1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore NoAlias and NonNull because they don't affect the
61   // call sequence.
62   AttributeList CallerAttrs = F.getAttributes();
63   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
64           .removeAttribute(Attribute::NoAlias)
65           .removeAttribute(Attribute::NonNull)
66           .hasAttributes())
67     return false;
68 
69   // It's not safe to eliminate the sign / zero extension of the return value.
70   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
71       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
72     return false;
73 
74   // Check if the only use is a function return node.
75   return isUsedByReturnOnly(Node, Chain);
76 }
77 
78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
79     const uint32_t *CallerPreservedMask,
80     const SmallVectorImpl<CCValAssign> &ArgLocs,
81     const SmallVectorImpl<SDValue> &OutVals) const {
82   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
83     const CCValAssign &ArgLoc = ArgLocs[I];
84     if (!ArgLoc.isRegLoc())
85       continue;
86     Register Reg = ArgLoc.getLocReg();
87     // Only look at callee saved registers.
88     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
89       continue;
90     // Check that we pass the value used for the caller.
91     // (We look for a CopyFromReg reading a virtual register that is used
92     //  for the function live-in value of register Reg)
93     SDValue Value = OutVals[I];
94     if (Value->getOpcode() != ISD::CopyFromReg)
95       return false;
96     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
97     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
98       return false;
99   }
100   return true;
101 }
102 
103 /// Set CallLoweringInfo attribute flags based on a call instruction
104 /// and called function attributes.
105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
106                                                      unsigned ArgIdx) {
107   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
108   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
109   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
110   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
111   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
112   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
113   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
114   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
115   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
116   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
117   Alignment = Call->getParamAlignment(ArgIdx);
118   ByValType = nullptr;
119   if (Call->paramHasAttr(ArgIdx, Attribute::ByVal))
120     ByValType = Call->getParamByValType(ArgIdx);
121 }
122 
123 /// Generate a libcall taking the given operands as arguments and returning a
124 /// result of type RetVT.
125 std::pair<SDValue, SDValue>
126 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
127                             ArrayRef<SDValue> Ops,
128                             MakeLibCallOptions CallOptions,
129                             const SDLoc &dl,
130                             SDValue InChain) const {
131   if (!InChain)
132     InChain = DAG.getEntryNode();
133 
134   TargetLowering::ArgListTy Args;
135   Args.reserve(Ops.size());
136 
137   TargetLowering::ArgListEntry Entry;
138   for (unsigned i = 0; i < Ops.size(); ++i) {
139     SDValue NewOp = Ops[i];
140     Entry.Node = NewOp;
141     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
142     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
143                                                  CallOptions.IsSExt);
144     Entry.IsZExt = !Entry.IsSExt;
145 
146     if (CallOptions.IsSoften &&
147         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
148       Entry.IsSExt = Entry.IsZExt = false;
149     }
150     Args.push_back(Entry);
151   }
152 
153   if (LC == RTLIB::UNKNOWN_LIBCALL)
154     report_fatal_error("Unsupported library call operation!");
155   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
156                                          getPointerTy(DAG.getDataLayout()));
157 
158   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
159   TargetLowering::CallLoweringInfo CLI(DAG);
160   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
161   bool zeroExtend = !signExtend;
162 
163   if (CallOptions.IsSoften &&
164       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
165     signExtend = zeroExtend = false;
166   }
167 
168   CLI.setDebugLoc(dl)
169       .setChain(InChain)
170       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
171       .setNoReturn(CallOptions.DoesNotReturn)
172       .setDiscardResult(!CallOptions.IsReturnValueUsed)
173       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
174       .setSExtResult(signExtend)
175       .setZExtResult(zeroExtend);
176   return LowerCallTo(CLI);
177 }
178 
179 bool
180 TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps,
181                                          unsigned Limit, uint64_t Size,
182                                          unsigned DstAlign, unsigned SrcAlign,
183                                          bool IsMemset,
184                                          bool ZeroMemset,
185                                          bool MemcpyStrSrc,
186                                          bool AllowOverlap,
187                                          unsigned DstAS, unsigned SrcAS,
188                                          const AttributeList &FuncAttributes) const {
189   // If 'SrcAlign' is zero, that means the memory operation does not need to
190   // load the value, i.e. memset or memcpy from constant string. Otherwise,
191   // it's the inferred alignment of the source. 'DstAlign', on the other hand,
192   // is the specified alignment of the memory operation. If it is zero, that
193   // means it's possible to change the alignment of the destination.
194   // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
195   // not need to be loaded.
196   if (!(SrcAlign == 0 || SrcAlign >= DstAlign))
197     return false;
198 
199   EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign,
200                                IsMemset, ZeroMemset, MemcpyStrSrc,
201                                FuncAttributes);
202 
203   if (VT == MVT::Other) {
204     // Use the largest integer type whose alignment constraints are satisfied.
205     // We only need to check DstAlign here as SrcAlign is always greater or
206     // equal to DstAlign (or zero).
207     VT = MVT::i64;
208     while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
209            !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
210       VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
211     assert(VT.isInteger());
212 
213     // Find the largest legal integer type.
214     MVT LVT = MVT::i64;
215     while (!isTypeLegal(LVT))
216       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
217     assert(LVT.isInteger());
218 
219     // If the type we've chosen is larger than the largest legal integer type
220     // then use that instead.
221     if (VT.bitsGT(LVT))
222       VT = LVT;
223   }
224 
225   unsigned NumMemOps = 0;
226   while (Size != 0) {
227     unsigned VTSize = VT.getSizeInBits() / 8;
228     while (VTSize > Size) {
229       // For now, only use non-vector load / store's for the left-over pieces.
230       EVT NewVT = VT;
231       unsigned NewVTSize;
232 
233       bool Found = false;
234       if (VT.isVector() || VT.isFloatingPoint()) {
235         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
236         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
237             isSafeMemOpType(NewVT.getSimpleVT()))
238           Found = true;
239         else if (NewVT == MVT::i64 &&
240                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
241                  isSafeMemOpType(MVT::f64)) {
242           // i64 is usually not legal on 32-bit targets, but f64 may be.
243           NewVT = MVT::f64;
244           Found = true;
245         }
246       }
247 
248       if (!Found) {
249         do {
250           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
251           if (NewVT == MVT::i8)
252             break;
253         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
254       }
255       NewVTSize = NewVT.getSizeInBits() / 8;
256 
257       // If the new VT cannot cover all of the remaining bits, then consider
258       // issuing a (or a pair of) unaligned and overlapping load / store.
259       bool Fast;
260       if (NumMemOps && AllowOverlap && NewVTSize < Size &&
261           allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign,
262                                          MachineMemOperand::MONone, &Fast) &&
263           Fast)
264         VTSize = Size;
265       else {
266         VT = NewVT;
267         VTSize = NewVTSize;
268       }
269     }
270 
271     if (++NumMemOps > Limit)
272       return false;
273 
274     MemOps.push_back(VT);
275     Size -= VTSize;
276   }
277 
278   return true;
279 }
280 
281 /// Soften the operands of a comparison. This code is shared among BR_CC,
282 /// SELECT_CC, and SETCC handlers.
283 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
284                                          SDValue &NewLHS, SDValue &NewRHS,
285                                          ISD::CondCode &CCCode,
286                                          const SDLoc &dl, const SDValue OldLHS,
287                                          const SDValue OldRHS) const {
288   SDValue Chain;
289   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
290                              OldRHS, Chain);
291 }
292 
293 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
294                                          SDValue &NewLHS, SDValue &NewRHS,
295                                          ISD::CondCode &CCCode,
296                                          const SDLoc &dl, const SDValue OldLHS,
297                                          const SDValue OldRHS,
298                                          SDValue &Chain,
299                                          bool IsSignaling) const {
300   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
301   // not supporting it. We can update this code when libgcc provides such
302   // functions.
303 
304   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
305          && "Unsupported setcc type!");
306 
307   // Expand into one or more soft-fp libcall(s).
308   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
309   bool ShouldInvertCC = false;
310   switch (CCCode) {
311   case ISD::SETEQ:
312   case ISD::SETOEQ:
313     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
314           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
315           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
316     break;
317   case ISD::SETNE:
318   case ISD::SETUNE:
319     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
320           (VT == MVT::f64) ? RTLIB::UNE_F64 :
321           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
322     break;
323   case ISD::SETGE:
324   case ISD::SETOGE:
325     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
326           (VT == MVT::f64) ? RTLIB::OGE_F64 :
327           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
328     break;
329   case ISD::SETLT:
330   case ISD::SETOLT:
331     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
332           (VT == MVT::f64) ? RTLIB::OLT_F64 :
333           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
334     break;
335   case ISD::SETLE:
336   case ISD::SETOLE:
337     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
338           (VT == MVT::f64) ? RTLIB::OLE_F64 :
339           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
340     break;
341   case ISD::SETGT:
342   case ISD::SETOGT:
343     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
344           (VT == MVT::f64) ? RTLIB::OGT_F64 :
345           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
346     break;
347   case ISD::SETO:
348     ShouldInvertCC = true;
349     LLVM_FALLTHROUGH;
350   case ISD::SETUO:
351     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
352           (VT == MVT::f64) ? RTLIB::UO_F64 :
353           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
354     break;
355   case ISD::SETONE:
356     // SETONE = O && UNE
357     ShouldInvertCC = true;
358     LLVM_FALLTHROUGH;
359   case ISD::SETUEQ:
360     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
361           (VT == MVT::f64) ? RTLIB::UO_F64 :
362           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
363     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
364           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
365           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
366     break;
367   default:
368     // Invert CC for unordered comparisons
369     ShouldInvertCC = true;
370     switch (CCCode) {
371     case ISD::SETULT:
372       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
373             (VT == MVT::f64) ? RTLIB::OGE_F64 :
374             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
375       break;
376     case ISD::SETULE:
377       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
378             (VT == MVT::f64) ? RTLIB::OGT_F64 :
379             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
380       break;
381     case ISD::SETUGT:
382       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
383             (VT == MVT::f64) ? RTLIB::OLE_F64 :
384             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
385       break;
386     case ISD::SETUGE:
387       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
388             (VT == MVT::f64) ? RTLIB::OLT_F64 :
389             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
390       break;
391     default: llvm_unreachable("Do not know how to soften this setcc!");
392     }
393   }
394 
395   // Use the target specific return value for comparions lib calls.
396   EVT RetVT = getCmpLibcallReturnType();
397   SDValue Ops[2] = {NewLHS, NewRHS};
398   TargetLowering::MakeLibCallOptions CallOptions;
399   EVT OpsVT[2] = { OldLHS.getValueType(),
400                    OldRHS.getValueType() };
401   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
402   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
403   NewLHS = Call.first;
404   NewRHS = DAG.getConstant(0, dl, RetVT);
405 
406   CCCode = getCmpLibcallCC(LC1);
407   if (ShouldInvertCC) {
408     assert(RetVT.isInteger());
409     CCCode = getSetCCInverse(CCCode, RetVT);
410   }
411 
412   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
413     // Update Chain.
414     Chain = Call.second;
415   } else {
416     EVT SetCCVT =
417         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
418     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
419     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
420     CCCode = getCmpLibcallCC(LC2);
421     if (ShouldInvertCC)
422       CCCode = getSetCCInverse(CCCode, RetVT);
423     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
424     if (Chain)
425       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
426                           Call2.second);
427     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
428                          Tmp.getValueType(), Tmp, NewLHS);
429     NewRHS = SDValue();
430   }
431 }
432 
433 /// Return the entry encoding for a jump table in the current function. The
434 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
435 unsigned TargetLowering::getJumpTableEncoding() const {
436   // In non-pic modes, just use the address of a block.
437   if (!isPositionIndependent())
438     return MachineJumpTableInfo::EK_BlockAddress;
439 
440   // In PIC mode, if the target supports a GPRel32 directive, use it.
441   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
442     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
443 
444   // Otherwise, use a label difference.
445   return MachineJumpTableInfo::EK_LabelDifference32;
446 }
447 
448 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
449                                                  SelectionDAG &DAG) const {
450   // If our PIC model is GP relative, use the global offset table as the base.
451   unsigned JTEncoding = getJumpTableEncoding();
452 
453   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
454       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
455     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
456 
457   return Table;
458 }
459 
460 /// This returns the relocation base for the given PIC jumptable, the same as
461 /// getPICJumpTableRelocBase, but as an MCExpr.
462 const MCExpr *
463 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
464                                              unsigned JTI,MCContext &Ctx) const{
465   // The normal PIC reloc base is the label at the start of the jump table.
466   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
467 }
468 
469 bool
470 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
471   const TargetMachine &TM = getTargetMachine();
472   const GlobalValue *GV = GA->getGlobal();
473 
474   // If the address is not even local to this DSO we will have to load it from
475   // a got and then add the offset.
476   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
477     return false;
478 
479   // If the code is position independent we will have to add a base register.
480   if (isPositionIndependent())
481     return false;
482 
483   // Otherwise we can do it.
484   return true;
485 }
486 
487 //===----------------------------------------------------------------------===//
488 //  Optimization Methods
489 //===----------------------------------------------------------------------===//
490 
491 /// If the specified instruction has a constant integer operand and there are
492 /// bits set in that constant that are not demanded, then clear those bits and
493 /// return true.
494 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
495                                             TargetLoweringOpt &TLO) const {
496   SDLoc DL(Op);
497   unsigned Opcode = Op.getOpcode();
498 
499   // Do target-specific constant optimization.
500   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
501     return TLO.New.getNode();
502 
503   // FIXME: ISD::SELECT, ISD::SELECT_CC
504   switch (Opcode) {
505   default:
506     break;
507   case ISD::XOR:
508   case ISD::AND:
509   case ISD::OR: {
510     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
511     if (!Op1C)
512       return false;
513 
514     // If this is a 'not' op, don't touch it because that's a canonical form.
515     const APInt &C = Op1C->getAPIntValue();
516     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
517       return false;
518 
519     if (!C.isSubsetOf(Demanded)) {
520       EVT VT = Op.getValueType();
521       SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT);
522       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
523       return TLO.CombineTo(Op, NewOp);
524     }
525 
526     break;
527   }
528   }
529 
530   return false;
531 }
532 
533 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
534 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
535 /// generalized for targets with other types of implicit widening casts.
536 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
537                                       const APInt &Demanded,
538                                       TargetLoweringOpt &TLO) const {
539   assert(Op.getNumOperands() == 2 &&
540          "ShrinkDemandedOp only supports binary operators!");
541   assert(Op.getNode()->getNumValues() == 1 &&
542          "ShrinkDemandedOp only supports nodes with one result!");
543 
544   SelectionDAG &DAG = TLO.DAG;
545   SDLoc dl(Op);
546 
547   // Early return, as this function cannot handle vector types.
548   if (Op.getValueType().isVector())
549     return false;
550 
551   // Don't do this if the node has another user, which may require the
552   // full value.
553   if (!Op.getNode()->hasOneUse())
554     return false;
555 
556   // Search for the smallest integer type with free casts to and from
557   // Op's type. For expedience, just check power-of-2 integer types.
558   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
559   unsigned DemandedSize = Demanded.getActiveBits();
560   unsigned SmallVTBits = DemandedSize;
561   if (!isPowerOf2_32(SmallVTBits))
562     SmallVTBits = NextPowerOf2(SmallVTBits);
563   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
564     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
565     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
566         TLI.isZExtFree(SmallVT, Op.getValueType())) {
567       // We found a type with free casts.
568       SDValue X = DAG.getNode(
569           Op.getOpcode(), dl, SmallVT,
570           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
571           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
572       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
573       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
574       return TLO.CombineTo(Op, Z);
575     }
576   }
577   return false;
578 }
579 
580 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
581                                           DAGCombinerInfo &DCI) const {
582   SelectionDAG &DAG = DCI.DAG;
583   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
584                         !DCI.isBeforeLegalizeOps());
585   KnownBits Known;
586 
587   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
588   if (Simplified) {
589     DCI.AddToWorklist(Op.getNode());
590     DCI.CommitTargetLoweringOpt(TLO);
591   }
592   return Simplified;
593 }
594 
595 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
596                                           KnownBits &Known,
597                                           TargetLoweringOpt &TLO,
598                                           unsigned Depth,
599                                           bool AssumeSingleUse) const {
600   EVT VT = Op.getValueType();
601   APInt DemandedElts = VT.isVector()
602                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
603                            : APInt(1, 1);
604   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
605                               AssumeSingleUse);
606 }
607 
608 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
609 // TODO: Under what circumstances can we create nodes? Constant folding?
610 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
611     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
612     SelectionDAG &DAG, unsigned Depth) const {
613   // Limit search depth.
614   if (Depth >= SelectionDAG::MaxRecursionDepth)
615     return SDValue();
616 
617   // Ignore UNDEFs.
618   if (Op.isUndef())
619     return SDValue();
620 
621   // Not demanding any bits/elts from Op.
622   if (DemandedBits == 0 || DemandedElts == 0)
623     return DAG.getUNDEF(Op.getValueType());
624 
625   unsigned NumElts = DemandedElts.getBitWidth();
626   KnownBits LHSKnown, RHSKnown;
627   switch (Op.getOpcode()) {
628   case ISD::BITCAST: {
629     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
630     EVT SrcVT = Src.getValueType();
631     EVT DstVT = Op.getValueType();
632     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
633     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
634 
635     if (NumSrcEltBits == NumDstEltBits)
636       if (SDValue V = SimplifyMultipleUseDemandedBits(
637               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
638         return DAG.getBitcast(DstVT, V);
639 
640     // TODO - bigendian once we have test coverage.
641     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
642         DAG.getDataLayout().isLittleEndian()) {
643       unsigned Scale = NumDstEltBits / NumSrcEltBits;
644       unsigned NumSrcElts = SrcVT.getVectorNumElements();
645       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
646       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
647       for (unsigned i = 0; i != Scale; ++i) {
648         unsigned Offset = i * NumSrcEltBits;
649         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
650         if (!Sub.isNullValue()) {
651           DemandedSrcBits |= Sub;
652           for (unsigned j = 0; j != NumElts; ++j)
653             if (DemandedElts[j])
654               DemandedSrcElts.setBit((j * Scale) + i);
655         }
656       }
657 
658       if (SDValue V = SimplifyMultipleUseDemandedBits(
659               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
660         return DAG.getBitcast(DstVT, V);
661     }
662 
663     // TODO - bigendian once we have test coverage.
664     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
665         DAG.getDataLayout().isLittleEndian()) {
666       unsigned Scale = NumSrcEltBits / NumDstEltBits;
667       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
668       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
669       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
670       for (unsigned i = 0; i != NumElts; ++i)
671         if (DemandedElts[i]) {
672           unsigned Offset = (i % Scale) * NumDstEltBits;
673           DemandedSrcBits.insertBits(DemandedBits, Offset);
674           DemandedSrcElts.setBit(i / Scale);
675         }
676 
677       if (SDValue V = SimplifyMultipleUseDemandedBits(
678               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
679         return DAG.getBitcast(DstVT, V);
680     }
681 
682     break;
683   }
684   case ISD::AND: {
685     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
686     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
687 
688     // If all of the demanded bits are known 1 on one side, return the other.
689     // These bits cannot contribute to the result of the 'and' in this
690     // context.
691     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
692       return Op.getOperand(0);
693     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
694       return Op.getOperand(1);
695     break;
696   }
697   case ISD::OR: {
698     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
699     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
700 
701     // If all of the demanded bits are known zero on one side, return the
702     // other.  These bits cannot contribute to the result of the 'or' in this
703     // context.
704     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
705       return Op.getOperand(0);
706     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
707       return Op.getOperand(1);
708     break;
709   }
710   case ISD::XOR: {
711     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
712     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
713 
714     // If all of the demanded bits are known zero on one side, return the
715     // other.
716     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
717       return Op.getOperand(0);
718     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
719       return Op.getOperand(1);
720     break;
721   }
722   case ISD::SETCC: {
723     SDValue Op0 = Op.getOperand(0);
724     SDValue Op1 = Op.getOperand(1);
725     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
726     // If (1) we only need the sign-bit, (2) the setcc operands are the same
727     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
728     // -1, we may be able to bypass the setcc.
729     if (DemandedBits.isSignMask() &&
730         Op0.getScalarValueSizeInBits() == DemandedBits.getBitWidth() &&
731         getBooleanContents(Op0.getValueType()) ==
732             BooleanContent::ZeroOrNegativeOneBooleanContent) {
733       // If we're testing X < 0, then this compare isn't needed - just use X!
734       // FIXME: We're limiting to integer types here, but this should also work
735       // if we don't care about FP signed-zero. The use of SETLT with FP means
736       // that we don't care about NaNs.
737       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
738           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
739         return Op0;
740     }
741     break;
742   }
743   case ISD::SIGN_EXTEND_INREG: {
744     // If none of the extended bits are demanded, eliminate the sextinreg.
745     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
746     if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits())
747       return Op.getOperand(0);
748     break;
749   }
750   case ISD::INSERT_VECTOR_ELT: {
751     // If we don't demand the inserted element, return the base vector.
752     SDValue Vec = Op.getOperand(0);
753     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
754     EVT VecVT = Vec.getValueType();
755     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
756         !DemandedElts[CIdx->getZExtValue()])
757       return Vec;
758     break;
759   }
760   case ISD::VECTOR_SHUFFLE: {
761     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
762 
763     // If all the demanded elts are from one operand and are inline,
764     // then we can use the operand directly.
765     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
766     for (unsigned i = 0; i != NumElts; ++i) {
767       int M = ShuffleMask[i];
768       if (M < 0 || !DemandedElts[i])
769         continue;
770       AllUndef = false;
771       IdentityLHS &= (M == (int)i);
772       IdentityRHS &= ((M - NumElts) == i);
773     }
774 
775     if (AllUndef)
776       return DAG.getUNDEF(Op.getValueType());
777     if (IdentityLHS)
778       return Op.getOperand(0);
779     if (IdentityRHS)
780       return Op.getOperand(1);
781     break;
782   }
783   default:
784     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
785       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
786               Op, DemandedBits, DemandedElts, DAG, Depth))
787         return V;
788     break;
789   }
790   return SDValue();
791 }
792 
793 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
794 /// result of Op are ever used downstream. If we can use this information to
795 /// simplify Op, create a new simplified DAG node and return true, returning the
796 /// original and new nodes in Old and New. Otherwise, analyze the expression and
797 /// return a mask of Known bits for the expression (used to simplify the
798 /// caller).  The Known bits may only be accurate for those bits in the
799 /// OriginalDemandedBits and OriginalDemandedElts.
800 bool TargetLowering::SimplifyDemandedBits(
801     SDValue Op, const APInt &OriginalDemandedBits,
802     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
803     unsigned Depth, bool AssumeSingleUse) const {
804   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
805   assert(Op.getScalarValueSizeInBits() == BitWidth &&
806          "Mask size mismatches value type size!");
807 
808   unsigned NumElts = OriginalDemandedElts.getBitWidth();
809   assert((!Op.getValueType().isVector() ||
810           NumElts == Op.getValueType().getVectorNumElements()) &&
811          "Unexpected vector size");
812 
813   APInt DemandedBits = OriginalDemandedBits;
814   APInt DemandedElts = OriginalDemandedElts;
815   SDLoc dl(Op);
816   auto &DL = TLO.DAG.getDataLayout();
817 
818   // Don't know anything.
819   Known = KnownBits(BitWidth);
820 
821   // Undef operand.
822   if (Op.isUndef())
823     return false;
824 
825   if (Op.getOpcode() == ISD::Constant) {
826     // We know all of the bits for a constant!
827     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
828     Known.Zero = ~Known.One;
829     return false;
830   }
831 
832   // Other users may use these bits.
833   EVT VT = Op.getValueType();
834   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
835     if (Depth != 0) {
836       // If not at the root, Just compute the Known bits to
837       // simplify things downstream.
838       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
839       return false;
840     }
841     // If this is the root being simplified, allow it to have multiple uses,
842     // just set the DemandedBits/Elts to all bits.
843     DemandedBits = APInt::getAllOnesValue(BitWidth);
844     DemandedElts = APInt::getAllOnesValue(NumElts);
845   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
846     // Not demanding any bits/elts from Op.
847     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
848   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
849     // Limit search depth.
850     return false;
851   }
852 
853   KnownBits Known2, KnownOut;
854   switch (Op.getOpcode()) {
855   case ISD::TargetConstant:
856     llvm_unreachable("Can't simplify this node");
857   case ISD::SCALAR_TO_VECTOR: {
858     if (!DemandedElts[0])
859       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
860 
861     KnownBits SrcKnown;
862     SDValue Src = Op.getOperand(0);
863     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
864     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
865     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
866       return true;
867     Known = SrcKnown.zextOrTrunc(BitWidth, false);
868     break;
869   }
870   case ISD::BUILD_VECTOR:
871     // Collect the known bits that are shared by every demanded element.
872     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
873     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
874     return false; // Don't fall through, will infinitely loop.
875   case ISD::LOAD: {
876     LoadSDNode *LD = cast<LoadSDNode>(Op);
877     if (getTargetConstantFromLoad(LD)) {
878       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
879       return false; // Don't fall through, will infinitely loop.
880     }
881     break;
882   }
883   case ISD::INSERT_VECTOR_ELT: {
884     SDValue Vec = Op.getOperand(0);
885     SDValue Scl = Op.getOperand(1);
886     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
887     EVT VecVT = Vec.getValueType();
888 
889     // If index isn't constant, assume we need all vector elements AND the
890     // inserted element.
891     APInt DemandedVecElts(DemandedElts);
892     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
893       unsigned Idx = CIdx->getZExtValue();
894       DemandedVecElts.clearBit(Idx);
895 
896       // Inserted element is not required.
897       if (!DemandedElts[Idx])
898         return TLO.CombineTo(Op, Vec);
899     }
900 
901     KnownBits KnownScl;
902     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
903     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
904     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
905       return true;
906 
907     Known = KnownScl.zextOrTrunc(BitWidth, false);
908 
909     KnownBits KnownVec;
910     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
911                              Depth + 1))
912       return true;
913 
914     if (!!DemandedVecElts) {
915       Known.One &= KnownVec.One;
916       Known.Zero &= KnownVec.Zero;
917     }
918 
919     return false;
920   }
921   case ISD::INSERT_SUBVECTOR: {
922     SDValue Base = Op.getOperand(0);
923     SDValue Sub = Op.getOperand(1);
924     EVT SubVT = Sub.getValueType();
925     unsigned NumSubElts = SubVT.getVectorNumElements();
926 
927     // If index isn't constant, assume we need the original demanded base
928     // elements and ALL the inserted subvector elements.
929     APInt BaseElts = DemandedElts;
930     APInt SubElts = APInt::getAllOnesValue(NumSubElts);
931     if (isa<ConstantSDNode>(Op.getOperand(2))) {
932       const APInt &Idx = Op.getConstantOperandAPInt(2);
933       if (Idx.ule(NumElts - NumSubElts)) {
934         unsigned SubIdx = Idx.getZExtValue();
935         SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
936         BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
937       }
938     }
939 
940     KnownBits KnownSub, KnownBase;
941     if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO,
942                              Depth + 1))
943       return true;
944     if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO,
945                              Depth + 1))
946       return true;
947 
948     Known.Zero.setAllBits();
949     Known.One.setAllBits();
950     if (!!SubElts) {
951         Known.One &= KnownSub.One;
952         Known.Zero &= KnownSub.Zero;
953     }
954     if (!!BaseElts) {
955         Known.One &= KnownBase.One;
956         Known.Zero &= KnownBase.Zero;
957     }
958     break;
959   }
960   case ISD::EXTRACT_SUBVECTOR: {
961     // If index isn't constant, assume we need all the source vector elements.
962     SDValue Src = Op.getOperand(0);
963     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
964     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
965     APInt SrcElts = APInt::getAllOnesValue(NumSrcElts);
966     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
967       // Offset the demanded elts by the subvector index.
968       uint64_t Idx = SubIdx->getZExtValue();
969       SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
970     }
971     if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1))
972       return true;
973     break;
974   }
975   case ISD::CONCAT_VECTORS: {
976     Known.Zero.setAllBits();
977     Known.One.setAllBits();
978     EVT SubVT = Op.getOperand(0).getValueType();
979     unsigned NumSubVecs = Op.getNumOperands();
980     unsigned NumSubElts = SubVT.getVectorNumElements();
981     for (unsigned i = 0; i != NumSubVecs; ++i) {
982       APInt DemandedSubElts =
983           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
984       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
985                                Known2, TLO, Depth + 1))
986         return true;
987       // Known bits are shared by every demanded subvector element.
988       if (!!DemandedSubElts) {
989         Known.One &= Known2.One;
990         Known.Zero &= Known2.Zero;
991       }
992     }
993     break;
994   }
995   case ISD::VECTOR_SHUFFLE: {
996     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
997 
998     // Collect demanded elements from shuffle operands..
999     APInt DemandedLHS(NumElts, 0);
1000     APInt DemandedRHS(NumElts, 0);
1001     for (unsigned i = 0; i != NumElts; ++i) {
1002       if (!DemandedElts[i])
1003         continue;
1004       int M = ShuffleMask[i];
1005       if (M < 0) {
1006         // For UNDEF elements, we don't know anything about the common state of
1007         // the shuffle result.
1008         DemandedLHS.clearAllBits();
1009         DemandedRHS.clearAllBits();
1010         break;
1011       }
1012       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1013       if (M < (int)NumElts)
1014         DemandedLHS.setBit(M);
1015       else
1016         DemandedRHS.setBit(M - NumElts);
1017     }
1018 
1019     if (!!DemandedLHS || !!DemandedRHS) {
1020       SDValue Op0 = Op.getOperand(0);
1021       SDValue Op1 = Op.getOperand(1);
1022 
1023       Known.Zero.setAllBits();
1024       Known.One.setAllBits();
1025       if (!!DemandedLHS) {
1026         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1027                                  Depth + 1))
1028           return true;
1029         Known.One &= Known2.One;
1030         Known.Zero &= Known2.Zero;
1031       }
1032       if (!!DemandedRHS) {
1033         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1034                                  Depth + 1))
1035           return true;
1036         Known.One &= Known2.One;
1037         Known.Zero &= Known2.Zero;
1038       }
1039 
1040       // Attempt to avoid multi-use ops if we don't need anything from them.
1041       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1042           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1043       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1044           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1045       if (DemandedOp0 || DemandedOp1) {
1046         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1047         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1048         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1049         return TLO.CombineTo(Op, NewOp);
1050       }
1051     }
1052     break;
1053   }
1054   case ISD::AND: {
1055     SDValue Op0 = Op.getOperand(0);
1056     SDValue Op1 = Op.getOperand(1);
1057 
1058     // If the RHS is a constant, check to see if the LHS would be zero without
1059     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1060     // simplify the LHS, here we're using information from the LHS to simplify
1061     // the RHS.
1062     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1063       // Do not increment Depth here; that can cause an infinite loop.
1064       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1065       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1066       if ((LHSKnown.Zero & DemandedBits) ==
1067           (~RHSC->getAPIntValue() & DemandedBits))
1068         return TLO.CombineTo(Op, Op0);
1069 
1070       // If any of the set bits in the RHS are known zero on the LHS, shrink
1071       // the constant.
1072       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
1073         return true;
1074 
1075       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1076       // constant, but if this 'and' is only clearing bits that were just set by
1077       // the xor, then this 'and' can be eliminated by shrinking the mask of
1078       // the xor. For example, for a 32-bit X:
1079       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1080       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1081           LHSKnown.One == ~RHSC->getAPIntValue()) {
1082         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1083         return TLO.CombineTo(Op, Xor);
1084       }
1085     }
1086 
1087     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1088                              Depth + 1))
1089       return true;
1090     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1091     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1092                              Known2, TLO, Depth + 1))
1093       return true;
1094     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1095 
1096     // Attempt to avoid multi-use ops if we don't need anything from them.
1097     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1098       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1099           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1100       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1101           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1102       if (DemandedOp0 || DemandedOp1) {
1103         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1104         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1105         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1106         return TLO.CombineTo(Op, NewOp);
1107       }
1108     }
1109 
1110     // If all of the demanded bits are known one on one side, return the other.
1111     // These bits cannot contribute to the result of the 'and'.
1112     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1113       return TLO.CombineTo(Op, Op0);
1114     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1115       return TLO.CombineTo(Op, Op1);
1116     // If all of the demanded bits in the inputs are known zeros, return zero.
1117     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1118       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1119     // If the RHS is a constant, see if we can simplify it.
1120     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
1121       return true;
1122     // If the operation can be done in a smaller type, do so.
1123     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1124       return true;
1125 
1126     // Output known-1 bits are only known if set in both the LHS & RHS.
1127     Known.One &= Known2.One;
1128     // Output known-0 are known to be clear if zero in either the LHS | RHS.
1129     Known.Zero |= Known2.Zero;
1130     break;
1131   }
1132   case ISD::OR: {
1133     SDValue Op0 = Op.getOperand(0);
1134     SDValue Op1 = Op.getOperand(1);
1135 
1136     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1137                              Depth + 1))
1138       return true;
1139     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1140     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1141                              Known2, TLO, Depth + 1))
1142       return true;
1143     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1144 
1145     // Attempt to avoid multi-use ops if we don't need anything from them.
1146     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1147       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1148           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1149       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1150           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1151       if (DemandedOp0 || DemandedOp1) {
1152         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1153         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1154         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1155         return TLO.CombineTo(Op, NewOp);
1156       }
1157     }
1158 
1159     // If all of the demanded bits are known zero on one side, return the other.
1160     // These bits cannot contribute to the result of the 'or'.
1161     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1162       return TLO.CombineTo(Op, Op0);
1163     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1164       return TLO.CombineTo(Op, Op1);
1165     // If the RHS is a constant, see if we can simplify it.
1166     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1167       return true;
1168     // If the operation can be done in a smaller type, do so.
1169     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1170       return true;
1171 
1172     // Output known-0 bits are only known if clear in both the LHS & RHS.
1173     Known.Zero &= Known2.Zero;
1174     // Output known-1 are known to be set if set in either the LHS | RHS.
1175     Known.One |= Known2.One;
1176     break;
1177   }
1178   case ISD::XOR: {
1179     SDValue Op0 = Op.getOperand(0);
1180     SDValue Op1 = Op.getOperand(1);
1181 
1182     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1183                              Depth + 1))
1184       return true;
1185     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1186     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1187                              Depth + 1))
1188       return true;
1189     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1190 
1191     // Attempt to avoid multi-use ops if we don't need anything from them.
1192     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1193       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1194           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1195       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1196           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1197       if (DemandedOp0 || DemandedOp1) {
1198         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1199         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1200         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1201         return TLO.CombineTo(Op, NewOp);
1202       }
1203     }
1204 
1205     // If all of the demanded bits are known zero on one side, return the other.
1206     // These bits cannot contribute to the result of the 'xor'.
1207     if (DemandedBits.isSubsetOf(Known.Zero))
1208       return TLO.CombineTo(Op, Op0);
1209     if (DemandedBits.isSubsetOf(Known2.Zero))
1210       return TLO.CombineTo(Op, Op1);
1211     // If the operation can be done in a smaller type, do so.
1212     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1213       return true;
1214 
1215     // If all of the unknown bits are known to be zero on one side or the other
1216     // (but not both) turn this into an *inclusive* or.
1217     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1218     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1219       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1220 
1221     // Output known-0 bits are known if clear or set in both the LHS & RHS.
1222     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
1223     // Output known-1 are known to be set if set in only one of the LHS, RHS.
1224     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1225 
1226     if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
1227       // If one side is a constant, and all of the known set bits on the other
1228       // side are also set in the constant, turn this into an AND, as we know
1229       // the bits will be cleared.
1230       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1231       // NB: it is okay if more bits are known than are requested
1232       if (C->getAPIntValue() == Known2.One) {
1233         SDValue ANDC =
1234             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1235         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1236       }
1237 
1238       // If the RHS is a constant, see if we can change it. Don't alter a -1
1239       // constant because that's a 'not' op, and that is better for combining
1240       // and codegen.
1241       if (!C->isAllOnesValue()) {
1242         if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
1243           // We're flipping all demanded bits. Flip the undemanded bits too.
1244           SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1245           return TLO.CombineTo(Op, New);
1246         }
1247         // If we can't turn this into a 'not', try to shrink the constant.
1248         if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1249           return true;
1250       }
1251     }
1252 
1253     Known = std::move(KnownOut);
1254     break;
1255   }
1256   case ISD::SELECT:
1257     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1258                              Depth + 1))
1259       return true;
1260     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1261                              Depth + 1))
1262       return true;
1263     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1264     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1265 
1266     // If the operands are constants, see if we can simplify them.
1267     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1268       return true;
1269 
1270     // Only known if known in both the LHS and RHS.
1271     Known.One &= Known2.One;
1272     Known.Zero &= Known2.Zero;
1273     break;
1274   case ISD::SELECT_CC:
1275     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1276                              Depth + 1))
1277       return true;
1278     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1279                              Depth + 1))
1280       return true;
1281     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1282     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1283 
1284     // If the operands are constants, see if we can simplify them.
1285     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1286       return true;
1287 
1288     // Only known if known in both the LHS and RHS.
1289     Known.One &= Known2.One;
1290     Known.Zero &= Known2.Zero;
1291     break;
1292   case ISD::SETCC: {
1293     SDValue Op0 = Op.getOperand(0);
1294     SDValue Op1 = Op.getOperand(1);
1295     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1296     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1297     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1298     // -1, we may be able to bypass the setcc.
1299     if (DemandedBits.isSignMask() &&
1300         Op0.getScalarValueSizeInBits() == BitWidth &&
1301         getBooleanContents(Op0.getValueType()) ==
1302             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1303       // If we're testing X < 0, then this compare isn't needed - just use X!
1304       // FIXME: We're limiting to integer types here, but this should also work
1305       // if we don't care about FP signed-zero. The use of SETLT with FP means
1306       // that we don't care about NaNs.
1307       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1308           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1309         return TLO.CombineTo(Op, Op0);
1310 
1311       // TODO: Should we check for other forms of sign-bit comparisons?
1312       // Examples: X <= -1, X >= 0
1313     }
1314     if (getBooleanContents(Op0.getValueType()) ==
1315             TargetLowering::ZeroOrOneBooleanContent &&
1316         BitWidth > 1)
1317       Known.Zero.setBitsFrom(1);
1318     break;
1319   }
1320   case ISD::SHL: {
1321     SDValue Op0 = Op.getOperand(0);
1322     SDValue Op1 = Op.getOperand(1);
1323 
1324     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1325       // If the shift count is an invalid immediate, don't do anything.
1326       if (SA->getAPIntValue().uge(BitWidth))
1327         break;
1328 
1329       unsigned ShAmt = SA->getZExtValue();
1330       if (ShAmt == 0)
1331         return TLO.CombineTo(Op, Op0);
1332 
1333       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1334       // single shift.  We can do this if the bottom bits (which are shifted
1335       // out) are never demanded.
1336       // TODO - support non-uniform vector amounts.
1337       if (Op0.getOpcode() == ISD::SRL) {
1338         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1339           if (ConstantSDNode *SA2 =
1340                   isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1341             if (SA2->getAPIntValue().ult(BitWidth)) {
1342               unsigned C1 = SA2->getZExtValue();
1343               unsigned Opc = ISD::SHL;
1344               int Diff = ShAmt - C1;
1345               if (Diff < 0) {
1346                 Diff = -Diff;
1347                 Opc = ISD::SRL;
1348               }
1349 
1350               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
1351               return TLO.CombineTo(
1352                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1353             }
1354           }
1355         }
1356       }
1357 
1358       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1359       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1360                                Depth + 1))
1361         return true;
1362 
1363       // Try shrinking the operation as long as the shift amount will still be
1364       // in range.
1365       if ((ShAmt < DemandedBits.getActiveBits()) &&
1366           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1367         return true;
1368 
1369       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1370       // are not demanded. This will likely allow the anyext to be folded away.
1371       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1372         SDValue InnerOp = Op0.getOperand(0);
1373         EVT InnerVT = InnerOp.getValueType();
1374         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1375         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1376             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1377           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1378           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1379             ShTy = InnerVT;
1380           SDValue NarrowShl =
1381               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1382                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1383           return TLO.CombineTo(
1384               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1385         }
1386         // Repeat the SHL optimization above in cases where an extension
1387         // intervenes: (shl (anyext (shr x, c1)), c2) to
1388         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1389         // aren't demanded (as above) and that the shifted upper c1 bits of
1390         // x aren't demanded.
1391         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1392             InnerOp.hasOneUse()) {
1393           if (ConstantSDNode *SA2 =
1394                   isConstOrConstSplat(InnerOp.getOperand(1))) {
1395             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
1396             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1397                 DemandedBits.getActiveBits() <=
1398                     (InnerBits - InnerShAmt + ShAmt) &&
1399                 DemandedBits.countTrailingZeros() >= ShAmt) {
1400               SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
1401                                                   Op1.getValueType());
1402               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1403                                                InnerOp.getOperand(0));
1404               return TLO.CombineTo(
1405                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1406             }
1407           }
1408         }
1409       }
1410 
1411       Known.Zero <<= ShAmt;
1412       Known.One <<= ShAmt;
1413       // low bits known zero.
1414       Known.Zero.setLowBits(ShAmt);
1415     }
1416     break;
1417   }
1418   case ISD::SRL: {
1419     SDValue Op0 = Op.getOperand(0);
1420     SDValue Op1 = Op.getOperand(1);
1421 
1422     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1423       // If the shift count is an invalid immediate, don't do anything.
1424       if (SA->getAPIntValue().uge(BitWidth))
1425         break;
1426 
1427       unsigned ShAmt = SA->getZExtValue();
1428       if (ShAmt == 0)
1429         return TLO.CombineTo(Op, Op0);
1430 
1431       EVT ShiftVT = Op1.getValueType();
1432       APInt InDemandedMask = (DemandedBits << ShAmt);
1433 
1434       // If the shift is exact, then it does demand the low bits (and knows that
1435       // they are zero).
1436       if (Op->getFlags().hasExact())
1437         InDemandedMask.setLowBits(ShAmt);
1438 
1439       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1440       // single shift.  We can do this if the top bits (which are shifted out)
1441       // are never demanded.
1442       // TODO - support non-uniform vector amounts.
1443       if (Op0.getOpcode() == ISD::SHL) {
1444         if (ConstantSDNode *SA2 =
1445                 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1446           if (!DemandedBits.intersects(
1447                   APInt::getHighBitsSet(BitWidth, ShAmt))) {
1448             if (SA2->getAPIntValue().ult(BitWidth)) {
1449               unsigned C1 = SA2->getZExtValue();
1450               unsigned Opc = ISD::SRL;
1451               int Diff = ShAmt - C1;
1452               if (Diff < 0) {
1453                 Diff = -Diff;
1454                 Opc = ISD::SHL;
1455               }
1456 
1457               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1458               return TLO.CombineTo(
1459                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1460             }
1461           }
1462         }
1463       }
1464 
1465       // Compute the new bits that are at the top now.
1466       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1467                                Depth + 1))
1468         return true;
1469       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1470       Known.Zero.lshrInPlace(ShAmt);
1471       Known.One.lshrInPlace(ShAmt);
1472 
1473       Known.Zero.setHighBits(ShAmt); // High bits known zero.
1474     }
1475     break;
1476   }
1477   case ISD::SRA: {
1478     SDValue Op0 = Op.getOperand(0);
1479     SDValue Op1 = Op.getOperand(1);
1480 
1481     // If this is an arithmetic shift right and only the low-bit is set, we can
1482     // always convert this into a logical shr, even if the shift amount is
1483     // variable.  The low bit of the shift cannot be an input sign bit unless
1484     // the shift amount is >= the size of the datatype, which is undefined.
1485     if (DemandedBits.isOneValue())
1486       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1487 
1488     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1489       // If the shift count is an invalid immediate, don't do anything.
1490       if (SA->getAPIntValue().uge(BitWidth))
1491         break;
1492 
1493       unsigned ShAmt = SA->getZExtValue();
1494       if (ShAmt == 0)
1495         return TLO.CombineTo(Op, Op0);
1496 
1497       APInt InDemandedMask = (DemandedBits << ShAmt);
1498 
1499       // If the shift is exact, then it does demand the low bits (and knows that
1500       // they are zero).
1501       if (Op->getFlags().hasExact())
1502         InDemandedMask.setLowBits(ShAmt);
1503 
1504       // If any of the demanded bits are produced by the sign extension, we also
1505       // demand the input sign bit.
1506       if (DemandedBits.countLeadingZeros() < ShAmt)
1507         InDemandedMask.setSignBit();
1508 
1509       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1510                                Depth + 1))
1511         return true;
1512       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1513       Known.Zero.lshrInPlace(ShAmt);
1514       Known.One.lshrInPlace(ShAmt);
1515 
1516       // If the input sign bit is known to be zero, or if none of the top bits
1517       // are demanded, turn this into an unsigned shift right.
1518       if (Known.Zero[BitWidth - ShAmt - 1] ||
1519           DemandedBits.countLeadingZeros() >= ShAmt) {
1520         SDNodeFlags Flags;
1521         Flags.setExact(Op->getFlags().hasExact());
1522         return TLO.CombineTo(
1523             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1524       }
1525 
1526       int Log2 = DemandedBits.exactLogBase2();
1527       if (Log2 >= 0) {
1528         // The bit must come from the sign.
1529         SDValue NewSA =
1530             TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType());
1531         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1532       }
1533 
1534       if (Known.One[BitWidth - ShAmt - 1])
1535         // New bits are known one.
1536         Known.One.setHighBits(ShAmt);
1537 
1538       // Attempt to avoid multi-use ops if we don't need anything from them.
1539       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1540         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1541             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1542         if (DemandedOp0) {
1543           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1544           return TLO.CombineTo(Op, NewOp);
1545         }
1546       }
1547     }
1548     break;
1549   }
1550   case ISD::FSHL:
1551   case ISD::FSHR: {
1552     SDValue Op0 = Op.getOperand(0);
1553     SDValue Op1 = Op.getOperand(1);
1554     SDValue Op2 = Op.getOperand(2);
1555     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1556 
1557     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1558       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1559 
1560       // For fshl, 0-shift returns the 1st arg.
1561       // For fshr, 0-shift returns the 2nd arg.
1562       if (Amt == 0) {
1563         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1564                                  Known, TLO, Depth + 1))
1565           return true;
1566         break;
1567       }
1568 
1569       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1570       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1571       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1572       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1573       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1574                                Depth + 1))
1575         return true;
1576       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1577                                Depth + 1))
1578         return true;
1579 
1580       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1581       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1582       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1583       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1584       Known.One |= Known2.One;
1585       Known.Zero |= Known2.Zero;
1586     }
1587     break;
1588   }
1589   case ISD::ROTL:
1590   case ISD::ROTR: {
1591     SDValue Op0 = Op.getOperand(0);
1592 
1593     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1594     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1595       return TLO.CombineTo(Op, Op0);
1596     break;
1597   }
1598   case ISD::BITREVERSE: {
1599     SDValue Src = Op.getOperand(0);
1600     APInt DemandedSrcBits = DemandedBits.reverseBits();
1601     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1602                              Depth + 1))
1603       return true;
1604     Known.One = Known2.One.reverseBits();
1605     Known.Zero = Known2.Zero.reverseBits();
1606     break;
1607   }
1608   case ISD::BSWAP: {
1609     SDValue Src = Op.getOperand(0);
1610     APInt DemandedSrcBits = DemandedBits.byteSwap();
1611     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1612                              Depth + 1))
1613       return true;
1614     Known.One = Known2.One.byteSwap();
1615     Known.Zero = Known2.Zero.byteSwap();
1616     break;
1617   }
1618   case ISD::SIGN_EXTEND_INREG: {
1619     SDValue Op0 = Op.getOperand(0);
1620     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1621     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1622 
1623     // If we only care about the highest bit, don't bother shifting right.
1624     if (DemandedBits.isSignMask()) {
1625       unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0);
1626       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1627       // However if the input is already sign extended we expect the sign
1628       // extension to be dropped altogether later and do not simplify.
1629       if (!AlreadySignExtended) {
1630         // Compute the correct shift amount type, which must be getShiftAmountTy
1631         // for scalar types after legalization.
1632         EVT ShiftAmtTy = VT;
1633         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1634           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1635 
1636         SDValue ShiftAmt =
1637             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1638         return TLO.CombineTo(Op,
1639                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1640       }
1641     }
1642 
1643     // If none of the extended bits are demanded, eliminate the sextinreg.
1644     if (DemandedBits.getActiveBits() <= ExVTBits)
1645       return TLO.CombineTo(Op, Op0);
1646 
1647     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1648 
1649     // Since the sign extended bits are demanded, we know that the sign
1650     // bit is demanded.
1651     InputDemandedBits.setBit(ExVTBits - 1);
1652 
1653     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1654       return true;
1655     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1656 
1657     // If the sign bit of the input is known set or clear, then we know the
1658     // top bits of the result.
1659 
1660     // If the input sign bit is known zero, convert this into a zero extension.
1661     if (Known.Zero[ExVTBits - 1])
1662       return TLO.CombineTo(
1663           Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
1664 
1665     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1666     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1667       Known.One.setBitsFrom(ExVTBits);
1668       Known.Zero &= Mask;
1669     } else { // Input sign bit unknown
1670       Known.Zero &= Mask;
1671       Known.One &= Mask;
1672     }
1673     break;
1674   }
1675   case ISD::BUILD_PAIR: {
1676     EVT HalfVT = Op.getOperand(0).getValueType();
1677     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1678 
1679     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1680     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1681 
1682     KnownBits KnownLo, KnownHi;
1683 
1684     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1685       return true;
1686 
1687     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1688       return true;
1689 
1690     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1691                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1692 
1693     Known.One = KnownLo.One.zext(BitWidth) |
1694                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1695     break;
1696   }
1697   case ISD::ZERO_EXTEND:
1698   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1699     SDValue Src = Op.getOperand(0);
1700     EVT SrcVT = Src.getValueType();
1701     unsigned InBits = SrcVT.getScalarSizeInBits();
1702     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1703     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1704 
1705     // If none of the top bits are demanded, convert this into an any_extend.
1706     if (DemandedBits.getActiveBits() <= InBits) {
1707       // If we only need the non-extended bits of the bottom element
1708       // then we can just bitcast to the result.
1709       if (IsVecInReg && DemandedElts == 1 &&
1710           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1711           TLO.DAG.getDataLayout().isLittleEndian())
1712         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1713 
1714       unsigned Opc =
1715           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1716       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1717         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1718     }
1719 
1720     APInt InDemandedBits = DemandedBits.trunc(InBits);
1721     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1722     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1723                              Depth + 1))
1724       return true;
1725     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1726     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1727     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
1728     break;
1729   }
1730   case ISD::SIGN_EXTEND:
1731   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1732     SDValue Src = Op.getOperand(0);
1733     EVT SrcVT = Src.getValueType();
1734     unsigned InBits = SrcVT.getScalarSizeInBits();
1735     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1736     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1737 
1738     // If none of the top bits are demanded, convert this into an any_extend.
1739     if (DemandedBits.getActiveBits() <= InBits) {
1740       // If we only need the non-extended bits of the bottom element
1741       // then we can just bitcast to the result.
1742       if (IsVecInReg && DemandedElts == 1 &&
1743           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1744           TLO.DAG.getDataLayout().isLittleEndian())
1745         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1746 
1747       unsigned Opc =
1748           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1749       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1750         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1751     }
1752 
1753     APInt InDemandedBits = DemandedBits.trunc(InBits);
1754     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1755 
1756     // Since some of the sign extended bits are demanded, we know that the sign
1757     // bit is demanded.
1758     InDemandedBits.setBit(InBits - 1);
1759 
1760     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1761                              Depth + 1))
1762       return true;
1763     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1764     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1765 
1766     // If the sign bit is known one, the top bits match.
1767     Known = Known.sext(BitWidth);
1768 
1769     // If the sign bit is known zero, convert this to a zero extend.
1770     if (Known.isNonNegative()) {
1771       unsigned Opc =
1772           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1773       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1774         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1775     }
1776     break;
1777   }
1778   case ISD::ANY_EXTEND:
1779   case ISD::ANY_EXTEND_VECTOR_INREG: {
1780     SDValue Src = Op.getOperand(0);
1781     EVT SrcVT = Src.getValueType();
1782     unsigned InBits = SrcVT.getScalarSizeInBits();
1783     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1784     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1785 
1786     // If we only need the bottom element then we can just bitcast.
1787     // TODO: Handle ANY_EXTEND?
1788     if (IsVecInReg && DemandedElts == 1 &&
1789         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1790         TLO.DAG.getDataLayout().isLittleEndian())
1791       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1792 
1793     APInt InDemandedBits = DemandedBits.trunc(InBits);
1794     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1795     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1796                              Depth + 1))
1797       return true;
1798     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1799     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1800     Known = Known.zext(BitWidth, false /* => any extend */);
1801 
1802     // Attempt to avoid multi-use ops if we don't need anything from them.
1803     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1804             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1805       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1806     break;
1807   }
1808   case ISD::TRUNCATE: {
1809     SDValue Src = Op.getOperand(0);
1810 
1811     // Simplify the input, using demanded bit information, and compute the known
1812     // zero/one bits live out.
1813     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1814     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1815     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1816       return true;
1817     Known = Known.trunc(BitWidth);
1818 
1819     // Attempt to avoid multi-use ops if we don't need anything from them.
1820     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1821             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
1822       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
1823 
1824     // If the input is only used by this truncate, see if we can shrink it based
1825     // on the known demanded bits.
1826     if (Src.getNode()->hasOneUse()) {
1827       switch (Src.getOpcode()) {
1828       default:
1829         break;
1830       case ISD::SRL:
1831         // Shrink SRL by a constant if none of the high bits shifted in are
1832         // demanded.
1833         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1834           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1835           // undesirable.
1836           break;
1837 
1838         SDValue ShAmt = Src.getOperand(1);
1839         auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt);
1840         if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
1841           break;
1842         uint64_t ShVal = ShAmtC->getZExtValue();
1843 
1844         APInt HighBits =
1845             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
1846         HighBits.lshrInPlace(ShVal);
1847         HighBits = HighBits.trunc(BitWidth);
1848 
1849         if (!(HighBits & DemandedBits)) {
1850           // None of the shifted in bits are needed.  Add a truncate of the
1851           // shift input, then shift it.
1852           if (TLO.LegalTypes())
1853             ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1854           SDValue NewTrunc =
1855               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1856           return TLO.CombineTo(
1857               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt));
1858         }
1859         break;
1860       }
1861     }
1862 
1863     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1864     break;
1865   }
1866   case ISD::AssertZext: {
1867     // AssertZext demands all of the high bits, plus any of the low bits
1868     // demanded by its users.
1869     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1870     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1871     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
1872                              TLO, Depth + 1))
1873       return true;
1874     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1875 
1876     Known.Zero |= ~InMask;
1877     break;
1878   }
1879   case ISD::EXTRACT_VECTOR_ELT: {
1880     SDValue Src = Op.getOperand(0);
1881     SDValue Idx = Op.getOperand(1);
1882     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1883     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1884 
1885     // Demand the bits from every vector element without a constant index.
1886     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1887     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1888       if (CIdx->getAPIntValue().ult(NumSrcElts))
1889         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1890 
1891     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1892     // anything about the extended bits.
1893     APInt DemandedSrcBits = DemandedBits;
1894     if (BitWidth > EltBitWidth)
1895       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1896 
1897     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1898                              Depth + 1))
1899       return true;
1900 
1901     // Attempt to avoid multi-use ops if we don't need anything from them.
1902     if (!DemandedSrcBits.isAllOnesValue() ||
1903         !DemandedSrcElts.isAllOnesValue()) {
1904       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1905               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
1906         SDValue NewOp =
1907             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
1908         return TLO.CombineTo(Op, NewOp);
1909       }
1910     }
1911 
1912     Known = Known2;
1913     if (BitWidth > EltBitWidth)
1914       Known = Known.zext(BitWidth, false /* => any extend */);
1915     break;
1916   }
1917   case ISD::BITCAST: {
1918     SDValue Src = Op.getOperand(0);
1919     EVT SrcVT = Src.getValueType();
1920     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1921 
1922     // If this is an FP->Int bitcast and if the sign bit is the only
1923     // thing demanded, turn this into a FGETSIGN.
1924     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1925         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1926         SrcVT.isFloatingPoint()) {
1927       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1928       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1929       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1930           SrcVT != MVT::f128) {
1931         // Cannot eliminate/lower SHL for f128 yet.
1932         EVT Ty = OpVTLegal ? VT : MVT::i32;
1933         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1934         // place.  We expect the SHL to be eliminated by other optimizations.
1935         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
1936         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1937         if (!OpVTLegal && OpVTSizeInBits > 32)
1938           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1939         unsigned ShVal = Op.getValueSizeInBits() - 1;
1940         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1941         return TLO.CombineTo(Op,
1942                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1943       }
1944     }
1945 
1946     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
1947     // Demand the elt/bit if any of the original elts/bits are demanded.
1948     // TODO - bigendian once we have test coverage.
1949     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
1950         TLO.DAG.getDataLayout().isLittleEndian()) {
1951       unsigned Scale = BitWidth / NumSrcEltBits;
1952       unsigned NumSrcElts = SrcVT.getVectorNumElements();
1953       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1954       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1955       for (unsigned i = 0; i != Scale; ++i) {
1956         unsigned Offset = i * NumSrcEltBits;
1957         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
1958         if (!Sub.isNullValue()) {
1959           DemandedSrcBits |= Sub;
1960           for (unsigned j = 0; j != NumElts; ++j)
1961             if (DemandedElts[j])
1962               DemandedSrcElts.setBit((j * Scale) + i);
1963         }
1964       }
1965 
1966       APInt KnownSrcUndef, KnownSrcZero;
1967       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1968                                      KnownSrcZero, TLO, Depth + 1))
1969         return true;
1970 
1971       KnownBits KnownSrcBits;
1972       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1973                                KnownSrcBits, TLO, Depth + 1))
1974         return true;
1975     } else if ((NumSrcEltBits % BitWidth) == 0 &&
1976                TLO.DAG.getDataLayout().isLittleEndian()) {
1977       unsigned Scale = NumSrcEltBits / BitWidth;
1978       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1979       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1980       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1981       for (unsigned i = 0; i != NumElts; ++i)
1982         if (DemandedElts[i]) {
1983           unsigned Offset = (i % Scale) * BitWidth;
1984           DemandedSrcBits.insertBits(DemandedBits, Offset);
1985           DemandedSrcElts.setBit(i / Scale);
1986         }
1987 
1988       if (SrcVT.isVector()) {
1989         APInt KnownSrcUndef, KnownSrcZero;
1990         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1991                                        KnownSrcZero, TLO, Depth + 1))
1992           return true;
1993       }
1994 
1995       KnownBits KnownSrcBits;
1996       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1997                                KnownSrcBits, TLO, Depth + 1))
1998         return true;
1999     }
2000 
2001     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2002     // recursive call where Known may be useful to the caller.
2003     if (Depth > 0) {
2004       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2005       return false;
2006     }
2007     break;
2008   }
2009   case ISD::ADD:
2010   case ISD::MUL:
2011   case ISD::SUB: {
2012     // Add, Sub, and Mul don't demand any bits in positions beyond that
2013     // of the highest bit demanded of them.
2014     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2015     SDNodeFlags Flags = Op.getNode()->getFlags();
2016     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2017     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2018     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2019                              Depth + 1) ||
2020         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2021                              Depth + 1) ||
2022         // See if the operation should be performed at a smaller bit width.
2023         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2024       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2025         // Disable the nsw and nuw flags. We can no longer guarantee that we
2026         // won't wrap after simplification.
2027         Flags.setNoSignedWrap(false);
2028         Flags.setNoUnsignedWrap(false);
2029         SDValue NewOp =
2030             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2031         return TLO.CombineTo(Op, NewOp);
2032       }
2033       return true;
2034     }
2035 
2036     // Attempt to avoid multi-use ops if we don't need anything from them.
2037     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
2038       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2039           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2040       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2041           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2042       if (DemandedOp0 || DemandedOp1) {
2043         Flags.setNoSignedWrap(false);
2044         Flags.setNoUnsignedWrap(false);
2045         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2046         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2047         SDValue NewOp =
2048             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2049         return TLO.CombineTo(Op, NewOp);
2050       }
2051     }
2052 
2053     // If we have a constant operand, we may be able to turn it into -1 if we
2054     // do not demand the high bits. This can make the constant smaller to
2055     // encode, allow more general folding, or match specialized instruction
2056     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2057     // is probably not useful (and could be detrimental).
2058     ConstantSDNode *C = isConstOrConstSplat(Op1);
2059     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2060     if (C && !C->isAllOnesValue() && !C->isOne() &&
2061         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
2062       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2063       // Disable the nsw and nuw flags. We can no longer guarantee that we
2064       // won't wrap after simplification.
2065       Flags.setNoSignedWrap(false);
2066       Flags.setNoUnsignedWrap(false);
2067       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2068       return TLO.CombineTo(Op, NewOp);
2069     }
2070 
2071     LLVM_FALLTHROUGH;
2072   }
2073   default:
2074     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2075       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2076                                             Known, TLO, Depth))
2077         return true;
2078       break;
2079     }
2080 
2081     // Just use computeKnownBits to compute output bits.
2082     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2083     break;
2084   }
2085 
2086   // If we know the value of all of the demanded bits, return this as a
2087   // constant.
2088   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2089     // Avoid folding to a constant if any OpaqueConstant is involved.
2090     const SDNode *N = Op.getNode();
2091     for (SDNodeIterator I = SDNodeIterator::begin(N),
2092                         E = SDNodeIterator::end(N);
2093          I != E; ++I) {
2094       SDNode *Op = *I;
2095       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2096         if (C->isOpaque())
2097           return false;
2098     }
2099     // TODO: Handle float bits as well.
2100     if (VT.isInteger())
2101       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2102   }
2103 
2104   return false;
2105 }
2106 
2107 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2108                                                 const APInt &DemandedElts,
2109                                                 APInt &KnownUndef,
2110                                                 APInt &KnownZero,
2111                                                 DAGCombinerInfo &DCI) const {
2112   SelectionDAG &DAG = DCI.DAG;
2113   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2114                         !DCI.isBeforeLegalizeOps());
2115 
2116   bool Simplified =
2117       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2118   if (Simplified) {
2119     DCI.AddToWorklist(Op.getNode());
2120     DCI.CommitTargetLoweringOpt(TLO);
2121   }
2122 
2123   return Simplified;
2124 }
2125 
2126 /// Given a vector binary operation and known undefined elements for each input
2127 /// operand, compute whether each element of the output is undefined.
2128 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2129                                          const APInt &UndefOp0,
2130                                          const APInt &UndefOp1) {
2131   EVT VT = BO.getValueType();
2132   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2133          "Vector binop only");
2134 
2135   EVT EltVT = VT.getVectorElementType();
2136   unsigned NumElts = VT.getVectorNumElements();
2137   assert(UndefOp0.getBitWidth() == NumElts &&
2138          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2139 
2140   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2141                                    const APInt &UndefVals) {
2142     if (UndefVals[Index])
2143       return DAG.getUNDEF(EltVT);
2144 
2145     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2146       // Try hard to make sure that the getNode() call is not creating temporary
2147       // nodes. Ignore opaque integers because they do not constant fold.
2148       SDValue Elt = BV->getOperand(Index);
2149       auto *C = dyn_cast<ConstantSDNode>(Elt);
2150       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2151         return Elt;
2152     }
2153 
2154     return SDValue();
2155   };
2156 
2157   APInt KnownUndef = APInt::getNullValue(NumElts);
2158   for (unsigned i = 0; i != NumElts; ++i) {
2159     // If both inputs for this element are either constant or undef and match
2160     // the element type, compute the constant/undef result for this element of
2161     // the vector.
2162     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2163     // not handle FP constants. The code within getNode() should be refactored
2164     // to avoid the danger of creating a bogus temporary node here.
2165     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2166     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2167     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2168       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2169         KnownUndef.setBit(i);
2170   }
2171   return KnownUndef;
2172 }
2173 
2174 bool TargetLowering::SimplifyDemandedVectorElts(
2175     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2176     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2177     bool AssumeSingleUse) const {
2178   EVT VT = Op.getValueType();
2179   APInt DemandedElts = OriginalDemandedElts;
2180   unsigned NumElts = DemandedElts.getBitWidth();
2181   assert(VT.isVector() && "Expected vector op");
2182   assert(VT.getVectorNumElements() == NumElts &&
2183          "Mask size mismatches value type element count!");
2184 
2185   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2186 
2187   // Undef operand.
2188   if (Op.isUndef()) {
2189     KnownUndef.setAllBits();
2190     return false;
2191   }
2192 
2193   // If Op has other users, assume that all elements are needed.
2194   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2195     DemandedElts.setAllBits();
2196 
2197   // Not demanding any elements from Op.
2198   if (DemandedElts == 0) {
2199     KnownUndef.setAllBits();
2200     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2201   }
2202 
2203   // Limit search depth.
2204   if (Depth >= SelectionDAG::MaxRecursionDepth)
2205     return false;
2206 
2207   SDLoc DL(Op);
2208   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2209 
2210   switch (Op.getOpcode()) {
2211   case ISD::SCALAR_TO_VECTOR: {
2212     if (!DemandedElts[0]) {
2213       KnownUndef.setAllBits();
2214       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2215     }
2216     KnownUndef.setHighBits(NumElts - 1);
2217     break;
2218   }
2219   case ISD::BITCAST: {
2220     SDValue Src = Op.getOperand(0);
2221     EVT SrcVT = Src.getValueType();
2222 
2223     // We only handle vectors here.
2224     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2225     if (!SrcVT.isVector())
2226       break;
2227 
2228     // Fast handling of 'identity' bitcasts.
2229     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2230     if (NumSrcElts == NumElts)
2231       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2232                                         KnownZero, TLO, Depth + 1);
2233 
2234     APInt SrcZero, SrcUndef;
2235     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2236 
2237     // Bitcast from 'large element' src vector to 'small element' vector, we
2238     // must demand a source element if any DemandedElt maps to it.
2239     if ((NumElts % NumSrcElts) == 0) {
2240       unsigned Scale = NumElts / NumSrcElts;
2241       for (unsigned i = 0; i != NumElts; ++i)
2242         if (DemandedElts[i])
2243           SrcDemandedElts.setBit(i / Scale);
2244 
2245       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2246                                      TLO, Depth + 1))
2247         return true;
2248 
2249       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2250       // of the large element.
2251       // TODO - bigendian once we have test coverage.
2252       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2253         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2254         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2255         for (unsigned i = 0; i != NumElts; ++i)
2256           if (DemandedElts[i]) {
2257             unsigned Ofs = (i % Scale) * EltSizeInBits;
2258             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2259           }
2260 
2261         KnownBits Known;
2262         if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1))
2263           return true;
2264       }
2265 
2266       // If the src element is zero/undef then all the output elements will be -
2267       // only demanded elements are guaranteed to be correct.
2268       for (unsigned i = 0; i != NumSrcElts; ++i) {
2269         if (SrcDemandedElts[i]) {
2270           if (SrcZero[i])
2271             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2272           if (SrcUndef[i])
2273             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2274         }
2275       }
2276     }
2277 
2278     // Bitcast from 'small element' src vector to 'large element' vector, we
2279     // demand all smaller source elements covered by the larger demanded element
2280     // of this vector.
2281     if ((NumSrcElts % NumElts) == 0) {
2282       unsigned Scale = NumSrcElts / NumElts;
2283       for (unsigned i = 0; i != NumElts; ++i)
2284         if (DemandedElts[i])
2285           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2286 
2287       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2288                                      TLO, Depth + 1))
2289         return true;
2290 
2291       // If all the src elements covering an output element are zero/undef, then
2292       // the output element will be as well, assuming it was demanded.
2293       for (unsigned i = 0; i != NumElts; ++i) {
2294         if (DemandedElts[i]) {
2295           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2296             KnownZero.setBit(i);
2297           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2298             KnownUndef.setBit(i);
2299         }
2300       }
2301     }
2302     break;
2303   }
2304   case ISD::BUILD_VECTOR: {
2305     // Check all elements and simplify any unused elements with UNDEF.
2306     if (!DemandedElts.isAllOnesValue()) {
2307       // Don't simplify BROADCASTS.
2308       if (llvm::any_of(Op->op_values(),
2309                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2310         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2311         bool Updated = false;
2312         for (unsigned i = 0; i != NumElts; ++i) {
2313           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2314             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2315             KnownUndef.setBit(i);
2316             Updated = true;
2317           }
2318         }
2319         if (Updated)
2320           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2321       }
2322     }
2323     for (unsigned i = 0; i != NumElts; ++i) {
2324       SDValue SrcOp = Op.getOperand(i);
2325       if (SrcOp.isUndef()) {
2326         KnownUndef.setBit(i);
2327       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2328                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2329         KnownZero.setBit(i);
2330       }
2331     }
2332     break;
2333   }
2334   case ISD::CONCAT_VECTORS: {
2335     EVT SubVT = Op.getOperand(0).getValueType();
2336     unsigned NumSubVecs = Op.getNumOperands();
2337     unsigned NumSubElts = SubVT.getVectorNumElements();
2338     for (unsigned i = 0; i != NumSubVecs; ++i) {
2339       SDValue SubOp = Op.getOperand(i);
2340       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2341       APInt SubUndef, SubZero;
2342       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2343                                      Depth + 1))
2344         return true;
2345       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2346       KnownZero.insertBits(SubZero, i * NumSubElts);
2347     }
2348     break;
2349   }
2350   case ISD::INSERT_SUBVECTOR: {
2351     if (!isa<ConstantSDNode>(Op.getOperand(2)))
2352       break;
2353     SDValue Base = Op.getOperand(0);
2354     SDValue Sub = Op.getOperand(1);
2355     EVT SubVT = Sub.getValueType();
2356     unsigned NumSubElts = SubVT.getVectorNumElements();
2357     const APInt &Idx = Op.getConstantOperandAPInt(2);
2358     if (Idx.ugt(NumElts - NumSubElts))
2359       break;
2360     unsigned SubIdx = Idx.getZExtValue();
2361     APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
2362     APInt SubUndef, SubZero;
2363     if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
2364                                    Depth + 1))
2365       return true;
2366     APInt BaseElts = DemandedElts;
2367     BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
2368 
2369     // If none of the base operand elements are demanded, replace it with undef.
2370     if (!BaseElts && !Base.isUndef())
2371       return TLO.CombineTo(Op,
2372                            TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2373                                            TLO.DAG.getUNDEF(VT),
2374                                            Op.getOperand(1),
2375                                            Op.getOperand(2)));
2376 
2377     if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
2378                                    Depth + 1))
2379       return true;
2380     KnownUndef.insertBits(SubUndef, SubIdx);
2381     KnownZero.insertBits(SubZero, SubIdx);
2382     break;
2383   }
2384   case ISD::EXTRACT_SUBVECTOR: {
2385     SDValue Src = Op.getOperand(0);
2386     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2387     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2388     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2389       // Offset the demanded elts by the subvector index.
2390       uint64_t Idx = SubIdx->getZExtValue();
2391       APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2392       APInt SrcUndef, SrcZero;
2393       if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
2394                                      Depth + 1))
2395         return true;
2396       KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2397       KnownZero = SrcZero.extractBits(NumElts, Idx);
2398     }
2399     break;
2400   }
2401   case ISD::INSERT_VECTOR_ELT: {
2402     SDValue Vec = Op.getOperand(0);
2403     SDValue Scl = Op.getOperand(1);
2404     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2405 
2406     // For a legal, constant insertion index, if we don't need this insertion
2407     // then strip it, else remove it from the demanded elts.
2408     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2409       unsigned Idx = CIdx->getZExtValue();
2410       if (!DemandedElts[Idx])
2411         return TLO.CombineTo(Op, Vec);
2412 
2413       APInt DemandedVecElts(DemandedElts);
2414       DemandedVecElts.clearBit(Idx);
2415       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2416                                      KnownZero, TLO, Depth + 1))
2417         return true;
2418 
2419       KnownUndef.clearBit(Idx);
2420       if (Scl.isUndef())
2421         KnownUndef.setBit(Idx);
2422 
2423       KnownZero.clearBit(Idx);
2424       if (isNullConstant(Scl) || isNullFPConstant(Scl))
2425         KnownZero.setBit(Idx);
2426       break;
2427     }
2428 
2429     APInt VecUndef, VecZero;
2430     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2431                                    Depth + 1))
2432       return true;
2433     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2434     break;
2435   }
2436   case ISD::VSELECT: {
2437     // Try to transform the select condition based on the current demanded
2438     // elements.
2439     // TODO: If a condition element is undef, we can choose from one arm of the
2440     //       select (and if one arm is undef, then we can propagate that to the
2441     //       result).
2442     // TODO - add support for constant vselect masks (see IR version of this).
2443     APInt UnusedUndef, UnusedZero;
2444     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2445                                    UnusedZero, TLO, Depth + 1))
2446       return true;
2447 
2448     // See if we can simplify either vselect operand.
2449     APInt DemandedLHS(DemandedElts);
2450     APInt DemandedRHS(DemandedElts);
2451     APInt UndefLHS, ZeroLHS;
2452     APInt UndefRHS, ZeroRHS;
2453     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2454                                    ZeroLHS, TLO, Depth + 1))
2455       return true;
2456     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2457                                    ZeroRHS, TLO, Depth + 1))
2458       return true;
2459 
2460     KnownUndef = UndefLHS & UndefRHS;
2461     KnownZero = ZeroLHS & ZeroRHS;
2462     break;
2463   }
2464   case ISD::VECTOR_SHUFFLE: {
2465     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2466 
2467     // Collect demanded elements from shuffle operands..
2468     APInt DemandedLHS(NumElts, 0);
2469     APInt DemandedRHS(NumElts, 0);
2470     for (unsigned i = 0; i != NumElts; ++i) {
2471       int M = ShuffleMask[i];
2472       if (M < 0 || !DemandedElts[i])
2473         continue;
2474       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2475       if (M < (int)NumElts)
2476         DemandedLHS.setBit(M);
2477       else
2478         DemandedRHS.setBit(M - NumElts);
2479     }
2480 
2481     // See if we can simplify either shuffle operand.
2482     APInt UndefLHS, ZeroLHS;
2483     APInt UndefRHS, ZeroRHS;
2484     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2485                                    ZeroLHS, TLO, Depth + 1))
2486       return true;
2487     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2488                                    ZeroRHS, TLO, Depth + 1))
2489       return true;
2490 
2491     // Simplify mask using undef elements from LHS/RHS.
2492     bool Updated = false;
2493     bool IdentityLHS = true, IdentityRHS = true;
2494     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2495     for (unsigned i = 0; i != NumElts; ++i) {
2496       int &M = NewMask[i];
2497       if (M < 0)
2498         continue;
2499       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2500           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2501         Updated = true;
2502         M = -1;
2503       }
2504       IdentityLHS &= (M < 0) || (M == (int)i);
2505       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2506     }
2507 
2508     // Update legal shuffle masks based on demanded elements if it won't reduce
2509     // to Identity which can cause premature removal of the shuffle mask.
2510     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2511       SDValue LegalShuffle =
2512           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2513                                   NewMask, TLO.DAG);
2514       if (LegalShuffle)
2515         return TLO.CombineTo(Op, LegalShuffle);
2516     }
2517 
2518     // Propagate undef/zero elements from LHS/RHS.
2519     for (unsigned i = 0; i != NumElts; ++i) {
2520       int M = ShuffleMask[i];
2521       if (M < 0) {
2522         KnownUndef.setBit(i);
2523       } else if (M < (int)NumElts) {
2524         if (UndefLHS[M])
2525           KnownUndef.setBit(i);
2526         if (ZeroLHS[M])
2527           KnownZero.setBit(i);
2528       } else {
2529         if (UndefRHS[M - NumElts])
2530           KnownUndef.setBit(i);
2531         if (ZeroRHS[M - NumElts])
2532           KnownZero.setBit(i);
2533       }
2534     }
2535     break;
2536   }
2537   case ISD::ANY_EXTEND_VECTOR_INREG:
2538   case ISD::SIGN_EXTEND_VECTOR_INREG:
2539   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2540     APInt SrcUndef, SrcZero;
2541     SDValue Src = Op.getOperand(0);
2542     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2543     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2544     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2545                                    Depth + 1))
2546       return true;
2547     KnownZero = SrcZero.zextOrTrunc(NumElts);
2548     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2549 
2550     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2551         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2552         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2553       // aext - if we just need the bottom element then we can bitcast.
2554       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2555     }
2556 
2557     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2558       // zext(undef) upper bits are guaranteed to be zero.
2559       if (DemandedElts.isSubsetOf(KnownUndef))
2560         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2561       KnownUndef.clearAllBits();
2562     }
2563     break;
2564   }
2565 
2566   // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
2567   // MAX, saturated math, etc.
2568   case ISD::OR:
2569   case ISD::XOR:
2570   case ISD::ADD:
2571   case ISD::SUB:
2572   case ISD::FADD:
2573   case ISD::FSUB:
2574   case ISD::FMUL:
2575   case ISD::FDIV:
2576   case ISD::FREM: {
2577     APInt UndefRHS, ZeroRHS;
2578     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2579                                    ZeroRHS, TLO, Depth + 1))
2580       return true;
2581     APInt UndefLHS, ZeroLHS;
2582     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2583                                    ZeroLHS, TLO, Depth + 1))
2584       return true;
2585 
2586     KnownZero = ZeroLHS & ZeroRHS;
2587     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2588     break;
2589   }
2590   case ISD::SHL:
2591   case ISD::SRL:
2592   case ISD::SRA:
2593   case ISD::ROTL:
2594   case ISD::ROTR: {
2595     APInt UndefRHS, ZeroRHS;
2596     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2597                                    ZeroRHS, TLO, Depth + 1))
2598       return true;
2599     APInt UndefLHS, ZeroLHS;
2600     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2601                                    ZeroLHS, TLO, Depth + 1))
2602       return true;
2603 
2604     KnownZero = ZeroLHS;
2605     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2606     break;
2607   }
2608   case ISD::MUL:
2609   case ISD::AND: {
2610     APInt SrcUndef, SrcZero;
2611     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
2612                                    SrcZero, TLO, Depth + 1))
2613       return true;
2614     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2615                                    KnownZero, TLO, Depth + 1))
2616       return true;
2617 
2618     // If either side has a zero element, then the result element is zero, even
2619     // if the other is an UNDEF.
2620     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2621     // and then handle 'and' nodes with the rest of the binop opcodes.
2622     KnownZero |= SrcZero;
2623     KnownUndef &= SrcUndef;
2624     KnownUndef &= ~KnownZero;
2625     break;
2626   }
2627   case ISD::TRUNCATE:
2628   case ISD::SIGN_EXTEND:
2629   case ISD::ZERO_EXTEND:
2630     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2631                                    KnownZero, TLO, Depth + 1))
2632       return true;
2633 
2634     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2635       // zext(undef) upper bits are guaranteed to be zero.
2636       if (DemandedElts.isSubsetOf(KnownUndef))
2637         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2638       KnownUndef.clearAllBits();
2639     }
2640     break;
2641   default: {
2642     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2643       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2644                                                   KnownZero, TLO, Depth))
2645         return true;
2646     } else {
2647       KnownBits Known;
2648       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2649       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2650                                TLO, Depth, AssumeSingleUse))
2651         return true;
2652     }
2653     break;
2654   }
2655   }
2656   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2657 
2658   // Constant fold all undef cases.
2659   // TODO: Handle zero cases as well.
2660   if (DemandedElts.isSubsetOf(KnownUndef))
2661     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2662 
2663   return false;
2664 }
2665 
2666 /// Determine which of the bits specified in Mask are known to be either zero or
2667 /// one and return them in the Known.
2668 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2669                                                    KnownBits &Known,
2670                                                    const APInt &DemandedElts,
2671                                                    const SelectionDAG &DAG,
2672                                                    unsigned Depth) const {
2673   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2674           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2675           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2676           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2677          "Should use MaskedValueIsZero if you don't know whether Op"
2678          " is a target node!");
2679   Known.resetAll();
2680 }
2681 
2682 void TargetLowering::computeKnownBitsForTargetInstr(
2683     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2684     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2685     unsigned Depth) const {
2686   Known.resetAll();
2687 }
2688 
2689 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
2690                                                    KnownBits &Known,
2691                                                    const APInt &DemandedElts,
2692                                                    const SelectionDAG &DAG,
2693                                                    unsigned Depth) const {
2694   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
2695 
2696   if (unsigned Align = DAG.InferPtrAlignment(Op)) {
2697     // The low bits are known zero if the pointer is aligned.
2698     Known.Zero.setLowBits(Log2_32(Align));
2699   }
2700 }
2701 
2702 /// This method can be implemented by targets that want to expose additional
2703 /// information about sign bits to the DAG Combiner.
2704 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2705                                                          const APInt &,
2706                                                          const SelectionDAG &,
2707                                                          unsigned Depth) const {
2708   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2709           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2710           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2711           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2712          "Should use ComputeNumSignBits if you don't know whether Op"
2713          " is a target node!");
2714   return 1;
2715 }
2716 
2717 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2718     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2719     TargetLoweringOpt &TLO, unsigned Depth) const {
2720   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2721           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2722           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2723           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2724          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2725          " is a target node!");
2726   return false;
2727 }
2728 
2729 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2730     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2731     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2732   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2733           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2734           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2735           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2736          "Should use SimplifyDemandedBits if you don't know whether Op"
2737          " is a target node!");
2738   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2739   return false;
2740 }
2741 
2742 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2743     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2744     SelectionDAG &DAG, unsigned Depth) const {
2745   assert(
2746       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2747        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2748        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2749        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2750       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
2751       " is a target node!");
2752   return SDValue();
2753 }
2754 
2755 SDValue
2756 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
2757                                         SDValue N1, MutableArrayRef<int> Mask,
2758                                         SelectionDAG &DAG) const {
2759   bool LegalMask = isShuffleMaskLegal(Mask, VT);
2760   if (!LegalMask) {
2761     std::swap(N0, N1);
2762     ShuffleVectorSDNode::commuteMask(Mask);
2763     LegalMask = isShuffleMaskLegal(Mask, VT);
2764   }
2765 
2766   if (!LegalMask)
2767     return SDValue();
2768 
2769   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
2770 }
2771 
2772 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
2773   return nullptr;
2774 }
2775 
2776 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2777                                                   const SelectionDAG &DAG,
2778                                                   bool SNaN,
2779                                                   unsigned Depth) const {
2780   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2781           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2782           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2783           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2784          "Should use isKnownNeverNaN if you don't know whether Op"
2785          " is a target node!");
2786   return false;
2787 }
2788 
2789 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2790 // work with truncating build vectors and vectors with elements of less than
2791 // 8 bits.
2792 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2793   if (!N)
2794     return false;
2795 
2796   APInt CVal;
2797   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2798     CVal = CN->getAPIntValue();
2799   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2800     auto *CN = BV->getConstantSplatNode();
2801     if (!CN)
2802       return false;
2803 
2804     // If this is a truncating build vector, truncate the splat value.
2805     // Otherwise, we may fail to match the expected values below.
2806     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2807     CVal = CN->getAPIntValue();
2808     if (BVEltWidth < CVal.getBitWidth())
2809       CVal = CVal.trunc(BVEltWidth);
2810   } else {
2811     return false;
2812   }
2813 
2814   switch (getBooleanContents(N->getValueType(0))) {
2815   case UndefinedBooleanContent:
2816     return CVal[0];
2817   case ZeroOrOneBooleanContent:
2818     return CVal.isOneValue();
2819   case ZeroOrNegativeOneBooleanContent:
2820     return CVal.isAllOnesValue();
2821   }
2822 
2823   llvm_unreachable("Invalid boolean contents");
2824 }
2825 
2826 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2827   if (!N)
2828     return false;
2829 
2830   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2831   if (!CN) {
2832     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2833     if (!BV)
2834       return false;
2835 
2836     // Only interested in constant splats, we don't care about undef
2837     // elements in identifying boolean constants and getConstantSplatNode
2838     // returns NULL if all ops are undef;
2839     CN = BV->getConstantSplatNode();
2840     if (!CN)
2841       return false;
2842   }
2843 
2844   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2845     return !CN->getAPIntValue()[0];
2846 
2847   return CN->isNullValue();
2848 }
2849 
2850 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2851                                        bool SExt) const {
2852   if (VT == MVT::i1)
2853     return N->isOne();
2854 
2855   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2856   switch (Cnt) {
2857   case TargetLowering::ZeroOrOneBooleanContent:
2858     // An extended value of 1 is always true, unless its original type is i1,
2859     // in which case it will be sign extended to -1.
2860     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
2861   case TargetLowering::UndefinedBooleanContent:
2862   case TargetLowering::ZeroOrNegativeOneBooleanContent:
2863     return N->isAllOnesValue() && SExt;
2864   }
2865   llvm_unreachable("Unexpected enumeration.");
2866 }
2867 
2868 /// This helper function of SimplifySetCC tries to optimize the comparison when
2869 /// either operand of the SetCC node is a bitwise-and instruction.
2870 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
2871                                          ISD::CondCode Cond, const SDLoc &DL,
2872                                          DAGCombinerInfo &DCI) const {
2873   // Match these patterns in any of their permutations:
2874   // (X & Y) == Y
2875   // (X & Y) != Y
2876   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
2877     std::swap(N0, N1);
2878 
2879   EVT OpVT = N0.getValueType();
2880   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
2881       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
2882     return SDValue();
2883 
2884   SDValue X, Y;
2885   if (N0.getOperand(0) == N1) {
2886     X = N0.getOperand(1);
2887     Y = N0.getOperand(0);
2888   } else if (N0.getOperand(1) == N1) {
2889     X = N0.getOperand(0);
2890     Y = N0.getOperand(1);
2891   } else {
2892     return SDValue();
2893   }
2894 
2895   SelectionDAG &DAG = DCI.DAG;
2896   SDValue Zero = DAG.getConstant(0, DL, OpVT);
2897   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
2898     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2899     // Note that where Y is variable and is known to have at most one bit set
2900     // (for example, if it is Z & 1) we cannot do this; the expressions are not
2901     // equivalent when Y == 0.
2902     assert(OpVT.isInteger());
2903     Cond = ISD::getSetCCInverse(Cond, OpVT);
2904     if (DCI.isBeforeLegalizeOps() ||
2905         isCondCodeLegal(Cond, N0.getSimpleValueType()))
2906       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
2907   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
2908     // If the target supports an 'and-not' or 'and-complement' logic operation,
2909     // try to use that to make a comparison operation more efficient.
2910     // But don't do this transform if the mask is a single bit because there are
2911     // more efficient ways to deal with that case (for example, 'bt' on x86 or
2912     // 'rlwinm' on PPC).
2913 
2914     // Bail out if the compare operand that we want to turn into a zero is
2915     // already a zero (otherwise, infinite loop).
2916     auto *YConst = dyn_cast<ConstantSDNode>(Y);
2917     if (YConst && YConst->isNullValue())
2918       return SDValue();
2919 
2920     // Transform this into: ~X & Y == 0.
2921     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
2922     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
2923     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
2924   }
2925 
2926   return SDValue();
2927 }
2928 
2929 /// There are multiple IR patterns that could be checking whether certain
2930 /// truncation of a signed number would be lossy or not. The pattern which is
2931 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
2932 /// We are looking for the following pattern: (KeptBits is a constant)
2933 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
2934 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
2935 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
2936 /// We will unfold it into the natural trunc+sext pattern:
2937 ///   ((%x << C) a>> C) dstcond %x
2938 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
2939 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
2940     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
2941     const SDLoc &DL) const {
2942   // We must be comparing with a constant.
2943   ConstantSDNode *C1;
2944   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
2945     return SDValue();
2946 
2947   // N0 should be:  add %x, (1 << (KeptBits-1))
2948   if (N0->getOpcode() != ISD::ADD)
2949     return SDValue();
2950 
2951   // And we must be 'add'ing a constant.
2952   ConstantSDNode *C01;
2953   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
2954     return SDValue();
2955 
2956   SDValue X = N0->getOperand(0);
2957   EVT XVT = X.getValueType();
2958 
2959   // Validate constants ...
2960 
2961   APInt I1 = C1->getAPIntValue();
2962 
2963   ISD::CondCode NewCond;
2964   if (Cond == ISD::CondCode::SETULT) {
2965     NewCond = ISD::CondCode::SETEQ;
2966   } else if (Cond == ISD::CondCode::SETULE) {
2967     NewCond = ISD::CondCode::SETEQ;
2968     // But need to 'canonicalize' the constant.
2969     I1 += 1;
2970   } else if (Cond == ISD::CondCode::SETUGT) {
2971     NewCond = ISD::CondCode::SETNE;
2972     // But need to 'canonicalize' the constant.
2973     I1 += 1;
2974   } else if (Cond == ISD::CondCode::SETUGE) {
2975     NewCond = ISD::CondCode::SETNE;
2976   } else
2977     return SDValue();
2978 
2979   APInt I01 = C01->getAPIntValue();
2980 
2981   auto checkConstants = [&I1, &I01]() -> bool {
2982     // Both of them must be power-of-two, and the constant from setcc is bigger.
2983     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
2984   };
2985 
2986   if (checkConstants()) {
2987     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
2988   } else {
2989     // What if we invert constants? (and the target predicate)
2990     I1.negate();
2991     I01.negate();
2992     assert(XVT.isInteger());
2993     NewCond = getSetCCInverse(NewCond, XVT);
2994     if (!checkConstants())
2995       return SDValue();
2996     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
2997   }
2998 
2999   // They are power-of-two, so which bit is set?
3000   const unsigned KeptBits = I1.logBase2();
3001   const unsigned KeptBitsMinusOne = I01.logBase2();
3002 
3003   // Magic!
3004   if (KeptBits != (KeptBitsMinusOne + 1))
3005     return SDValue();
3006   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3007 
3008   // We don't want to do this in every single case.
3009   SelectionDAG &DAG = DCI.DAG;
3010   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3011           XVT, KeptBits))
3012     return SDValue();
3013 
3014   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3015   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3016 
3017   // Unfold into:  ((%x << C) a>> C) cond %x
3018   // Where 'cond' will be either 'eq' or 'ne'.
3019   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3020   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3021   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3022   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3023 
3024   return T2;
3025 }
3026 
3027 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3028 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3029     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3030     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3031   assert(isConstOrConstSplat(N1C) &&
3032          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
3033          "Should be a comparison with 0.");
3034   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3035          "Valid only for [in]equality comparisons.");
3036 
3037   unsigned NewShiftOpcode;
3038   SDValue X, C, Y;
3039 
3040   SelectionDAG &DAG = DCI.DAG;
3041   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3042 
3043   // Look for '(C l>>/<< Y)'.
3044   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3045     // The shift should be one-use.
3046     if (!V.hasOneUse())
3047       return false;
3048     unsigned OldShiftOpcode = V.getOpcode();
3049     switch (OldShiftOpcode) {
3050     case ISD::SHL:
3051       NewShiftOpcode = ISD::SRL;
3052       break;
3053     case ISD::SRL:
3054       NewShiftOpcode = ISD::SHL;
3055       break;
3056     default:
3057       return false; // must be a logical shift.
3058     }
3059     // We should be shifting a constant.
3060     // FIXME: best to use isConstantOrConstantVector().
3061     C = V.getOperand(0);
3062     ConstantSDNode *CC =
3063         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3064     if (!CC)
3065       return false;
3066     Y = V.getOperand(1);
3067 
3068     ConstantSDNode *XC =
3069         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3070     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3071         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3072   };
3073 
3074   // LHS of comparison should be an one-use 'and'.
3075   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3076     return SDValue();
3077 
3078   X = N0.getOperand(0);
3079   SDValue Mask = N0.getOperand(1);
3080 
3081   // 'and' is commutative!
3082   if (!Match(Mask)) {
3083     std::swap(X, Mask);
3084     if (!Match(Mask))
3085       return SDValue();
3086   }
3087 
3088   EVT VT = X.getValueType();
3089 
3090   // Produce:
3091   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3092   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3093   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3094   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3095   return T2;
3096 }
3097 
3098 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3099 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3100 /// handle the commuted versions of these patterns.
3101 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3102                                            ISD::CondCode Cond, const SDLoc &DL,
3103                                            DAGCombinerInfo &DCI) const {
3104   unsigned BOpcode = N0.getOpcode();
3105   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3106          "Unexpected binop");
3107   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3108 
3109   // (X + Y) == X --> Y == 0
3110   // (X - Y) == X --> Y == 0
3111   // (X ^ Y) == X --> Y == 0
3112   SelectionDAG &DAG = DCI.DAG;
3113   EVT OpVT = N0.getValueType();
3114   SDValue X = N0.getOperand(0);
3115   SDValue Y = N0.getOperand(1);
3116   if (X == N1)
3117     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3118 
3119   if (Y != N1)
3120     return SDValue();
3121 
3122   // (X + Y) == Y --> X == 0
3123   // (X ^ Y) == Y --> X == 0
3124   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3125     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3126 
3127   // The shift would not be valid if the operands are boolean (i1).
3128   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3129     return SDValue();
3130 
3131   // (X - Y) == Y --> X == Y << 1
3132   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3133                                  !DCI.isBeforeLegalize());
3134   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3135   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3136   if (!DCI.isCalledByLegalizer())
3137     DCI.AddToWorklist(YShl1.getNode());
3138   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3139 }
3140 
3141 /// Try to simplify a setcc built with the specified operands and cc. If it is
3142 /// unable to simplify it, return a null SDValue.
3143 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3144                                       ISD::CondCode Cond, bool foldBooleans,
3145                                       DAGCombinerInfo &DCI,
3146                                       const SDLoc &dl) const {
3147   SelectionDAG &DAG = DCI.DAG;
3148   const DataLayout &Layout = DAG.getDataLayout();
3149   EVT OpVT = N0.getValueType();
3150 
3151   // Constant fold or commute setcc.
3152   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3153     return Fold;
3154 
3155   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3156   // TODO: Handle non-splat vector constants. All undef causes trouble.
3157   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3158   if (isConstOrConstSplat(N0) &&
3159       (DCI.isBeforeLegalizeOps() ||
3160        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3161     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3162 
3163   // If we have a subtract with the same 2 non-constant operands as this setcc
3164   // -- but in reverse order -- then try to commute the operands of this setcc
3165   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3166   // instruction on some targets.
3167   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3168       (DCI.isBeforeLegalizeOps() ||
3169        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3170       DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) &&
3171       !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } ))
3172     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3173 
3174   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3175     const APInt &C1 = N1C->getAPIntValue();
3176 
3177     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3178     // equality comparison, then we're just comparing whether X itself is
3179     // zero.
3180     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3181         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3182         N0.getOperand(1).getOpcode() == ISD::Constant) {
3183       const APInt &ShAmt = N0.getConstantOperandAPInt(1);
3184       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3185           ShAmt == Log2_32(N0.getValueSizeInBits())) {
3186         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3187           // (srl (ctlz x), 5) == 0  -> X != 0
3188           // (srl (ctlz x), 5) != 1  -> X != 0
3189           Cond = ISD::SETNE;
3190         } else {
3191           // (srl (ctlz x), 5) != 0  -> X == 0
3192           // (srl (ctlz x), 5) == 1  -> X == 0
3193           Cond = ISD::SETEQ;
3194         }
3195         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3196         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
3197                             Zero, Cond);
3198       }
3199     }
3200 
3201     SDValue CTPOP = N0;
3202     // Look through truncs that don't change the value of a ctpop.
3203     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
3204       CTPOP = N0.getOperand(0);
3205 
3206     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
3207         (N0 == CTPOP ||
3208          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
3209       EVT CTVT = CTPOP.getValueType();
3210       SDValue CTOp = CTPOP.getOperand(0);
3211 
3212       // (ctpop x) u< 2 -> (x & x-1) == 0
3213       // (ctpop x) u> 1 -> (x & x-1) != 0
3214       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
3215         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3216         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3217         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3218         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3219         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
3220       }
3221 
3222       // If ctpop is not supported, expand a power-of-2 comparison based on it.
3223       if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) &&
3224           (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3225         // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3226         // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3227         SDValue Zero = DAG.getConstant(0, dl, CTVT);
3228         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3229         assert(CTVT.isInteger());
3230         ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3231         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3232         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3233         SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3234         SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3235         unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3236         return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3237       }
3238     }
3239 
3240     // (zext x) == C --> x == (trunc C)
3241     // (sext x) == C --> x == (trunc C)
3242     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3243         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3244       unsigned MinBits = N0.getValueSizeInBits();
3245       SDValue PreExt;
3246       bool Signed = false;
3247       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3248         // ZExt
3249         MinBits = N0->getOperand(0).getValueSizeInBits();
3250         PreExt = N0->getOperand(0);
3251       } else if (N0->getOpcode() == ISD::AND) {
3252         // DAGCombine turns costly ZExts into ANDs
3253         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3254           if ((C->getAPIntValue()+1).isPowerOf2()) {
3255             MinBits = C->getAPIntValue().countTrailingOnes();
3256             PreExt = N0->getOperand(0);
3257           }
3258       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3259         // SExt
3260         MinBits = N0->getOperand(0).getValueSizeInBits();
3261         PreExt = N0->getOperand(0);
3262         Signed = true;
3263       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3264         // ZEXTLOAD / SEXTLOAD
3265         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3266           MinBits = LN0->getMemoryVT().getSizeInBits();
3267           PreExt = N0;
3268         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3269           Signed = true;
3270           MinBits = LN0->getMemoryVT().getSizeInBits();
3271           PreExt = N0;
3272         }
3273       }
3274 
3275       // Figure out how many bits we need to preserve this constant.
3276       unsigned ReqdBits = Signed ?
3277         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3278         C1.getActiveBits();
3279 
3280       // Make sure we're not losing bits from the constant.
3281       if (MinBits > 0 &&
3282           MinBits < C1.getBitWidth() &&
3283           MinBits >= ReqdBits) {
3284         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3285         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3286           // Will get folded away.
3287           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3288           if (MinBits == 1 && C1 == 1)
3289             // Invert the condition.
3290             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3291                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3292           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3293           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3294         }
3295 
3296         // If truncating the setcc operands is not desirable, we can still
3297         // simplify the expression in some cases:
3298         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3299         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3300         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3301         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3302         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3303         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3304         SDValue TopSetCC = N0->getOperand(0);
3305         unsigned N0Opc = N0->getOpcode();
3306         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3307         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3308             TopSetCC.getOpcode() == ISD::SETCC &&
3309             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3310             (isConstFalseVal(N1C) ||
3311              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3312 
3313           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3314                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3315 
3316           if (!Inverse)
3317             return TopSetCC;
3318 
3319           ISD::CondCode InvCond = ISD::getSetCCInverse(
3320               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3321               TopSetCC.getOperand(0).getValueType());
3322           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3323                                       TopSetCC.getOperand(1),
3324                                       InvCond);
3325         }
3326       }
3327     }
3328 
3329     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3330     // equality or unsigned, and all 1 bits of the const are in the same
3331     // partial word, see if we can shorten the load.
3332     if (DCI.isBeforeLegalize() &&
3333         !ISD::isSignedIntSetCC(Cond) &&
3334         N0.getOpcode() == ISD::AND && C1 == 0 &&
3335         N0.getNode()->hasOneUse() &&
3336         isa<LoadSDNode>(N0.getOperand(0)) &&
3337         N0.getOperand(0).getNode()->hasOneUse() &&
3338         isa<ConstantSDNode>(N0.getOperand(1))) {
3339       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3340       APInt bestMask;
3341       unsigned bestWidth = 0, bestOffset = 0;
3342       if (Lod->isSimple() && Lod->isUnindexed()) {
3343         unsigned origWidth = N0.getValueSizeInBits();
3344         unsigned maskWidth = origWidth;
3345         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3346         // 8 bits, but have to be careful...
3347         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3348           origWidth = Lod->getMemoryVT().getSizeInBits();
3349         const APInt &Mask = N0.getConstantOperandAPInt(1);
3350         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3351           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3352           for (unsigned offset=0; offset<origWidth/width; offset++) {
3353             if (Mask.isSubsetOf(newMask)) {
3354               if (Layout.isLittleEndian())
3355                 bestOffset = (uint64_t)offset * (width/8);
3356               else
3357                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3358               bestMask = Mask.lshr(offset * (width/8) * 8);
3359               bestWidth = width;
3360               break;
3361             }
3362             newMask <<= width;
3363           }
3364         }
3365       }
3366       if (bestWidth) {
3367         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3368         if (newVT.isRound() &&
3369             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3370           SDValue Ptr = Lod->getBasePtr();
3371           if (bestOffset != 0)
3372             Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl);
3373           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
3374           SDValue NewLoad = DAG.getLoad(
3375               newVT, dl, Lod->getChain(), Ptr,
3376               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
3377           return DAG.getSetCC(dl, VT,
3378                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3379                                       DAG.getConstant(bestMask.trunc(bestWidth),
3380                                                       dl, newVT)),
3381                               DAG.getConstant(0LL, dl, newVT), Cond);
3382         }
3383       }
3384     }
3385 
3386     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3387     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3388       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3389 
3390       // If the comparison constant has bits in the upper part, the
3391       // zero-extended value could never match.
3392       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3393                                               C1.getBitWidth() - InSize))) {
3394         switch (Cond) {
3395         case ISD::SETUGT:
3396         case ISD::SETUGE:
3397         case ISD::SETEQ:
3398           return DAG.getConstant(0, dl, VT);
3399         case ISD::SETULT:
3400         case ISD::SETULE:
3401         case ISD::SETNE:
3402           return DAG.getConstant(1, dl, VT);
3403         case ISD::SETGT:
3404         case ISD::SETGE:
3405           // True if the sign bit of C1 is set.
3406           return DAG.getConstant(C1.isNegative(), dl, VT);
3407         case ISD::SETLT:
3408         case ISD::SETLE:
3409           // True if the sign bit of C1 isn't set.
3410           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3411         default:
3412           break;
3413         }
3414       }
3415 
3416       // Otherwise, we can perform the comparison with the low bits.
3417       switch (Cond) {
3418       case ISD::SETEQ:
3419       case ISD::SETNE:
3420       case ISD::SETUGT:
3421       case ISD::SETUGE:
3422       case ISD::SETULT:
3423       case ISD::SETULE: {
3424         EVT newVT = N0.getOperand(0).getValueType();
3425         if (DCI.isBeforeLegalizeOps() ||
3426             (isOperationLegal(ISD::SETCC, newVT) &&
3427              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3428           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3429           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3430 
3431           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3432                                           NewConst, Cond);
3433           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3434         }
3435         break;
3436       }
3437       default:
3438         break; // todo, be more careful with signed comparisons
3439       }
3440     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3441                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3442       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3443       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3444       EVT ExtDstTy = N0.getValueType();
3445       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3446 
3447       // If the constant doesn't fit into the number of bits for the source of
3448       // the sign extension, it is impossible for both sides to be equal.
3449       if (C1.getMinSignedBits() > ExtSrcTyBits)
3450         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
3451 
3452       SDValue ZextOp;
3453       EVT Op0Ty = N0.getOperand(0).getValueType();
3454       if (Op0Ty == ExtSrcTy) {
3455         ZextOp = N0.getOperand(0);
3456       } else {
3457         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3458         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
3459                              DAG.getConstant(Imm, dl, Op0Ty));
3460       }
3461       if (!DCI.isCalledByLegalizer())
3462         DCI.AddToWorklist(ZextOp.getNode());
3463       // Otherwise, make this a use of a zext.
3464       return DAG.getSetCC(dl, VT, ZextOp,
3465                           DAG.getConstant(C1 & APInt::getLowBitsSet(
3466                                                               ExtDstTyBits,
3467                                                               ExtSrcTyBits),
3468                                           dl, ExtDstTy),
3469                           Cond);
3470     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3471                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3472       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3473       if (N0.getOpcode() == ISD::SETCC &&
3474           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3475           (N0.getValueType() == MVT::i1 ||
3476            getBooleanContents(N0.getOperand(0).getValueType()) ==
3477                        ZeroOrOneBooleanContent)) {
3478         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3479         if (TrueWhenTrue)
3480           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3481         // Invert the condition.
3482         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3483         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3484         if (DCI.isBeforeLegalizeOps() ||
3485             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3486           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3487       }
3488 
3489       if ((N0.getOpcode() == ISD::XOR ||
3490            (N0.getOpcode() == ISD::AND &&
3491             N0.getOperand(0).getOpcode() == ISD::XOR &&
3492             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3493           isa<ConstantSDNode>(N0.getOperand(1)) &&
3494           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
3495         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3496         // can only do this if the top bits are known zero.
3497         unsigned BitWidth = N0.getValueSizeInBits();
3498         if (DAG.MaskedValueIsZero(N0,
3499                                   APInt::getHighBitsSet(BitWidth,
3500                                                         BitWidth-1))) {
3501           // Okay, get the un-inverted input value.
3502           SDValue Val;
3503           if (N0.getOpcode() == ISD::XOR) {
3504             Val = N0.getOperand(0);
3505           } else {
3506             assert(N0.getOpcode() == ISD::AND &&
3507                     N0.getOperand(0).getOpcode() == ISD::XOR);
3508             // ((X^1)&1)^1 -> X & 1
3509             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3510                               N0.getOperand(0).getOperand(0),
3511                               N0.getOperand(1));
3512           }
3513 
3514           return DAG.getSetCC(dl, VT, Val, N1,
3515                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3516         }
3517       } else if (N1C->isOne()) {
3518         SDValue Op0 = N0;
3519         if (Op0.getOpcode() == ISD::TRUNCATE)
3520           Op0 = Op0.getOperand(0);
3521 
3522         if ((Op0.getOpcode() == ISD::XOR) &&
3523             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3524             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3525           SDValue XorLHS = Op0.getOperand(0);
3526           SDValue XorRHS = Op0.getOperand(1);
3527           // Ensure that the input setccs return an i1 type or 0/1 value.
3528           if (Op0.getValueType() == MVT::i1 ||
3529               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3530                       ZeroOrOneBooleanContent &&
3531                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3532                         ZeroOrOneBooleanContent)) {
3533             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3534             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3535             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3536           }
3537         }
3538         if (Op0.getOpcode() == ISD::AND &&
3539             isa<ConstantSDNode>(Op0.getOperand(1)) &&
3540             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
3541           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3542           if (Op0.getValueType().bitsGT(VT))
3543             Op0 = DAG.getNode(ISD::AND, dl, VT,
3544                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3545                           DAG.getConstant(1, dl, VT));
3546           else if (Op0.getValueType().bitsLT(VT))
3547             Op0 = DAG.getNode(ISD::AND, dl, VT,
3548                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3549                         DAG.getConstant(1, dl, VT));
3550 
3551           return DAG.getSetCC(dl, VT, Op0,
3552                               DAG.getConstant(0, dl, Op0.getValueType()),
3553                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3554         }
3555         if (Op0.getOpcode() == ISD::AssertZext &&
3556             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3557           return DAG.getSetCC(dl, VT, Op0,
3558                               DAG.getConstant(0, dl, Op0.getValueType()),
3559                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3560       }
3561     }
3562 
3563     // Given:
3564     //   icmp eq/ne (urem %x, %y), 0
3565     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3566     //   icmp eq/ne %x, 0
3567     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3568         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3569       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3570       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3571       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3572         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3573     }
3574 
3575     if (SDValue V =
3576             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3577       return V;
3578   }
3579 
3580   // These simplifications apply to splat vectors as well.
3581   // TODO: Handle more splat vector cases.
3582   if (auto *N1C = isConstOrConstSplat(N1)) {
3583     const APInt &C1 = N1C->getAPIntValue();
3584 
3585     APInt MinVal, MaxVal;
3586     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3587     if (ISD::isSignedIntSetCC(Cond)) {
3588       MinVal = APInt::getSignedMinValue(OperandBitSize);
3589       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3590     } else {
3591       MinVal = APInt::getMinValue(OperandBitSize);
3592       MaxVal = APInt::getMaxValue(OperandBitSize);
3593     }
3594 
3595     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3596     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3597       // X >= MIN --> true
3598       if (C1 == MinVal)
3599         return DAG.getBoolConstant(true, dl, VT, OpVT);
3600 
3601       if (!VT.isVector()) { // TODO: Support this for vectors.
3602         // X >= C0 --> X > (C0 - 1)
3603         APInt C = C1 - 1;
3604         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3605         if ((DCI.isBeforeLegalizeOps() ||
3606              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3607             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3608                                   isLegalICmpImmediate(C.getSExtValue())))) {
3609           return DAG.getSetCC(dl, VT, N0,
3610                               DAG.getConstant(C, dl, N1.getValueType()),
3611                               NewCC);
3612         }
3613       }
3614     }
3615 
3616     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3617       // X <= MAX --> true
3618       if (C1 == MaxVal)
3619         return DAG.getBoolConstant(true, dl, VT, OpVT);
3620 
3621       // X <= C0 --> X < (C0 + 1)
3622       if (!VT.isVector()) { // TODO: Support this for vectors.
3623         APInt C = C1 + 1;
3624         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3625         if ((DCI.isBeforeLegalizeOps() ||
3626              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3627             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3628                                   isLegalICmpImmediate(C.getSExtValue())))) {
3629           return DAG.getSetCC(dl, VT, N0,
3630                               DAG.getConstant(C, dl, N1.getValueType()),
3631                               NewCC);
3632         }
3633       }
3634     }
3635 
3636     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3637       if (C1 == MinVal)
3638         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3639 
3640       // TODO: Support this for vectors after legalize ops.
3641       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3642         // Canonicalize setlt X, Max --> setne X, Max
3643         if (C1 == MaxVal)
3644           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3645 
3646         // If we have setult X, 1, turn it into seteq X, 0
3647         if (C1 == MinVal+1)
3648           return DAG.getSetCC(dl, VT, N0,
3649                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3650                               ISD::SETEQ);
3651       }
3652     }
3653 
3654     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3655       if (C1 == MaxVal)
3656         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3657 
3658       // TODO: Support this for vectors after legalize ops.
3659       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3660         // Canonicalize setgt X, Min --> setne X, Min
3661         if (C1 == MinVal)
3662           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3663 
3664         // If we have setugt X, Max-1, turn it into seteq X, Max
3665         if (C1 == MaxVal-1)
3666           return DAG.getSetCC(dl, VT, N0,
3667                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3668                               ISD::SETEQ);
3669       }
3670     }
3671 
3672     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3673       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3674       if (C1.isNullValue())
3675         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3676                 VT, N0, N1, Cond, DCI, dl))
3677           return CC;
3678     }
3679 
3680     // If we have "setcc X, C0", check to see if we can shrink the immediate
3681     // by changing cc.
3682     // TODO: Support this for vectors after legalize ops.
3683     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3684       // SETUGT X, SINTMAX  -> SETLT X, 0
3685       if (Cond == ISD::SETUGT &&
3686           C1 == APInt::getSignedMaxValue(OperandBitSize))
3687         return DAG.getSetCC(dl, VT, N0,
3688                             DAG.getConstant(0, dl, N1.getValueType()),
3689                             ISD::SETLT);
3690 
3691       // SETULT X, SINTMIN  -> SETGT X, -1
3692       if (Cond == ISD::SETULT &&
3693           C1 == APInt::getSignedMinValue(OperandBitSize)) {
3694         SDValue ConstMinusOne =
3695             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
3696                             N1.getValueType());
3697         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
3698       }
3699     }
3700   }
3701 
3702   // Back to non-vector simplifications.
3703   // TODO: Can we do these for vector splats?
3704   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3705     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3706     const APInt &C1 = N1C->getAPIntValue();
3707     EVT ShValTy = N0.getValueType();
3708 
3709     // Fold bit comparisons when we can.
3710     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3711         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
3712         N0.getOpcode() == ISD::AND) {
3713       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3714         EVT ShiftTy =
3715             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3716         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
3717           // Perform the xform if the AND RHS is a single bit.
3718           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
3719           if (AndRHS->getAPIntValue().isPowerOf2() &&
3720               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3721             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3722                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3723                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3724           }
3725         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
3726           // (X & 8) == 8  -->  (X & 8) >> 3
3727           // Perform the xform if C1 is a single bit.
3728           unsigned ShCt = C1.logBase2();
3729           if (C1.isPowerOf2() &&
3730               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3731             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3732                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3733                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3734           }
3735         }
3736       }
3737     }
3738 
3739     if (C1.getMinSignedBits() <= 64 &&
3740         !isLegalICmpImmediate(C1.getSExtValue())) {
3741       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3742       // (X & -256) == 256 -> (X >> 8) == 1
3743       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3744           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
3745         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3746           const APInt &AndRHSC = AndRHS->getAPIntValue();
3747           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
3748             unsigned ShiftBits = AndRHSC.countTrailingZeros();
3749             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3750               SDValue Shift =
3751                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
3752                             DAG.getConstant(ShiftBits, dl, ShiftTy));
3753               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
3754               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
3755             }
3756           }
3757         }
3758       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
3759                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
3760         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
3761         // X <  0x100000000 -> (X >> 32) <  1
3762         // X >= 0x100000000 -> (X >> 32) >= 1
3763         // X <= 0x0ffffffff -> (X >> 32) <  1
3764         // X >  0x0ffffffff -> (X >> 32) >= 1
3765         unsigned ShiftBits;
3766         APInt NewC = C1;
3767         ISD::CondCode NewCond = Cond;
3768         if (AdjOne) {
3769           ShiftBits = C1.countTrailingOnes();
3770           NewC = NewC + 1;
3771           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3772         } else {
3773           ShiftBits = C1.countTrailingZeros();
3774         }
3775         NewC.lshrInPlace(ShiftBits);
3776         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
3777             isLegalICmpImmediate(NewC.getSExtValue()) &&
3778             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3779           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3780                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
3781           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
3782           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
3783         }
3784       }
3785     }
3786   }
3787 
3788   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
3789     auto *CFP = cast<ConstantFPSDNode>(N1);
3790     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
3791 
3792     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
3793     // constant if knowing that the operand is non-nan is enough.  We prefer to
3794     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3795     // materialize 0.0.
3796     if (Cond == ISD::SETO || Cond == ISD::SETUO)
3797       return DAG.getSetCC(dl, VT, N0, N0, Cond);
3798 
3799     // setcc (fneg x), C -> setcc swap(pred) x, -C
3800     if (N0.getOpcode() == ISD::FNEG) {
3801       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
3802       if (DCI.isBeforeLegalizeOps() ||
3803           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
3804         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
3805         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
3806       }
3807     }
3808 
3809     // If the condition is not legal, see if we can find an equivalent one
3810     // which is legal.
3811     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
3812       // If the comparison was an awkward floating-point == or != and one of
3813       // the comparison operands is infinity or negative infinity, convert the
3814       // condition to a less-awkward <= or >=.
3815       if (CFP->getValueAPF().isInfinity()) {
3816         if (CFP->getValueAPF().isNegative()) {
3817           if (Cond == ISD::SETOEQ &&
3818               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3819             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
3820           if (Cond == ISD::SETUEQ &&
3821               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3822             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
3823           if (Cond == ISD::SETUNE &&
3824               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3825             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
3826           if (Cond == ISD::SETONE &&
3827               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3828             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
3829         } else {
3830           if (Cond == ISD::SETOEQ &&
3831               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3832             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
3833           if (Cond == ISD::SETUEQ &&
3834               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3835             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
3836           if (Cond == ISD::SETUNE &&
3837               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3838             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
3839           if (Cond == ISD::SETONE &&
3840               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3841             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
3842         }
3843       }
3844     }
3845   }
3846 
3847   if (N0 == N1) {
3848     // The sext(setcc()) => setcc() optimization relies on the appropriate
3849     // constant being emitted.
3850     assert(!N0.getValueType().isInteger() &&
3851            "Integer types should be handled by FoldSetCC");
3852 
3853     bool EqTrue = ISD::isTrueWhenEqual(Cond);
3854     unsigned UOF = ISD::getUnorderedFlavor(Cond);
3855     if (UOF == 2) // FP operators that are undefined on NaNs.
3856       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3857     if (UOF == unsigned(EqTrue))
3858       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3859     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
3860     // if it is not already.
3861     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3862     if (NewCond != Cond &&
3863         (DCI.isBeforeLegalizeOps() ||
3864                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
3865       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3866   }
3867 
3868   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3869       N0.getValueType().isInteger()) {
3870     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
3871         N0.getOpcode() == ISD::XOR) {
3872       // Simplify (X+Y) == (X+Z) -->  Y == Z
3873       if (N0.getOpcode() == N1.getOpcode()) {
3874         if (N0.getOperand(0) == N1.getOperand(0))
3875           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
3876         if (N0.getOperand(1) == N1.getOperand(1))
3877           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
3878         if (isCommutativeBinOp(N0.getOpcode())) {
3879           // If X op Y == Y op X, try other combinations.
3880           if (N0.getOperand(0) == N1.getOperand(1))
3881             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
3882                                 Cond);
3883           if (N0.getOperand(1) == N1.getOperand(0))
3884             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
3885                                 Cond);
3886         }
3887       }
3888 
3889       // If RHS is a legal immediate value for a compare instruction, we need
3890       // to be careful about increasing register pressure needlessly.
3891       bool LegalRHSImm = false;
3892 
3893       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
3894         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3895           // Turn (X+C1) == C2 --> X == C2-C1
3896           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
3897             return DAG.getSetCC(dl, VT, N0.getOperand(0),
3898                                 DAG.getConstant(RHSC->getAPIntValue()-
3899                                                 LHSR->getAPIntValue(),
3900                                 dl, N0.getValueType()), Cond);
3901           }
3902 
3903           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3904           if (N0.getOpcode() == ISD::XOR)
3905             // If we know that all of the inverted bits are zero, don't bother
3906             // performing the inversion.
3907             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
3908               return
3909                 DAG.getSetCC(dl, VT, N0.getOperand(0),
3910                              DAG.getConstant(LHSR->getAPIntValue() ^
3911                                                RHSC->getAPIntValue(),
3912                                              dl, N0.getValueType()),
3913                              Cond);
3914         }
3915 
3916         // Turn (C1-X) == C2 --> X == C1-C2
3917         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3918           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
3919             return
3920               DAG.getSetCC(dl, VT, N0.getOperand(1),
3921                            DAG.getConstant(SUBC->getAPIntValue() -
3922                                              RHSC->getAPIntValue(),
3923                                            dl, N0.getValueType()),
3924                            Cond);
3925           }
3926         }
3927 
3928         // Could RHSC fold directly into a compare?
3929         if (RHSC->getValueType(0).getSizeInBits() <= 64)
3930           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
3931       }
3932 
3933       // (X+Y) == X --> Y == 0 and similar folds.
3934       // Don't do this if X is an immediate that can fold into a cmp
3935       // instruction and X+Y has other uses. It could be an induction variable
3936       // chain, and the transform would increase register pressure.
3937       if (!LegalRHSImm || N0.hasOneUse())
3938         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
3939           return V;
3940     }
3941 
3942     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
3943         N1.getOpcode() == ISD::XOR)
3944       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
3945         return V;
3946 
3947     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
3948       return V;
3949   }
3950 
3951   // Fold remainder of division by a constant.
3952   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
3953       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3954     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3955 
3956     // When division is cheap or optimizing for minimum size,
3957     // fall through to DIVREM creation by skipping this fold.
3958     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
3959       if (N0.getOpcode() == ISD::UREM) {
3960         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
3961           return Folded;
3962       } else if (N0.getOpcode() == ISD::SREM) {
3963         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
3964           return Folded;
3965       }
3966     }
3967   }
3968 
3969   // Fold away ALL boolean setcc's.
3970   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
3971     SDValue Temp;
3972     switch (Cond) {
3973     default: llvm_unreachable("Unknown integer setcc!");
3974     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
3975       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3976       N0 = DAG.getNOT(dl, Temp, OpVT);
3977       if (!DCI.isCalledByLegalizer())
3978         DCI.AddToWorklist(Temp.getNode());
3979       break;
3980     case ISD::SETNE:  // X != Y   -->  (X^Y)
3981       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3982       break;
3983     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
3984     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
3985       Temp = DAG.getNOT(dl, N0, OpVT);
3986       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
3987       if (!DCI.isCalledByLegalizer())
3988         DCI.AddToWorklist(Temp.getNode());
3989       break;
3990     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
3991     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
3992       Temp = DAG.getNOT(dl, N1, OpVT);
3993       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
3994       if (!DCI.isCalledByLegalizer())
3995         DCI.AddToWorklist(Temp.getNode());
3996       break;
3997     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
3998     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
3999       Temp = DAG.getNOT(dl, N0, OpVT);
4000       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4001       if (!DCI.isCalledByLegalizer())
4002         DCI.AddToWorklist(Temp.getNode());
4003       break;
4004     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4005     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4006       Temp = DAG.getNOT(dl, N1, OpVT);
4007       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4008       break;
4009     }
4010     if (VT.getScalarType() != MVT::i1) {
4011       if (!DCI.isCalledByLegalizer())
4012         DCI.AddToWorklist(N0.getNode());
4013       // FIXME: If running after legalize, we probably can't do this.
4014       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4015       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4016     }
4017     return N0;
4018   }
4019 
4020   // Could not fold it.
4021   return SDValue();
4022 }
4023 
4024 /// Returns true (and the GlobalValue and the offset) if the node is a
4025 /// GlobalAddress + offset.
4026 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4027                                     int64_t &Offset) const {
4028 
4029   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4030 
4031   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4032     GA = GASD->getGlobal();
4033     Offset += GASD->getOffset();
4034     return true;
4035   }
4036 
4037   if (N->getOpcode() == ISD::ADD) {
4038     SDValue N1 = N->getOperand(0);
4039     SDValue N2 = N->getOperand(1);
4040     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4041       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4042         Offset += V->getSExtValue();
4043         return true;
4044       }
4045     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4046       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4047         Offset += V->getSExtValue();
4048         return true;
4049       }
4050     }
4051   }
4052 
4053   return false;
4054 }
4055 
4056 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4057                                           DAGCombinerInfo &DCI) const {
4058   // Default implementation: no optimization.
4059   return SDValue();
4060 }
4061 
4062 //===----------------------------------------------------------------------===//
4063 //  Inline Assembler Implementation Methods
4064 //===----------------------------------------------------------------------===//
4065 
4066 TargetLowering::ConstraintType
4067 TargetLowering::getConstraintType(StringRef Constraint) const {
4068   unsigned S = Constraint.size();
4069 
4070   if (S == 1) {
4071     switch (Constraint[0]) {
4072     default: break;
4073     case 'r':
4074       return C_RegisterClass;
4075     case 'm': // memory
4076     case 'o': // offsetable
4077     case 'V': // not offsetable
4078       return C_Memory;
4079     case 'n': // Simple Integer
4080     case 'E': // Floating Point Constant
4081     case 'F': // Floating Point Constant
4082       return C_Immediate;
4083     case 'i': // Simple Integer or Relocatable Constant
4084     case 's': // Relocatable Constant
4085     case 'p': // Address.
4086     case 'X': // Allow ANY value.
4087     case 'I': // Target registers.
4088     case 'J':
4089     case 'K':
4090     case 'L':
4091     case 'M':
4092     case 'N':
4093     case 'O':
4094     case 'P':
4095     case '<':
4096     case '>':
4097       return C_Other;
4098     }
4099   }
4100 
4101   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4102     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4103       return C_Memory;
4104     return C_Register;
4105   }
4106   return C_Unknown;
4107 }
4108 
4109 /// Try to replace an X constraint, which matches anything, with another that
4110 /// has more specific requirements based on the type of the corresponding
4111 /// operand.
4112 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4113   if (ConstraintVT.isInteger())
4114     return "r";
4115   if (ConstraintVT.isFloatingPoint())
4116     return "f"; // works for many targets
4117   return nullptr;
4118 }
4119 
4120 SDValue TargetLowering::LowerAsmOutputForConstraint(
4121     SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
4122     SelectionDAG &DAG) const {
4123   return SDValue();
4124 }
4125 
4126 /// Lower the specified operand into the Ops vector.
4127 /// If it is invalid, don't add anything to Ops.
4128 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4129                                                   std::string &Constraint,
4130                                                   std::vector<SDValue> &Ops,
4131                                                   SelectionDAG &DAG) const {
4132 
4133   if (Constraint.length() > 1) return;
4134 
4135   char ConstraintLetter = Constraint[0];
4136   switch (ConstraintLetter) {
4137   default: break;
4138   case 'X':     // Allows any operand; labels (basic block) use this.
4139     if (Op.getOpcode() == ISD::BasicBlock ||
4140         Op.getOpcode() == ISD::TargetBlockAddress) {
4141       Ops.push_back(Op);
4142       return;
4143     }
4144     LLVM_FALLTHROUGH;
4145   case 'i':    // Simple Integer or Relocatable Constant
4146   case 'n':    // Simple Integer
4147   case 's': {  // Relocatable Constant
4148 
4149     GlobalAddressSDNode *GA;
4150     ConstantSDNode *C;
4151     BlockAddressSDNode *BA;
4152     uint64_t Offset = 0;
4153 
4154     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4155     // etc., since getelementpointer is variadic. We can't use
4156     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4157     // while in this case the GA may be furthest from the root node which is
4158     // likely an ISD::ADD.
4159     while (1) {
4160       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4161         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4162                                                  GA->getValueType(0),
4163                                                  Offset + GA->getOffset()));
4164         return;
4165       } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
4166                  ConstraintLetter != 's') {
4167         // gcc prints these as sign extended.  Sign extend value to 64 bits
4168         // now; without this it would get ZExt'd later in
4169         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4170         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4171         BooleanContent BCont = getBooleanContents(MVT::i64);
4172         ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
4173                                       : ISD::SIGN_EXTEND;
4174         int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
4175                                                     : C->getSExtValue();
4176         Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
4177                                             SDLoc(C), MVT::i64));
4178         return;
4179       } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
4180                  ConstraintLetter != 'n') {
4181         Ops.push_back(DAG.getTargetBlockAddress(
4182             BA->getBlockAddress(), BA->getValueType(0),
4183             Offset + BA->getOffset(), BA->getTargetFlags()));
4184         return;
4185       } else {
4186         const unsigned OpCode = Op.getOpcode();
4187         if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4188           if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4189             Op = Op.getOperand(1);
4190           // Subtraction is not commutative.
4191           else if (OpCode == ISD::ADD &&
4192                    (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4193             Op = Op.getOperand(0);
4194           else
4195             return;
4196           Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4197           continue;
4198         }
4199       }
4200       return;
4201     }
4202     break;
4203   }
4204   }
4205 }
4206 
4207 std::pair<unsigned, const TargetRegisterClass *>
4208 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4209                                              StringRef Constraint,
4210                                              MVT VT) const {
4211   if (Constraint.empty() || Constraint[0] != '{')
4212     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4213   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4214 
4215   // Remove the braces from around the name.
4216   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4217 
4218   std::pair<unsigned, const TargetRegisterClass *> R =
4219       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4220 
4221   // Figure out which register class contains this reg.
4222   for (const TargetRegisterClass *RC : RI->regclasses()) {
4223     // If none of the value types for this register class are valid, we
4224     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4225     if (!isLegalRC(*RI, *RC))
4226       continue;
4227 
4228     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4229          I != E; ++I) {
4230       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4231         std::pair<unsigned, const TargetRegisterClass *> S =
4232             std::make_pair(*I, RC);
4233 
4234         // If this register class has the requested value type, return it,
4235         // otherwise keep searching and return the first class found
4236         // if no other is found which explicitly has the requested type.
4237         if (RI->isTypeLegalForClass(*RC, VT))
4238           return S;
4239         if (!R.second)
4240           R = S;
4241       }
4242     }
4243   }
4244 
4245   return R;
4246 }
4247 
4248 //===----------------------------------------------------------------------===//
4249 // Constraint Selection.
4250 
4251 /// Return true of this is an input operand that is a matching constraint like
4252 /// "4".
4253 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4254   assert(!ConstraintCode.empty() && "No known constraint!");
4255   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4256 }
4257 
4258 /// If this is an input matching constraint, this method returns the output
4259 /// operand it matches.
4260 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4261   assert(!ConstraintCode.empty() && "No known constraint!");
4262   return atoi(ConstraintCode.c_str());
4263 }
4264 
4265 /// Split up the constraint string from the inline assembly value into the
4266 /// specific constraints and their prefixes, and also tie in the associated
4267 /// operand values.
4268 /// If this returns an empty vector, and if the constraint string itself
4269 /// isn't empty, there was an error parsing.
4270 TargetLowering::AsmOperandInfoVector
4271 TargetLowering::ParseConstraints(const DataLayout &DL,
4272                                  const TargetRegisterInfo *TRI,
4273                                  ImmutableCallSite CS) const {
4274   /// Information about all of the constraints.
4275   AsmOperandInfoVector ConstraintOperands;
4276   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4277   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4278 
4279   // Do a prepass over the constraints, canonicalizing them, and building up the
4280   // ConstraintOperands list.
4281   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4282   unsigned ResNo = 0; // ResNo - The result number of the next output.
4283 
4284   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4285     ConstraintOperands.emplace_back(std::move(CI));
4286     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4287 
4288     // Update multiple alternative constraint count.
4289     if (OpInfo.multipleAlternatives.size() > maCount)
4290       maCount = OpInfo.multipleAlternatives.size();
4291 
4292     OpInfo.ConstraintVT = MVT::Other;
4293 
4294     // Compute the value type for each operand.
4295     switch (OpInfo.Type) {
4296     case InlineAsm::isOutput:
4297       // Indirect outputs just consume an argument.
4298       if (OpInfo.isIndirect) {
4299         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4300         break;
4301       }
4302 
4303       // The return value of the call is this value.  As such, there is no
4304       // corresponding argument.
4305       assert(!CS.getType()->isVoidTy() &&
4306              "Bad inline asm!");
4307       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
4308         OpInfo.ConstraintVT =
4309             getSimpleValueType(DL, STy->getElementType(ResNo));
4310       } else {
4311         assert(ResNo == 0 && "Asm only has one result!");
4312         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
4313       }
4314       ++ResNo;
4315       break;
4316     case InlineAsm::isInput:
4317       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4318       break;
4319     case InlineAsm::isClobber:
4320       // Nothing to do.
4321       break;
4322     }
4323 
4324     if (OpInfo.CallOperandVal) {
4325       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4326       if (OpInfo.isIndirect) {
4327         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4328         if (!PtrTy)
4329           report_fatal_error("Indirect operand for inline asm not a pointer!");
4330         OpTy = PtrTy->getElementType();
4331       }
4332 
4333       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4334       if (StructType *STy = dyn_cast<StructType>(OpTy))
4335         if (STy->getNumElements() == 1)
4336           OpTy = STy->getElementType(0);
4337 
4338       // If OpTy is not a single value, it may be a struct/union that we
4339       // can tile with integers.
4340       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4341         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4342         switch (BitSize) {
4343         default: break;
4344         case 1:
4345         case 8:
4346         case 16:
4347         case 32:
4348         case 64:
4349         case 128:
4350           OpInfo.ConstraintVT =
4351               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4352           break;
4353         }
4354       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4355         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4356         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4357       } else {
4358         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4359       }
4360     }
4361   }
4362 
4363   // If we have multiple alternative constraints, select the best alternative.
4364   if (!ConstraintOperands.empty()) {
4365     if (maCount) {
4366       unsigned bestMAIndex = 0;
4367       int bestWeight = -1;
4368       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4369       int weight = -1;
4370       unsigned maIndex;
4371       // Compute the sums of the weights for each alternative, keeping track
4372       // of the best (highest weight) one so far.
4373       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4374         int weightSum = 0;
4375         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4376              cIndex != eIndex; ++cIndex) {
4377           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4378           if (OpInfo.Type == InlineAsm::isClobber)
4379             continue;
4380 
4381           // If this is an output operand with a matching input operand,
4382           // look up the matching input. If their types mismatch, e.g. one
4383           // is an integer, the other is floating point, or their sizes are
4384           // different, flag it as an maCantMatch.
4385           if (OpInfo.hasMatchingInput()) {
4386             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4387             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4388               if ((OpInfo.ConstraintVT.isInteger() !=
4389                    Input.ConstraintVT.isInteger()) ||
4390                   (OpInfo.ConstraintVT.getSizeInBits() !=
4391                    Input.ConstraintVT.getSizeInBits())) {
4392                 weightSum = -1; // Can't match.
4393                 break;
4394               }
4395             }
4396           }
4397           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4398           if (weight == -1) {
4399             weightSum = -1;
4400             break;
4401           }
4402           weightSum += weight;
4403         }
4404         // Update best.
4405         if (weightSum > bestWeight) {
4406           bestWeight = weightSum;
4407           bestMAIndex = maIndex;
4408         }
4409       }
4410 
4411       // Now select chosen alternative in each constraint.
4412       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4413            cIndex != eIndex; ++cIndex) {
4414         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4415         if (cInfo.Type == InlineAsm::isClobber)
4416           continue;
4417         cInfo.selectAlternative(bestMAIndex);
4418       }
4419     }
4420   }
4421 
4422   // Check and hook up tied operands, choose constraint code to use.
4423   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4424        cIndex != eIndex; ++cIndex) {
4425     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4426 
4427     // If this is an output operand with a matching input operand, look up the
4428     // matching input. If their types mismatch, e.g. one is an integer, the
4429     // other is floating point, or their sizes are different, flag it as an
4430     // error.
4431     if (OpInfo.hasMatchingInput()) {
4432       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4433 
4434       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4435         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4436             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4437                                          OpInfo.ConstraintVT);
4438         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4439             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4440                                          Input.ConstraintVT);
4441         if ((OpInfo.ConstraintVT.isInteger() !=
4442              Input.ConstraintVT.isInteger()) ||
4443             (MatchRC.second != InputRC.second)) {
4444           report_fatal_error("Unsupported asm: input constraint"
4445                              " with a matching output constraint of"
4446                              " incompatible type!");
4447         }
4448       }
4449     }
4450   }
4451 
4452   return ConstraintOperands;
4453 }
4454 
4455 /// Return an integer indicating how general CT is.
4456 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4457   switch (CT) {
4458   case TargetLowering::C_Immediate:
4459   case TargetLowering::C_Other:
4460   case TargetLowering::C_Unknown:
4461     return 0;
4462   case TargetLowering::C_Register:
4463     return 1;
4464   case TargetLowering::C_RegisterClass:
4465     return 2;
4466   case TargetLowering::C_Memory:
4467     return 3;
4468   }
4469   llvm_unreachable("Invalid constraint type");
4470 }
4471 
4472 /// Examine constraint type and operand type and determine a weight value.
4473 /// This object must already have been set up with the operand type
4474 /// and the current alternative constraint selected.
4475 TargetLowering::ConstraintWeight
4476   TargetLowering::getMultipleConstraintMatchWeight(
4477     AsmOperandInfo &info, int maIndex) const {
4478   InlineAsm::ConstraintCodeVector *rCodes;
4479   if (maIndex >= (int)info.multipleAlternatives.size())
4480     rCodes = &info.Codes;
4481   else
4482     rCodes = &info.multipleAlternatives[maIndex].Codes;
4483   ConstraintWeight BestWeight = CW_Invalid;
4484 
4485   // Loop over the options, keeping track of the most general one.
4486   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4487     ConstraintWeight weight =
4488       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4489     if (weight > BestWeight)
4490       BestWeight = weight;
4491   }
4492 
4493   return BestWeight;
4494 }
4495 
4496 /// Examine constraint type and operand type and determine a weight value.
4497 /// This object must already have been set up with the operand type
4498 /// and the current alternative constraint selected.
4499 TargetLowering::ConstraintWeight
4500   TargetLowering::getSingleConstraintMatchWeight(
4501     AsmOperandInfo &info, const char *constraint) const {
4502   ConstraintWeight weight = CW_Invalid;
4503   Value *CallOperandVal = info.CallOperandVal;
4504     // If we don't have a value, we can't do a match,
4505     // but allow it at the lowest weight.
4506   if (!CallOperandVal)
4507     return CW_Default;
4508   // Look at the constraint type.
4509   switch (*constraint) {
4510     case 'i': // immediate integer.
4511     case 'n': // immediate integer with a known value.
4512       if (isa<ConstantInt>(CallOperandVal))
4513         weight = CW_Constant;
4514       break;
4515     case 's': // non-explicit intregal immediate.
4516       if (isa<GlobalValue>(CallOperandVal))
4517         weight = CW_Constant;
4518       break;
4519     case 'E': // immediate float if host format.
4520     case 'F': // immediate float.
4521       if (isa<ConstantFP>(CallOperandVal))
4522         weight = CW_Constant;
4523       break;
4524     case '<': // memory operand with autodecrement.
4525     case '>': // memory operand with autoincrement.
4526     case 'm': // memory operand.
4527     case 'o': // offsettable memory operand
4528     case 'V': // non-offsettable memory operand
4529       weight = CW_Memory;
4530       break;
4531     case 'r': // general register.
4532     case 'g': // general register, memory operand or immediate integer.
4533               // note: Clang converts "g" to "imr".
4534       if (CallOperandVal->getType()->isIntegerTy())
4535         weight = CW_Register;
4536       break;
4537     case 'X': // any operand.
4538   default:
4539     weight = CW_Default;
4540     break;
4541   }
4542   return weight;
4543 }
4544 
4545 /// If there are multiple different constraints that we could pick for this
4546 /// operand (e.g. "imr") try to pick the 'best' one.
4547 /// This is somewhat tricky: constraints fall into four classes:
4548 ///    Other         -> immediates and magic values
4549 ///    Register      -> one specific register
4550 ///    RegisterClass -> a group of regs
4551 ///    Memory        -> memory
4552 /// Ideally, we would pick the most specific constraint possible: if we have
4553 /// something that fits into a register, we would pick it.  The problem here
4554 /// is that if we have something that could either be in a register or in
4555 /// memory that use of the register could cause selection of *other*
4556 /// operands to fail: they might only succeed if we pick memory.  Because of
4557 /// this the heuristic we use is:
4558 ///
4559 ///  1) If there is an 'other' constraint, and if the operand is valid for
4560 ///     that constraint, use it.  This makes us take advantage of 'i'
4561 ///     constraints when available.
4562 ///  2) Otherwise, pick the most general constraint present.  This prefers
4563 ///     'm' over 'r', for example.
4564 ///
4565 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4566                              const TargetLowering &TLI,
4567                              SDValue Op, SelectionDAG *DAG) {
4568   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4569   unsigned BestIdx = 0;
4570   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4571   int BestGenerality = -1;
4572 
4573   // Loop over the options, keeping track of the most general one.
4574   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4575     TargetLowering::ConstraintType CType =
4576       TLI.getConstraintType(OpInfo.Codes[i]);
4577 
4578     // Indirect 'other' or 'immediate' constraints are not allowed.
4579     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4580                                CType == TargetLowering::C_Register ||
4581                                CType == TargetLowering::C_RegisterClass))
4582       continue;
4583 
4584     // If this is an 'other' or 'immediate' constraint, see if the operand is
4585     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4586     // the operand is an integer in the range [0..31] we want to use I (saving a
4587     // load of a register), otherwise we must use 'r'.
4588     if ((CType == TargetLowering::C_Other ||
4589          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4590       assert(OpInfo.Codes[i].size() == 1 &&
4591              "Unhandled multi-letter 'other' constraint");
4592       std::vector<SDValue> ResultOps;
4593       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4594                                        ResultOps, *DAG);
4595       if (!ResultOps.empty()) {
4596         BestType = CType;
4597         BestIdx = i;
4598         break;
4599       }
4600     }
4601 
4602     // Things with matching constraints can only be registers, per gcc
4603     // documentation.  This mainly affects "g" constraints.
4604     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4605       continue;
4606 
4607     // This constraint letter is more general than the previous one, use it.
4608     int Generality = getConstraintGenerality(CType);
4609     if (Generality > BestGenerality) {
4610       BestType = CType;
4611       BestIdx = i;
4612       BestGenerality = Generality;
4613     }
4614   }
4615 
4616   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4617   OpInfo.ConstraintType = BestType;
4618 }
4619 
4620 /// Determines the constraint code and constraint type to use for the specific
4621 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4622 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4623                                             SDValue Op,
4624                                             SelectionDAG *DAG) const {
4625   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4626 
4627   // Single-letter constraints ('r') are very common.
4628   if (OpInfo.Codes.size() == 1) {
4629     OpInfo.ConstraintCode = OpInfo.Codes[0];
4630     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4631   } else {
4632     ChooseConstraint(OpInfo, *this, Op, DAG);
4633   }
4634 
4635   // 'X' matches anything.
4636   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4637     // Labels and constants are handled elsewhere ('X' is the only thing
4638     // that matches labels).  For Functions, the type here is the type of
4639     // the result, which is not what we want to look at; leave them alone.
4640     Value *v = OpInfo.CallOperandVal;
4641     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4642       OpInfo.CallOperandVal = v;
4643       return;
4644     }
4645 
4646     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4647       return;
4648 
4649     // Otherwise, try to resolve it to something we know about by looking at
4650     // the actual operand type.
4651     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4652       OpInfo.ConstraintCode = Repl;
4653       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4654     }
4655   }
4656 }
4657 
4658 /// Given an exact SDIV by a constant, create a multiplication
4659 /// with the multiplicative inverse of the constant.
4660 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4661                               const SDLoc &dl, SelectionDAG &DAG,
4662                               SmallVectorImpl<SDNode *> &Created) {
4663   SDValue Op0 = N->getOperand(0);
4664   SDValue Op1 = N->getOperand(1);
4665   EVT VT = N->getValueType(0);
4666   EVT SVT = VT.getScalarType();
4667   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
4668   EVT ShSVT = ShVT.getScalarType();
4669 
4670   bool UseSRA = false;
4671   SmallVector<SDValue, 16> Shifts, Factors;
4672 
4673   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4674     if (C->isNullValue())
4675       return false;
4676     APInt Divisor = C->getAPIntValue();
4677     unsigned Shift = Divisor.countTrailingZeros();
4678     if (Shift) {
4679       Divisor.ashrInPlace(Shift);
4680       UseSRA = true;
4681     }
4682     // Calculate the multiplicative inverse, using Newton's method.
4683     APInt t;
4684     APInt Factor = Divisor;
4685     while ((t = Divisor * Factor) != 1)
4686       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
4687     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
4688     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
4689     return true;
4690   };
4691 
4692   // Collect all magic values from the build vector.
4693   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
4694     return SDValue();
4695 
4696   SDValue Shift, Factor;
4697   if (VT.isVector()) {
4698     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4699     Factor = DAG.getBuildVector(VT, dl, Factors);
4700   } else {
4701     Shift = Shifts[0];
4702     Factor = Factors[0];
4703   }
4704 
4705   SDValue Res = Op0;
4706 
4707   // Shift the value upfront if it is even, so the LSB is one.
4708   if (UseSRA) {
4709     // TODO: For UDIV use SRL instead of SRA.
4710     SDNodeFlags Flags;
4711     Flags.setExact(true);
4712     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
4713     Created.push_back(Res.getNode());
4714   }
4715 
4716   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
4717 }
4718 
4719 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4720                               SelectionDAG &DAG,
4721                               SmallVectorImpl<SDNode *> &Created) const {
4722   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4723   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4724   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
4725     return SDValue(N, 0); // Lower SDIV as SDIV
4726   return SDValue();
4727 }
4728 
4729 /// Given an ISD::SDIV node expressing a divide by constant,
4730 /// return a DAG expression to select that will generate the same value by
4731 /// multiplying by a magic number.
4732 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4733 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
4734                                   bool IsAfterLegalization,
4735                                   SmallVectorImpl<SDNode *> &Created) const {
4736   SDLoc dl(N);
4737   EVT VT = N->getValueType(0);
4738   EVT SVT = VT.getScalarType();
4739   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4740   EVT ShSVT = ShVT.getScalarType();
4741   unsigned EltBits = VT.getScalarSizeInBits();
4742 
4743   // Check to see if we can do this.
4744   // FIXME: We should be more aggressive here.
4745   if (!isTypeLegal(VT))
4746     return SDValue();
4747 
4748   // If the sdiv has an 'exact' bit we can use a simpler lowering.
4749   if (N->getFlags().hasExact())
4750     return BuildExactSDIV(*this, N, dl, DAG, Created);
4751 
4752   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
4753 
4754   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4755     if (C->isNullValue())
4756       return false;
4757 
4758     const APInt &Divisor = C->getAPIntValue();
4759     APInt::ms magics = Divisor.magic();
4760     int NumeratorFactor = 0;
4761     int ShiftMask = -1;
4762 
4763     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
4764       // If d is +1/-1, we just multiply the numerator by +1/-1.
4765       NumeratorFactor = Divisor.getSExtValue();
4766       magics.m = 0;
4767       magics.s = 0;
4768       ShiftMask = 0;
4769     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
4770       // If d > 0 and m < 0, add the numerator.
4771       NumeratorFactor = 1;
4772     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
4773       // If d < 0 and m > 0, subtract the numerator.
4774       NumeratorFactor = -1;
4775     }
4776 
4777     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
4778     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
4779     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
4780     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
4781     return true;
4782   };
4783 
4784   SDValue N0 = N->getOperand(0);
4785   SDValue N1 = N->getOperand(1);
4786 
4787   // Collect the shifts / magic values from each element.
4788   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
4789     return SDValue();
4790 
4791   SDValue MagicFactor, Factor, Shift, ShiftMask;
4792   if (VT.isVector()) {
4793     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4794     Factor = DAG.getBuildVector(VT, dl, Factors);
4795     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4796     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
4797   } else {
4798     MagicFactor = MagicFactors[0];
4799     Factor = Factors[0];
4800     Shift = Shifts[0];
4801     ShiftMask = ShiftMasks[0];
4802   }
4803 
4804   // Multiply the numerator (operand 0) by the magic value.
4805   // FIXME: We should support doing a MUL in a wider type.
4806   SDValue Q;
4807   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
4808                           : isOperationLegalOrCustom(ISD::MULHS, VT))
4809     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
4810   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
4811                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
4812     SDValue LoHi =
4813         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
4814     Q = SDValue(LoHi.getNode(), 1);
4815   } else
4816     return SDValue(); // No mulhs or equivalent.
4817   Created.push_back(Q.getNode());
4818 
4819   // (Optionally) Add/subtract the numerator using Factor.
4820   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
4821   Created.push_back(Factor.getNode());
4822   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
4823   Created.push_back(Q.getNode());
4824 
4825   // Shift right algebraic by shift value.
4826   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
4827   Created.push_back(Q.getNode());
4828 
4829   // Extract the sign bit, mask it and add it to the quotient.
4830   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
4831   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
4832   Created.push_back(T.getNode());
4833   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
4834   Created.push_back(T.getNode());
4835   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
4836 }
4837 
4838 /// Given an ISD::UDIV node expressing a divide by constant,
4839 /// return a DAG expression to select that will generate the same value by
4840 /// multiplying by a magic number.
4841 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4842 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
4843                                   bool IsAfterLegalization,
4844                                   SmallVectorImpl<SDNode *> &Created) const {
4845   SDLoc dl(N);
4846   EVT VT = N->getValueType(0);
4847   EVT SVT = VT.getScalarType();
4848   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4849   EVT ShSVT = ShVT.getScalarType();
4850   unsigned EltBits = VT.getScalarSizeInBits();
4851 
4852   // Check to see if we can do this.
4853   // FIXME: We should be more aggressive here.
4854   if (!isTypeLegal(VT))
4855     return SDValue();
4856 
4857   bool UseNPQ = false;
4858   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4859 
4860   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
4861     if (C->isNullValue())
4862       return false;
4863     // FIXME: We should use a narrower constant when the upper
4864     // bits are known to be zero.
4865     APInt Divisor = C->getAPIntValue();
4866     APInt::mu magics = Divisor.magicu();
4867     unsigned PreShift = 0, PostShift = 0;
4868 
4869     // If the divisor is even, we can avoid using the expensive fixup by
4870     // shifting the divided value upfront.
4871     if (magics.a != 0 && !Divisor[0]) {
4872       PreShift = Divisor.countTrailingZeros();
4873       // Get magic number for the shifted divisor.
4874       magics = Divisor.lshr(PreShift).magicu(PreShift);
4875       assert(magics.a == 0 && "Should use cheap fixup now");
4876     }
4877 
4878     APInt Magic = magics.m;
4879 
4880     unsigned SelNPQ;
4881     if (magics.a == 0 || Divisor.isOneValue()) {
4882       assert(magics.s < Divisor.getBitWidth() &&
4883              "We shouldn't generate an undefined shift!");
4884       PostShift = magics.s;
4885       SelNPQ = false;
4886     } else {
4887       PostShift = magics.s - 1;
4888       SelNPQ = true;
4889     }
4890 
4891     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
4892     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
4893     NPQFactors.push_back(
4894         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
4895                                : APInt::getNullValue(EltBits),
4896                         dl, SVT));
4897     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
4898     UseNPQ |= SelNPQ;
4899     return true;
4900   };
4901 
4902   SDValue N0 = N->getOperand(0);
4903   SDValue N1 = N->getOperand(1);
4904 
4905   // Collect the shifts/magic values from each element.
4906   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
4907     return SDValue();
4908 
4909   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
4910   if (VT.isVector()) {
4911     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
4912     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4913     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
4914     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
4915   } else {
4916     PreShift = PreShifts[0];
4917     MagicFactor = MagicFactors[0];
4918     PostShift = PostShifts[0];
4919   }
4920 
4921   SDValue Q = N0;
4922   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
4923   Created.push_back(Q.getNode());
4924 
4925   // FIXME: We should support doing a MUL in a wider type.
4926   auto GetMULHU = [&](SDValue X, SDValue Y) {
4927     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
4928                             : isOperationLegalOrCustom(ISD::MULHU, VT))
4929       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
4930     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
4931                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
4932       SDValue LoHi =
4933           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
4934       return SDValue(LoHi.getNode(), 1);
4935     }
4936     return SDValue(); // No mulhu or equivalent
4937   };
4938 
4939   // Multiply the numerator (operand 0) by the magic value.
4940   Q = GetMULHU(Q, MagicFactor);
4941   if (!Q)
4942     return SDValue();
4943 
4944   Created.push_back(Q.getNode());
4945 
4946   if (UseNPQ) {
4947     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
4948     Created.push_back(NPQ.getNode());
4949 
4950     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
4951     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
4952     if (VT.isVector())
4953       NPQ = GetMULHU(NPQ, NPQFactor);
4954     else
4955       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
4956 
4957     Created.push_back(NPQ.getNode());
4958 
4959     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
4960     Created.push_back(Q.getNode());
4961   }
4962 
4963   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
4964   Created.push_back(Q.getNode());
4965 
4966   SDValue One = DAG.getConstant(1, dl, VT);
4967   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
4968   return DAG.getSelect(dl, VT, IsOne, N0, Q);
4969 }
4970 
4971 /// If all values in Values that *don't* match the predicate are same 'splat'
4972 /// value, then replace all values with that splat value.
4973 /// Else, if AlternativeReplacement was provided, then replace all values that
4974 /// do match predicate with AlternativeReplacement value.
4975 static void
4976 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
4977                           std::function<bool(SDValue)> Predicate,
4978                           SDValue AlternativeReplacement = SDValue()) {
4979   SDValue Replacement;
4980   // Is there a value for which the Predicate does *NOT* match? What is it?
4981   auto SplatValue = llvm::find_if_not(Values, Predicate);
4982   if (SplatValue != Values.end()) {
4983     // Does Values consist only of SplatValue's and values matching Predicate?
4984     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
4985           return Value == *SplatValue || Predicate(Value);
4986         })) // Then we shall replace values matching predicate with SplatValue.
4987       Replacement = *SplatValue;
4988   }
4989   if (!Replacement) {
4990     // Oops, we did not find the "baseline" splat value.
4991     if (!AlternativeReplacement)
4992       return; // Nothing to do.
4993     // Let's replace with provided value then.
4994     Replacement = AlternativeReplacement;
4995   }
4996   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
4997 }
4998 
4999 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5000 /// where the divisor is constant and the comparison target is zero,
5001 /// return a DAG expression that will generate the same comparison result
5002 /// using only multiplications, additions and shifts/rotations.
5003 /// Ref: "Hacker's Delight" 10-17.
5004 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5005                                         SDValue CompTargetNode,
5006                                         ISD::CondCode Cond,
5007                                         DAGCombinerInfo &DCI,
5008                                         const SDLoc &DL) const {
5009   SmallVector<SDNode *, 5> Built;
5010   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5011                                          DCI, DL, Built)) {
5012     for (SDNode *N : Built)
5013       DCI.AddToWorklist(N);
5014     return Folded;
5015   }
5016 
5017   return SDValue();
5018 }
5019 
5020 SDValue
5021 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5022                                   SDValue CompTargetNode, ISD::CondCode Cond,
5023                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5024                                   SmallVectorImpl<SDNode *> &Created) const {
5025   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5026   // - D must be constant, with D = D0 * 2^K where D0 is odd
5027   // - P is the multiplicative inverse of D0 modulo 2^W
5028   // - Q = floor(((2^W) - 1) / D)
5029   // where W is the width of the common type of N and D.
5030   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5031          "Only applicable for (in)equality comparisons.");
5032 
5033   SelectionDAG &DAG = DCI.DAG;
5034 
5035   EVT VT = REMNode.getValueType();
5036   EVT SVT = VT.getScalarType();
5037   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5038   EVT ShSVT = ShVT.getScalarType();
5039 
5040   // If MUL is unavailable, we cannot proceed in any case.
5041   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5042     return SDValue();
5043 
5044   bool ComparingWithAllZeros = true;
5045   bool AllComparisonsWithNonZerosAreTautological = true;
5046   bool HadTautologicalLanes = false;
5047   bool AllLanesAreTautological = true;
5048   bool HadEvenDivisor = false;
5049   bool AllDivisorsArePowerOfTwo = true;
5050   bool HadTautologicalInvertedLanes = false;
5051   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5052 
5053   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5054     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5055     if (CDiv->isNullValue())
5056       return false;
5057 
5058     const APInt &D = CDiv->getAPIntValue();
5059     const APInt &Cmp = CCmp->getAPIntValue();
5060 
5061     ComparingWithAllZeros &= Cmp.isNullValue();
5062 
5063     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5064     // if C2 is not less than C1, the comparison is always false.
5065     // But we will only be able to produce the comparison that will give the
5066     // opposive tautological answer. So this lane would need to be fixed up.
5067     bool TautologicalInvertedLane = D.ule(Cmp);
5068     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5069 
5070     // If all lanes are tautological (either all divisors are ones, or divisor
5071     // is not greater than the constant we are comparing with),
5072     // we will prefer to avoid the fold.
5073     bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane;
5074     HadTautologicalLanes |= TautologicalLane;
5075     AllLanesAreTautological &= TautologicalLane;
5076 
5077     // If we are comparing with non-zero, we need'll need  to subtract said
5078     // comparison value from the LHS. But there is no point in doing that if
5079     // every lane where we are comparing with non-zero is tautological..
5080     if (!Cmp.isNullValue())
5081       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5082 
5083     // Decompose D into D0 * 2^K
5084     unsigned K = D.countTrailingZeros();
5085     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5086     APInt D0 = D.lshr(K);
5087 
5088     // D is even if it has trailing zeros.
5089     HadEvenDivisor |= (K != 0);
5090     // D is a power-of-two if D0 is one.
5091     // If all divisors are power-of-two, we will prefer to avoid the fold.
5092     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5093 
5094     // P = inv(D0, 2^W)
5095     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5096     unsigned W = D.getBitWidth();
5097     APInt P = D0.zext(W + 1)
5098                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5099                   .trunc(W);
5100     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5101     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5102 
5103     // Q = floor((2^W - 1) u/ D)
5104     // R = ((2^W - 1) u% D)
5105     APInt Q, R;
5106     APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R);
5107 
5108     // If we are comparing with zero, then that comparison constant is okay,
5109     // else it may need to be one less than that.
5110     if (Cmp.ugt(R))
5111       Q -= 1;
5112 
5113     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5114            "We are expecting that K is always less than all-ones for ShSVT");
5115 
5116     // If the lane is tautological the result can be constant-folded.
5117     if (TautologicalLane) {
5118       // Set P and K amount to a bogus values so we can try to splat them.
5119       P = 0;
5120       K = -1;
5121       // And ensure that comparison constant is tautological,
5122       // it will always compare true/false.
5123       Q = -1;
5124     }
5125 
5126     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5127     KAmts.push_back(
5128         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5129     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5130     return true;
5131   };
5132 
5133   SDValue N = REMNode.getOperand(0);
5134   SDValue D = REMNode.getOperand(1);
5135 
5136   // Collect the values from each element.
5137   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5138     return SDValue();
5139 
5140   // If all lanes are tautological, the result can be constant-folded.
5141   if (AllLanesAreTautological)
5142     return SDValue();
5143 
5144   // If this is a urem by a powers-of-two, avoid the fold since it can be
5145   // best implemented as a bit test.
5146   if (AllDivisorsArePowerOfTwo)
5147     return SDValue();
5148 
5149   SDValue PVal, KVal, QVal;
5150   if (VT.isVector()) {
5151     if (HadTautologicalLanes) {
5152       // Try to turn PAmts into a splat, since we don't care about the values
5153       // that are currently '0'. If we can't, just keep '0'`s.
5154       turnVectorIntoSplatVector(PAmts, isNullConstant);
5155       // Try to turn KAmts into a splat, since we don't care about the values
5156       // that are currently '-1'. If we can't, change them to '0'`s.
5157       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5158                                 DAG.getConstant(0, DL, ShSVT));
5159     }
5160 
5161     PVal = DAG.getBuildVector(VT, DL, PAmts);
5162     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5163     QVal = DAG.getBuildVector(VT, DL, QAmts);
5164   } else {
5165     PVal = PAmts[0];
5166     KVal = KAmts[0];
5167     QVal = QAmts[0];
5168   }
5169 
5170   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5171     if (!isOperationLegalOrCustom(ISD::SUB, VT))
5172       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5173     assert(CompTargetNode.getValueType() == N.getValueType() &&
5174            "Expecting that the types on LHS and RHS of comparisons match.");
5175     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5176   }
5177 
5178   // (mul N, P)
5179   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5180   Created.push_back(Op0.getNode());
5181 
5182   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5183   // divisors as a performance improvement, since rotating by 0 is a no-op.
5184   if (HadEvenDivisor) {
5185     // We need ROTR to do this.
5186     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5187       return SDValue();
5188     SDNodeFlags Flags;
5189     Flags.setExact(true);
5190     // UREM: (rotr (mul N, P), K)
5191     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5192     Created.push_back(Op0.getNode());
5193   }
5194 
5195   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5196   SDValue NewCC =
5197       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5198                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5199   if (!HadTautologicalInvertedLanes)
5200     return NewCC;
5201 
5202   // If any lanes previously compared always-false, the NewCC will give
5203   // always-true result for them, so we need to fixup those lanes.
5204   // Or the other way around for inequality predicate.
5205   assert(VT.isVector() && "Can/should only get here for vectors.");
5206   Created.push_back(NewCC.getNode());
5207 
5208   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5209   // if C2 is not less than C1, the comparison is always false.
5210   // But we have produced the comparison that will give the
5211   // opposive tautological answer. So these lanes would need to be fixed up.
5212   SDValue TautologicalInvertedChannels =
5213       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5214   Created.push_back(TautologicalInvertedChannels.getNode());
5215 
5216   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5217     // If we have a vector select, let's replace the comparison results in the
5218     // affected lanes with the correct tautological result.
5219     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5220                                               DL, SETCCVT, SETCCVT);
5221     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5222                        Replacement, NewCC);
5223   }
5224 
5225   // Else, we can just invert the comparison result in the appropriate lanes.
5226   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5227     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5228                        TautologicalInvertedChannels);
5229 
5230   return SDValue(); // Don't know how to lower.
5231 }
5232 
5233 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5234 /// where the divisor is constant and the comparison target is zero,
5235 /// return a DAG expression that will generate the same comparison result
5236 /// using only multiplications, additions and shifts/rotations.
5237 /// Ref: "Hacker's Delight" 10-17.
5238 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5239                                         SDValue CompTargetNode,
5240                                         ISD::CondCode Cond,
5241                                         DAGCombinerInfo &DCI,
5242                                         const SDLoc &DL) const {
5243   SmallVector<SDNode *, 7> Built;
5244   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5245                                          DCI, DL, Built)) {
5246     assert(Built.size() <= 7 && "Max size prediction failed.");
5247     for (SDNode *N : Built)
5248       DCI.AddToWorklist(N);
5249     return Folded;
5250   }
5251 
5252   return SDValue();
5253 }
5254 
5255 SDValue
5256 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5257                                   SDValue CompTargetNode, ISD::CondCode Cond,
5258                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5259                                   SmallVectorImpl<SDNode *> &Created) const {
5260   // Fold:
5261   //   (seteq/ne (srem N, D), 0)
5262   // To:
5263   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5264   //
5265   // - D must be constant, with D = D0 * 2^K where D0 is odd
5266   // - P is the multiplicative inverse of D0 modulo 2^W
5267   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5268   // - Q = floor((2 * A) / (2^K))
5269   // where W is the width of the common type of N and D.
5270   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5271          "Only applicable for (in)equality comparisons.");
5272 
5273   SelectionDAG &DAG = DCI.DAG;
5274 
5275   EVT VT = REMNode.getValueType();
5276   EVT SVT = VT.getScalarType();
5277   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5278   EVT ShSVT = ShVT.getScalarType();
5279 
5280   // If MUL is unavailable, we cannot proceed in any case.
5281   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5282     return SDValue();
5283 
5284   // TODO: Could support comparing with non-zero too.
5285   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5286   if (!CompTarget || !CompTarget->isNullValue())
5287     return SDValue();
5288 
5289   bool HadIntMinDivisor = false;
5290   bool HadOneDivisor = false;
5291   bool AllDivisorsAreOnes = true;
5292   bool HadEvenDivisor = false;
5293   bool NeedToApplyOffset = false;
5294   bool AllDivisorsArePowerOfTwo = true;
5295   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5296 
5297   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5298     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5299     if (C->isNullValue())
5300       return false;
5301 
5302     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5303 
5304     // WARNING: this fold is only valid for positive divisors!
5305     APInt D = C->getAPIntValue();
5306     if (D.isNegative())
5307       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5308 
5309     HadIntMinDivisor |= D.isMinSignedValue();
5310 
5311     // If all divisors are ones, we will prefer to avoid the fold.
5312     HadOneDivisor |= D.isOneValue();
5313     AllDivisorsAreOnes &= D.isOneValue();
5314 
5315     // Decompose D into D0 * 2^K
5316     unsigned K = D.countTrailingZeros();
5317     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5318     APInt D0 = D.lshr(K);
5319 
5320     if (!D.isMinSignedValue()) {
5321       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5322       // we don't care about this lane in this fold, we'll special-handle it.
5323       HadEvenDivisor |= (K != 0);
5324     }
5325 
5326     // D is a power-of-two if D0 is one. This includes INT_MIN.
5327     // If all divisors are power-of-two, we will prefer to avoid the fold.
5328     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5329 
5330     // P = inv(D0, 2^W)
5331     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5332     unsigned W = D.getBitWidth();
5333     APInt P = D0.zext(W + 1)
5334                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5335                   .trunc(W);
5336     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5337     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5338 
5339     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5340     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5341     A.clearLowBits(K);
5342 
5343     if (!D.isMinSignedValue()) {
5344       // If divisor INT_MIN, then we don't care about this lane in this fold,
5345       // we'll special-handle it.
5346       NeedToApplyOffset |= A != 0;
5347     }
5348 
5349     // Q = floor((2 * A) / (2^K))
5350     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5351 
5352     assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5353            "We are expecting that A is always less than all-ones for SVT");
5354     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5355            "We are expecting that K is always less than all-ones for ShSVT");
5356 
5357     // If the divisor is 1 the result can be constant-folded. Likewise, we
5358     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5359     if (D.isOneValue()) {
5360       // Set P, A and K to a bogus values so we can try to splat them.
5361       P = 0;
5362       A = -1;
5363       K = -1;
5364 
5365       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5366       Q = -1;
5367     }
5368 
5369     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5370     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5371     KAmts.push_back(
5372         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5373     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5374     return true;
5375   };
5376 
5377   SDValue N = REMNode.getOperand(0);
5378   SDValue D = REMNode.getOperand(1);
5379 
5380   // Collect the values from each element.
5381   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5382     return SDValue();
5383 
5384   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5385   if (AllDivisorsAreOnes)
5386     return SDValue();
5387 
5388   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5389   // since it can be best implemented as a bit test.
5390   if (AllDivisorsArePowerOfTwo)
5391     return SDValue();
5392 
5393   SDValue PVal, AVal, KVal, QVal;
5394   if (VT.isVector()) {
5395     if (HadOneDivisor) {
5396       // Try to turn PAmts into a splat, since we don't care about the values
5397       // that are currently '0'. If we can't, just keep '0'`s.
5398       turnVectorIntoSplatVector(PAmts, isNullConstant);
5399       // Try to turn AAmts into a splat, since we don't care about the
5400       // values that are currently '-1'. If we can't, change them to '0'`s.
5401       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5402                                 DAG.getConstant(0, DL, SVT));
5403       // Try to turn KAmts into a splat, since we don't care about the values
5404       // that are currently '-1'. If we can't, change them to '0'`s.
5405       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5406                                 DAG.getConstant(0, DL, ShSVT));
5407     }
5408 
5409     PVal = DAG.getBuildVector(VT, DL, PAmts);
5410     AVal = DAG.getBuildVector(VT, DL, AAmts);
5411     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5412     QVal = DAG.getBuildVector(VT, DL, QAmts);
5413   } else {
5414     PVal = PAmts[0];
5415     AVal = AAmts[0];
5416     KVal = KAmts[0];
5417     QVal = QAmts[0];
5418   }
5419 
5420   // (mul N, P)
5421   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5422   Created.push_back(Op0.getNode());
5423 
5424   if (NeedToApplyOffset) {
5425     // We need ADD to do this.
5426     if (!isOperationLegalOrCustom(ISD::ADD, VT))
5427       return SDValue();
5428 
5429     // (add (mul N, P), A)
5430     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5431     Created.push_back(Op0.getNode());
5432   }
5433 
5434   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5435   // divisors as a performance improvement, since rotating by 0 is a no-op.
5436   if (HadEvenDivisor) {
5437     // We need ROTR to do this.
5438     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5439       return SDValue();
5440     SDNodeFlags Flags;
5441     Flags.setExact(true);
5442     // SREM: (rotr (add (mul N, P), A), K)
5443     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5444     Created.push_back(Op0.getNode());
5445   }
5446 
5447   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5448   SDValue Fold =
5449       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5450                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5451 
5452   // If we didn't have lanes with INT_MIN divisor, then we're done.
5453   if (!HadIntMinDivisor)
5454     return Fold;
5455 
5456   // That fold is only valid for positive divisors. Which effectively means,
5457   // it is invalid for INT_MIN divisors. So if we have such a lane,
5458   // we must fix-up results for said lanes.
5459   assert(VT.isVector() && "Can/should only get here for vectors.");
5460 
5461   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5462       !isOperationLegalOrCustom(ISD::AND, VT) ||
5463       !isOperationLegalOrCustom(Cond, VT) ||
5464       !isOperationLegalOrCustom(ISD::VSELECT, VT))
5465     return SDValue();
5466 
5467   Created.push_back(Fold.getNode());
5468 
5469   SDValue IntMin = DAG.getConstant(
5470       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5471   SDValue IntMax = DAG.getConstant(
5472       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5473   SDValue Zero =
5474       DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5475 
5476   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5477   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5478   Created.push_back(DivisorIsIntMin.getNode());
5479 
5480   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
5481   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5482   Created.push_back(Masked.getNode());
5483   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5484   Created.push_back(MaskedIsZero.getNode());
5485 
5486   // To produce final result we need to blend 2 vectors: 'SetCC' and
5487   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5488   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5489   // constant-folded, select can get lowered to a shuffle with constant mask.
5490   SDValue Blended =
5491       DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5492 
5493   return Blended;
5494 }
5495 
5496 bool TargetLowering::
5497 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5498   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5499     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5500                                 "be a constant integer");
5501     return true;
5502   }
5503 
5504   return false;
5505 }
5506 
5507 char TargetLowering::isNegatibleForFree(SDValue Op, SelectionDAG &DAG,
5508                                         bool LegalOperations, bool ForCodeSize,
5509                                         unsigned Depth) const {
5510   // fneg is removable even if it has multiple uses.
5511   if (Op.getOpcode() == ISD::FNEG)
5512     return 2;
5513 
5514   // Don't allow anything with multiple uses unless we know it is free.
5515   EVT VT = Op.getValueType();
5516   const SDNodeFlags Flags = Op->getFlags();
5517   const TargetOptions &Options = DAG.getTarget().Options;
5518   if (!Op.hasOneUse() && !(Op.getOpcode() == ISD::FP_EXTEND &&
5519                            isFPExtFree(VT, Op.getOperand(0).getValueType())))
5520     return 0;
5521 
5522   // Don't recurse exponentially.
5523   if (Depth > SelectionDAG::MaxRecursionDepth)
5524     return 0;
5525 
5526   switch (Op.getOpcode()) {
5527   case ISD::ConstantFP: {
5528     if (!LegalOperations)
5529       return 1;
5530 
5531     // Don't invert constant FP values after legalization unless the target says
5532     // the negated constant is legal.
5533     return isOperationLegal(ISD::ConstantFP, VT) ||
5534            isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
5535                         ForCodeSize);
5536   }
5537   case ISD::BUILD_VECTOR: {
5538     // Only permit BUILD_VECTOR of constants.
5539     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
5540           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
5541         }))
5542       return 0;
5543     if (!LegalOperations)
5544       return 1;
5545     if (isOperationLegal(ISD::ConstantFP, VT) &&
5546         isOperationLegal(ISD::BUILD_VECTOR, VT))
5547       return 1;
5548     return llvm::all_of(Op->op_values(), [&](SDValue N) {
5549       return N.isUndef() ||
5550              isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
5551                           ForCodeSize);
5552     });
5553   }
5554   case ISD::FADD:
5555     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5556       return 0;
5557 
5558     // After operation legalization, it might not be legal to create new FSUBs.
5559     if (LegalOperations && !isOperationLegalOrCustom(ISD::FSUB, VT))
5560       return 0;
5561 
5562     // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
5563     if (char V = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5564                                     ForCodeSize, Depth + 1))
5565       return V;
5566     // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
5567     return isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations,
5568                               ForCodeSize, Depth + 1);
5569   case ISD::FSUB:
5570     // We can't turn -(A-B) into B-A when we honor signed zeros.
5571     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5572       return 0;
5573 
5574     // fold (fneg (fsub A, B)) -> (fsub B, A)
5575     return 1;
5576 
5577   case ISD::FMUL:
5578   case ISD::FDIV:
5579     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
5580     if (char V = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5581                                     ForCodeSize, Depth + 1))
5582       return V;
5583 
5584     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
5585     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
5586       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
5587         return 0;
5588 
5589     return isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations,
5590                               ForCodeSize, Depth + 1);
5591 
5592   case ISD::FMA:
5593   case ISD::FMAD: {
5594     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5595       return 0;
5596 
5597     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5598     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5599     char V2 = isNegatibleForFree(Op.getOperand(2), DAG, LegalOperations,
5600                                  ForCodeSize, Depth + 1);
5601     if (!V2)
5602       return 0;
5603 
5604     // One of Op0/Op1 must be cheaply negatible, then select the cheapest.
5605     char V0 = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5606                                  ForCodeSize, Depth + 1);
5607     char V1 = isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations,
5608                                  ForCodeSize, Depth + 1);
5609     char V01 = std::max(V0, V1);
5610     return V01 ? std::max(V01, V2) : 0;
5611   }
5612 
5613   case ISD::FP_EXTEND:
5614   case ISD::FP_ROUND:
5615   case ISD::FSIN:
5616     return isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5617                               ForCodeSize, Depth + 1);
5618   }
5619 
5620   return 0;
5621 }
5622 
5623 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
5624                                              bool LegalOperations,
5625                                              bool ForCodeSize,
5626                                              unsigned Depth) const {
5627   // fneg is removable even if it has multiple uses.
5628   if (Op.getOpcode() == ISD::FNEG)
5629     return Op.getOperand(0);
5630 
5631   assert(Depth <= SelectionDAG::MaxRecursionDepth &&
5632          "getNegatedExpression doesn't match isNegatibleForFree");
5633   const SDNodeFlags Flags = Op->getFlags();
5634 
5635   switch (Op.getOpcode()) {
5636   case ISD::ConstantFP: {
5637     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
5638     V.changeSign();
5639     return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType());
5640   }
5641   case ISD::BUILD_VECTOR: {
5642     SmallVector<SDValue, 4> Ops;
5643     for (SDValue C : Op->op_values()) {
5644       if (C.isUndef()) {
5645         Ops.push_back(C);
5646         continue;
5647       }
5648       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
5649       V.changeSign();
5650       Ops.push_back(DAG.getConstantFP(V, SDLoc(Op), C.getValueType()));
5651     }
5652     return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Ops);
5653   }
5654   case ISD::FADD:
5655     assert((DAG.getTarget().Options.NoSignedZerosFPMath ||
5656             Flags.hasNoSignedZeros()) &&
5657            "Expected NSZ fp-flag");
5658 
5659     // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
5660     if (isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, ForCodeSize,
5661                            Depth + 1))
5662       return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5663                          getNegatedExpression(Op.getOperand(0), DAG,
5664                                               LegalOperations, ForCodeSize,
5665                                               Depth + 1),
5666                          Op.getOperand(1), Flags);
5667     // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
5668     return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5669                        getNegatedExpression(Op.getOperand(1), DAG,
5670                                             LegalOperations, ForCodeSize,
5671                                             Depth + 1),
5672                        Op.getOperand(0), Flags);
5673   case ISD::FSUB:
5674     // fold (fneg (fsub 0, B)) -> B
5675     if (ConstantFPSDNode *N0CFP =
5676             isConstOrConstSplatFP(Op.getOperand(0), /*AllowUndefs*/ true))
5677       if (N0CFP->isZero())
5678         return Op.getOperand(1);
5679 
5680     // fold (fneg (fsub A, B)) -> (fsub B, A)
5681     return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5682                        Op.getOperand(1), Op.getOperand(0), Flags);
5683 
5684   case ISD::FMUL:
5685   case ISD::FDIV:
5686     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
5687     if (isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, ForCodeSize,
5688                            Depth + 1))
5689       return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5690                          getNegatedExpression(Op.getOperand(0), DAG,
5691                                               LegalOperations, ForCodeSize,
5692                                               Depth + 1),
5693                          Op.getOperand(1), Flags);
5694 
5695     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
5696     return DAG.getNode(
5697         Op.getOpcode(), SDLoc(Op), Op.getValueType(), Op.getOperand(0),
5698         getNegatedExpression(Op.getOperand(1), DAG, LegalOperations,
5699                              ForCodeSize, Depth + 1),
5700         Flags);
5701 
5702   case ISD::FMA:
5703   case ISD::FMAD: {
5704     assert((DAG.getTarget().Options.NoSignedZerosFPMath ||
5705             Flags.hasNoSignedZeros()) &&
5706            "Expected NSZ fp-flag");
5707 
5708     SDValue Neg2 = getNegatedExpression(Op.getOperand(2), DAG, LegalOperations,
5709                                         ForCodeSize, Depth + 1);
5710 
5711     char V0 = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5712                                  ForCodeSize, Depth + 1);
5713     char V1 = isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations,
5714                                  ForCodeSize, Depth + 1);
5715     // TODO: This is a hack. It is possible that costs have changed between now
5716     //       and the initial calls to isNegatibleForFree(). That is because we
5717     //       are rewriting the expression, and that may change the number of
5718     //       uses (and therefore the cost) of values. If the negation costs are
5719     //       equal, only negate this value if it is a constant. Otherwise, try
5720     //       operand 1. A better fix would eliminate uses as a cost factor or
5721     //       track the change in uses as we rewrite the expression.
5722     if (V0 > V1 || (V0 == V1 && isa<ConstantFPSDNode>(Op.getOperand(0)))) {
5723       // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5724       SDValue Neg0 = getNegatedExpression(
5725           Op.getOperand(0), DAG, LegalOperations, ForCodeSize, Depth + 1);
5726       return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Neg0,
5727                          Op.getOperand(1), Neg2, Flags);
5728     }
5729 
5730     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5731     SDValue Neg1 = getNegatedExpression(Op.getOperand(1), DAG, LegalOperations,
5732                                         ForCodeSize, Depth + 1);
5733     return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5734                        Op.getOperand(0), Neg1, Neg2, Flags);
5735   }
5736 
5737   case ISD::FP_EXTEND:
5738   case ISD::FSIN:
5739     return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5740                        getNegatedExpression(Op.getOperand(0), DAG,
5741                                             LegalOperations, ForCodeSize,
5742                                             Depth + 1));
5743   case ISD::FP_ROUND:
5744     return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(),
5745                        getNegatedExpression(Op.getOperand(0), DAG,
5746                                             LegalOperations, ForCodeSize,
5747                                             Depth + 1),
5748                        Op.getOperand(1));
5749   }
5750 
5751   llvm_unreachable("Unknown code");
5752 }
5753 
5754 //===----------------------------------------------------------------------===//
5755 // Legalization Utilities
5756 //===----------------------------------------------------------------------===//
5757 
5758 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
5759                                     SDValue LHS, SDValue RHS,
5760                                     SmallVectorImpl<SDValue> &Result,
5761                                     EVT HiLoVT, SelectionDAG &DAG,
5762                                     MulExpansionKind Kind, SDValue LL,
5763                                     SDValue LH, SDValue RL, SDValue RH) const {
5764   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
5765          Opcode == ISD::SMUL_LOHI);
5766 
5767   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
5768                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
5769   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
5770                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
5771   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5772                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
5773   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5774                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
5775 
5776   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
5777     return false;
5778 
5779   unsigned OuterBitSize = VT.getScalarSizeInBits();
5780   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
5781   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
5782   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
5783 
5784   // LL, LH, RL, and RH must be either all NULL or all set to a value.
5785   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
5786          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
5787 
5788   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
5789   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
5790                           bool Signed) -> bool {
5791     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
5792       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
5793       Hi = SDValue(Lo.getNode(), 1);
5794       return true;
5795     }
5796     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
5797       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
5798       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
5799       return true;
5800     }
5801     return false;
5802   };
5803 
5804   SDValue Lo, Hi;
5805 
5806   if (!LL.getNode() && !RL.getNode() &&
5807       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5808     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
5809     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
5810   }
5811 
5812   if (!LL.getNode())
5813     return false;
5814 
5815   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
5816   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
5817       DAG.MaskedValueIsZero(RHS, HighMask)) {
5818     // The inputs are both zero-extended.
5819     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
5820       Result.push_back(Lo);
5821       Result.push_back(Hi);
5822       if (Opcode != ISD::MUL) {
5823         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5824         Result.push_back(Zero);
5825         Result.push_back(Zero);
5826       }
5827       return true;
5828     }
5829   }
5830 
5831   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
5832       RHSSB > InnerBitSize) {
5833     // The input values are both sign-extended.
5834     // TODO non-MUL case?
5835     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
5836       Result.push_back(Lo);
5837       Result.push_back(Hi);
5838       return true;
5839     }
5840   }
5841 
5842   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
5843   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
5844   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
5845     // FIXME getShiftAmountTy does not always return a sensible result when VT
5846     // is an illegal type, and so the type may be too small to fit the shift
5847     // amount. Override it with i32. The shift will have to be legalized.
5848     ShiftAmountTy = MVT::i32;
5849   }
5850   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
5851 
5852   if (!LH.getNode() && !RH.getNode() &&
5853       isOperationLegalOrCustom(ISD::SRL, VT) &&
5854       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5855     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
5856     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
5857     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
5858     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
5859   }
5860 
5861   if (!LH.getNode())
5862     return false;
5863 
5864   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
5865     return false;
5866 
5867   Result.push_back(Lo);
5868 
5869   if (Opcode == ISD::MUL) {
5870     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
5871     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
5872     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
5873     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
5874     Result.push_back(Hi);
5875     return true;
5876   }
5877 
5878   // Compute the full width result.
5879   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
5880     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
5881     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5882     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
5883     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
5884   };
5885 
5886   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5887   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
5888     return false;
5889 
5890   // This is effectively the add part of a multiply-add of half-sized operands,
5891   // so it cannot overflow.
5892   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5893 
5894   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
5895     return false;
5896 
5897   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5898   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5899 
5900   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
5901                   isOperationLegalOrCustom(ISD::ADDE, VT));
5902   if (UseGlue)
5903     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
5904                        Merge(Lo, Hi));
5905   else
5906     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
5907                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
5908 
5909   SDValue Carry = Next.getValue(1);
5910   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5911   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5912 
5913   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
5914     return false;
5915 
5916   if (UseGlue)
5917     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
5918                      Carry);
5919   else
5920     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
5921                      Zero, Carry);
5922 
5923   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5924 
5925   if (Opcode == ISD::SMUL_LOHI) {
5926     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5927                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
5928     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
5929 
5930     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5931                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
5932     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
5933   }
5934 
5935   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5936   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5937   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5938   return true;
5939 }
5940 
5941 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
5942                                SelectionDAG &DAG, MulExpansionKind Kind,
5943                                SDValue LL, SDValue LH, SDValue RL,
5944                                SDValue RH) const {
5945   SmallVector<SDValue, 2> Result;
5946   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
5947                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
5948                            DAG, Kind, LL, LH, RL, RH);
5949   if (Ok) {
5950     assert(Result.size() == 2);
5951     Lo = Result[0];
5952     Hi = Result[1];
5953   }
5954   return Ok;
5955 }
5956 
5957 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
5958                                        SelectionDAG &DAG) const {
5959   EVT VT = Node->getValueType(0);
5960 
5961   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
5962                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
5963                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
5964                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
5965     return false;
5966 
5967   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5968   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5969   SDValue X = Node->getOperand(0);
5970   SDValue Y = Node->getOperand(1);
5971   SDValue Z = Node->getOperand(2);
5972 
5973   unsigned EltSizeInBits = VT.getScalarSizeInBits();
5974   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
5975   SDLoc DL(SDValue(Node, 0));
5976 
5977   EVT ShVT = Z.getValueType();
5978   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
5979   SDValue Zero = DAG.getConstant(0, DL, ShVT);
5980 
5981   SDValue ShAmt;
5982   if (isPowerOf2_32(EltSizeInBits)) {
5983     SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
5984     ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
5985   } else {
5986     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
5987   }
5988 
5989   SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
5990   SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
5991   SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
5992   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
5993 
5994   // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
5995   // and that is undefined. We must compare and select to avoid UB.
5996   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
5997 
5998   // For fshl, 0-shift returns the 1st arg (X).
5999   // For fshr, 0-shift returns the 2nd arg (Y).
6000   SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
6001   Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
6002   return true;
6003 }
6004 
6005 // TODO: Merge with expandFunnelShift.
6006 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
6007                                SelectionDAG &DAG) const {
6008   EVT VT = Node->getValueType(0);
6009   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6010   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6011   SDValue Op0 = Node->getOperand(0);
6012   SDValue Op1 = Node->getOperand(1);
6013   SDLoc DL(SDValue(Node, 0));
6014 
6015   EVT ShVT = Op1.getValueType();
6016   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6017 
6018   // If a rotate in the other direction is legal, use it.
6019   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6020   if (isOperationLegal(RevRot, VT)) {
6021     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
6022     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6023     return true;
6024   }
6025 
6026   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6027                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6028                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6029                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6030                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6031     return false;
6032 
6033   // Otherwise,
6034   //   (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
6035   //   (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
6036   //
6037   assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
6038          "Expecting the type bitwidth to be a power of 2");
6039   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6040   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6041   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6042   SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
6043   SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6044   SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6045   Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
6046                        DAG.getNode(HsOpc, DL, VT, Op0, And1));
6047   return true;
6048 }
6049 
6050 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6051                                       SelectionDAG &DAG) const {
6052   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6053   SDValue Src = Node->getOperand(OpNo);
6054   EVT SrcVT = Src.getValueType();
6055   EVT DstVT = Node->getValueType(0);
6056   SDLoc dl(SDValue(Node, 0));
6057 
6058   // FIXME: Only f32 to i64 conversions are supported.
6059   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6060     return false;
6061 
6062   if (Node->isStrictFPOpcode())
6063     // When a NaN is converted to an integer a trap is allowed. We can't
6064     // use this expansion here because it would eliminate that trap. Other
6065     // traps are also allowed and cannot be eliminated. See
6066     // IEEE 754-2008 sec 5.8.
6067     return false;
6068 
6069   // Expand f32 -> i64 conversion
6070   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6071   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
6072   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6073   EVT IntVT = SrcVT.changeTypeToInteger();
6074   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6075 
6076   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6077   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6078   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6079   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6080   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6081   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6082 
6083   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6084 
6085   SDValue ExponentBits = DAG.getNode(
6086       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6087       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6088   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6089 
6090   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6091                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6092                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6093   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6094 
6095   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6096                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6097                           DAG.getConstant(0x00800000, dl, IntVT));
6098 
6099   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6100 
6101   R = DAG.getSelectCC(
6102       dl, Exponent, ExponentLoBit,
6103       DAG.getNode(ISD::SHL, dl, DstVT, R,
6104                   DAG.getZExtOrTrunc(
6105                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6106                       dl, IntShVT)),
6107       DAG.getNode(ISD::SRL, dl, DstVT, R,
6108                   DAG.getZExtOrTrunc(
6109                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6110                       dl, IntShVT)),
6111       ISD::SETGT);
6112 
6113   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6114                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6115 
6116   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6117                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6118   return true;
6119 }
6120 
6121 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6122                                       SDValue &Chain,
6123                                       SelectionDAG &DAG) const {
6124   SDLoc dl(SDValue(Node, 0));
6125   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6126   SDValue Src = Node->getOperand(OpNo);
6127 
6128   EVT SrcVT = Src.getValueType();
6129   EVT DstVT = Node->getValueType(0);
6130   EVT SetCCVT =
6131       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6132   EVT DstSetCCVT =
6133       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6134 
6135   // Only expand vector types if we have the appropriate vector bit operations.
6136   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6137                                                    ISD::FP_TO_SINT;
6138   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6139                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6140     return false;
6141 
6142   // If the maximum float value is smaller then the signed integer range,
6143   // the destination signmask can't be represented by the float, so we can
6144   // just use FP_TO_SINT directly.
6145   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6146   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
6147   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6148   if (APFloat::opOverflow &
6149       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6150     if (Node->isStrictFPOpcode()) {
6151       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6152                            { Node->getOperand(0), Src });
6153       Chain = Result.getValue(1);
6154     } else
6155       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6156     return true;
6157   }
6158 
6159   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6160   SDValue Sel;
6161 
6162   if (Node->isStrictFPOpcode()) {
6163     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6164                        Node->getOperand(0), /*IsSignaling*/ true);
6165     Chain = Sel.getValue(1);
6166   } else {
6167     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6168   }
6169 
6170   bool Strict = Node->isStrictFPOpcode() ||
6171                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6172 
6173   if (Strict) {
6174     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6175     // signmask then offset (the result of which should be fully representable).
6176     // Sel = Src < 0x8000000000000000
6177     // FltOfs = select Sel, 0, 0x8000000000000000
6178     // IntOfs = select Sel, 0, 0x8000000000000000
6179     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6180 
6181     // TODO: Should any fast-math-flags be set for the FSUB?
6182     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6183                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6184     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6185     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6186                                    DAG.getConstant(0, dl, DstVT),
6187                                    DAG.getConstant(SignMask, dl, DstVT));
6188     SDValue SInt;
6189     if (Node->isStrictFPOpcode()) {
6190       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6191                                 { Chain, Src, FltOfs });
6192       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6193                          { Val.getValue(1), Val });
6194       Chain = SInt.getValue(1);
6195     } else {
6196       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6197       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6198     }
6199     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6200   } else {
6201     // Expand based on maximum range of FP_TO_SINT:
6202     // True = fp_to_sint(Src)
6203     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6204     // Result = select (Src < 0x8000000000000000), True, False
6205 
6206     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6207     // TODO: Should any fast-math-flags be set for the FSUB?
6208     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6209                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6210     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6211                         DAG.getConstant(SignMask, dl, DstVT));
6212     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6213     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6214   }
6215   return true;
6216 }
6217 
6218 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6219                                       SDValue &Chain,
6220                                       SelectionDAG &DAG) const {
6221   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6222   SDValue Src = Node->getOperand(OpNo);
6223   EVT SrcVT = Src.getValueType();
6224   EVT DstVT = Node->getValueType(0);
6225 
6226   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6227     return false;
6228 
6229   // Only expand vector types if we have the appropriate vector bit operations.
6230   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6231                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6232                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6233                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6234                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6235     return false;
6236 
6237   SDLoc dl(SDValue(Node, 0));
6238   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6239 
6240   // Implementation of unsigned i64 to f64 following the algorithm in
6241   // __floatundidf in compiler_rt. This implementation has the advantage
6242   // of performing rounding correctly, both in the default rounding mode
6243   // and in all alternate rounding modes.
6244   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6245   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6246       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6247   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6248   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6249   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6250 
6251   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6252   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6253   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6254   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6255   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6256   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6257   if (Node->isStrictFPOpcode()) {
6258     SDValue HiSub =
6259         DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other},
6260                     {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52});
6261     Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other},
6262                          {HiSub.getValue(1), LoFlt, HiSub});
6263     Chain = Result.getValue(1);
6264   } else {
6265     SDValue HiSub =
6266         DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6267     Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6268   }
6269   return true;
6270 }
6271 
6272 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6273                                               SelectionDAG &DAG) const {
6274   SDLoc dl(Node);
6275   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6276     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6277   EVT VT = Node->getValueType(0);
6278   if (isOperationLegalOrCustom(NewOp, VT)) {
6279     SDValue Quiet0 = Node->getOperand(0);
6280     SDValue Quiet1 = Node->getOperand(1);
6281 
6282     if (!Node->getFlags().hasNoNaNs()) {
6283       // Insert canonicalizes if it's possible we need to quiet to get correct
6284       // sNaN behavior.
6285       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6286         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6287                              Node->getFlags());
6288       }
6289       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6290         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6291                              Node->getFlags());
6292       }
6293     }
6294 
6295     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6296   }
6297 
6298   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6299   // instead if there are no NaNs.
6300   if (Node->getFlags().hasNoNaNs()) {
6301     unsigned IEEE2018Op =
6302         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6303     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6304       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6305                          Node->getOperand(1), Node->getFlags());
6306     }
6307   }
6308 
6309   // If none of the above worked, but there are no NaNs, then expand to
6310   // a compare/select sequence.  This is required for correctness since
6311   // InstCombine might have canonicalized a fcmp+select sequence to a
6312   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
6313   // expansion to libcall, we might introduce a link-time dependency
6314   // on libm into a file that originally did not have one.
6315   if (Node->getFlags().hasNoNaNs()) {
6316     ISD::CondCode Pred =
6317         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
6318     SDValue Op1 = Node->getOperand(0);
6319     SDValue Op2 = Node->getOperand(1);
6320     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
6321     // Copy FMF flags, but always set the no-signed-zeros flag
6322     // as this is implied by the FMINNUM/FMAXNUM semantics.
6323     SDNodeFlags Flags = Node->getFlags();
6324     Flags.setNoSignedZeros(true);
6325     SelCC->setFlags(Flags);
6326     return SelCC;
6327   }
6328 
6329   return SDValue();
6330 }
6331 
6332 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
6333                                  SelectionDAG &DAG) const {
6334   SDLoc dl(Node);
6335   EVT VT = Node->getValueType(0);
6336   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6337   SDValue Op = Node->getOperand(0);
6338   unsigned Len = VT.getScalarSizeInBits();
6339   assert(VT.isInteger() && "CTPOP not implemented for this type.");
6340 
6341   // TODO: Add support for irregular type lengths.
6342   if (!(Len <= 128 && Len % 8 == 0))
6343     return false;
6344 
6345   // Only expand vector types if we have the appropriate vector bit operations.
6346   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
6347                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6348                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6349                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
6350                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6351     return false;
6352 
6353   // This is the "best" algorithm from
6354   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
6355   SDValue Mask55 =
6356       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
6357   SDValue Mask33 =
6358       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
6359   SDValue Mask0F =
6360       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
6361   SDValue Mask01 =
6362       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
6363 
6364   // v = v - ((v >> 1) & 0x55555555...)
6365   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
6366                    DAG.getNode(ISD::AND, dl, VT,
6367                                DAG.getNode(ISD::SRL, dl, VT, Op,
6368                                            DAG.getConstant(1, dl, ShVT)),
6369                                Mask55));
6370   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
6371   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
6372                    DAG.getNode(ISD::AND, dl, VT,
6373                                DAG.getNode(ISD::SRL, dl, VT, Op,
6374                                            DAG.getConstant(2, dl, ShVT)),
6375                                Mask33));
6376   // v = (v + (v >> 4)) & 0x0F0F0F0F...
6377   Op = DAG.getNode(ISD::AND, dl, VT,
6378                    DAG.getNode(ISD::ADD, dl, VT, Op,
6379                                DAG.getNode(ISD::SRL, dl, VT, Op,
6380                                            DAG.getConstant(4, dl, ShVT))),
6381                    Mask0F);
6382   // v = (v * 0x01010101...) >> (Len - 8)
6383   if (Len > 8)
6384     Op =
6385         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
6386                     DAG.getConstant(Len - 8, dl, ShVT));
6387 
6388   Result = Op;
6389   return true;
6390 }
6391 
6392 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
6393                                 SelectionDAG &DAG) const {
6394   SDLoc dl(Node);
6395   EVT VT = Node->getValueType(0);
6396   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6397   SDValue Op = Node->getOperand(0);
6398   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6399 
6400   // If the non-ZERO_UNDEF version is supported we can use that instead.
6401   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
6402       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
6403     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
6404     return true;
6405   }
6406 
6407   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6408   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
6409     EVT SetCCVT =
6410         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6411     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
6412     SDValue Zero = DAG.getConstant(0, dl, VT);
6413     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6414     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6415                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
6416     return true;
6417   }
6418 
6419   // Only expand vector types if we have the appropriate vector bit operations.
6420   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6421                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
6422                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6423                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6424     return false;
6425 
6426   // for now, we do this:
6427   // x = x | (x >> 1);
6428   // x = x | (x >> 2);
6429   // ...
6430   // x = x | (x >>16);
6431   // x = x | (x >>32); // for 64-bit input
6432   // return popcount(~x);
6433   //
6434   // Ref: "Hacker's Delight" by Henry Warren
6435   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
6436     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
6437     Op = DAG.getNode(ISD::OR, dl, VT, Op,
6438                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
6439   }
6440   Op = DAG.getNOT(dl, Op, VT);
6441   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
6442   return true;
6443 }
6444 
6445 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
6446                                 SelectionDAG &DAG) const {
6447   SDLoc dl(Node);
6448   EVT VT = Node->getValueType(0);
6449   SDValue Op = Node->getOperand(0);
6450   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6451 
6452   // If the non-ZERO_UNDEF version is supported we can use that instead.
6453   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
6454       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
6455     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
6456     return true;
6457   }
6458 
6459   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6460   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
6461     EVT SetCCVT =
6462         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6463     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
6464     SDValue Zero = DAG.getConstant(0, dl, VT);
6465     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6466     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6467                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
6468     return true;
6469   }
6470 
6471   // Only expand vector types if we have the appropriate vector bit operations.
6472   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6473                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
6474                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
6475                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6476                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
6477                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6478     return false;
6479 
6480   // for now, we use: { return popcount(~x & (x - 1)); }
6481   // unless the target has ctlz but not ctpop, in which case we use:
6482   // { return 32 - nlz(~x & (x-1)); }
6483   // Ref: "Hacker's Delight" by Henry Warren
6484   SDValue Tmp = DAG.getNode(
6485       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
6486       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
6487 
6488   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6489   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
6490     Result =
6491         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
6492                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
6493     return true;
6494   }
6495 
6496   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
6497   return true;
6498 }
6499 
6500 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
6501                                SelectionDAG &DAG) const {
6502   SDLoc dl(N);
6503   EVT VT = N->getValueType(0);
6504   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6505   SDValue Op = N->getOperand(0);
6506 
6507   // Only expand vector types if we have the appropriate vector operations.
6508   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
6509                         !isOperationLegalOrCustom(ISD::ADD, VT) ||
6510                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6511     return false;
6512 
6513   SDValue Shift =
6514       DAG.getNode(ISD::SRA, dl, VT, Op,
6515                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
6516   SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
6517   Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
6518   return true;
6519 }
6520 
6521 std::pair<SDValue, SDValue>
6522 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
6523                                     SelectionDAG &DAG) const {
6524   SDLoc SL(LD);
6525   SDValue Chain = LD->getChain();
6526   SDValue BasePTR = LD->getBasePtr();
6527   EVT SrcVT = LD->getMemoryVT();
6528   ISD::LoadExtType ExtType = LD->getExtensionType();
6529 
6530   unsigned NumElem = SrcVT.getVectorNumElements();
6531 
6532   EVT SrcEltVT = SrcVT.getScalarType();
6533   EVT DstEltVT = LD->getValueType(0).getScalarType();
6534 
6535   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
6536   assert(SrcEltVT.isByteSized());
6537 
6538   SmallVector<SDValue, 8> Vals;
6539   SmallVector<SDValue, 8> LoadChains;
6540 
6541   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6542     SDValue ScalarLoad =
6543         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
6544                        LD->getPointerInfo().getWithOffset(Idx * Stride),
6545                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
6546                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6547 
6548     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
6549 
6550     Vals.push_back(ScalarLoad.getValue(0));
6551     LoadChains.push_back(ScalarLoad.getValue(1));
6552   }
6553 
6554   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
6555   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
6556 
6557   return std::make_pair(Value, NewChain);
6558 }
6559 
6560 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
6561                                              SelectionDAG &DAG) const {
6562   SDLoc SL(ST);
6563 
6564   SDValue Chain = ST->getChain();
6565   SDValue BasePtr = ST->getBasePtr();
6566   SDValue Value = ST->getValue();
6567   EVT StVT = ST->getMemoryVT();
6568 
6569   // The type of the data we want to save
6570   EVT RegVT = Value.getValueType();
6571   EVT RegSclVT = RegVT.getScalarType();
6572 
6573   // The type of data as saved in memory.
6574   EVT MemSclVT = StVT.getScalarType();
6575 
6576   unsigned NumElem = StVT.getVectorNumElements();
6577 
6578   // A vector must always be stored in memory as-is, i.e. without any padding
6579   // between the elements, since various code depend on it, e.g. in the
6580   // handling of a bitcast of a vector type to int, which may be done with a
6581   // vector store followed by an integer load. A vector that does not have
6582   // elements that are byte-sized must therefore be stored as an integer
6583   // built out of the extracted vector elements.
6584   if (!MemSclVT.isByteSized()) {
6585     unsigned NumBits = StVT.getSizeInBits();
6586     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
6587 
6588     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
6589 
6590     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6591       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6592                                 DAG.getVectorIdxConstant(Idx, SL));
6593       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
6594       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
6595       unsigned ShiftIntoIdx =
6596           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6597       SDValue ShiftAmount =
6598           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
6599       SDValue ShiftedElt =
6600           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
6601       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
6602     }
6603 
6604     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
6605                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
6606                         ST->getAAInfo());
6607   }
6608 
6609   // Store Stride in bytes
6610   unsigned Stride = MemSclVT.getSizeInBits() / 8;
6611   assert(Stride && "Zero stride!");
6612   // Extract each of the elements from the original vector and save them into
6613   // memory individually.
6614   SmallVector<SDValue, 8> Stores;
6615   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6616     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6617                               DAG.getVectorIdxConstant(Idx, SL));
6618 
6619     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
6620 
6621     // This scalar TruncStore may be illegal, but we legalize it later.
6622     SDValue Store = DAG.getTruncStore(
6623         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
6624         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
6625         ST->getMemOperand()->getFlags(), ST->getAAInfo());
6626 
6627     Stores.push_back(Store);
6628   }
6629 
6630   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
6631 }
6632 
6633 std::pair<SDValue, SDValue>
6634 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
6635   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
6636          "unaligned indexed loads not implemented!");
6637   SDValue Chain = LD->getChain();
6638   SDValue Ptr = LD->getBasePtr();
6639   EVT VT = LD->getValueType(0);
6640   EVT LoadedVT = LD->getMemoryVT();
6641   SDLoc dl(LD);
6642   auto &MF = DAG.getMachineFunction();
6643 
6644   if (VT.isFloatingPoint() || VT.isVector()) {
6645     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
6646     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
6647       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
6648           LoadedVT.isVector()) {
6649         // Scalarize the load and let the individual components be handled.
6650         return scalarizeVectorLoad(LD, DAG);
6651       }
6652 
6653       // Expand to a (misaligned) integer load of the same size,
6654       // then bitconvert to floating point or vector.
6655       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
6656                                     LD->getMemOperand());
6657       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
6658       if (LoadedVT != VT)
6659         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
6660                              ISD::ANY_EXTEND, dl, VT, Result);
6661 
6662       return std::make_pair(Result, newLoad.getValue(1));
6663     }
6664 
6665     // Copy the value to a (aligned) stack slot using (unaligned) integer
6666     // loads and stores, then do a (aligned) load from the stack slot.
6667     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
6668     unsigned LoadedBytes = LoadedVT.getStoreSize();
6669     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6670     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
6671 
6672     // Make sure the stack slot is also aligned for the register type.
6673     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
6674     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
6675     SmallVector<SDValue, 8> Stores;
6676     SDValue StackPtr = StackBase;
6677     unsigned Offset = 0;
6678 
6679     EVT PtrVT = Ptr.getValueType();
6680     EVT StackPtrVT = StackPtr.getValueType();
6681 
6682     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6683     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6684 
6685     // Do all but one copies using the full register width.
6686     for (unsigned i = 1; i < NumRegs; i++) {
6687       // Load one integer register's worth from the original location.
6688       SDValue Load = DAG.getLoad(
6689           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
6690           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
6691           LD->getAAInfo());
6692       // Follow the load with a store to the stack slot.  Remember the store.
6693       Stores.push_back(DAG.getStore(
6694           Load.getValue(1), dl, Load, StackPtr,
6695           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
6696       // Increment the pointers.
6697       Offset += RegBytes;
6698 
6699       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6700       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6701     }
6702 
6703     // The last copy may be partial.  Do an extending load.
6704     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
6705                                   8 * (LoadedBytes - Offset));
6706     SDValue Load =
6707         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
6708                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
6709                        MinAlign(LD->getAlignment(), Offset),
6710                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6711     // Follow the load with a store to the stack slot.  Remember the store.
6712     // On big-endian machines this requires a truncating store to ensure
6713     // that the bits end up in the right place.
6714     Stores.push_back(DAG.getTruncStore(
6715         Load.getValue(1), dl, Load, StackPtr,
6716         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
6717 
6718     // The order of the stores doesn't matter - say it with a TokenFactor.
6719     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6720 
6721     // Finally, perform the original load only redirected to the stack slot.
6722     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
6723                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
6724                           LoadedVT);
6725 
6726     // Callers expect a MERGE_VALUES node.
6727     return std::make_pair(Load, TF);
6728   }
6729 
6730   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
6731          "Unaligned load of unsupported type.");
6732 
6733   // Compute the new VT that is half the size of the old one.  This is an
6734   // integer MVT.
6735   unsigned NumBits = LoadedVT.getSizeInBits();
6736   EVT NewLoadedVT;
6737   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
6738   NumBits >>= 1;
6739 
6740   unsigned Alignment = LD->getAlignment();
6741   unsigned IncrementSize = NumBits / 8;
6742   ISD::LoadExtType HiExtType = LD->getExtensionType();
6743 
6744   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
6745   if (HiExtType == ISD::NON_EXTLOAD)
6746     HiExtType = ISD::ZEXTLOAD;
6747 
6748   // Load the value in two parts
6749   SDValue Lo, Hi;
6750   if (DAG.getDataLayout().isLittleEndian()) {
6751     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6752                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6753                         LD->getAAInfo());
6754 
6755     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6756     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
6757                         LD->getPointerInfo().getWithOffset(IncrementSize),
6758                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6759                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6760   } else {
6761     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6762                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6763                         LD->getAAInfo());
6764 
6765     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6766     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
6767                         LD->getPointerInfo().getWithOffset(IncrementSize),
6768                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6769                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6770   }
6771 
6772   // aggregate the two parts
6773   SDValue ShiftAmount =
6774       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
6775                                                     DAG.getDataLayout()));
6776   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
6777   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
6778 
6779   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
6780                              Hi.getValue(1));
6781 
6782   return std::make_pair(Result, TF);
6783 }
6784 
6785 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
6786                                              SelectionDAG &DAG) const {
6787   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
6788          "unaligned indexed stores not implemented!");
6789   SDValue Chain = ST->getChain();
6790   SDValue Ptr = ST->getBasePtr();
6791   SDValue Val = ST->getValue();
6792   EVT VT = Val.getValueType();
6793   int Alignment = ST->getAlignment();
6794   auto &MF = DAG.getMachineFunction();
6795   EVT StoreMemVT = ST->getMemoryVT();
6796 
6797   SDLoc dl(ST);
6798   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
6799     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
6800     if (isTypeLegal(intVT)) {
6801       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
6802           StoreMemVT.isVector()) {
6803         // Scalarize the store and let the individual components be handled.
6804         SDValue Result = scalarizeVectorStore(ST, DAG);
6805         return Result;
6806       }
6807       // Expand to a bitconvert of the value to the integer type of the
6808       // same size, then a (misaligned) int store.
6809       // FIXME: Does not handle truncating floating point stores!
6810       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
6811       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
6812                             Alignment, ST->getMemOperand()->getFlags());
6813       return Result;
6814     }
6815     // Do a (aligned) store to a stack slot, then copy from the stack slot
6816     // to the final destination using (unaligned) integer loads and stores.
6817     MVT RegVT = getRegisterType(
6818         *DAG.getContext(),
6819         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
6820     EVT PtrVT = Ptr.getValueType();
6821     unsigned StoredBytes = StoreMemVT.getStoreSize();
6822     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6823     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
6824 
6825     // Make sure the stack slot is also aligned for the register type.
6826     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
6827     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
6828 
6829     // Perform the original store, only redirected to the stack slot.
6830     SDValue Store = DAG.getTruncStore(
6831         Chain, dl, Val, StackPtr,
6832         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
6833 
6834     EVT StackPtrVT = StackPtr.getValueType();
6835 
6836     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6837     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6838     SmallVector<SDValue, 8> Stores;
6839     unsigned Offset = 0;
6840 
6841     // Do all but one copies using the full register width.
6842     for (unsigned i = 1; i < NumRegs; i++) {
6843       // Load one integer register's worth from the stack slot.
6844       SDValue Load = DAG.getLoad(
6845           RegVT, dl, Store, StackPtr,
6846           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
6847       // Store it to the final location.  Remember the store.
6848       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
6849                                     ST->getPointerInfo().getWithOffset(Offset),
6850                                     MinAlign(ST->getAlignment(), Offset),
6851                                     ST->getMemOperand()->getFlags()));
6852       // Increment the pointers.
6853       Offset += RegBytes;
6854       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6855       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6856     }
6857 
6858     // The last store may be partial.  Do a truncating store.  On big-endian
6859     // machines this requires an extending load from the stack slot to ensure
6860     // that the bits are in the right place.
6861     EVT LoadMemVT =
6862         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
6863 
6864     // Load from the stack slot.
6865     SDValue Load = DAG.getExtLoad(
6866         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
6867         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
6868 
6869     Stores.push_back(
6870         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
6871                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
6872                           MinAlign(ST->getAlignment(), Offset),
6873                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
6874     // The order of the stores doesn't matter - say it with a TokenFactor.
6875     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6876     return Result;
6877   }
6878 
6879   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
6880          "Unaligned store of unknown type.");
6881   // Get the half-size VT
6882   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
6883   int NumBits = NewStoredVT.getSizeInBits();
6884   int IncrementSize = NumBits / 8;
6885 
6886   // Divide the stored value in two parts.
6887   SDValue ShiftAmount = DAG.getConstant(
6888       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
6889   SDValue Lo = Val;
6890   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
6891 
6892   // Store the two parts
6893   SDValue Store1, Store2;
6894   Store1 = DAG.getTruncStore(Chain, dl,
6895                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
6896                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
6897                              ST->getMemOperand()->getFlags());
6898 
6899   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6900   Alignment = MinAlign(Alignment, IncrementSize);
6901   Store2 = DAG.getTruncStore(
6902       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
6903       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
6904       ST->getMemOperand()->getFlags(), ST->getAAInfo());
6905 
6906   SDValue Result =
6907       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
6908   return Result;
6909 }
6910 
6911 SDValue
6912 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
6913                                        const SDLoc &DL, EVT DataVT,
6914                                        SelectionDAG &DAG,
6915                                        bool IsCompressedMemory) const {
6916   SDValue Increment;
6917   EVT AddrVT = Addr.getValueType();
6918   EVT MaskVT = Mask.getValueType();
6919   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
6920          "Incompatible types of Data and Mask");
6921   if (IsCompressedMemory) {
6922     // Incrementing the pointer according to number of '1's in the mask.
6923     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
6924     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
6925     if (MaskIntVT.getSizeInBits() < 32) {
6926       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
6927       MaskIntVT = MVT::i32;
6928     }
6929 
6930     // Count '1's with POPCNT.
6931     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
6932     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
6933     // Scale is an element size in bytes.
6934     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
6935                                     AddrVT);
6936     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
6937   } else
6938     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
6939 
6940   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
6941 }
6942 
6943 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
6944                                        SDValue Idx,
6945                                        EVT VecVT,
6946                                        const SDLoc &dl) {
6947   if (isa<ConstantSDNode>(Idx))
6948     return Idx;
6949 
6950   EVT IdxVT = Idx.getValueType();
6951   unsigned NElts = VecVT.getVectorNumElements();
6952   if (isPowerOf2_32(NElts)) {
6953     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
6954                                      Log2_32(NElts));
6955     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
6956                        DAG.getConstant(Imm, dl, IdxVT));
6957   }
6958 
6959   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
6960                      DAG.getConstant(NElts - 1, dl, IdxVT));
6961 }
6962 
6963 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
6964                                                 SDValue VecPtr, EVT VecVT,
6965                                                 SDValue Index) const {
6966   SDLoc dl(Index);
6967   // Make sure the index type is big enough to compute in.
6968   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
6969 
6970   EVT EltVT = VecVT.getVectorElementType();
6971 
6972   // Calculate the element offset and add it to the pointer.
6973   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
6974   assert(EltSize * 8 == EltVT.getSizeInBits() &&
6975          "Converting bits to bytes lost precision");
6976 
6977   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
6978 
6979   EVT IdxVT = Index.getValueType();
6980 
6981   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
6982                       DAG.getConstant(EltSize, dl, IdxVT));
6983   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
6984 }
6985 
6986 //===----------------------------------------------------------------------===//
6987 // Implementation of Emulated TLS Model
6988 //===----------------------------------------------------------------------===//
6989 
6990 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
6991                                                 SelectionDAG &DAG) const {
6992   // Access to address of TLS varialbe xyz is lowered to a function call:
6993   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
6994   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6995   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
6996   SDLoc dl(GA);
6997 
6998   ArgListTy Args;
6999   ArgListEntry Entry;
7000   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7001   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7002   StringRef EmuTlsVarName(NameString);
7003   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7004   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7005   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7006   Entry.Ty = VoidPtrType;
7007   Args.push_back(Entry);
7008 
7009   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7010 
7011   TargetLowering::CallLoweringInfo CLI(DAG);
7012   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7013   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7014   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7015 
7016   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7017   // At last for X86 targets, maybe good for other targets too?
7018   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7019   MFI.setAdjustsStack(true); // Is this only for X86 target?
7020   MFI.setHasCalls(true);
7021 
7022   assert((GA->getOffset() == 0) &&
7023          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7024   return CallResult.first;
7025 }
7026 
7027 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7028                                                 SelectionDAG &DAG) const {
7029   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7030   if (!isCtlzFast())
7031     return SDValue();
7032   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7033   SDLoc dl(Op);
7034   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7035     if (C->isNullValue() && CC == ISD::SETEQ) {
7036       EVT VT = Op.getOperand(0).getValueType();
7037       SDValue Zext = Op.getOperand(0);
7038       if (VT.bitsLT(MVT::i32)) {
7039         VT = MVT::i32;
7040         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7041       }
7042       unsigned Log2b = Log2_32(VT.getSizeInBits());
7043       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7044       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7045                                 DAG.getConstant(Log2b, dl, MVT::i32));
7046       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7047     }
7048   }
7049   return SDValue();
7050 }
7051 
7052 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
7053   unsigned Opcode = Node->getOpcode();
7054   SDValue LHS = Node->getOperand(0);
7055   SDValue RHS = Node->getOperand(1);
7056   EVT VT = LHS.getValueType();
7057   SDLoc dl(Node);
7058 
7059   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7060   assert(VT.isInteger() && "Expected operands to be integers");
7061 
7062   // usub.sat(a, b) -> umax(a, b) - b
7063   if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
7064     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
7065     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
7066   }
7067 
7068   if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
7069     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
7070     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
7071     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
7072   }
7073 
7074   unsigned OverflowOp;
7075   switch (Opcode) {
7076   case ISD::SADDSAT:
7077     OverflowOp = ISD::SADDO;
7078     break;
7079   case ISD::UADDSAT:
7080     OverflowOp = ISD::UADDO;
7081     break;
7082   case ISD::SSUBSAT:
7083     OverflowOp = ISD::SSUBO;
7084     break;
7085   case ISD::USUBSAT:
7086     OverflowOp = ISD::USUBO;
7087     break;
7088   default:
7089     llvm_unreachable("Expected method to receive signed or unsigned saturation "
7090                      "addition or subtraction node.");
7091   }
7092 
7093   unsigned BitWidth = LHS.getScalarValueSizeInBits();
7094   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7095   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
7096                                LHS, RHS);
7097   SDValue SumDiff = Result.getValue(0);
7098   SDValue Overflow = Result.getValue(1);
7099   SDValue Zero = DAG.getConstant(0, dl, VT);
7100   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
7101 
7102   if (Opcode == ISD::UADDSAT) {
7103     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7104       // (LHS + RHS) | OverflowMask
7105       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7106       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
7107     }
7108     // Overflow ? 0xffff.... : (LHS + RHS)
7109     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
7110   } else if (Opcode == ISD::USUBSAT) {
7111     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7112       // (LHS - RHS) & ~OverflowMask
7113       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7114       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
7115       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
7116     }
7117     // Overflow ? 0 : (LHS - RHS)
7118     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
7119   } else {
7120     // SatMax -> Overflow && SumDiff < 0
7121     // SatMin -> Overflow && SumDiff >= 0
7122     APInt MinVal = APInt::getSignedMinValue(BitWidth);
7123     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
7124     SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7125     SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7126     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
7127     Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
7128     return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
7129   }
7130 }
7131 
7132 SDValue
7133 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
7134   assert((Node->getOpcode() == ISD::SMULFIX ||
7135           Node->getOpcode() == ISD::UMULFIX ||
7136           Node->getOpcode() == ISD::SMULFIXSAT ||
7137           Node->getOpcode() == ISD::UMULFIXSAT) &&
7138          "Expected a fixed point multiplication opcode");
7139 
7140   SDLoc dl(Node);
7141   SDValue LHS = Node->getOperand(0);
7142   SDValue RHS = Node->getOperand(1);
7143   EVT VT = LHS.getValueType();
7144   unsigned Scale = Node->getConstantOperandVal(2);
7145   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
7146                      Node->getOpcode() == ISD::UMULFIXSAT);
7147   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
7148                  Node->getOpcode() == ISD::SMULFIXSAT);
7149   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7150   unsigned VTSize = VT.getScalarSizeInBits();
7151 
7152   if (!Scale) {
7153     // [us]mul.fix(a, b, 0) -> mul(a, b)
7154     if (!Saturating) {
7155       if (isOperationLegalOrCustom(ISD::MUL, VT))
7156         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7157     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
7158       SDValue Result =
7159           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7160       SDValue Product = Result.getValue(0);
7161       SDValue Overflow = Result.getValue(1);
7162       SDValue Zero = DAG.getConstant(0, dl, VT);
7163 
7164       APInt MinVal = APInt::getSignedMinValue(VTSize);
7165       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
7166       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7167       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7168       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
7169       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
7170       return DAG.getSelect(dl, VT, Overflow, Result, Product);
7171     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
7172       SDValue Result =
7173           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7174       SDValue Product = Result.getValue(0);
7175       SDValue Overflow = Result.getValue(1);
7176 
7177       APInt MaxVal = APInt::getMaxValue(VTSize);
7178       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7179       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
7180     }
7181   }
7182 
7183   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
7184          "Expected scale to be less than the number of bits if signed or at "
7185          "most the number of bits if unsigned.");
7186   assert(LHS.getValueType() == RHS.getValueType() &&
7187          "Expected both operands to be the same type");
7188 
7189   // Get the upper and lower bits of the result.
7190   SDValue Lo, Hi;
7191   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
7192   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
7193   if (isOperationLegalOrCustom(LoHiOp, VT)) {
7194     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
7195     Lo = Result.getValue(0);
7196     Hi = Result.getValue(1);
7197   } else if (isOperationLegalOrCustom(HiOp, VT)) {
7198     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7199     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
7200   } else if (VT.isVector()) {
7201     return SDValue();
7202   } else {
7203     report_fatal_error("Unable to expand fixed point multiplication.");
7204   }
7205 
7206   if (Scale == VTSize)
7207     // Result is just the top half since we'd be shifting by the width of the
7208     // operand. Overflow impossible so this works for both UMULFIX and
7209     // UMULFIXSAT.
7210     return Hi;
7211 
7212   // The result will need to be shifted right by the scale since both operands
7213   // are scaled. The result is given to us in 2 halves, so we only want part of
7214   // both in the result.
7215   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7216   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
7217                                DAG.getConstant(Scale, dl, ShiftTy));
7218   if (!Saturating)
7219     return Result;
7220 
7221   if (!Signed) {
7222     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
7223     // widened multiplication) aren't all zeroes.
7224 
7225     // Saturate to max if ((Hi >> Scale) != 0),
7226     // which is the same as if (Hi > ((1 << Scale) - 1))
7227     APInt MaxVal = APInt::getMaxValue(VTSize);
7228     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
7229                                       dl, VT);
7230     Result = DAG.getSelectCC(dl, Hi, LowMask,
7231                              DAG.getConstant(MaxVal, dl, VT), Result,
7232                              ISD::SETUGT);
7233 
7234     return Result;
7235   }
7236 
7237   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
7238   // widened multiplication) aren't all ones or all zeroes.
7239 
7240   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
7241   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
7242 
7243   if (Scale == 0) {
7244     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
7245                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
7246     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
7247     // Saturated to SatMin if wide product is negative, and SatMax if wide
7248     // product is positive ...
7249     SDValue Zero = DAG.getConstant(0, dl, VT);
7250     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
7251                                                ISD::SETLT);
7252     // ... but only if we overflowed.
7253     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
7254   }
7255 
7256   //  We handled Scale==0 above so all the bits to examine is in Hi.
7257 
7258   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
7259   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
7260   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
7261                                     dl, VT);
7262   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
7263   // Saturate to min if (Hi >> (Scale - 1)) < -1),
7264   // which is the same as if (HI < (-1 << (Scale - 1))
7265   SDValue HighMask =
7266       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
7267                       dl, VT);
7268   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
7269   return Result;
7270 }
7271 
7272 SDValue
7273 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
7274                                     SDValue LHS, SDValue RHS,
7275                                     unsigned Scale, SelectionDAG &DAG) const {
7276   assert((Opcode == ISD::SDIVFIX ||
7277           Opcode == ISD::UDIVFIX) &&
7278          "Expected a fixed point division opcode");
7279 
7280   EVT VT = LHS.getValueType();
7281   bool Signed = Opcode == ISD::SDIVFIX;
7282   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7283 
7284   // If there is enough room in the type to upscale the LHS or downscale the
7285   // RHS before the division, we can perform it in this type without having to
7286   // resize. For signed operations, the LHS headroom is the number of
7287   // redundant sign bits, and for unsigned ones it is the number of zeroes.
7288   // The headroom for the RHS is the number of trailing zeroes.
7289   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
7290                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
7291   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
7292 
7293   if (LHSLead + RHSTrail < Scale)
7294     return SDValue();
7295 
7296   unsigned LHSShift = std::min(LHSLead, Scale);
7297   unsigned RHSShift = Scale - LHSShift;
7298 
7299   // At this point, we know that if we shift the LHS up by LHSShift and the
7300   // RHS down by RHSShift, we can emit a regular division with a final scaling
7301   // factor of Scale.
7302 
7303   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7304   if (LHSShift)
7305     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
7306                       DAG.getConstant(LHSShift, dl, ShiftTy));
7307   if (RHSShift)
7308     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
7309                       DAG.getConstant(RHSShift, dl, ShiftTy));
7310 
7311   SDValue Quot;
7312   if (Signed) {
7313     // For signed operations, if the resulting quotient is negative and the
7314     // remainder is nonzero, subtract 1 from the quotient to round towards
7315     // negative infinity.
7316     SDValue Rem;
7317     // FIXME: Ideally we would always produce an SDIVREM here, but if the
7318     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
7319     // we couldn't just form a libcall, but the type legalizer doesn't do it.
7320     if (isTypeLegal(VT) &&
7321         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
7322       Quot = DAG.getNode(ISD::SDIVREM, dl,
7323                          DAG.getVTList(VT, VT),
7324                          LHS, RHS);
7325       Rem = Quot.getValue(1);
7326       Quot = Quot.getValue(0);
7327     } else {
7328       Quot = DAG.getNode(ISD::SDIV, dl, VT,
7329                          LHS, RHS);
7330       Rem = DAG.getNode(ISD::SREM, dl, VT,
7331                         LHS, RHS);
7332     }
7333     SDValue Zero = DAG.getConstant(0, dl, VT);
7334     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
7335     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
7336     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
7337     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
7338     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
7339                                DAG.getConstant(1, dl, VT));
7340     Quot = DAG.getSelect(dl, VT,
7341                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
7342                          Sub1, Quot);
7343   } else
7344     Quot = DAG.getNode(ISD::UDIV, dl, VT,
7345                        LHS, RHS);
7346 
7347   // TODO: Saturation.
7348 
7349   return Quot;
7350 }
7351 
7352 void TargetLowering::expandUADDSUBO(
7353     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7354   SDLoc dl(Node);
7355   SDValue LHS = Node->getOperand(0);
7356   SDValue RHS = Node->getOperand(1);
7357   bool IsAdd = Node->getOpcode() == ISD::UADDO;
7358 
7359   // If ADD/SUBCARRY is legal, use that instead.
7360   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
7361   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
7362     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
7363     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
7364                                     { LHS, RHS, CarryIn });
7365     Result = SDValue(NodeCarry.getNode(), 0);
7366     Overflow = SDValue(NodeCarry.getNode(), 1);
7367     return;
7368   }
7369 
7370   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7371                             LHS.getValueType(), LHS, RHS);
7372 
7373   EVT ResultType = Node->getValueType(1);
7374   EVT SetCCType = getSetCCResultType(
7375       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7376   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
7377   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
7378   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7379 }
7380 
7381 void TargetLowering::expandSADDSUBO(
7382     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7383   SDLoc dl(Node);
7384   SDValue LHS = Node->getOperand(0);
7385   SDValue RHS = Node->getOperand(1);
7386   bool IsAdd = Node->getOpcode() == ISD::SADDO;
7387 
7388   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7389                             LHS.getValueType(), LHS, RHS);
7390 
7391   EVT ResultType = Node->getValueType(1);
7392   EVT OType = getSetCCResultType(
7393       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7394 
7395   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
7396   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
7397   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
7398     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
7399     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
7400     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7401     return;
7402   }
7403 
7404   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
7405 
7406   // For an addition, the result should be less than one of the operands (LHS)
7407   // if and only if the other operand (RHS) is negative, otherwise there will
7408   // be overflow.
7409   // For a subtraction, the result should be less than one of the operands
7410   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
7411   // otherwise there will be overflow.
7412   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
7413   SDValue ConditionRHS =
7414       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
7415 
7416   Overflow = DAG.getBoolExtOrTrunc(
7417       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
7418       ResultType, ResultType);
7419 }
7420 
7421 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
7422                                 SDValue &Overflow, SelectionDAG &DAG) const {
7423   SDLoc dl(Node);
7424   EVT VT = Node->getValueType(0);
7425   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7426   SDValue LHS = Node->getOperand(0);
7427   SDValue RHS = Node->getOperand(1);
7428   bool isSigned = Node->getOpcode() == ISD::SMULO;
7429 
7430   // For power-of-two multiplications we can use a simpler shift expansion.
7431   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
7432     const APInt &C = RHSC->getAPIntValue();
7433     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
7434     if (C.isPowerOf2()) {
7435       // smulo(x, signed_min) is same as umulo(x, signed_min).
7436       bool UseArithShift = isSigned && !C.isMinSignedValue();
7437       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
7438       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
7439       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
7440       Overflow = DAG.getSetCC(dl, SetCCVT,
7441           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
7442                       dl, VT, Result, ShiftAmt),
7443           LHS, ISD::SETNE);
7444       return true;
7445     }
7446   }
7447 
7448   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
7449   if (VT.isVector())
7450     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
7451                               VT.getVectorNumElements());
7452 
7453   SDValue BottomHalf;
7454   SDValue TopHalf;
7455   static const unsigned Ops[2][3] =
7456       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
7457         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
7458   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
7459     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7460     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
7461   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
7462     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
7463                              RHS);
7464     TopHalf = BottomHalf.getValue(1);
7465   } else if (isTypeLegal(WideVT)) {
7466     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
7467     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
7468     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
7469     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
7470     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
7471         getShiftAmountTy(WideVT, DAG.getDataLayout()));
7472     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
7473                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
7474   } else {
7475     if (VT.isVector())
7476       return false;
7477 
7478     // We can fall back to a libcall with an illegal type for the MUL if we
7479     // have a libcall big enough.
7480     // Also, we can fall back to a division in some cases, but that's a big
7481     // performance hit in the general case.
7482     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
7483     if (WideVT == MVT::i16)
7484       LC = RTLIB::MUL_I16;
7485     else if (WideVT == MVT::i32)
7486       LC = RTLIB::MUL_I32;
7487     else if (WideVT == MVT::i64)
7488       LC = RTLIB::MUL_I64;
7489     else if (WideVT == MVT::i128)
7490       LC = RTLIB::MUL_I128;
7491     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
7492 
7493     SDValue HiLHS;
7494     SDValue HiRHS;
7495     if (isSigned) {
7496       // The high part is obtained by SRA'ing all but one of the bits of low
7497       // part.
7498       unsigned LoSize = VT.getSizeInBits();
7499       HiLHS =
7500           DAG.getNode(ISD::SRA, dl, VT, LHS,
7501                       DAG.getConstant(LoSize - 1, dl,
7502                                       getPointerTy(DAG.getDataLayout())));
7503       HiRHS =
7504           DAG.getNode(ISD::SRA, dl, VT, RHS,
7505                       DAG.getConstant(LoSize - 1, dl,
7506                                       getPointerTy(DAG.getDataLayout())));
7507     } else {
7508         HiLHS = DAG.getConstant(0, dl, VT);
7509         HiRHS = DAG.getConstant(0, dl, VT);
7510     }
7511 
7512     // Here we're passing the 2 arguments explicitly as 4 arguments that are
7513     // pre-lowered to the correct types. This all depends upon WideVT not
7514     // being a legal type for the architecture and thus has to be split to
7515     // two arguments.
7516     SDValue Ret;
7517     TargetLowering::MakeLibCallOptions CallOptions;
7518     CallOptions.setSExt(isSigned);
7519     CallOptions.setIsPostTypeLegalization(true);
7520     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
7521       // Halves of WideVT are packed into registers in different order
7522       // depending on platform endianness. This is usually handled by
7523       // the C calling convention, but we can't defer to it in
7524       // the legalizer.
7525       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
7526       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7527     } else {
7528       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
7529       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7530     }
7531     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
7532            "Ret value is a collection of constituent nodes holding result.");
7533     if (DAG.getDataLayout().isLittleEndian()) {
7534       // Same as above.
7535       BottomHalf = Ret.getOperand(0);
7536       TopHalf = Ret.getOperand(1);
7537     } else {
7538       BottomHalf = Ret.getOperand(1);
7539       TopHalf = Ret.getOperand(0);
7540     }
7541   }
7542 
7543   Result = BottomHalf;
7544   if (isSigned) {
7545     SDValue ShiftAmt = DAG.getConstant(
7546         VT.getScalarSizeInBits() - 1, dl,
7547         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
7548     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
7549     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
7550   } else {
7551     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
7552                             DAG.getConstant(0, dl, VT), ISD::SETNE);
7553   }
7554 
7555   // Truncate the result if SetCC returns a larger type than needed.
7556   EVT RType = Node->getValueType(1);
7557   if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
7558     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
7559 
7560   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
7561          "Unexpected result type for S/UMULO legalization");
7562   return true;
7563 }
7564 
7565 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
7566   SDLoc dl(Node);
7567   bool NoNaN = Node->getFlags().hasNoNaNs();
7568   unsigned BaseOpcode = 0;
7569   switch (Node->getOpcode()) {
7570   default: llvm_unreachable("Expected VECREDUCE opcode");
7571   case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
7572   case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
7573   case ISD::VECREDUCE_ADD:  BaseOpcode = ISD::ADD; break;
7574   case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break;
7575   case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break;
7576   case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break;
7577   case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break;
7578   case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
7579   case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
7580   case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
7581   case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
7582   case ISD::VECREDUCE_FMAX:
7583     BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
7584     break;
7585   case ISD::VECREDUCE_FMIN:
7586     BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
7587     break;
7588   }
7589 
7590   SDValue Op = Node->getOperand(0);
7591   EVT VT = Op.getValueType();
7592 
7593   // Try to use a shuffle reduction for power of two vectors.
7594   if (VT.isPow2VectorType()) {
7595     while (VT.getVectorNumElements() > 1) {
7596       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
7597       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
7598         break;
7599 
7600       SDValue Lo, Hi;
7601       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
7602       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
7603       VT = HalfVT;
7604     }
7605   }
7606 
7607   EVT EltVT = VT.getVectorElementType();
7608   unsigned NumElts = VT.getVectorNumElements();
7609 
7610   SmallVector<SDValue, 8> Ops;
7611   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
7612 
7613   SDValue Res = Ops[0];
7614   for (unsigned i = 1; i < NumElts; i++)
7615     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
7616 
7617   // Result type may be wider than element type.
7618   if (EltVT != Node->getValueType(0))
7619     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
7620   return Res;
7621 }
7622