1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetLowering.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/CodeGen/Analysis.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/SelectionDAG.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/GlobalVariable.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/MC/MCAsmInfo.h" 27 #include "llvm/MC/MCExpr.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Target/TargetLoweringObjectFile.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include "llvm/Target/TargetRegisterInfo.h" 34 #include "llvm/Target/TargetSubtargetInfo.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The constructor takes ownership of TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm, 40 const TargetLoweringObjectFile *tlof) 41 : TargetLoweringBase(tm, tlof) {} 42 43 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 44 return nullptr; 45 } 46 47 /// Check whether a given call node is in tail position within its function. If 48 /// so, it sets Chain to the input chain of the tail call. 49 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 50 SDValue &Chain) const { 51 const Function *F = DAG.getMachineFunction().getFunction(); 52 53 // Conservatively require the attributes of the call to match those of 54 // the return. Ignore noalias because it doesn't affect the call sequence. 55 AttributeSet CallerAttrs = F->getAttributes(); 56 if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex) 57 .removeAttribute(Attribute::NoAlias).hasAttributes()) 58 return false; 59 60 // It's not safe to eliminate the sign / zero extension of the return value. 61 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 62 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 63 return false; 64 65 // Check if the only use is a function return node. 66 return isUsedByReturnOnly(Node, Chain); 67 } 68 69 /// \brief Set CallLoweringInfo attribute flags based on a call instruction 70 /// and called function attributes. 71 void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS, 72 unsigned AttrIdx) { 73 isSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); 74 isZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); 75 isInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); 76 isSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); 77 isNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); 78 isByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); 79 isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); 80 isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); 81 Alignment = CS->getParamAlignment(AttrIdx); 82 } 83 84 /// Generate a libcall taking the given operands as arguments and returning a 85 /// result of type RetVT. 86 std::pair<SDValue, SDValue> 87 TargetLowering::makeLibCall(SelectionDAG &DAG, 88 RTLIB::Libcall LC, EVT RetVT, 89 const SDValue *Ops, unsigned NumOps, 90 bool isSigned, SDLoc dl, 91 bool doesNotReturn, 92 bool isReturnValueUsed) const { 93 TargetLowering::ArgListTy Args; 94 Args.reserve(NumOps); 95 96 TargetLowering::ArgListEntry Entry; 97 for (unsigned i = 0; i != NumOps; ++i) { 98 Entry.Node = Ops[i]; 99 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 100 Entry.isSExt = isSigned; 101 Entry.isZExt = !isSigned; 102 Args.push_back(Entry); 103 } 104 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), getPointerTy()); 105 106 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 107 TargetLowering::CallLoweringInfo CLI(DAG); 108 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()) 109 .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0) 110 .setNoReturn(doesNotReturn).setDiscardResult(!isReturnValueUsed) 111 .setSExtResult(isSigned).setZExtResult(!isSigned); 112 return LowerCallTo(CLI); 113 } 114 115 116 /// SoftenSetCCOperands - Soften the operands of a comparison. This code is 117 /// shared among BR_CC, SELECT_CC, and SETCC handlers. 118 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 119 SDValue &NewLHS, SDValue &NewRHS, 120 ISD::CondCode &CCCode, 121 SDLoc dl) const { 122 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 123 && "Unsupported setcc type!"); 124 125 // Expand into one or more soft-fp libcall(s). 126 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 127 switch (CCCode) { 128 case ISD::SETEQ: 129 case ISD::SETOEQ: 130 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 131 (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128; 132 break; 133 case ISD::SETNE: 134 case ISD::SETUNE: 135 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 136 (VT == MVT::f64) ? RTLIB::UNE_F64 : RTLIB::UNE_F128; 137 break; 138 case ISD::SETGE: 139 case ISD::SETOGE: 140 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 141 (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128; 142 break; 143 case ISD::SETLT: 144 case ISD::SETOLT: 145 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 146 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; 147 break; 148 case ISD::SETLE: 149 case ISD::SETOLE: 150 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 151 (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128; 152 break; 153 case ISD::SETGT: 154 case ISD::SETOGT: 155 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 156 (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128; 157 break; 158 case ISD::SETUO: 159 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 160 (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128; 161 break; 162 case ISD::SETO: 163 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 164 (VT == MVT::f64) ? RTLIB::O_F64 : RTLIB::O_F128; 165 break; 166 default: 167 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 168 (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128; 169 switch (CCCode) { 170 case ISD::SETONE: 171 // SETONE = SETOLT | SETOGT 172 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 173 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; 174 // Fallthrough 175 case ISD::SETUGT: 176 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 177 (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128; 178 break; 179 case ISD::SETUGE: 180 LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 181 (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128; 182 break; 183 case ISD::SETULT: 184 LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 185 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; 186 break; 187 case ISD::SETULE: 188 LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 189 (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128; 190 break; 191 case ISD::SETUEQ: 192 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 193 (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128; 194 break; 195 default: llvm_unreachable("Do not know how to soften this setcc!"); 196 } 197 } 198 199 // Use the target specific return value for comparions lib calls. 200 EVT RetVT = getCmpLibcallReturnType(); 201 SDValue Ops[2] = { NewLHS, NewRHS }; 202 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, 2, false/*sign irrelevant*/, 203 dl).first; 204 NewRHS = DAG.getConstant(0, RetVT); 205 CCCode = getCmpLibcallCC(LC1); 206 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 207 SDValue Tmp = DAG.getNode(ISD::SETCC, dl, 208 getSetCCResultType(*DAG.getContext(), RetVT), 209 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 210 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, 2, false/*sign irrelevant*/, 211 dl).first; 212 NewLHS = DAG.getNode(ISD::SETCC, dl, 213 getSetCCResultType(*DAG.getContext(), RetVT), NewLHS, 214 NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 215 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 216 NewRHS = SDValue(); 217 } 218 } 219 220 /// getJumpTableEncoding - Return the entry encoding for a jump table in the 221 /// current function. The returned value is a member of the 222 /// MachineJumpTableInfo::JTEntryKind enum. 223 unsigned TargetLowering::getJumpTableEncoding() const { 224 // In non-pic modes, just use the address of a block. 225 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 226 return MachineJumpTableInfo::EK_BlockAddress; 227 228 // In PIC mode, if the target supports a GPRel32 directive, use it. 229 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 230 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 231 232 // Otherwise, use a label difference. 233 return MachineJumpTableInfo::EK_LabelDifference32; 234 } 235 236 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 237 SelectionDAG &DAG) const { 238 // If our PIC model is GP relative, use the global offset table as the base. 239 unsigned JTEncoding = getJumpTableEncoding(); 240 241 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 242 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 243 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(0)); 244 245 return Table; 246 } 247 248 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the 249 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an 250 /// MCExpr. 251 const MCExpr * 252 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 253 unsigned JTI,MCContext &Ctx) const{ 254 // The normal PIC reloc base is the label at the start of the jump table. 255 return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx); 256 } 257 258 bool 259 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 260 // Assume that everything is safe in static mode. 261 if (getTargetMachine().getRelocationModel() == Reloc::Static) 262 return true; 263 264 // In dynamic-no-pic mode, assume that known defined values are safe. 265 if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC && 266 GA && 267 !GA->getGlobal()->isDeclaration() && 268 !GA->getGlobal()->isWeakForLinker()) 269 return true; 270 271 // Otherwise assume nothing is safe. 272 return false; 273 } 274 275 //===----------------------------------------------------------------------===// 276 // Optimization Methods 277 //===----------------------------------------------------------------------===// 278 279 /// ShrinkDemandedConstant - Check to see if the specified operand of the 280 /// specified instruction is a constant integer. If so, check to see if there 281 /// are any bits set in the constant that are not demanded. If so, shrink the 282 /// constant and return true. 283 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op, 284 const APInt &Demanded) { 285 SDLoc dl(Op); 286 287 // FIXME: ISD::SELECT, ISD::SELECT_CC 288 switch (Op.getOpcode()) { 289 default: break; 290 case ISD::XOR: 291 case ISD::AND: 292 case ISD::OR: { 293 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 294 if (!C) return false; 295 296 if (Op.getOpcode() == ISD::XOR && 297 (C->getAPIntValue() | (~Demanded)).isAllOnesValue()) 298 return false; 299 300 // if we can expand it to have all bits set, do it 301 if (C->getAPIntValue().intersects(~Demanded)) { 302 EVT VT = Op.getValueType(); 303 SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0), 304 DAG.getConstant(Demanded & 305 C->getAPIntValue(), 306 VT)); 307 return CombineTo(Op, New); 308 } 309 310 break; 311 } 312 } 313 314 return false; 315 } 316 317 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the 318 /// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening 319 /// cast, but it could be generalized for targets with other types of 320 /// implicit widening casts. 321 bool 322 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op, 323 unsigned BitWidth, 324 const APInt &Demanded, 325 SDLoc dl) { 326 assert(Op.getNumOperands() == 2 && 327 "ShrinkDemandedOp only supports binary operators!"); 328 assert(Op.getNode()->getNumValues() == 1 && 329 "ShrinkDemandedOp only supports nodes with one result!"); 330 331 // Early return, as this function cannot handle vector types. 332 if (Op.getValueType().isVector()) 333 return false; 334 335 // Don't do this if the node has another user, which may require the 336 // full value. 337 if (!Op.getNode()->hasOneUse()) 338 return false; 339 340 // Search for the smallest integer type with free casts to and from 341 // Op's type. For expedience, just check power-of-2 integer types. 342 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 343 unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros(); 344 unsigned SmallVTBits = DemandedSize; 345 if (!isPowerOf2_32(SmallVTBits)) 346 SmallVTBits = NextPowerOf2(SmallVTBits); 347 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 348 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 349 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 350 TLI.isZExtFree(SmallVT, Op.getValueType())) { 351 // We found a type with free casts. 352 SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT, 353 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 354 Op.getNode()->getOperand(0)), 355 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 356 Op.getNode()->getOperand(1))); 357 bool NeedZext = DemandedSize > SmallVTBits; 358 SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, 359 dl, Op.getValueType(), X); 360 return CombineTo(Op, Z); 361 } 362 } 363 return false; 364 } 365 366 /// SimplifyDemandedBits - Look at Op. At this point, we know that only the 367 /// DemandedMask bits of the result of Op are ever used downstream. If we can 368 /// use this information to simplify Op, create a new simplified DAG node and 369 /// return true, returning the original and new nodes in Old and New. Otherwise, 370 /// analyze the expression and return a mask of KnownOne and KnownZero bits for 371 /// the expression (used to simplify the caller). The KnownZero/One bits may 372 /// only be accurate for those bits in the DemandedMask. 373 bool TargetLowering::SimplifyDemandedBits(SDValue Op, 374 const APInt &DemandedMask, 375 APInt &KnownZero, 376 APInt &KnownOne, 377 TargetLoweringOpt &TLO, 378 unsigned Depth) const { 379 unsigned BitWidth = DemandedMask.getBitWidth(); 380 assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth && 381 "Mask size mismatches value type size!"); 382 APInt NewMask = DemandedMask; 383 SDLoc dl(Op); 384 385 // Don't know anything. 386 KnownZero = KnownOne = APInt(BitWidth, 0); 387 388 // Other users may use these bits. 389 if (!Op.getNode()->hasOneUse()) { 390 if (Depth != 0) { 391 // If not at the root, Just compute the KnownZero/KnownOne bits to 392 // simplify things downstream. 393 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 394 return false; 395 } 396 // If this is the root being simplified, allow it to have multiple uses, 397 // just set the NewMask to all bits. 398 NewMask = APInt::getAllOnesValue(BitWidth); 399 } else if (DemandedMask == 0) { 400 // Not demanding any bits from Op. 401 if (Op.getOpcode() != ISD::UNDEF) 402 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType())); 403 return false; 404 } else if (Depth == 6) { // Limit search depth. 405 return false; 406 } 407 408 APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; 409 switch (Op.getOpcode()) { 410 case ISD::Constant: 411 // We know all of the bits for a constant! 412 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); 413 KnownZero = ~KnownOne; 414 return false; // Don't fall through, will infinitely loop. 415 case ISD::AND: 416 // If the RHS is a constant, check to see if the LHS would be zero without 417 // using the bits from the RHS. Below, we use knowledge about the RHS to 418 // simplify the LHS, here we're using information from the LHS to simplify 419 // the RHS. 420 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 421 APInt LHSZero, LHSOne; 422 // Do not increment Depth here; that can cause an infinite loop. 423 TLO.DAG.computeKnownBits(Op.getOperand(0), LHSZero, LHSOne, Depth); 424 // If the LHS already has zeros where RHSC does, this and is dead. 425 if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) 426 return TLO.CombineTo(Op, Op.getOperand(0)); 427 // If any of the set bits in the RHS are known zero on the LHS, shrink 428 // the constant. 429 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask)) 430 return true; 431 } 432 433 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 434 KnownOne, TLO, Depth+1)) 435 return true; 436 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 437 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask, 438 KnownZero2, KnownOne2, TLO, Depth+1)) 439 return true; 440 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 441 442 // If all of the demanded bits are known one on one side, return the other. 443 // These bits cannot contribute to the result of the 'and'. 444 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 445 return TLO.CombineTo(Op, Op.getOperand(0)); 446 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 447 return TLO.CombineTo(Op, Op.getOperand(1)); 448 // If all of the demanded bits in the inputs are known zeros, return zero. 449 if ((NewMask & (KnownZero|KnownZero2)) == NewMask) 450 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType())); 451 // If the RHS is a constant, see if we can simplify it. 452 if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask)) 453 return true; 454 // If the operation can be done in a smaller type, do so. 455 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 456 return true; 457 458 // Output known-1 bits are only known if set in both the LHS & RHS. 459 KnownOne &= KnownOne2; 460 // Output known-0 are known to be clear if zero in either the LHS | RHS. 461 KnownZero |= KnownZero2; 462 break; 463 case ISD::OR: 464 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 465 KnownOne, TLO, Depth+1)) 466 return true; 467 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 468 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask, 469 KnownZero2, KnownOne2, TLO, Depth+1)) 470 return true; 471 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 472 473 // If all of the demanded bits are known zero on one side, return the other. 474 // These bits cannot contribute to the result of the 'or'. 475 if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask)) 476 return TLO.CombineTo(Op, Op.getOperand(0)); 477 if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask)) 478 return TLO.CombineTo(Op, Op.getOperand(1)); 479 // If all of the potentially set bits on one side are known to be set on 480 // the other side, just use the 'other' side. 481 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 482 return TLO.CombineTo(Op, Op.getOperand(0)); 483 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 484 return TLO.CombineTo(Op, Op.getOperand(1)); 485 // If the RHS is a constant, see if we can simplify it. 486 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 487 return true; 488 // If the operation can be done in a smaller type, do so. 489 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 490 return true; 491 492 // Output known-0 bits are only known if clear in both the LHS & RHS. 493 KnownZero &= KnownZero2; 494 // Output known-1 are known to be set if set in either the LHS | RHS. 495 KnownOne |= KnownOne2; 496 break; 497 case ISD::XOR: 498 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 499 KnownOne, TLO, Depth+1)) 500 return true; 501 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 502 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2, 503 KnownOne2, TLO, Depth+1)) 504 return true; 505 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 506 507 // If all of the demanded bits are known zero on one side, return the other. 508 // These bits cannot contribute to the result of the 'xor'. 509 if ((KnownZero & NewMask) == NewMask) 510 return TLO.CombineTo(Op, Op.getOperand(0)); 511 if ((KnownZero2 & NewMask) == NewMask) 512 return TLO.CombineTo(Op, Op.getOperand(1)); 513 // If the operation can be done in a smaller type, do so. 514 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 515 return true; 516 517 // If all of the unknown bits are known to be zero on one side or the other 518 // (but not both) turn this into an *inclusive* or. 519 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 520 if ((NewMask & ~KnownZero & ~KnownZero2) == 0) 521 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(), 522 Op.getOperand(0), 523 Op.getOperand(1))); 524 525 // Output known-0 bits are known if clear or set in both the LHS & RHS. 526 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 527 // Output known-1 are known to be set if set in only one of the LHS, RHS. 528 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 529 530 // If all of the demanded bits on one side are known, and all of the set 531 // bits on that side are also known to be set on the other side, turn this 532 // into an AND, as we know the bits will be cleared. 533 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 534 // NB: it is okay if more bits are known than are requested 535 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side 536 if (KnownOne == KnownOne2) { // set bits are the same on both sides 537 EVT VT = Op.getValueType(); 538 SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT); 539 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, 540 Op.getOperand(0), ANDC)); 541 } 542 } 543 544 // If the RHS is a constant, see if we can simplify it. 545 // for XOR, we prefer to force bits to 1 if they will make a -1. 546 // if we can't force bits, try to shrink constant 547 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 548 APInt Expanded = C->getAPIntValue() | (~NewMask); 549 // if we can expand it to have all bits set, do it 550 if (Expanded.isAllOnesValue()) { 551 if (Expanded != C->getAPIntValue()) { 552 EVT VT = Op.getValueType(); 553 SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0), 554 TLO.DAG.getConstant(Expanded, VT)); 555 return TLO.CombineTo(Op, New); 556 } 557 // if it already has all the bits set, nothing to change 558 // but don't shrink either! 559 } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) { 560 return true; 561 } 562 } 563 564 KnownZero = KnownZeroOut; 565 KnownOne = KnownOneOut; 566 break; 567 case ISD::SELECT: 568 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero, 569 KnownOne, TLO, Depth+1)) 570 return true; 571 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2, 572 KnownOne2, TLO, Depth+1)) 573 return true; 574 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 575 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 576 577 // If the operands are constants, see if we can simplify them. 578 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 579 return true; 580 581 // Only known if known in both the LHS and RHS. 582 KnownOne &= KnownOne2; 583 KnownZero &= KnownZero2; 584 break; 585 case ISD::SELECT_CC: 586 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero, 587 KnownOne, TLO, Depth+1)) 588 return true; 589 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2, 590 KnownOne2, TLO, Depth+1)) 591 return true; 592 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 593 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 594 595 // If the operands are constants, see if we can simplify them. 596 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 597 return true; 598 599 // Only known if known in both the LHS and RHS. 600 KnownOne &= KnownOne2; 601 KnownZero &= KnownZero2; 602 break; 603 case ISD::SHL: 604 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 605 unsigned ShAmt = SA->getZExtValue(); 606 SDValue InOp = Op.getOperand(0); 607 608 // If the shift count is an invalid immediate, don't do anything. 609 if (ShAmt >= BitWidth) 610 break; 611 612 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 613 // single shift. We can do this if the bottom bits (which are shifted 614 // out) are never demanded. 615 if (InOp.getOpcode() == ISD::SRL && 616 isa<ConstantSDNode>(InOp.getOperand(1))) { 617 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 618 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 619 unsigned Opc = ISD::SHL; 620 int Diff = ShAmt-C1; 621 if (Diff < 0) { 622 Diff = -Diff; 623 Opc = ISD::SRL; 624 } 625 626 SDValue NewSA = 627 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType()); 628 EVT VT = Op.getValueType(); 629 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 630 InOp.getOperand(0), NewSA)); 631 } 632 } 633 634 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), 635 KnownZero, KnownOne, TLO, Depth+1)) 636 return true; 637 638 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 639 // are not demanded. This will likely allow the anyext to be folded away. 640 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { 641 SDValue InnerOp = InOp.getNode()->getOperand(0); 642 EVT InnerVT = InnerOp.getValueType(); 643 unsigned InnerBits = InnerVT.getSizeInBits(); 644 if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 && 645 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 646 EVT ShTy = getShiftAmountTy(InnerVT); 647 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 648 ShTy = InnerVT; 649 SDValue NarrowShl = 650 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 651 TLO.DAG.getConstant(ShAmt, ShTy)); 652 return 653 TLO.CombineTo(Op, 654 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), 655 NarrowShl)); 656 } 657 // Repeat the SHL optimization above in cases where an extension 658 // intervenes: (shl (anyext (shr x, c1)), c2) to 659 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 660 // aren't demanded (as above) and that the shifted upper c1 bits of 661 // x aren't demanded. 662 if (InOp.hasOneUse() && 663 InnerOp.getOpcode() == ISD::SRL && 664 InnerOp.hasOneUse() && 665 isa<ConstantSDNode>(InnerOp.getOperand(1))) { 666 uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1)) 667 ->getZExtValue(); 668 if (InnerShAmt < ShAmt && 669 InnerShAmt < InnerBits && 670 NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 && 671 NewMask.trunc(ShAmt) == 0) { 672 SDValue NewSA = 673 TLO.DAG.getConstant(ShAmt - InnerShAmt, 674 Op.getOperand(1).getValueType()); 675 EVT VT = Op.getValueType(); 676 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 677 InnerOp.getOperand(0)); 678 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, 679 NewExt, NewSA)); 680 } 681 } 682 } 683 684 KnownZero <<= SA->getZExtValue(); 685 KnownOne <<= SA->getZExtValue(); 686 // low bits known zero. 687 KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue()); 688 } 689 break; 690 case ISD::SRL: 691 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 692 EVT VT = Op.getValueType(); 693 unsigned ShAmt = SA->getZExtValue(); 694 unsigned VTSize = VT.getSizeInBits(); 695 SDValue InOp = Op.getOperand(0); 696 697 // If the shift count is an invalid immediate, don't do anything. 698 if (ShAmt >= BitWidth) 699 break; 700 701 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 702 // single shift. We can do this if the top bits (which are shifted out) 703 // are never demanded. 704 if (InOp.getOpcode() == ISD::SHL && 705 isa<ConstantSDNode>(InOp.getOperand(1))) { 706 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) { 707 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 708 unsigned Opc = ISD::SRL; 709 int Diff = ShAmt-C1; 710 if (Diff < 0) { 711 Diff = -Diff; 712 Opc = ISD::SHL; 713 } 714 715 SDValue NewSA = 716 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType()); 717 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 718 InOp.getOperand(0), NewSA)); 719 } 720 } 721 722 // Compute the new bits that are at the top now. 723 if (SimplifyDemandedBits(InOp, (NewMask << ShAmt), 724 KnownZero, KnownOne, TLO, Depth+1)) 725 return true; 726 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 727 KnownZero = KnownZero.lshr(ShAmt); 728 KnownOne = KnownOne.lshr(ShAmt); 729 730 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 731 KnownZero |= HighBits; // High bits known zero. 732 } 733 break; 734 case ISD::SRA: 735 // If this is an arithmetic shift right and only the low-bit is set, we can 736 // always convert this into a logical shr, even if the shift amount is 737 // variable. The low bit of the shift cannot be an input sign bit unless 738 // the shift amount is >= the size of the datatype, which is undefined. 739 if (NewMask == 1) 740 return TLO.CombineTo(Op, 741 TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), 742 Op.getOperand(0), Op.getOperand(1))); 743 744 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 745 EVT VT = Op.getValueType(); 746 unsigned ShAmt = SA->getZExtValue(); 747 748 // If the shift count is an invalid immediate, don't do anything. 749 if (ShAmt >= BitWidth) 750 break; 751 752 APInt InDemandedMask = (NewMask << ShAmt); 753 754 // If any of the demanded bits are produced by the sign extension, we also 755 // demand the input sign bit. 756 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 757 if (HighBits.intersects(NewMask)) 758 InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits()); 759 760 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, 761 KnownZero, KnownOne, TLO, Depth+1)) 762 return true; 763 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 764 KnownZero = KnownZero.lshr(ShAmt); 765 KnownOne = KnownOne.lshr(ShAmt); 766 767 // Handle the sign bit, adjusted to where it is now in the mask. 768 APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt); 769 770 // If the input sign bit is known to be zero, or if none of the top bits 771 // are demanded, turn this into an unsigned shift right. 772 if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) 773 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 774 Op.getOperand(0), 775 Op.getOperand(1))); 776 777 int Log2 = NewMask.exactLogBase2(); 778 if (Log2 >= 0) { 779 // The bit must come from the sign. 780 SDValue NewSA = 781 TLO.DAG.getConstant(BitWidth - 1 - Log2, 782 Op.getOperand(1).getValueType()); 783 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 784 Op.getOperand(0), NewSA)); 785 } 786 787 if (KnownOne.intersects(SignBit)) 788 // New bits are known one. 789 KnownOne |= HighBits; 790 } 791 break; 792 case ISD::SIGN_EXTEND_INREG: { 793 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 794 795 APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1); 796 // If we only care about the highest bit, don't bother shifting right. 797 if (MsbMask == DemandedMask) { 798 unsigned ShAmt = ExVT.getScalarType().getSizeInBits(); 799 SDValue InOp = Op.getOperand(0); 800 801 // Compute the correct shift amount type, which must be getShiftAmountTy 802 // for scalar types after legalization. 803 EVT ShiftAmtTy = Op.getValueType(); 804 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 805 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy); 806 807 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, ShiftAmtTy); 808 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 809 Op.getValueType(), InOp, ShiftAmt)); 810 } 811 812 // Sign extension. Compute the demanded bits in the result that are not 813 // present in the input. 814 APInt NewBits = 815 APInt::getHighBitsSet(BitWidth, 816 BitWidth - ExVT.getScalarType().getSizeInBits()); 817 818 // If none of the extended bits are demanded, eliminate the sextinreg. 819 if ((NewBits & NewMask) == 0) 820 return TLO.CombineTo(Op, Op.getOperand(0)); 821 822 APInt InSignBit = 823 APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth); 824 APInt InputDemandedBits = 825 APInt::getLowBitsSet(BitWidth, 826 ExVT.getScalarType().getSizeInBits()) & 827 NewMask; 828 829 // Since the sign extended bits are demanded, we know that the sign 830 // bit is demanded. 831 InputDemandedBits |= InSignBit; 832 833 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, 834 KnownZero, KnownOne, TLO, Depth+1)) 835 return true; 836 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 837 838 // If the sign bit of the input is known set or clear, then we know the 839 // top bits of the result. 840 841 // If the input sign bit is known zero, convert this into a zero extension. 842 if (KnownZero.intersects(InSignBit)) 843 return TLO.CombineTo(Op, 844 TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT)); 845 846 if (KnownOne.intersects(InSignBit)) { // Input sign bit known set 847 KnownOne |= NewBits; 848 KnownZero &= ~NewBits; 849 } else { // Input sign bit unknown 850 KnownZero &= ~NewBits; 851 KnownOne &= ~NewBits; 852 } 853 break; 854 } 855 case ISD::BUILD_PAIR: { 856 EVT HalfVT = Op.getOperand(0).getValueType(); 857 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 858 859 APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 860 APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 861 862 APInt KnownZeroLo, KnownOneLo; 863 APInt KnownZeroHi, KnownOneHi; 864 865 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo, 866 KnownOneLo, TLO, Depth + 1)) 867 return true; 868 869 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi, 870 KnownOneHi, TLO, Depth + 1)) 871 return true; 872 873 KnownZero = KnownZeroLo.zext(BitWidth) | 874 KnownZeroHi.zext(BitWidth).shl(HalfBitWidth); 875 876 KnownOne = KnownOneLo.zext(BitWidth) | 877 KnownOneHi.zext(BitWidth).shl(HalfBitWidth); 878 break; 879 } 880 case ISD::ZERO_EXTEND: { 881 unsigned OperandBitWidth = 882 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 883 APInt InMask = NewMask.trunc(OperandBitWidth); 884 885 // If none of the top bits are demanded, convert this into an any_extend. 886 APInt NewBits = 887 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask; 888 if (!NewBits.intersects(NewMask)) 889 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 890 Op.getValueType(), 891 Op.getOperand(0))); 892 893 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 894 KnownZero, KnownOne, TLO, Depth+1)) 895 return true; 896 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 897 KnownZero = KnownZero.zext(BitWidth); 898 KnownOne = KnownOne.zext(BitWidth); 899 KnownZero |= NewBits; 900 break; 901 } 902 case ISD::SIGN_EXTEND: { 903 EVT InVT = Op.getOperand(0).getValueType(); 904 unsigned InBits = InVT.getScalarType().getSizeInBits(); 905 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits); 906 APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits); 907 APInt NewBits = ~InMask & NewMask; 908 909 // If none of the top bits are demanded, convert this into an any_extend. 910 if (NewBits == 0) 911 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 912 Op.getValueType(), 913 Op.getOperand(0))); 914 915 // Since some of the sign extended bits are demanded, we know that the sign 916 // bit is demanded. 917 APInt InDemandedBits = InMask & NewMask; 918 InDemandedBits |= InSignBit; 919 InDemandedBits = InDemandedBits.trunc(InBits); 920 921 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, 922 KnownOne, TLO, Depth+1)) 923 return true; 924 KnownZero = KnownZero.zext(BitWidth); 925 KnownOne = KnownOne.zext(BitWidth); 926 927 // If the sign bit is known zero, convert this to a zero extend. 928 if (KnownZero.intersects(InSignBit)) 929 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, 930 Op.getValueType(), 931 Op.getOperand(0))); 932 933 // If the sign bit is known one, the top bits match. 934 if (KnownOne.intersects(InSignBit)) { 935 KnownOne |= NewBits; 936 assert((KnownZero & NewBits) == 0); 937 } else { // Otherwise, top bits aren't known. 938 assert((KnownOne & NewBits) == 0); 939 assert((KnownZero & NewBits) == 0); 940 } 941 break; 942 } 943 case ISD::ANY_EXTEND: { 944 unsigned OperandBitWidth = 945 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 946 APInt InMask = NewMask.trunc(OperandBitWidth); 947 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 948 KnownZero, KnownOne, TLO, Depth+1)) 949 return true; 950 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 951 KnownZero = KnownZero.zext(BitWidth); 952 KnownOne = KnownOne.zext(BitWidth); 953 break; 954 } 955 case ISD::TRUNCATE: { 956 // Simplify the input, using demanded bit information, and compute the known 957 // zero/one bits live out. 958 unsigned OperandBitWidth = 959 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 960 APInt TruncMask = NewMask.zext(OperandBitWidth); 961 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, 962 KnownZero, KnownOne, TLO, Depth+1)) 963 return true; 964 KnownZero = KnownZero.trunc(BitWidth); 965 KnownOne = KnownOne.trunc(BitWidth); 966 967 // If the input is only used by this truncate, see if we can shrink it based 968 // on the known demanded bits. 969 if (Op.getOperand(0).getNode()->hasOneUse()) { 970 SDValue In = Op.getOperand(0); 971 switch (In.getOpcode()) { 972 default: break; 973 case ISD::SRL: 974 // Shrink SRL by a constant if none of the high bits shifted in are 975 // demanded. 976 if (TLO.LegalTypes() && 977 !isTypeDesirableForOp(ISD::SRL, Op.getValueType())) 978 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 979 // undesirable. 980 break; 981 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); 982 if (!ShAmt) 983 break; 984 SDValue Shift = In.getOperand(1); 985 if (TLO.LegalTypes()) { 986 uint64_t ShVal = ShAmt->getZExtValue(); 987 Shift = 988 TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType())); 989 } 990 991 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 992 OperandBitWidth - BitWidth); 993 HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth); 994 995 if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) { 996 // None of the shifted in bits are needed. Add a truncate of the 997 // shift input, then shift it. 998 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, 999 Op.getValueType(), 1000 In.getOperand(0)); 1001 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, 1002 Op.getValueType(), 1003 NewTrunc, 1004 Shift)); 1005 } 1006 break; 1007 } 1008 } 1009 1010 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1011 break; 1012 } 1013 case ISD::AssertZext: { 1014 // AssertZext demands all of the high bits, plus any of the low bits 1015 // demanded by its users. 1016 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1017 APInt InMask = APInt::getLowBitsSet(BitWidth, 1018 VT.getSizeInBits()); 1019 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask, 1020 KnownZero, KnownOne, TLO, Depth+1)) 1021 return true; 1022 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1023 1024 KnownZero |= ~InMask & NewMask; 1025 break; 1026 } 1027 case ISD::BITCAST: 1028 // If this is an FP->Int bitcast and if the sign bit is the only 1029 // thing demanded, turn this into a FGETSIGN. 1030 if (!TLO.LegalOperations() && 1031 !Op.getValueType().isVector() && 1032 !Op.getOperand(0).getValueType().isVector() && 1033 NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) && 1034 Op.getOperand(0).getValueType().isFloatingPoint()) { 1035 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType()); 1036 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1037 if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) { 1038 EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32; 1039 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1040 // place. We expect the SHL to be eliminated by other optimizations. 1041 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0)); 1042 unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits(); 1043 if (!OpVTLegal && OpVTSizeInBits > 32) 1044 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign); 1045 unsigned ShVal = Op.getValueType().getSizeInBits()-1; 1046 SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType()); 1047 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 1048 Op.getValueType(), 1049 Sign, ShAmt)); 1050 } 1051 } 1052 break; 1053 case ISD::ADD: 1054 case ISD::MUL: 1055 case ISD::SUB: { 1056 // Add, Sub, and Mul don't demand any bits in positions beyond that 1057 // of the highest bit demanded of them. 1058 APInt LoMask = APInt::getLowBitsSet(BitWidth, 1059 BitWidth - NewMask.countLeadingZeros()); 1060 if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2, 1061 KnownOne2, TLO, Depth+1)) 1062 return true; 1063 if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2, 1064 KnownOne2, TLO, Depth+1)) 1065 return true; 1066 // See if the operation should be performed at a smaller bit width. 1067 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 1068 return true; 1069 } 1070 // FALL THROUGH 1071 default: 1072 // Just use computeKnownBits to compute output bits. 1073 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 1074 break; 1075 } 1076 1077 // If we know the value of all of the demanded bits, return this as a 1078 // constant. 1079 if ((NewMask & (KnownZero|KnownOne)) == NewMask) 1080 return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType())); 1081 1082 return false; 1083 } 1084 1085 /// computeKnownBitsForTargetNode - Determine which of the bits specified 1086 /// in Mask are known to be either zero or one and return them in the 1087 /// KnownZero/KnownOne bitsets. 1088 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1089 APInt &KnownZero, 1090 APInt &KnownOne, 1091 const SelectionDAG &DAG, 1092 unsigned Depth) const { 1093 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1094 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1095 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1096 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1097 "Should use MaskedValueIsZero if you don't know whether Op" 1098 " is a target node!"); 1099 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); 1100 } 1101 1102 /// ComputeNumSignBitsForTargetNode - This method can be implemented by 1103 /// targets that want to expose additional information about sign bits to the 1104 /// DAG Combiner. 1105 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 1106 const SelectionDAG &, 1107 unsigned Depth) const { 1108 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1109 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1110 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1111 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1112 "Should use ComputeNumSignBits if you don't know whether Op" 1113 " is a target node!"); 1114 return 1; 1115 } 1116 1117 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly 1118 /// one bit set. This differs from computeKnownBits in that it doesn't need to 1119 /// determine which bit is set. 1120 /// 1121 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) { 1122 // A left-shift of a constant one will have exactly one bit set, because 1123 // shifting the bit off the end is undefined. 1124 if (Val.getOpcode() == ISD::SHL) 1125 if (ConstantSDNode *C = 1126 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) 1127 if (C->getAPIntValue() == 1) 1128 return true; 1129 1130 // Similarly, a right-shift of a constant sign-bit will have exactly 1131 // one bit set. 1132 if (Val.getOpcode() == ISD::SRL) 1133 if (ConstantSDNode *C = 1134 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) 1135 if (C->getAPIntValue().isSignBit()) 1136 return true; 1137 1138 // More could be done here, though the above checks are enough 1139 // to handle some common cases. 1140 1141 // Fall back to computeKnownBits to catch other known cases. 1142 EVT OpVT = Val.getValueType(); 1143 unsigned BitWidth = OpVT.getScalarType().getSizeInBits(); 1144 APInt KnownZero, KnownOne; 1145 DAG.computeKnownBits(Val, KnownZero, KnownOne); 1146 return (KnownZero.countPopulation() == BitWidth - 1) && 1147 (KnownOne.countPopulation() == 1); 1148 } 1149 1150 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 1151 if (!N) 1152 return false; 1153 1154 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1155 if (!CN) { 1156 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1157 if (!BV) 1158 return false; 1159 1160 BitVector UndefElements; 1161 CN = BV->getConstantSplatNode(&UndefElements); 1162 // Only interested in constant splats, and we don't try to handle undef 1163 // elements in identifying boolean constants. 1164 if (!CN || UndefElements.none()) 1165 return false; 1166 } 1167 1168 switch (getBooleanContents(N->getValueType(0))) { 1169 case UndefinedBooleanContent: 1170 return CN->getAPIntValue()[0]; 1171 case ZeroOrOneBooleanContent: 1172 return CN->isOne(); 1173 case ZeroOrNegativeOneBooleanContent: 1174 return CN->isAllOnesValue(); 1175 } 1176 1177 llvm_unreachable("Invalid boolean contents"); 1178 } 1179 1180 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 1181 if (!N) 1182 return false; 1183 1184 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1185 if (!CN) { 1186 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1187 if (!BV) 1188 return false; 1189 1190 BitVector UndefElements; 1191 CN = BV->getConstantSplatNode(&UndefElements); 1192 // Only interested in constant splats, and we don't try to handle undef 1193 // elements in identifying boolean constants. 1194 if (!CN || UndefElements.none()) 1195 return false; 1196 } 1197 1198 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 1199 return !CN->getAPIntValue()[0]; 1200 1201 return CN->isNullValue(); 1202 } 1203 1204 /// SimplifySetCC - Try to simplify a setcc built with the specified operands 1205 /// and cc. If it is unable to simplify it, return a null SDValue. 1206 SDValue 1207 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 1208 ISD::CondCode Cond, bool foldBooleans, 1209 DAGCombinerInfo &DCI, SDLoc dl) const { 1210 SelectionDAG &DAG = DCI.DAG; 1211 1212 // These setcc operations always fold. 1213 switch (Cond) { 1214 default: break; 1215 case ISD::SETFALSE: 1216 case ISD::SETFALSE2: return DAG.getConstant(0, VT); 1217 case ISD::SETTRUE: 1218 case ISD::SETTRUE2: { 1219 TargetLowering::BooleanContent Cnt = 1220 getBooleanContents(N0->getValueType(0)); 1221 return DAG.getConstant( 1222 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, VT); 1223 } 1224 } 1225 1226 // Ensure that the constant occurs on the RHS, and fold constant 1227 // comparisons. 1228 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 1229 if (isa<ConstantSDNode>(N0.getNode()) && 1230 (DCI.isBeforeLegalizeOps() || 1231 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 1232 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 1233 1234 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 1235 const APInt &C1 = N1C->getAPIntValue(); 1236 1237 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 1238 // equality comparison, then we're just comparing whether X itself is 1239 // zero. 1240 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) && 1241 N0.getOperand(0).getOpcode() == ISD::CTLZ && 1242 N0.getOperand(1).getOpcode() == ISD::Constant) { 1243 const APInt &ShAmt 1244 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1245 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1246 ShAmt == Log2_32(N0.getValueType().getSizeInBits())) { 1247 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 1248 // (srl (ctlz x), 5) == 0 -> X != 0 1249 // (srl (ctlz x), 5) != 1 -> X != 0 1250 Cond = ISD::SETNE; 1251 } else { 1252 // (srl (ctlz x), 5) != 0 -> X == 0 1253 // (srl (ctlz x), 5) == 1 -> X == 0 1254 Cond = ISD::SETEQ; 1255 } 1256 SDValue Zero = DAG.getConstant(0, N0.getValueType()); 1257 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 1258 Zero, Cond); 1259 } 1260 } 1261 1262 SDValue CTPOP = N0; 1263 // Look through truncs that don't change the value of a ctpop. 1264 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 1265 CTPOP = N0.getOperand(0); 1266 1267 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 1268 (N0 == CTPOP || N0.getValueType().getSizeInBits() > 1269 Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) { 1270 EVT CTVT = CTPOP.getValueType(); 1271 SDValue CTOp = CTPOP.getOperand(0); 1272 1273 // (ctpop x) u< 2 -> (x & x-1) == 0 1274 // (ctpop x) u> 1 -> (x & x-1) != 0 1275 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 1276 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 1277 DAG.getConstant(1, CTVT)); 1278 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 1279 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 1280 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC); 1281 } 1282 1283 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 1284 } 1285 1286 // (zext x) == C --> x == (trunc C) 1287 if (DCI.isBeforeLegalize() && N0->hasOneUse() && 1288 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1289 unsigned MinBits = N0.getValueSizeInBits(); 1290 SDValue PreZExt; 1291 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 1292 // ZExt 1293 MinBits = N0->getOperand(0).getValueSizeInBits(); 1294 PreZExt = N0->getOperand(0); 1295 } else if (N0->getOpcode() == ISD::AND) { 1296 // DAGCombine turns costly ZExts into ANDs 1297 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 1298 if ((C->getAPIntValue()+1).isPowerOf2()) { 1299 MinBits = C->getAPIntValue().countTrailingOnes(); 1300 PreZExt = N0->getOperand(0); 1301 } 1302 } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) { 1303 // ZEXTLOAD 1304 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 1305 MinBits = LN0->getMemoryVT().getSizeInBits(); 1306 PreZExt = N0; 1307 } 1308 } 1309 1310 // Make sure we're not losing bits from the constant. 1311 if (MinBits > 0 && 1312 MinBits < C1.getBitWidth() && MinBits >= C1.getActiveBits()) { 1313 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 1314 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 1315 // Will get folded away. 1316 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt); 1317 SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT); 1318 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 1319 } 1320 } 1321 } 1322 1323 // If the LHS is '(and load, const)', the RHS is 0, 1324 // the test is for equality or unsigned, and all 1 bits of the const are 1325 // in the same partial word, see if we can shorten the load. 1326 if (DCI.isBeforeLegalize() && 1327 !ISD::isSignedIntSetCC(Cond) && 1328 N0.getOpcode() == ISD::AND && C1 == 0 && 1329 N0.getNode()->hasOneUse() && 1330 isa<LoadSDNode>(N0.getOperand(0)) && 1331 N0.getOperand(0).getNode()->hasOneUse() && 1332 isa<ConstantSDNode>(N0.getOperand(1))) { 1333 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 1334 APInt bestMask; 1335 unsigned bestWidth = 0, bestOffset = 0; 1336 if (!Lod->isVolatile() && Lod->isUnindexed()) { 1337 unsigned origWidth = N0.getValueType().getSizeInBits(); 1338 unsigned maskWidth = origWidth; 1339 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 1340 // 8 bits, but have to be careful... 1341 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 1342 origWidth = Lod->getMemoryVT().getSizeInBits(); 1343 const APInt &Mask = 1344 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1345 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 1346 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 1347 for (unsigned offset=0; offset<origWidth/width; offset++) { 1348 if ((newMask & Mask) == Mask) { 1349 if (!getDataLayout()->isLittleEndian()) 1350 bestOffset = (origWidth/width - offset - 1) * (width/8); 1351 else 1352 bestOffset = (uint64_t)offset * (width/8); 1353 bestMask = Mask.lshr(offset * (width/8) * 8); 1354 bestWidth = width; 1355 break; 1356 } 1357 newMask = newMask << width; 1358 } 1359 } 1360 } 1361 if (bestWidth) { 1362 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 1363 if (newVT.isRound()) { 1364 EVT PtrType = Lod->getOperand(1).getValueType(); 1365 SDValue Ptr = Lod->getBasePtr(); 1366 if (bestOffset != 0) 1367 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 1368 DAG.getConstant(bestOffset, PtrType)); 1369 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 1370 SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 1371 Lod->getPointerInfo().getWithOffset(bestOffset), 1372 false, false, false, NewAlign); 1373 return DAG.getSetCC(dl, VT, 1374 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 1375 DAG.getConstant(bestMask.trunc(bestWidth), 1376 newVT)), 1377 DAG.getConstant(0LL, newVT), Cond); 1378 } 1379 } 1380 } 1381 1382 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 1383 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 1384 unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits(); 1385 1386 // If the comparison constant has bits in the upper part, the 1387 // zero-extended value could never match. 1388 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 1389 C1.getBitWidth() - InSize))) { 1390 switch (Cond) { 1391 case ISD::SETUGT: 1392 case ISD::SETUGE: 1393 case ISD::SETEQ: return DAG.getConstant(0, VT); 1394 case ISD::SETULT: 1395 case ISD::SETULE: 1396 case ISD::SETNE: return DAG.getConstant(1, VT); 1397 case ISD::SETGT: 1398 case ISD::SETGE: 1399 // True if the sign bit of C1 is set. 1400 return DAG.getConstant(C1.isNegative(), VT); 1401 case ISD::SETLT: 1402 case ISD::SETLE: 1403 // True if the sign bit of C1 isn't set. 1404 return DAG.getConstant(C1.isNonNegative(), VT); 1405 default: 1406 break; 1407 } 1408 } 1409 1410 // Otherwise, we can perform the comparison with the low bits. 1411 switch (Cond) { 1412 case ISD::SETEQ: 1413 case ISD::SETNE: 1414 case ISD::SETUGT: 1415 case ISD::SETUGE: 1416 case ISD::SETULT: 1417 case ISD::SETULE: { 1418 EVT newVT = N0.getOperand(0).getValueType(); 1419 if (DCI.isBeforeLegalizeOps() || 1420 (isOperationLegal(ISD::SETCC, newVT) && 1421 getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) { 1422 EVT NewSetCCVT = getSetCCResultType(*DAG.getContext(), newVT); 1423 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), newVT); 1424 1425 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 1426 NewConst, Cond); 1427 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 1428 } 1429 break; 1430 } 1431 default: 1432 break; // todo, be more careful with signed comparisons 1433 } 1434 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 1435 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1436 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 1437 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 1438 EVT ExtDstTy = N0.getValueType(); 1439 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 1440 1441 // If the constant doesn't fit into the number of bits for the source of 1442 // the sign extension, it is impossible for both sides to be equal. 1443 if (C1.getMinSignedBits() > ExtSrcTyBits) 1444 return DAG.getConstant(Cond == ISD::SETNE, VT); 1445 1446 SDValue ZextOp; 1447 EVT Op0Ty = N0.getOperand(0).getValueType(); 1448 if (Op0Ty == ExtSrcTy) { 1449 ZextOp = N0.getOperand(0); 1450 } else { 1451 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 1452 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 1453 DAG.getConstant(Imm, Op0Ty)); 1454 } 1455 if (!DCI.isCalledByLegalizer()) 1456 DCI.AddToWorklist(ZextOp.getNode()); 1457 // Otherwise, make this a use of a zext. 1458 return DAG.getSetCC(dl, VT, ZextOp, 1459 DAG.getConstant(C1 & APInt::getLowBitsSet( 1460 ExtDstTyBits, 1461 ExtSrcTyBits), 1462 ExtDstTy), 1463 Cond); 1464 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) && 1465 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1466 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 1467 if (N0.getOpcode() == ISD::SETCC && 1468 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 1469 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1); 1470 if (TrueWhenTrue) 1471 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 1472 // Invert the condition. 1473 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 1474 CC = ISD::getSetCCInverse(CC, 1475 N0.getOperand(0).getValueType().isInteger()); 1476 if (DCI.isBeforeLegalizeOps() || 1477 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 1478 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 1479 } 1480 1481 if ((N0.getOpcode() == ISD::XOR || 1482 (N0.getOpcode() == ISD::AND && 1483 N0.getOperand(0).getOpcode() == ISD::XOR && 1484 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 1485 isa<ConstantSDNode>(N0.getOperand(1)) && 1486 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) { 1487 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 1488 // can only do this if the top bits are known zero. 1489 unsigned BitWidth = N0.getValueSizeInBits(); 1490 if (DAG.MaskedValueIsZero(N0, 1491 APInt::getHighBitsSet(BitWidth, 1492 BitWidth-1))) { 1493 // Okay, get the un-inverted input value. 1494 SDValue Val; 1495 if (N0.getOpcode() == ISD::XOR) 1496 Val = N0.getOperand(0); 1497 else { 1498 assert(N0.getOpcode() == ISD::AND && 1499 N0.getOperand(0).getOpcode() == ISD::XOR); 1500 // ((X^1)&1)^1 -> X & 1 1501 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 1502 N0.getOperand(0).getOperand(0), 1503 N0.getOperand(1)); 1504 } 1505 1506 return DAG.getSetCC(dl, VT, Val, N1, 1507 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1508 } 1509 } else if (N1C->getAPIntValue() == 1 && 1510 (VT == MVT::i1 || 1511 getBooleanContents(N0->getValueType(0)) == 1512 ZeroOrOneBooleanContent)) { 1513 SDValue Op0 = N0; 1514 if (Op0.getOpcode() == ISD::TRUNCATE) 1515 Op0 = Op0.getOperand(0); 1516 1517 if ((Op0.getOpcode() == ISD::XOR) && 1518 Op0.getOperand(0).getOpcode() == ISD::SETCC && 1519 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 1520 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 1521 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 1522 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 1523 Cond); 1524 } 1525 if (Op0.getOpcode() == ISD::AND && 1526 isa<ConstantSDNode>(Op0.getOperand(1)) && 1527 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) { 1528 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 1529 if (Op0.getValueType().bitsGT(VT)) 1530 Op0 = DAG.getNode(ISD::AND, dl, VT, 1531 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 1532 DAG.getConstant(1, VT)); 1533 else if (Op0.getValueType().bitsLT(VT)) 1534 Op0 = DAG.getNode(ISD::AND, dl, VT, 1535 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 1536 DAG.getConstant(1, VT)); 1537 1538 return DAG.getSetCC(dl, VT, Op0, 1539 DAG.getConstant(0, Op0.getValueType()), 1540 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1541 } 1542 if (Op0.getOpcode() == ISD::AssertZext && 1543 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 1544 return DAG.getSetCC(dl, VT, Op0, 1545 DAG.getConstant(0, Op0.getValueType()), 1546 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1547 } 1548 } 1549 1550 APInt MinVal, MaxVal; 1551 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits(); 1552 if (ISD::isSignedIntSetCC(Cond)) { 1553 MinVal = APInt::getSignedMinValue(OperandBitSize); 1554 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 1555 } else { 1556 MinVal = APInt::getMinValue(OperandBitSize); 1557 MaxVal = APInt::getMaxValue(OperandBitSize); 1558 } 1559 1560 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 1561 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 1562 if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true 1563 // X >= C0 --> X > (C0 - 1) 1564 APInt C = C1 - 1; 1565 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 1566 if ((DCI.isBeforeLegalizeOps() || 1567 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1568 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1569 isLegalICmpImmediate(C.getSExtValue())))) { 1570 return DAG.getSetCC(dl, VT, N0, 1571 DAG.getConstant(C, N1.getValueType()), 1572 NewCC); 1573 } 1574 } 1575 1576 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 1577 if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true 1578 // X <= C0 --> X < (C0 + 1) 1579 APInt C = C1 + 1; 1580 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 1581 if ((DCI.isBeforeLegalizeOps() || 1582 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1583 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1584 isLegalICmpImmediate(C.getSExtValue())))) { 1585 return DAG.getSetCC(dl, VT, N0, 1586 DAG.getConstant(C, N1.getValueType()), 1587 NewCC); 1588 } 1589 } 1590 1591 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) 1592 return DAG.getConstant(0, VT); // X < MIN --> false 1593 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal) 1594 return DAG.getConstant(1, VT); // X >= MIN --> true 1595 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal) 1596 return DAG.getConstant(0, VT); // X > MAX --> false 1597 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal) 1598 return DAG.getConstant(1, VT); // X <= MAX --> true 1599 1600 // Canonicalize setgt X, Min --> setne X, Min 1601 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) 1602 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1603 // Canonicalize setlt X, Max --> setne X, Max 1604 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) 1605 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1606 1607 // If we have setult X, 1, turn it into seteq X, 0 1608 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) 1609 return DAG.getSetCC(dl, VT, N0, 1610 DAG.getConstant(MinVal, N0.getValueType()), 1611 ISD::SETEQ); 1612 // If we have setugt X, Max-1, turn it into seteq X, Max 1613 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) 1614 return DAG.getSetCC(dl, VT, N0, 1615 DAG.getConstant(MaxVal, N0.getValueType()), 1616 ISD::SETEQ); 1617 1618 // If we have "setcc X, C0", check to see if we can shrink the immediate 1619 // by changing cc. 1620 1621 // SETUGT X, SINTMAX -> SETLT X, 0 1622 if (Cond == ISD::SETUGT && 1623 C1 == APInt::getSignedMaxValue(OperandBitSize)) 1624 return DAG.getSetCC(dl, VT, N0, 1625 DAG.getConstant(0, N1.getValueType()), 1626 ISD::SETLT); 1627 1628 // SETULT X, SINTMIN -> SETGT X, -1 1629 if (Cond == ISD::SETULT && 1630 C1 == APInt::getSignedMinValue(OperandBitSize)) { 1631 SDValue ConstMinusOne = 1632 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), 1633 N1.getValueType()); 1634 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 1635 } 1636 1637 // Fold bit comparisons when we can. 1638 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1639 (VT == N0.getValueType() || 1640 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 1641 N0.getOpcode() == ISD::AND) 1642 if (ConstantSDNode *AndRHS = 1643 dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1644 EVT ShiftTy = DCI.isBeforeLegalize() ? 1645 getPointerTy() : getShiftAmountTy(N0.getValueType()); 1646 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 1647 // Perform the xform if the AND RHS is a single bit. 1648 if (AndRHS->getAPIntValue().isPowerOf2()) { 1649 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1650 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1651 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy))); 1652 } 1653 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 1654 // (X & 8) == 8 --> (X & 8) >> 3 1655 // Perform the xform if C1 is a single bit. 1656 if (C1.isPowerOf2()) { 1657 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1658 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1659 DAG.getConstant(C1.logBase2(), ShiftTy))); 1660 } 1661 } 1662 } 1663 1664 if (C1.getMinSignedBits() <= 64 && 1665 !isLegalICmpImmediate(C1.getSExtValue())) { 1666 // (X & -256) == 256 -> (X >> 8) == 1 1667 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1668 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 1669 if (ConstantSDNode *AndRHS = 1670 dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1671 const APInt &AndRHSC = AndRHS->getAPIntValue(); 1672 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 1673 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 1674 EVT ShiftTy = DCI.isBeforeLegalize() ? 1675 getPointerTy() : getShiftAmountTy(N0.getValueType()); 1676 EVT CmpTy = N0.getValueType(); 1677 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 1678 DAG.getConstant(ShiftBits, ShiftTy)); 1679 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), CmpTy); 1680 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 1681 } 1682 } 1683 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 1684 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 1685 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 1686 // X < 0x100000000 -> (X >> 32) < 1 1687 // X >= 0x100000000 -> (X >> 32) >= 1 1688 // X <= 0x0ffffffff -> (X >> 32) < 1 1689 // X > 0x0ffffffff -> (X >> 32) >= 1 1690 unsigned ShiftBits; 1691 APInt NewC = C1; 1692 ISD::CondCode NewCond = Cond; 1693 if (AdjOne) { 1694 ShiftBits = C1.countTrailingOnes(); 1695 NewC = NewC + 1; 1696 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 1697 } else { 1698 ShiftBits = C1.countTrailingZeros(); 1699 } 1700 NewC = NewC.lshr(ShiftBits); 1701 if (ShiftBits && isLegalICmpImmediate(NewC.getSExtValue())) { 1702 EVT ShiftTy = DCI.isBeforeLegalize() ? 1703 getPointerTy() : getShiftAmountTy(N0.getValueType()); 1704 EVT CmpTy = N0.getValueType(); 1705 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 1706 DAG.getConstant(ShiftBits, ShiftTy)); 1707 SDValue CmpRHS = DAG.getConstant(NewC, CmpTy); 1708 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 1709 } 1710 } 1711 } 1712 } 1713 1714 if (isa<ConstantFPSDNode>(N0.getNode())) { 1715 // Constant fold or commute setcc. 1716 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); 1717 if (O.getNode()) return O; 1718 } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { 1719 // If the RHS of an FP comparison is a constant, simplify it away in 1720 // some cases. 1721 if (CFP->getValueAPF().isNaN()) { 1722 // If an operand is known to be a nan, we can fold it. 1723 switch (ISD::getUnorderedFlavor(Cond)) { 1724 default: llvm_unreachable("Unknown flavor!"); 1725 case 0: // Known false. 1726 return DAG.getConstant(0, VT); 1727 case 1: // Known true. 1728 return DAG.getConstant(1, VT); 1729 case 2: // Undefined. 1730 return DAG.getUNDEF(VT); 1731 } 1732 } 1733 1734 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 1735 // constant if knowing that the operand is non-nan is enough. We prefer to 1736 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 1737 // materialize 0.0. 1738 if (Cond == ISD::SETO || Cond == ISD::SETUO) 1739 return DAG.getSetCC(dl, VT, N0, N0, Cond); 1740 1741 // If the condition is not legal, see if we can find an equivalent one 1742 // which is legal. 1743 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 1744 // If the comparison was an awkward floating-point == or != and one of 1745 // the comparison operands is infinity or negative infinity, convert the 1746 // condition to a less-awkward <= or >=. 1747 if (CFP->getValueAPF().isInfinity()) { 1748 if (CFP->getValueAPF().isNegative()) { 1749 if (Cond == ISD::SETOEQ && 1750 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 1751 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 1752 if (Cond == ISD::SETUEQ && 1753 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 1754 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 1755 if (Cond == ISD::SETUNE && 1756 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 1757 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 1758 if (Cond == ISD::SETONE && 1759 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 1760 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 1761 } else { 1762 if (Cond == ISD::SETOEQ && 1763 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 1764 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 1765 if (Cond == ISD::SETUEQ && 1766 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 1767 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 1768 if (Cond == ISD::SETUNE && 1769 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 1770 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 1771 if (Cond == ISD::SETONE && 1772 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 1773 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 1774 } 1775 } 1776 } 1777 } 1778 1779 if (N0 == N1) { 1780 // The sext(setcc()) => setcc() optimization relies on the appropriate 1781 // constant being emitted. 1782 uint64_t EqVal = 0; 1783 switch (getBooleanContents(N0.getValueType())) { 1784 case UndefinedBooleanContent: 1785 case ZeroOrOneBooleanContent: 1786 EqVal = ISD::isTrueWhenEqual(Cond); 1787 break; 1788 case ZeroOrNegativeOneBooleanContent: 1789 EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0; 1790 break; 1791 } 1792 1793 // We can always fold X == X for integer setcc's. 1794 if (N0.getValueType().isInteger()) { 1795 return DAG.getConstant(EqVal, VT); 1796 } 1797 unsigned UOF = ISD::getUnorderedFlavor(Cond); 1798 if (UOF == 2) // FP operators that are undefined on NaNs. 1799 return DAG.getConstant(EqVal, VT); 1800 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) 1801 return DAG.getConstant(EqVal, VT); 1802 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 1803 // if it is not already. 1804 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 1805 if (NewCond != Cond && (DCI.isBeforeLegalizeOps() || 1806 getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal)) 1807 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 1808 } 1809 1810 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1811 N0.getValueType().isInteger()) { 1812 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 1813 N0.getOpcode() == ISD::XOR) { 1814 // Simplify (X+Y) == (X+Z) --> Y == Z 1815 if (N0.getOpcode() == N1.getOpcode()) { 1816 if (N0.getOperand(0) == N1.getOperand(0)) 1817 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 1818 if (N0.getOperand(1) == N1.getOperand(1)) 1819 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 1820 if (DAG.isCommutativeBinOp(N0.getOpcode())) { 1821 // If X op Y == Y op X, try other combinations. 1822 if (N0.getOperand(0) == N1.getOperand(1)) 1823 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 1824 Cond); 1825 if (N0.getOperand(1) == N1.getOperand(0)) 1826 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 1827 Cond); 1828 } 1829 } 1830 1831 // If RHS is a legal immediate value for a compare instruction, we need 1832 // to be careful about increasing register pressure needlessly. 1833 bool LegalRHSImm = false; 1834 1835 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) { 1836 if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1837 // Turn (X+C1) == C2 --> X == C2-C1 1838 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 1839 return DAG.getSetCC(dl, VT, N0.getOperand(0), 1840 DAG.getConstant(RHSC->getAPIntValue()- 1841 LHSR->getAPIntValue(), 1842 N0.getValueType()), Cond); 1843 } 1844 1845 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 1846 if (N0.getOpcode() == ISD::XOR) 1847 // If we know that all of the inverted bits are zero, don't bother 1848 // performing the inversion. 1849 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 1850 return 1851 DAG.getSetCC(dl, VT, N0.getOperand(0), 1852 DAG.getConstant(LHSR->getAPIntValue() ^ 1853 RHSC->getAPIntValue(), 1854 N0.getValueType()), 1855 Cond); 1856 } 1857 1858 // Turn (C1-X) == C2 --> X == C1-C2 1859 if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 1860 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 1861 return 1862 DAG.getSetCC(dl, VT, N0.getOperand(1), 1863 DAG.getConstant(SUBC->getAPIntValue() - 1864 RHSC->getAPIntValue(), 1865 N0.getValueType()), 1866 Cond); 1867 } 1868 } 1869 1870 // Could RHSC fold directly into a compare? 1871 if (RHSC->getValueType(0).getSizeInBits() <= 64) 1872 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 1873 } 1874 1875 // Simplify (X+Z) == X --> Z == 0 1876 // Don't do this if X is an immediate that can fold into a cmp 1877 // instruction and X+Z has other uses. It could be an induction variable 1878 // chain, and the transform would increase register pressure. 1879 if (!LegalRHSImm || N0.getNode()->hasOneUse()) { 1880 if (N0.getOperand(0) == N1) 1881 return DAG.getSetCC(dl, VT, N0.getOperand(1), 1882 DAG.getConstant(0, N0.getValueType()), Cond); 1883 if (N0.getOperand(1) == N1) { 1884 if (DAG.isCommutativeBinOp(N0.getOpcode())) 1885 return DAG.getSetCC(dl, VT, N0.getOperand(0), 1886 DAG.getConstant(0, N0.getValueType()), Cond); 1887 if (N0.getNode()->hasOneUse()) { 1888 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); 1889 // (Z-X) == X --> Z == X<<1 1890 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N1, 1891 DAG.getConstant(1, getShiftAmountTy(N1.getValueType()))); 1892 if (!DCI.isCalledByLegalizer()) 1893 DCI.AddToWorklist(SH.getNode()); 1894 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); 1895 } 1896 } 1897 } 1898 } 1899 1900 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 1901 N1.getOpcode() == ISD::XOR) { 1902 // Simplify X == (X+Z) --> Z == 0 1903 if (N1.getOperand(0) == N0) 1904 return DAG.getSetCC(dl, VT, N1.getOperand(1), 1905 DAG.getConstant(0, N1.getValueType()), Cond); 1906 if (N1.getOperand(1) == N0) { 1907 if (DAG.isCommutativeBinOp(N1.getOpcode())) 1908 return DAG.getSetCC(dl, VT, N1.getOperand(0), 1909 DAG.getConstant(0, N1.getValueType()), Cond); 1910 if (N1.getNode()->hasOneUse()) { 1911 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); 1912 // X == (Z-X) --> X<<1 == Z 1913 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0, 1914 DAG.getConstant(1, getShiftAmountTy(N0.getValueType()))); 1915 if (!DCI.isCalledByLegalizer()) 1916 DCI.AddToWorklist(SH.getNode()); 1917 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); 1918 } 1919 } 1920 } 1921 1922 // Simplify x&y == y to x&y != 0 if y has exactly one bit set. 1923 // Note that where y is variable and is known to have at most 1924 // one bit set (for example, if it is z&1) we cannot do this; 1925 // the expressions are not equivalent when y==0. 1926 if (N0.getOpcode() == ISD::AND) 1927 if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) { 1928 if (ValueHasExactlyOneBitSet(N1, DAG)) { 1929 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 1930 if (DCI.isBeforeLegalizeOps() || 1931 isCondCodeLegal(Cond, N0.getSimpleValueType())) { 1932 SDValue Zero = DAG.getConstant(0, N1.getValueType()); 1933 return DAG.getSetCC(dl, VT, N0, Zero, Cond); 1934 } 1935 } 1936 } 1937 if (N1.getOpcode() == ISD::AND) 1938 if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) { 1939 if (ValueHasExactlyOneBitSet(N0, DAG)) { 1940 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 1941 if (DCI.isBeforeLegalizeOps() || 1942 isCondCodeLegal(Cond, N1.getSimpleValueType())) { 1943 SDValue Zero = DAG.getConstant(0, N0.getValueType()); 1944 return DAG.getSetCC(dl, VT, N1, Zero, Cond); 1945 } 1946 } 1947 } 1948 } 1949 1950 // Fold away ALL boolean setcc's. 1951 SDValue Temp; 1952 if (N0.getValueType() == MVT::i1 && foldBooleans) { 1953 switch (Cond) { 1954 default: llvm_unreachable("Unknown integer setcc!"); 1955 case ISD::SETEQ: // X == Y -> ~(X^Y) 1956 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 1957 N0 = DAG.getNOT(dl, Temp, MVT::i1); 1958 if (!DCI.isCalledByLegalizer()) 1959 DCI.AddToWorklist(Temp.getNode()); 1960 break; 1961 case ISD::SETNE: // X != Y --> (X^Y) 1962 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 1963 break; 1964 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 1965 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 1966 Temp = DAG.getNOT(dl, N0, MVT::i1); 1967 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp); 1968 if (!DCI.isCalledByLegalizer()) 1969 DCI.AddToWorklist(Temp.getNode()); 1970 break; 1971 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 1972 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 1973 Temp = DAG.getNOT(dl, N1, MVT::i1); 1974 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp); 1975 if (!DCI.isCalledByLegalizer()) 1976 DCI.AddToWorklist(Temp.getNode()); 1977 break; 1978 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 1979 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 1980 Temp = DAG.getNOT(dl, N0, MVT::i1); 1981 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp); 1982 if (!DCI.isCalledByLegalizer()) 1983 DCI.AddToWorklist(Temp.getNode()); 1984 break; 1985 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 1986 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 1987 Temp = DAG.getNOT(dl, N1, MVT::i1); 1988 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp); 1989 break; 1990 } 1991 if (VT != MVT::i1) { 1992 if (!DCI.isCalledByLegalizer()) 1993 DCI.AddToWorklist(N0.getNode()); 1994 // FIXME: If running after legalize, we probably can't do this. 1995 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0); 1996 } 1997 return N0; 1998 } 1999 2000 // Could not fold it. 2001 return SDValue(); 2002 } 2003 2004 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the 2005 /// node is a GlobalAddress + offset. 2006 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, 2007 int64_t &Offset) const { 2008 if (isa<GlobalAddressSDNode>(N)) { 2009 GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N); 2010 GA = GASD->getGlobal(); 2011 Offset += GASD->getOffset(); 2012 return true; 2013 } 2014 2015 if (N->getOpcode() == ISD::ADD) { 2016 SDValue N1 = N->getOperand(0); 2017 SDValue N2 = N->getOperand(1); 2018 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 2019 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2); 2020 if (V) { 2021 Offset += V->getSExtValue(); 2022 return true; 2023 } 2024 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 2025 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1); 2026 if (V) { 2027 Offset += V->getSExtValue(); 2028 return true; 2029 } 2030 } 2031 } 2032 2033 return false; 2034 } 2035 2036 2037 SDValue TargetLowering:: 2038 PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { 2039 // Default implementation: no optimization. 2040 return SDValue(); 2041 } 2042 2043 //===----------------------------------------------------------------------===// 2044 // Inline Assembler Implementation Methods 2045 //===----------------------------------------------------------------------===// 2046 2047 2048 TargetLowering::ConstraintType 2049 TargetLowering::getConstraintType(const std::string &Constraint) const { 2050 unsigned S = Constraint.size(); 2051 2052 if (S == 1) { 2053 switch (Constraint[0]) { 2054 default: break; 2055 case 'r': return C_RegisterClass; 2056 case 'm': // memory 2057 case 'o': // offsetable 2058 case 'V': // not offsetable 2059 return C_Memory; 2060 case 'i': // Simple Integer or Relocatable Constant 2061 case 'n': // Simple Integer 2062 case 'E': // Floating Point Constant 2063 case 'F': // Floating Point Constant 2064 case 's': // Relocatable Constant 2065 case 'p': // Address. 2066 case 'X': // Allow ANY value. 2067 case 'I': // Target registers. 2068 case 'J': 2069 case 'K': 2070 case 'L': 2071 case 'M': 2072 case 'N': 2073 case 'O': 2074 case 'P': 2075 case '<': 2076 case '>': 2077 return C_Other; 2078 } 2079 } 2080 2081 if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { 2082 if (S == 8 && !Constraint.compare(1, 6, "memory", 6)) // "{memory}" 2083 return C_Memory; 2084 return C_Register; 2085 } 2086 return C_Unknown; 2087 } 2088 2089 /// LowerXConstraint - try to replace an X constraint, which matches anything, 2090 /// with another that has more specific requirements based on the type of the 2091 /// corresponding operand. 2092 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ 2093 if (ConstraintVT.isInteger()) 2094 return "r"; 2095 if (ConstraintVT.isFloatingPoint()) 2096 return "f"; // works for many targets 2097 return nullptr; 2098 } 2099 2100 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 2101 /// vector. If it is invalid, don't add anything to Ops. 2102 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 2103 std::string &Constraint, 2104 std::vector<SDValue> &Ops, 2105 SelectionDAG &DAG) const { 2106 2107 if (Constraint.length() > 1) return; 2108 2109 char ConstraintLetter = Constraint[0]; 2110 switch (ConstraintLetter) { 2111 default: break; 2112 case 'X': // Allows any operand; labels (basic block) use this. 2113 if (Op.getOpcode() == ISD::BasicBlock) { 2114 Ops.push_back(Op); 2115 return; 2116 } 2117 // fall through 2118 case 'i': // Simple Integer or Relocatable Constant 2119 case 'n': // Simple Integer 2120 case 's': { // Relocatable Constant 2121 // These operands are interested in values of the form (GV+C), where C may 2122 // be folded in as an offset of GV, or it may be explicitly added. Also, it 2123 // is possible and fine if either GV or C are missing. 2124 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2125 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 2126 2127 // If we have "(add GV, C)", pull out GV/C 2128 if (Op.getOpcode() == ISD::ADD) { 2129 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2130 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 2131 if (!C || !GA) { 2132 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 2133 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 2134 } 2135 if (!C || !GA) 2136 C = nullptr, GA = nullptr; 2137 } 2138 2139 // If we find a valid operand, map to the TargetXXX version so that the 2140 // value itself doesn't get selected. 2141 if (GA) { // Either &GV or &GV+C 2142 if (ConstraintLetter != 'n') { 2143 int64_t Offs = GA->getOffset(); 2144 if (C) Offs += C->getZExtValue(); 2145 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 2146 C ? SDLoc(C) : SDLoc(), 2147 Op.getValueType(), Offs)); 2148 return; 2149 } 2150 } 2151 if (C) { // just C, no GV. 2152 // Simple constants are not allowed for 's'. 2153 if (ConstraintLetter != 's') { 2154 // gcc prints these as sign extended. Sign extend value to 64 bits 2155 // now; without this it would get ZExt'd later in 2156 // ScheduleDAGSDNodes::EmitNode, which is very generic. 2157 Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(), 2158 MVT::i64)); 2159 return; 2160 } 2161 } 2162 break; 2163 } 2164 } 2165 } 2166 2167 std::pair<unsigned, const TargetRegisterClass*> TargetLowering:: 2168 getRegForInlineAsmConstraint(const std::string &Constraint, 2169 MVT VT) const { 2170 if (Constraint.empty() || Constraint[0] != '{') 2171 return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr)); 2172 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); 2173 2174 // Remove the braces from around the name. 2175 StringRef RegName(Constraint.data()+1, Constraint.size()-2); 2176 2177 std::pair<unsigned, const TargetRegisterClass*> R = 2178 std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr)); 2179 2180 // Figure out which register class contains this reg. 2181 const TargetRegisterInfo *RI = 2182 getTargetMachine().getSubtargetImpl()->getRegisterInfo(); 2183 for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(), 2184 E = RI->regclass_end(); RCI != E; ++RCI) { 2185 const TargetRegisterClass *RC = *RCI; 2186 2187 // If none of the value types for this register class are valid, we 2188 // can't use it. For example, 64-bit reg classes on 32-bit targets. 2189 if (!isLegalRC(RC)) 2190 continue; 2191 2192 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 2193 I != E; ++I) { 2194 if (RegName.equals_lower(RI->getName(*I))) { 2195 std::pair<unsigned, const TargetRegisterClass*> S = 2196 std::make_pair(*I, RC); 2197 2198 // If this register class has the requested value type, return it, 2199 // otherwise keep searching and return the first class found 2200 // if no other is found which explicitly has the requested type. 2201 if (RC->hasType(VT)) 2202 return S; 2203 else if (!R.second) 2204 R = S; 2205 } 2206 } 2207 } 2208 2209 return R; 2210 } 2211 2212 //===----------------------------------------------------------------------===// 2213 // Constraint Selection. 2214 2215 /// isMatchingInputConstraint - Return true of this is an input operand that is 2216 /// a matching constraint like "4". 2217 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 2218 assert(!ConstraintCode.empty() && "No known constraint!"); 2219 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 2220 } 2221 2222 /// getMatchedOperand - If this is an input matching constraint, this method 2223 /// returns the output operand it matches. 2224 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 2225 assert(!ConstraintCode.empty() && "No known constraint!"); 2226 return atoi(ConstraintCode.c_str()); 2227 } 2228 2229 2230 /// ParseConstraints - Split up the constraint string from the inline 2231 /// assembly value into the specific constraints and their prefixes, 2232 /// and also tie in the associated operand values. 2233 /// If this returns an empty vector, and if the constraint string itself 2234 /// isn't empty, there was an error parsing. 2235 TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints( 2236 ImmutableCallSite CS) const { 2237 /// ConstraintOperands - Information about all of the constraints. 2238 AsmOperandInfoVector ConstraintOperands; 2239 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 2240 unsigned maCount = 0; // Largest number of multiple alternative constraints. 2241 2242 // Do a prepass over the constraints, canonicalizing them, and building up the 2243 // ConstraintOperands list. 2244 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 2245 unsigned ResNo = 0; // ResNo - The result number of the next output. 2246 2247 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 2248 ConstraintOperands.emplace_back(std::move(CI)); 2249 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 2250 2251 // Update multiple alternative constraint count. 2252 if (OpInfo.multipleAlternatives.size() > maCount) 2253 maCount = OpInfo.multipleAlternatives.size(); 2254 2255 OpInfo.ConstraintVT = MVT::Other; 2256 2257 // Compute the value type for each operand. 2258 switch (OpInfo.Type) { 2259 case InlineAsm::isOutput: 2260 // Indirect outputs just consume an argument. 2261 if (OpInfo.isIndirect) { 2262 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2263 break; 2264 } 2265 2266 // The return value of the call is this value. As such, there is no 2267 // corresponding argument. 2268 assert(!CS.getType()->isVoidTy() && 2269 "Bad inline asm!"); 2270 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 2271 OpInfo.ConstraintVT = getSimpleValueType(STy->getElementType(ResNo)); 2272 } else { 2273 assert(ResNo == 0 && "Asm only has one result!"); 2274 OpInfo.ConstraintVT = getSimpleValueType(CS.getType()); 2275 } 2276 ++ResNo; 2277 break; 2278 case InlineAsm::isInput: 2279 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2280 break; 2281 case InlineAsm::isClobber: 2282 // Nothing to do. 2283 break; 2284 } 2285 2286 if (OpInfo.CallOperandVal) { 2287 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 2288 if (OpInfo.isIndirect) { 2289 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 2290 if (!PtrTy) 2291 report_fatal_error("Indirect operand for inline asm not a pointer!"); 2292 OpTy = PtrTy->getElementType(); 2293 } 2294 2295 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 2296 if (StructType *STy = dyn_cast<StructType>(OpTy)) 2297 if (STy->getNumElements() == 1) 2298 OpTy = STy->getElementType(0); 2299 2300 // If OpTy is not a single value, it may be a struct/union that we 2301 // can tile with integers. 2302 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 2303 unsigned BitSize = getDataLayout()->getTypeSizeInBits(OpTy); 2304 switch (BitSize) { 2305 default: break; 2306 case 1: 2307 case 8: 2308 case 16: 2309 case 32: 2310 case 64: 2311 case 128: 2312 OpInfo.ConstraintVT = 2313 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 2314 break; 2315 } 2316 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 2317 unsigned PtrSize 2318 = getDataLayout()->getPointerSizeInBits(PT->getAddressSpace()); 2319 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 2320 } else { 2321 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 2322 } 2323 } 2324 } 2325 2326 // If we have multiple alternative constraints, select the best alternative. 2327 if (ConstraintOperands.size()) { 2328 if (maCount) { 2329 unsigned bestMAIndex = 0; 2330 int bestWeight = -1; 2331 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 2332 int weight = -1; 2333 unsigned maIndex; 2334 // Compute the sums of the weights for each alternative, keeping track 2335 // of the best (highest weight) one so far. 2336 for (maIndex = 0; maIndex < maCount; ++maIndex) { 2337 int weightSum = 0; 2338 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2339 cIndex != eIndex; ++cIndex) { 2340 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2341 if (OpInfo.Type == InlineAsm::isClobber) 2342 continue; 2343 2344 // If this is an output operand with a matching input operand, 2345 // look up the matching input. If their types mismatch, e.g. one 2346 // is an integer, the other is floating point, or their sizes are 2347 // different, flag it as an maCantMatch. 2348 if (OpInfo.hasMatchingInput()) { 2349 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2350 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2351 if ((OpInfo.ConstraintVT.isInteger() != 2352 Input.ConstraintVT.isInteger()) || 2353 (OpInfo.ConstraintVT.getSizeInBits() != 2354 Input.ConstraintVT.getSizeInBits())) { 2355 weightSum = -1; // Can't match. 2356 break; 2357 } 2358 } 2359 } 2360 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 2361 if (weight == -1) { 2362 weightSum = -1; 2363 break; 2364 } 2365 weightSum += weight; 2366 } 2367 // Update best. 2368 if (weightSum > bestWeight) { 2369 bestWeight = weightSum; 2370 bestMAIndex = maIndex; 2371 } 2372 } 2373 2374 // Now select chosen alternative in each constraint. 2375 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2376 cIndex != eIndex; ++cIndex) { 2377 AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; 2378 if (cInfo.Type == InlineAsm::isClobber) 2379 continue; 2380 cInfo.selectAlternative(bestMAIndex); 2381 } 2382 } 2383 } 2384 2385 // Check and hook up tied operands, choose constraint code to use. 2386 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2387 cIndex != eIndex; ++cIndex) { 2388 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2389 2390 // If this is an output operand with a matching input operand, look up the 2391 // matching input. If their types mismatch, e.g. one is an integer, the 2392 // other is floating point, or their sizes are different, flag it as an 2393 // error. 2394 if (OpInfo.hasMatchingInput()) { 2395 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2396 2397 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2398 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 2399 getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 2400 OpInfo.ConstraintVT); 2401 std::pair<unsigned, const TargetRegisterClass*> InputRC = 2402 getRegForInlineAsmConstraint(Input.ConstraintCode, 2403 Input.ConstraintVT); 2404 if ((OpInfo.ConstraintVT.isInteger() != 2405 Input.ConstraintVT.isInteger()) || 2406 (MatchRC.second != InputRC.second)) { 2407 report_fatal_error("Unsupported asm: input constraint" 2408 " with a matching output constraint of" 2409 " incompatible type!"); 2410 } 2411 } 2412 2413 } 2414 } 2415 2416 return ConstraintOperands; 2417 } 2418 2419 2420 /// getConstraintGenerality - Return an integer indicating how general CT 2421 /// is. 2422 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 2423 switch (CT) { 2424 case TargetLowering::C_Other: 2425 case TargetLowering::C_Unknown: 2426 return 0; 2427 case TargetLowering::C_Register: 2428 return 1; 2429 case TargetLowering::C_RegisterClass: 2430 return 2; 2431 case TargetLowering::C_Memory: 2432 return 3; 2433 } 2434 llvm_unreachable("Invalid constraint type"); 2435 } 2436 2437 /// Examine constraint type and operand type and determine a weight value. 2438 /// This object must already have been set up with the operand type 2439 /// and the current alternative constraint selected. 2440 TargetLowering::ConstraintWeight 2441 TargetLowering::getMultipleConstraintMatchWeight( 2442 AsmOperandInfo &info, int maIndex) const { 2443 InlineAsm::ConstraintCodeVector *rCodes; 2444 if (maIndex >= (int)info.multipleAlternatives.size()) 2445 rCodes = &info.Codes; 2446 else 2447 rCodes = &info.multipleAlternatives[maIndex].Codes; 2448 ConstraintWeight BestWeight = CW_Invalid; 2449 2450 // Loop over the options, keeping track of the most general one. 2451 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 2452 ConstraintWeight weight = 2453 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 2454 if (weight > BestWeight) 2455 BestWeight = weight; 2456 } 2457 2458 return BestWeight; 2459 } 2460 2461 /// Examine constraint type and operand type and determine a weight value. 2462 /// This object must already have been set up with the operand type 2463 /// and the current alternative constraint selected. 2464 TargetLowering::ConstraintWeight 2465 TargetLowering::getSingleConstraintMatchWeight( 2466 AsmOperandInfo &info, const char *constraint) const { 2467 ConstraintWeight weight = CW_Invalid; 2468 Value *CallOperandVal = info.CallOperandVal; 2469 // If we don't have a value, we can't do a match, 2470 // but allow it at the lowest weight. 2471 if (!CallOperandVal) 2472 return CW_Default; 2473 // Look at the constraint type. 2474 switch (*constraint) { 2475 case 'i': // immediate integer. 2476 case 'n': // immediate integer with a known value. 2477 if (isa<ConstantInt>(CallOperandVal)) 2478 weight = CW_Constant; 2479 break; 2480 case 's': // non-explicit intregal immediate. 2481 if (isa<GlobalValue>(CallOperandVal)) 2482 weight = CW_Constant; 2483 break; 2484 case 'E': // immediate float if host format. 2485 case 'F': // immediate float. 2486 if (isa<ConstantFP>(CallOperandVal)) 2487 weight = CW_Constant; 2488 break; 2489 case '<': // memory operand with autodecrement. 2490 case '>': // memory operand with autoincrement. 2491 case 'm': // memory operand. 2492 case 'o': // offsettable memory operand 2493 case 'V': // non-offsettable memory operand 2494 weight = CW_Memory; 2495 break; 2496 case 'r': // general register. 2497 case 'g': // general register, memory operand or immediate integer. 2498 // note: Clang converts "g" to "imr". 2499 if (CallOperandVal->getType()->isIntegerTy()) 2500 weight = CW_Register; 2501 break; 2502 case 'X': // any operand. 2503 default: 2504 weight = CW_Default; 2505 break; 2506 } 2507 return weight; 2508 } 2509 2510 /// ChooseConstraint - If there are multiple different constraints that we 2511 /// could pick for this operand (e.g. "imr") try to pick the 'best' one. 2512 /// This is somewhat tricky: constraints fall into four classes: 2513 /// Other -> immediates and magic values 2514 /// Register -> one specific register 2515 /// RegisterClass -> a group of regs 2516 /// Memory -> memory 2517 /// Ideally, we would pick the most specific constraint possible: if we have 2518 /// something that fits into a register, we would pick it. The problem here 2519 /// is that if we have something that could either be in a register or in 2520 /// memory that use of the register could cause selection of *other* 2521 /// operands to fail: they might only succeed if we pick memory. Because of 2522 /// this the heuristic we use is: 2523 /// 2524 /// 1) If there is an 'other' constraint, and if the operand is valid for 2525 /// that constraint, use it. This makes us take advantage of 'i' 2526 /// constraints when available. 2527 /// 2) Otherwise, pick the most general constraint present. This prefers 2528 /// 'm' over 'r', for example. 2529 /// 2530 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 2531 const TargetLowering &TLI, 2532 SDValue Op, SelectionDAG *DAG) { 2533 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 2534 unsigned BestIdx = 0; 2535 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 2536 int BestGenerality = -1; 2537 2538 // Loop over the options, keeping track of the most general one. 2539 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 2540 TargetLowering::ConstraintType CType = 2541 TLI.getConstraintType(OpInfo.Codes[i]); 2542 2543 // If this is an 'other' constraint, see if the operand is valid for it. 2544 // For example, on X86 we might have an 'rI' constraint. If the operand 2545 // is an integer in the range [0..31] we want to use I (saving a load 2546 // of a register), otherwise we must use 'r'. 2547 if (CType == TargetLowering::C_Other && Op.getNode()) { 2548 assert(OpInfo.Codes[i].size() == 1 && 2549 "Unhandled multi-letter 'other' constraint"); 2550 std::vector<SDValue> ResultOps; 2551 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 2552 ResultOps, *DAG); 2553 if (!ResultOps.empty()) { 2554 BestType = CType; 2555 BestIdx = i; 2556 break; 2557 } 2558 } 2559 2560 // Things with matching constraints can only be registers, per gcc 2561 // documentation. This mainly affects "g" constraints. 2562 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 2563 continue; 2564 2565 // This constraint letter is more general than the previous one, use it. 2566 int Generality = getConstraintGenerality(CType); 2567 if (Generality > BestGenerality) { 2568 BestType = CType; 2569 BestIdx = i; 2570 BestGenerality = Generality; 2571 } 2572 } 2573 2574 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 2575 OpInfo.ConstraintType = BestType; 2576 } 2577 2578 /// ComputeConstraintToUse - Determines the constraint code and constraint 2579 /// type to use for the specific AsmOperandInfo, setting 2580 /// OpInfo.ConstraintCode and OpInfo.ConstraintType. 2581 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 2582 SDValue Op, 2583 SelectionDAG *DAG) const { 2584 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 2585 2586 // Single-letter constraints ('r') are very common. 2587 if (OpInfo.Codes.size() == 1) { 2588 OpInfo.ConstraintCode = OpInfo.Codes[0]; 2589 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2590 } else { 2591 ChooseConstraint(OpInfo, *this, Op, DAG); 2592 } 2593 2594 // 'X' matches anything. 2595 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 2596 // Labels and constants are handled elsewhere ('X' is the only thing 2597 // that matches labels). For Functions, the type here is the type of 2598 // the result, which is not what we want to look at; leave them alone. 2599 Value *v = OpInfo.CallOperandVal; 2600 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 2601 OpInfo.CallOperandVal = v; 2602 return; 2603 } 2604 2605 // Otherwise, try to resolve it to something we know about by looking at 2606 // the actual operand type. 2607 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 2608 OpInfo.ConstraintCode = Repl; 2609 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2610 } 2611 } 2612 } 2613 2614 /// \brief Given an exact SDIV by a constant, create a multiplication 2615 /// with the multiplicative inverse of the constant. 2616 SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, SDLoc dl, 2617 SelectionDAG &DAG) const { 2618 ConstantSDNode *C = cast<ConstantSDNode>(Op2); 2619 APInt d = C->getAPIntValue(); 2620 assert(d != 0 && "Division by zero!"); 2621 2622 // Shift the value upfront if it is even, so the LSB is one. 2623 unsigned ShAmt = d.countTrailingZeros(); 2624 if (ShAmt) { 2625 // TODO: For UDIV use SRL instead of SRA. 2626 SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType())); 2627 Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, false, false, 2628 true); 2629 d = d.ashr(ShAmt); 2630 } 2631 2632 // Calculate the multiplicative inverse, using Newton's method. 2633 APInt t, xn = d; 2634 while ((t = d*xn) != 1) 2635 xn *= APInt(d.getBitWidth(), 2) - t; 2636 2637 Op2 = DAG.getConstant(xn, Op1.getValueType()); 2638 return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2); 2639 } 2640 2641 /// \brief Given an ISD::SDIV node expressing a divide by constant, 2642 /// return a DAG expression to select that will generate the same value by 2643 /// multiplying by a magic number. 2644 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 2645 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor, 2646 SelectionDAG &DAG, bool IsAfterLegalization, 2647 std::vector<SDNode *> *Created) const { 2648 assert(Created && "No vector to hold sdiv ops."); 2649 2650 EVT VT = N->getValueType(0); 2651 SDLoc dl(N); 2652 2653 // Check to see if we can do this. 2654 // FIXME: We should be more aggressive here. 2655 if (!isTypeLegal(VT)) 2656 return SDValue(); 2657 2658 APInt::ms magics = Divisor.magic(); 2659 2660 // Multiply the numerator (operand 0) by the magic value 2661 // FIXME: We should support doing a MUL in a wider type 2662 SDValue Q; 2663 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) : 2664 isOperationLegalOrCustom(ISD::MULHS, VT)) 2665 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0), 2666 DAG.getConstant(magics.m, VT)); 2667 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) : 2668 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) 2669 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), 2670 N->getOperand(0), 2671 DAG.getConstant(magics.m, VT)).getNode(), 1); 2672 else 2673 return SDValue(); // No mulhs or equvialent 2674 // If d > 0 and m < 0, add the numerator 2675 if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 2676 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); 2677 Created->push_back(Q.getNode()); 2678 } 2679 // If d < 0 and m > 0, subtract the numerator. 2680 if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 2681 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0)); 2682 Created->push_back(Q.getNode()); 2683 } 2684 // Shift right algebraic if shift value is nonzero 2685 if (magics.s > 0) { 2686 Q = DAG.getNode(ISD::SRA, dl, VT, Q, 2687 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType()))); 2688 Created->push_back(Q.getNode()); 2689 } 2690 // Extract the sign bit and add it to the quotient 2691 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, 2692 DAG.getConstant(VT.getScalarSizeInBits() - 1, 2693 getShiftAmountTy(Q.getValueType()))); 2694 Created->push_back(T.getNode()); 2695 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 2696 } 2697 2698 /// \brief Given an ISD::UDIV node expressing a divide by constant, 2699 /// return a DAG expression to select that will generate the same value by 2700 /// multiplying by a magic number. 2701 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 2702 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor, 2703 SelectionDAG &DAG, bool IsAfterLegalization, 2704 std::vector<SDNode *> *Created) const { 2705 assert(Created && "No vector to hold udiv ops."); 2706 2707 EVT VT = N->getValueType(0); 2708 SDLoc dl(N); 2709 2710 // Check to see if we can do this. 2711 // FIXME: We should be more aggressive here. 2712 if (!isTypeLegal(VT)) 2713 return SDValue(); 2714 2715 // FIXME: We should use a narrower constant when the upper 2716 // bits are known to be zero. 2717 APInt::mu magics = Divisor.magicu(); 2718 2719 SDValue Q = N->getOperand(0); 2720 2721 // If the divisor is even, we can avoid using the expensive fixup by shifting 2722 // the divided value upfront. 2723 if (magics.a != 0 && !Divisor[0]) { 2724 unsigned Shift = Divisor.countTrailingZeros(); 2725 Q = DAG.getNode(ISD::SRL, dl, VT, Q, 2726 DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType()))); 2727 Created->push_back(Q.getNode()); 2728 2729 // Get magic number for the shifted divisor. 2730 magics = Divisor.lshr(Shift).magicu(Shift); 2731 assert(magics.a == 0 && "Should use cheap fixup now"); 2732 } 2733 2734 // Multiply the numerator (operand 0) by the magic value 2735 // FIXME: We should support doing a MUL in a wider type 2736 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) : 2737 isOperationLegalOrCustom(ISD::MULHU, VT)) 2738 Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT)); 2739 else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) : 2740 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) 2741 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q, 2742 DAG.getConstant(magics.m, VT)).getNode(), 1); 2743 else 2744 return SDValue(); // No mulhu or equvialent 2745 2746 Created->push_back(Q.getNode()); 2747 2748 if (magics.a == 0) { 2749 assert(magics.s < Divisor.getBitWidth() && 2750 "We shouldn't generate an undefined shift!"); 2751 return DAG.getNode(ISD::SRL, dl, VT, Q, 2752 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType()))); 2753 } else { 2754 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); 2755 Created->push_back(NPQ.getNode()); 2756 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, 2757 DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType()))); 2758 Created->push_back(NPQ.getNode()); 2759 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 2760 Created->push_back(NPQ.getNode()); 2761 return DAG.getNode(ISD::SRL, dl, VT, NPQ, 2762 DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType()))); 2763 } 2764 } 2765 2766 bool TargetLowering:: 2767 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 2768 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 2769 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 2770 "be a constant integer"); 2771 return true; 2772 } 2773 2774 return false; 2775 } 2776 2777 //===----------------------------------------------------------------------===// 2778 // Legalization Utilities 2779 //===----------------------------------------------------------------------===// 2780 2781 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 2782 SelectionDAG &DAG, SDValue LL, SDValue LH, 2783 SDValue RL, SDValue RH) const { 2784 EVT VT = N->getValueType(0); 2785 SDLoc dl(N); 2786 2787 bool HasMULHS = isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 2788 bool HasMULHU = isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 2789 bool HasSMUL_LOHI = isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 2790 bool HasUMUL_LOHI = isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 2791 if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { 2792 unsigned OuterBitSize = VT.getSizeInBits(); 2793 unsigned InnerBitSize = HiLoVT.getSizeInBits(); 2794 unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0)); 2795 unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1)); 2796 2797 // LL, LH, RL, and RH must be either all NULL or all set to a value. 2798 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 2799 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 2800 2801 if (!LL.getNode() && !RL.getNode() && 2802 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 2803 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(0)); 2804 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(1)); 2805 } 2806 2807 if (!LL.getNode()) 2808 return false; 2809 2810 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 2811 if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) && 2812 DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) { 2813 // The inputs are both zero-extended. 2814 if (HasUMUL_LOHI) { 2815 // We can emit a umul_lohi. 2816 Lo = DAG.getNode(ISD::UMUL_LOHI, dl, 2817 DAG.getVTList(HiLoVT, HiLoVT), LL, RL); 2818 Hi = SDValue(Lo.getNode(), 1); 2819 return true; 2820 } 2821 if (HasMULHU) { 2822 // We can emit a mulhu+mul. 2823 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 2824 Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL); 2825 return true; 2826 } 2827 } 2828 if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) { 2829 // The input values are both sign-extended. 2830 if (HasSMUL_LOHI) { 2831 // We can emit a smul_lohi. 2832 Lo = DAG.getNode(ISD::SMUL_LOHI, dl, 2833 DAG.getVTList(HiLoVT, HiLoVT), LL, RL); 2834 Hi = SDValue(Lo.getNode(), 1); 2835 return true; 2836 } 2837 if (HasMULHS) { 2838 // We can emit a mulhs+mul. 2839 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 2840 Hi = DAG.getNode(ISD::MULHS, dl, HiLoVT, LL, RL); 2841 return true; 2842 } 2843 } 2844 2845 if (!LH.getNode() && !RH.getNode() && 2846 isOperationLegalOrCustom(ISD::SRL, VT) && 2847 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 2848 unsigned ShiftAmt = VT.getSizeInBits() - HiLoVT.getSizeInBits(); 2849 SDValue Shift = DAG.getConstant(ShiftAmt, getShiftAmountTy(VT)); 2850 LH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(0), Shift); 2851 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 2852 RH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(1), Shift); 2853 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 2854 } 2855 2856 if (!LH.getNode()) 2857 return false; 2858 2859 if (HasUMUL_LOHI) { 2860 // Lo,Hi = umul LHS, RHS. 2861 SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl, 2862 DAG.getVTList(HiLoVT, HiLoVT), LL, RL); 2863 Lo = UMulLOHI; 2864 Hi = UMulLOHI.getValue(1); 2865 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 2866 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 2867 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 2868 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 2869 return true; 2870 } 2871 if (HasMULHU) { 2872 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 2873 Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL); 2874 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 2875 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 2876 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 2877 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 2878 return true; 2879 } 2880 } 2881 return false; 2882 } 2883 2884 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 2885 SelectionDAG &DAG) const { 2886 EVT VT = Node->getOperand(0).getValueType(); 2887 EVT NVT = Node->getValueType(0); 2888 SDLoc dl(SDValue(Node, 0)); 2889 2890 // FIXME: Only f32 to i64 conversions are supported. 2891 if (VT != MVT::f32 || NVT != MVT::i64) 2892 return false; 2893 2894 // Expand f32 -> i64 conversion 2895 // This algorithm comes from compiler-rt's implementation of fixsfdi: 2896 // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c 2897 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), 2898 VT.getSizeInBits()); 2899 SDValue ExponentMask = DAG.getConstant(0x7F800000, IntVT); 2900 SDValue ExponentLoBit = DAG.getConstant(23, IntVT); 2901 SDValue Bias = DAG.getConstant(127, IntVT); 2902 SDValue SignMask = DAG.getConstant(APInt::getSignBit(VT.getSizeInBits()), 2903 IntVT); 2904 SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, IntVT); 2905 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, IntVT); 2906 2907 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0)); 2908 2909 SDValue ExponentBits = DAG.getNode(ISD::SRL, dl, IntVT, 2910 DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 2911 DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT))); 2912 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 2913 2914 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 2915 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 2916 DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT))); 2917 Sign = DAG.getSExtOrTrunc(Sign, dl, NVT); 2918 2919 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 2920 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 2921 DAG.getConstant(0x00800000, IntVT)); 2922 2923 R = DAG.getZExtOrTrunc(R, dl, NVT); 2924 2925 2926 R = DAG.getSelectCC(dl, Exponent, ExponentLoBit, 2927 DAG.getNode(ISD::SHL, dl, NVT, R, 2928 DAG.getZExtOrTrunc( 2929 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 2930 dl, getShiftAmountTy(IntVT))), 2931 DAG.getNode(ISD::SRL, dl, NVT, R, 2932 DAG.getZExtOrTrunc( 2933 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 2934 dl, getShiftAmountTy(IntVT))), 2935 ISD::SETGT); 2936 2937 SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT, 2938 DAG.getNode(ISD::XOR, dl, NVT, R, Sign), 2939 Sign); 2940 2941 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, IntVT), 2942 DAG.getConstant(0, NVT), Ret, ISD::SETLT); 2943 return true; 2944 } 2945