1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Target/TargetLowering.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/CodeGen/CallingConvLower.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Target/TargetLoweringObjectFile.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Target/TargetRegisterInfo.h"
34 #include "llvm/Target/TargetSubtargetInfo.h"
35 #include <cctype>
36 using namespace llvm;
37 
38 /// NOTE: The TargetMachine owns TLOF.
39 TargetLowering::TargetLowering(const TargetMachine &tm)
40   : TargetLoweringBase(tm) {}
41 
42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43   return nullptr;
44 }
45 
46 bool TargetLowering::isPositionIndependent() const {
47   return getTargetMachine().isPositionIndependent();
48 }
49 
50 /// Check whether a given call node is in tail position within its function. If
51 /// so, it sets Chain to the input chain of the tail call.
52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
53                                           SDValue &Chain) const {
54   const Function *F = DAG.getMachineFunction().getFunction();
55 
56   // Conservatively require the attributes of the call to match those of
57   // the return. Ignore noalias because it doesn't affect the call sequence.
58   AttributeSet CallerAttrs = F->getAttributes();
59   if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex)
60       .removeAttribute(Attribute::NoAlias).hasAttributes())
61     return false;
62 
63   // It's not safe to eliminate the sign / zero extension of the return value.
64   if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
65       CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
66     return false;
67 
68   // Check if the only use is a function return node.
69   return isUsedByReturnOnly(Node, Chain);
70 }
71 
72 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
73     const uint32_t *CallerPreservedMask,
74     const SmallVectorImpl<CCValAssign> &ArgLocs,
75     const SmallVectorImpl<SDValue> &OutVals) const {
76   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
77     const CCValAssign &ArgLoc = ArgLocs[I];
78     if (!ArgLoc.isRegLoc())
79       continue;
80     unsigned Reg = ArgLoc.getLocReg();
81     // Only look at callee saved registers.
82     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
83       continue;
84     // Check that we pass the value used for the caller.
85     // (We look for a CopyFromReg reading a virtual register that is used
86     //  for the function live-in value of register Reg)
87     SDValue Value = OutVals[I];
88     if (Value->getOpcode() != ISD::CopyFromReg)
89       return false;
90     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
91     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
92       return false;
93   }
94   return true;
95 }
96 
97 /// \brief Set CallLoweringInfo attribute flags based on a call instruction
98 /// and called function attributes.
99 void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS,
100                                                  unsigned AttrIdx) {
101   isSExt     = CS->paramHasAttr(AttrIdx, Attribute::SExt);
102   isZExt     = CS->paramHasAttr(AttrIdx, Attribute::ZExt);
103   isInReg    = CS->paramHasAttr(AttrIdx, Attribute::InReg);
104   isSRet     = CS->paramHasAttr(AttrIdx, Attribute::StructRet);
105   isNest     = CS->paramHasAttr(AttrIdx, Attribute::Nest);
106   isByVal    = CS->paramHasAttr(AttrIdx, Attribute::ByVal);
107   isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca);
108   isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned);
109   isSwiftSelf = CS->paramHasAttr(AttrIdx, Attribute::SwiftSelf);
110   isSwiftError = CS->paramHasAttr(AttrIdx, Attribute::SwiftError);
111   Alignment  = CS->getParamAlignment(AttrIdx);
112 }
113 
114 /// Generate a libcall taking the given operands as arguments and returning a
115 /// result of type RetVT.
116 std::pair<SDValue, SDValue>
117 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
118                             ArrayRef<SDValue> Ops, bool isSigned,
119                             const SDLoc &dl, bool doesNotReturn,
120                             bool isReturnValueUsed) const {
121   TargetLowering::ArgListTy Args;
122   Args.reserve(Ops.size());
123 
124   TargetLowering::ArgListEntry Entry;
125   for (SDValue Op : Ops) {
126     Entry.Node = Op;
127     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
128     Entry.isSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
129     Entry.isZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
130     Args.push_back(Entry);
131   }
132 
133   if (LC == RTLIB::UNKNOWN_LIBCALL)
134     report_fatal_error("Unsupported library call operation!");
135   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
136                                          getPointerTy(DAG.getDataLayout()));
137 
138   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
139   TargetLowering::CallLoweringInfo CLI(DAG);
140   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
141   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
142     .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
143     .setNoReturn(doesNotReturn).setDiscardResult(!isReturnValueUsed)
144     .setSExtResult(signExtend).setZExtResult(!signExtend);
145   return LowerCallTo(CLI);
146 }
147 
148 /// Soften the operands of a comparison. This code is shared among BR_CC,
149 /// SELECT_CC, and SETCC handlers.
150 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
151                                          SDValue &NewLHS, SDValue &NewRHS,
152                                          ISD::CondCode &CCCode,
153                                          const SDLoc &dl) const {
154   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
155          && "Unsupported setcc type!");
156 
157   // Expand into one or more soft-fp libcall(s).
158   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
159   bool ShouldInvertCC = false;
160   switch (CCCode) {
161   case ISD::SETEQ:
162   case ISD::SETOEQ:
163     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
164           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
165           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
166     break;
167   case ISD::SETNE:
168   case ISD::SETUNE:
169     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
170           (VT == MVT::f64) ? RTLIB::UNE_F64 :
171           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
172     break;
173   case ISD::SETGE:
174   case ISD::SETOGE:
175     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
176           (VT == MVT::f64) ? RTLIB::OGE_F64 :
177           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
178     break;
179   case ISD::SETLT:
180   case ISD::SETOLT:
181     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
182           (VT == MVT::f64) ? RTLIB::OLT_F64 :
183           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
184     break;
185   case ISD::SETLE:
186   case ISD::SETOLE:
187     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
188           (VT == MVT::f64) ? RTLIB::OLE_F64 :
189           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
190     break;
191   case ISD::SETGT:
192   case ISD::SETOGT:
193     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
194           (VT == MVT::f64) ? RTLIB::OGT_F64 :
195           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
196     break;
197   case ISD::SETUO:
198     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
199           (VT == MVT::f64) ? RTLIB::UO_F64 :
200           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
201     break;
202   case ISD::SETO:
203     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
204           (VT == MVT::f64) ? RTLIB::O_F64 :
205           (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
206     break;
207   case ISD::SETONE:
208     // SETONE = SETOLT | SETOGT
209     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
210           (VT == MVT::f64) ? RTLIB::OLT_F64 :
211           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
212     LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
213           (VT == MVT::f64) ? RTLIB::OGT_F64 :
214           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
215     break;
216   case ISD::SETUEQ:
217     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
218           (VT == MVT::f64) ? RTLIB::UO_F64 :
219           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
220     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
221           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
222           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
223     break;
224   default:
225     // Invert CC for unordered comparisons
226     ShouldInvertCC = true;
227     switch (CCCode) {
228     case ISD::SETULT:
229       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
230             (VT == MVT::f64) ? RTLIB::OGE_F64 :
231             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
232       break;
233     case ISD::SETULE:
234       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
235             (VT == MVT::f64) ? RTLIB::OGT_F64 :
236             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
237       break;
238     case ISD::SETUGT:
239       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
240             (VT == MVT::f64) ? RTLIB::OLE_F64 :
241             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
242       break;
243     case ISD::SETUGE:
244       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
245             (VT == MVT::f64) ? RTLIB::OLT_F64 :
246             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
247       break;
248     default: llvm_unreachable("Do not know how to soften this setcc!");
249     }
250   }
251 
252   // Use the target specific return value for comparions lib calls.
253   EVT RetVT = getCmpLibcallReturnType();
254   SDValue Ops[2] = {NewLHS, NewRHS};
255   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
256                        dl).first;
257   NewRHS = DAG.getConstant(0, dl, RetVT);
258 
259   CCCode = getCmpLibcallCC(LC1);
260   if (ShouldInvertCC)
261     CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
262 
263   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
264     SDValue Tmp = DAG.getNode(
265         ISD::SETCC, dl,
266         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
267         NewLHS, NewRHS, DAG.getCondCode(CCCode));
268     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
269                          dl).first;
270     NewLHS = DAG.getNode(
271         ISD::SETCC, dl,
272         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
273         NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
274     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
275     NewRHS = SDValue();
276   }
277 }
278 
279 /// Return the entry encoding for a jump table in the current function. The
280 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
281 unsigned TargetLowering::getJumpTableEncoding() const {
282   // In non-pic modes, just use the address of a block.
283   if (!isPositionIndependent())
284     return MachineJumpTableInfo::EK_BlockAddress;
285 
286   // In PIC mode, if the target supports a GPRel32 directive, use it.
287   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
288     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
289 
290   // Otherwise, use a label difference.
291   return MachineJumpTableInfo::EK_LabelDifference32;
292 }
293 
294 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
295                                                  SelectionDAG &DAG) const {
296   // If our PIC model is GP relative, use the global offset table as the base.
297   unsigned JTEncoding = getJumpTableEncoding();
298 
299   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
300       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
301     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
302 
303   return Table;
304 }
305 
306 /// This returns the relocation base for the given PIC jumptable, the same as
307 /// getPICJumpTableRelocBase, but as an MCExpr.
308 const MCExpr *
309 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
310                                              unsigned JTI,MCContext &Ctx) const{
311   // The normal PIC reloc base is the label at the start of the jump table.
312   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
313 }
314 
315 bool
316 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
317   const TargetMachine &TM = getTargetMachine();
318   const GlobalValue *GV = GA->getGlobal();
319 
320   // If the address is not even local to this DSO we will have to load it from
321   // a got and then add the offset.
322   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
323     return false;
324 
325   // If the code is position independent we will have to add a base register.
326   if (isPositionIndependent())
327     return false;
328 
329   // Otherwise we can do it.
330   return true;
331 }
332 
333 //===----------------------------------------------------------------------===//
334 //  Optimization Methods
335 //===----------------------------------------------------------------------===//
336 
337 /// If the specified instruction has a constant integer operand and there are
338 /// bits set in that constant that are not demanded, then clear those bits and
339 /// return true.
340 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(
341     SDValue Op, const APInt &Demanded) {
342   SDLoc DL(Op);
343   unsigned Opcode = Op.getOpcode();
344 
345   // FIXME: ISD::SELECT, ISD::SELECT_CC
346   switch (Opcode) {
347   default:
348     break;
349   case ISD::XOR:
350   case ISD::AND:
351   case ISD::OR: {
352     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
353     if (!Op1C)
354       return false;
355 
356     // If this is a 'not' op, don't touch it because that's a canonical form.
357     const APInt &C = Op1C->getAPIntValue();
358     if (Opcode == ISD::XOR && (C | ~Demanded).isAllOnesValue())
359       return false;
360 
361     if (C.intersects(~Demanded)) {
362       EVT VT = Op.getValueType();
363       SDValue NewC = DAG.getConstant(Demanded & C, DL, VT);
364       SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
365       return CombineTo(Op, NewOp);
366     }
367 
368     break;
369   }
370   }
371 
372   return false;
373 }
374 
375 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
376 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
377 /// generalized for targets with other types of implicit widening casts.
378 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
379                                                          unsigned BitWidth,
380                                                          const APInt &Demanded,
381                                                          const SDLoc &dl) {
382   assert(Op.getNumOperands() == 2 &&
383          "ShrinkDemandedOp only supports binary operators!");
384   assert(Op.getNode()->getNumValues() == 1 &&
385          "ShrinkDemandedOp only supports nodes with one result!");
386 
387   // Early return, as this function cannot handle vector types.
388   if (Op.getValueType().isVector())
389     return false;
390 
391   // Don't do this if the node has another user, which may require the
392   // full value.
393   if (!Op.getNode()->hasOneUse())
394     return false;
395 
396   // Search for the smallest integer type with free casts to and from
397   // Op's type. For expedience, just check power-of-2 integer types.
398   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
399   unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros();
400   unsigned SmallVTBits = DemandedSize;
401   if (!isPowerOf2_32(SmallVTBits))
402     SmallVTBits = NextPowerOf2(SmallVTBits);
403   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
404     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
405     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
406         TLI.isZExtFree(SmallVT, Op.getValueType())) {
407       // We found a type with free casts.
408       SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
409                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
410                                           Op.getNode()->getOperand(0)),
411                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
412                                           Op.getNode()->getOperand(1)));
413       bool NeedZext = DemandedSize > SmallVTBits;
414       SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND,
415                               dl, Op.getValueType(), X);
416       return CombineTo(Op, Z);
417     }
418   }
419   return false;
420 }
421 
422 bool
423 TargetLowering::TargetLoweringOpt::SimplifyDemandedBits(SDNode *User,
424                                                         unsigned OpIdx,
425                                                         const APInt &Demanded,
426                                                         DAGCombinerInfo &DCI) {
427   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
428   SDValue Op = User->getOperand(OpIdx);
429   APInt KnownZero, KnownOne;
430 
431   if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne,
432                                 *this, 0, true))
433     return false;
434 
435 
436   // Old will not always be the same as Op.  For example:
437   //
438   // Demanded = 0xffffff
439   // Op = i64 truncate (i32 and x, 0xffffff)
440   // In this case simplify demand bits will want to replace the 'and' node
441   // with the value 'x', which will give us:
442   // Old = i32 and x, 0xffffff
443   // New = x
444   if (Old.hasOneUse()) {
445     // For the one use case, we just commit the change.
446     DCI.CommitTargetLoweringOpt(*this);
447     return true;
448   }
449 
450   // If Old has more than one use then it must be Op, because the
451   // AssumeSingleUse flag is not propogated to recursive calls of
452   // SimplifyDemanded bits, so the only node with multiple use that
453   // it will attempt to combine will be opt.
454   assert(Old == Op);
455 
456   SmallVector <SDValue, 4> NewOps;
457   for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
458     if (i == OpIdx) {
459       NewOps.push_back(New);
460       continue;
461     }
462     NewOps.push_back(User->getOperand(i));
463   }
464   DAG.UpdateNodeOperands(User, NewOps);
465   // Op has less users now, so we may be able to perform additional combines
466   // with it.
467   DCI.AddToWorklist(Op.getNode());
468   // User's operands have been updated, so we may be able to do new combines
469   // with it.
470   DCI.AddToWorklist(User);
471   return true;
472 }
473 
474 /// Look at Op. At this point, we know that only the DemandedMask bits of the
475 /// result of Op are ever used downstream. If we can use this information to
476 /// simplify Op, create a new simplified DAG node and return true, returning the
477 /// original and new nodes in Old and New. Otherwise, analyze the expression and
478 /// return a mask of KnownOne and KnownZero bits for the expression (used to
479 /// simplify the caller).  The KnownZero/One bits may only be accurate for those
480 /// bits in the DemandedMask.
481 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
482                                           const APInt &DemandedMask,
483                                           APInt &KnownZero,
484                                           APInt &KnownOne,
485                                           TargetLoweringOpt &TLO,
486                                           unsigned Depth,
487                                           bool AssumeSingleUse) const {
488   unsigned BitWidth = DemandedMask.getBitWidth();
489   assert(Op.getScalarValueSizeInBits() == BitWidth &&
490          "Mask size mismatches value type size!");
491   APInt NewMask = DemandedMask;
492   SDLoc dl(Op);
493   auto &DL = TLO.DAG.getDataLayout();
494 
495   // Don't know anything.
496   KnownZero = KnownOne = APInt(BitWidth, 0);
497 
498   // Other users may use these bits.
499   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
500     if (Depth != 0) {
501       // If not at the root, Just compute the KnownZero/KnownOne bits to
502       // simplify things downstream.
503       TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth);
504       return false;
505     }
506     // If this is the root being simplified, allow it to have multiple uses,
507     // just set the NewMask to all bits.
508     NewMask = APInt::getAllOnesValue(BitWidth);
509   } else if (DemandedMask == 0) {
510     // Not demanding any bits from Op.
511     if (!Op.isUndef())
512       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
513     return false;
514   } else if (Depth == 6) {        // Limit search depth.
515     return false;
516   }
517 
518   APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
519   switch (Op.getOpcode()) {
520   case ISD::Constant:
521     // We know all of the bits for a constant!
522     KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
523     KnownZero = ~KnownOne;
524     return false;   // Don't fall through, will infinitely loop.
525   case ISD::BUILD_VECTOR:
526     // Collect the known bits that are shared by every constant vector element.
527     KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
528     for (SDValue SrcOp : Op->ops()) {
529       if (!isa<ConstantSDNode>(SrcOp)) {
530         // We can only handle all constant values - bail out with no known bits.
531         KnownZero = KnownOne = APInt(BitWidth, 0);
532         return false;
533       }
534       KnownOne2 = cast<ConstantSDNode>(SrcOp)->getAPIntValue();
535       KnownZero2 = ~KnownOne2;
536 
537       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
538       if (KnownOne2.getBitWidth() != BitWidth) {
539         assert(KnownOne2.getBitWidth() > BitWidth &&
540                KnownZero2.getBitWidth() > BitWidth &&
541                "Expected BUILD_VECTOR implicit truncation");
542         KnownOne2 = KnownOne2.trunc(BitWidth);
543         KnownZero2 = KnownZero2.trunc(BitWidth);
544       }
545 
546       // Known bits are the values that are shared by every element.
547       // TODO: support per-element known bits.
548       KnownOne &= KnownOne2;
549       KnownZero &= KnownZero2;
550     }
551     return false;   // Don't fall through, will infinitely loop.
552   case ISD::AND:
553     // If the RHS is a constant, check to see if the LHS would be zero without
554     // using the bits from the RHS.  Below, we use knowledge about the RHS to
555     // simplify the LHS, here we're using information from the LHS to simplify
556     // the RHS.
557     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
558       SDValue Op0 = Op.getOperand(0);
559       APInt LHSZero, LHSOne;
560       // Do not increment Depth here; that can cause an infinite loop.
561       TLO.DAG.computeKnownBits(Op0, LHSZero, LHSOne, Depth);
562       // If the LHS already has zeros where RHSC does, this and is dead.
563       if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
564         return TLO.CombineTo(Op, Op0);
565 
566       // If any of the set bits in the RHS are known zero on the LHS, shrink
567       // the constant.
568       if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
569         return true;
570 
571       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
572       // constant, but if this 'and' is only clearing bits that were just set by
573       // the xor, then this 'and' can be eliminated by shrinking the mask of
574       // the xor. For example, for a 32-bit X:
575       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
576       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
577           LHSOne == ~RHSC->getAPIntValue()) {
578         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, Op.getValueType(),
579                                       Op0.getOperand(0), Op.getOperand(1));
580         return TLO.CombineTo(Op, Xor);
581       }
582     }
583 
584     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
585                              KnownOne, TLO, Depth+1))
586       return true;
587     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
588     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
589                              KnownZero2, KnownOne2, TLO, Depth+1))
590       return true;
591     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
592 
593     // If all of the demanded bits are known one on one side, return the other.
594     // These bits cannot contribute to the result of the 'and'.
595     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
596       return TLO.CombineTo(Op, Op.getOperand(0));
597     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
598       return TLO.CombineTo(Op, Op.getOperand(1));
599     // If all of the demanded bits in the inputs are known zeros, return zero.
600     if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
601       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType()));
602     // If the RHS is a constant, see if we can simplify it.
603     if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
604       return true;
605     // If the operation can be done in a smaller type, do so.
606     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
607       return true;
608 
609     // Output known-1 bits are only known if set in both the LHS & RHS.
610     KnownOne &= KnownOne2;
611     // Output known-0 are known to be clear if zero in either the LHS | RHS.
612     KnownZero |= KnownZero2;
613     break;
614   case ISD::OR:
615     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
616                              KnownOne, TLO, Depth+1))
617       return true;
618     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
619     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
620                              KnownZero2, KnownOne2, TLO, Depth+1))
621       return true;
622     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
623 
624     // If all of the demanded bits are known zero on one side, return the other.
625     // These bits cannot contribute to the result of the 'or'.
626     if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
627       return TLO.CombineTo(Op, Op.getOperand(0));
628     if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
629       return TLO.CombineTo(Op, Op.getOperand(1));
630     // If all of the potentially set bits on one side are known to be set on
631     // the other side, just use the 'other' side.
632     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
633       return TLO.CombineTo(Op, Op.getOperand(0));
634     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
635       return TLO.CombineTo(Op, Op.getOperand(1));
636     // If the RHS is a constant, see if we can simplify it.
637     if (TLO.ShrinkDemandedConstant(Op, NewMask))
638       return true;
639     // If the operation can be done in a smaller type, do so.
640     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
641       return true;
642 
643     // Output known-0 bits are only known if clear in both the LHS & RHS.
644     KnownZero &= KnownZero2;
645     // Output known-1 are known to be set if set in either the LHS | RHS.
646     KnownOne |= KnownOne2;
647     break;
648   case ISD::XOR:
649     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
650                              KnownOne, TLO, Depth+1))
651       return true;
652     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
653     if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
654                              KnownOne2, TLO, Depth+1))
655       return true;
656     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
657 
658     // If all of the demanded bits are known zero on one side, return the other.
659     // These bits cannot contribute to the result of the 'xor'.
660     if ((KnownZero & NewMask) == NewMask)
661       return TLO.CombineTo(Op, Op.getOperand(0));
662     if ((KnownZero2 & NewMask) == NewMask)
663       return TLO.CombineTo(Op, Op.getOperand(1));
664     // If the operation can be done in a smaller type, do so.
665     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
666       return true;
667 
668     // If all of the unknown bits are known to be zero on one side or the other
669     // (but not both) turn this into an *inclusive* or.
670     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
671     if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
672       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
673                                                Op.getOperand(0),
674                                                Op.getOperand(1)));
675 
676     // Output known-0 bits are known if clear or set in both the LHS & RHS.
677     KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
678     // Output known-1 are known to be set if set in only one of the LHS, RHS.
679     KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
680 
681     // If all of the demanded bits on one side are known, and all of the set
682     // bits on that side are also known to be set on the other side, turn this
683     // into an AND, as we know the bits will be cleared.
684     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
685     // NB: it is okay if more bits are known than are requested
686     if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side
687       if (KnownOne == KnownOne2) { // set bits are the same on both sides
688         EVT VT = Op.getValueType();
689         SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, dl, VT);
690         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
691                                                  Op.getOperand(0), ANDC));
692       }
693     }
694 
695     // If the RHS is a constant, see if we can simplify it.
696     // for XOR, we prefer to force bits to 1 if they will make a -1.
697     // If we can't force bits, try to shrink the constant.
698     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
699       APInt Expanded = C->getAPIntValue() | (~NewMask);
700       // If we can expand it to have all bits set, do it.
701       if (Expanded.isAllOnesValue()) {
702         if (Expanded != C->getAPIntValue()) {
703           EVT VT = Op.getValueType();
704           SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
705                                         TLO.DAG.getConstant(Expanded, dl, VT));
706           return TLO.CombineTo(Op, New);
707         }
708         // If it already has all the bits set, nothing to change
709         // but don't shrink either!
710       } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
711         return true;
712       }
713     }
714 
715     KnownZero = KnownZeroOut;
716     KnownOne  = KnownOneOut;
717     break;
718   case ISD::SELECT:
719     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
720                              KnownOne, TLO, Depth+1))
721       return true;
722     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
723                              KnownOne2, TLO, Depth+1))
724       return true;
725     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
726     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
727 
728     // If the operands are constants, see if we can simplify them.
729     if (TLO.ShrinkDemandedConstant(Op, NewMask))
730       return true;
731 
732     // Only known if known in both the LHS and RHS.
733     KnownOne &= KnownOne2;
734     KnownZero &= KnownZero2;
735     break;
736   case ISD::SELECT_CC:
737     if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
738                              KnownOne, TLO, Depth+1))
739       return true;
740     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
741                              KnownOne2, TLO, Depth+1))
742       return true;
743     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
744     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
745 
746     // If the operands are constants, see if we can simplify them.
747     if (TLO.ShrinkDemandedConstant(Op, NewMask))
748       return true;
749 
750     // Only known if known in both the LHS and RHS.
751     KnownOne &= KnownOne2;
752     KnownZero &= KnownZero2;
753     break;
754   case ISD::SHL:
755     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
756       unsigned ShAmt = SA->getZExtValue();
757       SDValue InOp = Op.getOperand(0);
758 
759       // If the shift count is an invalid immediate, don't do anything.
760       if (ShAmt >= BitWidth)
761         break;
762 
763       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
764       // single shift.  We can do this if the bottom bits (which are shifted
765       // out) are never demanded.
766       if (InOp.getOpcode() == ISD::SRL &&
767           isa<ConstantSDNode>(InOp.getOperand(1))) {
768         if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
769           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
770           unsigned Opc = ISD::SHL;
771           int Diff = ShAmt-C1;
772           if (Diff < 0) {
773             Diff = -Diff;
774             Opc = ISD::SRL;
775           }
776 
777           SDValue NewSA =
778             TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
779           EVT VT = Op.getValueType();
780           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
781                                                    InOp.getOperand(0), NewSA));
782         }
783       }
784 
785       if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
786                                KnownZero, KnownOne, TLO, Depth+1))
787         return true;
788 
789       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
790       // are not demanded. This will likely allow the anyext to be folded away.
791       if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
792         SDValue InnerOp = InOp.getNode()->getOperand(0);
793         EVT InnerVT = InnerOp.getValueType();
794         unsigned InnerBits = InnerVT.getSizeInBits();
795         if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 &&
796             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
797           EVT ShTy = getShiftAmountTy(InnerVT, DL);
798           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
799             ShTy = InnerVT;
800           SDValue NarrowShl =
801             TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
802                             TLO.DAG.getConstant(ShAmt, dl, ShTy));
803           return
804             TLO.CombineTo(Op,
805                           TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
806                                           NarrowShl));
807         }
808         // Repeat the SHL optimization above in cases where an extension
809         // intervenes: (shl (anyext (shr x, c1)), c2) to
810         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
811         // aren't demanded (as above) and that the shifted upper c1 bits of
812         // x aren't demanded.
813         if (InOp.hasOneUse() &&
814             InnerOp.getOpcode() == ISD::SRL &&
815             InnerOp.hasOneUse() &&
816             isa<ConstantSDNode>(InnerOp.getOperand(1))) {
817           uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1))
818             ->getZExtValue();
819           if (InnerShAmt < ShAmt &&
820               InnerShAmt < InnerBits &&
821               NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 &&
822               NewMask.trunc(ShAmt) == 0) {
823             SDValue NewSA =
824               TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
825                                   Op.getOperand(1).getValueType());
826             EVT VT = Op.getValueType();
827             SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
828                                              InnerOp.getOperand(0));
829             return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT,
830                                                      NewExt, NewSA));
831           }
832         }
833       }
834 
835       KnownZero <<= SA->getZExtValue();
836       KnownOne  <<= SA->getZExtValue();
837       // low bits known zero.
838       KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
839     }
840     break;
841   case ISD::SRL:
842     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
843       EVT VT = Op.getValueType();
844       unsigned ShAmt = SA->getZExtValue();
845       unsigned VTSize = VT.getSizeInBits();
846       SDValue InOp = Op.getOperand(0);
847 
848       // If the shift count is an invalid immediate, don't do anything.
849       if (ShAmt >= BitWidth)
850         break;
851 
852       APInt InDemandedMask = (NewMask << ShAmt);
853 
854       // If the shift is exact, then it does demand the low bits (and knows that
855       // they are zero).
856       if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact())
857         InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt);
858 
859       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
860       // single shift.  We can do this if the top bits (which are shifted out)
861       // are never demanded.
862       if (InOp.getOpcode() == ISD::SHL &&
863           isa<ConstantSDNode>(InOp.getOperand(1))) {
864         if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
865           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
866           unsigned Opc = ISD::SRL;
867           int Diff = ShAmt-C1;
868           if (Diff < 0) {
869             Diff = -Diff;
870             Opc = ISD::SHL;
871           }
872 
873           SDValue NewSA =
874             TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
875           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
876                                                    InOp.getOperand(0), NewSA));
877         }
878       }
879 
880       // Compute the new bits that are at the top now.
881       if (SimplifyDemandedBits(InOp, InDemandedMask,
882                                KnownZero, KnownOne, TLO, Depth+1))
883         return true;
884       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
885       KnownZero = KnownZero.lshr(ShAmt);
886       KnownOne  = KnownOne.lshr(ShAmt);
887 
888       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
889       KnownZero |= HighBits;  // High bits known zero.
890     }
891     break;
892   case ISD::SRA:
893     // If this is an arithmetic shift right and only the low-bit is set, we can
894     // always convert this into a logical shr, even if the shift amount is
895     // variable.  The low bit of the shift cannot be an input sign bit unless
896     // the shift amount is >= the size of the datatype, which is undefined.
897     if (NewMask == 1)
898       return TLO.CombineTo(Op,
899                            TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
900                                            Op.getOperand(0), Op.getOperand(1)));
901 
902     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
903       EVT VT = Op.getValueType();
904       unsigned ShAmt = SA->getZExtValue();
905 
906       // If the shift count is an invalid immediate, don't do anything.
907       if (ShAmt >= BitWidth)
908         break;
909 
910       APInt InDemandedMask = (NewMask << ShAmt);
911 
912       // If the shift is exact, then it does demand the low bits (and knows that
913       // they are zero).
914       if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact())
915         InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt);
916 
917       // If any of the demanded bits are produced by the sign extension, we also
918       // demand the input sign bit.
919       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
920       if (HighBits.intersects(NewMask))
921         InDemandedMask |= APInt::getSignBit(VT.getScalarSizeInBits());
922 
923       if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
924                                KnownZero, KnownOne, TLO, Depth+1))
925         return true;
926       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
927       KnownZero = KnownZero.lshr(ShAmt);
928       KnownOne  = KnownOne.lshr(ShAmt);
929 
930       // Handle the sign bit, adjusted to where it is now in the mask.
931       APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
932 
933       // If the input sign bit is known to be zero, or if none of the top bits
934       // are demanded, turn this into an unsigned shift right.
935       if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
936         SDNodeFlags Flags;
937         Flags.setExact(cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact());
938         return TLO.CombineTo(Op,
939                              TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0),
940                                              Op.getOperand(1), &Flags));
941       }
942 
943       int Log2 = NewMask.exactLogBase2();
944       if (Log2 >= 0) {
945         // The bit must come from the sign.
946         SDValue NewSA =
947           TLO.DAG.getConstant(BitWidth - 1 - Log2, dl,
948                               Op.getOperand(1).getValueType());
949         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
950                                                  Op.getOperand(0), NewSA));
951       }
952 
953       if (KnownOne.intersects(SignBit))
954         // New bits are known one.
955         KnownOne |= HighBits;
956     }
957     break;
958   case ISD::SIGN_EXTEND_INREG: {
959     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
960 
961     APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
962     // If we only care about the highest bit, don't bother shifting right.
963     if (MsbMask == NewMask) {
964       unsigned ShAmt = ExVT.getScalarSizeInBits();
965       SDValue InOp = Op.getOperand(0);
966       unsigned VTBits = Op->getValueType(0).getScalarSizeInBits();
967       bool AlreadySignExtended =
968         TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1;
969       // However if the input is already sign extended we expect the sign
970       // extension to be dropped altogether later and do not simplify.
971       if (!AlreadySignExtended) {
972         // Compute the correct shift amount type, which must be getShiftAmountTy
973         // for scalar types after legalization.
974         EVT ShiftAmtTy = Op.getValueType();
975         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
976           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
977 
978         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, dl,
979                                                ShiftAmtTy);
980         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
981                                                  Op.getValueType(), InOp,
982                                                  ShiftAmt));
983       }
984     }
985 
986     // Sign extension.  Compute the demanded bits in the result that are not
987     // present in the input.
988     APInt NewBits =
989       APInt::getHighBitsSet(BitWidth,
990                             BitWidth - ExVT.getScalarSizeInBits());
991 
992     // If none of the extended bits are demanded, eliminate the sextinreg.
993     if ((NewBits & NewMask) == 0)
994       return TLO.CombineTo(Op, Op.getOperand(0));
995 
996     APInt InSignBit =
997       APInt::getSignBit(ExVT.getScalarSizeInBits()).zext(BitWidth);
998     APInt InputDemandedBits =
999       APInt::getLowBitsSet(BitWidth,
1000                            ExVT.getScalarSizeInBits()) &
1001       NewMask;
1002 
1003     // Since the sign extended bits are demanded, we know that the sign
1004     // bit is demanded.
1005     InputDemandedBits |= InSignBit;
1006 
1007     if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1008                              KnownZero, KnownOne, TLO, Depth+1))
1009       return true;
1010     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1011 
1012     // If the sign bit of the input is known set or clear, then we know the
1013     // top bits of the result.
1014 
1015     // If the input sign bit is known zero, convert this into a zero extension.
1016     if (KnownZero.intersects(InSignBit))
1017       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(
1018                                    Op.getOperand(0), dl, ExVT.getScalarType()));
1019 
1020     if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1021       KnownOne |= NewBits;
1022       KnownZero &= ~NewBits;
1023     } else {                       // Input sign bit unknown
1024       KnownZero &= ~NewBits;
1025       KnownOne &= ~NewBits;
1026     }
1027     break;
1028   }
1029   case ISD::BUILD_PAIR: {
1030     EVT HalfVT = Op.getOperand(0).getValueType();
1031     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1032 
1033     APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1034     APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1035 
1036     APInt KnownZeroLo, KnownOneLo;
1037     APInt KnownZeroHi, KnownOneHi;
1038 
1039     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo,
1040                              KnownOneLo, TLO, Depth + 1))
1041       return true;
1042 
1043     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi,
1044                              KnownOneHi, TLO, Depth + 1))
1045       return true;
1046 
1047     KnownZero = KnownZeroLo.zext(BitWidth) |
1048                 KnownZeroHi.zext(BitWidth).shl(HalfBitWidth);
1049 
1050     KnownOne = KnownOneLo.zext(BitWidth) |
1051                KnownOneHi.zext(BitWidth).shl(HalfBitWidth);
1052     break;
1053   }
1054   case ISD::ZERO_EXTEND: {
1055     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
1056     APInt InMask = NewMask.trunc(OperandBitWidth);
1057 
1058     // If none of the top bits are demanded, convert this into an any_extend.
1059     APInt NewBits =
1060       APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1061     if (!NewBits.intersects(NewMask))
1062       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1063                                                Op.getValueType(),
1064                                                Op.getOperand(0)));
1065 
1066     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1067                              KnownZero, KnownOne, TLO, Depth+1))
1068       return true;
1069     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1070     KnownZero = KnownZero.zext(BitWidth);
1071     KnownOne = KnownOne.zext(BitWidth);
1072     KnownZero |= NewBits;
1073     break;
1074   }
1075   case ISD::SIGN_EXTEND: {
1076     EVT InVT = Op.getOperand(0).getValueType();
1077     unsigned InBits = InVT.getScalarSizeInBits();
1078     APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1079     APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1080     APInt NewBits   = ~InMask & NewMask;
1081 
1082     // If none of the top bits are demanded, convert this into an any_extend.
1083     if (NewBits == 0)
1084       return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1085                                               Op.getValueType(),
1086                                               Op.getOperand(0)));
1087 
1088     // Since some of the sign extended bits are demanded, we know that the sign
1089     // bit is demanded.
1090     APInt InDemandedBits = InMask & NewMask;
1091     InDemandedBits |= InSignBit;
1092     InDemandedBits = InDemandedBits.trunc(InBits);
1093 
1094     if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1095                              KnownOne, TLO, Depth+1))
1096       return true;
1097     KnownZero = KnownZero.zext(BitWidth);
1098     KnownOne = KnownOne.zext(BitWidth);
1099 
1100     // If the sign bit is known zero, convert this to a zero extend.
1101     if (KnownZero.intersects(InSignBit))
1102       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1103                                                Op.getValueType(),
1104                                                Op.getOperand(0)));
1105 
1106     // If the sign bit is known one, the top bits match.
1107     if (KnownOne.intersects(InSignBit)) {
1108       KnownOne |= NewBits;
1109       assert((KnownZero & NewBits) == 0);
1110     } else {   // Otherwise, top bits aren't known.
1111       assert((KnownOne & NewBits) == 0);
1112       assert((KnownZero & NewBits) == 0);
1113     }
1114     break;
1115   }
1116   case ISD::ANY_EXTEND: {
1117     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
1118     APInt InMask = NewMask.trunc(OperandBitWidth);
1119     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1120                              KnownZero, KnownOne, TLO, Depth+1))
1121       return true;
1122     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1123     KnownZero = KnownZero.zext(BitWidth);
1124     KnownOne = KnownOne.zext(BitWidth);
1125     break;
1126   }
1127   case ISD::TRUNCATE: {
1128     // Simplify the input, using demanded bit information, and compute the known
1129     // zero/one bits live out.
1130     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
1131     APInt TruncMask = NewMask.zext(OperandBitWidth);
1132     if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1133                              KnownZero, KnownOne, TLO, Depth+1))
1134       return true;
1135     KnownZero = KnownZero.trunc(BitWidth);
1136     KnownOne = KnownOne.trunc(BitWidth);
1137 
1138     // If the input is only used by this truncate, see if we can shrink it based
1139     // on the known demanded bits.
1140     if (Op.getOperand(0).getNode()->hasOneUse()) {
1141       SDValue In = Op.getOperand(0);
1142       switch (In.getOpcode()) {
1143       default: break;
1144       case ISD::SRL:
1145         // Shrink SRL by a constant if none of the high bits shifted in are
1146         // demanded.
1147         if (TLO.LegalTypes() &&
1148             !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1149           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1150           // undesirable.
1151           break;
1152         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1153         if (!ShAmt)
1154           break;
1155         SDValue Shift = In.getOperand(1);
1156         if (TLO.LegalTypes()) {
1157           uint64_t ShVal = ShAmt->getZExtValue();
1158           Shift = TLO.DAG.getConstant(ShVal, dl,
1159                                       getShiftAmountTy(Op.getValueType(), DL));
1160         }
1161 
1162         APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1163                                                OperandBitWidth - BitWidth);
1164         HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
1165 
1166         if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1167           // None of the shifted in bits are needed.  Add a truncate of the
1168           // shift input, then shift it.
1169           SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1170                                              Op.getValueType(),
1171                                              In.getOperand(0));
1172           return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1173                                                    Op.getValueType(),
1174                                                    NewTrunc,
1175                                                    Shift));
1176         }
1177         break;
1178       }
1179     }
1180 
1181     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1182     break;
1183   }
1184   case ISD::AssertZext: {
1185     // AssertZext demands all of the high bits, plus any of the low bits
1186     // demanded by its users.
1187     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1188     APInt InMask = APInt::getLowBitsSet(BitWidth,
1189                                         VT.getSizeInBits());
1190     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
1191                              KnownZero, KnownOne, TLO, Depth+1))
1192       return true;
1193     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1194 
1195     KnownZero |= ~InMask & NewMask;
1196     break;
1197   }
1198   case ISD::BITCAST:
1199     // If this is an FP->Int bitcast and if the sign bit is the only
1200     // thing demanded, turn this into a FGETSIGN.
1201     if (!TLO.LegalOperations() &&
1202         !Op.getValueType().isVector() &&
1203         !Op.getOperand(0).getValueType().isVector() &&
1204         NewMask == APInt::getSignBit(Op.getValueSizeInBits()) &&
1205         Op.getOperand(0).getValueType().isFloatingPoint()) {
1206       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
1207       bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1208       if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple() &&
1209            Op.getOperand(0).getValueType() != MVT::f128) {
1210         // Cannot eliminate/lower SHL for f128 yet.
1211         EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
1212         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1213         // place.  We expect the SHL to be eliminated by other optimizations.
1214         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
1215         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1216         if (!OpVTLegal && OpVTSizeInBits > 32)
1217           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
1218         unsigned ShVal = Op.getValueSizeInBits() - 1;
1219         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, Op.getValueType());
1220         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1221                                                  Op.getValueType(),
1222                                                  Sign, ShAmt));
1223       }
1224     }
1225     break;
1226   case ISD::ADD:
1227   case ISD::MUL:
1228   case ISD::SUB: {
1229     // Add, Sub, and Mul don't demand any bits in positions beyond that
1230     // of the highest bit demanded of them.
1231     APInt LoMask = APInt::getLowBitsSet(BitWidth,
1232                                         BitWidth - NewMask.countLeadingZeros());
1233     if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1234                              KnownOne2, TLO, Depth+1) ||
1235         SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1236                              KnownOne2, TLO, Depth+1) ||
1237         // See if the operation should be performed at a smaller bit width.
1238         TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) {
1239       const SDNodeFlags *Flags = Op.getNode()->getFlags();
1240       if (Flags->hasNoSignedWrap() || Flags->hasNoUnsignedWrap()) {
1241         // Disable the nsw and nuw flags. We can no longer guarantee that we
1242         // won't wrap after simplification.
1243         SDNodeFlags NewFlags = *Flags;
1244         NewFlags.setNoSignedWrap(false);
1245         NewFlags.setNoUnsignedWrap(false);
1246         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, Op.getValueType(),
1247                                         Op.getOperand(0), Op.getOperand(1),
1248                                         &NewFlags);
1249         return TLO.CombineTo(Op, NewOp);
1250       }
1251       return true;
1252     }
1253     LLVM_FALLTHROUGH;
1254   }
1255   default:
1256     // Just use computeKnownBits to compute output bits.
1257     TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth);
1258     break;
1259   }
1260 
1261   // If we know the value of all of the demanded bits, return this as a
1262   // constant.
1263   if ((NewMask & (KnownZero|KnownOne)) == NewMask) {
1264     // Avoid folding to a constant if any OpaqueConstant is involved.
1265     const SDNode *N = Op.getNode();
1266     for (SDNodeIterator I = SDNodeIterator::begin(N),
1267          E = SDNodeIterator::end(N); I != E; ++I) {
1268       SDNode *Op = *I;
1269       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
1270         if (C->isOpaque())
1271           return false;
1272     }
1273     return TLO.CombineTo(Op,
1274                          TLO.DAG.getConstant(KnownOne, dl, Op.getValueType()));
1275   }
1276 
1277   return false;
1278 }
1279 
1280 /// Determine which of the bits specified in Mask are known to be either zero or
1281 /// one and return them in the KnownZero/KnownOne bitsets.
1282 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1283                                                    APInt &KnownZero,
1284                                                    APInt &KnownOne,
1285                                                    const SelectionDAG &DAG,
1286                                                    unsigned Depth) const {
1287   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1288           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1289           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1290           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1291          "Should use MaskedValueIsZero if you don't know whether Op"
1292          " is a target node!");
1293   KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
1294 }
1295 
1296 /// This method can be implemented by targets that want to expose additional
1297 /// information about sign bits to the DAG Combiner.
1298 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1299                                                          const SelectionDAG &,
1300                                                          unsigned Depth) const {
1301   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1302           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1303           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1304           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1305          "Should use ComputeNumSignBits if you don't know whether Op"
1306          " is a target node!");
1307   return 1;
1308 }
1309 
1310 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
1311   if (!N)
1312     return false;
1313 
1314   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
1315   if (!CN) {
1316     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
1317     if (!BV)
1318       return false;
1319 
1320     // Only interested in constant splats, we don't care about undef
1321     // elements in identifying boolean constants and getConstantSplatNode
1322     // returns NULL if all ops are undef;
1323     CN = BV->getConstantSplatNode();
1324     if (!CN)
1325       return false;
1326   }
1327 
1328   switch (getBooleanContents(N->getValueType(0))) {
1329   case UndefinedBooleanContent:
1330     return CN->getAPIntValue()[0];
1331   case ZeroOrOneBooleanContent:
1332     return CN->isOne();
1333   case ZeroOrNegativeOneBooleanContent:
1334     return CN->isAllOnesValue();
1335   }
1336 
1337   llvm_unreachable("Invalid boolean contents");
1338 }
1339 
1340 SDValue TargetLowering::getConstTrueVal(SelectionDAG &DAG, EVT VT,
1341                                         const SDLoc &DL) const {
1342   unsigned ElementWidth = VT.getScalarSizeInBits();
1343   APInt TrueInt =
1344       getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent
1345           ? APInt(ElementWidth, 1)
1346           : APInt::getAllOnesValue(ElementWidth);
1347   return DAG.getConstant(TrueInt, DL, VT);
1348 }
1349 
1350 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
1351   if (!N)
1352     return false;
1353 
1354   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
1355   if (!CN) {
1356     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
1357     if (!BV)
1358       return false;
1359 
1360     // Only interested in constant splats, we don't care about undef
1361     // elements in identifying boolean constants and getConstantSplatNode
1362     // returns NULL if all ops are undef;
1363     CN = BV->getConstantSplatNode();
1364     if (!CN)
1365       return false;
1366   }
1367 
1368   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
1369     return !CN->getAPIntValue()[0];
1370 
1371   return CN->isNullValue();
1372 }
1373 
1374 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
1375                                        bool SExt) const {
1376   if (VT == MVT::i1)
1377     return N->isOne();
1378 
1379   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
1380   switch (Cnt) {
1381   case TargetLowering::ZeroOrOneBooleanContent:
1382     // An extended value of 1 is always true, unless its original type is i1,
1383     // in which case it will be sign extended to -1.
1384     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
1385   case TargetLowering::UndefinedBooleanContent:
1386   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1387     return N->isAllOnesValue() && SExt;
1388   }
1389   llvm_unreachable("Unexpected enumeration.");
1390 }
1391 
1392 /// This helper function of SimplifySetCC tries to optimize the comparison when
1393 /// either operand of the SetCC node is a bitwise-and instruction.
1394 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
1395                                              ISD::CondCode Cond,
1396                                              DAGCombinerInfo &DCI,
1397                                              const SDLoc &DL) const {
1398   // Match these patterns in any of their permutations:
1399   // (X & Y) == Y
1400   // (X & Y) != Y
1401   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
1402     std::swap(N0, N1);
1403 
1404   EVT OpVT = N0.getValueType();
1405   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
1406       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
1407     return SDValue();
1408 
1409   SDValue X, Y;
1410   if (N0.getOperand(0) == N1) {
1411     X = N0.getOperand(1);
1412     Y = N0.getOperand(0);
1413   } else if (N0.getOperand(1) == N1) {
1414     X = N0.getOperand(0);
1415     Y = N0.getOperand(1);
1416   } else {
1417     return SDValue();
1418   }
1419 
1420   SelectionDAG &DAG = DCI.DAG;
1421   SDValue Zero = DAG.getConstant(0, DL, OpVT);
1422   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
1423     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
1424     // Note that where Y is variable and is known to have at most one bit set
1425     // (for example, if it is Z & 1) we cannot do this; the expressions are not
1426     // equivalent when Y == 0.
1427     Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1428     if (DCI.isBeforeLegalizeOps() ||
1429         isCondCodeLegal(Cond, N0.getSimpleValueType()))
1430       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
1431   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
1432     // If the target supports an 'and-not' or 'and-complement' logic operation,
1433     // try to use that to make a comparison operation more efficient.
1434     // But don't do this transform if the mask is a single bit because there are
1435     // more efficient ways to deal with that case (for example, 'bt' on x86 or
1436     // 'rlwinm' on PPC).
1437 
1438     // Bail out if the compare operand that we want to turn into a zero is
1439     // already a zero (otherwise, infinite loop).
1440     auto *YConst = dyn_cast<ConstantSDNode>(Y);
1441     if (YConst && YConst->isNullValue())
1442       return SDValue();
1443 
1444     // Transform this into: ~X & Y == 0.
1445     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
1446     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
1447     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
1448   }
1449 
1450   return SDValue();
1451 }
1452 
1453 /// Try to simplify a setcc built with the specified operands and cc. If it is
1454 /// unable to simplify it, return a null SDValue.
1455 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1456                                       ISD::CondCode Cond, bool foldBooleans,
1457                                       DAGCombinerInfo &DCI,
1458                                       const SDLoc &dl) const {
1459   SelectionDAG &DAG = DCI.DAG;
1460 
1461   // These setcc operations always fold.
1462   switch (Cond) {
1463   default: break;
1464   case ISD::SETFALSE:
1465   case ISD::SETFALSE2: return DAG.getConstant(0, dl, VT);
1466   case ISD::SETTRUE:
1467   case ISD::SETTRUE2: {
1468     TargetLowering::BooleanContent Cnt =
1469         getBooleanContents(N0->getValueType(0));
1470     return DAG.getConstant(
1471         Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl,
1472         VT);
1473   }
1474   }
1475 
1476   // Ensure that the constant occurs on the RHS, and fold constant
1477   // comparisons.
1478   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
1479   if (isa<ConstantSDNode>(N0.getNode()) &&
1480       (DCI.isBeforeLegalizeOps() ||
1481        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
1482     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
1483 
1484   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1485     const APInt &C1 = N1C->getAPIntValue();
1486 
1487     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1488     // equality comparison, then we're just comparing whether X itself is
1489     // zero.
1490     if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1491         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1492         N0.getOperand(1).getOpcode() == ISD::Constant) {
1493       const APInt &ShAmt
1494         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1495       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1496           ShAmt == Log2_32(N0.getValueSizeInBits())) {
1497         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1498           // (srl (ctlz x), 5) == 0  -> X != 0
1499           // (srl (ctlz x), 5) != 1  -> X != 0
1500           Cond = ISD::SETNE;
1501         } else {
1502           // (srl (ctlz x), 5) != 0  -> X == 0
1503           // (srl (ctlz x), 5) == 1  -> X == 0
1504           Cond = ISD::SETEQ;
1505         }
1506         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
1507         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1508                             Zero, Cond);
1509       }
1510     }
1511 
1512     SDValue CTPOP = N0;
1513     // Look through truncs that don't change the value of a ctpop.
1514     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1515       CTPOP = N0.getOperand(0);
1516 
1517     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1518         (N0 == CTPOP ||
1519          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
1520       EVT CTVT = CTPOP.getValueType();
1521       SDValue CTOp = CTPOP.getOperand(0);
1522 
1523       // (ctpop x) u< 2 -> (x & x-1) == 0
1524       // (ctpop x) u> 1 -> (x & x-1) != 0
1525       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1526         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1527                                   DAG.getConstant(1, dl, CTVT));
1528         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1529         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1530         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
1531       }
1532 
1533       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1534     }
1535 
1536     // (zext x) == C --> x == (trunc C)
1537     // (sext x) == C --> x == (trunc C)
1538     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1539         DCI.isBeforeLegalize() && N0->hasOneUse()) {
1540       unsigned MinBits = N0.getValueSizeInBits();
1541       SDValue PreExt;
1542       bool Signed = false;
1543       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
1544         // ZExt
1545         MinBits = N0->getOperand(0).getValueSizeInBits();
1546         PreExt = N0->getOperand(0);
1547       } else if (N0->getOpcode() == ISD::AND) {
1548         // DAGCombine turns costly ZExts into ANDs
1549         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
1550           if ((C->getAPIntValue()+1).isPowerOf2()) {
1551             MinBits = C->getAPIntValue().countTrailingOnes();
1552             PreExt = N0->getOperand(0);
1553           }
1554       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
1555         // SExt
1556         MinBits = N0->getOperand(0).getValueSizeInBits();
1557         PreExt = N0->getOperand(0);
1558         Signed = true;
1559       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
1560         // ZEXTLOAD / SEXTLOAD
1561         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
1562           MinBits = LN0->getMemoryVT().getSizeInBits();
1563           PreExt = N0;
1564         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
1565           Signed = true;
1566           MinBits = LN0->getMemoryVT().getSizeInBits();
1567           PreExt = N0;
1568         }
1569       }
1570 
1571       // Figure out how many bits we need to preserve this constant.
1572       unsigned ReqdBits = Signed ?
1573         C1.getBitWidth() - C1.getNumSignBits() + 1 :
1574         C1.getActiveBits();
1575 
1576       // Make sure we're not losing bits from the constant.
1577       if (MinBits > 0 &&
1578           MinBits < C1.getBitWidth() &&
1579           MinBits >= ReqdBits) {
1580         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
1581         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
1582           // Will get folded away.
1583           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
1584           if (MinBits == 1 && C1 == 1)
1585             // Invert the condition.
1586             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
1587                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1588           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
1589           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
1590         }
1591 
1592         // If truncating the setcc operands is not desirable, we can still
1593         // simplify the expression in some cases:
1594         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
1595         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
1596         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
1597         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
1598         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
1599         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
1600         SDValue TopSetCC = N0->getOperand(0);
1601         unsigned N0Opc = N0->getOpcode();
1602         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
1603         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
1604             TopSetCC.getOpcode() == ISD::SETCC &&
1605             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
1606             (isConstFalseVal(N1C) ||
1607              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
1608 
1609           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
1610                          (!N1C->isNullValue() && Cond == ISD::SETNE);
1611 
1612           if (!Inverse)
1613             return TopSetCC;
1614 
1615           ISD::CondCode InvCond = ISD::getSetCCInverse(
1616               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
1617               TopSetCC.getOperand(0).getValueType().isInteger());
1618           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
1619                                       TopSetCC.getOperand(1),
1620                                       InvCond);
1621 
1622         }
1623       }
1624     }
1625 
1626     // If the LHS is '(and load, const)', the RHS is 0,
1627     // the test is for equality or unsigned, and all 1 bits of the const are
1628     // in the same partial word, see if we can shorten the load.
1629     if (DCI.isBeforeLegalize() &&
1630         !ISD::isSignedIntSetCC(Cond) &&
1631         N0.getOpcode() == ISD::AND && C1 == 0 &&
1632         N0.getNode()->hasOneUse() &&
1633         isa<LoadSDNode>(N0.getOperand(0)) &&
1634         N0.getOperand(0).getNode()->hasOneUse() &&
1635         isa<ConstantSDNode>(N0.getOperand(1))) {
1636       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1637       APInt bestMask;
1638       unsigned bestWidth = 0, bestOffset = 0;
1639       if (!Lod->isVolatile() && Lod->isUnindexed()) {
1640         unsigned origWidth = N0.getValueSizeInBits();
1641         unsigned maskWidth = origWidth;
1642         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1643         // 8 bits, but have to be careful...
1644         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1645           origWidth = Lod->getMemoryVT().getSizeInBits();
1646         const APInt &Mask =
1647           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1648         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1649           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1650           for (unsigned offset=0; offset<origWidth/width; offset++) {
1651             if ((newMask & Mask) == Mask) {
1652               if (!DAG.getDataLayout().isLittleEndian())
1653                 bestOffset = (origWidth/width - offset - 1) * (width/8);
1654               else
1655                 bestOffset = (uint64_t)offset * (width/8);
1656               bestMask = Mask.lshr(offset * (width/8) * 8);
1657               bestWidth = width;
1658               break;
1659             }
1660             newMask = newMask << width;
1661           }
1662         }
1663       }
1664       if (bestWidth) {
1665         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
1666         if (newVT.isRound()) {
1667           EVT PtrType = Lod->getOperand(1).getValueType();
1668           SDValue Ptr = Lod->getBasePtr();
1669           if (bestOffset != 0)
1670             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1671                               DAG.getConstant(bestOffset, dl, PtrType));
1672           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1673           SDValue NewLoad = DAG.getLoad(
1674               newVT, dl, Lod->getChain(), Ptr,
1675               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
1676           return DAG.getSetCC(dl, VT,
1677                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1678                                       DAG.getConstant(bestMask.trunc(bestWidth),
1679                                                       dl, newVT)),
1680                               DAG.getConstant(0LL, dl, newVT), Cond);
1681         }
1682       }
1683     }
1684 
1685     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1686     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1687       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
1688 
1689       // If the comparison constant has bits in the upper part, the
1690       // zero-extended value could never match.
1691       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1692                                               C1.getBitWidth() - InSize))) {
1693         switch (Cond) {
1694         case ISD::SETUGT:
1695         case ISD::SETUGE:
1696         case ISD::SETEQ: return DAG.getConstant(0, dl, VT);
1697         case ISD::SETULT:
1698         case ISD::SETULE:
1699         case ISD::SETNE: return DAG.getConstant(1, dl, VT);
1700         case ISD::SETGT:
1701         case ISD::SETGE:
1702           // True if the sign bit of C1 is set.
1703           return DAG.getConstant(C1.isNegative(), dl, VT);
1704         case ISD::SETLT:
1705         case ISD::SETLE:
1706           // True if the sign bit of C1 isn't set.
1707           return DAG.getConstant(C1.isNonNegative(), dl, VT);
1708         default:
1709           break;
1710         }
1711       }
1712 
1713       // Otherwise, we can perform the comparison with the low bits.
1714       switch (Cond) {
1715       case ISD::SETEQ:
1716       case ISD::SETNE:
1717       case ISD::SETUGT:
1718       case ISD::SETUGE:
1719       case ISD::SETULT:
1720       case ISD::SETULE: {
1721         EVT newVT = N0.getOperand(0).getValueType();
1722         if (DCI.isBeforeLegalizeOps() ||
1723             (isOperationLegal(ISD::SETCC, newVT) &&
1724              getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) {
1725           EVT NewSetCCVT =
1726               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
1727           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
1728 
1729           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
1730                                           NewConst, Cond);
1731           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
1732         }
1733         break;
1734       }
1735       default:
1736         break;   // todo, be more careful with signed comparisons
1737       }
1738     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1739                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1740       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1741       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1742       EVT ExtDstTy = N0.getValueType();
1743       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1744 
1745       // If the constant doesn't fit into the number of bits for the source of
1746       // the sign extension, it is impossible for both sides to be equal.
1747       if (C1.getMinSignedBits() > ExtSrcTyBits)
1748         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
1749 
1750       SDValue ZextOp;
1751       EVT Op0Ty = N0.getOperand(0).getValueType();
1752       if (Op0Ty == ExtSrcTy) {
1753         ZextOp = N0.getOperand(0);
1754       } else {
1755         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1756         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1757                               DAG.getConstant(Imm, dl, Op0Ty));
1758       }
1759       if (!DCI.isCalledByLegalizer())
1760         DCI.AddToWorklist(ZextOp.getNode());
1761       // Otherwise, make this a use of a zext.
1762       return DAG.getSetCC(dl, VT, ZextOp,
1763                           DAG.getConstant(C1 & APInt::getLowBitsSet(
1764                                                               ExtDstTyBits,
1765                                                               ExtSrcTyBits),
1766                                           dl, ExtDstTy),
1767                           Cond);
1768     } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1769                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1770       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1771       if (N0.getOpcode() == ISD::SETCC &&
1772           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
1773         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
1774         if (TrueWhenTrue)
1775           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
1776         // Invert the condition.
1777         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1778         CC = ISD::getSetCCInverse(CC,
1779                                   N0.getOperand(0).getValueType().isInteger());
1780         if (DCI.isBeforeLegalizeOps() ||
1781             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
1782           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1783       }
1784 
1785       if ((N0.getOpcode() == ISD::XOR ||
1786            (N0.getOpcode() == ISD::AND &&
1787             N0.getOperand(0).getOpcode() == ISD::XOR &&
1788             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1789           isa<ConstantSDNode>(N0.getOperand(1)) &&
1790           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1791         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1792         // can only do this if the top bits are known zero.
1793         unsigned BitWidth = N0.getValueSizeInBits();
1794         if (DAG.MaskedValueIsZero(N0,
1795                                   APInt::getHighBitsSet(BitWidth,
1796                                                         BitWidth-1))) {
1797           // Okay, get the un-inverted input value.
1798           SDValue Val;
1799           if (N0.getOpcode() == ISD::XOR)
1800             Val = N0.getOperand(0);
1801           else {
1802             assert(N0.getOpcode() == ISD::AND &&
1803                     N0.getOperand(0).getOpcode() == ISD::XOR);
1804             // ((X^1)&1)^1 -> X & 1
1805             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1806                               N0.getOperand(0).getOperand(0),
1807                               N0.getOperand(1));
1808           }
1809 
1810           return DAG.getSetCC(dl, VT, Val, N1,
1811                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1812         }
1813       } else if (N1C->getAPIntValue() == 1 &&
1814                  (VT == MVT::i1 ||
1815                   getBooleanContents(N0->getValueType(0)) ==
1816                       ZeroOrOneBooleanContent)) {
1817         SDValue Op0 = N0;
1818         if (Op0.getOpcode() == ISD::TRUNCATE)
1819           Op0 = Op0.getOperand(0);
1820 
1821         if ((Op0.getOpcode() == ISD::XOR) &&
1822             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
1823             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
1824           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
1825           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
1826           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
1827                               Cond);
1828         }
1829         if (Op0.getOpcode() == ISD::AND &&
1830             isa<ConstantSDNode>(Op0.getOperand(1)) &&
1831             cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
1832           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
1833           if (Op0.getValueType().bitsGT(VT))
1834             Op0 = DAG.getNode(ISD::AND, dl, VT,
1835                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
1836                           DAG.getConstant(1, dl, VT));
1837           else if (Op0.getValueType().bitsLT(VT))
1838             Op0 = DAG.getNode(ISD::AND, dl, VT,
1839                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
1840                         DAG.getConstant(1, dl, VT));
1841 
1842           return DAG.getSetCC(dl, VT, Op0,
1843                               DAG.getConstant(0, dl, Op0.getValueType()),
1844                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1845         }
1846         if (Op0.getOpcode() == ISD::AssertZext &&
1847             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
1848           return DAG.getSetCC(dl, VT, Op0,
1849                               DAG.getConstant(0, dl, Op0.getValueType()),
1850                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1851       }
1852     }
1853 
1854     APInt MinVal, MaxVal;
1855     unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1856     if (ISD::isSignedIntSetCC(Cond)) {
1857       MinVal = APInt::getSignedMinValue(OperandBitSize);
1858       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1859     } else {
1860       MinVal = APInt::getMinValue(OperandBitSize);
1861       MaxVal = APInt::getMaxValue(OperandBitSize);
1862     }
1863 
1864     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1865     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1866       if (C1 == MinVal) return DAG.getConstant(1, dl, VT);  // X >= MIN --> true
1867       // X >= C0 --> X > (C0 - 1)
1868       APInt C = C1 - 1;
1869       ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
1870       if ((DCI.isBeforeLegalizeOps() ||
1871            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
1872           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
1873                                 isLegalICmpImmediate(C.getSExtValue())))) {
1874         return DAG.getSetCC(dl, VT, N0,
1875                             DAG.getConstant(C, dl, N1.getValueType()),
1876                             NewCC);
1877       }
1878     }
1879 
1880     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1881       if (C1 == MaxVal) return DAG.getConstant(1, dl, VT);  // X <= MAX --> true
1882       // X <= C0 --> X < (C0 + 1)
1883       APInt C = C1 + 1;
1884       ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
1885       if ((DCI.isBeforeLegalizeOps() ||
1886            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
1887           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
1888                                 isLegalICmpImmediate(C.getSExtValue())))) {
1889         return DAG.getSetCC(dl, VT, N0,
1890                             DAG.getConstant(C, dl, N1.getValueType()),
1891                             NewCC);
1892       }
1893     }
1894 
1895     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1896       return DAG.getConstant(0, dl, VT);      // X < MIN --> false
1897     if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1898       return DAG.getConstant(1, dl, VT);      // X >= MIN --> true
1899     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1900       return DAG.getConstant(0, dl, VT);      // X > MAX --> false
1901     if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1902       return DAG.getConstant(1, dl, VT);      // X <= MAX --> true
1903 
1904     // Canonicalize setgt X, Min --> setne X, Min
1905     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1906       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1907     // Canonicalize setlt X, Max --> setne X, Max
1908     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1909       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1910 
1911     // If we have setult X, 1, turn it into seteq X, 0
1912     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1913       return DAG.getSetCC(dl, VT, N0,
1914                           DAG.getConstant(MinVal, dl, N0.getValueType()),
1915                           ISD::SETEQ);
1916     // If we have setugt X, Max-1, turn it into seteq X, Max
1917     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1918       return DAG.getSetCC(dl, VT, N0,
1919                           DAG.getConstant(MaxVal, dl, N0.getValueType()),
1920                           ISD::SETEQ);
1921 
1922     // If we have "setcc X, C0", check to see if we can shrink the immediate
1923     // by changing cc.
1924 
1925     // SETUGT X, SINTMAX  -> SETLT X, 0
1926     if (Cond == ISD::SETUGT &&
1927         C1 == APInt::getSignedMaxValue(OperandBitSize))
1928       return DAG.getSetCC(dl, VT, N0,
1929                           DAG.getConstant(0, dl, N1.getValueType()),
1930                           ISD::SETLT);
1931 
1932     // SETULT X, SINTMIN  -> SETGT X, -1
1933     if (Cond == ISD::SETULT &&
1934         C1 == APInt::getSignedMinValue(OperandBitSize)) {
1935       SDValue ConstMinusOne =
1936           DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
1937                           N1.getValueType());
1938       return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1939     }
1940 
1941     // Fold bit comparisons when we can.
1942     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1943         (VT == N0.getValueType() ||
1944          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
1945         N0.getOpcode() == ISD::AND) {
1946       auto &DL = DAG.getDataLayout();
1947       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1948         EVT ShiftTy = DCI.isBeforeLegalize()
1949                           ? getPointerTy(DL)
1950                           : getShiftAmountTy(N0.getValueType(), DL);
1951         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1952           // Perform the xform if the AND RHS is a single bit.
1953           if (AndRHS->getAPIntValue().isPowerOf2()) {
1954             return DAG.getNode(ISD::TRUNCATE, dl, VT,
1955                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1956                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
1957                                    ShiftTy)));
1958           }
1959         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
1960           // (X & 8) == 8  -->  (X & 8) >> 3
1961           // Perform the xform if C1 is a single bit.
1962           if (C1.isPowerOf2()) {
1963             return DAG.getNode(ISD::TRUNCATE, dl, VT,
1964                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1965                                       DAG.getConstant(C1.logBase2(), dl,
1966                                                       ShiftTy)));
1967           }
1968         }
1969       }
1970     }
1971 
1972     if (C1.getMinSignedBits() <= 64 &&
1973         !isLegalICmpImmediate(C1.getSExtValue())) {
1974       // (X & -256) == 256 -> (X >> 8) == 1
1975       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1976           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
1977         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1978           const APInt &AndRHSC = AndRHS->getAPIntValue();
1979           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
1980             unsigned ShiftBits = AndRHSC.countTrailingZeros();
1981             auto &DL = DAG.getDataLayout();
1982             EVT ShiftTy = DCI.isBeforeLegalize()
1983                               ? getPointerTy(DL)
1984                               : getShiftAmountTy(N0.getValueType(), DL);
1985             EVT CmpTy = N0.getValueType();
1986             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
1987                                         DAG.getConstant(ShiftBits, dl,
1988                                                         ShiftTy));
1989             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
1990             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
1991           }
1992         }
1993       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
1994                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
1995         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
1996         // X <  0x100000000 -> (X >> 32) <  1
1997         // X >= 0x100000000 -> (X >> 32) >= 1
1998         // X <= 0x0ffffffff -> (X >> 32) <  1
1999         // X >  0x0ffffffff -> (X >> 32) >= 1
2000         unsigned ShiftBits;
2001         APInt NewC = C1;
2002         ISD::CondCode NewCond = Cond;
2003         if (AdjOne) {
2004           ShiftBits = C1.countTrailingOnes();
2005           NewC = NewC + 1;
2006           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2007         } else {
2008           ShiftBits = C1.countTrailingZeros();
2009         }
2010         NewC = NewC.lshr(ShiftBits);
2011         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
2012           isLegalICmpImmediate(NewC.getSExtValue())) {
2013           auto &DL = DAG.getDataLayout();
2014           EVT ShiftTy = DCI.isBeforeLegalize()
2015                             ? getPointerTy(DL)
2016                             : getShiftAmountTy(N0.getValueType(), DL);
2017           EVT CmpTy = N0.getValueType();
2018           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
2019                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
2020           SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
2021           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
2022         }
2023       }
2024     }
2025   }
2026 
2027   if (isa<ConstantFPSDNode>(N0.getNode())) {
2028     // Constant fold or commute setcc.
2029     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2030     if (O.getNode()) return O;
2031   } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2032     // If the RHS of an FP comparison is a constant, simplify it away in
2033     // some cases.
2034     if (CFP->getValueAPF().isNaN()) {
2035       // If an operand is known to be a nan, we can fold it.
2036       switch (ISD::getUnorderedFlavor(Cond)) {
2037       default: llvm_unreachable("Unknown flavor!");
2038       case 0:  // Known false.
2039         return DAG.getConstant(0, dl, VT);
2040       case 1:  // Known true.
2041         return DAG.getConstant(1, dl, VT);
2042       case 2:  // Undefined.
2043         return DAG.getUNDEF(VT);
2044       }
2045     }
2046 
2047     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2048     // constant if knowing that the operand is non-nan is enough.  We prefer to
2049     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2050     // materialize 0.0.
2051     if (Cond == ISD::SETO || Cond == ISD::SETUO)
2052       return DAG.getSetCC(dl, VT, N0, N0, Cond);
2053 
2054     // setcc (fneg x), C -> setcc swap(pred) x, -C
2055     if (N0.getOpcode() == ISD::FNEG) {
2056       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
2057       if (DCI.isBeforeLegalizeOps() ||
2058           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
2059         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
2060         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
2061       }
2062     }
2063 
2064     // If the condition is not legal, see if we can find an equivalent one
2065     // which is legal.
2066     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
2067       // If the comparison was an awkward floating-point == or != and one of
2068       // the comparison operands is infinity or negative infinity, convert the
2069       // condition to a less-awkward <= or >=.
2070       if (CFP->getValueAPF().isInfinity()) {
2071         if (CFP->getValueAPF().isNegative()) {
2072           if (Cond == ISD::SETOEQ &&
2073               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
2074             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2075           if (Cond == ISD::SETUEQ &&
2076               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
2077             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2078           if (Cond == ISD::SETUNE &&
2079               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
2080             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2081           if (Cond == ISD::SETONE &&
2082               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
2083             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2084         } else {
2085           if (Cond == ISD::SETOEQ &&
2086               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
2087             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2088           if (Cond == ISD::SETUEQ &&
2089               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
2090             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2091           if (Cond == ISD::SETUNE &&
2092               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
2093             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2094           if (Cond == ISD::SETONE &&
2095               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
2096             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2097         }
2098       }
2099     }
2100   }
2101 
2102   if (N0 == N1) {
2103     // The sext(setcc()) => setcc() optimization relies on the appropriate
2104     // constant being emitted.
2105     uint64_t EqVal = 0;
2106     switch (getBooleanContents(N0.getValueType())) {
2107     case UndefinedBooleanContent:
2108     case ZeroOrOneBooleanContent:
2109       EqVal = ISD::isTrueWhenEqual(Cond);
2110       break;
2111     case ZeroOrNegativeOneBooleanContent:
2112       EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0;
2113       break;
2114     }
2115 
2116     // We can always fold X == X for integer setcc's.
2117     if (N0.getValueType().isInteger()) {
2118       return DAG.getConstant(EqVal, dl, VT);
2119     }
2120     unsigned UOF = ISD::getUnorderedFlavor(Cond);
2121     if (UOF == 2)   // FP operators that are undefined on NaNs.
2122       return DAG.getConstant(EqVal, dl, VT);
2123     if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2124       return DAG.getConstant(EqVal, dl, VT);
2125     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2126     // if it is not already.
2127     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2128     if (NewCond != Cond && (DCI.isBeforeLegalizeOps() ||
2129           getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal))
2130       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2131   }
2132 
2133   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2134       N0.getValueType().isInteger()) {
2135     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2136         N0.getOpcode() == ISD::XOR) {
2137       // Simplify (X+Y) == (X+Z) -->  Y == Z
2138       if (N0.getOpcode() == N1.getOpcode()) {
2139         if (N0.getOperand(0) == N1.getOperand(0))
2140           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2141         if (N0.getOperand(1) == N1.getOperand(1))
2142           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2143         if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2144           // If X op Y == Y op X, try other combinations.
2145           if (N0.getOperand(0) == N1.getOperand(1))
2146             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2147                                 Cond);
2148           if (N0.getOperand(1) == N1.getOperand(0))
2149             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2150                                 Cond);
2151         }
2152       }
2153 
2154       // If RHS is a legal immediate value for a compare instruction, we need
2155       // to be careful about increasing register pressure needlessly.
2156       bool LegalRHSImm = false;
2157 
2158       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2159         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2160           // Turn (X+C1) == C2 --> X == C2-C1
2161           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2162             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2163                                 DAG.getConstant(RHSC->getAPIntValue()-
2164                                                 LHSR->getAPIntValue(),
2165                                 dl, N0.getValueType()), Cond);
2166           }
2167 
2168           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2169           if (N0.getOpcode() == ISD::XOR)
2170             // If we know that all of the inverted bits are zero, don't bother
2171             // performing the inversion.
2172             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2173               return
2174                 DAG.getSetCC(dl, VT, N0.getOperand(0),
2175                              DAG.getConstant(LHSR->getAPIntValue() ^
2176                                                RHSC->getAPIntValue(),
2177                                              dl, N0.getValueType()),
2178                              Cond);
2179         }
2180 
2181         // Turn (C1-X) == C2 --> X == C1-C2
2182         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2183           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2184             return
2185               DAG.getSetCC(dl, VT, N0.getOperand(1),
2186                            DAG.getConstant(SUBC->getAPIntValue() -
2187                                              RHSC->getAPIntValue(),
2188                                            dl, N0.getValueType()),
2189                            Cond);
2190           }
2191         }
2192 
2193         // Could RHSC fold directly into a compare?
2194         if (RHSC->getValueType(0).getSizeInBits() <= 64)
2195           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
2196       }
2197 
2198       // Simplify (X+Z) == X -->  Z == 0
2199       // Don't do this if X is an immediate that can fold into a cmp
2200       // instruction and X+Z has other uses. It could be an induction variable
2201       // chain, and the transform would increase register pressure.
2202       if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
2203         if (N0.getOperand(0) == N1)
2204           return DAG.getSetCC(dl, VT, N0.getOperand(1),
2205                               DAG.getConstant(0, dl, N0.getValueType()), Cond);
2206         if (N0.getOperand(1) == N1) {
2207           if (DAG.isCommutativeBinOp(N0.getOpcode()))
2208             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2209                                 DAG.getConstant(0, dl, N0.getValueType()),
2210                                 Cond);
2211           if (N0.getNode()->hasOneUse()) {
2212             assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2213             auto &DL = DAG.getDataLayout();
2214             // (Z-X) == X  --> Z == X<<1
2215             SDValue SH = DAG.getNode(
2216                 ISD::SHL, dl, N1.getValueType(), N1,
2217                 DAG.getConstant(1, dl,
2218                                 getShiftAmountTy(N1.getValueType(), DL)));
2219             if (!DCI.isCalledByLegalizer())
2220               DCI.AddToWorklist(SH.getNode());
2221             return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2222           }
2223         }
2224       }
2225     }
2226 
2227     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2228         N1.getOpcode() == ISD::XOR) {
2229       // Simplify  X == (X+Z) -->  Z == 0
2230       if (N1.getOperand(0) == N0)
2231         return DAG.getSetCC(dl, VT, N1.getOperand(1),
2232                         DAG.getConstant(0, dl, N1.getValueType()), Cond);
2233       if (N1.getOperand(1) == N0) {
2234         if (DAG.isCommutativeBinOp(N1.getOpcode()))
2235           return DAG.getSetCC(dl, VT, N1.getOperand(0),
2236                           DAG.getConstant(0, dl, N1.getValueType()), Cond);
2237         if (N1.getNode()->hasOneUse()) {
2238           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2239           auto &DL = DAG.getDataLayout();
2240           // X == (Z-X)  --> X<<1 == Z
2241           SDValue SH = DAG.getNode(
2242               ISD::SHL, dl, N1.getValueType(), N0,
2243               DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL)));
2244           if (!DCI.isCalledByLegalizer())
2245             DCI.AddToWorklist(SH.getNode());
2246           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2247         }
2248       }
2249     }
2250 
2251     if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl))
2252       return V;
2253   }
2254 
2255   // Fold away ALL boolean setcc's.
2256   SDValue Temp;
2257   if (N0.getValueType() == MVT::i1 && foldBooleans) {
2258     switch (Cond) {
2259     default: llvm_unreachable("Unknown integer setcc!");
2260     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2261       Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2262       N0 = DAG.getNOT(dl, Temp, MVT::i1);
2263       if (!DCI.isCalledByLegalizer())
2264         DCI.AddToWorklist(Temp.getNode());
2265       break;
2266     case ISD::SETNE:  // X != Y   -->  (X^Y)
2267       N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2268       break;
2269     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2270     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2271       Temp = DAG.getNOT(dl, N0, MVT::i1);
2272       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2273       if (!DCI.isCalledByLegalizer())
2274         DCI.AddToWorklist(Temp.getNode());
2275       break;
2276     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2277     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2278       Temp = DAG.getNOT(dl, N1, MVT::i1);
2279       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2280       if (!DCI.isCalledByLegalizer())
2281         DCI.AddToWorklist(Temp.getNode());
2282       break;
2283     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2284     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2285       Temp = DAG.getNOT(dl, N0, MVT::i1);
2286       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2287       if (!DCI.isCalledByLegalizer())
2288         DCI.AddToWorklist(Temp.getNode());
2289       break;
2290     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2291     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2292       Temp = DAG.getNOT(dl, N1, MVT::i1);
2293       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2294       break;
2295     }
2296     if (VT != MVT::i1) {
2297       if (!DCI.isCalledByLegalizer())
2298         DCI.AddToWorklist(N0.getNode());
2299       // FIXME: If running after legalize, we probably can't do this.
2300       N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2301     }
2302     return N0;
2303   }
2304 
2305   // Could not fold it.
2306   return SDValue();
2307 }
2308 
2309 /// Returns true (and the GlobalValue and the offset) if the node is a
2310 /// GlobalAddress + offset.
2311 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2312                                     int64_t &Offset) const {
2313   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
2314     GA = GASD->getGlobal();
2315     Offset += GASD->getOffset();
2316     return true;
2317   }
2318 
2319   if (N->getOpcode() == ISD::ADD) {
2320     SDValue N1 = N->getOperand(0);
2321     SDValue N2 = N->getOperand(1);
2322     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2323       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
2324         Offset += V->getSExtValue();
2325         return true;
2326       }
2327     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2328       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
2329         Offset += V->getSExtValue();
2330         return true;
2331       }
2332     }
2333   }
2334 
2335   return false;
2336 }
2337 
2338 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
2339                                           DAGCombinerInfo &DCI) const {
2340   // Default implementation: no optimization.
2341   return SDValue();
2342 }
2343 
2344 //===----------------------------------------------------------------------===//
2345 //  Inline Assembler Implementation Methods
2346 //===----------------------------------------------------------------------===//
2347 
2348 TargetLowering::ConstraintType
2349 TargetLowering::getConstraintType(StringRef Constraint) const {
2350   unsigned S = Constraint.size();
2351 
2352   if (S == 1) {
2353     switch (Constraint[0]) {
2354     default: break;
2355     case 'r': return C_RegisterClass;
2356     case 'm':    // memory
2357     case 'o':    // offsetable
2358     case 'V':    // not offsetable
2359       return C_Memory;
2360     case 'i':    // Simple Integer or Relocatable Constant
2361     case 'n':    // Simple Integer
2362     case 'E':    // Floating Point Constant
2363     case 'F':    // Floating Point Constant
2364     case 's':    // Relocatable Constant
2365     case 'p':    // Address.
2366     case 'X':    // Allow ANY value.
2367     case 'I':    // Target registers.
2368     case 'J':
2369     case 'K':
2370     case 'L':
2371     case 'M':
2372     case 'N':
2373     case 'O':
2374     case 'P':
2375     case '<':
2376     case '>':
2377       return C_Other;
2378     }
2379   }
2380 
2381   if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
2382     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
2383       return C_Memory;
2384     return C_Register;
2385   }
2386   return C_Unknown;
2387 }
2388 
2389 /// Try to replace an X constraint, which matches anything, with another that
2390 /// has more specific requirements based on the type of the corresponding
2391 /// operand.
2392 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2393   if (ConstraintVT.isInteger())
2394     return "r";
2395   if (ConstraintVT.isFloatingPoint())
2396     return "f";      // works for many targets
2397   return nullptr;
2398 }
2399 
2400 /// Lower the specified operand into the Ops vector.
2401 /// If it is invalid, don't add anything to Ops.
2402 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2403                                                   std::string &Constraint,
2404                                                   std::vector<SDValue> &Ops,
2405                                                   SelectionDAG &DAG) const {
2406 
2407   if (Constraint.length() > 1) return;
2408 
2409   char ConstraintLetter = Constraint[0];
2410   switch (ConstraintLetter) {
2411   default: break;
2412   case 'X':     // Allows any operand; labels (basic block) use this.
2413     if (Op.getOpcode() == ISD::BasicBlock) {
2414       Ops.push_back(Op);
2415       return;
2416     }
2417     LLVM_FALLTHROUGH;
2418   case 'i':    // Simple Integer or Relocatable Constant
2419   case 'n':    // Simple Integer
2420   case 's': {  // Relocatable Constant
2421     // These operands are interested in values of the form (GV+C), where C may
2422     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2423     // is possible and fine if either GV or C are missing.
2424     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2425     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2426 
2427     // If we have "(add GV, C)", pull out GV/C
2428     if (Op.getOpcode() == ISD::ADD) {
2429       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2430       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2431       if (!C || !GA) {
2432         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2433         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2434       }
2435       if (!C || !GA) {
2436         C = nullptr;
2437         GA = nullptr;
2438       }
2439     }
2440 
2441     // If we find a valid operand, map to the TargetXXX version so that the
2442     // value itself doesn't get selected.
2443     if (GA) {   // Either &GV   or   &GV+C
2444       if (ConstraintLetter != 'n') {
2445         int64_t Offs = GA->getOffset();
2446         if (C) Offs += C->getZExtValue();
2447         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2448                                                  C ? SDLoc(C) : SDLoc(),
2449                                                  Op.getValueType(), Offs));
2450       }
2451       return;
2452     }
2453     if (C) {   // just C, no GV.
2454       // Simple constants are not allowed for 's'.
2455       if (ConstraintLetter != 's') {
2456         // gcc prints these as sign extended.  Sign extend value to 64 bits
2457         // now; without this it would get ZExt'd later in
2458         // ScheduleDAGSDNodes::EmitNode, which is very generic.
2459         Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2460                                             SDLoc(C), MVT::i64));
2461       }
2462       return;
2463     }
2464     break;
2465   }
2466   }
2467 }
2468 
2469 std::pair<unsigned, const TargetRegisterClass *>
2470 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
2471                                              StringRef Constraint,
2472                                              MVT VT) const {
2473   if (Constraint.empty() || Constraint[0] != '{')
2474     return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr));
2475   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2476 
2477   // Remove the braces from around the name.
2478   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2479 
2480   std::pair<unsigned, const TargetRegisterClass*> R =
2481     std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr));
2482 
2483   // Figure out which register class contains this reg.
2484   for (const TargetRegisterClass *RC : RI->regclasses()) {
2485     // If none of the value types for this register class are valid, we
2486     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2487     if (!isLegalRC(RC))
2488       continue;
2489 
2490     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2491          I != E; ++I) {
2492       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
2493         std::pair<unsigned, const TargetRegisterClass*> S =
2494           std::make_pair(*I, RC);
2495 
2496         // If this register class has the requested value type, return it,
2497         // otherwise keep searching and return the first class found
2498         // if no other is found which explicitly has the requested type.
2499         if (RC->hasType(VT))
2500           return S;
2501         else if (!R.second)
2502           R = S;
2503       }
2504     }
2505   }
2506 
2507   return R;
2508 }
2509 
2510 //===----------------------------------------------------------------------===//
2511 // Constraint Selection.
2512 
2513 /// Return true of this is an input operand that is a matching constraint like
2514 /// "4".
2515 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2516   assert(!ConstraintCode.empty() && "No known constraint!");
2517   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
2518 }
2519 
2520 /// If this is an input matching constraint, this method returns the output
2521 /// operand it matches.
2522 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2523   assert(!ConstraintCode.empty() && "No known constraint!");
2524   return atoi(ConstraintCode.c_str());
2525 }
2526 
2527 /// Split up the constraint string from the inline assembly value into the
2528 /// specific constraints and their prefixes, and also tie in the associated
2529 /// operand values.
2530 /// If this returns an empty vector, and if the constraint string itself
2531 /// isn't empty, there was an error parsing.
2532 TargetLowering::AsmOperandInfoVector
2533 TargetLowering::ParseConstraints(const DataLayout &DL,
2534                                  const TargetRegisterInfo *TRI,
2535                                  ImmutableCallSite CS) const {
2536   /// Information about all of the constraints.
2537   AsmOperandInfoVector ConstraintOperands;
2538   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2539   unsigned maCount = 0; // Largest number of multiple alternative constraints.
2540 
2541   // Do a prepass over the constraints, canonicalizing them, and building up the
2542   // ConstraintOperands list.
2543   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
2544   unsigned ResNo = 0;   // ResNo - The result number of the next output.
2545 
2546   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
2547     ConstraintOperands.emplace_back(std::move(CI));
2548     AsmOperandInfo &OpInfo = ConstraintOperands.back();
2549 
2550     // Update multiple alternative constraint count.
2551     if (OpInfo.multipleAlternatives.size() > maCount)
2552       maCount = OpInfo.multipleAlternatives.size();
2553 
2554     OpInfo.ConstraintVT = MVT::Other;
2555 
2556     // Compute the value type for each operand.
2557     switch (OpInfo.Type) {
2558     case InlineAsm::isOutput:
2559       // Indirect outputs just consume an argument.
2560       if (OpInfo.isIndirect) {
2561         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2562         break;
2563       }
2564 
2565       // The return value of the call is this value.  As such, there is no
2566       // corresponding argument.
2567       assert(!CS.getType()->isVoidTy() &&
2568              "Bad inline asm!");
2569       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
2570         OpInfo.ConstraintVT =
2571             getSimpleValueType(DL, STy->getElementType(ResNo));
2572       } else {
2573         assert(ResNo == 0 && "Asm only has one result!");
2574         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
2575       }
2576       ++ResNo;
2577       break;
2578     case InlineAsm::isInput:
2579       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2580       break;
2581     case InlineAsm::isClobber:
2582       // Nothing to do.
2583       break;
2584     }
2585 
2586     if (OpInfo.CallOperandVal) {
2587       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2588       if (OpInfo.isIndirect) {
2589         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2590         if (!PtrTy)
2591           report_fatal_error("Indirect operand for inline asm not a pointer!");
2592         OpTy = PtrTy->getElementType();
2593       }
2594 
2595       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
2596       if (StructType *STy = dyn_cast<StructType>(OpTy))
2597         if (STy->getNumElements() == 1)
2598           OpTy = STy->getElementType(0);
2599 
2600       // If OpTy is not a single value, it may be a struct/union that we
2601       // can tile with integers.
2602       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2603         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
2604         switch (BitSize) {
2605         default: break;
2606         case 1:
2607         case 8:
2608         case 16:
2609         case 32:
2610         case 64:
2611         case 128:
2612           OpInfo.ConstraintVT =
2613             MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2614           break;
2615         }
2616       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
2617         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
2618         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
2619       } else {
2620         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
2621       }
2622     }
2623   }
2624 
2625   // If we have multiple alternative constraints, select the best alternative.
2626   if (!ConstraintOperands.empty()) {
2627     if (maCount) {
2628       unsigned bestMAIndex = 0;
2629       int bestWeight = -1;
2630       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
2631       int weight = -1;
2632       unsigned maIndex;
2633       // Compute the sums of the weights for each alternative, keeping track
2634       // of the best (highest weight) one so far.
2635       for (maIndex = 0; maIndex < maCount; ++maIndex) {
2636         int weightSum = 0;
2637         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2638             cIndex != eIndex; ++cIndex) {
2639           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2640           if (OpInfo.Type == InlineAsm::isClobber)
2641             continue;
2642 
2643           // If this is an output operand with a matching input operand,
2644           // look up the matching input. If their types mismatch, e.g. one
2645           // is an integer, the other is floating point, or their sizes are
2646           // different, flag it as an maCantMatch.
2647           if (OpInfo.hasMatchingInput()) {
2648             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2649             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2650               if ((OpInfo.ConstraintVT.isInteger() !=
2651                    Input.ConstraintVT.isInteger()) ||
2652                   (OpInfo.ConstraintVT.getSizeInBits() !=
2653                    Input.ConstraintVT.getSizeInBits())) {
2654                 weightSum = -1;  // Can't match.
2655                 break;
2656               }
2657             }
2658           }
2659           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2660           if (weight == -1) {
2661             weightSum = -1;
2662             break;
2663           }
2664           weightSum += weight;
2665         }
2666         // Update best.
2667         if (weightSum > bestWeight) {
2668           bestWeight = weightSum;
2669           bestMAIndex = maIndex;
2670         }
2671       }
2672 
2673       // Now select chosen alternative in each constraint.
2674       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2675           cIndex != eIndex; ++cIndex) {
2676         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2677         if (cInfo.Type == InlineAsm::isClobber)
2678           continue;
2679         cInfo.selectAlternative(bestMAIndex);
2680       }
2681     }
2682   }
2683 
2684   // Check and hook up tied operands, choose constraint code to use.
2685   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2686       cIndex != eIndex; ++cIndex) {
2687     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2688 
2689     // If this is an output operand with a matching input operand, look up the
2690     // matching input. If their types mismatch, e.g. one is an integer, the
2691     // other is floating point, or their sizes are different, flag it as an
2692     // error.
2693     if (OpInfo.hasMatchingInput()) {
2694       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2695 
2696       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2697         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
2698             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
2699                                          OpInfo.ConstraintVT);
2700         std::pair<unsigned, const TargetRegisterClass *> InputRC =
2701             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
2702                                          Input.ConstraintVT);
2703         if ((OpInfo.ConstraintVT.isInteger() !=
2704              Input.ConstraintVT.isInteger()) ||
2705             (MatchRC.second != InputRC.second)) {
2706           report_fatal_error("Unsupported asm: input constraint"
2707                              " with a matching output constraint of"
2708                              " incompatible type!");
2709         }
2710       }
2711     }
2712   }
2713 
2714   return ConstraintOperands;
2715 }
2716 
2717 /// Return an integer indicating how general CT is.
2718 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2719   switch (CT) {
2720   case TargetLowering::C_Other:
2721   case TargetLowering::C_Unknown:
2722     return 0;
2723   case TargetLowering::C_Register:
2724     return 1;
2725   case TargetLowering::C_RegisterClass:
2726     return 2;
2727   case TargetLowering::C_Memory:
2728     return 3;
2729   }
2730   llvm_unreachable("Invalid constraint type");
2731 }
2732 
2733 /// Examine constraint type and operand type and determine a weight value.
2734 /// This object must already have been set up with the operand type
2735 /// and the current alternative constraint selected.
2736 TargetLowering::ConstraintWeight
2737   TargetLowering::getMultipleConstraintMatchWeight(
2738     AsmOperandInfo &info, int maIndex) const {
2739   InlineAsm::ConstraintCodeVector *rCodes;
2740   if (maIndex >= (int)info.multipleAlternatives.size())
2741     rCodes = &info.Codes;
2742   else
2743     rCodes = &info.multipleAlternatives[maIndex].Codes;
2744   ConstraintWeight BestWeight = CW_Invalid;
2745 
2746   // Loop over the options, keeping track of the most general one.
2747   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
2748     ConstraintWeight weight =
2749       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
2750     if (weight > BestWeight)
2751       BestWeight = weight;
2752   }
2753 
2754   return BestWeight;
2755 }
2756 
2757 /// Examine constraint type and operand type and determine a weight value.
2758 /// This object must already have been set up with the operand type
2759 /// and the current alternative constraint selected.
2760 TargetLowering::ConstraintWeight
2761   TargetLowering::getSingleConstraintMatchWeight(
2762     AsmOperandInfo &info, const char *constraint) const {
2763   ConstraintWeight weight = CW_Invalid;
2764   Value *CallOperandVal = info.CallOperandVal;
2765     // If we don't have a value, we can't do a match,
2766     // but allow it at the lowest weight.
2767   if (!CallOperandVal)
2768     return CW_Default;
2769   // Look at the constraint type.
2770   switch (*constraint) {
2771     case 'i': // immediate integer.
2772     case 'n': // immediate integer with a known value.
2773       if (isa<ConstantInt>(CallOperandVal))
2774         weight = CW_Constant;
2775       break;
2776     case 's': // non-explicit intregal immediate.
2777       if (isa<GlobalValue>(CallOperandVal))
2778         weight = CW_Constant;
2779       break;
2780     case 'E': // immediate float if host format.
2781     case 'F': // immediate float.
2782       if (isa<ConstantFP>(CallOperandVal))
2783         weight = CW_Constant;
2784       break;
2785     case '<': // memory operand with autodecrement.
2786     case '>': // memory operand with autoincrement.
2787     case 'm': // memory operand.
2788     case 'o': // offsettable memory operand
2789     case 'V': // non-offsettable memory operand
2790       weight = CW_Memory;
2791       break;
2792     case 'r': // general register.
2793     case 'g': // general register, memory operand or immediate integer.
2794               // note: Clang converts "g" to "imr".
2795       if (CallOperandVal->getType()->isIntegerTy())
2796         weight = CW_Register;
2797       break;
2798     case 'X': // any operand.
2799     default:
2800       weight = CW_Default;
2801       break;
2802   }
2803   return weight;
2804 }
2805 
2806 /// If there are multiple different constraints that we could pick for this
2807 /// operand (e.g. "imr") try to pick the 'best' one.
2808 /// This is somewhat tricky: constraints fall into four classes:
2809 ///    Other         -> immediates and magic values
2810 ///    Register      -> one specific register
2811 ///    RegisterClass -> a group of regs
2812 ///    Memory        -> memory
2813 /// Ideally, we would pick the most specific constraint possible: if we have
2814 /// something that fits into a register, we would pick it.  The problem here
2815 /// is that if we have something that could either be in a register or in
2816 /// memory that use of the register could cause selection of *other*
2817 /// operands to fail: they might only succeed if we pick memory.  Because of
2818 /// this the heuristic we use is:
2819 ///
2820 ///  1) If there is an 'other' constraint, and if the operand is valid for
2821 ///     that constraint, use it.  This makes us take advantage of 'i'
2822 ///     constraints when available.
2823 ///  2) Otherwise, pick the most general constraint present.  This prefers
2824 ///     'm' over 'r', for example.
2825 ///
2826 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2827                              const TargetLowering &TLI,
2828                              SDValue Op, SelectionDAG *DAG) {
2829   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2830   unsigned BestIdx = 0;
2831   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2832   int BestGenerality = -1;
2833 
2834   // Loop over the options, keeping track of the most general one.
2835   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2836     TargetLowering::ConstraintType CType =
2837       TLI.getConstraintType(OpInfo.Codes[i]);
2838 
2839     // If this is an 'other' constraint, see if the operand is valid for it.
2840     // For example, on X86 we might have an 'rI' constraint.  If the operand
2841     // is an integer in the range [0..31] we want to use I (saving a load
2842     // of a register), otherwise we must use 'r'.
2843     if (CType == TargetLowering::C_Other && Op.getNode()) {
2844       assert(OpInfo.Codes[i].size() == 1 &&
2845              "Unhandled multi-letter 'other' constraint");
2846       std::vector<SDValue> ResultOps;
2847       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
2848                                        ResultOps, *DAG);
2849       if (!ResultOps.empty()) {
2850         BestType = CType;
2851         BestIdx = i;
2852         break;
2853       }
2854     }
2855 
2856     // Things with matching constraints can only be registers, per gcc
2857     // documentation.  This mainly affects "g" constraints.
2858     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
2859       continue;
2860 
2861     // This constraint letter is more general than the previous one, use it.
2862     int Generality = getConstraintGenerality(CType);
2863     if (Generality > BestGenerality) {
2864       BestType = CType;
2865       BestIdx = i;
2866       BestGenerality = Generality;
2867     }
2868   }
2869 
2870   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2871   OpInfo.ConstraintType = BestType;
2872 }
2873 
2874 /// Determines the constraint code and constraint type to use for the specific
2875 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
2876 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2877                                             SDValue Op,
2878                                             SelectionDAG *DAG) const {
2879   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2880 
2881   // Single-letter constraints ('r') are very common.
2882   if (OpInfo.Codes.size() == 1) {
2883     OpInfo.ConstraintCode = OpInfo.Codes[0];
2884     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2885   } else {
2886     ChooseConstraint(OpInfo, *this, Op, DAG);
2887   }
2888 
2889   // 'X' matches anything.
2890   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2891     // Labels and constants are handled elsewhere ('X' is the only thing
2892     // that matches labels).  For Functions, the type here is the type of
2893     // the result, which is not what we want to look at; leave them alone.
2894     Value *v = OpInfo.CallOperandVal;
2895     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2896       OpInfo.CallOperandVal = v;
2897       return;
2898     }
2899 
2900     // Otherwise, try to resolve it to something we know about by looking at
2901     // the actual operand type.
2902     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2903       OpInfo.ConstraintCode = Repl;
2904       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2905     }
2906   }
2907 }
2908 
2909 /// \brief Given an exact SDIV by a constant, create a multiplication
2910 /// with the multiplicative inverse of the constant.
2911 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d,
2912                               const SDLoc &dl, SelectionDAG &DAG,
2913                               std::vector<SDNode *> &Created) {
2914   assert(d != 0 && "Division by zero!");
2915 
2916   // Shift the value upfront if it is even, so the LSB is one.
2917   unsigned ShAmt = d.countTrailingZeros();
2918   if (ShAmt) {
2919     // TODO: For UDIV use SRL instead of SRA.
2920     SDValue Amt =
2921         DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(),
2922                                                         DAG.getDataLayout()));
2923     SDNodeFlags Flags;
2924     Flags.setExact(true);
2925     Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, &Flags);
2926     Created.push_back(Op1.getNode());
2927     d = d.ashr(ShAmt);
2928   }
2929 
2930   // Calculate the multiplicative inverse, using Newton's method.
2931   APInt t, xn = d;
2932   while ((t = d*xn) != 1)
2933     xn *= APInt(d.getBitWidth(), 2) - t;
2934 
2935   SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType());
2936   SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
2937   Created.push_back(Mul.getNode());
2938   return Mul;
2939 }
2940 
2941 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
2942                                       SelectionDAG &DAG,
2943                                       std::vector<SDNode *> *Created) const {
2944   AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes();
2945   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2946   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
2947     return SDValue(N,0); // Lower SDIV as SDIV
2948   return SDValue();
2949 }
2950 
2951 /// \brief Given an ISD::SDIV node expressing a divide by constant,
2952 /// return a DAG expression to select that will generate the same value by
2953 /// multiplying by a magic number.
2954 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
2955 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor,
2956                                   SelectionDAG &DAG, bool IsAfterLegalization,
2957                                   std::vector<SDNode *> *Created) const {
2958   assert(Created && "No vector to hold sdiv ops.");
2959 
2960   EVT VT = N->getValueType(0);
2961   SDLoc dl(N);
2962 
2963   // Check to see if we can do this.
2964   // FIXME: We should be more aggressive here.
2965   if (!isTypeLegal(VT))
2966     return SDValue();
2967 
2968   // If the sdiv has an 'exact' bit we can use a simpler lowering.
2969   if (cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact())
2970     return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created);
2971 
2972   APInt::ms magics = Divisor.magic();
2973 
2974   // Multiply the numerator (operand 0) by the magic value
2975   // FIXME: We should support doing a MUL in a wider type
2976   SDValue Q;
2977   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
2978                             isOperationLegalOrCustom(ISD::MULHS, VT))
2979     Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2980                     DAG.getConstant(magics.m, dl, VT));
2981   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
2982                                  isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2983     Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2984                               N->getOperand(0),
2985                               DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
2986   else
2987     return SDValue();       // No mulhs or equvialent
2988   // If d > 0 and m < 0, add the numerator
2989   if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
2990     Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2991     Created->push_back(Q.getNode());
2992   }
2993   // If d < 0 and m > 0, subtract the numerator.
2994   if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
2995     Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2996     Created->push_back(Q.getNode());
2997   }
2998   auto &DL = DAG.getDataLayout();
2999   // Shift right algebraic if shift value is nonzero
3000   if (magics.s > 0) {
3001     Q = DAG.getNode(
3002         ISD::SRA, dl, VT, Q,
3003         DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL)));
3004     Created->push_back(Q.getNode());
3005   }
3006   // Extract the sign bit and add it to the quotient
3007   SDValue T =
3008       DAG.getNode(ISD::SRL, dl, VT, Q,
3009                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl,
3010                                   getShiftAmountTy(Q.getValueType(), DL)));
3011   Created->push_back(T.getNode());
3012   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3013 }
3014 
3015 /// \brief Given an ISD::UDIV node expressing a divide by constant,
3016 /// return a DAG expression to select that will generate the same value by
3017 /// multiplying by a magic number.
3018 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
3019 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor,
3020                                   SelectionDAG &DAG, bool IsAfterLegalization,
3021                                   std::vector<SDNode *> *Created) const {
3022   assert(Created && "No vector to hold udiv ops.");
3023 
3024   EVT VT = N->getValueType(0);
3025   SDLoc dl(N);
3026   auto &DL = DAG.getDataLayout();
3027 
3028   // Check to see if we can do this.
3029   // FIXME: We should be more aggressive here.
3030   if (!isTypeLegal(VT))
3031     return SDValue();
3032 
3033   // FIXME: We should use a narrower constant when the upper
3034   // bits are known to be zero.
3035   APInt::mu magics = Divisor.magicu();
3036 
3037   SDValue Q = N->getOperand(0);
3038 
3039   // If the divisor is even, we can avoid using the expensive fixup by shifting
3040   // the divided value upfront.
3041   if (magics.a != 0 && !Divisor[0]) {
3042     unsigned Shift = Divisor.countTrailingZeros();
3043     Q = DAG.getNode(
3044         ISD::SRL, dl, VT, Q,
3045         DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL)));
3046     Created->push_back(Q.getNode());
3047 
3048     // Get magic number for the shifted divisor.
3049     magics = Divisor.lshr(Shift).magicu(Shift);
3050     assert(magics.a == 0 && "Should use cheap fixup now");
3051   }
3052 
3053   // Multiply the numerator (operand 0) by the magic value
3054   // FIXME: We should support doing a MUL in a wider type
3055   if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
3056                             isOperationLegalOrCustom(ISD::MULHU, VT))
3057     Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT));
3058   else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
3059                                  isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
3060     Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
3061                             DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
3062   else
3063     return SDValue();       // No mulhu or equivalent
3064 
3065   Created->push_back(Q.getNode());
3066 
3067   if (magics.a == 0) {
3068     assert(magics.s < Divisor.getBitWidth() &&
3069            "We shouldn't generate an undefined shift!");
3070     return DAG.getNode(
3071         ISD::SRL, dl, VT, Q,
3072         DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL)));
3073   } else {
3074     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
3075     Created->push_back(NPQ.getNode());
3076     NPQ = DAG.getNode(
3077         ISD::SRL, dl, VT, NPQ,
3078         DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL)));
3079     Created->push_back(NPQ.getNode());
3080     NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
3081     Created->push_back(NPQ.getNode());
3082     return DAG.getNode(
3083         ISD::SRL, dl, VT, NPQ,
3084         DAG.getConstant(magics.s - 1, dl,
3085                         getShiftAmountTy(NPQ.getValueType(), DL)));
3086   }
3087 }
3088 
3089 bool TargetLowering::
3090 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
3091   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
3092     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
3093                                 "be a constant integer");
3094     return true;
3095   }
3096 
3097   return false;
3098 }
3099 
3100 //===----------------------------------------------------------------------===//
3101 // Legalization Utilities
3102 //===----------------------------------------------------------------------===//
3103 
3104 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
3105                                     SDValue LHS, SDValue RHS,
3106                                     SmallVectorImpl<SDValue> &Result,
3107                                     EVT HiLoVT, SelectionDAG &DAG,
3108                                     MulExpansionKind Kind, SDValue LL,
3109                                     SDValue LH, SDValue RL, SDValue RH) const {
3110   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
3111          Opcode == ISD::SMUL_LOHI);
3112 
3113   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
3114                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
3115   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
3116                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
3117   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
3118                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
3119   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
3120                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
3121 
3122   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
3123     return false;
3124 
3125   unsigned OuterBitSize = VT.getScalarSizeInBits();
3126   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
3127   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
3128   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
3129 
3130   // LL, LH, RL, and RH must be either all NULL or all set to a value.
3131   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
3132          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
3133 
3134   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
3135   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
3136                           bool Signed) -> bool {
3137     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
3138       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
3139       Hi = SDValue(Lo.getNode(), 1);
3140       return true;
3141     }
3142     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
3143       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
3144       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
3145       return true;
3146     }
3147     return false;
3148   };
3149 
3150   SDValue Lo, Hi;
3151 
3152   if (!LL.getNode() && !RL.getNode() &&
3153       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
3154     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
3155     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
3156   }
3157 
3158   if (!LL.getNode())
3159     return false;
3160 
3161   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
3162   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
3163       DAG.MaskedValueIsZero(RHS, HighMask)) {
3164     // The inputs are both zero-extended.
3165     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
3166       Result.push_back(Lo);
3167       Result.push_back(Hi);
3168       if (Opcode != ISD::MUL) {
3169         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
3170         Result.push_back(Zero);
3171         Result.push_back(Zero);
3172       }
3173       return true;
3174     }
3175   }
3176 
3177   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
3178       RHSSB > InnerBitSize) {
3179     // The input values are both sign-extended.
3180     // TODO non-MUL case?
3181     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
3182       Result.push_back(Lo);
3183       Result.push_back(Hi);
3184       return true;
3185     }
3186   }
3187 
3188   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
3189   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
3190   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
3191     // FIXME getShiftAmountTy does not always return a sensible result when VT
3192     // is an illegal type, and so the type may be too small to fit the shift
3193     // amount. Override it with i32. The shift will have to be legalized.
3194     ShiftAmountTy = MVT::i32;
3195   }
3196   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
3197 
3198   if (!LH.getNode() && !RH.getNode() &&
3199       isOperationLegalOrCustom(ISD::SRL, VT) &&
3200       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
3201     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
3202     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
3203     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
3204     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
3205   }
3206 
3207   if (!LH.getNode())
3208     return false;
3209 
3210   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
3211     return false;
3212 
3213   Result.push_back(Lo);
3214 
3215   if (Opcode == ISD::MUL) {
3216     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
3217     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
3218     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
3219     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
3220     Result.push_back(Hi);
3221     return true;
3222   }
3223 
3224   // Compute the full width result.
3225   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
3226     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
3227     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
3228     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3229     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
3230   };
3231 
3232   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
3233   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
3234     return false;
3235 
3236   // This is effectively the add part of a multiply-add of half-sized operands,
3237   // so it cannot overflow.
3238   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
3239 
3240   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
3241     return false;
3242 
3243   Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
3244                      Merge(Lo, Hi));
3245 
3246   SDValue Carry = Next.getValue(1);
3247   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
3248   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
3249 
3250   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
3251     return false;
3252 
3253   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
3254   Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
3255                    Carry);
3256   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
3257 
3258   if (Opcode == ISD::SMUL_LOHI) {
3259     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
3260                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
3261     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
3262 
3263     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
3264                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
3265     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
3266   }
3267 
3268   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
3269   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
3270   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
3271   return true;
3272 }
3273 
3274 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
3275                                SelectionDAG &DAG, MulExpansionKind Kind,
3276                                SDValue LL, SDValue LH, SDValue RL,
3277                                SDValue RH) const {
3278   SmallVector<SDValue, 2> Result;
3279   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
3280                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
3281                            DAG, Kind, LL, LH, RL, RH);
3282   if (Ok) {
3283     assert(Result.size() == 2);
3284     Lo = Result[0];
3285     Hi = Result[1];
3286   }
3287   return Ok;
3288 }
3289 
3290 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
3291                                SelectionDAG &DAG) const {
3292   EVT VT = Node->getOperand(0).getValueType();
3293   EVT NVT = Node->getValueType(0);
3294   SDLoc dl(SDValue(Node, 0));
3295 
3296   // FIXME: Only f32 to i64 conversions are supported.
3297   if (VT != MVT::f32 || NVT != MVT::i64)
3298     return false;
3299 
3300   // Expand f32 -> i64 conversion
3301   // This algorithm comes from compiler-rt's implementation of fixsfdi:
3302   // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c
3303   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(),
3304                                 VT.getSizeInBits());
3305   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
3306   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
3307   SDValue Bias = DAG.getConstant(127, dl, IntVT);
3308   SDValue SignMask = DAG.getConstant(APInt::getSignBit(VT.getSizeInBits()), dl,
3309                                      IntVT);
3310   SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT);
3311   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
3312 
3313   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0));
3314 
3315   auto &DL = DAG.getDataLayout();
3316   SDValue ExponentBits = DAG.getNode(
3317       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
3318       DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL)));
3319   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
3320 
3321   SDValue Sign = DAG.getNode(
3322       ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
3323       DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL)));
3324   Sign = DAG.getSExtOrTrunc(Sign, dl, NVT);
3325 
3326   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
3327       DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
3328       DAG.getConstant(0x00800000, dl, IntVT));
3329 
3330   R = DAG.getZExtOrTrunc(R, dl, NVT);
3331 
3332   R = DAG.getSelectCC(
3333       dl, Exponent, ExponentLoBit,
3334       DAG.getNode(ISD::SHL, dl, NVT, R,
3335                   DAG.getZExtOrTrunc(
3336                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
3337                       dl, getShiftAmountTy(IntVT, DL))),
3338       DAG.getNode(ISD::SRL, dl, NVT, R,
3339                   DAG.getZExtOrTrunc(
3340                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
3341                       dl, getShiftAmountTy(IntVT, DL))),
3342       ISD::SETGT);
3343 
3344   SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT,
3345       DAG.getNode(ISD::XOR, dl, NVT, R, Sign),
3346       Sign);
3347 
3348   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
3349       DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT);
3350   return true;
3351 }
3352 
3353 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
3354                                             SelectionDAG &DAG) const {
3355   SDLoc SL(LD);
3356   SDValue Chain = LD->getChain();
3357   SDValue BasePTR = LD->getBasePtr();
3358   EVT SrcVT = LD->getMemoryVT();
3359   ISD::LoadExtType ExtType = LD->getExtensionType();
3360 
3361   unsigned NumElem = SrcVT.getVectorNumElements();
3362 
3363   EVT SrcEltVT = SrcVT.getScalarType();
3364   EVT DstEltVT = LD->getValueType(0).getScalarType();
3365 
3366   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
3367   assert(SrcEltVT.isByteSized());
3368 
3369   EVT PtrVT = BasePTR.getValueType();
3370 
3371   SmallVector<SDValue, 8> Vals;
3372   SmallVector<SDValue, 8> LoadChains;
3373 
3374   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
3375     SDValue ScalarLoad =
3376         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
3377                        LD->getPointerInfo().getWithOffset(Idx * Stride),
3378                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
3379                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
3380 
3381     BasePTR = DAG.getNode(ISD::ADD, SL, PtrVT, BasePTR,
3382                           DAG.getConstant(Stride, SL, PtrVT));
3383 
3384     Vals.push_back(ScalarLoad.getValue(0));
3385     LoadChains.push_back(ScalarLoad.getValue(1));
3386   }
3387 
3388   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
3389   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
3390 
3391   return DAG.getMergeValues({ Value, NewChain }, SL);
3392 }
3393 
3394 // FIXME: This relies on each element having a byte size, otherwise the stride
3395 // is 0 and just overwrites the same location. ExpandStore currently expects
3396 // this broken behavior.
3397 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
3398                                              SelectionDAG &DAG) const {
3399   SDLoc SL(ST);
3400 
3401   SDValue Chain = ST->getChain();
3402   SDValue BasePtr = ST->getBasePtr();
3403   SDValue Value = ST->getValue();
3404   EVT StVT = ST->getMemoryVT();
3405 
3406   // The type of the data we want to save
3407   EVT RegVT = Value.getValueType();
3408   EVT RegSclVT = RegVT.getScalarType();
3409 
3410   // The type of data as saved in memory.
3411   EVT MemSclVT = StVT.getScalarType();
3412 
3413   EVT PtrVT = BasePtr.getValueType();
3414 
3415   // Store Stride in bytes
3416   unsigned Stride = MemSclVT.getSizeInBits() / 8;
3417   EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
3418   unsigned NumElem = StVT.getVectorNumElements();
3419 
3420   // Extract each of the elements from the original vector and save them into
3421   // memory individually.
3422   SmallVector<SDValue, 8> Stores;
3423   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
3424     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
3425                               DAG.getConstant(Idx, SL, IdxVT));
3426 
3427     SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
3428                               DAG.getConstant(Idx * Stride, SL, PtrVT));
3429 
3430     // This scalar TruncStore may be illegal, but we legalize it later.
3431     SDValue Store = DAG.getTruncStore(
3432         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
3433         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
3434         ST->getMemOperand()->getFlags(), ST->getAAInfo());
3435 
3436     Stores.push_back(Store);
3437   }
3438 
3439   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
3440 }
3441 
3442 std::pair<SDValue, SDValue>
3443 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
3444   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
3445          "unaligned indexed loads not implemented!");
3446   SDValue Chain = LD->getChain();
3447   SDValue Ptr = LD->getBasePtr();
3448   EVT VT = LD->getValueType(0);
3449   EVT LoadedVT = LD->getMemoryVT();
3450   SDLoc dl(LD);
3451   if (VT.isFloatingPoint() || VT.isVector()) {
3452     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
3453     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
3454       if (!isOperationLegalOrCustom(ISD::LOAD, intVT)) {
3455         // Scalarize the load and let the individual components be handled.
3456         SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
3457         return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
3458       }
3459 
3460       // Expand to a (misaligned) integer load of the same size,
3461       // then bitconvert to floating point or vector.
3462       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
3463                                     LD->getMemOperand());
3464       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
3465       if (LoadedVT != VT)
3466         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
3467                              ISD::ANY_EXTEND, dl, VT, Result);
3468 
3469       return std::make_pair(Result, newLoad.getValue(1));
3470     }
3471 
3472     // Copy the value to a (aligned) stack slot using (unaligned) integer
3473     // loads and stores, then do a (aligned) load from the stack slot.
3474     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
3475     unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
3476     unsigned RegBytes = RegVT.getSizeInBits() / 8;
3477     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
3478 
3479     // Make sure the stack slot is also aligned for the register type.
3480     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
3481 
3482     SmallVector<SDValue, 8> Stores;
3483     SDValue StackPtr = StackBase;
3484     unsigned Offset = 0;
3485 
3486     EVT PtrVT = Ptr.getValueType();
3487     EVT StackPtrVT = StackPtr.getValueType();
3488 
3489     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
3490     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
3491 
3492     // Do all but one copies using the full register width.
3493     for (unsigned i = 1; i < NumRegs; i++) {
3494       // Load one integer register's worth from the original location.
3495       SDValue Load = DAG.getLoad(
3496           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
3497           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
3498           LD->getAAInfo());
3499       // Follow the load with a store to the stack slot.  Remember the store.
3500       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
3501                                     MachinePointerInfo()));
3502       // Increment the pointers.
3503       Offset += RegBytes;
3504       Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement);
3505       StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, StackPtr,
3506                              StackPtrIncrement);
3507     }
3508 
3509     // The last copy may be partial.  Do an extending load.
3510     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
3511                                   8 * (LoadedBytes - Offset));
3512     SDValue Load =
3513         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
3514                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
3515                        MinAlign(LD->getAlignment(), Offset),
3516                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
3517     // Follow the load with a store to the stack slot.  Remember the store.
3518     // On big-endian machines this requires a truncating store to ensure
3519     // that the bits end up in the right place.
3520     Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
3521                                        MachinePointerInfo(), MemVT));
3522 
3523     // The order of the stores doesn't matter - say it with a TokenFactor.
3524     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
3525 
3526     // Finally, perform the original load only redirected to the stack slot.
3527     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
3528                           MachinePointerInfo(), LoadedVT);
3529 
3530     // Callers expect a MERGE_VALUES node.
3531     return std::make_pair(Load, TF);
3532   }
3533 
3534   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
3535          "Unaligned load of unsupported type.");
3536 
3537   // Compute the new VT that is half the size of the old one.  This is an
3538   // integer MVT.
3539   unsigned NumBits = LoadedVT.getSizeInBits();
3540   EVT NewLoadedVT;
3541   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
3542   NumBits >>= 1;
3543 
3544   unsigned Alignment = LD->getAlignment();
3545   unsigned IncrementSize = NumBits / 8;
3546   ISD::LoadExtType HiExtType = LD->getExtensionType();
3547 
3548   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
3549   if (HiExtType == ISD::NON_EXTLOAD)
3550     HiExtType = ISD::ZEXTLOAD;
3551 
3552   // Load the value in two parts
3553   SDValue Lo, Hi;
3554   if (DAG.getDataLayout().isLittleEndian()) {
3555     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
3556                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
3557                         LD->getAAInfo());
3558     Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
3559                       DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
3560     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
3561                         LD->getPointerInfo().getWithOffset(IncrementSize),
3562                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
3563                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
3564   } else {
3565     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
3566                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
3567                         LD->getAAInfo());
3568     Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
3569                       DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
3570     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
3571                         LD->getPointerInfo().getWithOffset(IncrementSize),
3572                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
3573                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
3574   }
3575 
3576   // aggregate the two parts
3577   SDValue ShiftAmount =
3578       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
3579                                                     DAG.getDataLayout()));
3580   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
3581   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
3582 
3583   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
3584                              Hi.getValue(1));
3585 
3586   return std::make_pair(Result, TF);
3587 }
3588 
3589 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
3590                                              SelectionDAG &DAG) const {
3591   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
3592          "unaligned indexed stores not implemented!");
3593   SDValue Chain = ST->getChain();
3594   SDValue Ptr = ST->getBasePtr();
3595   SDValue Val = ST->getValue();
3596   EVT VT = Val.getValueType();
3597   int Alignment = ST->getAlignment();
3598 
3599   SDLoc dl(ST);
3600   if (ST->getMemoryVT().isFloatingPoint() ||
3601       ST->getMemoryVT().isVector()) {
3602     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
3603     if (isTypeLegal(intVT)) {
3604       if (!isOperationLegalOrCustom(ISD::STORE, intVT)) {
3605         // Scalarize the store and let the individual components be handled.
3606         SDValue Result = scalarizeVectorStore(ST, DAG);
3607 
3608         return Result;
3609       }
3610       // Expand to a bitconvert of the value to the integer type of the
3611       // same size, then a (misaligned) int store.
3612       // FIXME: Does not handle truncating floating point stores!
3613       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
3614       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
3615                             Alignment, ST->getMemOperand()->getFlags());
3616       return Result;
3617     }
3618     // Do a (aligned) store to a stack slot, then copy from the stack slot
3619     // to the final destination using (unaligned) integer loads and stores.
3620     EVT StoredVT = ST->getMemoryVT();
3621     MVT RegVT =
3622       getRegisterType(*DAG.getContext(),
3623                       EVT::getIntegerVT(*DAG.getContext(),
3624                                         StoredVT.getSizeInBits()));
3625     EVT PtrVT = Ptr.getValueType();
3626     unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
3627     unsigned RegBytes = RegVT.getSizeInBits() / 8;
3628     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
3629 
3630     // Make sure the stack slot is also aligned for the register type.
3631     SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
3632 
3633     // Perform the original store, only redirected to the stack slot.
3634     SDValue Store = DAG.getTruncStore(Chain, dl, Val, StackPtr,
3635                                       MachinePointerInfo(), StoredVT);
3636 
3637     EVT StackPtrVT = StackPtr.getValueType();
3638 
3639     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
3640     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
3641     SmallVector<SDValue, 8> Stores;
3642     unsigned Offset = 0;
3643 
3644     // Do all but one copies using the full register width.
3645     for (unsigned i = 1; i < NumRegs; i++) {
3646       // Load one integer register's worth from the stack slot.
3647       SDValue Load =
3648           DAG.getLoad(RegVT, dl, Store, StackPtr, MachinePointerInfo());
3649       // Store it to the final location.  Remember the store.
3650       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
3651                                     ST->getPointerInfo().getWithOffset(Offset),
3652                                     MinAlign(ST->getAlignment(), Offset),
3653                                     ST->getMemOperand()->getFlags()));
3654       // Increment the pointers.
3655       Offset += RegBytes;
3656       StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT,
3657                              StackPtr, StackPtrIncrement);
3658       Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement);
3659     }
3660 
3661     // The last store may be partial.  Do a truncating store.  On big-endian
3662     // machines this requires an extending load from the stack slot to ensure
3663     // that the bits are in the right place.
3664     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
3665                                   8 * (StoredBytes - Offset));
3666 
3667     // Load from the stack slot.
3668     SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
3669                                   MachinePointerInfo(), MemVT);
3670 
3671     Stores.push_back(
3672         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
3673                           ST->getPointerInfo().getWithOffset(Offset), MemVT,
3674                           MinAlign(ST->getAlignment(), Offset),
3675                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
3676     // The order of the stores doesn't matter - say it with a TokenFactor.
3677     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
3678     return Result;
3679   }
3680 
3681   assert(ST->getMemoryVT().isInteger() &&
3682          !ST->getMemoryVT().isVector() &&
3683          "Unaligned store of unknown type.");
3684   // Get the half-size VT
3685   EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
3686   int NumBits = NewStoredVT.getSizeInBits();
3687   int IncrementSize = NumBits / 8;
3688 
3689   // Divide the stored value in two parts.
3690   SDValue ShiftAmount =
3691       DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(),
3692                                                     DAG.getDataLayout()));
3693   SDValue Lo = Val;
3694   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
3695 
3696   // Store the two parts
3697   SDValue Store1, Store2;
3698   Store1 = DAG.getTruncStore(Chain, dl,
3699                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
3700                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
3701                              ST->getMemOperand()->getFlags());
3702 
3703   EVT PtrVT = Ptr.getValueType();
3704   Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3705                     DAG.getConstant(IncrementSize, dl, PtrVT));
3706   Alignment = MinAlign(Alignment, IncrementSize);
3707   Store2 = DAG.getTruncStore(
3708       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
3709       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
3710       ST->getMemOperand()->getFlags(), ST->getAAInfo());
3711 
3712   SDValue Result =
3713     DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
3714   return Result;
3715 }
3716 
3717 SDValue
3718 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
3719                                        const SDLoc &DL, EVT DataVT,
3720                                        SelectionDAG &DAG,
3721                                        bool IsCompressedMemory) const {
3722   SDValue Increment;
3723   EVT AddrVT = Addr.getValueType();
3724   EVT MaskVT = Mask.getValueType();
3725   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
3726          "Incompatible types of Data and Mask");
3727   if (IsCompressedMemory) {
3728     // Incrementing the pointer according to number of '1's in the mask.
3729     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
3730     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
3731     if (MaskIntVT.getSizeInBits() < 32) {
3732       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
3733       MaskIntVT = MVT::i32;
3734     }
3735 
3736     // Count '1's with POPCNT.
3737     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
3738     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
3739     // Scale is an element size in bytes.
3740     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
3741                                     AddrVT);
3742     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
3743   } else
3744     Increment = DAG.getConstant(DataVT.getSizeInBits() / 8, DL, AddrVT);
3745 
3746   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
3747 }
3748 
3749 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
3750                                        SDValue Idx,
3751                                        EVT VecVT,
3752                                        const SDLoc &dl) {
3753   if (isa<ConstantSDNode>(Idx))
3754     return Idx;
3755 
3756   EVT IdxVT = Idx.getValueType();
3757   unsigned NElts = VecVT.getVectorNumElements();
3758   if (isPowerOf2_32(NElts)) {
3759     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
3760                                      Log2_32(NElts));
3761     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
3762                        DAG.getConstant(Imm, dl, IdxVT));
3763   }
3764 
3765   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
3766                      DAG.getConstant(NElts - 1, dl, IdxVT));
3767 }
3768 
3769 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
3770                                                 SDValue VecPtr, EVT VecVT,
3771                                                 SDValue Index) const {
3772   SDLoc dl(Index);
3773   // Make sure the index type is big enough to compute in.
3774   Index = DAG.getZExtOrTrunc(Index, dl, getPointerTy(DAG.getDataLayout()));
3775 
3776   EVT EltVT = VecVT.getVectorElementType();
3777 
3778   // Calculate the element offset and add it to the pointer.
3779   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
3780   assert(EltSize * 8 == EltVT.getSizeInBits() &&
3781          "Converting bits to bytes lost precision");
3782 
3783   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
3784 
3785   EVT IdxVT = Index.getValueType();
3786 
3787   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
3788                       DAG.getConstant(EltSize, dl, IdxVT));
3789   return DAG.getNode(ISD::ADD, dl, IdxVT, Index, VecPtr);
3790 }
3791 
3792 //===----------------------------------------------------------------------===//
3793 // Implementation of Emulated TLS Model
3794 //===----------------------------------------------------------------------===//
3795 
3796 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
3797                                                 SelectionDAG &DAG) const {
3798   // Access to address of TLS varialbe xyz is lowered to a function call:
3799   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
3800   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3801   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
3802   SDLoc dl(GA);
3803 
3804   ArgListTy Args;
3805   ArgListEntry Entry;
3806   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
3807   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
3808   StringRef EmuTlsVarName(NameString);
3809   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
3810   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
3811   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
3812   Entry.Ty = VoidPtrType;
3813   Args.push_back(Entry);
3814 
3815   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
3816 
3817   TargetLowering::CallLoweringInfo CLI(DAG);
3818   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
3819   CLI.setCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
3820   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3821 
3822   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
3823   // At last for X86 targets, maybe good for other targets too?
3824   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
3825   MFI.setAdjustsStack(true);  // Is this only for X86 target?
3826   MFI.setHasCalls(true);
3827 
3828   assert((GA->getOffset() == 0) &&
3829          "Emulated TLS must have zero offset in GlobalAddressSDNode");
3830   return CallResult.first;
3831 }
3832 
3833 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
3834                                                 SelectionDAG &DAG) const {
3835   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
3836   if (!isCtlzFast())
3837     return SDValue();
3838   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3839   SDLoc dl(Op);
3840   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3841     if (C->isNullValue() && CC == ISD::SETEQ) {
3842       EVT VT = Op.getOperand(0).getValueType();
3843       SDValue Zext = Op.getOperand(0);
3844       if (VT.bitsLT(MVT::i32)) {
3845         VT = MVT::i32;
3846         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
3847       }
3848       unsigned Log2b = Log2_32(VT.getSizeInBits());
3849       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
3850       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
3851                                 DAG.getConstant(Log2b, dl, MVT::i32));
3852       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
3853     }
3854   }
3855   return SDValue();
3856 }
3857