 NewRHS = SDValue(); 275 } 276 } 277 278 /// Return the entry encoding for a jump table in the current function. The 279 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 280 unsigned TargetLowering::getJumpTableEncoding() const { 281 // In non-pic modes, just use the address of a block. 282 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 283 return MachineJumpTableInfo::EK_BlockAddress; 284 285 // In PIC mode, if the target supports a GPRel32 directive, use it. 286 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 287 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 288 289 // Otherwise, use a label difference. 290 return MachineJumpTableInfo::EK_LabelDifference32; 291 } 292 293 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 294 SelectionDAG &DAG) const { 295 // If our PIC model is GP relative, use the global offset table as the base. 296 unsigned JTEncoding = getJumpTableEncoding(); 297 298 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 299 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 300 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 301 302 return Table; 303 } 304 305 /// This returns the relocation base for the given PIC jumptable, the same as 306 /// getPICJumpTableRelocBase, but as an MCExpr. 307 const MCExpr * 308 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 309 unsigned JTI,MCContext &Ctx) const{ 310 // The normal PIC reloc base is the label at the start of the jump table. 311 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 312 } 313 314 bool 315 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 316 // Assume that everything is safe in static mode. 317 if (getTargetMachine().getRelocationModel() == Reloc::Static) 318 return true; 319 320 // In dynamic-no-pic mode, assume that known defined values are safe. 321 if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC && 322 GA && GA->getGlobal()->isStrongDefinitionForLinker()) 323 return true; 324 325 // Otherwise assume nothing is safe. 326 return false; 327 } 328 329 //===----------------------------------------------------------------------===// 330 // Optimization Methods 331 //===----------------------------------------------------------------------===// 332 333 /// Check to see if the specified operand of the specified instruction is a 334 /// constant integer. If so, check to see if there are any bits set in the 335 /// constant that are not demanded. If so, shrink the constant and return true. 336 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op, 337 const APInt &Demanded) { 338 SDLoc dl(Op); 339 340 // FIXME: ISD::SELECT, ISD::SELECT_CC 341 switch (Op.getOpcode()) { 342 default: break; 343 case ISD::XOR: 344 case ISD::AND: 345 case ISD::OR: { 346 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 347 if (!C) return false; 348 349 if (Op.getOpcode() == ISD::XOR && 350 (C->getAPIntValue() | (~Demanded)).isAllOnesValue()) 351 return false; 352 353 // if we can expand it to have all bits set, do it 354 if (C->getAPIntValue().intersects(~Demanded)) { 355 EVT VT = Op.getValueType(); 356 SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0), 357 DAG.getConstant(Demanded & 358 C->getAPIntValue(), 359 dl, VT)); 360 return CombineTo(Op, New); 361 } 362 363 break; 364 } 365 } 366 367 return false; 368 } 369 370 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 371 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 372 /// generalized for targets with other types of implicit widening casts. 373 bool 374 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op, 375 unsigned BitWidth, 376 const APInt &Demanded, 377 SDLoc dl) { 378 assert(Op.getNumOperands() == 2 && 379 "ShrinkDemandedOp only supports binary operators!"); 380 assert(Op.getNode()->getNumValues() == 1 && 381 "ShrinkDemandedOp only supports nodes with one result!"); 382 383 // Early return, as this function cannot handle vector types. 384 if (Op.getValueType().isVector()) 385 return false; 386 387 // Don't do this if the node has another user, which may require the 388 // full value. 389 if (!Op.getNode()->hasOneUse()) 390 return false; 391 392 // Search for the smallest integer type with free casts to and from 393 // Op's type. For expedience, just check power-of-2 integer types. 394 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 395 unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros(); 396 unsigned SmallVTBits = DemandedSize; 397 if (!isPowerOf2_32(SmallVTBits)) 398 SmallVTBits = NextPowerOf2(SmallVTBits); 399 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 400 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 401 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 402 TLI.isZExtFree(SmallVT, Op.getValueType())) { 403 // We found a type with free casts. 404 SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT, 405 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 406 Op.getNode()->getOperand(0)), 407 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 408 Op.getNode()->getOperand(1))); 409 bool NeedZext = DemandedSize > SmallVTBits; 410 SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, 411 dl, Op.getValueType(), X); 412 return CombineTo(Op, Z); 413 } 414 } 415 return false; 416 } 417 418 /// Look at Op. At this point, we know that only the DemandedMask bits of the 419 /// result of Op are ever used downstream. If we can use this information to 420 /// simplify Op, create a new simplified DAG node and return true, returning the 421 /// original and new nodes in Old and New. Otherwise, analyze the expression and 422 /// return a mask of KnownOne and KnownZero bits for the expression (used to 423 /// simplify the caller). The KnownZero/One bits may only be accurate for those 424 /// bits in the DemandedMask. 425 bool TargetLowering::SimplifyDemandedBits(SDValue Op, 426 const APInt &DemandedMask, 427 APInt &KnownZero, 428 APInt &KnownOne, 429 TargetLoweringOpt &TLO, 430 unsigned Depth) const { 431 unsigned BitWidth = DemandedMask.getBitWidth(); 432 assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth && 433 "Mask size mismatches value type size!"); 434 APInt NewMask = DemandedMask; 435 SDLoc dl(Op); 436 auto &DL = TLO.DAG.getDataLayout(); 437 438 // Don't know anything. 439 KnownZero = KnownOne = APInt(BitWidth, 0); 440 441 // Other users may use these bits. 442 if (!Op.getNode()->hasOneUse()) { 443 if (Depth != 0) { 444 // If not at the root, Just compute the KnownZero/KnownOne bits to 445 // simplify things downstream. 446 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 447 return false; 448 } 449 // If this is the root being simplified, allow it to have multiple uses, 450 // just set the NewMask to all bits. 451 NewMask = APInt::getAllOnesValue(BitWidth); 452 } else if (DemandedMask == 0) { 453 // Not demanding any bits from Op. 454 if (!Op.isUndef()) 455 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType())); 456 return false; 457 } else if (Depth == 6) { // Limit search depth. 458 return false; 459 } 460 461 APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; 462 switch (Op.getOpcode()) { 463 case ISD::Constant: 464 // We know all of the bits for a constant! 465 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); 466 KnownZero = ~KnownOne; 467 return false; // Don't fall through, will infinitely loop. 468 case ISD::AND: 469 // If the RHS is a constant, check to see if the LHS would be zero without 470 // using the bits from the RHS. Below, we use knowledge about the RHS to 471 // simplify the LHS, here we're using information from the LHS to simplify 472 // the RHS. 473 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 474 APInt LHSZero, LHSOne; 475 // Do not increment Depth here; that can cause an infinite loop. 476 TLO.DAG.computeKnownBits(Op.getOperand(0), LHSZero, LHSOne, Depth); 477 // If the LHS already has zeros where RHSC does, this and is dead. 478 if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) 479 return TLO.CombineTo(Op, Op.getOperand(0)); 480 // If any of the set bits in the RHS are known zero on the LHS, shrink 481 // the constant. 482 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask)) 483 return true; 484 } 485 486 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 487 KnownOne, TLO, Depth+1)) 488 return true; 489 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 490 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask, 491 KnownZero2, KnownOne2, TLO, Depth+1)) 492 return true; 493 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 494 495 // If all of the demanded bits are known one on one side, return the other. 496 // These bits cannot contribute to the result of the 'and'. 497 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 498 return TLO.CombineTo(Op, Op.getOperand(0)); 499 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 500 return TLO.CombineTo(Op, Op.getOperand(1)); 501 // If all of the demanded bits in the inputs are known zeros, return zero. 502 if ((NewMask & (KnownZero|KnownZero2)) == NewMask) 503 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType())); 504 // If the RHS is a constant, see if we can simplify it. 505 if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask)) 506 return true; 507 // If the operation can be done in a smaller type, do so. 508 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 509 return true; 510 511 // Output known-1 bits are only known if set in both the LHS & RHS. 512 KnownOne &= KnownOne2; 513 // Output known-0 are known to be clear if zero in either the LHS | RHS. 514 KnownZero |= KnownZero2; 515 break; 516 case ISD::OR: 517 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 518 KnownOne, TLO, Depth+1)) 519 return true; 520 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 521 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask, 522 KnownZero2, KnownOne2, TLO, Depth+1)) 523 return true; 524 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 525 526 // If all of the demanded bits are known zero on one side, return the other. 527 // These bits cannot contribute to the result of the 'or'. 528 if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask)) 529 return TLO.CombineTo(Op, Op.getOperand(0)); 530 if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask)) 531 return TLO.CombineTo(Op, Op.getOperand(1)); 532 // If all of the potentially set bits on one side are known to be set on 533 // the other side, just use the 'other' side. 534 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 535 return TLO.CombineTo(Op, Op.getOperand(0)); 536 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 537 return TLO.CombineTo(Op, Op.getOperand(1)); 538 // If the RHS is a constant, see if we can simplify it. 539 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 540 return true; 541 // If the operation can be done in a smaller type, do so. 542 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 543 return true; 544 545 // Output known-0 bits are only known if clear in both the LHS & RHS. 546 KnownZero &= KnownZero2; 547 // Output known-1 are known to be set if set in either the LHS | RHS. 548 KnownOne |= KnownOne2; 549 break; 550 case ISD::XOR: 551 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 552 KnownOne, TLO, Depth+1)) 553 return true; 554 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 555 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2, 556 KnownOne2, TLO, Depth+1)) 557 return true; 558 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 559 560 // If all of the demanded bits are known zero on one side, return the other. 561 // These bits cannot contribute to the result of the 'xor'. 562 if ((KnownZero & NewMask) == NewMask) 563 return TLO.CombineTo(Op, Op.getOperand(0)); 564 if ((KnownZero2 & NewMask) == NewMask) 565 return TLO.CombineTo(Op, Op.getOperand(1)); 566 // If the operation can be done in a smaller type, do so. 567 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 568 return true; 569 570 // If all of the unknown bits are known to be zero on one side or the other 571 // (but not both) turn this into an *inclusive* or. 572 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 573 if ((NewMask & ~KnownZero & ~KnownZero2) == 0) 574 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(), 575 Op.getOperand(0), 576 Op.getOperand(1))); 577 578 // Output known-0 bits are known if clear or set in both the LHS & RHS. 579 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 580 // Output known-1 are known to be set if set in only one of the LHS, RHS. 581 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 582 583 // If all of the demanded bits on one side are known, and all of the set 584 // bits on that side are also known to be set on the other side, turn this 585 // into an AND, as we know the bits will be cleared. 586 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 587 // NB: it is okay if more bits are known than are requested 588 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side 589 if (KnownOne == KnownOne2) { // set bits are the same on both sides 590 EVT VT = Op.getValueType(); 591 SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, dl, VT); 592 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, 593 Op.getOperand(0), ANDC)); 594 } 595 } 596 597 // If the RHS is a constant, see if we can simplify it. 598 // for XOR, we prefer to force bits to 1 if they will make a -1. 599 // if we can't force bits, try to shrink constant 600 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 601 APInt Expanded = C->getAPIntValue() | (~NewMask); 602 // if we can expand it to have all bits set, do it 603 if (Expanded.isAllOnesValue()) { 604 if (Expanded != C->getAPIntValue()) { 605 EVT VT = Op.getValueType(); 606 SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0), 607 TLO.DAG.getConstant(Expanded, dl, VT)); 608 return TLO.CombineTo(Op, New); 609 } 610 // if it already has all the bits set, nothing to change 611 // but don't shrink either! 612 } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) { 613 return true; 614 } 615 } 616 617 KnownZero = KnownZeroOut; 618 KnownOne = KnownOneOut; 619 break; 620 case ISD::SELECT: 621 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero, 622 KnownOne, TLO, Depth+1)) 623 return true; 624 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2, 625 KnownOne2, TLO, Depth+1)) 626 return true; 627 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 628 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 629 630 // If the operands are constants, see if we can simplify them. 631 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 632 return true; 633 634 // Only known if known in both the LHS and RHS. 635 KnownOne &= KnownOne2; 636 KnownZero &= KnownZero2; 637 break; 638 case ISD::SELECT_CC: 639 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero, 640 KnownOne, TLO, Depth+1)) 641 return true; 642 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2, 643 KnownOne2, TLO, Depth+1)) 644 return true; 645 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 646 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 647 648 // If the operands are constants, see if we can simplify them. 649 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 650 return true; 651 652 // Only known if known in both the LHS and RHS. 653 KnownOne &= KnownOne2; 654 KnownZero &= KnownZero2; 655 break; 656 case ISD::SHL: 657 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 658 unsigned ShAmt = SA->getZExtValue(); 659 SDValue InOp = Op.getOperand(0); 660 661 // If the shift count is an invalid immediate, don't do anything. 662 if (ShAmt >= BitWidth) 663 break; 664 665 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 666 // single shift. We can do this if the bottom bits (which are shifted 667 // out) are never demanded. 668 if (InOp.getOpcode() == ISD::SRL && 669 isa<ConstantSDNode>(InOp.getOperand(1))) { 670 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 671 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 672 unsigned Opc = ISD::SHL; 673 int Diff = ShAmt-C1; 674 if (Diff < 0) { 675 Diff = -Diff; 676 Opc = ISD::SRL; 677 } 678 679 SDValue NewSA = 680 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 681 EVT VT = Op.getValueType(); 682 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 683 InOp.getOperand(0), NewSA)); 684 } 685 } 686 687 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), 688 KnownZero, KnownOne, TLO, Depth+1)) 689 return true; 690 691 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 692 // are not demanded. This will likely allow the anyext to be folded away. 693 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { 694 SDValue InnerOp = InOp.getNode()->getOperand(0); 695 EVT InnerVT = InnerOp.getValueType(); 696 unsigned InnerBits = InnerVT.getSizeInBits(); 697 if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 && 698 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 699 EVT ShTy = getShiftAmountTy(InnerVT, DL); 700 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 701 ShTy = InnerVT; 702 SDValue NarrowShl = 703 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 704 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 705 return 706 TLO.CombineTo(Op, 707 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), 708 NarrowShl)); 709 } 710 // Repeat the SHL optimization above in cases where an extension 711 // intervenes: (shl (anyext (shr x, c1)), c2) to 712 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 713 // aren't demanded (as above) and that the shifted upper c1 bits of 714 // x aren't demanded. 715 if (InOp.hasOneUse() && 716 InnerOp.getOpcode() == ISD::SRL && 717 InnerOp.hasOneUse() && 718 isa<ConstantSDNode>(InnerOp.getOperand(1))) { 719 uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1)) 720 ->getZExtValue(); 721 if (InnerShAmt < ShAmt && 722 InnerShAmt < InnerBits && 723 NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 && 724 NewMask.trunc(ShAmt) == 0) { 725 SDValue NewSA = 726 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 727 Op.getOperand(1).getValueType()); 728 EVT VT = Op.getValueType(); 729 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 730 InnerOp.getOperand(0)); 731 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, 732 NewExt, NewSA)); 733 } 734 } 735 } 736 737 KnownZero <<= SA->getZExtValue(); 738 KnownOne <<= SA->getZExtValue(); 739 // low bits known zero. 740 KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue()); 741 } 742 break; 743 case ISD::SRL: 744 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 745 EVT VT = Op.getValueType(); 746 unsigned ShAmt = SA->getZExtValue(); 747 unsigned VTSize = VT.getSizeInBits(); 748 SDValue InOp = Op.getOperand(0); 749 750 // If the shift count is an invalid immediate, don't do anything. 751 if (ShAmt >= BitWidth) 752 break; 753 754 APInt InDemandedMask = (NewMask << ShAmt); 755 756 // If the shift is exact, then it does demand the low bits (and knows that 757 // they are zero). 758 if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()) 759 InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt); 760 761 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 762 // single shift. We can do this if the top bits (which are shifted out) 763 // are never demanded. 764 if (InOp.getOpcode() == ISD::SHL && 765 isa<ConstantSDNode>(InOp.getOperand(1))) { 766 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) { 767 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 768 unsigned Opc = ISD::SRL; 769 int Diff = ShAmt-C1; 770 if (Diff < 0) { 771 Diff = -Diff; 772 Opc = ISD::SHL; 773 } 774 775 SDValue NewSA = 776 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 777 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 778 InOp.getOperand(0), NewSA)); 779 } 780 } 781 782 // Compute the new bits that are at the top now. 783 if (SimplifyDemandedBits(InOp, InDemandedMask, 784 KnownZero, KnownOne, TLO, Depth+1)) 785 return true; 786 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 787 KnownZero = KnownZero.lshr(ShAmt); 788 KnownOne = KnownOne.lshr(ShAmt); 789 790 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 791 KnownZero |= HighBits; // High bits known zero. 792 } 793 break; 794 case ISD::SRA: 795 // If this is an arithmetic shift right and only the low-bit is set, we can 796 // always convert this into a logical shr, even if the shift amount is 797 // variable. The low bit of the shift cannot be an input sign bit unless 798 // the shift amount is >= the size of the datatype, which is undefined. 799 if (NewMask == 1) 800 return TLO.CombineTo(Op, 801 TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), 802 Op.getOperand(0), Op.getOperand(1))); 803 804 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 805 EVT VT = Op.getValueType(); 806 unsigned ShAmt = SA->getZExtValue(); 807 808 // If the shift count is an invalid immediate, don't do anything. 809 if (ShAmt >= BitWidth) 810 break; 811 812 APInt InDemandedMask = (NewMask << ShAmt); 813 814 // If the shift is exact, then it does demand the low bits (and knows that 815 // they are zero). 816 if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()) 817 InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt); 818 819 // If any of the demanded bits are produced by the sign extension, we also 820 // demand the input sign bit. 821 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 822 if (HighBits.intersects(NewMask)) 823 InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits()); 824 825 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, 826 KnownZero, KnownOne, TLO, Depth+1)) 827 return true; 828 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 829 KnownZero = KnownZero.lshr(ShAmt); 830 KnownOne = KnownOne.lshr(ShAmt); 831 832 // Handle the sign bit, adjusted to where it is now in the mask. 833 APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt); 834 835 // If the input sign bit is known to be zero, or if none of the top bits 836 // are demanded, turn this into an unsigned shift right. 837 if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) { 838 SDNodeFlags Flags; 839 Flags.setExact(cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()); 840 return TLO.CombineTo(Op, 841 TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0), 842 Op.getOperand(1), &Flags)); 843 } 844 845 int Log2 = NewMask.exactLogBase2(); 846 if (Log2 >= 0) { 847 // The bit must come from the sign. 848 SDValue NewSA = 849 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, 850 Op.getOperand(1).getValueType()); 851 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 852 Op.getOperand(0), NewSA)); 853 } 854 855 if (KnownOne.intersects(SignBit)) 856 // New bits are known one. 857 KnownOne |= HighBits; 858 } 859 break; 860 case ISD::SIGN_EXTEND_INREG: { 861 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 862 863 APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1); 864 // If we only care about the highest bit, don't bother shifting right. 865 if (MsbMask == NewMask) { 866 unsigned ShAmt = ExVT.getScalarType().getSizeInBits(); 867 SDValue InOp = Op.getOperand(0); 868 unsigned VTBits = Op->getValueType(0).getScalarType().getSizeInBits(); 869 bool AlreadySignExtended = 870 TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1; 871 // However if the input is already sign extended we expect the sign 872 // extension to be dropped altogether later and do not simplify. 873 if (!AlreadySignExtended) { 874 // Compute the correct shift amount type, which must be getShiftAmountTy 875 // for scalar types after legalization. 876 EVT ShiftAmtTy = Op.getValueType(); 877 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 878 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 879 880 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, dl, 881 ShiftAmtTy); 882 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 883 Op.getValueType(), InOp, 884 ShiftAmt)); 885 } 886 } 887 888 // Sign extension. Compute the demanded bits in the result that are not 889 // present in the input. 890 APInt NewBits = 891 APInt::getHighBitsSet(BitWidth, 892 BitWidth - ExVT.getScalarType().getSizeInBits()); 893 894 // If none of the extended bits are demanded, eliminate the sextinreg. 895 if ((NewBits & NewMask) == 0) 896 return TLO.CombineTo(Op, Op.getOperand(0)); 897 898 APInt InSignBit = 899 APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth); 900 APInt InputDemandedBits = 901 APInt::getLowBitsSet(BitWidth, 902 ExVT.getScalarType().getSizeInBits()) & 903 NewMask; 904 905 // Since the sign extended bits are demanded, we know that the sign 906 // bit is demanded. 907 InputDemandedBits |= InSignBit; 908 909 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, 910 KnownZero, KnownOne, TLO, Depth+1)) 911 return true; 912 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 913 914 // If the sign bit of the input is known set or clear, then we know the 915 // top bits of the result. 916 917 // If the input sign bit is known zero, convert this into a zero extension. 918 if (KnownZero.intersects(InSignBit)) 919 return TLO.CombineTo(Op, 920 TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT)); 921 922 if (KnownOne.intersects(InSignBit)) { // Input sign bit known set 923 KnownOne |= NewBits; 924 KnownZero &= ~NewBits; 925 } else { // Input sign bit unknown 926 KnownZero &= ~NewBits; 927 KnownOne &= ~NewBits; 928 } 929 break; 930 } 931 case ISD::BUILD_PAIR: { 932 EVT HalfVT = Op.getOperand(0).getValueType(); 933 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 934 935 APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 936 APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 937 938 APInt KnownZeroLo, KnownOneLo; 939 APInt KnownZeroHi, KnownOneHi; 940 941 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo, 942 KnownOneLo, TLO, Depth + 1)) 943 return true; 944 945 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi, 946 KnownOneHi, TLO, Depth + 1)) 947 return true; 948 949 KnownZero = KnownZeroLo.zext(BitWidth) | 950 KnownZeroHi.zext(BitWidth).shl(HalfBitWidth); 951 952 KnownOne = KnownOneLo.zext(BitWidth) | 953 KnownOneHi.zext(BitWidth).shl(HalfBitWidth); 954 break; 955 } 956 case ISD::ZERO_EXTEND: { 957 unsigned OperandBitWidth = 958 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 959 APInt InMask = NewMask.trunc(OperandBitWidth); 960 961 // If none of the top bits are demanded, convert this into an any_extend. 962 APInt NewBits = 963 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask; 964 if (!NewBits.intersects(NewMask)) 965 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 966 Op.getValueType(), 967 Op.getOperand(0))); 968 969 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 970 KnownZero, KnownOne, TLO, Depth+1)) 971 return true; 972 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 973 KnownZero = KnownZero.zext(BitWidth); 974 KnownOne = KnownOne.zext(BitWidth); 975 KnownZero |= NewBits; 976 break; 977 } 978 case ISD::SIGN_EXTEND: { 979 EVT InVT = Op.getOperand(0).getValueType(); 980 unsigned InBits = InVT.getScalarType().getSizeInBits(); 981 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits); 982 APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits); 983 APInt NewBits = ~InMask & NewMask; 984 985 // If none of the top bits are demanded, convert this into an any_extend. 986 if (NewBits == 0) 987 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 988 Op.getValueType(), 989 Op.getOperand(0))); 990 991 // Since some of the sign extended bits are demanded, we know that the sign 992 // bit is demanded. 993 APInt InDemandedBits = InMask & NewMask; 994 InDemandedBits |= InSignBit; 995 InDemandedBits = InDemandedBits.trunc(InBits); 996 997 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, 998 KnownOne, TLO, Depth+1)) 999 return true; 1000 KnownZero = KnownZero.zext(BitWidth); 1001 KnownOne = KnownOne.zext(BitWidth); 1002 1003 // If the sign bit is known zero, convert this to a zero extend. 1004 if (KnownZero.intersects(InSignBit)) 1005 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, 1006 Op.getValueType(), 1007 Op.getOperand(0))); 1008 1009 // If the sign bit is known one, the top bits match. 1010 if (KnownOne.intersects(InSignBit)) { 1011 KnownOne |= NewBits; 1012 assert((KnownZero & NewBits) == 0); 1013 } else { // Otherwise, top bits aren't known. 1014 assert((KnownOne & NewBits) == 0); 1015 assert((KnownZero & NewBits) == 0); 1016 } 1017 break; 1018 } 1019 case ISD::ANY_EXTEND: { 1020 unsigned OperandBitWidth = 1021 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 1022 APInt InMask = NewMask.trunc(OperandBitWidth); 1023 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 1024 KnownZero, KnownOne, TLO, Depth+1)) 1025 return true; 1026 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1027 KnownZero = KnownZero.zext(BitWidth); 1028 KnownOne = KnownOne.zext(BitWidth); 1029 break; 1030 } 1031 case ISD::TRUNCATE: { 1032 // Simplify the input, using demanded bit information, and compute the known 1033 // zero/one bits live out. 1034 unsigned OperandBitWidth = 1035 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 1036 APInt TruncMask = NewMask.zext(OperandBitWidth); 1037 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, 1038 KnownZero, KnownOne, TLO, Depth+1)) 1039 return true; 1040 KnownZero = KnownZero.trunc(BitWidth); 1041 KnownOne = KnownOne.trunc(BitWidth); 1042 1043 // If the input is only used by this truncate, see if we can shrink it based 1044 // on the known demanded bits. 1045 if (Op.getOperand(0).getNode()->hasOneUse()) { 1046 SDValue In = Op.getOperand(0); 1047 switch (In.getOpcode()) { 1048 default: break; 1049 case ISD::SRL: 1050 // Shrink SRL by a constant if none of the high bits shifted in are 1051 // demanded. 1052 if (TLO.LegalTypes() && 1053 !isTypeDesirableForOp(ISD::SRL, Op.getValueType())) 1054 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1055 // undesirable. 1056 break; 1057 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); 1058 if (!ShAmt) 1059 break; 1060 SDValue Shift = In.getOperand(1); 1061 if (TLO.LegalTypes()) { 1062 uint64_t ShVal = ShAmt->getZExtValue(); 1063 Shift = TLO.DAG.getConstant(ShVal, dl, 1064 getShiftAmountTy(Op.getValueType(), DL)); 1065 } 1066 1067 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 1068 OperandBitWidth - BitWidth); 1069 HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth); 1070 1071 if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) { 1072 // None of the shifted in bits are needed. Add a truncate of the 1073 // shift input, then shift it. 1074 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, 1075 Op.getValueType(), 1076 In.getOperand(0)); 1077 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, 1078 Op.getValueType(), 1079 NewTrunc, 1080 Shift)); 1081 } 1082 break; 1083 } 1084 } 1085 1086 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1087 break; 1088 } 1089 case ISD::AssertZext: { 1090 // AssertZext demands all of the high bits, plus any of the low bits 1091 // demanded by its users. 1092 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1093 APInt InMask = APInt::getLowBitsSet(BitWidth, 1094 VT.getSizeInBits()); 1095 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask, 1096 KnownZero, KnownOne, TLO, Depth+1)) 1097 return true; 1098 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1099 1100 KnownZero |= ~InMask & NewMask; 1101 break; 1102 } 1103 case ISD::BITCAST: 1104 // If this is an FP->Int bitcast and if the sign bit is the only 1105 // thing demanded, turn this into a FGETSIGN. 1106 if (!TLO.LegalOperations() && 1107 !Op.getValueType().isVector() && 1108 !Op.getOperand(0).getValueType().isVector() && 1109 NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) && 1110 Op.getOperand(0).getValueType().isFloatingPoint()) { 1111 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType()); 1112 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1113 if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple() && 1114 Op.getOperand(0).getValueType() != MVT::f128) { 1115 // Cannot eliminate/lower SHL for f128 yet. 1116 EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32; 1117 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1118 // place. We expect the SHL to be eliminated by other optimizations. 1119 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0)); 1120 unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits(); 1121 if (!OpVTLegal && OpVTSizeInBits > 32) 1122 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign); 1123 unsigned ShVal = Op.getValueType().getSizeInBits()-1; 1124 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, Op.getValueType()); 1125 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 1126 Op.getValueType(), 1127 Sign, ShAmt)); 1128 } 1129 } 1130 break; 1131 case ISD::ADD: 1132 case ISD::MUL: 1133 case ISD::SUB: { 1134 // Add, Sub, and Mul don't demand any bits in positions beyond that 1135 // of the highest bit demanded of them. 1136 APInt LoMask = APInt::getLowBitsSet(BitWidth, 1137 BitWidth - NewMask.countLeadingZeros()); 1138 if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2, 1139 KnownOne2, TLO, Depth+1)) 1140 return true; 1141 if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2, 1142 KnownOne2, TLO, Depth+1)) 1143 return true; 1144 // See if the operation should be performed at a smaller bit width. 1145 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 1146 return true; 1147 } 1148 // FALL THROUGH 1149 default: 1150 // Just use computeKnownBits to compute output bits. 1151 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 1152 break; 1153 } 1154 1155 // If we know the value of all of the demanded bits, return this as a 1156 // constant. 1157 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { 1158 // Avoid folding to a constant if any OpaqueConstant is involved. 1159 const SDNode *N = Op.getNode(); 1160 for (SDNodeIterator I = SDNodeIterator::begin(N), 1161 E = SDNodeIterator::end(N); I != E; ++I) { 1162 SDNode *Op = *I; 1163 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 1164 if (C->isOpaque()) 1165 return false; 1166 } 1167 return TLO.CombineTo(Op, 1168 TLO.DAG.getConstant(KnownOne, dl, Op.getValueType())); 1169 } 1170 1171 return false; 1172 } 1173 1174 /// Determine which of the bits specified in Mask are known to be either zero or 1175 /// one and return them in the KnownZero/KnownOne bitsets. 1176 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1177 APInt &KnownZero, 1178 APInt &KnownOne, 1179 const SelectionDAG &DAG, 1180 unsigned Depth) const { 1181 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1182 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1183 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1184 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1185 "Should use MaskedValueIsZero if you don't know whether Op" 1186 " is a target node!"); 1187 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); 1188 } 1189 1190 /// This method can be implemented by targets that want to expose additional 1191 /// information about sign bits to the DAG Combiner. 1192 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 1193 const SelectionDAG &, 1194 unsigned Depth) const { 1195 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1196 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1197 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1198 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1199 "Should use ComputeNumSignBits if you don't know whether Op" 1200 " is a target node!"); 1201 return 1; 1202 } 1203 1204 /// Test if the given value is known to have exactly one bit set. This differs 1205 /// from computeKnownBits in that it doesn't need to determine which bit is set. 1206 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) { 1207 // A left-shift of a constant one will have exactly one bit set, because 1208 // shifting the bit off the end is undefined. 1209 if (Val.getOpcode() == ISD::SHL) 1210 if (ConstantSDNode *C = 1211 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) 1212 if (C->getAPIntValue() == 1) 1213 return true; 1214 1215 // Similarly, a right-shift of a constant sign-bit will have exactly 1216 // one bit set. 1217 if (Val.getOpcode() == ISD::SRL) 1218 if (ConstantSDNode *C = 1219 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) 1220 if (C->getAPIntValue().isSignBit()) 1221 return true; 1222 1223 // More could be done here, though the above checks are enough 1224 // to handle some common cases. 1225 1226 // Fall back to computeKnownBits to catch other known cases. 1227 EVT OpVT = Val.getValueType(); 1228 unsigned BitWidth = OpVT.getScalarType().getSizeInBits(); 1229 APInt KnownZero, KnownOne; 1230 DAG.computeKnownBits(Val, KnownZero, KnownOne); 1231 return (KnownZero.countPopulation() == BitWidth - 1) && 1232 (KnownOne.countPopulation() == 1); 1233 } 1234 1235 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 1236 if (!N) 1237 return false; 1238 1239 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1240 if (!CN) { 1241 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1242 if (!BV) 1243 return false; 1244 1245 BitVector UndefElements; 1246 CN = BV->getConstantSplatNode(&UndefElements); 1247 // Only interested in constant splats, and we don't try to handle undef 1248 // elements in identifying boolean constants. 1249 if (!CN || UndefElements.none()) 1250 return false; 1251 } 1252 1253 switch (getBooleanContents(N->getValueType(0))) { 1254 case UndefinedBooleanContent: 1255 return CN->getAPIntValue()[0]; 1256 case ZeroOrOneBooleanContent: 1257 return CN->isOne(); 1258 case ZeroOrNegativeOneBooleanContent: 1259 return CN->isAllOnesValue(); 1260 } 1261 1262 llvm_unreachable("Invalid boolean contents"); 1263 } 1264 1265 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 1266 if (!N) 1267 return false; 1268 1269 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1270 if (!CN) { 1271 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1272 if (!BV) 1273 return false; 1274 1275 BitVector UndefElements; 1276 CN = BV->getConstantSplatNode(&UndefElements); 1277 // Only interested in constant splats, and we don't try to handle undef 1278 // elements in identifying boolean constants. 1279 if (!CN || UndefElements.none()) 1280 return false; 1281 } 1282 1283 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 1284 return !CN->getAPIntValue()[0]; 1285 1286 return CN->isNullValue(); 1287 } 1288 1289 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 1290 bool SExt) const { 1291 if (VT == MVT::i1) 1292 return N->isOne(); 1293 1294 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 1295 switch (Cnt) { 1296 case TargetLowering::ZeroOrOneBooleanContent: 1297 // An extended value of 1 is always true, unless its original type is i1, 1298 // in which case it will be sign extended to -1. 1299 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 1300 case TargetLowering::UndefinedBooleanContent: 1301 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1302 return N->isAllOnesValue() && SExt; 1303 } 1304 llvm_unreachable("Unexpected enumeration."); 1305 } 1306 1307 /// Try to simplify a setcc built with the specified operands and cc. If it is 1308 /// unable to simplify it, return a null SDValue. 1309 SDValue 1310 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 1311 ISD::CondCode Cond, bool foldBooleans, 1312 DAGCombinerInfo &DCI, SDLoc dl) const { 1313 SelectionDAG &DAG = DCI.DAG; 1314 1315 // These setcc operations always fold. 1316 switch (Cond) { 1317 default: break; 1318 case ISD::SETFALSE: 1319 case ISD::SETFALSE2: return DAG.getConstant(0, dl, VT); 1320 case ISD::SETTRUE: 1321 case ISD::SETTRUE2: { 1322 TargetLowering::BooleanContent Cnt = 1323 getBooleanContents(N0->getValueType(0)); 1324 return DAG.getConstant( 1325 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl, 1326 VT); 1327 } 1328 } 1329 1330 // Ensure that the constant occurs on the RHS, and fold constant 1331 // comparisons. 1332 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 1333 if (isa<ConstantSDNode>(N0.getNode()) && 1334 (DCI.isBeforeLegalizeOps() || 1335 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 1336 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 1337 1338 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 1339 const APInt &C1 = N1C->getAPIntValue(); 1340 1341 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 1342 // equality comparison, then we're just comparing whether X itself is 1343 // zero. 1344 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) && 1345 N0.getOperand(0).getOpcode() == ISD::CTLZ && 1346 N0.getOperand(1).getOpcode() == ISD::Constant) { 1347 const APInt &ShAmt 1348 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1349 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1350 ShAmt == Log2_32(N0.getValueType().getSizeInBits())) { 1351 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 1352 // (srl (ctlz x), 5) == 0 -> X != 0 1353 // (srl (ctlz x), 5) != 1 -> X != 0 1354 Cond = ISD::SETNE; 1355 } else { 1356 // (srl (ctlz x), 5) != 0 -> X == 0 1357 // (srl (ctlz x), 5) == 1 -> X == 0 1358 Cond = ISD::SETEQ; 1359 } 1360 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 1361 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 1362 Zero, Cond); 1363 } 1364 } 1365 1366 SDValue CTPOP = N0; 1367 // Look through truncs that don't change the value of a ctpop. 1368 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 1369 CTPOP = N0.getOperand(0); 1370 1371 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 1372 (N0 == CTPOP || N0.getValueType().getSizeInBits() > 1373 Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) { 1374 EVT CTVT = CTPOP.getValueType(); 1375 SDValue CTOp = CTPOP.getOperand(0); 1376 1377 // (ctpop x) u< 2 -> (x & x-1) == 0 1378 // (ctpop x) u> 1 -> (x & x-1) != 0 1379 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 1380 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 1381 DAG.getConstant(1, dl, CTVT)); 1382 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 1383 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 1384 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 1385 } 1386 1387 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 1388 } 1389 1390 // (zext x) == C --> x == (trunc C) 1391 // (sext x) == C --> x == (trunc C) 1392 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1393 DCI.isBeforeLegalize() && N0->hasOneUse()) { 1394 unsigned MinBits = N0.getValueSizeInBits(); 1395 SDValue PreExt; 1396 bool Signed = false; 1397 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 1398 // ZExt 1399 MinBits = N0->getOperand(0).getValueSizeInBits(); 1400 PreExt = N0->getOperand(0); 1401 } else if (N0->getOpcode() == ISD::AND) { 1402 // DAGCombine turns costly ZExts into ANDs 1403 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 1404 if ((C->getAPIntValue()+1).isPowerOf2()) { 1405 MinBits = C->getAPIntValue().countTrailingOnes(); 1406 PreExt = N0->getOperand(0); 1407 } 1408 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 1409 // SExt 1410 MinBits = N0->getOperand(0).getValueSizeInBits(); 1411 PreExt = N0->getOperand(0); 1412 Signed = true; 1413 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 1414 // ZEXTLOAD / SEXTLOAD 1415 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 1416 MinBits = LN0->getMemoryVT().getSizeInBits(); 1417 PreExt = N0; 1418 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 1419 Signed = true; 1420 MinBits = LN0->getMemoryVT().getSizeInBits(); 1421 PreExt = N0; 1422 } 1423 } 1424 1425 // Figure out how many bits we need to preserve this constant. 1426 unsigned ReqdBits = Signed ? 1427 C1.getBitWidth() - C1.getNumSignBits() + 1 : 1428 C1.getActiveBits(); 1429 1430 // Make sure we're not losing bits from the constant. 1431 if (MinBits > 0 && 1432 MinBits < C1.getBitWidth() && 1433 MinBits >= ReqdBits) { 1434 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 1435 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 1436 // Will get folded away. 1437 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 1438 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 1439 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 1440 } 1441 1442 // If truncating the setcc operands is not desirable, we can still 1443 // simplify the expression in some cases: 1444 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 1445 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 1446 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 1447 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 1448 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 1449 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 1450 SDValue TopSetCC = N0->getOperand(0); 1451 unsigned N0Opc = N0->getOpcode(); 1452 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 1453 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 1454 TopSetCC.getOpcode() == ISD::SETCC && 1455 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 1456 (isConstFalseVal(N1C) || 1457 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 1458 1459 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 1460 (!N1C->isNullValue() && Cond == ISD::SETNE); 1461 1462 if (!Inverse) 1463 return TopSetCC; 1464 1465 ISD::CondCode InvCond = ISD::getSetCCInverse( 1466 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 1467 TopSetCC.getOperand(0).getValueType().isInteger()); 1468 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 1469 TopSetCC.getOperand(1), 1470 InvCond); 1471 1472 } 1473 } 1474 } 1475 1476 // If the LHS is '(and load, const)', the RHS is 0, 1477 // the test is for equality or unsigned, and all 1 bits of the const are 1478 // in the same partial word, see if we can shorten the load. 1479 if (DCI.isBeforeLegalize() && 1480 !ISD::isSignedIntSetCC(Cond) && 1481 N0.getOpcode() == ISD::AND && C1 == 0 && 1482 N0.getNode()->hasOneUse() && 1483 isa<LoadSDNode>(N0.getOperand(0)) && 1484 N0.getOperand(0).getNode()->hasOneUse() && 1485 isa<ConstantSDNode>(N0.getOperand(1))) { 1486 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 1487 APInt bestMask; 1488 unsigned bestWidth = 0, bestOffset = 0; 1489 if (!Lod->isVolatile() && Lod->isUnindexed()) { 1490 unsigned origWidth = N0.getValueType().getSizeInBits(); 1491 unsigned maskWidth = origWidth; 1492 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 1493 // 8 bits, but have to be careful... 1494 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 1495 origWidth = Lod->getMemoryVT().getSizeInBits(); 1496 const APInt &Mask = 1497 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1498 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 1499 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 1500 for (unsigned offset=0; offset<origWidth/width; offset++) { 1501 if ((newMask & Mask) == Mask) { 1502 if (!DAG.getDataLayout().isLittleEndian()) 1503 bestOffset = (origWidth/width - offset - 1) * (width/8); 1504 else 1505 bestOffset = (uint64_t)offset * (width/8); 1506 bestMask = Mask.lshr(offset * (width/8) * 8); 1507 bestWidth = width; 1508 break; 1509 } 1510 newMask = newMask << width; 1511 } 1512 } 1513 } 1514 if (bestWidth) { 1515 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 1516 if (newVT.isRound()) { 1517 EVT PtrType = Lod->getOperand(1).getValueType(); 1518 SDValue Ptr = Lod->getBasePtr(); 1519 if (bestOffset != 0) 1520 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 1521 DAG.getConstant(bestOffset, dl, PtrType)); 1522 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 1523 SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 1524 Lod->getPointerInfo().getWithOffset(bestOffset), 1525 false, false, false, NewAlign); 1526 return DAG.getSetCC(dl, VT, 1527 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 1528 DAG.getConstant(bestMask.trunc(bestWidth), 1529 dl, newVT)), 1530 DAG.getConstant(0LL, dl, newVT), Cond); 1531 } 1532 } 1533 } 1534 1535 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 1536 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 1537 unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits(); 1538 1539 // If the comparison constant has bits in the upper part, the 1540 // zero-extended value could never match. 1541 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 1542 C1.getBitWidth() - InSize))) { 1543 switch (Cond) { 1544 case ISD::SETUGT: 1545 case ISD::SETUGE: 1546 case ISD::SETEQ: return DAG.getConstant(0, dl, VT); 1547 case ISD::SETULT: 1548 case ISD::SETULE: 1549 case ISD::SETNE: return DAG.getConstant(1, dl, VT); 1550 case ISD::SETGT: 1551 case ISD::SETGE: 1552 // True if the sign bit of C1 is set. 1553 return DAG.getConstant(C1.isNegative(), dl, VT); 1554 case ISD::SETLT: 1555 case ISD::SETLE: 1556 // True if the sign bit of C1 isn't set. 1557 return DAG.getConstant(C1.isNonNegative(), dl, VT); 1558 default: 1559 break; 1560 } 1561 } 1562 1563 // Otherwise, we can perform the comparison with the low bits. 1564 switch (Cond) { 1565 case ISD::SETEQ: 1566 case ISD::SETNE: 1567 case ISD::SETUGT: 1568 case ISD::SETUGE: 1569 case ISD::SETULT: 1570 case ISD::SETULE: { 1571 EVT newVT = N0.getOperand(0).getValueType(); 1572 if (DCI.isBeforeLegalizeOps() || 1573 (isOperationLegal(ISD::SETCC, newVT) && 1574 getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) { 1575 EVT NewSetCCVT = 1576 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); 1577 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 1578 1579 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 1580 NewConst, Cond); 1581 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 1582 } 1583 break; 1584 } 1585 default: 1586 break; // todo, be more careful with signed comparisons 1587 } 1588 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 1589 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1590 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 1591 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 1592 EVT ExtDstTy = N0.getValueType(); 1593 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 1594 1595 // If the constant doesn't fit into the number of bits for the source of 1596 // the sign extension, it is impossible for both sides to be equal. 1597 if (C1.getMinSignedBits() > ExtSrcTyBits) 1598 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 1599 1600 SDValue ZextOp; 1601 EVT Op0Ty = N0.getOperand(0).getValueType(); 1602 if (Op0Ty == ExtSrcTy) { 1603 ZextOp = N0.getOperand(0); 1604 } else { 1605 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 1606 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 1607 DAG.getConstant(Imm, dl, Op0Ty)); 1608 } 1609 if (!DCI.isCalledByLegalizer()) 1610 DCI.AddToWorklist(ZextOp.getNode()); 1611 // Otherwise, make this a use of a zext. 1612 return DAG.getSetCC(dl, VT, ZextOp, 1613 DAG.getConstant(C1 & APInt::getLowBitsSet( 1614 ExtDstTyBits, 1615 ExtSrcTyBits), 1616 dl, ExtDstTy), 1617 Cond); 1618 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) && 1619 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1620 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 1621 if (N0.getOpcode() == ISD::SETCC && 1622 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 1623 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1); 1624 if (TrueWhenTrue) 1625 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 1626 // Invert the condition. 1627 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 1628 CC = ISD::getSetCCInverse(CC, 1629 N0.getOperand(0).getValueType().isInteger()); 1630 if (DCI.isBeforeLegalizeOps() || 1631 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 1632 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 1633 } 1634 1635 if ((N0.getOpcode() == ISD::XOR || 1636 (N0.getOpcode() == ISD::AND && 1637 N0.getOperand(0).getOpcode() == ISD::XOR && 1638 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 1639 isa<ConstantSDNode>(N0.getOperand(1)) && 1640 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) { 1641 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 1642 // can only do this if the top bits are known zero. 1643 unsigned BitWidth = N0.getValueSizeInBits(); 1644 if (DAG.MaskedValueIsZero(N0, 1645 APInt::getHighBitsSet(BitWidth, 1646 BitWidth-1))) { 1647 // Okay, get the un-inverted input value. 1648 SDValue Val; 1649 if (N0.getOpcode() == ISD::XOR) 1650 Val = N0.getOperand(0); 1651 else { 1652 assert(N0.getOpcode() == ISD::AND && 1653 N0.getOperand(0).getOpcode() == ISD::XOR); 1654 // ((X^1)&1)^1 -> X & 1 1655 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 1656 N0.getOperand(0).getOperand(0), 1657 N0.getOperand(1)); 1658 } 1659 1660 return DAG.getSetCC(dl, VT, Val, N1, 1661 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1662 } 1663 } else if (N1C->getAPIntValue() == 1 && 1664 (VT == MVT::i1 || 1665 getBooleanContents(N0->getValueType(0)) == 1666 ZeroOrOneBooleanContent)) { 1667 SDValue Op0 = N0; 1668 if (Op0.getOpcode() == ISD::TRUNCATE) 1669 Op0 = Op0.getOperand(0); 1670 1671 if ((Op0.getOpcode() == ISD::XOR) && 1672 Op0.getOperand(0).getOpcode() == ISD::SETCC && 1673 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 1674 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 1675 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 1676 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 1677 Cond); 1678 } 1679 if (Op0.getOpcode() == ISD::AND && 1680 isa<ConstantSDNode>(Op0.getOperand(1)) && 1681 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) { 1682 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 1683 if (Op0.getValueType().bitsGT(VT)) 1684 Op0 = DAG.getNode(ISD::AND, dl, VT, 1685 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 1686 DAG.getConstant(1, dl, VT)); 1687 else if (Op0.getValueType().bitsLT(VT)) 1688 Op0 = DAG.getNode(ISD::AND, dl, VT, 1689 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 1690 DAG.getConstant(1, dl, VT)); 1691 1692 return DAG.getSetCC(dl, VT, Op0, 1693 DAG.getConstant(0, dl, Op0.getValueType()), 1694 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1695 } 1696 if (Op0.getOpcode() == ISD::AssertZext && 1697 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 1698 return DAG.getSetCC(dl, VT, Op0, 1699 DAG.getConstant(0, dl, Op0.getValueType()), 1700 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1701 } 1702 } 1703 1704 APInt MinVal, MaxVal; 1705 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits(); 1706 if (ISD::isSignedIntSetCC(Cond)) { 1707 MinVal = APInt::getSignedMinValue(OperandBitSize); 1708 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 1709 } else { 1710 MinVal = APInt::getMinValue(OperandBitSize); 1711 MaxVal = APInt::getMaxValue(OperandBitSize); 1712 } 1713 1714 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 1715 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 1716 if (C1 == MinVal) return DAG.getConstant(1, dl, VT); // X >= MIN --> true 1717 // X >= C0 --> X > (C0 - 1) 1718 APInt C = C1 - 1; 1719 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 1720 if ((DCI.isBeforeLegalizeOps() || 1721 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1722 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1723 isLegalICmpImmediate(C.getSExtValue())))) { 1724 return DAG.getSetCC(dl, VT, N0, 1725 DAG.getConstant(C, dl, N1.getValueType()), 1726 NewCC); 1727 } 1728 } 1729 1730 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 1731 if (C1 == MaxVal) return DAG.getConstant(1, dl, VT); // X <= MAX --> true 1732 // X <= C0 --> X < (C0 + 1) 1733 APInt C = C1 + 1; 1734 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 1735 if ((DCI.isBeforeLegalizeOps() || 1736 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1737 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1738 isLegalICmpImmediate(C.getSExtValue())))) { 1739 return DAG.getSetCC(dl, VT, N0, 1740 DAG.getConstant(C, dl, N1.getValueType()), 1741 NewCC); 1742 } 1743 } 1744 1745 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) 1746 return DAG.getConstant(0, dl, VT); // X < MIN --> false 1747 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal) 1748 return DAG.getConstant(1, dl, VT); // X >= MIN --> true 1749 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal) 1750 return DAG.getConstant(0, dl, VT); // X > MAX --> false 1751 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal) 1752 return DAG.getConstant(1, dl, VT); // X <= MAX --> true 1753 1754 // Canonicalize setgt X, Min --> setne X, Min 1755 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) 1756 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1757 // Canonicalize setlt X, Max --> setne X, Max 1758 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) 1759 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1760 1761 // If we have setult X, 1, turn it into seteq X, 0 1762 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) 1763 return DAG.getSetCC(dl, VT, N0, 1764 DAG.getConstant(MinVal, dl, N0.getValueType()), 1765 ISD::SETEQ); 1766 // If we have setugt X, Max-1, turn it into seteq X, Max 1767 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) 1768 return DAG.getSetCC(dl, VT, N0, 1769 DAG.getConstant(MaxVal, dl, N0.getValueType()), 1770 ISD::SETEQ); 1771 1772 // If we have "setcc X, C0", check to see if we can shrink the immediate 1773 // by changing cc. 1774 1775 // SETUGT X, SINTMAX -> SETLT X, 0 1776 if (Cond == ISD::SETUGT && 1777 C1 == APInt::getSignedMaxValue(OperandBitSize)) 1778 return DAG.getSetCC(dl, VT, N0, 1779 DAG.getConstant(0, dl, N1.getValueType()), 1780 ISD::SETLT); 1781 1782 // SETULT X, SINTMIN -> SETGT X, -1 1783 if (Cond == ISD::SETULT && 1784 C1 == APInt::getSignedMinValue(OperandBitSize)) { 1785 SDValue ConstMinusOne = 1786 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 1787 N1.getValueType()); 1788 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 1789 } 1790 1791 // Fold bit comparisons when we can. 1792 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1793 (VT == N0.getValueType() || 1794 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 1795 N0.getOpcode() == ISD::AND) { 1796 auto &DL = DAG.getDataLayout(); 1797 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1798 EVT ShiftTy = DCI.isBeforeLegalize() 1799 ? getPointerTy(DL) 1800 : getShiftAmountTy(N0.getValueType(), DL); 1801 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 1802 // Perform the xform if the AND RHS is a single bit. 1803 if (AndRHS->getAPIntValue().isPowerOf2()) { 1804 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1805 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1806 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, 1807 ShiftTy))); 1808 } 1809 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 1810 // (X & 8) == 8 --> (X & 8) >> 3 1811 // Perform the xform if C1 is a single bit. 1812 if (C1.isPowerOf2()) { 1813 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1814 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1815 DAG.getConstant(C1.logBase2(), dl, 1816 ShiftTy))); 1817 } 1818 } 1819 } 1820 } 1821 1822 if (C1.getMinSignedBits() <= 64 && 1823 !isLegalICmpImmediate(C1.getSExtValue())) { 1824 // (X & -256) == 256 -> (X >> 8) == 1 1825 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1826 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 1827 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1828 const APInt &AndRHSC = AndRHS->getAPIntValue(); 1829 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 1830 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 1831 auto &DL = DAG.getDataLayout(); 1832 EVT ShiftTy = DCI.isBeforeLegalize() 1833 ? getPointerTy(DL) 1834 : getShiftAmountTy(N0.getValueType(), DL); 1835 EVT CmpTy = N0.getValueType(); 1836 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 1837 DAG.getConstant(ShiftBits, dl, 1838 ShiftTy)); 1839 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); 1840 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 1841 } 1842 } 1843 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 1844 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 1845 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 1846 // X < 0x100000000 -> (X >> 32) < 1 1847 // X >= 0x100000000 -> (X >> 32) >= 1 1848 // X <= 0x0ffffffff -> (X >> 32) < 1 1849 // X > 0x0ffffffff -> (X >> 32) >= 1 1850 unsigned ShiftBits; 1851 APInt NewC = C1; 1852 ISD::CondCode NewCond = Cond; 1853 if (AdjOne) { 1854 ShiftBits = C1.countTrailingOnes(); 1855 NewC = NewC + 1; 1856 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 1857 } else { 1858 ShiftBits = C1.countTrailingZeros(); 1859 } 1860 NewC = NewC.lshr(ShiftBits); 1861 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 1862 isLegalICmpImmediate(NewC.getSExtValue())) { 1863 auto &DL = DAG.getDataLayout(); 1864 EVT ShiftTy = DCI.isBeforeLegalize() 1865 ? getPointerTy(DL) 1866 : getShiftAmountTy(N0.getValueType(), DL); 1867 EVT CmpTy = N0.getValueType(); 1868 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 1869 DAG.getConstant(ShiftBits, dl, ShiftTy)); 1870 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); 1871 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 1872 } 1873 } 1874 } 1875 } 1876 1877 if (isa<ConstantFPSDNode>(N0.getNode())) { 1878 // Constant fold or commute setcc. 1879 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); 1880 if (O.getNode()) return O; 1881 } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { 1882 // If the RHS of an FP comparison is a constant, simplify it away in 1883 // some cases. 1884 if (CFP->getValueAPF().isNaN()) { 1885 // If an operand is known to be a nan, we can fold it. 1886 switch (ISD::getUnorderedFlavor(Cond)) { 1887 default: llvm_unreachable("Unknown flavor!"); 1888 case 0: // Known false. 1889 return DAG.getConstant(0, dl, VT); 1890 case 1: // Known true. 1891 return DAG.getConstant(1, dl, VT); 1892 case 2: // Undefined. 1893 return DAG.getUNDEF(VT); 1894 } 1895 } 1896 1897 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 1898 // constant if knowing that the operand is non-nan is enough. We prefer to 1899 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 1900 // materialize 0.0. 1901 if (Cond == ISD::SETO || Cond == ISD::SETUO) 1902 return DAG.getSetCC(dl, VT, N0, N0, Cond); 1903 1904 // If the condition is not legal, see if we can find an equivalent one 1905 // which is legal. 1906 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 1907 // If the comparison was an awkward floating-point == or != and one of 1908 // the comparison operands is infinity or negative infinity, convert the 1909 // condition to a less-awkward <= or >=. 1910 if (CFP->getValueAPF().isInfinity()) { 1911 if (CFP->getValueAPF().isNegative()) { 1912 if (Cond == ISD::SETOEQ && 1913 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 1914 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 1915 if (Cond == ISD::SETUEQ && 1916 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 1917 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 1918 if (Cond == ISD::SETUNE && 1919 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 1920 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 1921 if (Cond == ISD::SETONE && 1922 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 1923 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 1924 } else { 1925 if (Cond == ISD::SETOEQ && 1926 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 1927 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 1928 if (Cond == ISD::SETUEQ && 1929 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 1930 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 1931 if (Cond == ISD::SETUNE && 1932 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 1933 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 1934 if (Cond == ISD::SETONE && 1935 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 1936 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 1937 } 1938 } 1939 } 1940 } 1941 1942 if (N0 == N1) { 1943 // The sext(setcc()) => setcc() optimization relies on the appropriate 1944 // constant being emitted. 1945 uint64_t EqVal = 0; 1946 switch (getBooleanContents(N0.getValueType())) { 1947 case UndefinedBooleanContent: 1948 case ZeroOrOneBooleanContent: 1949 EqVal = ISD::isTrueWhenEqual(Cond); 1950 break; 1951 case ZeroOrNegativeOneBooleanContent: 1952 EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0; 1953 break; 1954 } 1955 1956 // We can always fold X == X for integer setcc's. 1957 if (N0.getValueType().isInteger()) { 1958 return DAG.getConstant(EqVal, dl, VT); 1959 } 1960 unsigned UOF = ISD::getUnorderedFlavor(Cond); 1961 if (UOF == 2) // FP operators that are undefined on NaNs. 1962 return DAG.getConstant(EqVal, dl, VT); 1963 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) 1964 return DAG.getConstant(EqVal, dl, VT); 1965 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 1966 // if it is not already. 1967 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 1968 if (NewCond != Cond && (DCI.isBeforeLegalizeOps() || 1969 getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal)) 1970 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 1971 } 1972 1973 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1974 N0.getValueType().isInteger()) { 1975 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 1976 N0.getOpcode() == ISD::XOR) { 1977 // Simplify (X+Y) == (X+Z) --> Y == Z 1978 if (N0.getOpcode() == N1.getOpcode()) { 1979 if (N0.getOperand(0) == N1.getOperand(0)) 1980 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 1981 if (N0.getOperand(1) == N1.getOperand(1)) 1982 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 1983 if (DAG.isCommutativeBinOp(N0.getOpcode())) { 1984 // If X op Y == Y op X, try other combinations. 1985 if (N0.getOperand(0) == N1.getOperand(1)) 1986 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 1987 Cond); 1988 if (N0.getOperand(1) == N1.getOperand(0)) 1989 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 1990 Cond); 1991 } 1992 } 1993 1994 // If RHS is a legal immediate value for a compare instruction, we need 1995 // to be careful about increasing register pressure needlessly. 1996 bool LegalRHSImm = false; 1997 1998 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 1999 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2000 // Turn (X+C1) == C2 --> X == C2-C1 2001 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 2002 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2003 DAG.getConstant(RHSC->getAPIntValue()- 2004 LHSR->getAPIntValue(), 2005 dl, N0.getValueType()), Cond); 2006 } 2007 2008 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 2009 if (N0.getOpcode() == ISD::XOR) 2010 // If we know that all of the inverted bits are zero, don't bother 2011 // performing the inversion. 2012 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 2013 return 2014 DAG.getSetCC(dl, VT, N0.getOperand(0), 2015 DAG.getConstant(LHSR->getAPIntValue() ^ 2016 RHSC->getAPIntValue(), 2017 dl, N0.getValueType()), 2018 Cond); 2019 } 2020 2021 // Turn (C1-X) == C2 --> X == C1-C2 2022 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 2023 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 2024 return 2025 DAG.getSetCC(dl, VT, N0.getOperand(1), 2026 DAG.getConstant(SUBC->getAPIntValue() - 2027 RHSC->getAPIntValue(), 2028 dl, N0.getValueType()), 2029 Cond); 2030 } 2031 } 2032 2033 // Could RHSC fold directly into a compare? 2034 if (RHSC->getValueType(0).getSizeInBits() <= 64) 2035 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 2036 } 2037 2038 // Simplify (X+Z) == X --> Z == 0 2039 // Don't do this if X is an immediate that can fold into a cmp 2040 // instruction and X+Z has other uses. It could be an induction variable 2041 // chain, and the transform would increase register pressure. 2042 if (!LegalRHSImm || N0.getNode()->hasOneUse()) { 2043 if (N0.getOperand(0) == N1) 2044 return DAG.getSetCC(dl, VT, N0.getOperand(1), 2045 DAG.getConstant(0, dl, N0.getValueType()), Cond); 2046 if (N0.getOperand(1) == N1) { 2047 if (DAG.isCommutativeBinOp(N0.getOpcode())) 2048 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2049 DAG.getConstant(0, dl, N0.getValueType()), 2050 Cond); 2051 if (N0.getNode()->hasOneUse()) { 2052 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); 2053 auto &DL = DAG.getDataLayout(); 2054 // (Z-X) == X --> Z == X<<1 2055 SDValue SH = DAG.getNode( 2056 ISD::SHL, dl, N1.getValueType(), N1, 2057 DAG.getConstant(1, dl, 2058 getShiftAmountTy(N1.getValueType(), DL))); 2059 if (!DCI.isCalledByLegalizer()) 2060 DCI.AddToWorklist(SH.getNode()); 2061 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); 2062 } 2063 } 2064 } 2065 } 2066 2067 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 2068 N1.getOpcode() == ISD::XOR) { 2069 // Simplify X == (X+Z) --> Z == 0 2070 if (N1.getOperand(0) == N0) 2071 return DAG.getSetCC(dl, VT, N1.getOperand(1), 2072 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2073 if (N1.getOperand(1) == N0) { 2074 if (DAG.isCommutativeBinOp(N1.getOpcode())) 2075 return DAG.getSetCC(dl, VT, N1.getOperand(0), 2076 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2077 if (N1.getNode()->hasOneUse()) { 2078 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); 2079 auto &DL = DAG.getDataLayout(); 2080 // X == (Z-X) --> X<<1 == Z 2081 SDValue SH = DAG.getNode( 2082 ISD::SHL, dl, N1.getValueType(), N0, 2083 DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL))); 2084 if (!DCI.isCalledByLegalizer()) 2085 DCI.AddToWorklist(SH.getNode()); 2086 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); 2087 } 2088 } 2089 } 2090 2091 // Simplify x&y == y to x&y != 0 if y has exactly one bit set. 2092 // Note that where y is variable and is known to have at most 2093 // one bit set (for example, if it is z&1) we cannot do this; 2094 // the expressions are not equivalent when y==0. 2095 if (N0.getOpcode() == ISD::AND) 2096 if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) { 2097 if (ValueHasExactlyOneBitSet(N1, DAG)) { 2098 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 2099 if (DCI.isBeforeLegalizeOps() || 2100 isCondCodeLegal(Cond, N0.getSimpleValueType())) { 2101 SDValue Zero = DAG.getConstant(0, dl, N1.getValueType()); 2102 return DAG.getSetCC(dl, VT, N0, Zero, Cond); 2103 } 2104 } 2105 } 2106 if (N1.getOpcode() == ISD::AND) 2107 if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) { 2108 if (ValueHasExactlyOneBitSet(N0, DAG)) { 2109 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 2110 if (DCI.isBeforeLegalizeOps() || 2111 isCondCodeLegal(Cond, N1.getSimpleValueType())) { 2112 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 2113 return DAG.getSetCC(dl, VT, N1, Zero, Cond); 2114 } 2115 } 2116 } 2117 } 2118 2119 // Fold away ALL boolean setcc's. 2120 SDValue Temp; 2121 if (N0.getValueType() == MVT::i1 && foldBooleans) { 2122 switch (Cond) { 2123 default: llvm_unreachable("Unknown integer setcc!"); 2124 case ISD::SETEQ: // X == Y -> ~(X^Y) 2125 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2126 N0 = DAG.getNOT(dl, Temp, MVT::i1); 2127 if (!DCI.isCalledByLegalizer()) 2128 DCI.AddToWorklist(Temp.getNode()); 2129 break; 2130 case ISD::SETNE: // X != Y --> (X^Y) 2131 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2132 break; 2133 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 2134 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 2135 Temp = DAG.getNOT(dl, N0, MVT::i1); 2136 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp); 2137 if (!DCI.isCalledByLegalizer()) 2138 DCI.AddToWorklist(Temp.getNode()); 2139 break; 2140 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 2141 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 2142 Temp = DAG.getNOT(dl, N1, MVT::i1); 2143 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp); 2144 if (!DCI.isCalledByLegalizer()) 2145 DCI.AddToWorklist(Temp.getNode()); 2146 break; 2147 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 2148 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 2149 Temp = DAG.getNOT(dl, N0, MVT::i1); 2150 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp); 2151 if (!DCI.isCalledByLegalizer()) 2152 DCI.AddToWorklist(Temp.getNode()); 2153 break; 2154 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 2155 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 2156 Temp = DAG.getNOT(dl, N1, MVT::i1); 2157 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp); 2158 break; 2159 } 2160 if (VT != MVT::i1) { 2161 if (!DCI.isCalledByLegalizer()) 2162 DCI.AddToWorklist(N0.getNode()); 2163 // FIXME: If running after legalize, we probably can't do this. 2164 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0); 2165 } 2166 return N0; 2167 } 2168 2169 // Could not fold it. 2170 return SDValue(); 2171 } 2172 2173 /// Returns true (and the GlobalValue and the offset) if the node is a 2174 /// GlobalAddress + offset. 2175 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, 2176 int64_t &Offset) const { 2177 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 2178 GA = GASD->getGlobal(); 2179 Offset += GASD->getOffset(); 2180 return true; 2181 } 2182 2183 if (N->getOpcode() == ISD::ADD) { 2184 SDValue N1 = N->getOperand(0); 2185 SDValue N2 = N->getOperand(1); 2186 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 2187 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 2188 Offset += V->getSExtValue(); 2189 return true; 2190 } 2191 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 2192 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 2193 Offset += V->getSExtValue(); 2194 return true; 2195 } 2196 } 2197 } 2198 2199 return false; 2200 } 2201 2202 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 2203 DAGCombinerInfo &DCI) const { 2204 // Default implementation: no optimization. 2205 return SDValue(); 2206 } 2207 2208 //===----------------------------------------------------------------------===// 2209 // Inline Assembler Implementation Methods 2210 //===----------------------------------------------------------------------===// 2211 2212 TargetLowering::ConstraintType 2213 TargetLowering::getConstraintType(StringRef Constraint) const { 2214 unsigned S = Constraint.size(); 2215 2216 if (S == 1) { 2217 switch (Constraint[0]) { 2218 default: break; 2219 case 'r': return C_RegisterClass; 2220 case 'm': // memory 2221 case 'o': // offsetable 2222 case 'V': // not offsetable 2223 return C_Memory; 2224 case 'i': // Simple Integer or Relocatable Constant 2225 case 'n': // Simple Integer 2226 case 'E': // Floating Point Constant 2227 case 'F': // Floating Point Constant 2228 case 's': // Relocatable Constant 2229 case 'p': // Address. 2230 case 'X': // Allow ANY value. 2231 case 'I': // Target registers. 2232 case 'J': 2233 case 'K': 2234 case 'L': 2235 case 'M': 2236 case 'N': 2237 case 'O': 2238 case 'P': 2239 case '<': 2240 case '>': 2241 return C_Other; 2242 } 2243 } 2244 2245 if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { 2246 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 2247 return C_Memory; 2248 return C_Register; 2249 } 2250 return C_Unknown; 2251 } 2252 2253 /// Try to replace an X constraint, which matches anything, with another that 2254 /// has more specific requirements based on the type of the corresponding 2255 /// operand. 2256 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ 2257 if (ConstraintVT.isInteger()) 2258 return "r"; 2259 if (ConstraintVT.isFloatingPoint()) 2260 return "f"; // works for many targets 2261 return nullptr; 2262 } 2263 2264 /// Lower the specified operand into the Ops vector. 2265 /// If it is invalid, don't add anything to Ops. 2266 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 2267 std::string &Constraint, 2268 std::vector<SDValue> &Ops, 2269 SelectionDAG &DAG) const { 2270 2271 if (Constraint.length() > 1) return; 2272 2273 char ConstraintLetter = Constraint[0]; 2274 switch (ConstraintLetter) { 2275 default: break; 2276 case 'X': // Allows any operand; labels (basic block) use this. 2277 if (Op.getOpcode() == ISD::BasicBlock) { 2278 Ops.push_back(Op); 2279 return; 2280 } 2281 // fall through 2282 case 'i': // Simple Integer or Relocatable Constant 2283 case 'n': // Simple Integer 2284 case 's': { // Relocatable Constant 2285 // These operands are interested in values of the form (GV+C), where C may 2286 // be folded in as an offset of GV, or it may be explicitly added. Also, it 2287 // is possible and fine if either GV or C are missing. 2288 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2289 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 2290 2291 // If we have "(add GV, C)", pull out GV/C 2292 if (Op.getOpcode() == ISD::ADD) { 2293 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2294 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 2295 if (!C || !GA) { 2296 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 2297 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 2298 } 2299 if (!C || !GA) { 2300 C = nullptr; 2301 GA = nullptr; 2302 } 2303 } 2304 2305 // If we find a valid operand, map to the TargetXXX version so that the 2306 // value itself doesn't get selected. 2307 if (GA) { // Either &GV or &GV+C 2308 if (ConstraintLetter != 'n') { 2309 int64_t Offs = GA->getOffset(); 2310 if (C) Offs += C->getZExtValue(); 2311 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 2312 C ? SDLoc(C) : SDLoc(), 2313 Op.getValueType(), Offs)); 2314 } 2315 return; 2316 } 2317 if (C) { // just C, no GV. 2318 // Simple constants are not allowed for 's'. 2319 if (ConstraintLetter != 's') { 2320 // gcc prints these as sign extended. Sign extend value to 64 bits 2321 // now; without this it would get ZExt'd later in 2322 // ScheduleDAGSDNodes::EmitNode, which is very generic. 2323 Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(), 2324 SDLoc(C), MVT::i64)); 2325 } 2326 return; 2327 } 2328 break; 2329 } 2330 } 2331 } 2332 2333 std::pair<unsigned, const TargetRegisterClass *> 2334 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 2335 StringRef Constraint, 2336 MVT VT) const { 2337 if (Constraint.empty() || Constraint[0] != '{') 2338 return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr)); 2339 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); 2340 2341 // Remove the braces from around the name. 2342 StringRef RegName(Constraint.data()+1, Constraint.size()-2); 2343 2344 std::pair<unsigned, const TargetRegisterClass*> R = 2345 std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr)); 2346 2347 // Figure out which register class contains this reg. 2348 for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(), 2349 E = RI->regclass_end(); RCI != E; ++RCI) { 2350 const TargetRegisterClass *RC = *RCI; 2351 2352 // If none of the value types for this register class are valid, we 2353 // can't use it. For example, 64-bit reg classes on 32-bit targets. 2354 if (!isLegalRC(RC)) 2355 continue; 2356 2357 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 2358 I != E; ++I) { 2359 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 2360 std::pair<unsigned, const TargetRegisterClass*> S = 2361 std::make_pair(*I, RC); 2362 2363 // If this register class has the requested value type, return it, 2364 // otherwise keep searching and return the first class found 2365 // if no other is found which explicitly has the requested type. 2366 if (RC->hasType(VT)) 2367 return S; 2368 else if (!R.second) 2369 R = S; 2370 } 2371 } 2372 } 2373 2374 return R; 2375 } 2376 2377 //===----------------------------------------------------------------------===// 2378 // Constraint Selection. 2379 2380 /// Return true of this is an input operand that is a matching constraint like 2381 /// "4". 2382 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 2383 assert(!ConstraintCode.empty() && "No known constraint!"); 2384 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 2385 } 2386 2387 /// If this is an input matching constraint, this method returns the output 2388 /// operand it matches. 2389 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 2390 assert(!ConstraintCode.empty() && "No known constraint!"); 2391 return atoi(ConstraintCode.c_str()); 2392 } 2393 2394 /// Split up the constraint string from the inline assembly value into the 2395 /// specific constraints and their prefixes, and also tie in the associated 2396 /// operand values. 2397 /// If this returns an empty vector, and if the constraint string itself 2398 /// isn't empty, there was an error parsing. 2399 TargetLowering::AsmOperandInfoVector 2400 TargetLowering::ParseConstraints(const DataLayout &DL, 2401 const TargetRegisterInfo *TRI, 2402 ImmutableCallSite CS) const { 2403 /// Information about all of the constraints. 2404 AsmOperandInfoVector ConstraintOperands; 2405 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 2406 unsigned maCount = 0; // Largest number of multiple alternative constraints. 2407 2408 // Do a prepass over the constraints, canonicalizing them, and building up the 2409 // ConstraintOperands list. 2410 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 2411 unsigned ResNo = 0; // ResNo - The result number of the next output. 2412 2413 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 2414 ConstraintOperands.emplace_back(std::move(CI)); 2415 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 2416 2417 // Update multiple alternative constraint count. 2418 if (OpInfo.multipleAlternatives.size() > maCount) 2419 maCount = OpInfo.multipleAlternatives.size(); 2420 2421 OpInfo.ConstraintVT = MVT::Other; 2422 2423 // Compute the value type for each operand. 2424 switch (OpInfo.Type) { 2425 case InlineAsm::isOutput: 2426 // Indirect outputs just consume an argument. 2427 if (OpInfo.isIndirect) { 2428 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2429 break; 2430 } 2431 2432 // The return value of the call is this value. As such, there is no 2433 // corresponding argument. 2434 assert(!CS.getType()->isVoidTy() && 2435 "Bad inline asm!"); 2436 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 2437 OpInfo.ConstraintVT = 2438 getSimpleValueType(DL, STy->getElementType(ResNo)); 2439 } else { 2440 assert(ResNo == 0 && "Asm only has one result!"); 2441 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 2442 } 2443 ++ResNo; 2444 break; 2445 case InlineAsm::isInput: 2446 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2447 break; 2448 case InlineAsm::isClobber: 2449 // Nothing to do. 2450 break; 2451 } 2452 2453 if (OpInfo.CallOperandVal) { 2454 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 2455 if (OpInfo.isIndirect) { 2456 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 2457 if (!PtrTy) 2458 report_fatal_error("Indirect operand for inline asm not a pointer!"); 2459 OpTy = PtrTy->getElementType(); 2460 } 2461 2462 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 2463 if (StructType *STy = dyn_cast<StructType>(OpTy)) 2464 if (STy->getNumElements() == 1) 2465 OpTy = STy->getElementType(0); 2466 2467 // If OpTy is not a single value, it may be a struct/union that we 2468 // can tile with integers. 2469 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 2470 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 2471 switch (BitSize) { 2472 default: break; 2473 case 1: 2474 case 8: 2475 case 16: 2476 case 32: 2477 case 64: 2478 case 128: 2479 OpInfo.ConstraintVT = 2480 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 2481 break; 2482 } 2483 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 2484 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 2485 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 2486 } else { 2487 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 2488 } 2489 } 2490 } 2491 2492 // If we have multiple alternative constraints, select the best alternative. 2493 if (!ConstraintOperands.empty()) { 2494 if (maCount) { 2495 unsigned bestMAIndex = 0; 2496 int bestWeight = -1; 2497 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 2498 int weight = -1; 2499 unsigned maIndex; 2500 // Compute the sums of the weights for each alternative, keeping track 2501 // of the best (highest weight) one so far. 2502 for (maIndex = 0; maIndex < maCount; ++maIndex) { 2503 int weightSum = 0; 2504 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2505 cIndex != eIndex; ++cIndex) { 2506 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2507 if (OpInfo.Type == InlineAsm::isClobber) 2508 continue; 2509 2510 // If this is an output operand with a matching input operand, 2511 // look up the matching input. If their types mismatch, e.g. one 2512 // is an integer, the other is floating point, or their sizes are 2513 // different, flag it as an maCantMatch. 2514 if (OpInfo.hasMatchingInput()) { 2515 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2516 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2517 if ((OpInfo.ConstraintVT.isInteger() != 2518 Input.ConstraintVT.isInteger()) || 2519 (OpInfo.ConstraintVT.getSizeInBits() != 2520 Input.ConstraintVT.getSizeInBits())) { 2521 weightSum = -1; // Can't match. 2522 break; 2523 } 2524 } 2525 } 2526 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 2527 if (weight == -1) { 2528 weightSum = -1; 2529 break; 2530 } 2531 weightSum += weight; 2532 } 2533 // Update best. 2534 if (weightSum > bestWeight) { 2535 bestWeight = weightSum; 2536 bestMAIndex = maIndex; 2537 } 2538 } 2539 2540 // Now select chosen alternative in each constraint. 2541 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2542 cIndex != eIndex; ++cIndex) { 2543 AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; 2544 if (cInfo.Type == InlineAsm::isClobber) 2545 continue; 2546 cInfo.selectAlternative(bestMAIndex); 2547 } 2548 } 2549 } 2550 2551 // Check and hook up tied operands, choose constraint code to use. 2552 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2553 cIndex != eIndex; ++cIndex) { 2554 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2555 2556 // If this is an output operand with a matching input operand, look up the 2557 // matching input. If their types mismatch, e.g. one is an integer, the 2558 // other is floating point, or their sizes are different, flag it as an 2559 // error. 2560 if (OpInfo.hasMatchingInput()) { 2561 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2562 2563 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2564 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 2565 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 2566 OpInfo.ConstraintVT); 2567 std::pair<unsigned, const TargetRegisterClass *> InputRC = 2568 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 2569 Input.ConstraintVT); 2570 if ((OpInfo.ConstraintVT.isInteger() != 2571 Input.ConstraintVT.isInteger()) || 2572 (MatchRC.second != InputRC.second)) { 2573 report_fatal_error("Unsupported asm: input constraint" 2574 " with a matching output constraint of" 2575 " incompatible type!"); 2576 } 2577 } 2578 } 2579 } 2580 2581 return ConstraintOperands; 2582 } 2583 2584 /// Return an integer indicating how general CT is. 2585 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 2586 switch (CT) { 2587 case TargetLowering::C_Other: 2588 case TargetLowering::C_Unknown: 2589 return 0; 2590 case TargetLowering::C_Register: 2591 return 1; 2592 case TargetLowering::C_RegisterClass: 2593 return 2; 2594 case TargetLowering::C_Memory: 2595 return 3; 2596 } 2597 llvm_unreachable("Invalid constraint type"); 2598 } 2599 2600 /// Examine constraint type and operand type and determine a weight value. 2601 /// This object must already have been set up with the operand type 2602 /// and the current alternative constraint selected. 2603 TargetLowering::ConstraintWeight 2604 TargetLowering::getMultipleConstraintMatchWeight( 2605 AsmOperandInfo &info, int maIndex) const { 2606 InlineAsm::ConstraintCodeVector *rCodes; 2607 if (maIndex >= (int)info.multipleAlternatives.size()) 2608 rCodes = &info.Codes; 2609 else 2610 rCodes = &info.multipleAlternatives[maIndex].Codes; 2611 ConstraintWeight BestWeight = CW_Invalid; 2612 2613 // Loop over the options, keeping track of the most general one. 2614 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 2615 ConstraintWeight weight = 2616 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 2617 if (weight > BestWeight) 2618 BestWeight = weight; 2619 } 2620 2621 return BestWeight; 2622 } 2623 2624 /// Examine constraint type and operand type and determine a weight value. 2625 /// This object must already have been set up with the operand type 2626 /// and the current alternative constraint selected. 2627 TargetLowering::ConstraintWeight 2628 TargetLowering::getSingleConstraintMatchWeight( 2629 AsmOperandInfo &info, const char *constraint) const { 2630 ConstraintWeight weight = CW_Invalid; 2631 Value *CallOperandVal = info.CallOperandVal; 2632 // If we don't have a value, we can't do a match, 2633 // but allow it at the lowest weight. 2634 if (!CallOperandVal) 2635 return CW_Default; 2636 // Look at the constraint type. 2637 switch (*constraint) { 2638 case 'i': // immediate integer. 2639 case 'n': // immediate integer with a known value. 2640 if (isa<ConstantInt>(CallOperandVal)) 2641 weight = CW_Constant; 2642 break; 2643 case 's': // non-explicit intregal immediate. 2644 if (isa<GlobalValue>(CallOperandVal)) 2645 weight = CW_Constant; 2646 break; 2647 case 'E': // immediate float if host format. 2648 case 'F': // immediate float. 2649 if (isa<ConstantFP>(CallOperandVal)) 2650 weight = CW_Constant; 2651 break; 2652 case '<': // memory operand with autodecrement. 2653 case '>': // memory operand with autoincrement. 2654 case 'm': // memory operand. 2655 case 'o': // offsettable memory operand 2656 case 'V': // non-offsettable memory operand 2657 weight = CW_Memory; 2658 break; 2659 case 'r': // general register. 2660 case 'g': // general register, memory operand or immediate integer. 2661 // note: Clang converts "g" to "imr". 2662 if (CallOperandVal->getType()->isIntegerTy()) 2663 weight = CW_Register; 2664 break; 2665 case 'X': // any operand. 2666 default: 2667 weight = CW_Default; 2668 break; 2669 } 2670 return weight; 2671 } 2672 2673 /// If there are multiple different constraints that we could pick for this 2674 /// operand (e.g. "imr") try to pick the 'best' one. 2675 /// This is somewhat tricky: constraints fall into four classes: 2676 /// Other -> immediates and magic values 2677 /// Register -> one specific register 2678 /// RegisterClass -> a group of regs 2679 /// Memory -> memory 2680 /// Ideally, we would pick the most specific constraint possible: if we have 2681 /// something that fits into a register, we would pick it. The problem here 2682 /// is that if we have something that could either be in a register or in 2683 /// memory that use of the register could cause selection of *other* 2684 /// operands to fail: they might only succeed if we pick memory. Because of 2685 /// this the heuristic we use is: 2686 /// 2687 /// 1) If there is an 'other' constraint, and if the operand is valid for 2688 /// that constraint, use it. This makes us take advantage of 'i' 2689 /// constraints when available. 2690 /// 2) Otherwise, pick the most general constraint present. This prefers 2691 /// 'm' over 'r', for example. 2692 /// 2693 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 2694 const TargetLowering &TLI, 2695 SDValue Op, SelectionDAG *DAG) { 2696 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 2697 unsigned BestIdx = 0; 2698 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 2699 int BestGenerality = -1; 2700 2701 // Loop over the options, keeping track of the most general one. 2702 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 2703 TargetLowering::ConstraintType CType = 2704 TLI.getConstraintType(OpInfo.Codes[i]); 2705 2706 // If this is an 'other' constraint, see if the operand is valid for it. 2707 // For example, on X86 we might have an 'rI' constraint. If the operand 2708 // is an integer in the range [0..31] we want to use I (saving a load 2709 // of a register), otherwise we must use 'r'. 2710 if (CType == TargetLowering::C_Other && Op.getNode()) { 2711 assert(OpInfo.Codes[i].size() == 1 && 2712 "Unhandled multi-letter 'other' constraint"); 2713 std::vector<SDValue> ResultOps; 2714 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 2715 ResultOps, *DAG); 2716 if (!ResultOps.empty()) { 2717 BestType = CType; 2718 BestIdx = i; 2719 break; 2720 } 2721 } 2722 2723 // Things with matching constraints can only be registers, per gcc 2724 // documentation. This mainly affects "g" constraints. 2725 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 2726 continue; 2727 2728 // This constraint letter is more general than the previous one, use it. 2729 int Generality = getConstraintGenerality(CType); 2730 if (Generality > BestGenerality) { 2731 BestType = CType; 2732 BestIdx = i; 2733 BestGenerality = Generality; 2734 } 2735 } 2736 2737 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 2738 OpInfo.ConstraintType = BestType; 2739 } 2740 2741 /// Determines the constraint code and constraint type to use for the specific 2742 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 2743 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 2744 SDValue Op, 2745 SelectionDAG *DAG) const { 2746 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 2747 2748 // Single-letter constraints ('r') are very common. 2749 if (OpInfo.Codes.size() == 1) { 2750 OpInfo.ConstraintCode = OpInfo.Codes[0]; 2751 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2752 } else { 2753 ChooseConstraint(OpInfo, *this, Op, DAG); 2754 } 2755 2756 // 'X' matches anything. 2757 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 2758 // Labels and constants are handled elsewhere ('X' is the only thing 2759 // that matches labels). For Functions, the type here is the type of 2760 // the result, which is not what we want to look at; leave them alone. 2761 Value *v = OpInfo.CallOperandVal; 2762 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 2763 OpInfo.CallOperandVal = v; 2764 return; 2765 } 2766 2767 // Otherwise, try to resolve it to something we know about by looking at 2768 // the actual operand type. 2769 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 2770 OpInfo.ConstraintCode = Repl; 2771 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2772 } 2773 } 2774 } 2775 2776 /// \brief Given an exact SDIV by a constant, create a multiplication 2777 /// with the multiplicative inverse of the constant. 2778 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d, 2779 SDLoc dl, SelectionDAG &DAG, 2780 std::vector<SDNode *> &Created) { 2781 assert(d != 0 && "Division by zero!"); 2782 2783 // Shift the value upfront if it is even, so the LSB is one. 2784 unsigned ShAmt = d.countTrailingZeros(); 2785 if (ShAmt) { 2786 // TODO: For UDIV use SRL instead of SRA. 2787 SDValue Amt = 2788 DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(), 2789 DAG.getDataLayout())); 2790 SDNodeFlags Flags; 2791 Flags.setExact(true); 2792 Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, &Flags); 2793 Created.push_back(Op1.getNode()); 2794 d = d.ashr(ShAmt); 2795 } 2796 2797 // Calculate the multiplicative inverse, using Newton's method. 2798 APInt t, xn = d; 2799 while ((t = d*xn) != 1) 2800 xn *= APInt(d.getBitWidth(), 2) - t; 2801 2802 SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType()); 2803 SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2); 2804 Created.push_back(Mul.getNode()); 2805 return Mul; 2806 } 2807 2808 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 2809 SelectionDAG &DAG, 2810 std::vector<SDNode *> *Created) const { 2811 AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); 2812 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2813 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 2814 return SDValue(N,0); // Lower SDIV as SDIV 2815 return SDValue(); 2816 } 2817 2818 /// \brief Given an ISD::SDIV node expressing a divide by constant, 2819 /// return a DAG expression to select that will generate the same value by 2820 /// multiplying by a magic number. 2821 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 2822 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor, 2823 SelectionDAG &DAG, bool IsAfterLegalization, 2824 std::vector<SDNode *> *Created) const { 2825 assert(Created && "No vector to hold sdiv ops."); 2826 2827 EVT VT = N->getValueType(0); 2828 SDLoc dl(N); 2829 2830 // Check to see if we can do this. 2831 // FIXME: We should be more aggressive here. 2832 if (!isTypeLegal(VT)) 2833 return SDValue(); 2834 2835 // If the sdiv has an 'exact' bit we can use a simpler lowering. 2836 if (cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact()) 2837 return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created); 2838 2839 APInt::ms magics = Divisor.magic(); 2840 2841 // Multiply the numerator (operand 0) by the magic value 2842 // FIXME: We should support doing a MUL in a wider type 2843 SDValue Q; 2844 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) : 2845 isOperationLegalOrCustom(ISD::MULHS, VT)) 2846 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0), 2847 DAG.getConstant(magics.m, dl, VT)); 2848 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) : 2849 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) 2850 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), 2851 N->getOperand(0), 2852 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 2853 else 2854 return SDValue(); // No mulhs or equvialent 2855 // If d > 0 and m < 0, add the numerator 2856 if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 2857 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); 2858 Created->push_back(Q.getNode()); 2859 } 2860 // If d < 0 and m > 0, subtract the numerator. 2861 if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 2862 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0)); 2863 Created->push_back(Q.getNode()); 2864 } 2865 auto &DL = DAG.getDataLayout(); 2866 // Shift right algebraic if shift value is nonzero 2867 if (magics.s > 0) { 2868 Q = DAG.getNode( 2869 ISD::SRA, dl, VT, Q, 2870 DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); 2871 Created->push_back(Q.getNode()); 2872 } 2873 // Extract the sign bit and add it to the quotient 2874 SDValue T = 2875 DAG.getNode(ISD::SRL, dl, VT, Q, 2876 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, 2877 getShiftAmountTy(Q.getValueType(), DL))); 2878 Created->push_back(T.getNode()); 2879 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 2880 } 2881 2882 /// \brief Given an ISD::UDIV node expressing a divide by constant, 2883 /// return a DAG expression to select that will generate the same value by 2884 /// multiplying by a magic number. 2885 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 2886 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor, 2887 SelectionDAG &DAG, bool IsAfterLegalization, 2888 std::vector<SDNode *> *Created) const { 2889 assert(Created && "No vector to hold udiv ops."); 2890 2891 EVT VT = N->getValueType(0); 2892 SDLoc dl(N); 2893 auto &DL = DAG.getDataLayout(); 2894 2895 // Check to see if we can do this. 2896 // FIXME: We should be more aggressive here. 2897 if (!isTypeLegal(VT)) 2898 return SDValue(); 2899 2900 // FIXME: We should use a narrower constant when the upper 2901 // bits are known to be zero. 2902 APInt::mu magics = Divisor.magicu(); 2903 2904 SDValue Q = N->getOperand(0); 2905 2906 // If the divisor is even, we can avoid using the expensive fixup by shifting 2907 // the divided value upfront. 2908 if (magics.a != 0 && !Divisor[0]) { 2909 unsigned Shift = Divisor.countTrailingZeros(); 2910 Q = DAG.getNode( 2911 ISD::SRL, dl, VT, Q, 2912 DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL))); 2913 Created->push_back(Q.getNode()); 2914 2915 // Get magic number for the shifted divisor. 2916 magics = Divisor.lshr(Shift).magicu(Shift); 2917 assert(magics.a == 0 && "Should use cheap fixup now"); 2918 } 2919 2920 // Multiply the numerator (operand 0) by the magic value 2921 // FIXME: We should support doing a MUL in a wider type 2922 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) : 2923 isOperationLegalOrCustom(ISD::MULHU, VT)) 2924 Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT)); 2925 else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) : 2926 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) 2927 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q, 2928 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 2929 else 2930 return SDValue(); // No mulhu or equvialent 2931 2932 Created->push_back(Q.getNode()); 2933 2934 if (magics.a == 0) { 2935 assert(magics.s < Divisor.getBitWidth() && 2936 "We shouldn't generate an undefined shift!"); 2937 return DAG.getNode( 2938 ISD::SRL, dl, VT, Q, 2939 DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); 2940 } else { 2941 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); 2942 Created->push_back(NPQ.getNode()); 2943 NPQ = DAG.getNode( 2944 ISD::SRL, dl, VT, NPQ, 2945 DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL))); 2946 Created->push_back(NPQ.getNode()); 2947 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 2948 Created->push_back(NPQ.getNode()); 2949 return DAG.getNode( 2950 ISD::SRL, dl, VT, NPQ, 2951 DAG.getConstant(magics.s - 1, dl, 2952 getShiftAmountTy(NPQ.getValueType(), DL))); 2953 } 2954 } 2955 2956 bool TargetLowering:: 2957 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 2958 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 2959 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 2960 "be a constant integer"); 2961 return true; 2962 } 2963 2964 return false; 2965 } 2966 2967 //===----------------------------------------------------------------------===// 2968 // Legalization Utilities 2969 //===----------------------------------------------------------------------===// 2970 2971 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 2972 SelectionDAG &DAG, SDValue LL, SDValue LH, 2973 SDValue RL, SDValue RH) const { 2974 EVT VT = N->getValueType(0); 2975 SDLoc dl(N); 2976 2977 bool HasMULHS = isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 2978 bool HasMULHU = isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 2979 bool HasSMUL_LOHI = isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 2980 bool HasUMUL_LOHI = isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 2981 if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { 2982 unsigned OuterBitSize = VT.getSizeInBits(); 2983 unsigned InnerBitSize = HiLoVT.getSizeInBits(); 2984 unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0)); 2985 unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1)); 2986 2987 // LL, LH, RL, and RH must be either all NULL or all set to a value. 2988 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 2989 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 2990 2991 if (!LL.getNode() && !RL.getNode() && 2992 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 2993 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(0)); 2994 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(1)); 2995 } 2996 2997 if (!LL.getNode()) 2998 return false; 2999 3000 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 3001 if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) && 3002 DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) { 3003 // The inputs are both zero-extended. 3004 if (HasUMUL_LOHI) { 3005 // We can emit a umul_lohi. 3006 Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL, 3007 RL); 3008 Hi = SDValue(Lo.getNode(), 1); 3009 return true; 3010 } 3011 if (HasMULHU) { 3012 // We can emit a mulhu+mul. 3013 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 3014 Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL); 3015 return true; 3016 } 3017 } 3018 if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) { 3019 // The input values are both sign-extended. 3020 if (HasSMUL_LOHI) { 3021 // We can emit a smul_lohi. 3022 Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL, 3023 RL); 3024 Hi = SDValue(Lo.getNode(), 1); 3025 return true; 3026 } 3027 if (HasMULHS) { 3028 // We can emit a mulhs+mul. 3029 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 3030 Hi = DAG.getNode(ISD::MULHS, dl, HiLoVT, LL, RL); 3031 return true; 3032 } 3033 } 3034 3035 if (!LH.getNode() && !RH.getNode() && 3036 isOperationLegalOrCustom(ISD::SRL, VT) && 3037 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 3038 auto &DL = DAG.getDataLayout(); 3039 unsigned ShiftAmt = VT.getSizeInBits() - HiLoVT.getSizeInBits(); 3040 SDValue Shift = DAG.getConstant(ShiftAmt, dl, getShiftAmountTy(VT, DL)); 3041 LH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(0), Shift); 3042 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 3043 RH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(1), Shift); 3044 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 3045 } 3046 3047 if (!LH.getNode()) 3048 return false; 3049 3050 if (HasUMUL_LOHI) { 3051 // Lo,Hi = umul LHS, RHS. 3052 SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl, 3053 DAG.getVTList(HiLoVT, HiLoVT), LL, RL); 3054 Lo = UMulLOHI; 3055 Hi = UMulLOHI.getValue(1); 3056 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 3057 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 3058 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 3059 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 3060 return true; 3061 } 3062 if (HasMULHU) { 3063 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 3064 Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL); 3065 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 3066 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 3067 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 3068 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 3069 return true; 3070 } 3071 } 3072 return false; 3073 } 3074 3075 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 3076 SelectionDAG &DAG) const { 3077 EVT VT = Node->getOperand(0).getValueType(); 3078 EVT NVT = Node->getValueType(0); 3079 SDLoc dl(SDValue(Node, 0)); 3080 3081 // FIXME: Only f32 to i64 conversions are supported. 3082 if (VT != MVT::f32 || NVT != MVT::i64) 3083 return false; 3084 3085 // Expand f32 -> i64 conversion 3086 // This algorithm comes from compiler-rt's implementation of fixsfdi: 3087 // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c 3088 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), 3089 VT.getSizeInBits()); 3090 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 3091 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 3092 SDValue Bias = DAG.getConstant(127, dl, IntVT); 3093 SDValue SignMask = DAG.getConstant(APInt::getSignBit(VT.getSizeInBits()), dl, 3094 IntVT); 3095 SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT); 3096 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 3097 3098 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0)); 3099 3100 auto &DL = DAG.getDataLayout(); 3101 SDValue ExponentBits = DAG.getNode( 3102 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 3103 DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL))); 3104 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 3105 3106 SDValue Sign = DAG.getNode( 3107 ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 3108 DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL))); 3109 Sign = DAG.getSExtOrTrunc(Sign, dl, NVT); 3110 3111 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 3112 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 3113 DAG.getConstant(0x00800000, dl, IntVT)); 3114 3115 R = DAG.getZExtOrTrunc(R, dl, NVT); 3116 3117 R = DAG.getSelectCC( 3118 dl, Exponent, ExponentLoBit, 3119 DAG.getNode(ISD::SHL, dl, NVT, R, 3120 DAG.getZExtOrTrunc( 3121 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 3122 dl, getShiftAmountTy(IntVT, DL))), 3123 DAG.getNode(ISD::SRL, dl, NVT, R, 3124 DAG.getZExtOrTrunc( 3125 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 3126 dl, getShiftAmountTy(IntVT, DL))), 3127 ISD::SETGT); 3128 3129 SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT, 3130 DAG.getNode(ISD::XOR, dl, NVT, R, Sign), 3131 Sign); 3132 3133 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 3134 DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT); 3135 return true; 3136 } 3137 3138 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 3139 SelectionDAG &DAG) const { 3140 SDLoc SL(LD); 3141 SDValue Chain = LD->getChain(); 3142 SDValue BasePTR = LD->getBasePtr(); 3143 EVT SrcVT = LD->getMemoryVT(); 3144 ISD::LoadExtType ExtType = LD->getExtensionType(); 3145 3146 unsigned NumElem = SrcVT.getVectorNumElements(); 3147 3148 EVT SrcEltVT = SrcVT.getScalarType(); 3149 EVT DstEltVT = LD->getValueType(0).getScalarType(); 3150 3151 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 3152 assert(SrcEltVT.isByteSized()); 3153 3154 EVT PtrVT = BasePTR.getValueType(); 3155 3156 SmallVector<SDValue, 8> Vals; 3157 SmallVector<SDValue, 8> LoadChains; 3158 3159 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 3160 SDValue ScalarLoad = DAG.getExtLoad( 3161 ExtType, SL, DstEltVT, 3162 Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride), 3163 SrcEltVT, 3164 LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(), 3165 MinAlign(LD->getAlignment(), Idx * Stride), LD->getAAInfo()); 3166 3167 BasePTR = DAG.getNode(ISD::ADD, SL, PtrVT, BasePTR, 3168 DAG.getConstant(Stride, SL, PtrVT)); 3169 3170 Vals.push_back(ScalarLoad.getValue(0)); 3171 LoadChains.push_back(ScalarLoad.getValue(1)); 3172 } 3173 3174 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 3175 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, SL, LD->getValueType(0), Vals); 3176 3177 return DAG.getMergeValues({ Value, NewChain }, SL); 3178 } 3179 3180 // FIXME: This relies on each element having a byte size, otherwise the stride 3181 // is 0 and just overwrites the same location. ExpandStore currently expects 3182 // this broken behavior. 3183 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 3184 SelectionDAG &DAG) const { 3185 SDLoc SL(ST); 3186 3187 SDValue Chain = ST->getChain(); 3188 SDValue BasePtr = ST->getBasePtr(); 3189 SDValue Value = ST->getValue(); 3190 EVT StVT = ST->getMemoryVT(); 3191 3192 unsigned Alignment = ST->getAlignment(); 3193 bool isVolatile = ST->isVolatile(); 3194 bool isNonTemporal = ST->isNonTemporal(); 3195 AAMDNodes AAInfo = ST->getAAInfo(); 3196 3197 // The type of the data we want to save 3198 EVT RegVT = Value.getValueType(); 3199 EVT RegSclVT = RegVT.getScalarType(); 3200 3201 // The type of data as saved in memory. 3202 EVT MemSclVT = StVT.getScalarType(); 3203 3204 EVT PtrVT = BasePtr.getValueType(); 3205 3206 // Store Stride in bytes 3207 unsigned Stride = MemSclVT.getSizeInBits() / 8; 3208 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 3209 unsigned NumElem = StVT.getVectorNumElements(); 3210 3211 // Extract each of the elements from the original vector and save them into 3212 // memory individually. 3213 SmallVector<SDValue, 8> Stores; 3214 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 3215 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 3216 DAG.getConstant(Idx, SL, IdxVT)); 3217 3218 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 3219 DAG.getConstant(Idx * Stride, SL, PtrVT)); 3220 3221 // This scalar TruncStore may be illegal, but we legalize it later. 3222 SDValue Store = DAG.getTruncStore( 3223 Chain, SL, Elt, Ptr, 3224 ST->getPointerInfo().getWithOffset(Idx * Stride), MemSclVT, 3225 isVolatile, isNonTemporal, MinAlign(Alignment, Idx * Stride), 3226 AAInfo); 3227 3228 Stores.push_back(Store); 3229 } 3230 3231 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 3232 } 3233 3234 std::pair<SDValue, SDValue> 3235 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 3236 assert(LD->getAddressingMode() == ISD::UNINDEXED && 3237 "unaligned indexed loads not implemented!"); 3238 SDValue Chain = LD->getChain(); 3239 SDValue Ptr = LD->getBasePtr(); 3240 EVT VT = LD->getValueType(0); 3241 EVT LoadedVT = LD->getMemoryVT(); 3242 SDLoc dl(LD); 3243 if (VT.isFloatingPoint() || VT.isVector()) { 3244 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 3245 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 3246 if (!isOperationLegalOrCustom(ISD::LOAD, intVT)) { 3247 // Scalarize the load and let the individual components be handled. 3248 SDValue Scalarized = scalarizeVectorLoad(LD, DAG); 3249 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); 3250 } 3251 3252 // Expand to a (misaligned) integer load of the same size, 3253 // then bitconvert to floating point or vector. 3254 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 3255 LD->getMemOperand()); 3256 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 3257 if (LoadedVT != VT) 3258 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 3259 ISD::ANY_EXTEND, dl, VT, Result); 3260 3261 return std::make_pair(Result, newLoad.getValue(1)); 3262 } 3263 3264 // Copy the value to a (aligned) stack slot using (unaligned) integer 3265 // loads and stores, then do a (aligned) load from the stack slot. 3266 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 3267 unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8; 3268 unsigned RegBytes = RegVT.getSizeInBits() / 8; 3269 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 3270 3271 // Make sure the stack slot is also aligned for the register type. 3272 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 3273 3274 SmallVector<SDValue, 8> Stores; 3275 SDValue StackPtr = StackBase; 3276 unsigned Offset = 0; 3277 3278 EVT PtrVT = Ptr.getValueType(); 3279 EVT StackPtrVT = StackPtr.getValueType(); 3280 3281 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 3282 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 3283 3284 // Do all but one copies using the full register width. 3285 for (unsigned i = 1; i < NumRegs; i++) { 3286 // Load one integer register's worth from the original location. 3287 SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, 3288 LD->getPointerInfo().getWithOffset(Offset), 3289 LD->isVolatile(), LD->isNonTemporal(), 3290 LD->isInvariant(), 3291 MinAlign(LD->getAlignment(), Offset), 3292 LD->getAAInfo()); 3293 // Follow the load with a store to the stack slot. Remember the store. 3294 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr, 3295 MachinePointerInfo(), false, false, 0)); 3296 // Increment the pointers. 3297 Offset += RegBytes; 3298 Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement); 3299 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, StackPtr, 3300 StackPtrIncrement); 3301 } 3302 3303 // The last copy may be partial. Do an extending load. 3304 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 3305 8 * (LoadedBytes - Offset)); 3306 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 3307 LD->getPointerInfo().getWithOffset(Offset), 3308 MemVT, LD->isVolatile(), 3309 LD->isNonTemporal(), 3310 LD->isInvariant(), 3311 MinAlign(LD->getAlignment(), Offset), 3312 LD->getAAInfo()); 3313 // Follow the load with a store to the stack slot. Remember the store. 3314 // On big-endian machines this requires a truncating store to ensure 3315 // that the bits end up in the right place. 3316 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr, 3317 MachinePointerInfo(), MemVT, 3318 false, false, 0)); 3319 3320 // The order of the stores doesn't matter - say it with a TokenFactor. 3321 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 3322 3323 // Finally, perform the original load only redirected to the stack slot. 3324 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 3325 MachinePointerInfo(), LoadedVT, false,false, false, 3326 0); 3327 3328 // Callers expect a MERGE_VALUES node. 3329 return std::make_pair(Load, TF); 3330 } 3331 3332 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 3333 "Unaligned load of unsupported type."); 3334 3335 // Compute the new VT that is half the size of the old one. This is an 3336 // integer MVT. 3337 unsigned NumBits = LoadedVT.getSizeInBits(); 3338 EVT NewLoadedVT; 3339 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 3340 NumBits >>= 1; 3341 3342 unsigned Alignment = LD->getAlignment(); 3343 unsigned IncrementSize = NumBits / 8; 3344 ISD::LoadExtType HiExtType = LD->getExtensionType(); 3345 3346 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 3347 if (HiExtType == ISD::NON_EXTLOAD) 3348 HiExtType = ISD::ZEXTLOAD; 3349 3350 // Load the value in two parts 3351 SDValue Lo, Hi; 3352 if (DAG.getDataLayout().isLittleEndian()) { 3353 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 3354 NewLoadedVT, LD->isVolatile(), 3355 LD->isNonTemporal(), LD->isInvariant(), Alignment, 3356 LD->getAAInfo()); 3357 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 3358 DAG.getConstant(IncrementSize, dl, Ptr.getValueType())); 3359 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 3360 LD->getPointerInfo().getWithOffset(IncrementSize), 3361 NewLoadedVT, LD->isVolatile(), 3362 LD->isNonTemporal(),LD->isInvariant(), 3363 MinAlign(Alignment, IncrementSize), LD->getAAInfo()); 3364 } else { 3365 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 3366 NewLoadedVT, LD->isVolatile(), 3367 LD->isNonTemporal(), LD->isInvariant(), Alignment, 3368 LD->getAAInfo()); 3369 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 3370 DAG.getConstant(IncrementSize, dl, Ptr.getValueType())); 3371 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 3372 LD->getPointerInfo().getWithOffset(IncrementSize), 3373 NewLoadedVT, LD->isVolatile(), 3374 LD->isNonTemporal(), LD->isInvariant(), 3375 MinAlign(Alignment, IncrementSize), LD->getAAInfo()); 3376 } 3377 3378 // aggregate the two parts 3379 SDValue ShiftAmount = 3380 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 3381 DAG.getDataLayout())); 3382 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 3383 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 3384 3385 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 3386 Hi.getValue(1)); 3387 3388 return std::make_pair(Result, TF); 3389 } 3390 3391 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 3392 SelectionDAG &DAG) const { 3393 assert(ST->getAddressingMode() == ISD::UNINDEXED && 3394 "unaligned indexed stores not implemented!"); 3395 SDValue Chain = ST->getChain(); 3396 SDValue Ptr = ST->getBasePtr(); 3397 SDValue Val = ST->getValue(); 3398 EVT VT = Val.getValueType(); 3399 int Alignment = ST->getAlignment(); 3400 3401 SDLoc dl(ST); 3402 if (ST->getMemoryVT().isFloatingPoint() || 3403 ST->getMemoryVT().isVector()) { 3404 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 3405 if (isTypeLegal(intVT)) { 3406 if (!isOperationLegalOrCustom(ISD::STORE, intVT)) { 3407 // Scalarize the store and let the individual components be handled. 3408 SDValue Result = scalarizeVectorStore(ST, DAG); 3409 3410 return Result; 3411 } 3412 // Expand to a bitconvert of the value to the integer type of the 3413 // same size, then a (misaligned) int store. 3414 // FIXME: Does not handle truncating floating point stores! 3415 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 3416 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 3417 ST->isVolatile(), ST->isNonTemporal(), Alignment); 3418 return Result; 3419 } 3420 // Do a (aligned) store to a stack slot, then copy from the stack slot 3421 // to the final destination using (unaligned) integer loads and stores. 3422 EVT StoredVT = ST->getMemoryVT(); 3423 MVT RegVT = 3424 getRegisterType(*DAG.getContext(), 3425 EVT::getIntegerVT(*DAG.getContext(), 3426 StoredVT.getSizeInBits())); 3427 EVT PtrVT = Ptr.getValueType(); 3428 unsigned StoredBytes = StoredVT.getSizeInBits() / 8; 3429 unsigned RegBytes = RegVT.getSizeInBits() / 8; 3430 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 3431 3432 // Make sure the stack slot is also aligned for the register type. 3433 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 3434 3435 // Perform the original store, only redirected to the stack slot. 3436 SDValue Store = DAG.getTruncStore(Chain, dl, 3437 Val, StackPtr, MachinePointerInfo(), 3438 StoredVT, false, false, 0); 3439 3440 EVT StackPtrVT = StackPtr.getValueType(); 3441 3442 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 3443 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 3444 SmallVector<SDValue, 8> Stores; 3445 unsigned Offset = 0; 3446 3447 // Do all but one copies using the full register width. 3448 for (unsigned i = 1; i < NumRegs; i++) { 3449 // Load one integer register's worth from the stack slot. 3450 SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, 3451 MachinePointerInfo(), 3452 false, false, false, 0); 3453 // Store it to the final location. Remember the store. 3454 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 3455 ST->getPointerInfo().getWithOffset(Offset), 3456 ST->isVolatile(), ST->isNonTemporal(), 3457 MinAlign(ST->getAlignment(), Offset))); 3458 // Increment the pointers. 3459 Offset += RegBytes; 3460 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, 3461 StackPtr, StackPtrIncrement); 3462 Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement); 3463 } 3464 3465 // The last store may be partial. Do a truncating store. On big-endian 3466 // machines this requires an extending load from the stack slot to ensure 3467 // that the bits are in the right place. 3468 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 3469 8 * (StoredBytes - Offset)); 3470 3471 // Load from the stack slot. 3472 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 3473 MachinePointerInfo(), 3474 MemVT, false, false, false, 0); 3475 3476 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 3477 ST->getPointerInfo() 3478 .getWithOffset(Offset), 3479 MemVT, ST->isVolatile(), 3480 ST->isNonTemporal(), 3481 MinAlign(ST->getAlignment(), Offset), 3482 ST->getAAInfo())); 3483 // The order of the stores doesn't matter - say it with a TokenFactor. 3484 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 3485 return Result; 3486 } 3487 3488 assert(ST->getMemoryVT().isInteger() && 3489 !ST->getMemoryVT().isVector() && 3490 "Unaligned store of unknown type."); 3491 // Get the half-size VT 3492 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); 3493 int NumBits = NewStoredVT.getSizeInBits(); 3494 int IncrementSize = NumBits / 8; 3495 3496 // Divide the stored value in two parts. 3497 SDValue ShiftAmount = 3498 DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(), 3499 DAG.getDataLayout())); 3500 SDValue Lo = Val; 3501 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 3502 3503 // Store the two parts 3504 SDValue Store1, Store2; 3505 Store1 = DAG.getTruncStore(Chain, dl, 3506 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 3507 Ptr, ST->getPointerInfo(), NewStoredVT, 3508 ST->isVolatile(), ST->isNonTemporal(), Alignment); 3509 3510 EVT PtrVT = Ptr.getValueType(); 3511 Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3512 DAG.getConstant(IncrementSize, dl, PtrVT)); 3513 Alignment = MinAlign(Alignment, IncrementSize); 3514 Store2 = DAG.getTruncStore( 3515 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 3516 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, 3517 ST->isVolatile(), ST->isNonTemporal(), Alignment, ST->getAAInfo()); 3518 3519 SDValue Result = 3520 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 3521 return Result; 3522 } 3523 3524 //===----------------------------------------------------------------------===// 3525 // Implementation of Emulated TLS Model 3526 //===----------------------------------------------------------------------===// 3527 3528 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 3529 SelectionDAG &DAG) const { 3530 // Access to address of TLS varialbe xyz is lowered to a function call: 3531 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 3532 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3533 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 3534 SDLoc dl(GA); 3535 3536 ArgListTy Args; 3537 ArgListEntry Entry; 3538 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 3539 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 3540 StringRef EmuTlsVarName(NameString); 3541 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 3542 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 3543 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 3544 Entry.Ty = VoidPtrType; 3545 Args.push_back(Entry); 3546 3547 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 3548 3549 TargetLowering::CallLoweringInfo CLI(DAG); 3550 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 3551 CLI.setCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args), 0); 3552 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3553 3554 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 3555 // At last for X86 targets, maybe good for other targets too? 3556 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 3557 MFI->setAdjustsStack(true); // Is this only for X86 target? 3558 MFI->setHasCalls(true); 3559 3560 assert((GA->getOffset() == 0) && 3561 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 3562 return CallResult.first; 3563 } 3564