1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetLowering.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/CodeGen/CallingConvLower.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/SelectionDAG.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Target/TargetLoweringObjectFile.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include "llvm/Target/TargetRegisterInfo.h" 34 #include "llvm/Target/TargetSubtargetInfo.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 bool TargetLowering::isPositionIndependent() const { 47 return getTargetMachine().isPositionIndependent(); 48 } 49 50 /// Check whether a given call node is in tail position within its function. If 51 /// so, it sets Chain to the input chain of the tail call. 52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 53 SDValue &Chain) const { 54 const Function *F = DAG.getMachineFunction().getFunction(); 55 56 // Conservatively require the attributes of the call to match those of 57 // the return. Ignore noalias because it doesn't affect the call sequence. 58 AttributeSet CallerAttrs = F->getAttributes(); 59 if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex) 60 .removeAttribute(Attribute::NoAlias).hasAttributes()) 61 return false; 62 63 // It's not safe to eliminate the sign / zero extension of the return value. 64 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 65 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 66 return false; 67 68 // Check if the only use is a function return node. 69 return isUsedByReturnOnly(Node, Chain); 70 } 71 72 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 73 const uint32_t *CallerPreservedMask, 74 const SmallVectorImpl<CCValAssign> &ArgLocs, 75 const SmallVectorImpl<SDValue> &OutVals) const { 76 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 77 const CCValAssign &ArgLoc = ArgLocs[I]; 78 if (!ArgLoc.isRegLoc()) 79 continue; 80 unsigned Reg = ArgLoc.getLocReg(); 81 // Only look at callee saved registers. 82 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 83 continue; 84 // Check that we pass the value used for the caller. 85 // (We look for a CopyFromReg reading a virtual register that is used 86 // for the function live-in value of register Reg) 87 SDValue Value = OutVals[I]; 88 if (Value->getOpcode() != ISD::CopyFromReg) 89 return false; 90 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 91 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 92 return false; 93 } 94 return true; 95 } 96 97 /// \brief Set CallLoweringInfo attribute flags based on a call instruction 98 /// and called function attributes. 99 void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS, 100 unsigned AttrIdx) { 101 isSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); 102 isZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); 103 isInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); 104 isSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); 105 isNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); 106 isByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); 107 isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); 108 isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); 109 isSwiftSelf = CS->paramHasAttr(AttrIdx, Attribute::SwiftSelf); 110 isSwiftError = CS->paramHasAttr(AttrIdx, Attribute::SwiftError); 111 Alignment = CS->getParamAlignment(AttrIdx); 112 } 113 114 /// Generate a libcall taking the given operands as arguments and returning a 115 /// result of type RetVT. 116 std::pair<SDValue, SDValue> 117 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 118 ArrayRef<SDValue> Ops, bool isSigned, 119 const SDLoc &dl, bool doesNotReturn, 120 bool isReturnValueUsed) const { 121 TargetLowering::ArgListTy Args; 122 Args.reserve(Ops.size()); 123 124 TargetLowering::ArgListEntry Entry; 125 for (SDValue Op : Ops) { 126 Entry.Node = Op; 127 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 128 Entry.isSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 129 Entry.isZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 130 Args.push_back(Entry); 131 } 132 133 if (LC == RTLIB::UNKNOWN_LIBCALL) 134 report_fatal_error("Unsupported library call operation!"); 135 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 136 getPointerTy(DAG.getDataLayout())); 137 138 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 139 TargetLowering::CallLoweringInfo CLI(DAG); 140 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); 141 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()) 142 .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 143 .setNoReturn(doesNotReturn).setDiscardResult(!isReturnValueUsed) 144 .setSExtResult(signExtend).setZExtResult(!signExtend); 145 return LowerCallTo(CLI); 146 } 147 148 /// Soften the operands of a comparison. This code is shared among BR_CC, 149 /// SELECT_CC, and SETCC handlers. 150 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 151 SDValue &NewLHS, SDValue &NewRHS, 152 ISD::CondCode &CCCode, 153 const SDLoc &dl) const { 154 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 155 && "Unsupported setcc type!"); 156 157 // Expand into one or more soft-fp libcall(s). 158 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 159 bool ShouldInvertCC = false; 160 switch (CCCode) { 161 case ISD::SETEQ: 162 case ISD::SETOEQ: 163 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 164 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 165 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 166 break; 167 case ISD::SETNE: 168 case ISD::SETUNE: 169 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 170 (VT == MVT::f64) ? RTLIB::UNE_F64 : 171 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 172 break; 173 case ISD::SETGE: 174 case ISD::SETOGE: 175 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 176 (VT == MVT::f64) ? RTLIB::OGE_F64 : 177 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 178 break; 179 case ISD::SETLT: 180 case ISD::SETOLT: 181 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 182 (VT == MVT::f64) ? RTLIB::OLT_F64 : 183 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 184 break; 185 case ISD::SETLE: 186 case ISD::SETOLE: 187 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 188 (VT == MVT::f64) ? RTLIB::OLE_F64 : 189 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 190 break; 191 case ISD::SETGT: 192 case ISD::SETOGT: 193 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 194 (VT == MVT::f64) ? RTLIB::OGT_F64 : 195 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 196 break; 197 case ISD::SETUO: 198 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 199 (VT == MVT::f64) ? RTLIB::UO_F64 : 200 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 201 break; 202 case ISD::SETO: 203 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 204 (VT == MVT::f64) ? RTLIB::O_F64 : 205 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 206 break; 207 case ISD::SETONE: 208 // SETONE = SETOLT | SETOGT 209 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 210 (VT == MVT::f64) ? RTLIB::OLT_F64 : 211 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 212 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 213 (VT == MVT::f64) ? RTLIB::OGT_F64 : 214 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 215 break; 216 case ISD::SETUEQ: 217 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 218 (VT == MVT::f64) ? RTLIB::UO_F64 : 219 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 220 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 221 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 222 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 223 break; 224 default: 225 // Invert CC for unordered comparisons 226 ShouldInvertCC = true; 227 switch (CCCode) { 228 case ISD::SETULT: 229 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 230 (VT == MVT::f64) ? RTLIB::OGE_F64 : 231 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 232 break; 233 case ISD::SETULE: 234 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 235 (VT == MVT::f64) ? RTLIB::OGT_F64 : 236 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 237 break; 238 case ISD::SETUGT: 239 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 240 (VT == MVT::f64) ? RTLIB::OLE_F64 : 241 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 242 break; 243 case ISD::SETUGE: 244 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 245 (VT == MVT::f64) ? RTLIB::OLT_F64 : 246 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 247 break; 248 default: llvm_unreachable("Do not know how to soften this setcc!"); 249 } 250 } 251 252 // Use the target specific return value for comparions lib calls. 253 EVT RetVT = getCmpLibcallReturnType(); 254 SDValue Ops[2] = {NewLHS, NewRHS}; 255 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/, 256 dl).first; 257 NewRHS = DAG.getConstant(0, dl, RetVT); 258 259 CCCode = getCmpLibcallCC(LC1); 260 if (ShouldInvertCC) 261 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); 262 263 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 264 SDValue Tmp = DAG.getNode( 265 ISD::SETCC, dl, 266 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 267 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 268 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/, 269 dl).first; 270 NewLHS = DAG.getNode( 271 ISD::SETCC, dl, 272 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 273 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 274 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 275 NewRHS = SDValue(); 276 } 277 } 278 279 /// Return the entry encoding for a jump table in the current function. The 280 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 281 unsigned TargetLowering::getJumpTableEncoding() const { 282 // In non-pic modes, just use the address of a block. 283 if (!isPositionIndependent()) 284 return MachineJumpTableInfo::EK_BlockAddress; 285 286 // In PIC mode, if the target supports a GPRel32 directive, use it. 287 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 288 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 289 290 // Otherwise, use a label difference. 291 return MachineJumpTableInfo::EK_LabelDifference32; 292 } 293 294 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 295 SelectionDAG &DAG) const { 296 // If our PIC model is GP relative, use the global offset table as the base. 297 unsigned JTEncoding = getJumpTableEncoding(); 298 299 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 300 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 301 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 302 303 return Table; 304 } 305 306 /// This returns the relocation base for the given PIC jumptable, the same as 307 /// getPICJumpTableRelocBase, but as an MCExpr. 308 const MCExpr * 309 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 310 unsigned JTI,MCContext &Ctx) const{ 311 // The normal PIC reloc base is the label at the start of the jump table. 312 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 313 } 314 315 bool 316 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 317 const TargetMachine &TM = getTargetMachine(); 318 const GlobalValue *GV = GA->getGlobal(); 319 320 // If the address is not even local to this DSO we will have to load it from 321 // a got and then add the offset. 322 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 323 return false; 324 325 // If the code is position independent we will have to add a base register. 326 if (isPositionIndependent()) 327 return false; 328 329 // Otherwise we can do it. 330 return true; 331 } 332 333 //===----------------------------------------------------------------------===// 334 // Optimization Methods 335 //===----------------------------------------------------------------------===// 336 337 /// Check to see if the specified operand of the specified instruction is a 338 /// constant integer. If so, check to see if there are any bits set in the 339 /// constant that are not demanded. If so, shrink the constant and return true. 340 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op, 341 const APInt &Demanded) { 342 SDLoc dl(Op); 343 344 // FIXME: ISD::SELECT, ISD::SELECT_CC 345 switch (Op.getOpcode()) { 346 default: break; 347 case ISD::XOR: 348 case ISD::AND: 349 case ISD::OR: { 350 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 351 if (!C) return false; 352 353 if (Op.getOpcode() == ISD::XOR && 354 (C->getAPIntValue() | (~Demanded)).isAllOnesValue()) 355 return false; 356 357 // if we can expand it to have all bits set, do it 358 if (C->getAPIntValue().intersects(~Demanded)) { 359 EVT VT = Op.getValueType(); 360 SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0), 361 DAG.getConstant(Demanded & 362 C->getAPIntValue(), 363 dl, VT)); 364 return CombineTo(Op, New); 365 } 366 367 break; 368 } 369 } 370 371 return false; 372 } 373 374 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 375 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 376 /// generalized for targets with other types of implicit widening casts. 377 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op, 378 unsigned BitWidth, 379 const APInt &Demanded, 380 const SDLoc &dl) { 381 assert(Op.getNumOperands() == 2 && 382 "ShrinkDemandedOp only supports binary operators!"); 383 assert(Op.getNode()->getNumValues() == 1 && 384 "ShrinkDemandedOp only supports nodes with one result!"); 385 386 // Early return, as this function cannot handle vector types. 387 if (Op.getValueType().isVector()) 388 return false; 389 390 // Don't do this if the node has another user, which may require the 391 // full value. 392 if (!Op.getNode()->hasOneUse()) 393 return false; 394 395 // Search for the smallest integer type with free casts to and from 396 // Op's type. For expedience, just check power-of-2 integer types. 397 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 398 unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros(); 399 unsigned SmallVTBits = DemandedSize; 400 if (!isPowerOf2_32(SmallVTBits)) 401 SmallVTBits = NextPowerOf2(SmallVTBits); 402 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 403 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 404 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 405 TLI.isZExtFree(SmallVT, Op.getValueType())) { 406 // We found a type with free casts. 407 SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT, 408 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 409 Op.getNode()->getOperand(0)), 410 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 411 Op.getNode()->getOperand(1))); 412 bool NeedZext = DemandedSize > SmallVTBits; 413 SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, 414 dl, Op.getValueType(), X); 415 return CombineTo(Op, Z); 416 } 417 } 418 return false; 419 } 420 421 bool 422 TargetLowering::TargetLoweringOpt::SimplifyDemandedBits(SDNode *User, 423 unsigned OpIdx, 424 const APInt &Demanded, 425 DAGCombinerInfo &DCI) { 426 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 427 SDValue Op = User->getOperand(OpIdx); 428 APInt KnownZero, KnownOne; 429 430 if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, 431 *this, 0, true)) 432 return false; 433 434 435 // Old will not always be the same as Op. For example: 436 // 437 // Demanded = 0xffffff 438 // Op = i64 truncate (i32 and x, 0xffffff) 439 // In this case simplify demand bits will want to replace the 'and' node 440 // with the value 'x', which will give us: 441 // Old = i32 and x, 0xffffff 442 // New = x 443 if (Old.hasOneUse()) { 444 // For the one use case, we just commit the change. 445 DCI.CommitTargetLoweringOpt(*this); 446 return true; 447 } 448 449 // If Old has more than one use then it must be Op, because the 450 // AssumeSingleUse flag is not propogated to recursive calls of 451 // SimplifyDemanded bits, so the only node with multiple use that 452 // it will attempt to combine will be opt. 453 assert(Old == Op); 454 455 SmallVector <SDValue, 4> NewOps; 456 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 457 if (i == OpIdx) { 458 NewOps.push_back(New); 459 continue; 460 } 461 NewOps.push_back(User->getOperand(i)); 462 } 463 DAG.UpdateNodeOperands(User, NewOps); 464 // Op has less users now, so we may be able to perform additional combines 465 // with it. 466 DCI.AddToWorklist(Op.getNode()); 467 // User's operands have been updated, so we may be able to do new combines 468 // with it. 469 DCI.AddToWorklist(User); 470 return true; 471 } 472 473 /// Look at Op. At this point, we know that only the DemandedMask bits of the 474 /// result of Op are ever used downstream. If we can use this information to 475 /// simplify Op, create a new simplified DAG node and return true, returning the 476 /// original and new nodes in Old and New. Otherwise, analyze the expression and 477 /// return a mask of KnownOne and KnownZero bits for the expression (used to 478 /// simplify the caller). The KnownZero/One bits may only be accurate for those 479 /// bits in the DemandedMask. 480 bool TargetLowering::SimplifyDemandedBits(SDValue Op, 481 const APInt &DemandedMask, 482 APInt &KnownZero, 483 APInt &KnownOne, 484 TargetLoweringOpt &TLO, 485 unsigned Depth, 486 bool AssumeSingleUse) const { 487 unsigned BitWidth = DemandedMask.getBitWidth(); 488 assert(Op.getScalarValueSizeInBits() == BitWidth && 489 "Mask size mismatches value type size!"); 490 APInt NewMask = DemandedMask; 491 SDLoc dl(Op); 492 auto &DL = TLO.DAG.getDataLayout(); 493 494 // Don't know anything. 495 KnownZero = KnownOne = APInt(BitWidth, 0); 496 497 // Other users may use these bits. 498 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 499 if (Depth != 0) { 500 // If not at the root, Just compute the KnownZero/KnownOne bits to 501 // simplify things downstream. 502 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 503 return false; 504 } 505 // If this is the root being simplified, allow it to have multiple uses, 506 // just set the NewMask to all bits. 507 NewMask = APInt::getAllOnesValue(BitWidth); 508 } else if (DemandedMask == 0) { 509 // Not demanding any bits from Op. 510 if (!Op.isUndef()) 511 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType())); 512 return false; 513 } else if (Depth == 6) { // Limit search depth. 514 return false; 515 } 516 517 APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; 518 switch (Op.getOpcode()) { 519 case ISD::Constant: 520 // We know all of the bits for a constant! 521 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); 522 KnownZero = ~KnownOne; 523 return false; // Don't fall through, will infinitely loop. 524 case ISD::BUILD_VECTOR: 525 // Collect the known bits that are shared by every constant vector element. 526 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 527 for (SDValue SrcOp : Op->ops()) { 528 if (!isa<ConstantSDNode>(SrcOp)) { 529 // We can only handle all constant values - bail out with no known bits. 530 KnownZero = KnownOne = APInt(BitWidth, 0); 531 return false; 532 } 533 KnownOne2 = cast<ConstantSDNode>(SrcOp)->getAPIntValue(); 534 KnownZero2 = ~KnownOne2; 535 536 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 537 if (KnownOne2.getBitWidth() != BitWidth) { 538 assert(KnownOne2.getBitWidth() > BitWidth && 539 KnownZero2.getBitWidth() > BitWidth && 540 "Expected BUILD_VECTOR implicit truncation"); 541 KnownOne2 = KnownOne2.trunc(BitWidth); 542 KnownZero2 = KnownZero2.trunc(BitWidth); 543 } 544 545 // Known bits are the values that are shared by every element. 546 // TODO: support per-element known bits. 547 KnownOne &= KnownOne2; 548 KnownZero &= KnownZero2; 549 } 550 return false; // Don't fall through, will infinitely loop. 551 case ISD::AND: 552 // If the RHS is a constant, check to see if the LHS would be zero without 553 // using the bits from the RHS. Below, we use knowledge about the RHS to 554 // simplify the LHS, here we're using information from the LHS to simplify 555 // the RHS. 556 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 557 APInt LHSZero, LHSOne; 558 // Do not increment Depth here; that can cause an infinite loop. 559 TLO.DAG.computeKnownBits(Op.getOperand(0), LHSZero, LHSOne, Depth); 560 // If the LHS already has zeros where RHSC does, this and is dead. 561 if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) 562 return TLO.CombineTo(Op, Op.getOperand(0)); 563 // If any of the set bits in the RHS are known zero on the LHS, shrink 564 // the constant. 565 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask)) 566 return true; 567 } 568 569 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 570 KnownOne, TLO, Depth+1)) 571 return true; 572 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 573 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask, 574 KnownZero2, KnownOne2, TLO, Depth+1)) 575 return true; 576 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 577 578 // If all of the demanded bits are known one on one side, return the other. 579 // These bits cannot contribute to the result of the 'and'. 580 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 581 return TLO.CombineTo(Op, Op.getOperand(0)); 582 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 583 return TLO.CombineTo(Op, Op.getOperand(1)); 584 // If all of the demanded bits in the inputs are known zeros, return zero. 585 if ((NewMask & (KnownZero|KnownZero2)) == NewMask) 586 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType())); 587 // If the RHS is a constant, see if we can simplify it. 588 if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask)) 589 return true; 590 // If the operation can be done in a smaller type, do so. 591 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 592 return true; 593 594 // Output known-1 bits are only known if set in both the LHS & RHS. 595 KnownOne &= KnownOne2; 596 // Output known-0 are known to be clear if zero in either the LHS | RHS. 597 KnownZero |= KnownZero2; 598 break; 599 case ISD::OR: 600 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 601 KnownOne, TLO, Depth+1)) 602 return true; 603 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 604 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask, 605 KnownZero2, KnownOne2, TLO, Depth+1)) 606 return true; 607 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 608 609 // If all of the demanded bits are known zero on one side, return the other. 610 // These bits cannot contribute to the result of the 'or'. 611 if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask)) 612 return TLO.CombineTo(Op, Op.getOperand(0)); 613 if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask)) 614 return TLO.CombineTo(Op, Op.getOperand(1)); 615 // If all of the potentially set bits on one side are known to be set on 616 // the other side, just use the 'other' side. 617 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 618 return TLO.CombineTo(Op, Op.getOperand(0)); 619 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 620 return TLO.CombineTo(Op, Op.getOperand(1)); 621 // If the RHS is a constant, see if we can simplify it. 622 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 623 return true; 624 // If the operation can be done in a smaller type, do so. 625 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 626 return true; 627 628 // Output known-0 bits are only known if clear in both the LHS & RHS. 629 KnownZero &= KnownZero2; 630 // Output known-1 are known to be set if set in either the LHS | RHS. 631 KnownOne |= KnownOne2; 632 break; 633 case ISD::XOR: 634 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 635 KnownOne, TLO, Depth+1)) 636 return true; 637 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 638 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2, 639 KnownOne2, TLO, Depth+1)) 640 return true; 641 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 642 643 // If all of the demanded bits are known zero on one side, return the other. 644 // These bits cannot contribute to the result of the 'xor'. 645 if ((KnownZero & NewMask) == NewMask) 646 return TLO.CombineTo(Op, Op.getOperand(0)); 647 if ((KnownZero2 & NewMask) == NewMask) 648 return TLO.CombineTo(Op, Op.getOperand(1)); 649 // If the operation can be done in a smaller type, do so. 650 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 651 return true; 652 653 // If all of the unknown bits are known to be zero on one side or the other 654 // (but not both) turn this into an *inclusive* or. 655 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 656 if ((NewMask & ~KnownZero & ~KnownZero2) == 0) 657 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(), 658 Op.getOperand(0), 659 Op.getOperand(1))); 660 661 // Output known-0 bits are known if clear or set in both the LHS & RHS. 662 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 663 // Output known-1 are known to be set if set in only one of the LHS, RHS. 664 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 665 666 // If all of the demanded bits on one side are known, and all of the set 667 // bits on that side are also known to be set on the other side, turn this 668 // into an AND, as we know the bits will be cleared. 669 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 670 // NB: it is okay if more bits are known than are requested 671 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side 672 if (KnownOne == KnownOne2) { // set bits are the same on both sides 673 EVT VT = Op.getValueType(); 674 SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, dl, VT); 675 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, 676 Op.getOperand(0), ANDC)); 677 } 678 } 679 680 // If the RHS is a constant, see if we can simplify it. 681 // for XOR, we prefer to force bits to 1 if they will make a -1. 682 // if we can't force bits, try to shrink constant 683 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 684 APInt Expanded = C->getAPIntValue() | (~NewMask); 685 // if we can expand it to have all bits set, do it 686 if (Expanded.isAllOnesValue()) { 687 if (Expanded != C->getAPIntValue()) { 688 EVT VT = Op.getValueType(); 689 SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0), 690 TLO.DAG.getConstant(Expanded, dl, VT)); 691 return TLO.CombineTo(Op, New); 692 } 693 // if it already has all the bits set, nothing to change 694 // but don't shrink either! 695 } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) { 696 return true; 697 } 698 } 699 700 KnownZero = KnownZeroOut; 701 KnownOne = KnownOneOut; 702 break; 703 case ISD::SELECT: 704 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero, 705 KnownOne, TLO, Depth+1)) 706 return true; 707 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2, 708 KnownOne2, TLO, Depth+1)) 709 return true; 710 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 711 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 712 713 // If the operands are constants, see if we can simplify them. 714 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 715 return true; 716 717 // Only known if known in both the LHS and RHS. 718 KnownOne &= KnownOne2; 719 KnownZero &= KnownZero2; 720 break; 721 case ISD::SELECT_CC: 722 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero, 723 KnownOne, TLO, Depth+1)) 724 return true; 725 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2, 726 KnownOne2, TLO, Depth+1)) 727 return true; 728 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 729 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 730 731 // If the operands are constants, see if we can simplify them. 732 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 733 return true; 734 735 // Only known if known in both the LHS and RHS. 736 KnownOne &= KnownOne2; 737 KnownZero &= KnownZero2; 738 break; 739 case ISD::SHL: 740 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 741 unsigned ShAmt = SA->getZExtValue(); 742 SDValue InOp = Op.getOperand(0); 743 744 // If the shift count is an invalid immediate, don't do anything. 745 if (ShAmt >= BitWidth) 746 break; 747 748 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 749 // single shift. We can do this if the bottom bits (which are shifted 750 // out) are never demanded. 751 if (InOp.getOpcode() == ISD::SRL && 752 isa<ConstantSDNode>(InOp.getOperand(1))) { 753 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 754 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 755 unsigned Opc = ISD::SHL; 756 int Diff = ShAmt-C1; 757 if (Diff < 0) { 758 Diff = -Diff; 759 Opc = ISD::SRL; 760 } 761 762 SDValue NewSA = 763 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 764 EVT VT = Op.getValueType(); 765 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 766 InOp.getOperand(0), NewSA)); 767 } 768 } 769 770 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), 771 KnownZero, KnownOne, TLO, Depth+1)) 772 return true; 773 774 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 775 // are not demanded. This will likely allow the anyext to be folded away. 776 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { 777 SDValue InnerOp = InOp.getNode()->getOperand(0); 778 EVT InnerVT = InnerOp.getValueType(); 779 unsigned InnerBits = InnerVT.getSizeInBits(); 780 if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 && 781 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 782 EVT ShTy = getShiftAmountTy(InnerVT, DL); 783 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 784 ShTy = InnerVT; 785 SDValue NarrowShl = 786 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 787 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 788 return 789 TLO.CombineTo(Op, 790 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), 791 NarrowShl)); 792 } 793 // Repeat the SHL optimization above in cases where an extension 794 // intervenes: (shl (anyext (shr x, c1)), c2) to 795 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 796 // aren't demanded (as above) and that the shifted upper c1 bits of 797 // x aren't demanded. 798 if (InOp.hasOneUse() && 799 InnerOp.getOpcode() == ISD::SRL && 800 InnerOp.hasOneUse() && 801 isa<ConstantSDNode>(InnerOp.getOperand(1))) { 802 uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1)) 803 ->getZExtValue(); 804 if (InnerShAmt < ShAmt && 805 InnerShAmt < InnerBits && 806 NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 && 807 NewMask.trunc(ShAmt) == 0) { 808 SDValue NewSA = 809 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 810 Op.getOperand(1).getValueType()); 811 EVT VT = Op.getValueType(); 812 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 813 InnerOp.getOperand(0)); 814 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, 815 NewExt, NewSA)); 816 } 817 } 818 } 819 820 KnownZero <<= SA->getZExtValue(); 821 KnownOne <<= SA->getZExtValue(); 822 // low bits known zero. 823 KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue()); 824 } 825 break; 826 case ISD::SRL: 827 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 828 EVT VT = Op.getValueType(); 829 unsigned ShAmt = SA->getZExtValue(); 830 unsigned VTSize = VT.getSizeInBits(); 831 SDValue InOp = Op.getOperand(0); 832 833 // If the shift count is an invalid immediate, don't do anything. 834 if (ShAmt >= BitWidth) 835 break; 836 837 APInt InDemandedMask = (NewMask << ShAmt); 838 839 // If the shift is exact, then it does demand the low bits (and knows that 840 // they are zero). 841 if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()) 842 InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt); 843 844 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 845 // single shift. We can do this if the top bits (which are shifted out) 846 // are never demanded. 847 if (InOp.getOpcode() == ISD::SHL && 848 isa<ConstantSDNode>(InOp.getOperand(1))) { 849 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) { 850 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 851 unsigned Opc = ISD::SRL; 852 int Diff = ShAmt-C1; 853 if (Diff < 0) { 854 Diff = -Diff; 855 Opc = ISD::SHL; 856 } 857 858 SDValue NewSA = 859 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 860 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 861 InOp.getOperand(0), NewSA)); 862 } 863 } 864 865 // Compute the new bits that are at the top now. 866 if (SimplifyDemandedBits(InOp, InDemandedMask, 867 KnownZero, KnownOne, TLO, Depth+1)) 868 return true; 869 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 870 KnownZero = KnownZero.lshr(ShAmt); 871 KnownOne = KnownOne.lshr(ShAmt); 872 873 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 874 KnownZero |= HighBits; // High bits known zero. 875 } 876 break; 877 case ISD::SRA: 878 // If this is an arithmetic shift right and only the low-bit is set, we can 879 // always convert this into a logical shr, even if the shift amount is 880 // variable. The low bit of the shift cannot be an input sign bit unless 881 // the shift amount is >= the size of the datatype, which is undefined. 882 if (NewMask == 1) 883 return TLO.CombineTo(Op, 884 TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), 885 Op.getOperand(0), Op.getOperand(1))); 886 887 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 888 EVT VT = Op.getValueType(); 889 unsigned ShAmt = SA->getZExtValue(); 890 891 // If the shift count is an invalid immediate, don't do anything. 892 if (ShAmt >= BitWidth) 893 break; 894 895 APInt InDemandedMask = (NewMask << ShAmt); 896 897 // If the shift is exact, then it does demand the low bits (and knows that 898 // they are zero). 899 if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()) 900 InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt); 901 902 // If any of the demanded bits are produced by the sign extension, we also 903 // demand the input sign bit. 904 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 905 if (HighBits.intersects(NewMask)) 906 InDemandedMask |= APInt::getSignBit(VT.getScalarSizeInBits()); 907 908 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, 909 KnownZero, KnownOne, TLO, Depth+1)) 910 return true; 911 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 912 KnownZero = KnownZero.lshr(ShAmt); 913 KnownOne = KnownOne.lshr(ShAmt); 914 915 // Handle the sign bit, adjusted to where it is now in the mask. 916 APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt); 917 918 // If the input sign bit is known to be zero, or if none of the top bits 919 // are demanded, turn this into an unsigned shift right. 920 if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) { 921 SDNodeFlags Flags; 922 Flags.setExact(cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()); 923 return TLO.CombineTo(Op, 924 TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0), 925 Op.getOperand(1), &Flags)); 926 } 927 928 int Log2 = NewMask.exactLogBase2(); 929 if (Log2 >= 0) { 930 // The bit must come from the sign. 931 SDValue NewSA = 932 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, 933 Op.getOperand(1).getValueType()); 934 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 935 Op.getOperand(0), NewSA)); 936 } 937 938 if (KnownOne.intersects(SignBit)) 939 // New bits are known one. 940 KnownOne |= HighBits; 941 } 942 break; 943 case ISD::SIGN_EXTEND_INREG: { 944 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 945 946 APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1); 947 // If we only care about the highest bit, don't bother shifting right. 948 if (MsbMask == NewMask) { 949 unsigned ShAmt = ExVT.getScalarSizeInBits(); 950 SDValue InOp = Op.getOperand(0); 951 unsigned VTBits = Op->getValueType(0).getScalarSizeInBits(); 952 bool AlreadySignExtended = 953 TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1; 954 // However if the input is already sign extended we expect the sign 955 // extension to be dropped altogether later and do not simplify. 956 if (!AlreadySignExtended) { 957 // Compute the correct shift amount type, which must be getShiftAmountTy 958 // for scalar types after legalization. 959 EVT ShiftAmtTy = Op.getValueType(); 960 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 961 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 962 963 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, dl, 964 ShiftAmtTy); 965 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 966 Op.getValueType(), InOp, 967 ShiftAmt)); 968 } 969 } 970 971 // Sign extension. Compute the demanded bits in the result that are not 972 // present in the input. 973 APInt NewBits = 974 APInt::getHighBitsSet(BitWidth, 975 BitWidth - ExVT.getScalarSizeInBits()); 976 977 // If none of the extended bits are demanded, eliminate the sextinreg. 978 if ((NewBits & NewMask) == 0) 979 return TLO.CombineTo(Op, Op.getOperand(0)); 980 981 APInt InSignBit = 982 APInt::getSignBit(ExVT.getScalarSizeInBits()).zext(BitWidth); 983 APInt InputDemandedBits = 984 APInt::getLowBitsSet(BitWidth, 985 ExVT.getScalarSizeInBits()) & 986 NewMask; 987 988 // Since the sign extended bits are demanded, we know that the sign 989 // bit is demanded. 990 InputDemandedBits |= InSignBit; 991 992 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, 993 KnownZero, KnownOne, TLO, Depth+1)) 994 return true; 995 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 996 997 // If the sign bit of the input is known set or clear, then we know the 998 // top bits of the result. 999 1000 // If the input sign bit is known zero, convert this into a zero extension. 1001 if (KnownZero.intersects(InSignBit)) 1002 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg( 1003 Op.getOperand(0), dl, ExVT.getScalarType())); 1004 1005 if (KnownOne.intersects(InSignBit)) { // Input sign bit known set 1006 KnownOne |= NewBits; 1007 KnownZero &= ~NewBits; 1008 } else { // Input sign bit unknown 1009 KnownZero &= ~NewBits; 1010 KnownOne &= ~NewBits; 1011 } 1012 break; 1013 } 1014 case ISD::BUILD_PAIR: { 1015 EVT HalfVT = Op.getOperand(0).getValueType(); 1016 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1017 1018 APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1019 APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1020 1021 APInt KnownZeroLo, KnownOneLo; 1022 APInt KnownZeroHi, KnownOneHi; 1023 1024 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo, 1025 KnownOneLo, TLO, Depth + 1)) 1026 return true; 1027 1028 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi, 1029 KnownOneHi, TLO, Depth + 1)) 1030 return true; 1031 1032 KnownZero = KnownZeroLo.zext(BitWidth) | 1033 KnownZeroHi.zext(BitWidth).shl(HalfBitWidth); 1034 1035 KnownOne = KnownOneLo.zext(BitWidth) | 1036 KnownOneHi.zext(BitWidth).shl(HalfBitWidth); 1037 break; 1038 } 1039 case ISD::ZERO_EXTEND: { 1040 unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 1041 APInt InMask = NewMask.trunc(OperandBitWidth); 1042 1043 // If none of the top bits are demanded, convert this into an any_extend. 1044 APInt NewBits = 1045 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask; 1046 if (!NewBits.intersects(NewMask)) 1047 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 1048 Op.getValueType(), 1049 Op.getOperand(0))); 1050 1051 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 1052 KnownZero, KnownOne, TLO, Depth+1)) 1053 return true; 1054 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1055 KnownZero = KnownZero.zext(BitWidth); 1056 KnownOne = KnownOne.zext(BitWidth); 1057 KnownZero |= NewBits; 1058 break; 1059 } 1060 case ISD::SIGN_EXTEND: { 1061 EVT InVT = Op.getOperand(0).getValueType(); 1062 unsigned InBits = InVT.getScalarSizeInBits(); 1063 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits); 1064 APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits); 1065 APInt NewBits = ~InMask & NewMask; 1066 1067 // If none of the top bits are demanded, convert this into an any_extend. 1068 if (NewBits == 0) 1069 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 1070 Op.getValueType(), 1071 Op.getOperand(0))); 1072 1073 // Since some of the sign extended bits are demanded, we know that the sign 1074 // bit is demanded. 1075 APInt InDemandedBits = InMask & NewMask; 1076 InDemandedBits |= InSignBit; 1077 InDemandedBits = InDemandedBits.trunc(InBits); 1078 1079 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, 1080 KnownOne, TLO, Depth+1)) 1081 return true; 1082 KnownZero = KnownZero.zext(BitWidth); 1083 KnownOne = KnownOne.zext(BitWidth); 1084 1085 // If the sign bit is known zero, convert this to a zero extend. 1086 if (KnownZero.intersects(InSignBit)) 1087 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, 1088 Op.getValueType(), 1089 Op.getOperand(0))); 1090 1091 // If the sign bit is known one, the top bits match. 1092 if (KnownOne.intersects(InSignBit)) { 1093 KnownOne |= NewBits; 1094 assert((KnownZero & NewBits) == 0); 1095 } else { // Otherwise, top bits aren't known. 1096 assert((KnownOne & NewBits) == 0); 1097 assert((KnownZero & NewBits) == 0); 1098 } 1099 break; 1100 } 1101 case ISD::ANY_EXTEND: { 1102 unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 1103 APInt InMask = NewMask.trunc(OperandBitWidth); 1104 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 1105 KnownZero, KnownOne, TLO, Depth+1)) 1106 return true; 1107 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1108 KnownZero = KnownZero.zext(BitWidth); 1109 KnownOne = KnownOne.zext(BitWidth); 1110 break; 1111 } 1112 case ISD::TRUNCATE: { 1113 // Simplify the input, using demanded bit information, and compute the known 1114 // zero/one bits live out. 1115 unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 1116 APInt TruncMask = NewMask.zext(OperandBitWidth); 1117 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, 1118 KnownZero, KnownOne, TLO, Depth+1)) 1119 return true; 1120 KnownZero = KnownZero.trunc(BitWidth); 1121 KnownOne = KnownOne.trunc(BitWidth); 1122 1123 // If the input is only used by this truncate, see if we can shrink it based 1124 // on the known demanded bits. 1125 if (Op.getOperand(0).getNode()->hasOneUse()) { 1126 SDValue In = Op.getOperand(0); 1127 switch (In.getOpcode()) { 1128 default: break; 1129 case ISD::SRL: 1130 // Shrink SRL by a constant if none of the high bits shifted in are 1131 // demanded. 1132 if (TLO.LegalTypes() && 1133 !isTypeDesirableForOp(ISD::SRL, Op.getValueType())) 1134 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1135 // undesirable. 1136 break; 1137 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); 1138 if (!ShAmt) 1139 break; 1140 SDValue Shift = In.getOperand(1); 1141 if (TLO.LegalTypes()) { 1142 uint64_t ShVal = ShAmt->getZExtValue(); 1143 Shift = TLO.DAG.getConstant(ShVal, dl, 1144 getShiftAmountTy(Op.getValueType(), DL)); 1145 } 1146 1147 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 1148 OperandBitWidth - BitWidth); 1149 HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth); 1150 1151 if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) { 1152 // None of the shifted in bits are needed. Add a truncate of the 1153 // shift input, then shift it. 1154 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, 1155 Op.getValueType(), 1156 In.getOperand(0)); 1157 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, 1158 Op.getValueType(), 1159 NewTrunc, 1160 Shift)); 1161 } 1162 break; 1163 } 1164 } 1165 1166 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1167 break; 1168 } 1169 case ISD::AssertZext: { 1170 // AssertZext demands all of the high bits, plus any of the low bits 1171 // demanded by its users. 1172 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1173 APInt InMask = APInt::getLowBitsSet(BitWidth, 1174 VT.getSizeInBits()); 1175 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask, 1176 KnownZero, KnownOne, TLO, Depth+1)) 1177 return true; 1178 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1179 1180 KnownZero |= ~InMask & NewMask; 1181 break; 1182 } 1183 case ISD::BITCAST: 1184 // If this is an FP->Int bitcast and if the sign bit is the only 1185 // thing demanded, turn this into a FGETSIGN. 1186 if (!TLO.LegalOperations() && 1187 !Op.getValueType().isVector() && 1188 !Op.getOperand(0).getValueType().isVector() && 1189 NewMask == APInt::getSignBit(Op.getValueSizeInBits()) && 1190 Op.getOperand(0).getValueType().isFloatingPoint()) { 1191 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType()); 1192 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1193 if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple() && 1194 Op.getOperand(0).getValueType() != MVT::f128) { 1195 // Cannot eliminate/lower SHL for f128 yet. 1196 EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32; 1197 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1198 // place. We expect the SHL to be eliminated by other optimizations. 1199 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0)); 1200 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1201 if (!OpVTLegal && OpVTSizeInBits > 32) 1202 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign); 1203 unsigned ShVal = Op.getValueSizeInBits() - 1; 1204 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, Op.getValueType()); 1205 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 1206 Op.getValueType(), 1207 Sign, ShAmt)); 1208 } 1209 } 1210 break; 1211 case ISD::ADD: 1212 case ISD::MUL: 1213 case ISD::SUB: { 1214 // Add, Sub, and Mul don't demand any bits in positions beyond that 1215 // of the highest bit demanded of them. 1216 APInt LoMask = APInt::getLowBitsSet(BitWidth, 1217 BitWidth - NewMask.countLeadingZeros()); 1218 if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2, 1219 KnownOne2, TLO, Depth+1)) 1220 return true; 1221 if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2, 1222 KnownOne2, TLO, Depth+1)) 1223 return true; 1224 // See if the operation should be performed at a smaller bit width. 1225 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 1226 return true; 1227 LLVM_FALLTHROUGH; 1228 } 1229 default: 1230 // Just use computeKnownBits to compute output bits. 1231 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 1232 break; 1233 } 1234 1235 // If we know the value of all of the demanded bits, return this as a 1236 // constant. 1237 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { 1238 // Avoid folding to a constant if any OpaqueConstant is involved. 1239 const SDNode *N = Op.getNode(); 1240 for (SDNodeIterator I = SDNodeIterator::begin(N), 1241 E = SDNodeIterator::end(N); I != E; ++I) { 1242 SDNode *Op = *I; 1243 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 1244 if (C->isOpaque()) 1245 return false; 1246 } 1247 return TLO.CombineTo(Op, 1248 TLO.DAG.getConstant(KnownOne, dl, Op.getValueType())); 1249 } 1250 1251 return false; 1252 } 1253 1254 /// Determine which of the bits specified in Mask are known to be either zero or 1255 /// one and return them in the KnownZero/KnownOne bitsets. 1256 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1257 APInt &KnownZero, 1258 APInt &KnownOne, 1259 const SelectionDAG &DAG, 1260 unsigned Depth) const { 1261 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1262 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1263 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1264 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1265 "Should use MaskedValueIsZero if you don't know whether Op" 1266 " is a target node!"); 1267 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); 1268 } 1269 1270 /// This method can be implemented by targets that want to expose additional 1271 /// information about sign bits to the DAG Combiner. 1272 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 1273 const SelectionDAG &, 1274 unsigned Depth) const { 1275 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1276 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1277 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1278 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1279 "Should use ComputeNumSignBits if you don't know whether Op" 1280 " is a target node!"); 1281 return 1; 1282 } 1283 1284 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 1285 if (!N) 1286 return false; 1287 1288 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1289 if (!CN) { 1290 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1291 if (!BV) 1292 return false; 1293 1294 BitVector UndefElements; 1295 CN = BV->getConstantSplatNode(&UndefElements); 1296 // Only interested in constant splats, and we don't try to handle undef 1297 // elements in identifying boolean constants. 1298 if (!CN || UndefElements.none()) 1299 return false; 1300 } 1301 1302 switch (getBooleanContents(N->getValueType(0))) { 1303 case UndefinedBooleanContent: 1304 return CN->getAPIntValue()[0]; 1305 case ZeroOrOneBooleanContent: 1306 return CN->isOne(); 1307 case ZeroOrNegativeOneBooleanContent: 1308 return CN->isAllOnesValue(); 1309 } 1310 1311 llvm_unreachable("Invalid boolean contents"); 1312 } 1313 1314 SDValue TargetLowering::getConstTrueVal(SelectionDAG &DAG, EVT VT, 1315 const SDLoc &DL) const { 1316 unsigned ElementWidth = VT.getScalarSizeInBits(); 1317 APInt TrueInt = 1318 getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent 1319 ? APInt(ElementWidth, 1) 1320 : APInt::getAllOnesValue(ElementWidth); 1321 return DAG.getConstant(TrueInt, DL, VT); 1322 } 1323 1324 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 1325 if (!N) 1326 return false; 1327 1328 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1329 if (!CN) { 1330 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1331 if (!BV) 1332 return false; 1333 1334 BitVector UndefElements; 1335 CN = BV->getConstantSplatNode(&UndefElements); 1336 // Only interested in constant splats, and we don't try to handle undef 1337 // elements in identifying boolean constants. 1338 if (!CN || UndefElements.none()) 1339 return false; 1340 } 1341 1342 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 1343 return !CN->getAPIntValue()[0]; 1344 1345 return CN->isNullValue(); 1346 } 1347 1348 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 1349 bool SExt) const { 1350 if (VT == MVT::i1) 1351 return N->isOne(); 1352 1353 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 1354 switch (Cnt) { 1355 case TargetLowering::ZeroOrOneBooleanContent: 1356 // An extended value of 1 is always true, unless its original type is i1, 1357 // in which case it will be sign extended to -1. 1358 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 1359 case TargetLowering::UndefinedBooleanContent: 1360 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1361 return N->isAllOnesValue() && SExt; 1362 } 1363 llvm_unreachable("Unexpected enumeration."); 1364 } 1365 1366 /// This helper function of SimplifySetCC tries to optimize the comparison when 1367 /// either operand of the SetCC node is a bitwise-and instruction. 1368 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 1369 ISD::CondCode Cond, 1370 DAGCombinerInfo &DCI, 1371 const SDLoc &DL) const { 1372 // Match these patterns in any of their permutations: 1373 // (X & Y) == Y 1374 // (X & Y) != Y 1375 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 1376 std::swap(N0, N1); 1377 1378 EVT OpVT = N0.getValueType(); 1379 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 1380 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 1381 return SDValue(); 1382 1383 SDValue X, Y; 1384 if (N0.getOperand(0) == N1) { 1385 X = N0.getOperand(1); 1386 Y = N0.getOperand(0); 1387 } else if (N0.getOperand(1) == N1) { 1388 X = N0.getOperand(0); 1389 Y = N0.getOperand(1); 1390 } else { 1391 return SDValue(); 1392 } 1393 1394 SelectionDAG &DAG = DCI.DAG; 1395 SDValue Zero = DAG.getConstant(0, DL, OpVT); 1396 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 1397 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 1398 // Note that where Y is variable and is known to have at most one bit set 1399 // (for example, if it is Z & 1) we cannot do this; the expressions are not 1400 // equivalent when Y == 0. 1401 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 1402 if (DCI.isBeforeLegalizeOps() || 1403 isCondCodeLegal(Cond, N0.getSimpleValueType())) 1404 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 1405 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 1406 // If the target supports an 'and-not' or 'and-complement' logic operation, 1407 // try to use that to make a comparison operation more efficient. 1408 // But don't do this transform if the mask is a single bit because there are 1409 // more efficient ways to deal with that case (for example, 'bt' on x86 or 1410 // 'rlwinm' on PPC). 1411 1412 // Bail out if the compare operand that we want to turn into a zero is 1413 // already a zero (otherwise, infinite loop). 1414 auto *YConst = dyn_cast<ConstantSDNode>(Y); 1415 if (YConst && YConst->isNullValue()) 1416 return SDValue(); 1417 1418 // Transform this into: ~X & Y == 0. 1419 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 1420 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 1421 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 1422 } 1423 1424 return SDValue(); 1425 } 1426 1427 /// Try to simplify a setcc built with the specified operands and cc. If it is 1428 /// unable to simplify it, return a null SDValue. 1429 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 1430 ISD::CondCode Cond, bool foldBooleans, 1431 DAGCombinerInfo &DCI, 1432 const SDLoc &dl) const { 1433 SelectionDAG &DAG = DCI.DAG; 1434 1435 // These setcc operations always fold. 1436 switch (Cond) { 1437 default: break; 1438 case ISD::SETFALSE: 1439 case ISD::SETFALSE2: return DAG.getConstant(0, dl, VT); 1440 case ISD::SETTRUE: 1441 case ISD::SETTRUE2: { 1442 TargetLowering::BooleanContent Cnt = 1443 getBooleanContents(N0->getValueType(0)); 1444 return DAG.getConstant( 1445 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl, 1446 VT); 1447 } 1448 } 1449 1450 // Ensure that the constant occurs on the RHS, and fold constant 1451 // comparisons. 1452 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 1453 if (isa<ConstantSDNode>(N0.getNode()) && 1454 (DCI.isBeforeLegalizeOps() || 1455 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 1456 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 1457 1458 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 1459 const APInt &C1 = N1C->getAPIntValue(); 1460 1461 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 1462 // equality comparison, then we're just comparing whether X itself is 1463 // zero. 1464 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) && 1465 N0.getOperand(0).getOpcode() == ISD::CTLZ && 1466 N0.getOperand(1).getOpcode() == ISD::Constant) { 1467 const APInt &ShAmt 1468 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1469 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1470 ShAmt == Log2_32(N0.getValueSizeInBits())) { 1471 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 1472 // (srl (ctlz x), 5) == 0 -> X != 0 1473 // (srl (ctlz x), 5) != 1 -> X != 0 1474 Cond = ISD::SETNE; 1475 } else { 1476 // (srl (ctlz x), 5) != 0 -> X == 0 1477 // (srl (ctlz x), 5) == 1 -> X == 0 1478 Cond = ISD::SETEQ; 1479 } 1480 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 1481 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 1482 Zero, Cond); 1483 } 1484 } 1485 1486 SDValue CTPOP = N0; 1487 // Look through truncs that don't change the value of a ctpop. 1488 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 1489 CTPOP = N0.getOperand(0); 1490 1491 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 1492 (N0 == CTPOP || 1493 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 1494 EVT CTVT = CTPOP.getValueType(); 1495 SDValue CTOp = CTPOP.getOperand(0); 1496 1497 // (ctpop x) u< 2 -> (x & x-1) == 0 1498 // (ctpop x) u> 1 -> (x & x-1) != 0 1499 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 1500 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 1501 DAG.getConstant(1, dl, CTVT)); 1502 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 1503 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 1504 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 1505 } 1506 1507 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 1508 } 1509 1510 // (zext x) == C --> x == (trunc C) 1511 // (sext x) == C --> x == (trunc C) 1512 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1513 DCI.isBeforeLegalize() && N0->hasOneUse()) { 1514 unsigned MinBits = N0.getValueSizeInBits(); 1515 SDValue PreExt; 1516 bool Signed = false; 1517 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 1518 // ZExt 1519 MinBits = N0->getOperand(0).getValueSizeInBits(); 1520 PreExt = N0->getOperand(0); 1521 } else if (N0->getOpcode() == ISD::AND) { 1522 // DAGCombine turns costly ZExts into ANDs 1523 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 1524 if ((C->getAPIntValue()+1).isPowerOf2()) { 1525 MinBits = C->getAPIntValue().countTrailingOnes(); 1526 PreExt = N0->getOperand(0); 1527 } 1528 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 1529 // SExt 1530 MinBits = N0->getOperand(0).getValueSizeInBits(); 1531 PreExt = N0->getOperand(0); 1532 Signed = true; 1533 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 1534 // ZEXTLOAD / SEXTLOAD 1535 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 1536 MinBits = LN0->getMemoryVT().getSizeInBits(); 1537 PreExt = N0; 1538 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 1539 Signed = true; 1540 MinBits = LN0->getMemoryVT().getSizeInBits(); 1541 PreExt = N0; 1542 } 1543 } 1544 1545 // Figure out how many bits we need to preserve this constant. 1546 unsigned ReqdBits = Signed ? 1547 C1.getBitWidth() - C1.getNumSignBits() + 1 : 1548 C1.getActiveBits(); 1549 1550 // Make sure we're not losing bits from the constant. 1551 if (MinBits > 0 && 1552 MinBits < C1.getBitWidth() && 1553 MinBits >= ReqdBits) { 1554 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 1555 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 1556 // Will get folded away. 1557 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 1558 if (MinBits == 1 && C1 == 1) 1559 // Invert the condition. 1560 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 1561 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1562 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 1563 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 1564 } 1565 1566 // If truncating the setcc operands is not desirable, we can still 1567 // simplify the expression in some cases: 1568 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 1569 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 1570 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 1571 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 1572 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 1573 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 1574 SDValue TopSetCC = N0->getOperand(0); 1575 unsigned N0Opc = N0->getOpcode(); 1576 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 1577 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 1578 TopSetCC.getOpcode() == ISD::SETCC && 1579 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 1580 (isConstFalseVal(N1C) || 1581 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 1582 1583 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 1584 (!N1C->isNullValue() && Cond == ISD::SETNE); 1585 1586 if (!Inverse) 1587 return TopSetCC; 1588 1589 ISD::CondCode InvCond = ISD::getSetCCInverse( 1590 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 1591 TopSetCC.getOperand(0).getValueType().isInteger()); 1592 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 1593 TopSetCC.getOperand(1), 1594 InvCond); 1595 1596 } 1597 } 1598 } 1599 1600 // If the LHS is '(and load, const)', the RHS is 0, 1601 // the test is for equality or unsigned, and all 1 bits of the const are 1602 // in the same partial word, see if we can shorten the load. 1603 if (DCI.isBeforeLegalize() && 1604 !ISD::isSignedIntSetCC(Cond) && 1605 N0.getOpcode() == ISD::AND && C1 == 0 && 1606 N0.getNode()->hasOneUse() && 1607 isa<LoadSDNode>(N0.getOperand(0)) && 1608 N0.getOperand(0).getNode()->hasOneUse() && 1609 isa<ConstantSDNode>(N0.getOperand(1))) { 1610 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 1611 APInt bestMask; 1612 unsigned bestWidth = 0, bestOffset = 0; 1613 if (!Lod->isVolatile() && Lod->isUnindexed()) { 1614 unsigned origWidth = N0.getValueSizeInBits(); 1615 unsigned maskWidth = origWidth; 1616 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 1617 // 8 bits, but have to be careful... 1618 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 1619 origWidth = Lod->getMemoryVT().getSizeInBits(); 1620 const APInt &Mask = 1621 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1622 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 1623 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 1624 for (unsigned offset=0; offset<origWidth/width; offset++) { 1625 if ((newMask & Mask) == Mask) { 1626 if (!DAG.getDataLayout().isLittleEndian()) 1627 bestOffset = (origWidth/width - offset - 1) * (width/8); 1628 else 1629 bestOffset = (uint64_t)offset * (width/8); 1630 bestMask = Mask.lshr(offset * (width/8) * 8); 1631 bestWidth = width; 1632 break; 1633 } 1634 newMask = newMask << width; 1635 } 1636 } 1637 } 1638 if (bestWidth) { 1639 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 1640 if (newVT.isRound()) { 1641 EVT PtrType = Lod->getOperand(1).getValueType(); 1642 SDValue Ptr = Lod->getBasePtr(); 1643 if (bestOffset != 0) 1644 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 1645 DAG.getConstant(bestOffset, dl, PtrType)); 1646 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 1647 SDValue NewLoad = DAG.getLoad( 1648 newVT, dl, Lod->getChain(), Ptr, 1649 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 1650 return DAG.getSetCC(dl, VT, 1651 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 1652 DAG.getConstant(bestMask.trunc(bestWidth), 1653 dl, newVT)), 1654 DAG.getConstant(0LL, dl, newVT), Cond); 1655 } 1656 } 1657 } 1658 1659 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 1660 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 1661 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 1662 1663 // If the comparison constant has bits in the upper part, the 1664 // zero-extended value could never match. 1665 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 1666 C1.getBitWidth() - InSize))) { 1667 switch (Cond) { 1668 case ISD::SETUGT: 1669 case ISD::SETUGE: 1670 case ISD::SETEQ: return DAG.getConstant(0, dl, VT); 1671 case ISD::SETULT: 1672 case ISD::SETULE: 1673 case ISD::SETNE: return DAG.getConstant(1, dl, VT); 1674 case ISD::SETGT: 1675 case ISD::SETGE: 1676 // True if the sign bit of C1 is set. 1677 return DAG.getConstant(C1.isNegative(), dl, VT); 1678 case ISD::SETLT: 1679 case ISD::SETLE: 1680 // True if the sign bit of C1 isn't set. 1681 return DAG.getConstant(C1.isNonNegative(), dl, VT); 1682 default: 1683 break; 1684 } 1685 } 1686 1687 // Otherwise, we can perform the comparison with the low bits. 1688 switch (Cond) { 1689 case ISD::SETEQ: 1690 case ISD::SETNE: 1691 case ISD::SETUGT: 1692 case ISD::SETUGE: 1693 case ISD::SETULT: 1694 case ISD::SETULE: { 1695 EVT newVT = N0.getOperand(0).getValueType(); 1696 if (DCI.isBeforeLegalizeOps() || 1697 (isOperationLegal(ISD::SETCC, newVT) && 1698 getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) { 1699 EVT NewSetCCVT = 1700 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); 1701 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 1702 1703 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 1704 NewConst, Cond); 1705 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 1706 } 1707 break; 1708 } 1709 default: 1710 break; // todo, be more careful with signed comparisons 1711 } 1712 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 1713 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1714 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 1715 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 1716 EVT ExtDstTy = N0.getValueType(); 1717 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 1718 1719 // If the constant doesn't fit into the number of bits for the source of 1720 // the sign extension, it is impossible for both sides to be equal. 1721 if (C1.getMinSignedBits() > ExtSrcTyBits) 1722 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 1723 1724 SDValue ZextOp; 1725 EVT Op0Ty = N0.getOperand(0).getValueType(); 1726 if (Op0Ty == ExtSrcTy) { 1727 ZextOp = N0.getOperand(0); 1728 } else { 1729 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 1730 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 1731 DAG.getConstant(Imm, dl, Op0Ty)); 1732 } 1733 if (!DCI.isCalledByLegalizer()) 1734 DCI.AddToWorklist(ZextOp.getNode()); 1735 // Otherwise, make this a use of a zext. 1736 return DAG.getSetCC(dl, VT, ZextOp, 1737 DAG.getConstant(C1 & APInt::getLowBitsSet( 1738 ExtDstTyBits, 1739 ExtSrcTyBits), 1740 dl, ExtDstTy), 1741 Cond); 1742 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) && 1743 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1744 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 1745 if (N0.getOpcode() == ISD::SETCC && 1746 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 1747 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1); 1748 if (TrueWhenTrue) 1749 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 1750 // Invert the condition. 1751 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 1752 CC = ISD::getSetCCInverse(CC, 1753 N0.getOperand(0).getValueType().isInteger()); 1754 if (DCI.isBeforeLegalizeOps() || 1755 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 1756 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 1757 } 1758 1759 if ((N0.getOpcode() == ISD::XOR || 1760 (N0.getOpcode() == ISD::AND && 1761 N0.getOperand(0).getOpcode() == ISD::XOR && 1762 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 1763 isa<ConstantSDNode>(N0.getOperand(1)) && 1764 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) { 1765 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 1766 // can only do this if the top bits are known zero. 1767 unsigned BitWidth = N0.getValueSizeInBits(); 1768 if (DAG.MaskedValueIsZero(N0, 1769 APInt::getHighBitsSet(BitWidth, 1770 BitWidth-1))) { 1771 // Okay, get the un-inverted input value. 1772 SDValue Val; 1773 if (N0.getOpcode() == ISD::XOR) 1774 Val = N0.getOperand(0); 1775 else { 1776 assert(N0.getOpcode() == ISD::AND && 1777 N0.getOperand(0).getOpcode() == ISD::XOR); 1778 // ((X^1)&1)^1 -> X & 1 1779 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 1780 N0.getOperand(0).getOperand(0), 1781 N0.getOperand(1)); 1782 } 1783 1784 return DAG.getSetCC(dl, VT, Val, N1, 1785 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1786 } 1787 } else if (N1C->getAPIntValue() == 1 && 1788 (VT == MVT::i1 || 1789 getBooleanContents(N0->getValueType(0)) == 1790 ZeroOrOneBooleanContent)) { 1791 SDValue Op0 = N0; 1792 if (Op0.getOpcode() == ISD::TRUNCATE) 1793 Op0 = Op0.getOperand(0); 1794 1795 if ((Op0.getOpcode() == ISD::XOR) && 1796 Op0.getOperand(0).getOpcode() == ISD::SETCC && 1797 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 1798 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 1799 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 1800 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 1801 Cond); 1802 } 1803 if (Op0.getOpcode() == ISD::AND && 1804 isa<ConstantSDNode>(Op0.getOperand(1)) && 1805 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) { 1806 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 1807 if (Op0.getValueType().bitsGT(VT)) 1808 Op0 = DAG.getNode(ISD::AND, dl, VT, 1809 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 1810 DAG.getConstant(1, dl, VT)); 1811 else if (Op0.getValueType().bitsLT(VT)) 1812 Op0 = DAG.getNode(ISD::AND, dl, VT, 1813 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 1814 DAG.getConstant(1, dl, VT)); 1815 1816 return DAG.getSetCC(dl, VT, Op0, 1817 DAG.getConstant(0, dl, Op0.getValueType()), 1818 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1819 } 1820 if (Op0.getOpcode() == ISD::AssertZext && 1821 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 1822 return DAG.getSetCC(dl, VT, Op0, 1823 DAG.getConstant(0, dl, Op0.getValueType()), 1824 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1825 } 1826 } 1827 1828 APInt MinVal, MaxVal; 1829 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits(); 1830 if (ISD::isSignedIntSetCC(Cond)) { 1831 MinVal = APInt::getSignedMinValue(OperandBitSize); 1832 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 1833 } else { 1834 MinVal = APInt::getMinValue(OperandBitSize); 1835 MaxVal = APInt::getMaxValue(OperandBitSize); 1836 } 1837 1838 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 1839 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 1840 if (C1 == MinVal) return DAG.getConstant(1, dl, VT); // X >= MIN --> true 1841 // X >= C0 --> X > (C0 - 1) 1842 APInt C = C1 - 1; 1843 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 1844 if ((DCI.isBeforeLegalizeOps() || 1845 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1846 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1847 isLegalICmpImmediate(C.getSExtValue())))) { 1848 return DAG.getSetCC(dl, VT, N0, 1849 DAG.getConstant(C, dl, N1.getValueType()), 1850 NewCC); 1851 } 1852 } 1853 1854 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 1855 if (C1 == MaxVal) return DAG.getConstant(1, dl, VT); // X <= MAX --> true 1856 // X <= C0 --> X < (C0 + 1) 1857 APInt C = C1 + 1; 1858 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 1859 if ((DCI.isBeforeLegalizeOps() || 1860 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1861 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1862 isLegalICmpImmediate(C.getSExtValue())))) { 1863 return DAG.getSetCC(dl, VT, N0, 1864 DAG.getConstant(C, dl, N1.getValueType()), 1865 NewCC); 1866 } 1867 } 1868 1869 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) 1870 return DAG.getConstant(0, dl, VT); // X < MIN --> false 1871 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal) 1872 return DAG.getConstant(1, dl, VT); // X >= MIN --> true 1873 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal) 1874 return DAG.getConstant(0, dl, VT); // X > MAX --> false 1875 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal) 1876 return DAG.getConstant(1, dl, VT); // X <= MAX --> true 1877 1878 // Canonicalize setgt X, Min --> setne X, Min 1879 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) 1880 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1881 // Canonicalize setlt X, Max --> setne X, Max 1882 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) 1883 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1884 1885 // If we have setult X, 1, turn it into seteq X, 0 1886 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) 1887 return DAG.getSetCC(dl, VT, N0, 1888 DAG.getConstant(MinVal, dl, N0.getValueType()), 1889 ISD::SETEQ); 1890 // If we have setugt X, Max-1, turn it into seteq X, Max 1891 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) 1892 return DAG.getSetCC(dl, VT, N0, 1893 DAG.getConstant(MaxVal, dl, N0.getValueType()), 1894 ISD::SETEQ); 1895 1896 // If we have "setcc X, C0", check to see if we can shrink the immediate 1897 // by changing cc. 1898 1899 // SETUGT X, SINTMAX -> SETLT X, 0 1900 if (Cond == ISD::SETUGT && 1901 C1 == APInt::getSignedMaxValue(OperandBitSize)) 1902 return DAG.getSetCC(dl, VT, N0, 1903 DAG.getConstant(0, dl, N1.getValueType()), 1904 ISD::SETLT); 1905 1906 // SETULT X, SINTMIN -> SETGT X, -1 1907 if (Cond == ISD::SETULT && 1908 C1 == APInt::getSignedMinValue(OperandBitSize)) { 1909 SDValue ConstMinusOne = 1910 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 1911 N1.getValueType()); 1912 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 1913 } 1914 1915 // Fold bit comparisons when we can. 1916 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1917 (VT == N0.getValueType() || 1918 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 1919 N0.getOpcode() == ISD::AND) { 1920 auto &DL = DAG.getDataLayout(); 1921 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1922 EVT ShiftTy = DCI.isBeforeLegalize() 1923 ? getPointerTy(DL) 1924 : getShiftAmountTy(N0.getValueType(), DL); 1925 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 1926 // Perform the xform if the AND RHS is a single bit. 1927 if (AndRHS->getAPIntValue().isPowerOf2()) { 1928 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1929 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1930 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, 1931 ShiftTy))); 1932 } 1933 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 1934 // (X & 8) == 8 --> (X & 8) >> 3 1935 // Perform the xform if C1 is a single bit. 1936 if (C1.isPowerOf2()) { 1937 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1938 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1939 DAG.getConstant(C1.logBase2(), dl, 1940 ShiftTy))); 1941 } 1942 } 1943 } 1944 } 1945 1946 if (C1.getMinSignedBits() <= 64 && 1947 !isLegalICmpImmediate(C1.getSExtValue())) { 1948 // (X & -256) == 256 -> (X >> 8) == 1 1949 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1950 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 1951 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1952 const APInt &AndRHSC = AndRHS->getAPIntValue(); 1953 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 1954 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 1955 auto &DL = DAG.getDataLayout(); 1956 EVT ShiftTy = DCI.isBeforeLegalize() 1957 ? getPointerTy(DL) 1958 : getShiftAmountTy(N0.getValueType(), DL); 1959 EVT CmpTy = N0.getValueType(); 1960 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 1961 DAG.getConstant(ShiftBits, dl, 1962 ShiftTy)); 1963 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); 1964 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 1965 } 1966 } 1967 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 1968 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 1969 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 1970 // X < 0x100000000 -> (X >> 32) < 1 1971 // X >= 0x100000000 -> (X >> 32) >= 1 1972 // X <= 0x0ffffffff -> (X >> 32) < 1 1973 // X > 0x0ffffffff -> (X >> 32) >= 1 1974 unsigned ShiftBits; 1975 APInt NewC = C1; 1976 ISD::CondCode NewCond = Cond; 1977 if (AdjOne) { 1978 ShiftBits = C1.countTrailingOnes(); 1979 NewC = NewC + 1; 1980 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 1981 } else { 1982 ShiftBits = C1.countTrailingZeros(); 1983 } 1984 NewC = NewC.lshr(ShiftBits); 1985 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 1986 isLegalICmpImmediate(NewC.getSExtValue())) { 1987 auto &DL = DAG.getDataLayout(); 1988 EVT ShiftTy = DCI.isBeforeLegalize() 1989 ? getPointerTy(DL) 1990 : getShiftAmountTy(N0.getValueType(), DL); 1991 EVT CmpTy = N0.getValueType(); 1992 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 1993 DAG.getConstant(ShiftBits, dl, ShiftTy)); 1994 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); 1995 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 1996 } 1997 } 1998 } 1999 } 2000 2001 if (isa<ConstantFPSDNode>(N0.getNode())) { 2002 // Constant fold or commute setcc. 2003 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); 2004 if (O.getNode()) return O; 2005 } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { 2006 // If the RHS of an FP comparison is a constant, simplify it away in 2007 // some cases. 2008 if (CFP->getValueAPF().isNaN()) { 2009 // If an operand is known to be a nan, we can fold it. 2010 switch (ISD::getUnorderedFlavor(Cond)) { 2011 default: llvm_unreachable("Unknown flavor!"); 2012 case 0: // Known false. 2013 return DAG.getConstant(0, dl, VT); 2014 case 1: // Known true. 2015 return DAG.getConstant(1, dl, VT); 2016 case 2: // Undefined. 2017 return DAG.getUNDEF(VT); 2018 } 2019 } 2020 2021 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 2022 // constant if knowing that the operand is non-nan is enough. We prefer to 2023 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 2024 // materialize 0.0. 2025 if (Cond == ISD::SETO || Cond == ISD::SETUO) 2026 return DAG.getSetCC(dl, VT, N0, N0, Cond); 2027 2028 // If the condition is not legal, see if we can find an equivalent one 2029 // which is legal. 2030 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 2031 // If the comparison was an awkward floating-point == or != and one of 2032 // the comparison operands is infinity or negative infinity, convert the 2033 // condition to a less-awkward <= or >=. 2034 if (CFP->getValueAPF().isInfinity()) { 2035 if (CFP->getValueAPF().isNegative()) { 2036 if (Cond == ISD::SETOEQ && 2037 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 2038 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 2039 if (Cond == ISD::SETUEQ && 2040 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 2041 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 2042 if (Cond == ISD::SETUNE && 2043 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 2044 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 2045 if (Cond == ISD::SETONE && 2046 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 2047 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 2048 } else { 2049 if (Cond == ISD::SETOEQ && 2050 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 2051 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 2052 if (Cond == ISD::SETUEQ && 2053 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 2054 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 2055 if (Cond == ISD::SETUNE && 2056 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 2057 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 2058 if (Cond == ISD::SETONE && 2059 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 2060 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 2061 } 2062 } 2063 } 2064 } 2065 2066 if (N0 == N1) { 2067 // The sext(setcc()) => setcc() optimization relies on the appropriate 2068 // constant being emitted. 2069 uint64_t EqVal = 0; 2070 switch (getBooleanContents(N0.getValueType())) { 2071 case UndefinedBooleanContent: 2072 case ZeroOrOneBooleanContent: 2073 EqVal = ISD::isTrueWhenEqual(Cond); 2074 break; 2075 case ZeroOrNegativeOneBooleanContent: 2076 EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0; 2077 break; 2078 } 2079 2080 // We can always fold X == X for integer setcc's. 2081 if (N0.getValueType().isInteger()) { 2082 return DAG.getConstant(EqVal, dl, VT); 2083 } 2084 unsigned UOF = ISD::getUnorderedFlavor(Cond); 2085 if (UOF == 2) // FP operators that are undefined on NaNs. 2086 return DAG.getConstant(EqVal, dl, VT); 2087 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) 2088 return DAG.getConstant(EqVal, dl, VT); 2089 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 2090 // if it is not already. 2091 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 2092 if (NewCond != Cond && (DCI.isBeforeLegalizeOps() || 2093 getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal)) 2094 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 2095 } 2096 2097 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2098 N0.getValueType().isInteger()) { 2099 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 2100 N0.getOpcode() == ISD::XOR) { 2101 // Simplify (X+Y) == (X+Z) --> Y == Z 2102 if (N0.getOpcode() == N1.getOpcode()) { 2103 if (N0.getOperand(0) == N1.getOperand(0)) 2104 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 2105 if (N0.getOperand(1) == N1.getOperand(1)) 2106 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 2107 if (DAG.isCommutativeBinOp(N0.getOpcode())) { 2108 // If X op Y == Y op X, try other combinations. 2109 if (N0.getOperand(0) == N1.getOperand(1)) 2110 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 2111 Cond); 2112 if (N0.getOperand(1) == N1.getOperand(0)) 2113 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 2114 Cond); 2115 } 2116 } 2117 2118 // If RHS is a legal immediate value for a compare instruction, we need 2119 // to be careful about increasing register pressure needlessly. 2120 bool LegalRHSImm = false; 2121 2122 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 2123 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2124 // Turn (X+C1) == C2 --> X == C2-C1 2125 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 2126 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2127 DAG.getConstant(RHSC->getAPIntValue()- 2128 LHSR->getAPIntValue(), 2129 dl, N0.getValueType()), Cond); 2130 } 2131 2132 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 2133 if (N0.getOpcode() == ISD::XOR) 2134 // If we know that all of the inverted bits are zero, don't bother 2135 // performing the inversion. 2136 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 2137 return 2138 DAG.getSetCC(dl, VT, N0.getOperand(0), 2139 DAG.getConstant(LHSR->getAPIntValue() ^ 2140 RHSC->getAPIntValue(), 2141 dl, N0.getValueType()), 2142 Cond); 2143 } 2144 2145 // Turn (C1-X) == C2 --> X == C1-C2 2146 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 2147 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 2148 return 2149 DAG.getSetCC(dl, VT, N0.getOperand(1), 2150 DAG.getConstant(SUBC->getAPIntValue() - 2151 RHSC->getAPIntValue(), 2152 dl, N0.getValueType()), 2153 Cond); 2154 } 2155 } 2156 2157 // Could RHSC fold directly into a compare? 2158 if (RHSC->getValueType(0).getSizeInBits() <= 64) 2159 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 2160 } 2161 2162 // Simplify (X+Z) == X --> Z == 0 2163 // Don't do this if X is an immediate that can fold into a cmp 2164 // instruction and X+Z has other uses. It could be an induction variable 2165 // chain, and the transform would increase register pressure. 2166 if (!LegalRHSImm || N0.getNode()->hasOneUse()) { 2167 if (N0.getOperand(0) == N1) 2168 return DAG.getSetCC(dl, VT, N0.getOperand(1), 2169 DAG.getConstant(0, dl, N0.getValueType()), Cond); 2170 if (N0.getOperand(1) == N1) { 2171 if (DAG.isCommutativeBinOp(N0.getOpcode())) 2172 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2173 DAG.getConstant(0, dl, N0.getValueType()), 2174 Cond); 2175 if (N0.getNode()->hasOneUse()) { 2176 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); 2177 auto &DL = DAG.getDataLayout(); 2178 // (Z-X) == X --> Z == X<<1 2179 SDValue SH = DAG.getNode( 2180 ISD::SHL, dl, N1.getValueType(), N1, 2181 DAG.getConstant(1, dl, 2182 getShiftAmountTy(N1.getValueType(), DL))); 2183 if (!DCI.isCalledByLegalizer()) 2184 DCI.AddToWorklist(SH.getNode()); 2185 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); 2186 } 2187 } 2188 } 2189 } 2190 2191 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 2192 N1.getOpcode() == ISD::XOR) { 2193 // Simplify X == (X+Z) --> Z == 0 2194 if (N1.getOperand(0) == N0) 2195 return DAG.getSetCC(dl, VT, N1.getOperand(1), 2196 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2197 if (N1.getOperand(1) == N0) { 2198 if (DAG.isCommutativeBinOp(N1.getOpcode())) 2199 return DAG.getSetCC(dl, VT, N1.getOperand(0), 2200 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2201 if (N1.getNode()->hasOneUse()) { 2202 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); 2203 auto &DL = DAG.getDataLayout(); 2204 // X == (Z-X) --> X<<1 == Z 2205 SDValue SH = DAG.getNode( 2206 ISD::SHL, dl, N1.getValueType(), N0, 2207 DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL))); 2208 if (!DCI.isCalledByLegalizer()) 2209 DCI.AddToWorklist(SH.getNode()); 2210 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); 2211 } 2212 } 2213 } 2214 2215 if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl)) 2216 return V; 2217 } 2218 2219 // Fold away ALL boolean setcc's. 2220 SDValue Temp; 2221 if (N0.getValueType() == MVT::i1 && foldBooleans) { 2222 switch (Cond) { 2223 default: llvm_unreachable("Unknown integer setcc!"); 2224 case ISD::SETEQ: // X == Y -> ~(X^Y) 2225 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2226 N0 = DAG.getNOT(dl, Temp, MVT::i1); 2227 if (!DCI.isCalledByLegalizer()) 2228 DCI.AddToWorklist(Temp.getNode()); 2229 break; 2230 case ISD::SETNE: // X != Y --> (X^Y) 2231 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2232 break; 2233 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 2234 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 2235 Temp = DAG.getNOT(dl, N0, MVT::i1); 2236 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp); 2237 if (!DCI.isCalledByLegalizer()) 2238 DCI.AddToWorklist(Temp.getNode()); 2239 break; 2240 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 2241 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 2242 Temp = DAG.getNOT(dl, N1, MVT::i1); 2243 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp); 2244 if (!DCI.isCalledByLegalizer()) 2245 DCI.AddToWorklist(Temp.getNode()); 2246 break; 2247 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 2248 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 2249 Temp = DAG.getNOT(dl, N0, MVT::i1); 2250 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp); 2251 if (!DCI.isCalledByLegalizer()) 2252 DCI.AddToWorklist(Temp.getNode()); 2253 break; 2254 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 2255 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 2256 Temp = DAG.getNOT(dl, N1, MVT::i1); 2257 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp); 2258 break; 2259 } 2260 if (VT != MVT::i1) { 2261 if (!DCI.isCalledByLegalizer()) 2262 DCI.AddToWorklist(N0.getNode()); 2263 // FIXME: If running after legalize, we probably can't do this. 2264 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0); 2265 } 2266 return N0; 2267 } 2268 2269 // Could not fold it. 2270 return SDValue(); 2271 } 2272 2273 /// Returns true (and the GlobalValue and the offset) if the node is a 2274 /// GlobalAddress + offset. 2275 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, 2276 int64_t &Offset) const { 2277 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 2278 GA = GASD->getGlobal(); 2279 Offset += GASD->getOffset(); 2280 return true; 2281 } 2282 2283 if (N->getOpcode() == ISD::ADD) { 2284 SDValue N1 = N->getOperand(0); 2285 SDValue N2 = N->getOperand(1); 2286 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 2287 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 2288 Offset += V->getSExtValue(); 2289 return true; 2290 } 2291 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 2292 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 2293 Offset += V->getSExtValue(); 2294 return true; 2295 } 2296 } 2297 } 2298 2299 return false; 2300 } 2301 2302 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 2303 DAGCombinerInfo &DCI) const { 2304 // Default implementation: no optimization. 2305 return SDValue(); 2306 } 2307 2308 //===----------------------------------------------------------------------===// 2309 // Inline Assembler Implementation Methods 2310 //===----------------------------------------------------------------------===// 2311 2312 TargetLowering::ConstraintType 2313 TargetLowering::getConstraintType(StringRef Constraint) const { 2314 unsigned S = Constraint.size(); 2315 2316 if (S == 1) { 2317 switch (Constraint[0]) { 2318 default: break; 2319 case 'r': return C_RegisterClass; 2320 case 'm': // memory 2321 case 'o': // offsetable 2322 case 'V': // not offsetable 2323 return C_Memory; 2324 case 'i': // Simple Integer or Relocatable Constant 2325 case 'n': // Simple Integer 2326 case 'E': // Floating Point Constant 2327 case 'F': // Floating Point Constant 2328 case 's': // Relocatable Constant 2329 case 'p': // Address. 2330 case 'X': // Allow ANY value. 2331 case 'I': // Target registers. 2332 case 'J': 2333 case 'K': 2334 case 'L': 2335 case 'M': 2336 case 'N': 2337 case 'O': 2338 case 'P': 2339 case '<': 2340 case '>': 2341 return C_Other; 2342 } 2343 } 2344 2345 if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { 2346 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 2347 return C_Memory; 2348 return C_Register; 2349 } 2350 return C_Unknown; 2351 } 2352 2353 /// Try to replace an X constraint, which matches anything, with another that 2354 /// has more specific requirements based on the type of the corresponding 2355 /// operand. 2356 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ 2357 if (ConstraintVT.isInteger()) 2358 return "r"; 2359 if (ConstraintVT.isFloatingPoint()) 2360 return "f"; // works for many targets 2361 return nullptr; 2362 } 2363 2364 /// Lower the specified operand into the Ops vector. 2365 /// If it is invalid, don't add anything to Ops. 2366 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 2367 std::string &Constraint, 2368 std::vector<SDValue> &Ops, 2369 SelectionDAG &DAG) const { 2370 2371 if (Constraint.length() > 1) return; 2372 2373 char ConstraintLetter = Constraint[0]; 2374 switch (ConstraintLetter) { 2375 default: break; 2376 case 'X': // Allows any operand; labels (basic block) use this. 2377 if (Op.getOpcode() == ISD::BasicBlock) { 2378 Ops.push_back(Op); 2379 return; 2380 } 2381 LLVM_FALLTHROUGH; 2382 case 'i': // Simple Integer or Relocatable Constant 2383 case 'n': // Simple Integer 2384 case 's': { // Relocatable Constant 2385 // These operands are interested in values of the form (GV+C), where C may 2386 // be folded in as an offset of GV, or it may be explicitly added. Also, it 2387 // is possible and fine if either GV or C are missing. 2388 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2389 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 2390 2391 // If we have "(add GV, C)", pull out GV/C 2392 if (Op.getOpcode() == ISD::ADD) { 2393 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2394 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 2395 if (!C || !GA) { 2396 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 2397 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 2398 } 2399 if (!C || !GA) { 2400 C = nullptr; 2401 GA = nullptr; 2402 } 2403 } 2404 2405 // If we find a valid operand, map to the TargetXXX version so that the 2406 // value itself doesn't get selected. 2407 if (GA) { // Either &GV or &GV+C 2408 if (ConstraintLetter != 'n') { 2409 int64_t Offs = GA->getOffset(); 2410 if (C) Offs += C->getZExtValue(); 2411 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 2412 C ? SDLoc(C) : SDLoc(), 2413 Op.getValueType(), Offs)); 2414 } 2415 return; 2416 } 2417 if (C) { // just C, no GV. 2418 // Simple constants are not allowed for 's'. 2419 if (ConstraintLetter != 's') { 2420 // gcc prints these as sign extended. Sign extend value to 64 bits 2421 // now; without this it would get ZExt'd later in 2422 // ScheduleDAGSDNodes::EmitNode, which is very generic. 2423 Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(), 2424 SDLoc(C), MVT::i64)); 2425 } 2426 return; 2427 } 2428 break; 2429 } 2430 } 2431 } 2432 2433 std::pair<unsigned, const TargetRegisterClass *> 2434 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 2435 StringRef Constraint, 2436 MVT VT) const { 2437 if (Constraint.empty() || Constraint[0] != '{') 2438 return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr)); 2439 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); 2440 2441 // Remove the braces from around the name. 2442 StringRef RegName(Constraint.data()+1, Constraint.size()-2); 2443 2444 std::pair<unsigned, const TargetRegisterClass*> R = 2445 std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr)); 2446 2447 // Figure out which register class contains this reg. 2448 for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(), 2449 E = RI->regclass_end(); RCI != E; ++RCI) { 2450 const TargetRegisterClass *RC = *RCI; 2451 2452 // If none of the value types for this register class are valid, we 2453 // can't use it. For example, 64-bit reg classes on 32-bit targets. 2454 if (!isLegalRC(RC)) 2455 continue; 2456 2457 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 2458 I != E; ++I) { 2459 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 2460 std::pair<unsigned, const TargetRegisterClass*> S = 2461 std::make_pair(*I, RC); 2462 2463 // If this register class has the requested value type, return it, 2464 // otherwise keep searching and return the first class found 2465 // if no other is found which explicitly has the requested type. 2466 if (RC->hasType(VT)) 2467 return S; 2468 else if (!R.second) 2469 R = S; 2470 } 2471 } 2472 } 2473 2474 return R; 2475 } 2476 2477 //===----------------------------------------------------------------------===// 2478 // Constraint Selection. 2479 2480 /// Return true of this is an input operand that is a matching constraint like 2481 /// "4". 2482 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 2483 assert(!ConstraintCode.empty() && "No known constraint!"); 2484 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 2485 } 2486 2487 /// If this is an input matching constraint, this method returns the output 2488 /// operand it matches. 2489 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 2490 assert(!ConstraintCode.empty() && "No known constraint!"); 2491 return atoi(ConstraintCode.c_str()); 2492 } 2493 2494 /// Split up the constraint string from the inline assembly value into the 2495 /// specific constraints and their prefixes, and also tie in the associated 2496 /// operand values. 2497 /// If this returns an empty vector, and if the constraint string itself 2498 /// isn't empty, there was an error parsing. 2499 TargetLowering::AsmOperandInfoVector 2500 TargetLowering::ParseConstraints(const DataLayout &DL, 2501 const TargetRegisterInfo *TRI, 2502 ImmutableCallSite CS) const { 2503 /// Information about all of the constraints. 2504 AsmOperandInfoVector ConstraintOperands; 2505 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 2506 unsigned maCount = 0; // Largest number of multiple alternative constraints. 2507 2508 // Do a prepass over the constraints, canonicalizing them, and building up the 2509 // ConstraintOperands list. 2510 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 2511 unsigned ResNo = 0; // ResNo - The result number of the next output. 2512 2513 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 2514 ConstraintOperands.emplace_back(std::move(CI)); 2515 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 2516 2517 // Update multiple alternative constraint count. 2518 if (OpInfo.multipleAlternatives.size() > maCount) 2519 maCount = OpInfo.multipleAlternatives.size(); 2520 2521 OpInfo.ConstraintVT = MVT::Other; 2522 2523 // Compute the value type for each operand. 2524 switch (OpInfo.Type) { 2525 case InlineAsm::isOutput: 2526 // Indirect outputs just consume an argument. 2527 if (OpInfo.isIndirect) { 2528 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2529 break; 2530 } 2531 2532 // The return value of the call is this value. As such, there is no 2533 // corresponding argument. 2534 assert(!CS.getType()->isVoidTy() && 2535 "Bad inline asm!"); 2536 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 2537 OpInfo.ConstraintVT = 2538 getSimpleValueType(DL, STy->getElementType(ResNo)); 2539 } else { 2540 assert(ResNo == 0 && "Asm only has one result!"); 2541 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 2542 } 2543 ++ResNo; 2544 break; 2545 case InlineAsm::isInput: 2546 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2547 break; 2548 case InlineAsm::isClobber: 2549 // Nothing to do. 2550 break; 2551 } 2552 2553 if (OpInfo.CallOperandVal) { 2554 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 2555 if (OpInfo.isIndirect) { 2556 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 2557 if (!PtrTy) 2558 report_fatal_error("Indirect operand for inline asm not a pointer!"); 2559 OpTy = PtrTy->getElementType(); 2560 } 2561 2562 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 2563 if (StructType *STy = dyn_cast<StructType>(OpTy)) 2564 if (STy->getNumElements() == 1) 2565 OpTy = STy->getElementType(0); 2566 2567 // If OpTy is not a single value, it may be a struct/union that we 2568 // can tile with integers. 2569 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 2570 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 2571 switch (BitSize) { 2572 default: break; 2573 case 1: 2574 case 8: 2575 case 16: 2576 case 32: 2577 case 64: 2578 case 128: 2579 OpInfo.ConstraintVT = 2580 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 2581 break; 2582 } 2583 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 2584 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 2585 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 2586 } else { 2587 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 2588 } 2589 } 2590 } 2591 2592 // If we have multiple alternative constraints, select the best alternative. 2593 if (!ConstraintOperands.empty()) { 2594 if (maCount) { 2595 unsigned bestMAIndex = 0; 2596 int bestWeight = -1; 2597 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 2598 int weight = -1; 2599 unsigned maIndex; 2600 // Compute the sums of the weights for each alternative, keeping track 2601 // of the best (highest weight) one so far. 2602 for (maIndex = 0; maIndex < maCount; ++maIndex) { 2603 int weightSum = 0; 2604 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2605 cIndex != eIndex; ++cIndex) { 2606 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2607 if (OpInfo.Type == InlineAsm::isClobber) 2608 continue; 2609 2610 // If this is an output operand with a matching input operand, 2611 // look up the matching input. If their types mismatch, e.g. one 2612 // is an integer, the other is floating point, or their sizes are 2613 // different, flag it as an maCantMatch. 2614 if (OpInfo.hasMatchingInput()) { 2615 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2616 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2617 if ((OpInfo.ConstraintVT.isInteger() != 2618 Input.ConstraintVT.isInteger()) || 2619 (OpInfo.ConstraintVT.getSizeInBits() != 2620 Input.ConstraintVT.getSizeInBits())) { 2621 weightSum = -1; // Can't match. 2622 break; 2623 } 2624 } 2625 } 2626 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 2627 if (weight == -1) { 2628 weightSum = -1; 2629 break; 2630 } 2631 weightSum += weight; 2632 } 2633 // Update best. 2634 if (weightSum > bestWeight) { 2635 bestWeight = weightSum; 2636 bestMAIndex = maIndex; 2637 } 2638 } 2639 2640 // Now select chosen alternative in each constraint. 2641 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2642 cIndex != eIndex; ++cIndex) { 2643 AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; 2644 if (cInfo.Type == InlineAsm::isClobber) 2645 continue; 2646 cInfo.selectAlternative(bestMAIndex); 2647 } 2648 } 2649 } 2650 2651 // Check and hook up tied operands, choose constraint code to use. 2652 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2653 cIndex != eIndex; ++cIndex) { 2654 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2655 2656 // If this is an output operand with a matching input operand, look up the 2657 // matching input. If their types mismatch, e.g. one is an integer, the 2658 // other is floating point, or their sizes are different, flag it as an 2659 // error. 2660 if (OpInfo.hasMatchingInput()) { 2661 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2662 2663 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2664 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 2665 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 2666 OpInfo.ConstraintVT); 2667 std::pair<unsigned, const TargetRegisterClass *> InputRC = 2668 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 2669 Input.ConstraintVT); 2670 if ((OpInfo.ConstraintVT.isInteger() != 2671 Input.ConstraintVT.isInteger()) || 2672 (MatchRC.second != InputRC.second)) { 2673 report_fatal_error("Unsupported asm: input constraint" 2674 " with a matching output constraint of" 2675 " incompatible type!"); 2676 } 2677 } 2678 } 2679 } 2680 2681 return ConstraintOperands; 2682 } 2683 2684 /// Return an integer indicating how general CT is. 2685 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 2686 switch (CT) { 2687 case TargetLowering::C_Other: 2688 case TargetLowering::C_Unknown: 2689 return 0; 2690 case TargetLowering::C_Register: 2691 return 1; 2692 case TargetLowering::C_RegisterClass: 2693 return 2; 2694 case TargetLowering::C_Memory: 2695 return 3; 2696 } 2697 llvm_unreachable("Invalid constraint type"); 2698 } 2699 2700 /// Examine constraint type and operand type and determine a weight value. 2701 /// This object must already have been set up with the operand type 2702 /// and the current alternative constraint selected. 2703 TargetLowering::ConstraintWeight 2704 TargetLowering::getMultipleConstraintMatchWeight( 2705 AsmOperandInfo &info, int maIndex) const { 2706 InlineAsm::ConstraintCodeVector *rCodes; 2707 if (maIndex >= (int)info.multipleAlternatives.size()) 2708 rCodes = &info.Codes; 2709 else 2710 rCodes = &info.multipleAlternatives[maIndex].Codes; 2711 ConstraintWeight BestWeight = CW_Invalid; 2712 2713 // Loop over the options, keeping track of the most general one. 2714 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 2715 ConstraintWeight weight = 2716 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 2717 if (weight > BestWeight) 2718 BestWeight = weight; 2719 } 2720 2721 return BestWeight; 2722 } 2723 2724 /// Examine constraint type and operand type and determine a weight value. 2725 /// This object must already have been set up with the operand type 2726 /// and the current alternative constraint selected. 2727 TargetLowering::ConstraintWeight 2728 TargetLowering::getSingleConstraintMatchWeight( 2729 AsmOperandInfo &info, const char *constraint) const { 2730 ConstraintWeight weight = CW_Invalid; 2731 Value *CallOperandVal = info.CallOperandVal; 2732 // If we don't have a value, we can't do a match, 2733 // but allow it at the lowest weight. 2734 if (!CallOperandVal) 2735 return CW_Default; 2736 // Look at the constraint type. 2737 switch (*constraint) { 2738 case 'i': // immediate integer. 2739 case 'n': // immediate integer with a known value. 2740 if (isa<ConstantInt>(CallOperandVal)) 2741 weight = CW_Constant; 2742 break; 2743 case 's': // non-explicit intregal immediate. 2744 if (isa<GlobalValue>(CallOperandVal)) 2745 weight = CW_Constant; 2746 break; 2747 case 'E': // immediate float if host format. 2748 case 'F': // immediate float. 2749 if (isa<ConstantFP>(CallOperandVal)) 2750 weight = CW_Constant; 2751 break; 2752 case '<': // memory operand with autodecrement. 2753 case '>': // memory operand with autoincrement. 2754 case 'm': // memory operand. 2755 case 'o': // offsettable memory operand 2756 case 'V': // non-offsettable memory operand 2757 weight = CW_Memory; 2758 break; 2759 case 'r': // general register. 2760 case 'g': // general register, memory operand or immediate integer. 2761 // note: Clang converts "g" to "imr". 2762 if (CallOperandVal->getType()->isIntegerTy()) 2763 weight = CW_Register; 2764 break; 2765 case 'X': // any operand. 2766 default: 2767 weight = CW_Default; 2768 break; 2769 } 2770 return weight; 2771 } 2772 2773 /// If there are multiple different constraints that we could pick for this 2774 /// operand (e.g. "imr") try to pick the 'best' one. 2775 /// This is somewhat tricky: constraints fall into four classes: 2776 /// Other -> immediates and magic values 2777 /// Register -> one specific register 2778 /// RegisterClass -> a group of regs 2779 /// Memory -> memory 2780 /// Ideally, we would pick the most specific constraint possible: if we have 2781 /// something that fits into a register, we would pick it. The problem here 2782 /// is that if we have something that could either be in a register or in 2783 /// memory that use of the register could cause selection of *other* 2784 /// operands to fail: they might only succeed if we pick memory. Because of 2785 /// this the heuristic we use is: 2786 /// 2787 /// 1) If there is an 'other' constraint, and if the operand is valid for 2788 /// that constraint, use it. This makes us take advantage of 'i' 2789 /// constraints when available. 2790 /// 2) Otherwise, pick the most general constraint present. This prefers 2791 /// 'm' over 'r', for example. 2792 /// 2793 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 2794 const TargetLowering &TLI, 2795 SDValue Op, SelectionDAG *DAG) { 2796 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 2797 unsigned BestIdx = 0; 2798 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 2799 int BestGenerality = -1; 2800 2801 // Loop over the options, keeping track of the most general one. 2802 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 2803 TargetLowering::ConstraintType CType = 2804 TLI.getConstraintType(OpInfo.Codes[i]); 2805 2806 // If this is an 'other' constraint, see if the operand is valid for it. 2807 // For example, on X86 we might have an 'rI' constraint. If the operand 2808 // is an integer in the range [0..31] we want to use I (saving a load 2809 // of a register), otherwise we must use 'r'. 2810 if (CType == TargetLowering::C_Other && Op.getNode()) { 2811 assert(OpInfo.Codes[i].size() == 1 && 2812 "Unhandled multi-letter 'other' constraint"); 2813 std::vector<SDValue> ResultOps; 2814 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 2815 ResultOps, *DAG); 2816 if (!ResultOps.empty()) { 2817 BestType = CType; 2818 BestIdx = i; 2819 break; 2820 } 2821 } 2822 2823 // Things with matching constraints can only be registers, per gcc 2824 // documentation. This mainly affects "g" constraints. 2825 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 2826 continue; 2827 2828 // This constraint letter is more general than the previous one, use it. 2829 int Generality = getConstraintGenerality(CType); 2830 if (Generality > BestGenerality) { 2831 BestType = CType; 2832 BestIdx = i; 2833 BestGenerality = Generality; 2834 } 2835 } 2836 2837 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 2838 OpInfo.ConstraintType = BestType; 2839 } 2840 2841 /// Determines the constraint code and constraint type to use for the specific 2842 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 2843 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 2844 SDValue Op, 2845 SelectionDAG *DAG) const { 2846 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 2847 2848 // Single-letter constraints ('r') are very common. 2849 if (OpInfo.Codes.size() == 1) { 2850 OpInfo.ConstraintCode = OpInfo.Codes[0]; 2851 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2852 } else { 2853 ChooseConstraint(OpInfo, *this, Op, DAG); 2854 } 2855 2856 // 'X' matches anything. 2857 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 2858 // Labels and constants are handled elsewhere ('X' is the only thing 2859 // that matches labels). For Functions, the type here is the type of 2860 // the result, which is not what we want to look at; leave them alone. 2861 Value *v = OpInfo.CallOperandVal; 2862 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 2863 OpInfo.CallOperandVal = v; 2864 return; 2865 } 2866 2867 // Otherwise, try to resolve it to something we know about by looking at 2868 // the actual operand type. 2869 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 2870 OpInfo.ConstraintCode = Repl; 2871 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2872 } 2873 } 2874 } 2875 2876 /// \brief Given an exact SDIV by a constant, create a multiplication 2877 /// with the multiplicative inverse of the constant. 2878 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d, 2879 const SDLoc &dl, SelectionDAG &DAG, 2880 std::vector<SDNode *> &Created) { 2881 assert(d != 0 && "Division by zero!"); 2882 2883 // Shift the value upfront if it is even, so the LSB is one. 2884 unsigned ShAmt = d.countTrailingZeros(); 2885 if (ShAmt) { 2886 // TODO: For UDIV use SRL instead of SRA. 2887 SDValue Amt = 2888 DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(), 2889 DAG.getDataLayout())); 2890 SDNodeFlags Flags; 2891 Flags.setExact(true); 2892 Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, &Flags); 2893 Created.push_back(Op1.getNode()); 2894 d = d.ashr(ShAmt); 2895 } 2896 2897 // Calculate the multiplicative inverse, using Newton's method. 2898 APInt t, xn = d; 2899 while ((t = d*xn) != 1) 2900 xn *= APInt(d.getBitWidth(), 2) - t; 2901 2902 SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType()); 2903 SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2); 2904 Created.push_back(Mul.getNode()); 2905 return Mul; 2906 } 2907 2908 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 2909 SelectionDAG &DAG, 2910 std::vector<SDNode *> *Created) const { 2911 AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); 2912 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2913 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 2914 return SDValue(N,0); // Lower SDIV as SDIV 2915 return SDValue(); 2916 } 2917 2918 /// \brief Given an ISD::SDIV node expressing a divide by constant, 2919 /// return a DAG expression to select that will generate the same value by 2920 /// multiplying by a magic number. 2921 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 2922 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor, 2923 SelectionDAG &DAG, bool IsAfterLegalization, 2924 std::vector<SDNode *> *Created) const { 2925 assert(Created && "No vector to hold sdiv ops."); 2926 2927 EVT VT = N->getValueType(0); 2928 SDLoc dl(N); 2929 2930 // Check to see if we can do this. 2931 // FIXME: We should be more aggressive here. 2932 if (!isTypeLegal(VT)) 2933 return SDValue(); 2934 2935 // If the sdiv has an 'exact' bit we can use a simpler lowering. 2936 if (cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact()) 2937 return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created); 2938 2939 APInt::ms magics = Divisor.magic(); 2940 2941 // Multiply the numerator (operand 0) by the magic value 2942 // FIXME: We should support doing a MUL in a wider type 2943 SDValue Q; 2944 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) : 2945 isOperationLegalOrCustom(ISD::MULHS, VT)) 2946 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0), 2947 DAG.getConstant(magics.m, dl, VT)); 2948 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) : 2949 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) 2950 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), 2951 N->getOperand(0), 2952 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 2953 else 2954 return SDValue(); // No mulhs or equvialent 2955 // If d > 0 and m < 0, add the numerator 2956 if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 2957 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); 2958 Created->push_back(Q.getNode()); 2959 } 2960 // If d < 0 and m > 0, subtract the numerator. 2961 if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 2962 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0)); 2963 Created->push_back(Q.getNode()); 2964 } 2965 auto &DL = DAG.getDataLayout(); 2966 // Shift right algebraic if shift value is nonzero 2967 if (magics.s > 0) { 2968 Q = DAG.getNode( 2969 ISD::SRA, dl, VT, Q, 2970 DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); 2971 Created->push_back(Q.getNode()); 2972 } 2973 // Extract the sign bit and add it to the quotient 2974 SDValue T = 2975 DAG.getNode(ISD::SRL, dl, VT, Q, 2976 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, 2977 getShiftAmountTy(Q.getValueType(), DL))); 2978 Created->push_back(T.getNode()); 2979 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 2980 } 2981 2982 /// \brief Given an ISD::UDIV node expressing a divide by constant, 2983 /// return a DAG expression to select that will generate the same value by 2984 /// multiplying by a magic number. 2985 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 2986 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor, 2987 SelectionDAG &DAG, bool IsAfterLegalization, 2988 std::vector<SDNode *> *Created) const { 2989 assert(Created && "No vector to hold udiv ops."); 2990 2991 EVT VT = N->getValueType(0); 2992 SDLoc dl(N); 2993 auto &DL = DAG.getDataLayout(); 2994 2995 // Check to see if we can do this. 2996 // FIXME: We should be more aggressive here. 2997 if (!isTypeLegal(VT)) 2998 return SDValue(); 2999 3000 // FIXME: We should use a narrower constant when the upper 3001 // bits are known to be zero. 3002 APInt::mu magics = Divisor.magicu(); 3003 3004 SDValue Q = N->getOperand(0); 3005 3006 // If the divisor is even, we can avoid using the expensive fixup by shifting 3007 // the divided value upfront. 3008 if (magics.a != 0 && !Divisor[0]) { 3009 unsigned Shift = Divisor.countTrailingZeros(); 3010 Q = DAG.getNode( 3011 ISD::SRL, dl, VT, Q, 3012 DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL))); 3013 Created->push_back(Q.getNode()); 3014 3015 // Get magic number for the shifted divisor. 3016 magics = Divisor.lshr(Shift).magicu(Shift); 3017 assert(magics.a == 0 && "Should use cheap fixup now"); 3018 } 3019 3020 // Multiply the numerator (operand 0) by the magic value 3021 // FIXME: We should support doing a MUL in a wider type 3022 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) : 3023 isOperationLegalOrCustom(ISD::MULHU, VT)) 3024 Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT)); 3025 else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) : 3026 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) 3027 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q, 3028 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 3029 else 3030 return SDValue(); // No mulhu or equvialent 3031 3032 Created->push_back(Q.getNode()); 3033 3034 if (magics.a == 0) { 3035 assert(magics.s < Divisor.getBitWidth() && 3036 "We shouldn't generate an undefined shift!"); 3037 return DAG.getNode( 3038 ISD::SRL, dl, VT, Q, 3039 DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); 3040 } else { 3041 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); 3042 Created->push_back(NPQ.getNode()); 3043 NPQ = DAG.getNode( 3044 ISD::SRL, dl, VT, NPQ, 3045 DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL))); 3046 Created->push_back(NPQ.getNode()); 3047 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 3048 Created->push_back(NPQ.getNode()); 3049 return DAG.getNode( 3050 ISD::SRL, dl, VT, NPQ, 3051 DAG.getConstant(magics.s - 1, dl, 3052 getShiftAmountTy(NPQ.getValueType(), DL))); 3053 } 3054 } 3055 3056 bool TargetLowering:: 3057 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 3058 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 3059 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 3060 "be a constant integer"); 3061 return true; 3062 } 3063 3064 return false; 3065 } 3066 3067 //===----------------------------------------------------------------------===// 3068 // Legalization Utilities 3069 //===----------------------------------------------------------------------===// 3070 3071 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 3072 SelectionDAG &DAG, SDValue LL, SDValue LH, 3073 SDValue RL, SDValue RH) const { 3074 EVT VT = N->getValueType(0); 3075 SDLoc dl(N); 3076 3077 bool HasMULHS = isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 3078 bool HasMULHU = isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 3079 bool HasSMUL_LOHI = isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 3080 bool HasUMUL_LOHI = isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 3081 if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { 3082 unsigned OuterBitSize = VT.getSizeInBits(); 3083 unsigned InnerBitSize = HiLoVT.getSizeInBits(); 3084 unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0)); 3085 unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1)); 3086 3087 // LL, LH, RL, and RH must be either all NULL or all set to a value. 3088 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 3089 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 3090 3091 if (!LL.getNode() && !RL.getNode() && 3092 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 3093 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(0)); 3094 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(1)); 3095 } 3096 3097 if (!LL.getNode()) 3098 return false; 3099 3100 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 3101 if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) && 3102 DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) { 3103 // The inputs are both zero-extended. 3104 if (HasUMUL_LOHI) { 3105 // We can emit a umul_lohi. 3106 Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL, 3107 RL); 3108 Hi = SDValue(Lo.getNode(), 1); 3109 return true; 3110 } 3111 if (HasMULHU) { 3112 // We can emit a mulhu+mul. 3113 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 3114 Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL); 3115 return true; 3116 } 3117 } 3118 if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) { 3119 // The input values are both sign-extended. 3120 if (HasSMUL_LOHI) { 3121 // We can emit a smul_lohi. 3122 Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL, 3123 RL); 3124 Hi = SDValue(Lo.getNode(), 1); 3125 return true; 3126 } 3127 if (HasMULHS) { 3128 // We can emit a mulhs+mul. 3129 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 3130 Hi = DAG.getNode(ISD::MULHS, dl, HiLoVT, LL, RL); 3131 return true; 3132 } 3133 } 3134 3135 if (!LH.getNode() && !RH.getNode() && 3136 isOperationLegalOrCustom(ISD::SRL, VT) && 3137 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 3138 auto &DL = DAG.getDataLayout(); 3139 unsigned ShiftAmt = VT.getSizeInBits() - HiLoVT.getSizeInBits(); 3140 SDValue Shift = DAG.getConstant(ShiftAmt, dl, getShiftAmountTy(VT, DL)); 3141 LH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(0), Shift); 3142 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 3143 RH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(1), Shift); 3144 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 3145 } 3146 3147 if (!LH.getNode()) 3148 return false; 3149 3150 if (HasUMUL_LOHI) { 3151 // Lo,Hi = umul LHS, RHS. 3152 SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl, 3153 DAG.getVTList(HiLoVT, HiLoVT), LL, RL); 3154 Lo = UMulLOHI; 3155 Hi = UMulLOHI.getValue(1); 3156 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 3157 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 3158 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 3159 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 3160 return true; 3161 } 3162 if (HasMULHU) { 3163 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 3164 Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL); 3165 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 3166 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 3167 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 3168 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 3169 return true; 3170 } 3171 } 3172 return false; 3173 } 3174 3175 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 3176 SelectionDAG &DAG) const { 3177 EVT VT = Node->getOperand(0).getValueType(); 3178 EVT NVT = Node->getValueType(0); 3179 SDLoc dl(SDValue(Node, 0)); 3180 3181 // FIXME: Only f32 to i64 conversions are supported. 3182 if (VT != MVT::f32 || NVT != MVT::i64) 3183 return false; 3184 3185 // Expand f32 -> i64 conversion 3186 // This algorithm comes from compiler-rt's implementation of fixsfdi: 3187 // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c 3188 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), 3189 VT.getSizeInBits()); 3190 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 3191 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 3192 SDValue Bias = DAG.getConstant(127, dl, IntVT); 3193 SDValue SignMask = DAG.getConstant(APInt::getSignBit(VT.getSizeInBits()), dl, 3194 IntVT); 3195 SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT); 3196 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 3197 3198 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0)); 3199 3200 auto &DL = DAG.getDataLayout(); 3201 SDValue ExponentBits = DAG.getNode( 3202 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 3203 DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL))); 3204 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 3205 3206 SDValue Sign = DAG.getNode( 3207 ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 3208 DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL))); 3209 Sign = DAG.getSExtOrTrunc(Sign, dl, NVT); 3210 3211 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 3212 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 3213 DAG.getConstant(0x00800000, dl, IntVT)); 3214 3215 R = DAG.getZExtOrTrunc(R, dl, NVT); 3216 3217 R = DAG.getSelectCC( 3218 dl, Exponent, ExponentLoBit, 3219 DAG.getNode(ISD::SHL, dl, NVT, R, 3220 DAG.getZExtOrTrunc( 3221 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 3222 dl, getShiftAmountTy(IntVT, DL))), 3223 DAG.getNode(ISD::SRL, dl, NVT, R, 3224 DAG.getZExtOrTrunc( 3225 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 3226 dl, getShiftAmountTy(IntVT, DL))), 3227 ISD::SETGT); 3228 3229 SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT, 3230 DAG.getNode(ISD::XOR, dl, NVT, R, Sign), 3231 Sign); 3232 3233 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 3234 DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT); 3235 return true; 3236 } 3237 3238 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 3239 SelectionDAG &DAG) const { 3240 SDLoc SL(LD); 3241 SDValue Chain = LD->getChain(); 3242 SDValue BasePTR = LD->getBasePtr(); 3243 EVT SrcVT = LD->getMemoryVT(); 3244 ISD::LoadExtType ExtType = LD->getExtensionType(); 3245 3246 unsigned NumElem = SrcVT.getVectorNumElements(); 3247 3248 EVT SrcEltVT = SrcVT.getScalarType(); 3249 EVT DstEltVT = LD->getValueType(0).getScalarType(); 3250 3251 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 3252 assert(SrcEltVT.isByteSized()); 3253 3254 EVT PtrVT = BasePTR.getValueType(); 3255 3256 SmallVector<SDValue, 8> Vals; 3257 SmallVector<SDValue, 8> LoadChains; 3258 3259 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 3260 SDValue ScalarLoad = 3261 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 3262 LD->getPointerInfo().getWithOffset(Idx * Stride), 3263 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 3264 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3265 3266 BasePTR = DAG.getNode(ISD::ADD, SL, PtrVT, BasePTR, 3267 DAG.getConstant(Stride, SL, PtrVT)); 3268 3269 Vals.push_back(ScalarLoad.getValue(0)); 3270 LoadChains.push_back(ScalarLoad.getValue(1)); 3271 } 3272 3273 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 3274 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, SL, LD->getValueType(0), Vals); 3275 3276 return DAG.getMergeValues({ Value, NewChain }, SL); 3277 } 3278 3279 // FIXME: This relies on each element having a byte size, otherwise the stride 3280 // is 0 and just overwrites the same location. ExpandStore currently expects 3281 // this broken behavior. 3282 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 3283 SelectionDAG &DAG) const { 3284 SDLoc SL(ST); 3285 3286 SDValue Chain = ST->getChain(); 3287 SDValue BasePtr = ST->getBasePtr(); 3288 SDValue Value = ST->getValue(); 3289 EVT StVT = ST->getMemoryVT(); 3290 3291 // The type of the data we want to save 3292 EVT RegVT = Value.getValueType(); 3293 EVT RegSclVT = RegVT.getScalarType(); 3294 3295 // The type of data as saved in memory. 3296 EVT MemSclVT = StVT.getScalarType(); 3297 3298 EVT PtrVT = BasePtr.getValueType(); 3299 3300 // Store Stride in bytes 3301 unsigned Stride = MemSclVT.getSizeInBits() / 8; 3302 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 3303 unsigned NumElem = StVT.getVectorNumElements(); 3304 3305 // Extract each of the elements from the original vector and save them into 3306 // memory individually. 3307 SmallVector<SDValue, 8> Stores; 3308 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 3309 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 3310 DAG.getConstant(Idx, SL, IdxVT)); 3311 3312 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 3313 DAG.getConstant(Idx * Stride, SL, PtrVT)); 3314 3315 // This scalar TruncStore may be illegal, but we legalize it later. 3316 SDValue Store = DAG.getTruncStore( 3317 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 3318 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 3319 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 3320 3321 Stores.push_back(Store); 3322 } 3323 3324 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 3325 } 3326 3327 std::pair<SDValue, SDValue> 3328 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 3329 assert(LD->getAddressingMode() == ISD::UNINDEXED && 3330 "unaligned indexed loads not implemented!"); 3331 SDValue Chain = LD->getChain(); 3332 SDValue Ptr = LD->getBasePtr(); 3333 EVT VT = LD->getValueType(0); 3334 EVT LoadedVT = LD->getMemoryVT(); 3335 SDLoc dl(LD); 3336 if (VT.isFloatingPoint() || VT.isVector()) { 3337 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 3338 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 3339 if (!isOperationLegalOrCustom(ISD::LOAD, intVT)) { 3340 // Scalarize the load and let the individual components be handled. 3341 SDValue Scalarized = scalarizeVectorLoad(LD, DAG); 3342 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); 3343 } 3344 3345 // Expand to a (misaligned) integer load of the same size, 3346 // then bitconvert to floating point or vector. 3347 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 3348 LD->getMemOperand()); 3349 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 3350 if (LoadedVT != VT) 3351 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 3352 ISD::ANY_EXTEND, dl, VT, Result); 3353 3354 return std::make_pair(Result, newLoad.getValue(1)); 3355 } 3356 3357 // Copy the value to a (aligned) stack slot using (unaligned) integer 3358 // loads and stores, then do a (aligned) load from the stack slot. 3359 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 3360 unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8; 3361 unsigned RegBytes = RegVT.getSizeInBits() / 8; 3362 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 3363 3364 // Make sure the stack slot is also aligned for the register type. 3365 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 3366 3367 SmallVector<SDValue, 8> Stores; 3368 SDValue StackPtr = StackBase; 3369 unsigned Offset = 0; 3370 3371 EVT PtrVT = Ptr.getValueType(); 3372 EVT StackPtrVT = StackPtr.getValueType(); 3373 3374 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 3375 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 3376 3377 // Do all but one copies using the full register width. 3378 for (unsigned i = 1; i < NumRegs; i++) { 3379 // Load one integer register's worth from the original location. 3380 SDValue Load = DAG.getLoad( 3381 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 3382 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 3383 LD->getAAInfo()); 3384 // Follow the load with a store to the stack slot. Remember the store. 3385 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr, 3386 MachinePointerInfo())); 3387 // Increment the pointers. 3388 Offset += RegBytes; 3389 Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement); 3390 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, StackPtr, 3391 StackPtrIncrement); 3392 } 3393 3394 // The last copy may be partial. Do an extending load. 3395 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 3396 8 * (LoadedBytes - Offset)); 3397 SDValue Load = 3398 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 3399 LD->getPointerInfo().getWithOffset(Offset), MemVT, 3400 MinAlign(LD->getAlignment(), Offset), 3401 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3402 // Follow the load with a store to the stack slot. Remember the store. 3403 // On big-endian machines this requires a truncating store to ensure 3404 // that the bits end up in the right place. 3405 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr, 3406 MachinePointerInfo(), MemVT)); 3407 3408 // The order of the stores doesn't matter - say it with a TokenFactor. 3409 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 3410 3411 // Finally, perform the original load only redirected to the stack slot. 3412 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 3413 MachinePointerInfo(), LoadedVT); 3414 3415 // Callers expect a MERGE_VALUES node. 3416 return std::make_pair(Load, TF); 3417 } 3418 3419 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 3420 "Unaligned load of unsupported type."); 3421 3422 // Compute the new VT that is half the size of the old one. This is an 3423 // integer MVT. 3424 unsigned NumBits = LoadedVT.getSizeInBits(); 3425 EVT NewLoadedVT; 3426 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 3427 NumBits >>= 1; 3428 3429 unsigned Alignment = LD->getAlignment(); 3430 unsigned IncrementSize = NumBits / 8; 3431 ISD::LoadExtType HiExtType = LD->getExtensionType(); 3432 3433 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 3434 if (HiExtType == ISD::NON_EXTLOAD) 3435 HiExtType = ISD::ZEXTLOAD; 3436 3437 // Load the value in two parts 3438 SDValue Lo, Hi; 3439 if (DAG.getDataLayout().isLittleEndian()) { 3440 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 3441 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 3442 LD->getAAInfo()); 3443 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 3444 DAG.getConstant(IncrementSize, dl, Ptr.getValueType())); 3445 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 3446 LD->getPointerInfo().getWithOffset(IncrementSize), 3447 NewLoadedVT, MinAlign(Alignment, IncrementSize), 3448 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3449 } else { 3450 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 3451 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 3452 LD->getAAInfo()); 3453 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 3454 DAG.getConstant(IncrementSize, dl, Ptr.getValueType())); 3455 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 3456 LD->getPointerInfo().getWithOffset(IncrementSize), 3457 NewLoadedVT, MinAlign(Alignment, IncrementSize), 3458 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3459 } 3460 3461 // aggregate the two parts 3462 SDValue ShiftAmount = 3463 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 3464 DAG.getDataLayout())); 3465 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 3466 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 3467 3468 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 3469 Hi.getValue(1)); 3470 3471 return std::make_pair(Result, TF); 3472 } 3473 3474 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 3475 SelectionDAG &DAG) const { 3476 assert(ST->getAddressingMode() == ISD::UNINDEXED && 3477 "unaligned indexed stores not implemented!"); 3478 SDValue Chain = ST->getChain(); 3479 SDValue Ptr = ST->getBasePtr(); 3480 SDValue Val = ST->getValue(); 3481 EVT VT = Val.getValueType(); 3482 int Alignment = ST->getAlignment(); 3483 3484 SDLoc dl(ST); 3485 if (ST->getMemoryVT().isFloatingPoint() || 3486 ST->getMemoryVT().isVector()) { 3487 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 3488 if (isTypeLegal(intVT)) { 3489 if (!isOperationLegalOrCustom(ISD::STORE, intVT)) { 3490 // Scalarize the store and let the individual components be handled. 3491 SDValue Result = scalarizeVectorStore(ST, DAG); 3492 3493 return Result; 3494 } 3495 // Expand to a bitconvert of the value to the integer type of the 3496 // same size, then a (misaligned) int store. 3497 // FIXME: Does not handle truncating floating point stores! 3498 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 3499 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 3500 Alignment, ST->getMemOperand()->getFlags()); 3501 return Result; 3502 } 3503 // Do a (aligned) store to a stack slot, then copy from the stack slot 3504 // to the final destination using (unaligned) integer loads and stores. 3505 EVT StoredVT = ST->getMemoryVT(); 3506 MVT RegVT = 3507 getRegisterType(*DAG.getContext(), 3508 EVT::getIntegerVT(*DAG.getContext(), 3509 StoredVT.getSizeInBits())); 3510 EVT PtrVT = Ptr.getValueType(); 3511 unsigned StoredBytes = StoredVT.getSizeInBits() / 8; 3512 unsigned RegBytes = RegVT.getSizeInBits() / 8; 3513 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 3514 3515 // Make sure the stack slot is also aligned for the register type. 3516 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 3517 3518 // Perform the original store, only redirected to the stack slot. 3519 SDValue Store = DAG.getTruncStore(Chain, dl, Val, StackPtr, 3520 MachinePointerInfo(), StoredVT); 3521 3522 EVT StackPtrVT = StackPtr.getValueType(); 3523 3524 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 3525 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 3526 SmallVector<SDValue, 8> Stores; 3527 unsigned Offset = 0; 3528 3529 // Do all but one copies using the full register width. 3530 for (unsigned i = 1; i < NumRegs; i++) { 3531 // Load one integer register's worth from the stack slot. 3532 SDValue Load = 3533 DAG.getLoad(RegVT, dl, Store, StackPtr, MachinePointerInfo()); 3534 // Store it to the final location. Remember the store. 3535 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 3536 ST->getPointerInfo().getWithOffset(Offset), 3537 MinAlign(ST->getAlignment(), Offset), 3538 ST->getMemOperand()->getFlags())); 3539 // Increment the pointers. 3540 Offset += RegBytes; 3541 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, 3542 StackPtr, StackPtrIncrement); 3543 Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement); 3544 } 3545 3546 // The last store may be partial. Do a truncating store. On big-endian 3547 // machines this requires an extending load from the stack slot to ensure 3548 // that the bits are in the right place. 3549 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 3550 8 * (StoredBytes - Offset)); 3551 3552 // Load from the stack slot. 3553 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 3554 MachinePointerInfo(), MemVT); 3555 3556 Stores.push_back( 3557 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 3558 ST->getPointerInfo().getWithOffset(Offset), MemVT, 3559 MinAlign(ST->getAlignment(), Offset), 3560 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 3561 // The order of the stores doesn't matter - say it with a TokenFactor. 3562 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 3563 return Result; 3564 } 3565 3566 assert(ST->getMemoryVT().isInteger() && 3567 !ST->getMemoryVT().isVector() && 3568 "Unaligned store of unknown type."); 3569 // Get the half-size VT 3570 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); 3571 int NumBits = NewStoredVT.getSizeInBits(); 3572 int IncrementSize = NumBits / 8; 3573 3574 // Divide the stored value in two parts. 3575 SDValue ShiftAmount = 3576 DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(), 3577 DAG.getDataLayout())); 3578 SDValue Lo = Val; 3579 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 3580 3581 // Store the two parts 3582 SDValue Store1, Store2; 3583 Store1 = DAG.getTruncStore(Chain, dl, 3584 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 3585 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 3586 ST->getMemOperand()->getFlags()); 3587 3588 EVT PtrVT = Ptr.getValueType(); 3589 Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3590 DAG.getConstant(IncrementSize, dl, PtrVT)); 3591 Alignment = MinAlign(Alignment, IncrementSize); 3592 Store2 = DAG.getTruncStore( 3593 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 3594 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 3595 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 3596 3597 SDValue Result = 3598 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 3599 return Result; 3600 } 3601 3602 //===----------------------------------------------------------------------===// 3603 // Implementation of Emulated TLS Model 3604 //===----------------------------------------------------------------------===// 3605 3606 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 3607 SelectionDAG &DAG) const { 3608 // Access to address of TLS varialbe xyz is lowered to a function call: 3609 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 3610 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3611 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 3612 SDLoc dl(GA); 3613 3614 ArgListTy Args; 3615 ArgListEntry Entry; 3616 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 3617 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 3618 StringRef EmuTlsVarName(NameString); 3619 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 3620 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 3621 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 3622 Entry.Ty = VoidPtrType; 3623 Args.push_back(Entry); 3624 3625 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 3626 3627 TargetLowering::CallLoweringInfo CLI(DAG); 3628 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 3629 CLI.setCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 3630 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3631 3632 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 3633 // At last for X86 targets, maybe good for other targets too? 3634 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 3635 MFI.setAdjustsStack(true); // Is this only for X86 target? 3636 MFI.setHasCalls(true); 3637 3638 assert((GA->getOffset() == 0) && 3639 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 3640 return CallResult.first; 3641 } 3642 3643 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 3644 SelectionDAG &DAG) const { 3645 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 3646 if (!isCtlzFast()) 3647 return SDValue(); 3648 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3649 SDLoc dl(Op); 3650 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3651 if (C->isNullValue() && CC == ISD::SETEQ) { 3652 EVT VT = Op.getOperand(0).getValueType(); 3653 SDValue Zext = Op.getOperand(0); 3654 if (VT.bitsLT(MVT::i32)) { 3655 VT = MVT::i32; 3656 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 3657 } 3658 unsigned Log2b = Log2_32(VT.getSizeInBits()); 3659 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 3660 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 3661 DAG.getConstant(Log2b, dl, MVT::i32)); 3662 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 3663 } 3664 } 3665 return SDValue(); 3666 } 3667