1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetLowering.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/CodeGen/CallingConvLower.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/SelectionDAG.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Target/TargetLoweringObjectFile.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include "llvm/Target/TargetRegisterInfo.h" 34 #include "llvm/Target/TargetSubtargetInfo.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 bool TargetLowering::isPositionIndependent() const { 47 return getTargetMachine().isPositionIndependent(); 48 } 49 50 /// Check whether a given call node is in tail position within its function. If 51 /// so, it sets Chain to the input chain of the tail call. 52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 53 SDValue &Chain) const { 54 const Function *F = DAG.getMachineFunction().getFunction(); 55 56 // Conservatively require the attributes of the call to match those of 57 // the return. Ignore noalias because it doesn't affect the call sequence. 58 AttributeSet CallerAttrs = F->getAttributes(); 59 if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex) 60 .removeAttribute(Attribute::NoAlias).hasAttributes()) 61 return false; 62 63 // It's not safe to eliminate the sign / zero extension of the return value. 64 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 65 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 66 return false; 67 68 // Check if the only use is a function return node. 69 return isUsedByReturnOnly(Node, Chain); 70 } 71 72 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 73 const uint32_t *CallerPreservedMask, 74 const SmallVectorImpl<CCValAssign> &ArgLocs, 75 const SmallVectorImpl<SDValue> &OutVals) const { 76 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 77 const CCValAssign &ArgLoc = ArgLocs[I]; 78 if (!ArgLoc.isRegLoc()) 79 continue; 80 unsigned Reg = ArgLoc.getLocReg(); 81 // Only look at callee saved registers. 82 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 83 continue; 84 // Check that we pass the value used for the caller. 85 // (We look for a CopyFromReg reading a virtual register that is used 86 // for the function live-in value of register Reg) 87 SDValue Value = OutVals[I]; 88 if (Value->getOpcode() != ISD::CopyFromReg) 89 return false; 90 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 91 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 92 return false; 93 } 94 return true; 95 } 96 97 /// \brief Set CallLoweringInfo attribute flags based on a call instruction 98 /// and called function attributes. 99 void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS, 100 unsigned AttrIdx) { 101 isSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); 102 isZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); 103 isInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); 104 isSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); 105 isNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); 106 isByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); 107 isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); 108 isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); 109 isSwiftSelf = CS->paramHasAttr(AttrIdx, Attribute::SwiftSelf); 110 isSwiftError = CS->paramHasAttr(AttrIdx, Attribute::SwiftError); 111 Alignment = CS->getParamAlignment(AttrIdx); 112 } 113 114 /// Generate a libcall taking the given operands as arguments and returning a 115 /// result of type RetVT. 116 std::pair<SDValue, SDValue> 117 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 118 ArrayRef<SDValue> Ops, bool isSigned, 119 const SDLoc &dl, bool doesNotReturn, 120 bool isReturnValueUsed) const { 121 TargetLowering::ArgListTy Args; 122 Args.reserve(Ops.size()); 123 124 TargetLowering::ArgListEntry Entry; 125 for (SDValue Op : Ops) { 126 Entry.Node = Op; 127 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 128 Entry.isSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 129 Entry.isZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 130 Args.push_back(Entry); 131 } 132 133 if (LC == RTLIB::UNKNOWN_LIBCALL) 134 report_fatal_error("Unsupported library call operation!"); 135 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 136 getPointerTy(DAG.getDataLayout())); 137 138 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 139 TargetLowering::CallLoweringInfo CLI(DAG); 140 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); 141 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()) 142 .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 143 .setNoReturn(doesNotReturn).setDiscardResult(!isReturnValueUsed) 144 .setSExtResult(signExtend).setZExtResult(!signExtend); 145 return LowerCallTo(CLI); 146 } 147 148 /// Soften the operands of a comparison. This code is shared among BR_CC, 149 /// SELECT_CC, and SETCC handlers. 150 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 151 SDValue &NewLHS, SDValue &NewRHS, 152 ISD::CondCode &CCCode, 153 const SDLoc &dl) const { 154 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 155 && "Unsupported setcc type!"); 156 157 // Expand into one or more soft-fp libcall(s). 158 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 159 bool ShouldInvertCC = false; 160 switch (CCCode) { 161 case ISD::SETEQ: 162 case ISD::SETOEQ: 163 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 164 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 165 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 166 break; 167 case ISD::SETNE: 168 case ISD::SETUNE: 169 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 170 (VT == MVT::f64) ? RTLIB::UNE_F64 : 171 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 172 break; 173 case ISD::SETGE: 174 case ISD::SETOGE: 175 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 176 (VT == MVT::f64) ? RTLIB::OGE_F64 : 177 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 178 break; 179 case ISD::SETLT: 180 case ISD::SETOLT: 181 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 182 (VT == MVT::f64) ? RTLIB::OLT_F64 : 183 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 184 break; 185 case ISD::SETLE: 186 case ISD::SETOLE: 187 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 188 (VT == MVT::f64) ? RTLIB::OLE_F64 : 189 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 190 break; 191 case ISD::SETGT: 192 case ISD::SETOGT: 193 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 194 (VT == MVT::f64) ? RTLIB::OGT_F64 : 195 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 196 break; 197 case ISD::SETUO: 198 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 199 (VT == MVT::f64) ? RTLIB::UO_F64 : 200 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 201 break; 202 case ISD::SETO: 203 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 204 (VT == MVT::f64) ? RTLIB::O_F64 : 205 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 206 break; 207 case ISD::SETONE: 208 // SETONE = SETOLT | SETOGT 209 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 210 (VT == MVT::f64) ? RTLIB::OLT_F64 : 211 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 212 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 213 (VT == MVT::f64) ? RTLIB::OGT_F64 : 214 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 215 break; 216 case ISD::SETUEQ: 217 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 218 (VT == MVT::f64) ? RTLIB::UO_F64 : 219 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 220 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 221 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 222 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 223 break; 224 default: 225 // Invert CC for unordered comparisons 226 ShouldInvertCC = true; 227 switch (CCCode) { 228 case ISD::SETULT: 229 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 230 (VT == MVT::f64) ? RTLIB::OGE_F64 : 231 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 232 break; 233 case ISD::SETULE: 234 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 235 (VT == MVT::f64) ? RTLIB::OGT_F64 : 236 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 237 break; 238 case ISD::SETUGT: 239 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 240 (VT == MVT::f64) ? RTLIB::OLE_F64 : 241 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 242 break; 243 case ISD::SETUGE: 244 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 245 (VT == MVT::f64) ? RTLIB::OLT_F64 : 246 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 247 break; 248 default: llvm_unreachable("Do not know how to soften this setcc!"); 249 } 250 } 251 252 // Use the target specific return value for comparions lib calls. 253 EVT RetVT = getCmpLibcallReturnType(); 254 SDValue Ops[2] = {NewLHS, NewRHS}; 255 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/, 256 dl).first; 257 NewRHS = DAG.getConstant(0, dl, RetVT); 258 259 CCCode = getCmpLibcallCC(LC1); 260 if (ShouldInvertCC) 261 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); 262 263 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 264 SDValue Tmp = DAG.getNode( 265 ISD::SETCC, dl, 266 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 267 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 268 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/, 269 dl).first; 270 NewLHS = DAG.getNode( 271 ISD::SETCC, dl, 272 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 273 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 274 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 275 NewRHS = SDValue(); 276 } 277 } 278 279 /// Return the entry encoding for a jump table in the current function. The 280 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 281 unsigned TargetLowering::getJumpTableEncoding() const { 282 // In non-pic modes, just use the address of a block. 283 if (!isPositionIndependent()) 284 return MachineJumpTableInfo::EK_BlockAddress; 285 286 // In PIC mode, if the target supports a GPRel32 directive, use it. 287 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 288 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 289 290 // Otherwise, use a label difference. 291 return MachineJumpTableInfo::EK_LabelDifference32; 292 } 293 294 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 295 SelectionDAG &DAG) const { 296 // If our PIC model is GP relative, use the global offset table as the base. 297 unsigned JTEncoding = getJumpTableEncoding(); 298 299 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 300 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 301 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 302 303 return Table; 304 } 305 306 /// This returns the relocation base for the given PIC jumptable, the same as 307 /// getPICJumpTableRelocBase, but as an MCExpr. 308 const MCExpr * 309 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 310 unsigned JTI,MCContext &Ctx) const{ 311 // The normal PIC reloc base is the label at the start of the jump table. 312 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 313 } 314 315 bool 316 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 317 const TargetMachine &TM = getTargetMachine(); 318 const GlobalValue *GV = GA->getGlobal(); 319 320 // If the address is not even local to this DSO we will have to load it from 321 // a got and then add the offset. 322 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 323 return false; 324 325 // If the code is position independent we will have to add a base register. 326 if (isPositionIndependent()) 327 return false; 328 329 // Otherwise we can do it. 330 return true; 331 } 332 333 //===----------------------------------------------------------------------===// 334 // Optimization Methods 335 //===----------------------------------------------------------------------===// 336 337 /// Check to see if the specified operand of the specified instruction is a 338 /// constant integer. If so, check to see if there are any bits set in the 339 /// constant that are not demanded. If so, shrink the constant and return true. 340 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op, 341 const APInt &Demanded) { 342 SDLoc dl(Op); 343 344 // FIXME: ISD::SELECT, ISD::SELECT_CC 345 switch (Op.getOpcode()) { 346 default: break; 347 case ISD::XOR: 348 case ISD::AND: 349 case ISD::OR: { 350 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 351 if (!C) return false; 352 353 if (Op.getOpcode() == ISD::XOR && 354 (C->getAPIntValue() | (~Demanded)).isAllOnesValue()) 355 return false; 356 357 // if we can expand it to have all bits set, do it 358 if (C->getAPIntValue().intersects(~Demanded)) { 359 EVT VT = Op.getValueType(); 360 SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0), 361 DAG.getConstant(Demanded & 362 C->getAPIntValue(), 363 dl, VT)); 364 return CombineTo(Op, New); 365 } 366 367 break; 368 } 369 } 370 371 return false; 372 } 373 374 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 375 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 376 /// generalized for targets with other types of implicit widening casts. 377 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op, 378 unsigned BitWidth, 379 const APInt &Demanded, 380 const SDLoc &dl) { 381 assert(Op.getNumOperands() == 2 && 382 "ShrinkDemandedOp only supports binary operators!"); 383 assert(Op.getNode()->getNumValues() == 1 && 384 "ShrinkDemandedOp only supports nodes with one result!"); 385 386 // Early return, as this function cannot handle vector types. 387 if (Op.getValueType().isVector()) 388 return false; 389 390 // Don't do this if the node has another user, which may require the 391 // full value. 392 if (!Op.getNode()->hasOneUse()) 393 return false; 394 395 // Search for the smallest integer type with free casts to and from 396 // Op's type. For expedience, just check power-of-2 integer types. 397 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 398 unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros(); 399 unsigned SmallVTBits = DemandedSize; 400 if (!isPowerOf2_32(SmallVTBits)) 401 SmallVTBits = NextPowerOf2(SmallVTBits); 402 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 403 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 404 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 405 TLI.isZExtFree(SmallVT, Op.getValueType())) { 406 // We found a type with free casts. 407 SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT, 408 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 409 Op.getNode()->getOperand(0)), 410 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 411 Op.getNode()->getOperand(1))); 412 bool NeedZext = DemandedSize > SmallVTBits; 413 SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, 414 dl, Op.getValueType(), X); 415 return CombineTo(Op, Z); 416 } 417 } 418 return false; 419 } 420 421 bool 422 TargetLowering::TargetLoweringOpt::SimplifyDemandedBits(SDNode *User, 423 unsigned OpIdx, 424 const APInt &Demanded, 425 DAGCombinerInfo &DCI) { 426 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 427 SDValue Op = User->getOperand(OpIdx); 428 APInt KnownZero, KnownOne; 429 430 if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, 431 *this, 0, true)) 432 return false; 433 434 435 // Old will not always be the same as Op. For example: 436 // 437 // Demanded = 0xffffff 438 // Op = i64 truncate (i32 and x, 0xffffff) 439 // In this case simplify demand bits will want to replace the 'and' node 440 // with the value 'x', which will give us: 441 // Old = i32 and x, 0xffffff 442 // New = x 443 if (Old.hasOneUse()) { 444 // For the one use case, we just commit the change. 445 DCI.CommitTargetLoweringOpt(*this); 446 return true; 447 } 448 449 // If Old has more than one use then it must be Op, because the 450 // AssumeSingleUse flag is not propogated to recursive calls of 451 // SimplifyDemanded bits, so the only node with multiple use that 452 // it will attempt to combine will be opt. 453 assert(Old == Op); 454 455 SmallVector <SDValue, 4> NewOps; 456 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 457 if (i == OpIdx) { 458 NewOps.push_back(New); 459 continue; 460 } 461 NewOps.push_back(User->getOperand(i)); 462 } 463 DAG.UpdateNodeOperands(User, NewOps); 464 // Op has less users now, so we may be able to perform additional combines 465 // with it. 466 DCI.AddToWorklist(Op.getNode()); 467 // User's operands have been updated, so we may be able to do new combines 468 // with it. 469 DCI.AddToWorklist(User); 470 return true; 471 } 472 473 /// Look at Op. At this point, we know that only the DemandedMask bits of the 474 /// result of Op are ever used downstream. If we can use this information to 475 /// simplify Op, create a new simplified DAG node and return true, returning the 476 /// original and new nodes in Old and New. Otherwise, analyze the expression and 477 /// return a mask of KnownOne and KnownZero bits for the expression (used to 478 /// simplify the caller). The KnownZero/One bits may only be accurate for those 479 /// bits in the DemandedMask. 480 bool TargetLowering::SimplifyDemandedBits(SDValue Op, 481 const APInt &DemandedMask, 482 APInt &KnownZero, 483 APInt &KnownOne, 484 TargetLoweringOpt &TLO, 485 unsigned Depth, 486 bool AssumeSingleUse) const { 487 unsigned BitWidth = DemandedMask.getBitWidth(); 488 assert(Op.getScalarValueSizeInBits() == BitWidth && 489 "Mask size mismatches value type size!"); 490 APInt NewMask = DemandedMask; 491 SDLoc dl(Op); 492 auto &DL = TLO.DAG.getDataLayout(); 493 494 // Don't know anything. 495 KnownZero = KnownOne = APInt(BitWidth, 0); 496 497 // Other users may use these bits. 498 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 499 if (Depth != 0) { 500 // If not at the root, Just compute the KnownZero/KnownOne bits to 501 // simplify things downstream. 502 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 503 return false; 504 } 505 // If this is the root being simplified, allow it to have multiple uses, 506 // just set the NewMask to all bits. 507 NewMask = APInt::getAllOnesValue(BitWidth); 508 } else if (DemandedMask == 0) { 509 // Not demanding any bits from Op. 510 if (!Op.isUndef()) 511 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType())); 512 return false; 513 } else if (Depth == 6) { // Limit search depth. 514 return false; 515 } 516 517 APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; 518 switch (Op.getOpcode()) { 519 case ISD::Constant: 520 // We know all of the bits for a constant! 521 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); 522 KnownZero = ~KnownOne; 523 return false; // Don't fall through, will infinitely loop. 524 case ISD::BUILD_VECTOR: 525 // Collect the known bits that are shared by every constant vector element. 526 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 527 for (SDValue SrcOp : Op->ops()) { 528 if (!isa<ConstantSDNode>(SrcOp)) { 529 // We can only handle all constant values - bail out with no known bits. 530 KnownZero = KnownOne = APInt(BitWidth, 0); 531 return false; 532 } 533 KnownOne2 = cast<ConstantSDNode>(SrcOp)->getAPIntValue(); 534 KnownZero2 = ~KnownOne2; 535 536 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 537 if (KnownOne2.getBitWidth() != BitWidth) { 538 assert(KnownOne2.getBitWidth() > BitWidth && 539 KnownZero2.getBitWidth() > BitWidth && 540 "Expected BUILD_VECTOR implicit truncation"); 541 KnownOne2 = KnownOne2.trunc(BitWidth); 542 KnownZero2 = KnownZero2.trunc(BitWidth); 543 } 544 545 // Known bits are the values that are shared by every element. 546 // TODO: support per-element known bits. 547 KnownOne &= KnownOne2; 548 KnownZero &= KnownZero2; 549 } 550 return false; // Don't fall through, will infinitely loop. 551 case ISD::AND: 552 // If the RHS is a constant, check to see if the LHS would be zero without 553 // using the bits from the RHS. Below, we use knowledge about the RHS to 554 // simplify the LHS, here we're using information from the LHS to simplify 555 // the RHS. 556 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 557 APInt LHSZero, LHSOne; 558 // Do not increment Depth here; that can cause an infinite loop. 559 TLO.DAG.computeKnownBits(Op.getOperand(0), LHSZero, LHSOne, Depth); 560 // If the LHS already has zeros where RHSC does, this and is dead. 561 if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) 562 return TLO.CombineTo(Op, Op.getOperand(0)); 563 // If any of the set bits in the RHS are known zero on the LHS, shrink 564 // the constant. 565 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask)) 566 return true; 567 } 568 569 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 570 KnownOne, TLO, Depth+1)) 571 return true; 572 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 573 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask, 574 KnownZero2, KnownOne2, TLO, Depth+1)) 575 return true; 576 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 577 578 // If all of the demanded bits are known one on one side, return the other. 579 // These bits cannot contribute to the result of the 'and'. 580 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 581 return TLO.CombineTo(Op, Op.getOperand(0)); 582 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 583 return TLO.CombineTo(Op, Op.getOperand(1)); 584 // If all of the demanded bits in the inputs are known zeros, return zero. 585 if ((NewMask & (KnownZero|KnownZero2)) == NewMask) 586 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType())); 587 // If the RHS is a constant, see if we can simplify it. 588 if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask)) 589 return true; 590 // If the operation can be done in a smaller type, do so. 591 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 592 return true; 593 594 // Output known-1 bits are only known if set in both the LHS & RHS. 595 KnownOne &= KnownOne2; 596 // Output known-0 are known to be clear if zero in either the LHS | RHS. 597 KnownZero |= KnownZero2; 598 break; 599 case ISD::OR: 600 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 601 KnownOne, TLO, Depth+1)) 602 return true; 603 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 604 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask, 605 KnownZero2, KnownOne2, TLO, Depth+1)) 606 return true; 607 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 608 609 // If all of the demanded bits are known zero on one side, return the other. 610 // These bits cannot contribute to the result of the 'or'. 611 if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask)) 612 return TLO.CombineTo(Op, Op.getOperand(0)); 613 if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask)) 614 return TLO.CombineTo(Op, Op.getOperand(1)); 615 // If all of the potentially set bits on one side are known to be set on 616 // the other side, just use the 'other' side. 617 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 618 return TLO.CombineTo(Op, Op.getOperand(0)); 619 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 620 return TLO.CombineTo(Op, Op.getOperand(1)); 621 // If the RHS is a constant, see if we can simplify it. 622 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 623 return true; 624 // If the operation can be done in a smaller type, do so. 625 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 626 return true; 627 628 // Output known-0 bits are only known if clear in both the LHS & RHS. 629 KnownZero &= KnownZero2; 630 // Output known-1 are known to be set if set in either the LHS | RHS. 631 KnownOne |= KnownOne2; 632 break; 633 case ISD::XOR: 634 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 635 KnownOne, TLO, Depth+1)) 636 return true; 637 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 638 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2, 639 KnownOne2, TLO, Depth+1)) 640 return true; 641 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 642 643 // If all of the demanded bits are known zero on one side, return the other. 644 // These bits cannot contribute to the result of the 'xor'. 645 if ((KnownZero & NewMask) == NewMask) 646 return TLO.CombineTo(Op, Op.getOperand(0)); 647 if ((KnownZero2 & NewMask) == NewMask) 648 return TLO.CombineTo(Op, Op.getOperand(1)); 649 // If the operation can be done in a smaller type, do so. 650 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 651 return true; 652 653 // If all of the unknown bits are known to be zero on one side or the other 654 // (but not both) turn this into an *inclusive* or. 655 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 656 if ((NewMask & ~KnownZero & ~KnownZero2) == 0) 657 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(), 658 Op.getOperand(0), 659 Op.getOperand(1))); 660 661 // Output known-0 bits are known if clear or set in both the LHS & RHS. 662 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 663 // Output known-1 are known to be set if set in only one of the LHS, RHS. 664 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 665 666 // If all of the demanded bits on one side are known, and all of the set 667 // bits on that side are also known to be set on the other side, turn this 668 // into an AND, as we know the bits will be cleared. 669 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 670 // NB: it is okay if more bits are known than are requested 671 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side 672 if (KnownOne == KnownOne2) { // set bits are the same on both sides 673 EVT VT = Op.getValueType(); 674 SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, dl, VT); 675 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, 676 Op.getOperand(0), ANDC)); 677 } 678 } 679 680 // If the RHS is a constant, see if we can simplify it. 681 // for XOR, we prefer to force bits to 1 if they will make a -1. 682 // if we can't force bits, try to shrink constant 683 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 684 APInt Expanded = C->getAPIntValue() | (~NewMask); 685 // if we can expand it to have all bits set, do it 686 if (Expanded.isAllOnesValue()) { 687 if (Expanded != C->getAPIntValue()) { 688 EVT VT = Op.getValueType(); 689 SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0), 690 TLO.DAG.getConstant(Expanded, dl, VT)); 691 return TLO.CombineTo(Op, New); 692 } 693 // if it already has all the bits set, nothing to change 694 // but don't shrink either! 695 } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) { 696 return true; 697 } 698 } 699 700 KnownZero = KnownZeroOut; 701 KnownOne = KnownOneOut; 702 break; 703 case ISD::SELECT: 704 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero, 705 KnownOne, TLO, Depth+1)) 706 return true; 707 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2, 708 KnownOne2, TLO, Depth+1)) 709 return true; 710 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 711 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 712 713 // If the operands are constants, see if we can simplify them. 714 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 715 return true; 716 717 // Only known if known in both the LHS and RHS. 718 KnownOne &= KnownOne2; 719 KnownZero &= KnownZero2; 720 break; 721 case ISD::SELECT_CC: 722 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero, 723 KnownOne, TLO, Depth+1)) 724 return true; 725 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2, 726 KnownOne2, TLO, Depth+1)) 727 return true; 728 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 729 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 730 731 // If the operands are constants, see if we can simplify them. 732 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 733 return true; 734 735 // Only known if known in both the LHS and RHS. 736 KnownOne &= KnownOne2; 737 KnownZero &= KnownZero2; 738 break; 739 case ISD::SHL: 740 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 741 unsigned ShAmt = SA->getZExtValue(); 742 SDValue InOp = Op.getOperand(0); 743 744 // If the shift count is an invalid immediate, don't do anything. 745 if (ShAmt >= BitWidth) 746 break; 747 748 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 749 // single shift. We can do this if the bottom bits (which are shifted 750 // out) are never demanded. 751 if (InOp.getOpcode() == ISD::SRL && 752 isa<ConstantSDNode>(InOp.getOperand(1))) { 753 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 754 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 755 unsigned Opc = ISD::SHL; 756 int Diff = ShAmt-C1; 757 if (Diff < 0) { 758 Diff = -Diff; 759 Opc = ISD::SRL; 760 } 761 762 SDValue NewSA = 763 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 764 EVT VT = Op.getValueType(); 765 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 766 InOp.getOperand(0), NewSA)); 767 } 768 } 769 770 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), 771 KnownZero, KnownOne, TLO, Depth+1)) 772 return true; 773 774 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 775 // are not demanded. This will likely allow the anyext to be folded away. 776 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { 777 SDValue InnerOp = InOp.getNode()->getOperand(0); 778 EVT InnerVT = InnerOp.getValueType(); 779 unsigned InnerBits = InnerVT.getSizeInBits(); 780 if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 && 781 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 782 EVT ShTy = getShiftAmountTy(InnerVT, DL); 783 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 784 ShTy = InnerVT; 785 SDValue NarrowShl = 786 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 787 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 788 return 789 TLO.CombineTo(Op, 790 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), 791 NarrowShl)); 792 } 793 // Repeat the SHL optimization above in cases where an extension 794 // intervenes: (shl (anyext (shr x, c1)), c2) to 795 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 796 // aren't demanded (as above) and that the shifted upper c1 bits of 797 // x aren't demanded. 798 if (InOp.hasOneUse() && 799 InnerOp.getOpcode() == ISD::SRL && 800 InnerOp.hasOneUse() && 801 isa<ConstantSDNode>(InnerOp.getOperand(1))) { 802 uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1)) 803 ->getZExtValue(); 804 if (InnerShAmt < ShAmt && 805 InnerShAmt < InnerBits && 806 NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 && 807 NewMask.trunc(ShAmt) == 0) { 808 SDValue NewSA = 809 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 810 Op.getOperand(1).getValueType()); 811 EVT VT = Op.getValueType(); 812 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 813 InnerOp.getOperand(0)); 814 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, 815 NewExt, NewSA)); 816 } 817 } 818 } 819 820 KnownZero <<= SA->getZExtValue(); 821 KnownOne <<= SA->getZExtValue(); 822 // low bits known zero. 823 KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue()); 824 } 825 break; 826 case ISD::SRL: 827 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 828 EVT VT = Op.getValueType(); 829 unsigned ShAmt = SA->getZExtValue(); 830 unsigned VTSize = VT.getSizeInBits(); 831 SDValue InOp = Op.getOperand(0); 832 833 // If the shift count is an invalid immediate, don't do anything. 834 if (ShAmt >= BitWidth) 835 break; 836 837 APInt InDemandedMask = (NewMask << ShAmt); 838 839 // If the shift is exact, then it does demand the low bits (and knows that 840 // they are zero). 841 if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()) 842 InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt); 843 844 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 845 // single shift. We can do this if the top bits (which are shifted out) 846 // are never demanded. 847 if (InOp.getOpcode() == ISD::SHL && 848 isa<ConstantSDNode>(InOp.getOperand(1))) { 849 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) { 850 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 851 unsigned Opc = ISD::SRL; 852 int Diff = ShAmt-C1; 853 if (Diff < 0) { 854 Diff = -Diff; 855 Opc = ISD::SHL; 856 } 857 858 SDValue NewSA = 859 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 860 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 861 InOp.getOperand(0), NewSA)); 862 } 863 } 864 865 // Compute the new bits that are at the top now. 866 if (SimplifyDemandedBits(InOp, InDemandedMask, 867 KnownZero, KnownOne, TLO, Depth+1)) 868 return true; 869 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 870 KnownZero = KnownZero.lshr(ShAmt); 871 KnownOne = KnownOne.lshr(ShAmt); 872 873 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 874 KnownZero |= HighBits; // High bits known zero. 875 } 876 break; 877 case ISD::SRA: 878 // If this is an arithmetic shift right and only the low-bit is set, we can 879 // always convert this into a logical shr, even if the shift amount is 880 // variable. The low bit of the shift cannot be an input sign bit unless 881 // the shift amount is >= the size of the datatype, which is undefined. 882 if (NewMask == 1) 883 return TLO.CombineTo(Op, 884 TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), 885 Op.getOperand(0), Op.getOperand(1))); 886 887 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 888 EVT VT = Op.getValueType(); 889 unsigned ShAmt = SA->getZExtValue(); 890 891 // If the shift count is an invalid immediate, don't do anything. 892 if (ShAmt >= BitWidth) 893 break; 894 895 APInt InDemandedMask = (NewMask << ShAmt); 896 897 // If the shift is exact, then it does demand the low bits (and knows that 898 // they are zero). 899 if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()) 900 InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt); 901 902 // If any of the demanded bits are produced by the sign extension, we also 903 // demand the input sign bit. 904 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 905 if (HighBits.intersects(NewMask)) 906 InDemandedMask |= APInt::getSignBit(VT.getScalarSizeInBits()); 907 908 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, 909 KnownZero, KnownOne, TLO, Depth+1)) 910 return true; 911 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 912 KnownZero = KnownZero.lshr(ShAmt); 913 KnownOne = KnownOne.lshr(ShAmt); 914 915 // Handle the sign bit, adjusted to where it is now in the mask. 916 APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt); 917 918 // If the input sign bit is known to be zero, or if none of the top bits 919 // are demanded, turn this into an unsigned shift right. 920 if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) { 921 SDNodeFlags Flags; 922 Flags.setExact(cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()); 923 return TLO.CombineTo(Op, 924 TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0), 925 Op.getOperand(1), &Flags)); 926 } 927 928 int Log2 = NewMask.exactLogBase2(); 929 if (Log2 >= 0) { 930 // The bit must come from the sign. 931 SDValue NewSA = 932 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, 933 Op.getOperand(1).getValueType()); 934 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 935 Op.getOperand(0), NewSA)); 936 } 937 938 if (KnownOne.intersects(SignBit)) 939 // New bits are known one. 940 KnownOne |= HighBits; 941 } 942 break; 943 case ISD::SIGN_EXTEND_INREG: { 944 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 945 946 APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1); 947 // If we only care about the highest bit, don't bother shifting right. 948 if (MsbMask == NewMask) { 949 unsigned ShAmt = ExVT.getScalarSizeInBits(); 950 SDValue InOp = Op.getOperand(0); 951 unsigned VTBits = Op->getValueType(0).getScalarSizeInBits(); 952 bool AlreadySignExtended = 953 TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1; 954 // However if the input is already sign extended we expect the sign 955 // extension to be dropped altogether later and do not simplify. 956 if (!AlreadySignExtended) { 957 // Compute the correct shift amount type, which must be getShiftAmountTy 958 // for scalar types after legalization. 959 EVT ShiftAmtTy = Op.getValueType(); 960 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 961 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 962 963 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, dl, 964 ShiftAmtTy); 965 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 966 Op.getValueType(), InOp, 967 ShiftAmt)); 968 } 969 } 970 971 // Sign extension. Compute the demanded bits in the result that are not 972 // present in the input. 973 APInt NewBits = 974 APInt::getHighBitsSet(BitWidth, 975 BitWidth - ExVT.getScalarSizeInBits()); 976 977 // If none of the extended bits are demanded, eliminate the sextinreg. 978 if ((NewBits & NewMask) == 0) 979 return TLO.CombineTo(Op, Op.getOperand(0)); 980 981 APInt InSignBit = 982 APInt::getSignBit(ExVT.getScalarSizeInBits()).zext(BitWidth); 983 APInt InputDemandedBits = 984 APInt::getLowBitsSet(BitWidth, 985 ExVT.getScalarSizeInBits()) & 986 NewMask; 987 988 // Since the sign extended bits are demanded, we know that the sign 989 // bit is demanded. 990 InputDemandedBits |= InSignBit; 991 992 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, 993 KnownZero, KnownOne, TLO, Depth+1)) 994 return true; 995 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 996 997 // If the sign bit of the input is known set or clear, then we know the 998 // top bits of the result. 999 1000 // If the input sign bit is known zero, convert this into a zero extension. 1001 if (KnownZero.intersects(InSignBit)) 1002 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg( 1003 Op.getOperand(0), dl, ExVT.getScalarType())); 1004 1005 if (KnownOne.intersects(InSignBit)) { // Input sign bit known set 1006 KnownOne |= NewBits; 1007 KnownZero &= ~NewBits; 1008 } else { // Input sign bit unknown 1009 KnownZero &= ~NewBits; 1010 KnownOne &= ~NewBits; 1011 } 1012 break; 1013 } 1014 case ISD::BUILD_PAIR: { 1015 EVT HalfVT = Op.getOperand(0).getValueType(); 1016 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1017 1018 APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1019 APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1020 1021 APInt KnownZeroLo, KnownOneLo; 1022 APInt KnownZeroHi, KnownOneHi; 1023 1024 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo, 1025 KnownOneLo, TLO, Depth + 1)) 1026 return true; 1027 1028 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi, 1029 KnownOneHi, TLO, Depth + 1)) 1030 return true; 1031 1032 KnownZero = KnownZeroLo.zext(BitWidth) | 1033 KnownZeroHi.zext(BitWidth).shl(HalfBitWidth); 1034 1035 KnownOne = KnownOneLo.zext(BitWidth) | 1036 KnownOneHi.zext(BitWidth).shl(HalfBitWidth); 1037 break; 1038 } 1039 case ISD::ZERO_EXTEND: { 1040 unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 1041 APInt InMask = NewMask.trunc(OperandBitWidth); 1042 1043 // If none of the top bits are demanded, convert this into an any_extend. 1044 APInt NewBits = 1045 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask; 1046 if (!NewBits.intersects(NewMask)) 1047 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 1048 Op.getValueType(), 1049 Op.getOperand(0))); 1050 1051 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 1052 KnownZero, KnownOne, TLO, Depth+1)) 1053 return true; 1054 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1055 KnownZero = KnownZero.zext(BitWidth); 1056 KnownOne = KnownOne.zext(BitWidth); 1057 KnownZero |= NewBits; 1058 break; 1059 } 1060 case ISD::SIGN_EXTEND: { 1061 EVT InVT = Op.getOperand(0).getValueType(); 1062 unsigned InBits = InVT.getScalarSizeInBits(); 1063 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits); 1064 APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits); 1065 APInt NewBits = ~InMask & NewMask; 1066 1067 // If none of the top bits are demanded, convert this into an any_extend. 1068 if (NewBits == 0) 1069 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 1070 Op.getValueType(), 1071 Op.getOperand(0))); 1072 1073 // Since some of the sign extended bits are demanded, we know that the sign 1074 // bit is demanded. 1075 APInt InDemandedBits = InMask & NewMask; 1076 InDemandedBits |= InSignBit; 1077 InDemandedBits = InDemandedBits.trunc(InBits); 1078 1079 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, 1080 KnownOne, TLO, Depth+1)) 1081 return true; 1082 KnownZero = KnownZero.zext(BitWidth); 1083 KnownOne = KnownOne.zext(BitWidth); 1084 1085 // If the sign bit is known zero, convert this to a zero extend. 1086 if (KnownZero.intersects(InSignBit)) 1087 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, 1088 Op.getValueType(), 1089 Op.getOperand(0))); 1090 1091 // If the sign bit is known one, the top bits match. 1092 if (KnownOne.intersects(InSignBit)) { 1093 KnownOne |= NewBits; 1094 assert((KnownZero & NewBits) == 0); 1095 } else { // Otherwise, top bits aren't known. 1096 assert((KnownOne & NewBits) == 0); 1097 assert((KnownZero & NewBits) == 0); 1098 } 1099 break; 1100 } 1101 case ISD::ANY_EXTEND: { 1102 unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 1103 APInt InMask = NewMask.trunc(OperandBitWidth); 1104 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 1105 KnownZero, KnownOne, TLO, Depth+1)) 1106 return true; 1107 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1108 KnownZero = KnownZero.zext(BitWidth); 1109 KnownOne = KnownOne.zext(BitWidth); 1110 break; 1111 } 1112 case ISD::TRUNCATE: { 1113 // Simplify the input, using demanded bit information, and compute the known 1114 // zero/one bits live out. 1115 unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 1116 APInt TruncMask = NewMask.zext(OperandBitWidth); 1117 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, 1118 KnownZero, KnownOne, TLO, Depth+1)) 1119 return true; 1120 KnownZero = KnownZero.trunc(BitWidth); 1121 KnownOne = KnownOne.trunc(BitWidth); 1122 1123 // If the input is only used by this truncate, see if we can shrink it based 1124 // on the known demanded bits. 1125 if (Op.getOperand(0).getNode()->hasOneUse()) { 1126 SDValue In = Op.getOperand(0); 1127 switch (In.getOpcode()) { 1128 default: break; 1129 case ISD::SRL: 1130 // Shrink SRL by a constant if none of the high bits shifted in are 1131 // demanded. 1132 if (TLO.LegalTypes() && 1133 !isTypeDesirableForOp(ISD::SRL, Op.getValueType())) 1134 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1135 // undesirable. 1136 break; 1137 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); 1138 if (!ShAmt) 1139 break; 1140 SDValue Shift = In.getOperand(1); 1141 if (TLO.LegalTypes()) { 1142 uint64_t ShVal = ShAmt->getZExtValue(); 1143 Shift = TLO.DAG.getConstant(ShVal, dl, 1144 getShiftAmountTy(Op.getValueType(), DL)); 1145 } 1146 1147 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 1148 OperandBitWidth - BitWidth); 1149 HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth); 1150 1151 if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) { 1152 // None of the shifted in bits are needed. Add a truncate of the 1153 // shift input, then shift it. 1154 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, 1155 Op.getValueType(), 1156 In.getOperand(0)); 1157 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, 1158 Op.getValueType(), 1159 NewTrunc, 1160 Shift)); 1161 } 1162 break; 1163 } 1164 } 1165 1166 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1167 break; 1168 } 1169 case ISD::AssertZext: { 1170 // AssertZext demands all of the high bits, plus any of the low bits 1171 // demanded by its users. 1172 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1173 APInt InMask = APInt::getLowBitsSet(BitWidth, 1174 VT.getSizeInBits()); 1175 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask, 1176 KnownZero, KnownOne, TLO, Depth+1)) 1177 return true; 1178 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1179 1180 KnownZero |= ~InMask & NewMask; 1181 break; 1182 } 1183 case ISD::BITCAST: 1184 // If this is an FP->Int bitcast and if the sign bit is the only 1185 // thing demanded, turn this into a FGETSIGN. 1186 if (!TLO.LegalOperations() && 1187 !Op.getValueType().isVector() && 1188 !Op.getOperand(0).getValueType().isVector() && 1189 NewMask == APInt::getSignBit(Op.getValueSizeInBits()) && 1190 Op.getOperand(0).getValueType().isFloatingPoint()) { 1191 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType()); 1192 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1193 if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple() && 1194 Op.getOperand(0).getValueType() != MVT::f128) { 1195 // Cannot eliminate/lower SHL for f128 yet. 1196 EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32; 1197 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1198 // place. We expect the SHL to be eliminated by other optimizations. 1199 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0)); 1200 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1201 if (!OpVTLegal && OpVTSizeInBits > 32) 1202 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign); 1203 unsigned ShVal = Op.getValueSizeInBits() - 1; 1204 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, Op.getValueType()); 1205 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 1206 Op.getValueType(), 1207 Sign, ShAmt)); 1208 } 1209 } 1210 break; 1211 case ISD::ADD: 1212 case ISD::MUL: 1213 case ISD::SUB: { 1214 // Add, Sub, and Mul don't demand any bits in positions beyond that 1215 // of the highest bit demanded of them. 1216 APInt LoMask = APInt::getLowBitsSet(BitWidth, 1217 BitWidth - NewMask.countLeadingZeros()); 1218 if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2, 1219 KnownOne2, TLO, Depth+1) || 1220 SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2, 1221 KnownOne2, TLO, Depth+1) || 1222 // See if the operation should be performed at a smaller bit width. 1223 TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) { 1224 const SDNodeFlags *Flags = Op.getNode()->getFlags(); 1225 if (Flags->hasNoSignedWrap() || Flags->hasNoUnsignedWrap()) { 1226 // Disable the nsw and nuw flags. We can no longer guarantee that we 1227 // won't wrap after simplification. 1228 SDNodeFlags NewFlags = *Flags; 1229 NewFlags.setNoSignedWrap(false); 1230 NewFlags.setNoUnsignedWrap(false); 1231 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), 1232 Op.getOperand(0), Op.getOperand(1), 1233 &NewFlags); 1234 return TLO.CombineTo(Op, NewOp); 1235 } 1236 return true; 1237 } 1238 LLVM_FALLTHROUGH; 1239 } 1240 default: 1241 // Just use computeKnownBits to compute output bits. 1242 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 1243 break; 1244 } 1245 1246 // If we know the value of all of the demanded bits, return this as a 1247 // constant. 1248 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { 1249 // Avoid folding to a constant if any OpaqueConstant is involved. 1250 const SDNode *N = Op.getNode(); 1251 for (SDNodeIterator I = SDNodeIterator::begin(N), 1252 E = SDNodeIterator::end(N); I != E; ++I) { 1253 SDNode *Op = *I; 1254 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 1255 if (C->isOpaque()) 1256 return false; 1257 } 1258 return TLO.CombineTo(Op, 1259 TLO.DAG.getConstant(KnownOne, dl, Op.getValueType())); 1260 } 1261 1262 return false; 1263 } 1264 1265 /// Determine which of the bits specified in Mask are known to be either zero or 1266 /// one and return them in the KnownZero/KnownOne bitsets. 1267 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1268 APInt &KnownZero, 1269 APInt &KnownOne, 1270 const SelectionDAG &DAG, 1271 unsigned Depth) const { 1272 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1273 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1274 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1275 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1276 "Should use MaskedValueIsZero if you don't know whether Op" 1277 " is a target node!"); 1278 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); 1279 } 1280 1281 /// This method can be implemented by targets that want to expose additional 1282 /// information about sign bits to the DAG Combiner. 1283 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 1284 const SelectionDAG &, 1285 unsigned Depth) const { 1286 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1287 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1288 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1289 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1290 "Should use ComputeNumSignBits if you don't know whether Op" 1291 " is a target node!"); 1292 return 1; 1293 } 1294 1295 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 1296 if (!N) 1297 return false; 1298 1299 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1300 if (!CN) { 1301 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1302 if (!BV) 1303 return false; 1304 1305 // Only interested in constant splats, we don't care about undef 1306 // elements in identifying boolean constants and getConstantSplatNode 1307 // returns NULL if all ops are undef; 1308 CN = BV->getConstantSplatNode(); 1309 if (!CN) 1310 return false; 1311 } 1312 1313 switch (getBooleanContents(N->getValueType(0))) { 1314 case UndefinedBooleanContent: 1315 return CN->getAPIntValue()[0]; 1316 case ZeroOrOneBooleanContent: 1317 return CN->isOne(); 1318 case ZeroOrNegativeOneBooleanContent: 1319 return CN->isAllOnesValue(); 1320 } 1321 1322 llvm_unreachable("Invalid boolean contents"); 1323 } 1324 1325 SDValue TargetLowering::getConstTrueVal(SelectionDAG &DAG, EVT VT, 1326 const SDLoc &DL) const { 1327 unsigned ElementWidth = VT.getScalarSizeInBits(); 1328 APInt TrueInt = 1329 getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent 1330 ? APInt(ElementWidth, 1) 1331 : APInt::getAllOnesValue(ElementWidth); 1332 return DAG.getConstant(TrueInt, DL, VT); 1333 } 1334 1335 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 1336 if (!N) 1337 return false; 1338 1339 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1340 if (!CN) { 1341 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1342 if (!BV) 1343 return false; 1344 1345 // Only interested in constant splats, we don't care about undef 1346 // elements in identifying boolean constants and getConstantSplatNode 1347 // returns NULL if all ops are undef; 1348 CN = BV->getConstantSplatNode(); 1349 if (!CN) 1350 return false; 1351 } 1352 1353 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 1354 return !CN->getAPIntValue()[0]; 1355 1356 return CN->isNullValue(); 1357 } 1358 1359 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 1360 bool SExt) const { 1361 if (VT == MVT::i1) 1362 return N->isOne(); 1363 1364 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 1365 switch (Cnt) { 1366 case TargetLowering::ZeroOrOneBooleanContent: 1367 // An extended value of 1 is always true, unless its original type is i1, 1368 // in which case it will be sign extended to -1. 1369 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 1370 case TargetLowering::UndefinedBooleanContent: 1371 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1372 return N->isAllOnesValue() && SExt; 1373 } 1374 llvm_unreachable("Unexpected enumeration."); 1375 } 1376 1377 /// This helper function of SimplifySetCC tries to optimize the comparison when 1378 /// either operand of the SetCC node is a bitwise-and instruction. 1379 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 1380 ISD::CondCode Cond, 1381 DAGCombinerInfo &DCI, 1382 const SDLoc &DL) const { 1383 // Match these patterns in any of their permutations: 1384 // (X & Y) == Y 1385 // (X & Y) != Y 1386 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 1387 std::swap(N0, N1); 1388 1389 EVT OpVT = N0.getValueType(); 1390 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 1391 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 1392 return SDValue(); 1393 1394 SDValue X, Y; 1395 if (N0.getOperand(0) == N1) { 1396 X = N0.getOperand(1); 1397 Y = N0.getOperand(0); 1398 } else if (N0.getOperand(1) == N1) { 1399 X = N0.getOperand(0); 1400 Y = N0.getOperand(1); 1401 } else { 1402 return SDValue(); 1403 } 1404 1405 SelectionDAG &DAG = DCI.DAG; 1406 SDValue Zero = DAG.getConstant(0, DL, OpVT); 1407 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 1408 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 1409 // Note that where Y is variable and is known to have at most one bit set 1410 // (for example, if it is Z & 1) we cannot do this; the expressions are not 1411 // equivalent when Y == 0. 1412 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 1413 if (DCI.isBeforeLegalizeOps() || 1414 isCondCodeLegal(Cond, N0.getSimpleValueType())) 1415 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 1416 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 1417 // If the target supports an 'and-not' or 'and-complement' logic operation, 1418 // try to use that to make a comparison operation more efficient. 1419 // But don't do this transform if the mask is a single bit because there are 1420 // more efficient ways to deal with that case (for example, 'bt' on x86 or 1421 // 'rlwinm' on PPC). 1422 1423 // Bail out if the compare operand that we want to turn into a zero is 1424 // already a zero (otherwise, infinite loop). 1425 auto *YConst = dyn_cast<ConstantSDNode>(Y); 1426 if (YConst && YConst->isNullValue()) 1427 return SDValue(); 1428 1429 // Transform this into: ~X & Y == 0. 1430 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 1431 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 1432 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 1433 } 1434 1435 return SDValue(); 1436 } 1437 1438 /// Try to simplify a setcc built with the specified operands and cc. If it is 1439 /// unable to simplify it, return a null SDValue. 1440 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 1441 ISD::CondCode Cond, bool foldBooleans, 1442 DAGCombinerInfo &DCI, 1443 const SDLoc &dl) const { 1444 SelectionDAG &DAG = DCI.DAG; 1445 1446 // These setcc operations always fold. 1447 switch (Cond) { 1448 default: break; 1449 case ISD::SETFALSE: 1450 case ISD::SETFALSE2: return DAG.getConstant(0, dl, VT); 1451 case ISD::SETTRUE: 1452 case ISD::SETTRUE2: { 1453 TargetLowering::BooleanContent Cnt = 1454 getBooleanContents(N0->getValueType(0)); 1455 return DAG.getConstant( 1456 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl, 1457 VT); 1458 } 1459 } 1460 1461 // Ensure that the constant occurs on the RHS, and fold constant 1462 // comparisons. 1463 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 1464 if (isa<ConstantSDNode>(N0.getNode()) && 1465 (DCI.isBeforeLegalizeOps() || 1466 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 1467 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 1468 1469 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 1470 const APInt &C1 = N1C->getAPIntValue(); 1471 1472 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 1473 // equality comparison, then we're just comparing whether X itself is 1474 // zero. 1475 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) && 1476 N0.getOperand(0).getOpcode() == ISD::CTLZ && 1477 N0.getOperand(1).getOpcode() == ISD::Constant) { 1478 const APInt &ShAmt 1479 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1480 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1481 ShAmt == Log2_32(N0.getValueSizeInBits())) { 1482 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 1483 // (srl (ctlz x), 5) == 0 -> X != 0 1484 // (srl (ctlz x), 5) != 1 -> X != 0 1485 Cond = ISD::SETNE; 1486 } else { 1487 // (srl (ctlz x), 5) != 0 -> X == 0 1488 // (srl (ctlz x), 5) == 1 -> X == 0 1489 Cond = ISD::SETEQ; 1490 } 1491 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 1492 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 1493 Zero, Cond); 1494 } 1495 } 1496 1497 SDValue CTPOP = N0; 1498 // Look through truncs that don't change the value of a ctpop. 1499 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 1500 CTPOP = N0.getOperand(0); 1501 1502 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 1503 (N0 == CTPOP || 1504 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 1505 EVT CTVT = CTPOP.getValueType(); 1506 SDValue CTOp = CTPOP.getOperand(0); 1507 1508 // (ctpop x) u< 2 -> (x & x-1) == 0 1509 // (ctpop x) u> 1 -> (x & x-1) != 0 1510 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 1511 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 1512 DAG.getConstant(1, dl, CTVT)); 1513 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 1514 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 1515 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 1516 } 1517 1518 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 1519 } 1520 1521 // (zext x) == C --> x == (trunc C) 1522 // (sext x) == C --> x == (trunc C) 1523 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1524 DCI.isBeforeLegalize() && N0->hasOneUse()) { 1525 unsigned MinBits = N0.getValueSizeInBits(); 1526 SDValue PreExt; 1527 bool Signed = false; 1528 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 1529 // ZExt 1530 MinBits = N0->getOperand(0).getValueSizeInBits(); 1531 PreExt = N0->getOperand(0); 1532 } else if (N0->getOpcode() == ISD::AND) { 1533 // DAGCombine turns costly ZExts into ANDs 1534 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 1535 if ((C->getAPIntValue()+1).isPowerOf2()) { 1536 MinBits = C->getAPIntValue().countTrailingOnes(); 1537 PreExt = N0->getOperand(0); 1538 } 1539 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 1540 // SExt 1541 MinBits = N0->getOperand(0).getValueSizeInBits(); 1542 PreExt = N0->getOperand(0); 1543 Signed = true; 1544 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 1545 // ZEXTLOAD / SEXTLOAD 1546 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 1547 MinBits = LN0->getMemoryVT().getSizeInBits(); 1548 PreExt = N0; 1549 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 1550 Signed = true; 1551 MinBits = LN0->getMemoryVT().getSizeInBits(); 1552 PreExt = N0; 1553 } 1554 } 1555 1556 // Figure out how many bits we need to preserve this constant. 1557 unsigned ReqdBits = Signed ? 1558 C1.getBitWidth() - C1.getNumSignBits() + 1 : 1559 C1.getActiveBits(); 1560 1561 // Make sure we're not losing bits from the constant. 1562 if (MinBits > 0 && 1563 MinBits < C1.getBitWidth() && 1564 MinBits >= ReqdBits) { 1565 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 1566 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 1567 // Will get folded away. 1568 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 1569 if (MinBits == 1 && C1 == 1) 1570 // Invert the condition. 1571 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 1572 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1573 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 1574 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 1575 } 1576 1577 // If truncating the setcc operands is not desirable, we can still 1578 // simplify the expression in some cases: 1579 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 1580 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 1581 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 1582 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 1583 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 1584 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 1585 SDValue TopSetCC = N0->getOperand(0); 1586 unsigned N0Opc = N0->getOpcode(); 1587 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 1588 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 1589 TopSetCC.getOpcode() == ISD::SETCC && 1590 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 1591 (isConstFalseVal(N1C) || 1592 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 1593 1594 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 1595 (!N1C->isNullValue() && Cond == ISD::SETNE); 1596 1597 if (!Inverse) 1598 return TopSetCC; 1599 1600 ISD::CondCode InvCond = ISD::getSetCCInverse( 1601 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 1602 TopSetCC.getOperand(0).getValueType().isInteger()); 1603 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 1604 TopSetCC.getOperand(1), 1605 InvCond); 1606 1607 } 1608 } 1609 } 1610 1611 // If the LHS is '(and load, const)', the RHS is 0, 1612 // the test is for equality or unsigned, and all 1 bits of the const are 1613 // in the same partial word, see if we can shorten the load. 1614 if (DCI.isBeforeLegalize() && 1615 !ISD::isSignedIntSetCC(Cond) && 1616 N0.getOpcode() == ISD::AND && C1 == 0 && 1617 N0.getNode()->hasOneUse() && 1618 isa<LoadSDNode>(N0.getOperand(0)) && 1619 N0.getOperand(0).getNode()->hasOneUse() && 1620 isa<ConstantSDNode>(N0.getOperand(1))) { 1621 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 1622 APInt bestMask; 1623 unsigned bestWidth = 0, bestOffset = 0; 1624 if (!Lod->isVolatile() && Lod->isUnindexed()) { 1625 unsigned origWidth = N0.getValueSizeInBits(); 1626 unsigned maskWidth = origWidth; 1627 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 1628 // 8 bits, but have to be careful... 1629 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 1630 origWidth = Lod->getMemoryVT().getSizeInBits(); 1631 const APInt &Mask = 1632 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1633 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 1634 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 1635 for (unsigned offset=0; offset<origWidth/width; offset++) { 1636 if ((newMask & Mask) == Mask) { 1637 if (!DAG.getDataLayout().isLittleEndian()) 1638 bestOffset = (origWidth/width - offset - 1) * (width/8); 1639 else 1640 bestOffset = (uint64_t)offset * (width/8); 1641 bestMask = Mask.lshr(offset * (width/8) * 8); 1642 bestWidth = width; 1643 break; 1644 } 1645 newMask = newMask << width; 1646 } 1647 } 1648 } 1649 if (bestWidth) { 1650 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 1651 if (newVT.isRound()) { 1652 EVT PtrType = Lod->getOperand(1).getValueType(); 1653 SDValue Ptr = Lod->getBasePtr(); 1654 if (bestOffset != 0) 1655 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 1656 DAG.getConstant(bestOffset, dl, PtrType)); 1657 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 1658 SDValue NewLoad = DAG.getLoad( 1659 newVT, dl, Lod->getChain(), Ptr, 1660 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 1661 return DAG.getSetCC(dl, VT, 1662 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 1663 DAG.getConstant(bestMask.trunc(bestWidth), 1664 dl, newVT)), 1665 DAG.getConstant(0LL, dl, newVT), Cond); 1666 } 1667 } 1668 } 1669 1670 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 1671 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 1672 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 1673 1674 // If the comparison constant has bits in the upper part, the 1675 // zero-extended value could never match. 1676 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 1677 C1.getBitWidth() - InSize))) { 1678 switch (Cond) { 1679 case ISD::SETUGT: 1680 case ISD::SETUGE: 1681 case ISD::SETEQ: return DAG.getConstant(0, dl, VT); 1682 case ISD::SETULT: 1683 case ISD::SETULE: 1684 case ISD::SETNE: return DAG.getConstant(1, dl, VT); 1685 case ISD::SETGT: 1686 case ISD::SETGE: 1687 // True if the sign bit of C1 is set. 1688 return DAG.getConstant(C1.isNegative(), dl, VT); 1689 case ISD::SETLT: 1690 case ISD::SETLE: 1691 // True if the sign bit of C1 isn't set. 1692 return DAG.getConstant(C1.isNonNegative(), dl, VT); 1693 default: 1694 break; 1695 } 1696 } 1697 1698 // Otherwise, we can perform the comparison with the low bits. 1699 switch (Cond) { 1700 case ISD::SETEQ: 1701 case ISD::SETNE: 1702 case ISD::SETUGT: 1703 case ISD::SETUGE: 1704 case ISD::SETULT: 1705 case ISD::SETULE: { 1706 EVT newVT = N0.getOperand(0).getValueType(); 1707 if (DCI.isBeforeLegalizeOps() || 1708 (isOperationLegal(ISD::SETCC, newVT) && 1709 getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) { 1710 EVT NewSetCCVT = 1711 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); 1712 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 1713 1714 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 1715 NewConst, Cond); 1716 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 1717 } 1718 break; 1719 } 1720 default: 1721 break; // todo, be more careful with signed comparisons 1722 } 1723 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 1724 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1725 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 1726 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 1727 EVT ExtDstTy = N0.getValueType(); 1728 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 1729 1730 // If the constant doesn't fit into the number of bits for the source of 1731 // the sign extension, it is impossible for both sides to be equal. 1732 if (C1.getMinSignedBits() > ExtSrcTyBits) 1733 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 1734 1735 SDValue ZextOp; 1736 EVT Op0Ty = N0.getOperand(0).getValueType(); 1737 if (Op0Ty == ExtSrcTy) { 1738 ZextOp = N0.getOperand(0); 1739 } else { 1740 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 1741 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 1742 DAG.getConstant(Imm, dl, Op0Ty)); 1743 } 1744 if (!DCI.isCalledByLegalizer()) 1745 DCI.AddToWorklist(ZextOp.getNode()); 1746 // Otherwise, make this a use of a zext. 1747 return DAG.getSetCC(dl, VT, ZextOp, 1748 DAG.getConstant(C1 & APInt::getLowBitsSet( 1749 ExtDstTyBits, 1750 ExtSrcTyBits), 1751 dl, ExtDstTy), 1752 Cond); 1753 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) && 1754 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1755 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 1756 if (N0.getOpcode() == ISD::SETCC && 1757 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 1758 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1); 1759 if (TrueWhenTrue) 1760 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 1761 // Invert the condition. 1762 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 1763 CC = ISD::getSetCCInverse(CC, 1764 N0.getOperand(0).getValueType().isInteger()); 1765 if (DCI.isBeforeLegalizeOps() || 1766 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 1767 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 1768 } 1769 1770 if ((N0.getOpcode() == ISD::XOR || 1771 (N0.getOpcode() == ISD::AND && 1772 N0.getOperand(0).getOpcode() == ISD::XOR && 1773 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 1774 isa<ConstantSDNode>(N0.getOperand(1)) && 1775 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) { 1776 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 1777 // can only do this if the top bits are known zero. 1778 unsigned BitWidth = N0.getValueSizeInBits(); 1779 if (DAG.MaskedValueIsZero(N0, 1780 APInt::getHighBitsSet(BitWidth, 1781 BitWidth-1))) { 1782 // Okay, get the un-inverted input value. 1783 SDValue Val; 1784 if (N0.getOpcode() == ISD::XOR) 1785 Val = N0.getOperand(0); 1786 else { 1787 assert(N0.getOpcode() == ISD::AND && 1788 N0.getOperand(0).getOpcode() == ISD::XOR); 1789 // ((X^1)&1)^1 -> X & 1 1790 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 1791 N0.getOperand(0).getOperand(0), 1792 N0.getOperand(1)); 1793 } 1794 1795 return DAG.getSetCC(dl, VT, Val, N1, 1796 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1797 } 1798 } else if (N1C->getAPIntValue() == 1 && 1799 (VT == MVT::i1 || 1800 getBooleanContents(N0->getValueType(0)) == 1801 ZeroOrOneBooleanContent)) { 1802 SDValue Op0 = N0; 1803 if (Op0.getOpcode() == ISD::TRUNCATE) 1804 Op0 = Op0.getOperand(0); 1805 1806 if ((Op0.getOpcode() == ISD::XOR) && 1807 Op0.getOperand(0).getOpcode() == ISD::SETCC && 1808 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 1809 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 1810 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 1811 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 1812 Cond); 1813 } 1814 if (Op0.getOpcode() == ISD::AND && 1815 isa<ConstantSDNode>(Op0.getOperand(1)) && 1816 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) { 1817 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 1818 if (Op0.getValueType().bitsGT(VT)) 1819 Op0 = DAG.getNode(ISD::AND, dl, VT, 1820 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 1821 DAG.getConstant(1, dl, VT)); 1822 else if (Op0.getValueType().bitsLT(VT)) 1823 Op0 = DAG.getNode(ISD::AND, dl, VT, 1824 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 1825 DAG.getConstant(1, dl, VT)); 1826 1827 return DAG.getSetCC(dl, VT, Op0, 1828 DAG.getConstant(0, dl, Op0.getValueType()), 1829 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1830 } 1831 if (Op0.getOpcode() == ISD::AssertZext && 1832 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 1833 return DAG.getSetCC(dl, VT, Op0, 1834 DAG.getConstant(0, dl, Op0.getValueType()), 1835 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1836 } 1837 } 1838 1839 APInt MinVal, MaxVal; 1840 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits(); 1841 if (ISD::isSignedIntSetCC(Cond)) { 1842 MinVal = APInt::getSignedMinValue(OperandBitSize); 1843 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 1844 } else { 1845 MinVal = APInt::getMinValue(OperandBitSize); 1846 MaxVal = APInt::getMaxValue(OperandBitSize); 1847 } 1848 1849 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 1850 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 1851 if (C1 == MinVal) return DAG.getConstant(1, dl, VT); // X >= MIN --> true 1852 // X >= C0 --> X > (C0 - 1) 1853 APInt C = C1 - 1; 1854 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 1855 if ((DCI.isBeforeLegalizeOps() || 1856 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1857 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1858 isLegalICmpImmediate(C.getSExtValue())))) { 1859 return DAG.getSetCC(dl, VT, N0, 1860 DAG.getConstant(C, dl, N1.getValueType()), 1861 NewCC); 1862 } 1863 } 1864 1865 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 1866 if (C1 == MaxVal) return DAG.getConstant(1, dl, VT); // X <= MAX --> true 1867 // X <= C0 --> X < (C0 + 1) 1868 APInt C = C1 + 1; 1869 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 1870 if ((DCI.isBeforeLegalizeOps() || 1871 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1872 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1873 isLegalICmpImmediate(C.getSExtValue())))) { 1874 return DAG.getSetCC(dl, VT, N0, 1875 DAG.getConstant(C, dl, N1.getValueType()), 1876 NewCC); 1877 } 1878 } 1879 1880 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) 1881 return DAG.getConstant(0, dl, VT); // X < MIN --> false 1882 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal) 1883 return DAG.getConstant(1, dl, VT); // X >= MIN --> true 1884 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal) 1885 return DAG.getConstant(0, dl, VT); // X > MAX --> false 1886 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal) 1887 return DAG.getConstant(1, dl, VT); // X <= MAX --> true 1888 1889 // Canonicalize setgt X, Min --> setne X, Min 1890 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) 1891 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1892 // Canonicalize setlt X, Max --> setne X, Max 1893 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) 1894 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1895 1896 // If we have setult X, 1, turn it into seteq X, 0 1897 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) 1898 return DAG.getSetCC(dl, VT, N0, 1899 DAG.getConstant(MinVal, dl, N0.getValueType()), 1900 ISD::SETEQ); 1901 // If we have setugt X, Max-1, turn it into seteq X, Max 1902 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) 1903 return DAG.getSetCC(dl, VT, N0, 1904 DAG.getConstant(MaxVal, dl, N0.getValueType()), 1905 ISD::SETEQ); 1906 1907 // If we have "setcc X, C0", check to see if we can shrink the immediate 1908 // by changing cc. 1909 1910 // SETUGT X, SINTMAX -> SETLT X, 0 1911 if (Cond == ISD::SETUGT && 1912 C1 == APInt::getSignedMaxValue(OperandBitSize)) 1913 return DAG.getSetCC(dl, VT, N0, 1914 DAG.getConstant(0, dl, N1.getValueType()), 1915 ISD::SETLT); 1916 1917 // SETULT X, SINTMIN -> SETGT X, -1 1918 if (Cond == ISD::SETULT && 1919 C1 == APInt::getSignedMinValue(OperandBitSize)) { 1920 SDValue ConstMinusOne = 1921 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 1922 N1.getValueType()); 1923 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 1924 } 1925 1926 // Fold bit comparisons when we can. 1927 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1928 (VT == N0.getValueType() || 1929 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 1930 N0.getOpcode() == ISD::AND) { 1931 auto &DL = DAG.getDataLayout(); 1932 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1933 EVT ShiftTy = DCI.isBeforeLegalize() 1934 ? getPointerTy(DL) 1935 : getShiftAmountTy(N0.getValueType(), DL); 1936 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 1937 // Perform the xform if the AND RHS is a single bit. 1938 if (AndRHS->getAPIntValue().isPowerOf2()) { 1939 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1940 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1941 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, 1942 ShiftTy))); 1943 } 1944 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 1945 // (X & 8) == 8 --> (X & 8) >> 3 1946 // Perform the xform if C1 is a single bit. 1947 if (C1.isPowerOf2()) { 1948 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1949 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1950 DAG.getConstant(C1.logBase2(), dl, 1951 ShiftTy))); 1952 } 1953 } 1954 } 1955 } 1956 1957 if (C1.getMinSignedBits() <= 64 && 1958 !isLegalICmpImmediate(C1.getSExtValue())) { 1959 // (X & -256) == 256 -> (X >> 8) == 1 1960 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1961 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 1962 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1963 const APInt &AndRHSC = AndRHS->getAPIntValue(); 1964 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 1965 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 1966 auto &DL = DAG.getDataLayout(); 1967 EVT ShiftTy = DCI.isBeforeLegalize() 1968 ? getPointerTy(DL) 1969 : getShiftAmountTy(N0.getValueType(), DL); 1970 EVT CmpTy = N0.getValueType(); 1971 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 1972 DAG.getConstant(ShiftBits, dl, 1973 ShiftTy)); 1974 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); 1975 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 1976 } 1977 } 1978 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 1979 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 1980 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 1981 // X < 0x100000000 -> (X >> 32) < 1 1982 // X >= 0x100000000 -> (X >> 32) >= 1 1983 // X <= 0x0ffffffff -> (X >> 32) < 1 1984 // X > 0x0ffffffff -> (X >> 32) >= 1 1985 unsigned ShiftBits; 1986 APInt NewC = C1; 1987 ISD::CondCode NewCond = Cond; 1988 if (AdjOne) { 1989 ShiftBits = C1.countTrailingOnes(); 1990 NewC = NewC + 1; 1991 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 1992 } else { 1993 ShiftBits = C1.countTrailingZeros(); 1994 } 1995 NewC = NewC.lshr(ShiftBits); 1996 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 1997 isLegalICmpImmediate(NewC.getSExtValue())) { 1998 auto &DL = DAG.getDataLayout(); 1999 EVT ShiftTy = DCI.isBeforeLegalize() 2000 ? getPointerTy(DL) 2001 : getShiftAmountTy(N0.getValueType(), DL); 2002 EVT CmpTy = N0.getValueType(); 2003 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 2004 DAG.getConstant(ShiftBits, dl, ShiftTy)); 2005 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); 2006 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 2007 } 2008 } 2009 } 2010 } 2011 2012 if (isa<ConstantFPSDNode>(N0.getNode())) { 2013 // Constant fold or commute setcc. 2014 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); 2015 if (O.getNode()) return O; 2016 } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { 2017 // If the RHS of an FP comparison is a constant, simplify it away in 2018 // some cases. 2019 if (CFP->getValueAPF().isNaN()) { 2020 // If an operand is known to be a nan, we can fold it. 2021 switch (ISD::getUnorderedFlavor(Cond)) { 2022 default: llvm_unreachable("Unknown flavor!"); 2023 case 0: // Known false. 2024 return DAG.getConstant(0, dl, VT); 2025 case 1: // Known true. 2026 return DAG.getConstant(1, dl, VT); 2027 case 2: // Undefined. 2028 return DAG.getUNDEF(VT); 2029 } 2030 } 2031 2032 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 2033 // constant if knowing that the operand is non-nan is enough. We prefer to 2034 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 2035 // materialize 0.0. 2036 if (Cond == ISD::SETO || Cond == ISD::SETUO) 2037 return DAG.getSetCC(dl, VT, N0, N0, Cond); 2038 2039 // If the condition is not legal, see if we can find an equivalent one 2040 // which is legal. 2041 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 2042 // If the comparison was an awkward floating-point == or != and one of 2043 // the comparison operands is infinity or negative infinity, convert the 2044 // condition to a less-awkward <= or >=. 2045 if (CFP->getValueAPF().isInfinity()) { 2046 if (CFP->getValueAPF().isNegative()) { 2047 if (Cond == ISD::SETOEQ && 2048 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 2049 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 2050 if (Cond == ISD::SETUEQ && 2051 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 2052 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 2053 if (Cond == ISD::SETUNE && 2054 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 2055 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 2056 if (Cond == ISD::SETONE && 2057 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 2058 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 2059 } else { 2060 if (Cond == ISD::SETOEQ && 2061 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 2062 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 2063 if (Cond == ISD::SETUEQ && 2064 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 2065 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 2066 if (Cond == ISD::SETUNE && 2067 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 2068 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 2069 if (Cond == ISD::SETONE && 2070 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 2071 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 2072 } 2073 } 2074 } 2075 } 2076 2077 if (N0 == N1) { 2078 // The sext(setcc()) => setcc() optimization relies on the appropriate 2079 // constant being emitted. 2080 uint64_t EqVal = 0; 2081 switch (getBooleanContents(N0.getValueType())) { 2082 case UndefinedBooleanContent: 2083 case ZeroOrOneBooleanContent: 2084 EqVal = ISD::isTrueWhenEqual(Cond); 2085 break; 2086 case ZeroOrNegativeOneBooleanContent: 2087 EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0; 2088 break; 2089 } 2090 2091 // We can always fold X == X for integer setcc's. 2092 if (N0.getValueType().isInteger()) { 2093 return DAG.getConstant(EqVal, dl, VT); 2094 } 2095 unsigned UOF = ISD::getUnorderedFlavor(Cond); 2096 if (UOF == 2) // FP operators that are undefined on NaNs. 2097 return DAG.getConstant(EqVal, dl, VT); 2098 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) 2099 return DAG.getConstant(EqVal, dl, VT); 2100 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 2101 // if it is not already. 2102 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 2103 if (NewCond != Cond && (DCI.isBeforeLegalizeOps() || 2104 getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal)) 2105 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 2106 } 2107 2108 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2109 N0.getValueType().isInteger()) { 2110 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 2111 N0.getOpcode() == ISD::XOR) { 2112 // Simplify (X+Y) == (X+Z) --> Y == Z 2113 if (N0.getOpcode() == N1.getOpcode()) { 2114 if (N0.getOperand(0) == N1.getOperand(0)) 2115 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 2116 if (N0.getOperand(1) == N1.getOperand(1)) 2117 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 2118 if (DAG.isCommutativeBinOp(N0.getOpcode())) { 2119 // If X op Y == Y op X, try other combinations. 2120 if (N0.getOperand(0) == N1.getOperand(1)) 2121 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 2122 Cond); 2123 if (N0.getOperand(1) == N1.getOperand(0)) 2124 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 2125 Cond); 2126 } 2127 } 2128 2129 // If RHS is a legal immediate value for a compare instruction, we need 2130 // to be careful about increasing register pressure needlessly. 2131 bool LegalRHSImm = false; 2132 2133 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 2134 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2135 // Turn (X+C1) == C2 --> X == C2-C1 2136 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 2137 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2138 DAG.getConstant(RHSC->getAPIntValue()- 2139 LHSR->getAPIntValue(), 2140 dl, N0.getValueType()), Cond); 2141 } 2142 2143 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 2144 if (N0.getOpcode() == ISD::XOR) 2145 // If we know that all of the inverted bits are zero, don't bother 2146 // performing the inversion. 2147 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 2148 return 2149 DAG.getSetCC(dl, VT, N0.getOperand(0), 2150 DAG.getConstant(LHSR->getAPIntValue() ^ 2151 RHSC->getAPIntValue(), 2152 dl, N0.getValueType()), 2153 Cond); 2154 } 2155 2156 // Turn (C1-X) == C2 --> X == C1-C2 2157 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 2158 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 2159 return 2160 DAG.getSetCC(dl, VT, N0.getOperand(1), 2161 DAG.getConstant(SUBC->getAPIntValue() - 2162 RHSC->getAPIntValue(), 2163 dl, N0.getValueType()), 2164 Cond); 2165 } 2166 } 2167 2168 // Could RHSC fold directly into a compare? 2169 if (RHSC->getValueType(0).getSizeInBits() <= 64) 2170 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 2171 } 2172 2173 // Simplify (X+Z) == X --> Z == 0 2174 // Don't do this if X is an immediate that can fold into a cmp 2175 // instruction and X+Z has other uses. It could be an induction variable 2176 // chain, and the transform would increase register pressure. 2177 if (!LegalRHSImm || N0.getNode()->hasOneUse()) { 2178 if (N0.getOperand(0) == N1) 2179 return DAG.getSetCC(dl, VT, N0.getOperand(1), 2180 DAG.getConstant(0, dl, N0.getValueType()), Cond); 2181 if (N0.getOperand(1) == N1) { 2182 if (DAG.isCommutativeBinOp(N0.getOpcode())) 2183 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2184 DAG.getConstant(0, dl, N0.getValueType()), 2185 Cond); 2186 if (N0.getNode()->hasOneUse()) { 2187 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); 2188 auto &DL = DAG.getDataLayout(); 2189 // (Z-X) == X --> Z == X<<1 2190 SDValue SH = DAG.getNode( 2191 ISD::SHL, dl, N1.getValueType(), N1, 2192 DAG.getConstant(1, dl, 2193 getShiftAmountTy(N1.getValueType(), DL))); 2194 if (!DCI.isCalledByLegalizer()) 2195 DCI.AddToWorklist(SH.getNode()); 2196 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); 2197 } 2198 } 2199 } 2200 } 2201 2202 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 2203 N1.getOpcode() == ISD::XOR) { 2204 // Simplify X == (X+Z) --> Z == 0 2205 if (N1.getOperand(0) == N0) 2206 return DAG.getSetCC(dl, VT, N1.getOperand(1), 2207 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2208 if (N1.getOperand(1) == N0) { 2209 if (DAG.isCommutativeBinOp(N1.getOpcode())) 2210 return DAG.getSetCC(dl, VT, N1.getOperand(0), 2211 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2212 if (N1.getNode()->hasOneUse()) { 2213 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); 2214 auto &DL = DAG.getDataLayout(); 2215 // X == (Z-X) --> X<<1 == Z 2216 SDValue SH = DAG.getNode( 2217 ISD::SHL, dl, N1.getValueType(), N0, 2218 DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL))); 2219 if (!DCI.isCalledByLegalizer()) 2220 DCI.AddToWorklist(SH.getNode()); 2221 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); 2222 } 2223 } 2224 } 2225 2226 if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl)) 2227 return V; 2228 } 2229 2230 // Fold away ALL boolean setcc's. 2231 SDValue Temp; 2232 if (N0.getValueType() == MVT::i1 && foldBooleans) { 2233 switch (Cond) { 2234 default: llvm_unreachable("Unknown integer setcc!"); 2235 case ISD::SETEQ: // X == Y -> ~(X^Y) 2236 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2237 N0 = DAG.getNOT(dl, Temp, MVT::i1); 2238 if (!DCI.isCalledByLegalizer()) 2239 DCI.AddToWorklist(Temp.getNode()); 2240 break; 2241 case ISD::SETNE: // X != Y --> (X^Y) 2242 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2243 break; 2244 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 2245 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 2246 Temp = DAG.getNOT(dl, N0, MVT::i1); 2247 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp); 2248 if (!DCI.isCalledByLegalizer()) 2249 DCI.AddToWorklist(Temp.getNode()); 2250 break; 2251 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 2252 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 2253 Temp = DAG.getNOT(dl, N1, MVT::i1); 2254 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp); 2255 if (!DCI.isCalledByLegalizer()) 2256 DCI.AddToWorklist(Temp.getNode()); 2257 break; 2258 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 2259 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 2260 Temp = DAG.getNOT(dl, N0, MVT::i1); 2261 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp); 2262 if (!DCI.isCalledByLegalizer()) 2263 DCI.AddToWorklist(Temp.getNode()); 2264 break; 2265 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 2266 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 2267 Temp = DAG.getNOT(dl, N1, MVT::i1); 2268 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp); 2269 break; 2270 } 2271 if (VT != MVT::i1) { 2272 if (!DCI.isCalledByLegalizer()) 2273 DCI.AddToWorklist(N0.getNode()); 2274 // FIXME: If running after legalize, we probably can't do this. 2275 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0); 2276 } 2277 return N0; 2278 } 2279 2280 // Could not fold it. 2281 return SDValue(); 2282 } 2283 2284 /// Returns true (and the GlobalValue and the offset) if the node is a 2285 /// GlobalAddress + offset. 2286 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, 2287 int64_t &Offset) const { 2288 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 2289 GA = GASD->getGlobal(); 2290 Offset += GASD->getOffset(); 2291 return true; 2292 } 2293 2294 if (N->getOpcode() == ISD::ADD) { 2295 SDValue N1 = N->getOperand(0); 2296 SDValue N2 = N->getOperand(1); 2297 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 2298 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 2299 Offset += V->getSExtValue(); 2300 return true; 2301 } 2302 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 2303 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 2304 Offset += V->getSExtValue(); 2305 return true; 2306 } 2307 } 2308 } 2309 2310 return false; 2311 } 2312 2313 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 2314 DAGCombinerInfo &DCI) const { 2315 // Default implementation: no optimization. 2316 return SDValue(); 2317 } 2318 2319 //===----------------------------------------------------------------------===// 2320 // Inline Assembler Implementation Methods 2321 //===----------------------------------------------------------------------===// 2322 2323 TargetLowering::ConstraintType 2324 TargetLowering::getConstraintType(StringRef Constraint) const { 2325 unsigned S = Constraint.size(); 2326 2327 if (S == 1) { 2328 switch (Constraint[0]) { 2329 default: break; 2330 case 'r': return C_RegisterClass; 2331 case 'm': // memory 2332 case 'o': // offsetable 2333 case 'V': // not offsetable 2334 return C_Memory; 2335 case 'i': // Simple Integer or Relocatable Constant 2336 case 'n': // Simple Integer 2337 case 'E': // Floating Point Constant 2338 case 'F': // Floating Point Constant 2339 case 's': // Relocatable Constant 2340 case 'p': // Address. 2341 case 'X': // Allow ANY value. 2342 case 'I': // Target registers. 2343 case 'J': 2344 case 'K': 2345 case 'L': 2346 case 'M': 2347 case 'N': 2348 case 'O': 2349 case 'P': 2350 case '<': 2351 case '>': 2352 return C_Other; 2353 } 2354 } 2355 2356 if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { 2357 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 2358 return C_Memory; 2359 return C_Register; 2360 } 2361 return C_Unknown; 2362 } 2363 2364 /// Try to replace an X constraint, which matches anything, with another that 2365 /// has more specific requirements based on the type of the corresponding 2366 /// operand. 2367 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ 2368 if (ConstraintVT.isInteger()) 2369 return "r"; 2370 if (ConstraintVT.isFloatingPoint()) 2371 return "f"; // works for many targets 2372 return nullptr; 2373 } 2374 2375 /// Lower the specified operand into the Ops vector. 2376 /// If it is invalid, don't add anything to Ops. 2377 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 2378 std::string &Constraint, 2379 std::vector<SDValue> &Ops, 2380 SelectionDAG &DAG) const { 2381 2382 if (Constraint.length() > 1) return; 2383 2384 char ConstraintLetter = Constraint[0]; 2385 switch (ConstraintLetter) { 2386 default: break; 2387 case 'X': // Allows any operand; labels (basic block) use this. 2388 if (Op.getOpcode() == ISD::BasicBlock) { 2389 Ops.push_back(Op); 2390 return; 2391 } 2392 LLVM_FALLTHROUGH; 2393 case 'i': // Simple Integer or Relocatable Constant 2394 case 'n': // Simple Integer 2395 case 's': { // Relocatable Constant 2396 // These operands are interested in values of the form (GV+C), where C may 2397 // be folded in as an offset of GV, or it may be explicitly added. Also, it 2398 // is possible and fine if either GV or C are missing. 2399 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2400 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 2401 2402 // If we have "(add GV, C)", pull out GV/C 2403 if (Op.getOpcode() == ISD::ADD) { 2404 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2405 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 2406 if (!C || !GA) { 2407 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 2408 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 2409 } 2410 if (!C || !GA) { 2411 C = nullptr; 2412 GA = nullptr; 2413 } 2414 } 2415 2416 // If we find a valid operand, map to the TargetXXX version so that the 2417 // value itself doesn't get selected. 2418 if (GA) { // Either &GV or &GV+C 2419 if (ConstraintLetter != 'n') { 2420 int64_t Offs = GA->getOffset(); 2421 if (C) Offs += C->getZExtValue(); 2422 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 2423 C ? SDLoc(C) : SDLoc(), 2424 Op.getValueType(), Offs)); 2425 } 2426 return; 2427 } 2428 if (C) { // just C, no GV. 2429 // Simple constants are not allowed for 's'. 2430 if (ConstraintLetter != 's') { 2431 // gcc prints these as sign extended. Sign extend value to 64 bits 2432 // now; without this it would get ZExt'd later in 2433 // ScheduleDAGSDNodes::EmitNode, which is very generic. 2434 Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(), 2435 SDLoc(C), MVT::i64)); 2436 } 2437 return; 2438 } 2439 break; 2440 } 2441 } 2442 } 2443 2444 std::pair<unsigned, const TargetRegisterClass *> 2445 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 2446 StringRef Constraint, 2447 MVT VT) const { 2448 if (Constraint.empty() || Constraint[0] != '{') 2449 return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr)); 2450 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); 2451 2452 // Remove the braces from around the name. 2453 StringRef RegName(Constraint.data()+1, Constraint.size()-2); 2454 2455 std::pair<unsigned, const TargetRegisterClass*> R = 2456 std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr)); 2457 2458 // Figure out which register class contains this reg. 2459 for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(), 2460 E = RI->regclass_end(); RCI != E; ++RCI) { 2461 const TargetRegisterClass *RC = *RCI; 2462 2463 // If none of the value types for this register class are valid, we 2464 // can't use it. For example, 64-bit reg classes on 32-bit targets. 2465 if (!isLegalRC(RC)) 2466 continue; 2467 2468 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 2469 I != E; ++I) { 2470 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 2471 std::pair<unsigned, const TargetRegisterClass*> S = 2472 std::make_pair(*I, RC); 2473 2474 // If this register class has the requested value type, return it, 2475 // otherwise keep searching and return the first class found 2476 // if no other is found which explicitly has the requested type. 2477 if (RC->hasType(VT)) 2478 return S; 2479 else if (!R.second) 2480 R = S; 2481 } 2482 } 2483 } 2484 2485 return R; 2486 } 2487 2488 //===----------------------------------------------------------------------===// 2489 // Constraint Selection. 2490 2491 /// Return true of this is an input operand that is a matching constraint like 2492 /// "4". 2493 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 2494 assert(!ConstraintCode.empty() && "No known constraint!"); 2495 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 2496 } 2497 2498 /// If this is an input matching constraint, this method returns the output 2499 /// operand it matches. 2500 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 2501 assert(!ConstraintCode.empty() && "No known constraint!"); 2502 return atoi(ConstraintCode.c_str()); 2503 } 2504 2505 /// Split up the constraint string from the inline assembly value into the 2506 /// specific constraints and their prefixes, and also tie in the associated 2507 /// operand values. 2508 /// If this returns an empty vector, and if the constraint string itself 2509 /// isn't empty, there was an error parsing. 2510 TargetLowering::AsmOperandInfoVector 2511 TargetLowering::ParseConstraints(const DataLayout &DL, 2512 const TargetRegisterInfo *TRI, 2513 ImmutableCallSite CS) const { 2514 /// Information about all of the constraints. 2515 AsmOperandInfoVector ConstraintOperands; 2516 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 2517 unsigned maCount = 0; // Largest number of multiple alternative constraints. 2518 2519 // Do a prepass over the constraints, canonicalizing them, and building up the 2520 // ConstraintOperands list. 2521 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 2522 unsigned ResNo = 0; // ResNo - The result number of the next output. 2523 2524 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 2525 ConstraintOperands.emplace_back(std::move(CI)); 2526 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 2527 2528 // Update multiple alternative constraint count. 2529 if (OpInfo.multipleAlternatives.size() > maCount) 2530 maCount = OpInfo.multipleAlternatives.size(); 2531 2532 OpInfo.ConstraintVT = MVT::Other; 2533 2534 // Compute the value type for each operand. 2535 switch (OpInfo.Type) { 2536 case InlineAsm::isOutput: 2537 // Indirect outputs just consume an argument. 2538 if (OpInfo.isIndirect) { 2539 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2540 break; 2541 } 2542 2543 // The return value of the call is this value. As such, there is no 2544 // corresponding argument. 2545 assert(!CS.getType()->isVoidTy() && 2546 "Bad inline asm!"); 2547 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 2548 OpInfo.ConstraintVT = 2549 getSimpleValueType(DL, STy->getElementType(ResNo)); 2550 } else { 2551 assert(ResNo == 0 && "Asm only has one result!"); 2552 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 2553 } 2554 ++ResNo; 2555 break; 2556 case InlineAsm::isInput: 2557 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2558 break; 2559 case InlineAsm::isClobber: 2560 // Nothing to do. 2561 break; 2562 } 2563 2564 if (OpInfo.CallOperandVal) { 2565 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 2566 if (OpInfo.isIndirect) { 2567 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 2568 if (!PtrTy) 2569 report_fatal_error("Indirect operand for inline asm not a pointer!"); 2570 OpTy = PtrTy->getElementType(); 2571 } 2572 2573 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 2574 if (StructType *STy = dyn_cast<StructType>(OpTy)) 2575 if (STy->getNumElements() == 1) 2576 OpTy = STy->getElementType(0); 2577 2578 // If OpTy is not a single value, it may be a struct/union that we 2579 // can tile with integers. 2580 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 2581 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 2582 switch (BitSize) { 2583 default: break; 2584 case 1: 2585 case 8: 2586 case 16: 2587 case 32: 2588 case 64: 2589 case 128: 2590 OpInfo.ConstraintVT = 2591 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 2592 break; 2593 } 2594 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 2595 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 2596 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 2597 } else { 2598 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 2599 } 2600 } 2601 } 2602 2603 // If we have multiple alternative constraints, select the best alternative. 2604 if (!ConstraintOperands.empty()) { 2605 if (maCount) { 2606 unsigned bestMAIndex = 0; 2607 int bestWeight = -1; 2608 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 2609 int weight = -1; 2610 unsigned maIndex; 2611 // Compute the sums of the weights for each alternative, keeping track 2612 // of the best (highest weight) one so far. 2613 for (maIndex = 0; maIndex < maCount; ++maIndex) { 2614 int weightSum = 0; 2615 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2616 cIndex != eIndex; ++cIndex) { 2617 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2618 if (OpInfo.Type == InlineAsm::isClobber) 2619 continue; 2620 2621 // If this is an output operand with a matching input operand, 2622 // look up the matching input. If their types mismatch, e.g. one 2623 // is an integer, the other is floating point, or their sizes are 2624 // different, flag it as an maCantMatch. 2625 if (OpInfo.hasMatchingInput()) { 2626 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2627 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2628 if ((OpInfo.ConstraintVT.isInteger() != 2629 Input.ConstraintVT.isInteger()) || 2630 (OpInfo.ConstraintVT.getSizeInBits() != 2631 Input.ConstraintVT.getSizeInBits())) { 2632 weightSum = -1; // Can't match. 2633 break; 2634 } 2635 } 2636 } 2637 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 2638 if (weight == -1) { 2639 weightSum = -1; 2640 break; 2641 } 2642 weightSum += weight; 2643 } 2644 // Update best. 2645 if (weightSum > bestWeight) { 2646 bestWeight = weightSum; 2647 bestMAIndex = maIndex; 2648 } 2649 } 2650 2651 // Now select chosen alternative in each constraint. 2652 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2653 cIndex != eIndex; ++cIndex) { 2654 AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; 2655 if (cInfo.Type == InlineAsm::isClobber) 2656 continue; 2657 cInfo.selectAlternative(bestMAIndex); 2658 } 2659 } 2660 } 2661 2662 // Check and hook up tied operands, choose constraint code to use. 2663 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2664 cIndex != eIndex; ++cIndex) { 2665 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2666 2667 // If this is an output operand with a matching input operand, look up the 2668 // matching input. If their types mismatch, e.g. one is an integer, the 2669 // other is floating point, or their sizes are different, flag it as an 2670 // error. 2671 if (OpInfo.hasMatchingInput()) { 2672 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2673 2674 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2675 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 2676 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 2677 OpInfo.ConstraintVT); 2678 std::pair<unsigned, const TargetRegisterClass *> InputRC = 2679 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 2680 Input.ConstraintVT); 2681 if ((OpInfo.ConstraintVT.isInteger() != 2682 Input.ConstraintVT.isInteger()) || 2683 (MatchRC.second != InputRC.second)) { 2684 report_fatal_error("Unsupported asm: input constraint" 2685 " with a matching output constraint of" 2686 " incompatible type!"); 2687 } 2688 } 2689 } 2690 } 2691 2692 return ConstraintOperands; 2693 } 2694 2695 /// Return an integer indicating how general CT is. 2696 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 2697 switch (CT) { 2698 case TargetLowering::C_Other: 2699 case TargetLowering::C_Unknown: 2700 return 0; 2701 case TargetLowering::C_Register: 2702 return 1; 2703 case TargetLowering::C_RegisterClass: 2704 return 2; 2705 case TargetLowering::C_Memory: 2706 return 3; 2707 } 2708 llvm_unreachable("Invalid constraint type"); 2709 } 2710 2711 /// Examine constraint type and operand type and determine a weight value. 2712 /// This object must already have been set up with the operand type 2713 /// and the current alternative constraint selected. 2714 TargetLowering::ConstraintWeight 2715 TargetLowering::getMultipleConstraintMatchWeight( 2716 AsmOperandInfo &info, int maIndex) const { 2717 InlineAsm::ConstraintCodeVector *rCodes; 2718 if (maIndex >= (int)info.multipleAlternatives.size()) 2719 rCodes = &info.Codes; 2720 else 2721 rCodes = &info.multipleAlternatives[maIndex].Codes; 2722 ConstraintWeight BestWeight = CW_Invalid; 2723 2724 // Loop over the options, keeping track of the most general one. 2725 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 2726 ConstraintWeight weight = 2727 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 2728 if (weight > BestWeight) 2729 BestWeight = weight; 2730 } 2731 2732 return BestWeight; 2733 } 2734 2735 /// Examine constraint type and operand type and determine a weight value. 2736 /// This object must already have been set up with the operand type 2737 /// and the current alternative constraint selected. 2738 TargetLowering::ConstraintWeight 2739 TargetLowering::getSingleConstraintMatchWeight( 2740 AsmOperandInfo &info, const char *constraint) const { 2741 ConstraintWeight weight = CW_Invalid; 2742 Value *CallOperandVal = info.CallOperandVal; 2743 // If we don't have a value, we can't do a match, 2744 // but allow it at the lowest weight. 2745 if (!CallOperandVal) 2746 return CW_Default; 2747 // Look at the constraint type. 2748 switch (*constraint) { 2749 case 'i': // immediate integer. 2750 case 'n': // immediate integer with a known value. 2751 if (isa<ConstantInt>(CallOperandVal)) 2752 weight = CW_Constant; 2753 break; 2754 case 's': // non-explicit intregal immediate. 2755 if (isa<GlobalValue>(CallOperandVal)) 2756 weight = CW_Constant; 2757 break; 2758 case 'E': // immediate float if host format. 2759 case 'F': // immediate float. 2760 if (isa<ConstantFP>(CallOperandVal)) 2761 weight = CW_Constant; 2762 break; 2763 case '<': // memory operand with autodecrement. 2764 case '>': // memory operand with autoincrement. 2765 case 'm': // memory operand. 2766 case 'o': // offsettable memory operand 2767 case 'V': // non-offsettable memory operand 2768 weight = CW_Memory; 2769 break; 2770 case 'r': // general register. 2771 case 'g': // general register, memory operand or immediate integer. 2772 // note: Clang converts "g" to "imr". 2773 if (CallOperandVal->getType()->isIntegerTy()) 2774 weight = CW_Register; 2775 break; 2776 case 'X': // any operand. 2777 default: 2778 weight = CW_Default; 2779 break; 2780 } 2781 return weight; 2782 } 2783 2784 /// If there are multiple different constraints that we could pick for this 2785 /// operand (e.g. "imr") try to pick the 'best' one. 2786 /// This is somewhat tricky: constraints fall into four classes: 2787 /// Other -> immediates and magic values 2788 /// Register -> one specific register 2789 /// RegisterClass -> a group of regs 2790 /// Memory -> memory 2791 /// Ideally, we would pick the most specific constraint possible: if we have 2792 /// something that fits into a register, we would pick it. The problem here 2793 /// is that if we have something that could either be in a register or in 2794 /// memory that use of the register could cause selection of *other* 2795 /// operands to fail: they might only succeed if we pick memory. Because of 2796 /// this the heuristic we use is: 2797 /// 2798 /// 1) If there is an 'other' constraint, and if the operand is valid for 2799 /// that constraint, use it. This makes us take advantage of 'i' 2800 /// constraints when available. 2801 /// 2) Otherwise, pick the most general constraint present. This prefers 2802 /// 'm' over 'r', for example. 2803 /// 2804 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 2805 const TargetLowering &TLI, 2806 SDValue Op, SelectionDAG *DAG) { 2807 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 2808 unsigned BestIdx = 0; 2809 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 2810 int BestGenerality = -1; 2811 2812 // Loop over the options, keeping track of the most general one. 2813 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 2814 TargetLowering::ConstraintType CType = 2815 TLI.getConstraintType(OpInfo.Codes[i]); 2816 2817 // If this is an 'other' constraint, see if the operand is valid for it. 2818 // For example, on X86 we might have an 'rI' constraint. If the operand 2819 // is an integer in the range [0..31] we want to use I (saving a load 2820 // of a register), otherwise we must use 'r'. 2821 if (CType == TargetLowering::C_Other && Op.getNode()) { 2822 assert(OpInfo.Codes[i].size() == 1 && 2823 "Unhandled multi-letter 'other' constraint"); 2824 std::vector<SDValue> ResultOps; 2825 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 2826 ResultOps, *DAG); 2827 if (!ResultOps.empty()) { 2828 BestType = CType; 2829 BestIdx = i; 2830 break; 2831 } 2832 } 2833 2834 // Things with matching constraints can only be registers, per gcc 2835 // documentation. This mainly affects "g" constraints. 2836 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 2837 continue; 2838 2839 // This constraint letter is more general than the previous one, use it. 2840 int Generality = getConstraintGenerality(CType); 2841 if (Generality > BestGenerality) { 2842 BestType = CType; 2843 BestIdx = i; 2844 BestGenerality = Generality; 2845 } 2846 } 2847 2848 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 2849 OpInfo.ConstraintType = BestType; 2850 } 2851 2852 /// Determines the constraint code and constraint type to use for the specific 2853 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 2854 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 2855 SDValue Op, 2856 SelectionDAG *DAG) const { 2857 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 2858 2859 // Single-letter constraints ('r') are very common. 2860 if (OpInfo.Codes.size() == 1) { 2861 OpInfo.ConstraintCode = OpInfo.Codes[0]; 2862 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2863 } else { 2864 ChooseConstraint(OpInfo, *this, Op, DAG); 2865 } 2866 2867 // 'X' matches anything. 2868 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 2869 // Labels and constants are handled elsewhere ('X' is the only thing 2870 // that matches labels). For Functions, the type here is the type of 2871 // the result, which is not what we want to look at; leave them alone. 2872 Value *v = OpInfo.CallOperandVal; 2873 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 2874 OpInfo.CallOperandVal = v; 2875 return; 2876 } 2877 2878 // Otherwise, try to resolve it to something we know about by looking at 2879 // the actual operand type. 2880 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 2881 OpInfo.ConstraintCode = Repl; 2882 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2883 } 2884 } 2885 } 2886 2887 /// \brief Given an exact SDIV by a constant, create a multiplication 2888 /// with the multiplicative inverse of the constant. 2889 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d, 2890 const SDLoc &dl, SelectionDAG &DAG, 2891 std::vector<SDNode *> &Created) { 2892 assert(d != 0 && "Division by zero!"); 2893 2894 // Shift the value upfront if it is even, so the LSB is one. 2895 unsigned ShAmt = d.countTrailingZeros(); 2896 if (ShAmt) { 2897 // TODO: For UDIV use SRL instead of SRA. 2898 SDValue Amt = 2899 DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(), 2900 DAG.getDataLayout())); 2901 SDNodeFlags Flags; 2902 Flags.setExact(true); 2903 Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, &Flags); 2904 Created.push_back(Op1.getNode()); 2905 d = d.ashr(ShAmt); 2906 } 2907 2908 // Calculate the multiplicative inverse, using Newton's method. 2909 APInt t, xn = d; 2910 while ((t = d*xn) != 1) 2911 xn *= APInt(d.getBitWidth(), 2) - t; 2912 2913 SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType()); 2914 SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2); 2915 Created.push_back(Mul.getNode()); 2916 return Mul; 2917 } 2918 2919 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 2920 SelectionDAG &DAG, 2921 std::vector<SDNode *> *Created) const { 2922 AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); 2923 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2924 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 2925 return SDValue(N,0); // Lower SDIV as SDIV 2926 return SDValue(); 2927 } 2928 2929 /// \brief Given an ISD::SDIV node expressing a divide by constant, 2930 /// return a DAG expression to select that will generate the same value by 2931 /// multiplying by a magic number. 2932 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 2933 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor, 2934 SelectionDAG &DAG, bool IsAfterLegalization, 2935 std::vector<SDNode *> *Created) const { 2936 assert(Created && "No vector to hold sdiv ops."); 2937 2938 EVT VT = N->getValueType(0); 2939 SDLoc dl(N); 2940 2941 // Check to see if we can do this. 2942 // FIXME: We should be more aggressive here. 2943 if (!isTypeLegal(VT)) 2944 return SDValue(); 2945 2946 // If the sdiv has an 'exact' bit we can use a simpler lowering. 2947 if (cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact()) 2948 return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created); 2949 2950 APInt::ms magics = Divisor.magic(); 2951 2952 // Multiply the numerator (operand 0) by the magic value 2953 // FIXME: We should support doing a MUL in a wider type 2954 SDValue Q; 2955 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) : 2956 isOperationLegalOrCustom(ISD::MULHS, VT)) 2957 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0), 2958 DAG.getConstant(magics.m, dl, VT)); 2959 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) : 2960 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) 2961 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), 2962 N->getOperand(0), 2963 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 2964 else 2965 return SDValue(); // No mulhs or equvialent 2966 // If d > 0 and m < 0, add the numerator 2967 if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 2968 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); 2969 Created->push_back(Q.getNode()); 2970 } 2971 // If d < 0 and m > 0, subtract the numerator. 2972 if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 2973 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0)); 2974 Created->push_back(Q.getNode()); 2975 } 2976 auto &DL = DAG.getDataLayout(); 2977 // Shift right algebraic if shift value is nonzero 2978 if (magics.s > 0) { 2979 Q = DAG.getNode( 2980 ISD::SRA, dl, VT, Q, 2981 DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); 2982 Created->push_back(Q.getNode()); 2983 } 2984 // Extract the sign bit and add it to the quotient 2985 SDValue T = 2986 DAG.getNode(ISD::SRL, dl, VT, Q, 2987 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, 2988 getShiftAmountTy(Q.getValueType(), DL))); 2989 Created->push_back(T.getNode()); 2990 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 2991 } 2992 2993 /// \brief Given an ISD::UDIV node expressing a divide by constant, 2994 /// return a DAG expression to select that will generate the same value by 2995 /// multiplying by a magic number. 2996 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 2997 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor, 2998 SelectionDAG &DAG, bool IsAfterLegalization, 2999 std::vector<SDNode *> *Created) const { 3000 assert(Created && "No vector to hold udiv ops."); 3001 3002 EVT VT = N->getValueType(0); 3003 SDLoc dl(N); 3004 auto &DL = DAG.getDataLayout(); 3005 3006 // Check to see if we can do this. 3007 // FIXME: We should be more aggressive here. 3008 if (!isTypeLegal(VT)) 3009 return SDValue(); 3010 3011 // FIXME: We should use a narrower constant when the upper 3012 // bits are known to be zero. 3013 APInt::mu magics = Divisor.magicu(); 3014 3015 SDValue Q = N->getOperand(0); 3016 3017 // If the divisor is even, we can avoid using the expensive fixup by shifting 3018 // the divided value upfront. 3019 if (magics.a != 0 && !Divisor[0]) { 3020 unsigned Shift = Divisor.countTrailingZeros(); 3021 Q = DAG.getNode( 3022 ISD::SRL, dl, VT, Q, 3023 DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL))); 3024 Created->push_back(Q.getNode()); 3025 3026 // Get magic number for the shifted divisor. 3027 magics = Divisor.lshr(Shift).magicu(Shift); 3028 assert(magics.a == 0 && "Should use cheap fixup now"); 3029 } 3030 3031 // Multiply the numerator (operand 0) by the magic value 3032 // FIXME: We should support doing a MUL in a wider type 3033 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) : 3034 isOperationLegalOrCustom(ISD::MULHU, VT)) 3035 Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT)); 3036 else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) : 3037 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) 3038 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q, 3039 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 3040 else 3041 return SDValue(); // No mulhu or equvialent 3042 3043 Created->push_back(Q.getNode()); 3044 3045 if (magics.a == 0) { 3046 assert(magics.s < Divisor.getBitWidth() && 3047 "We shouldn't generate an undefined shift!"); 3048 return DAG.getNode( 3049 ISD::SRL, dl, VT, Q, 3050 DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); 3051 } else { 3052 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); 3053 Created->push_back(NPQ.getNode()); 3054 NPQ = DAG.getNode( 3055 ISD::SRL, dl, VT, NPQ, 3056 DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL))); 3057 Created->push_back(NPQ.getNode()); 3058 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 3059 Created->push_back(NPQ.getNode()); 3060 return DAG.getNode( 3061 ISD::SRL, dl, VT, NPQ, 3062 DAG.getConstant(magics.s - 1, dl, 3063 getShiftAmountTy(NPQ.getValueType(), DL))); 3064 } 3065 } 3066 3067 bool TargetLowering:: 3068 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 3069 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 3070 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 3071 "be a constant integer"); 3072 return true; 3073 } 3074 3075 return false; 3076 } 3077 3078 //===----------------------------------------------------------------------===// 3079 // Legalization Utilities 3080 //===----------------------------------------------------------------------===// 3081 3082 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 3083 SelectionDAG &DAG, SDValue LL, SDValue LH, 3084 SDValue RL, SDValue RH) const { 3085 EVT VT = N->getValueType(0); 3086 SDLoc dl(N); 3087 3088 bool HasMULHS = isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 3089 bool HasMULHU = isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 3090 bool HasSMUL_LOHI = isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 3091 bool HasUMUL_LOHI = isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 3092 if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { 3093 unsigned OuterBitSize = VT.getSizeInBits(); 3094 unsigned InnerBitSize = HiLoVT.getSizeInBits(); 3095 unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0)); 3096 unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1)); 3097 3098 // LL, LH, RL, and RH must be either all NULL or all set to a value. 3099 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 3100 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 3101 3102 if (!LL.getNode() && !RL.getNode() && 3103 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 3104 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(0)); 3105 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(1)); 3106 } 3107 3108 if (!LL.getNode()) 3109 return false; 3110 3111 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 3112 if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) && 3113 DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) { 3114 // The inputs are both zero-extended. 3115 if (HasUMUL_LOHI) { 3116 // We can emit a umul_lohi. 3117 Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL, 3118 RL); 3119 Hi = SDValue(Lo.getNode(), 1); 3120 return true; 3121 } 3122 if (HasMULHU) { 3123 // We can emit a mulhu+mul. 3124 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 3125 Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL); 3126 return true; 3127 } 3128 } 3129 if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) { 3130 // The input values are both sign-extended. 3131 if (HasSMUL_LOHI) { 3132 // We can emit a smul_lohi. 3133 Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL, 3134 RL); 3135 Hi = SDValue(Lo.getNode(), 1); 3136 return true; 3137 } 3138 if (HasMULHS) { 3139 // We can emit a mulhs+mul. 3140 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 3141 Hi = DAG.getNode(ISD::MULHS, dl, HiLoVT, LL, RL); 3142 return true; 3143 } 3144 } 3145 3146 if (!LH.getNode() && !RH.getNode() && 3147 isOperationLegalOrCustom(ISD::SRL, VT) && 3148 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 3149 auto &DL = DAG.getDataLayout(); 3150 unsigned ShiftAmt = VT.getSizeInBits() - HiLoVT.getSizeInBits(); 3151 SDValue Shift = DAG.getConstant(ShiftAmt, dl, getShiftAmountTy(VT, DL)); 3152 LH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(0), Shift); 3153 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 3154 RH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(1), Shift); 3155 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 3156 } 3157 3158 if (!LH.getNode()) 3159 return false; 3160 3161 if (HasUMUL_LOHI) { 3162 // Lo,Hi = umul LHS, RHS. 3163 SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl, 3164 DAG.getVTList(HiLoVT, HiLoVT), LL, RL); 3165 Lo = UMulLOHI; 3166 Hi = UMulLOHI.getValue(1); 3167 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 3168 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 3169 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 3170 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 3171 return true; 3172 } 3173 if (HasMULHU) { 3174 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 3175 Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL); 3176 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 3177 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 3178 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 3179 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 3180 return true; 3181 } 3182 } 3183 return false; 3184 } 3185 3186 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 3187 SelectionDAG &DAG) const { 3188 EVT VT = Node->getOperand(0).getValueType(); 3189 EVT NVT = Node->getValueType(0); 3190 SDLoc dl(SDValue(Node, 0)); 3191 3192 // FIXME: Only f32 to i64 conversions are supported. 3193 if (VT != MVT::f32 || NVT != MVT::i64) 3194 return false; 3195 3196 // Expand f32 -> i64 conversion 3197 // This algorithm comes from compiler-rt's implementation of fixsfdi: 3198 // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c 3199 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), 3200 VT.getSizeInBits()); 3201 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 3202 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 3203 SDValue Bias = DAG.getConstant(127, dl, IntVT); 3204 SDValue SignMask = DAG.getConstant(APInt::getSignBit(VT.getSizeInBits()), dl, 3205 IntVT); 3206 SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT); 3207 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 3208 3209 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0)); 3210 3211 auto &DL = DAG.getDataLayout(); 3212 SDValue ExponentBits = DAG.getNode( 3213 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 3214 DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL))); 3215 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 3216 3217 SDValue Sign = DAG.getNode( 3218 ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 3219 DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL))); 3220 Sign = DAG.getSExtOrTrunc(Sign, dl, NVT); 3221 3222 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 3223 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 3224 DAG.getConstant(0x00800000, dl, IntVT)); 3225 3226 R = DAG.getZExtOrTrunc(R, dl, NVT); 3227 3228 R = DAG.getSelectCC( 3229 dl, Exponent, ExponentLoBit, 3230 DAG.getNode(ISD::SHL, dl, NVT, R, 3231 DAG.getZExtOrTrunc( 3232 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 3233 dl, getShiftAmountTy(IntVT, DL))), 3234 DAG.getNode(ISD::SRL, dl, NVT, R, 3235 DAG.getZExtOrTrunc( 3236 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 3237 dl, getShiftAmountTy(IntVT, DL))), 3238 ISD::SETGT); 3239 3240 SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT, 3241 DAG.getNode(ISD::XOR, dl, NVT, R, Sign), 3242 Sign); 3243 3244 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 3245 DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT); 3246 return true; 3247 } 3248 3249 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 3250 SelectionDAG &DAG) const { 3251 SDLoc SL(LD); 3252 SDValue Chain = LD->getChain(); 3253 SDValue BasePTR = LD->getBasePtr(); 3254 EVT SrcVT = LD->getMemoryVT(); 3255 ISD::LoadExtType ExtType = LD->getExtensionType(); 3256 3257 unsigned NumElem = SrcVT.getVectorNumElements(); 3258 3259 EVT SrcEltVT = SrcVT.getScalarType(); 3260 EVT DstEltVT = LD->getValueType(0).getScalarType(); 3261 3262 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 3263 assert(SrcEltVT.isByteSized()); 3264 3265 EVT PtrVT = BasePTR.getValueType(); 3266 3267 SmallVector<SDValue, 8> Vals; 3268 SmallVector<SDValue, 8> LoadChains; 3269 3270 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 3271 SDValue ScalarLoad = 3272 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 3273 LD->getPointerInfo().getWithOffset(Idx * Stride), 3274 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 3275 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3276 3277 BasePTR = DAG.getNode(ISD::ADD, SL, PtrVT, BasePTR, 3278 DAG.getConstant(Stride, SL, PtrVT)); 3279 3280 Vals.push_back(ScalarLoad.getValue(0)); 3281 LoadChains.push_back(ScalarLoad.getValue(1)); 3282 } 3283 3284 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 3285 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, SL, LD->getValueType(0), Vals); 3286 3287 return DAG.getMergeValues({ Value, NewChain }, SL); 3288 } 3289 3290 // FIXME: This relies on each element having a byte size, otherwise the stride 3291 // is 0 and just overwrites the same location. ExpandStore currently expects 3292 // this broken behavior. 3293 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 3294 SelectionDAG &DAG) const { 3295 SDLoc SL(ST); 3296 3297 SDValue Chain = ST->getChain(); 3298 SDValue BasePtr = ST->getBasePtr(); 3299 SDValue Value = ST->getValue(); 3300 EVT StVT = ST->getMemoryVT(); 3301 3302 // The type of the data we want to save 3303 EVT RegVT = Value.getValueType(); 3304 EVT RegSclVT = RegVT.getScalarType(); 3305 3306 // The type of data as saved in memory. 3307 EVT MemSclVT = StVT.getScalarType(); 3308 3309 EVT PtrVT = BasePtr.getValueType(); 3310 3311 // Store Stride in bytes 3312 unsigned Stride = MemSclVT.getSizeInBits() / 8; 3313 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 3314 unsigned NumElem = StVT.getVectorNumElements(); 3315 3316 // Extract each of the elements from the original vector and save them into 3317 // memory individually. 3318 SmallVector<SDValue, 8> Stores; 3319 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 3320 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 3321 DAG.getConstant(Idx, SL, IdxVT)); 3322 3323 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 3324 DAG.getConstant(Idx * Stride, SL, PtrVT)); 3325 3326 // This scalar TruncStore may be illegal, but we legalize it later. 3327 SDValue Store = DAG.getTruncStore( 3328 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 3329 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 3330 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 3331 3332 Stores.push_back(Store); 3333 } 3334 3335 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 3336 } 3337 3338 std::pair<SDValue, SDValue> 3339 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 3340 assert(LD->getAddressingMode() == ISD::UNINDEXED && 3341 "unaligned indexed loads not implemented!"); 3342 SDValue Chain = LD->getChain(); 3343 SDValue Ptr = LD->getBasePtr(); 3344 EVT VT = LD->getValueType(0); 3345 EVT LoadedVT = LD->getMemoryVT(); 3346 SDLoc dl(LD); 3347 if (VT.isFloatingPoint() || VT.isVector()) { 3348 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 3349 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 3350 if (!isOperationLegalOrCustom(ISD::LOAD, intVT)) { 3351 // Scalarize the load and let the individual components be handled. 3352 SDValue Scalarized = scalarizeVectorLoad(LD, DAG); 3353 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); 3354 } 3355 3356 // Expand to a (misaligned) integer load of the same size, 3357 // then bitconvert to floating point or vector. 3358 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 3359 LD->getMemOperand()); 3360 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 3361 if (LoadedVT != VT) 3362 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 3363 ISD::ANY_EXTEND, dl, VT, Result); 3364 3365 return std::make_pair(Result, newLoad.getValue(1)); 3366 } 3367 3368 // Copy the value to a (aligned) stack slot using (unaligned) integer 3369 // loads and stores, then do a (aligned) load from the stack slot. 3370 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 3371 unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8; 3372 unsigned RegBytes = RegVT.getSizeInBits() / 8; 3373 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 3374 3375 // Make sure the stack slot is also aligned for the register type. 3376 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 3377 3378 SmallVector<SDValue, 8> Stores; 3379 SDValue StackPtr = StackBase; 3380 unsigned Offset = 0; 3381 3382 EVT PtrVT = Ptr.getValueType(); 3383 EVT StackPtrVT = StackPtr.getValueType(); 3384 3385 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 3386 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 3387 3388 // Do all but one copies using the full register width. 3389 for (unsigned i = 1; i < NumRegs; i++) { 3390 // Load one integer register's worth from the original location. 3391 SDValue Load = DAG.getLoad( 3392 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 3393 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 3394 LD->getAAInfo()); 3395 // Follow the load with a store to the stack slot. Remember the store. 3396 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr, 3397 MachinePointerInfo())); 3398 // Increment the pointers. 3399 Offset += RegBytes; 3400 Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement); 3401 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, StackPtr, 3402 StackPtrIncrement); 3403 } 3404 3405 // The last copy may be partial. Do an extending load. 3406 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 3407 8 * (LoadedBytes - Offset)); 3408 SDValue Load = 3409 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 3410 LD->getPointerInfo().getWithOffset(Offset), MemVT, 3411 MinAlign(LD->getAlignment(), Offset), 3412 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3413 // Follow the load with a store to the stack slot. Remember the store. 3414 // On big-endian machines this requires a truncating store to ensure 3415 // that the bits end up in the right place. 3416 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr, 3417 MachinePointerInfo(), MemVT)); 3418 3419 // The order of the stores doesn't matter - say it with a TokenFactor. 3420 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 3421 3422 // Finally, perform the original load only redirected to the stack slot. 3423 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 3424 MachinePointerInfo(), LoadedVT); 3425 3426 // Callers expect a MERGE_VALUES node. 3427 return std::make_pair(Load, TF); 3428 } 3429 3430 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 3431 "Unaligned load of unsupported type."); 3432 3433 // Compute the new VT that is half the size of the old one. This is an 3434 // integer MVT. 3435 unsigned NumBits = LoadedVT.getSizeInBits(); 3436 EVT NewLoadedVT; 3437 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 3438 NumBits >>= 1; 3439 3440 unsigned Alignment = LD->getAlignment(); 3441 unsigned IncrementSize = NumBits / 8; 3442 ISD::LoadExtType HiExtType = LD->getExtensionType(); 3443 3444 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 3445 if (HiExtType == ISD::NON_EXTLOAD) 3446 HiExtType = ISD::ZEXTLOAD; 3447 3448 // Load the value in two parts 3449 SDValue Lo, Hi; 3450 if (DAG.getDataLayout().isLittleEndian()) { 3451 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 3452 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 3453 LD->getAAInfo()); 3454 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 3455 DAG.getConstant(IncrementSize, dl, Ptr.getValueType())); 3456 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 3457 LD->getPointerInfo().getWithOffset(IncrementSize), 3458 NewLoadedVT, MinAlign(Alignment, IncrementSize), 3459 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3460 } else { 3461 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 3462 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 3463 LD->getAAInfo()); 3464 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 3465 DAG.getConstant(IncrementSize, dl, Ptr.getValueType())); 3466 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 3467 LD->getPointerInfo().getWithOffset(IncrementSize), 3468 NewLoadedVT, MinAlign(Alignment, IncrementSize), 3469 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3470 } 3471 3472 // aggregate the two parts 3473 SDValue ShiftAmount = 3474 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 3475 DAG.getDataLayout())); 3476 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 3477 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 3478 3479 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 3480 Hi.getValue(1)); 3481 3482 return std::make_pair(Result, TF); 3483 } 3484 3485 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 3486 SelectionDAG &DAG) const { 3487 assert(ST->getAddressingMode() == ISD::UNINDEXED && 3488 "unaligned indexed stores not implemented!"); 3489 SDValue Chain = ST->getChain(); 3490 SDValue Ptr = ST->getBasePtr(); 3491 SDValue Val = ST->getValue(); 3492 EVT VT = Val.getValueType(); 3493 int Alignment = ST->getAlignment(); 3494 3495 SDLoc dl(ST); 3496 if (ST->getMemoryVT().isFloatingPoint() || 3497 ST->getMemoryVT().isVector()) { 3498 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 3499 if (isTypeLegal(intVT)) { 3500 if (!isOperationLegalOrCustom(ISD::STORE, intVT)) { 3501 // Scalarize the store and let the individual components be handled. 3502 SDValue Result = scalarizeVectorStore(ST, DAG); 3503 3504 return Result; 3505 } 3506 // Expand to a bitconvert of the value to the integer type of the 3507 // same size, then a (misaligned) int store. 3508 // FIXME: Does not handle truncating floating point stores! 3509 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 3510 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 3511 Alignment, ST->getMemOperand()->getFlags()); 3512 return Result; 3513 } 3514 // Do a (aligned) store to a stack slot, then copy from the stack slot 3515 // to the final destination using (unaligned) integer loads and stores. 3516 EVT StoredVT = ST->getMemoryVT(); 3517 MVT RegVT = 3518 getRegisterType(*DAG.getContext(), 3519 EVT::getIntegerVT(*DAG.getContext(), 3520 StoredVT.getSizeInBits())); 3521 EVT PtrVT = Ptr.getValueType(); 3522 unsigned StoredBytes = StoredVT.getSizeInBits() / 8; 3523 unsigned RegBytes = RegVT.getSizeInBits() / 8; 3524 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 3525 3526 // Make sure the stack slot is also aligned for the register type. 3527 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 3528 3529 // Perform the original store, only redirected to the stack slot. 3530 SDValue Store = DAG.getTruncStore(Chain, dl, Val, StackPtr, 3531 MachinePointerInfo(), StoredVT); 3532 3533 EVT StackPtrVT = StackPtr.getValueType(); 3534 3535 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 3536 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 3537 SmallVector<SDValue, 8> Stores; 3538 unsigned Offset = 0; 3539 3540 // Do all but one copies using the full register width. 3541 for (unsigned i = 1; i < NumRegs; i++) { 3542 // Load one integer register's worth from the stack slot. 3543 SDValue Load = 3544 DAG.getLoad(RegVT, dl, Store, StackPtr, MachinePointerInfo()); 3545 // Store it to the final location. Remember the store. 3546 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 3547 ST->getPointerInfo().getWithOffset(Offset), 3548 MinAlign(ST->getAlignment(), Offset), 3549 ST->getMemOperand()->getFlags())); 3550 // Increment the pointers. 3551 Offset += RegBytes; 3552 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, 3553 StackPtr, StackPtrIncrement); 3554 Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement); 3555 } 3556 3557 // The last store may be partial. Do a truncating store. On big-endian 3558 // machines this requires an extending load from the stack slot to ensure 3559 // that the bits are in the right place. 3560 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 3561 8 * (StoredBytes - Offset)); 3562 3563 // Load from the stack slot. 3564 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 3565 MachinePointerInfo(), MemVT); 3566 3567 Stores.push_back( 3568 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 3569 ST->getPointerInfo().getWithOffset(Offset), MemVT, 3570 MinAlign(ST->getAlignment(), Offset), 3571 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 3572 // The order of the stores doesn't matter - say it with a TokenFactor. 3573 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 3574 return Result; 3575 } 3576 3577 assert(ST->getMemoryVT().isInteger() && 3578 !ST->getMemoryVT().isVector() && 3579 "Unaligned store of unknown type."); 3580 // Get the half-size VT 3581 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); 3582 int NumBits = NewStoredVT.getSizeInBits(); 3583 int IncrementSize = NumBits / 8; 3584 3585 // Divide the stored value in two parts. 3586 SDValue ShiftAmount = 3587 DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(), 3588 DAG.getDataLayout())); 3589 SDValue Lo = Val; 3590 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 3591 3592 // Store the two parts 3593 SDValue Store1, Store2; 3594 Store1 = DAG.getTruncStore(Chain, dl, 3595 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 3596 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 3597 ST->getMemOperand()->getFlags()); 3598 3599 EVT PtrVT = Ptr.getValueType(); 3600 Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3601 DAG.getConstant(IncrementSize, dl, PtrVT)); 3602 Alignment = MinAlign(Alignment, IncrementSize); 3603 Store2 = DAG.getTruncStore( 3604 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 3605 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 3606 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 3607 3608 SDValue Result = 3609 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 3610 return Result; 3611 } 3612 3613 //===----------------------------------------------------------------------===// 3614 // Implementation of Emulated TLS Model 3615 //===----------------------------------------------------------------------===// 3616 3617 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 3618 SelectionDAG &DAG) const { 3619 // Access to address of TLS varialbe xyz is lowered to a function call: 3620 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 3621 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3622 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 3623 SDLoc dl(GA); 3624 3625 ArgListTy Args; 3626 ArgListEntry Entry; 3627 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 3628 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 3629 StringRef EmuTlsVarName(NameString); 3630 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 3631 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 3632 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 3633 Entry.Ty = VoidPtrType; 3634 Args.push_back(Entry); 3635 3636 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 3637 3638 TargetLowering::CallLoweringInfo CLI(DAG); 3639 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 3640 CLI.setCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 3641 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3642 3643 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 3644 // At last for X86 targets, maybe good for other targets too? 3645 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 3646 MFI.setAdjustsStack(true); // Is this only for X86 target? 3647 MFI.setHasCalls(true); 3648 3649 assert((GA->getOffset() == 0) && 3650 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 3651 return CallResult.first; 3652 } 3653 3654 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 3655 SelectionDAG &DAG) const { 3656 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 3657 if (!isCtlzFast()) 3658 return SDValue(); 3659 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3660 SDLoc dl(Op); 3661 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3662 if (C->isNullValue() && CC == ISD::SETEQ) { 3663 EVT VT = Op.getOperand(0).getValueType(); 3664 SDValue Zext = Op.getOperand(0); 3665 if (VT.bitsLT(MVT::i32)) { 3666 VT = MVT::i32; 3667 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 3668 } 3669 unsigned Log2b = Log2_32(VT.getSizeInBits()); 3670 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 3671 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 3672 DAG.getConstant(Log2b, dl, MVT::i32)); 3673 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 3674 } 3675 } 3676 return SDValue(); 3677 } 3678