1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/GlobalVariable.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/MC/MCAsmInfo.h"
27 #include "llvm/MC/MCExpr.h"
28 #include "llvm/Support/DivisionByConstantInfo.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include <cctype>
34 using namespace llvm;
35 
36 /// NOTE: The TargetMachine owns TLOF.
37 TargetLowering::TargetLowering(const TargetMachine &tm)
38     : TargetLoweringBase(tm) {}
39 
40 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
41   return nullptr;
42 }
43 
44 bool TargetLowering::isPositionIndependent() const {
45   return getTargetMachine().isPositionIndependent();
46 }
47 
48 /// Check whether a given call node is in tail position within its function. If
49 /// so, it sets Chain to the input chain of the tail call.
50 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
51                                           SDValue &Chain) const {
52   const Function &F = DAG.getMachineFunction().getFunction();
53 
54   // First, check if tail calls have been disabled in this function.
55   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
56     return false;
57 
58   // Conservatively require the attributes of the call to match those of
59   // the return. Ignore following attributes because they don't affect the
60   // call sequence.
61   AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
62   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
63                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
64                            Attribute::NonNull, Attribute::NoUndef})
65     CallerAttrs.removeAttribute(Attr);
66 
67   if (CallerAttrs.hasAttributes())
68     return false;
69 
70   // It's not safe to eliminate the sign / zero extension of the return value.
71   if (CallerAttrs.contains(Attribute::ZExt) ||
72       CallerAttrs.contains(Attribute::SExt))
73     return false;
74 
75   // Check if the only use is a function return node.
76   return isUsedByReturnOnly(Node, Chain);
77 }
78 
79 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
80     const uint32_t *CallerPreservedMask,
81     const SmallVectorImpl<CCValAssign> &ArgLocs,
82     const SmallVectorImpl<SDValue> &OutVals) const {
83   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
84     const CCValAssign &ArgLoc = ArgLocs[I];
85     if (!ArgLoc.isRegLoc())
86       continue;
87     MCRegister Reg = ArgLoc.getLocReg();
88     // Only look at callee saved registers.
89     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
90       continue;
91     // Check that we pass the value used for the caller.
92     // (We look for a CopyFromReg reading a virtual register that is used
93     //  for the function live-in value of register Reg)
94     SDValue Value = OutVals[I];
95     if (Value->getOpcode() == ISD::AssertZext)
96       Value = Value.getOperand(0);
97     if (Value->getOpcode() != ISD::CopyFromReg)
98       return false;
99     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
100     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
101       return false;
102   }
103   return true;
104 }
105 
106 /// Set CallLoweringInfo attribute flags based on a call instruction
107 /// and called function attributes.
108 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
109                                                      unsigned ArgIdx) {
110   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
111   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
112   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
113   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
114   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
115   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
116   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
117   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
118   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
119   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
120   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
121   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
122   Alignment = Call->getParamStackAlign(ArgIdx);
123   IndirectType = nullptr;
124   assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 &&
125          "multiple ABI attributes?");
126   if (IsByVal) {
127     IndirectType = Call->getParamByValType(ArgIdx);
128     if (!Alignment)
129       Alignment = Call->getParamAlign(ArgIdx);
130   }
131   if (IsPreallocated)
132     IndirectType = Call->getParamPreallocatedType(ArgIdx);
133   if (IsInAlloca)
134     IndirectType = Call->getParamInAllocaType(ArgIdx);
135   if (IsSRet)
136     IndirectType = Call->getParamStructRetType(ArgIdx);
137 }
138 
139 /// Generate a libcall taking the given operands as arguments and returning a
140 /// result of type RetVT.
141 std::pair<SDValue, SDValue>
142 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
143                             ArrayRef<SDValue> Ops,
144                             MakeLibCallOptions CallOptions,
145                             const SDLoc &dl,
146                             SDValue InChain) const {
147   if (!InChain)
148     InChain = DAG.getEntryNode();
149 
150   TargetLowering::ArgListTy Args;
151   Args.reserve(Ops.size());
152 
153   TargetLowering::ArgListEntry Entry;
154   for (unsigned i = 0; i < Ops.size(); ++i) {
155     SDValue NewOp = Ops[i];
156     Entry.Node = NewOp;
157     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
158     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
159                                                  CallOptions.IsSExt);
160     Entry.IsZExt = !Entry.IsSExt;
161 
162     if (CallOptions.IsSoften &&
163         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
164       Entry.IsSExt = Entry.IsZExt = false;
165     }
166     Args.push_back(Entry);
167   }
168 
169   if (LC == RTLIB::UNKNOWN_LIBCALL)
170     report_fatal_error("Unsupported library call operation!");
171   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
172                                          getPointerTy(DAG.getDataLayout()));
173 
174   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
175   TargetLowering::CallLoweringInfo CLI(DAG);
176   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
177   bool zeroExtend = !signExtend;
178 
179   if (CallOptions.IsSoften &&
180       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
181     signExtend = zeroExtend = false;
182   }
183 
184   CLI.setDebugLoc(dl)
185       .setChain(InChain)
186       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
187       .setNoReturn(CallOptions.DoesNotReturn)
188       .setDiscardResult(!CallOptions.IsReturnValueUsed)
189       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
190       .setSExtResult(signExtend)
191       .setZExtResult(zeroExtend);
192   return LowerCallTo(CLI);
193 }
194 
195 bool TargetLowering::findOptimalMemOpLowering(
196     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
197     unsigned SrcAS, const AttributeList &FuncAttributes) const {
198   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
199     return false;
200 
201   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
202 
203   if (VT == MVT::Other) {
204     // Use the largest integer type whose alignment constraints are satisfied.
205     // We only need to check DstAlign here as SrcAlign is always greater or
206     // equal to DstAlign (or zero).
207     VT = MVT::i64;
208     if (Op.isFixedDstAlign())
209       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
210              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
211         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
212     assert(VT.isInteger());
213 
214     // Find the largest legal integer type.
215     MVT LVT = MVT::i64;
216     while (!isTypeLegal(LVT))
217       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
218     assert(LVT.isInteger());
219 
220     // If the type we've chosen is larger than the largest legal integer type
221     // then use that instead.
222     if (VT.bitsGT(LVT))
223       VT = LVT;
224   }
225 
226   unsigned NumMemOps = 0;
227   uint64_t Size = Op.size();
228   while (Size) {
229     unsigned VTSize = VT.getSizeInBits() / 8;
230     while (VTSize > Size) {
231       // For now, only use non-vector load / store's for the left-over pieces.
232       EVT NewVT = VT;
233       unsigned NewVTSize;
234 
235       bool Found = false;
236       if (VT.isVector() || VT.isFloatingPoint()) {
237         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
238         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
239             isSafeMemOpType(NewVT.getSimpleVT()))
240           Found = true;
241         else if (NewVT == MVT::i64 &&
242                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
243                  isSafeMemOpType(MVT::f64)) {
244           // i64 is usually not legal on 32-bit targets, but f64 may be.
245           NewVT = MVT::f64;
246           Found = true;
247         }
248       }
249 
250       if (!Found) {
251         do {
252           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
253           if (NewVT == MVT::i8)
254             break;
255         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
256       }
257       NewVTSize = NewVT.getSizeInBits() / 8;
258 
259       // If the new VT cannot cover all of the remaining bits, then consider
260       // issuing a (or a pair of) unaligned and overlapping load / store.
261       bool Fast;
262       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
263           allowsMisalignedMemoryAccesses(
264               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
265               MachineMemOperand::MONone, &Fast) &&
266           Fast)
267         VTSize = Size;
268       else {
269         VT = NewVT;
270         VTSize = NewVTSize;
271       }
272     }
273 
274     if (++NumMemOps > Limit)
275       return false;
276 
277     MemOps.push_back(VT);
278     Size -= VTSize;
279   }
280 
281   return true;
282 }
283 
284 /// Soften the operands of a comparison. This code is shared among BR_CC,
285 /// SELECT_CC, and SETCC handlers.
286 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
287                                          SDValue &NewLHS, SDValue &NewRHS,
288                                          ISD::CondCode &CCCode,
289                                          const SDLoc &dl, const SDValue OldLHS,
290                                          const SDValue OldRHS) const {
291   SDValue Chain;
292   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
293                              OldRHS, Chain);
294 }
295 
296 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
297                                          SDValue &NewLHS, SDValue &NewRHS,
298                                          ISD::CondCode &CCCode,
299                                          const SDLoc &dl, const SDValue OldLHS,
300                                          const SDValue OldRHS,
301                                          SDValue &Chain,
302                                          bool IsSignaling) const {
303   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
304   // not supporting it. We can update this code when libgcc provides such
305   // functions.
306 
307   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
308          && "Unsupported setcc type!");
309 
310   // Expand into one or more soft-fp libcall(s).
311   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
312   bool ShouldInvertCC = false;
313   switch (CCCode) {
314   case ISD::SETEQ:
315   case ISD::SETOEQ:
316     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
317           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
318           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
319     break;
320   case ISD::SETNE:
321   case ISD::SETUNE:
322     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
323           (VT == MVT::f64) ? RTLIB::UNE_F64 :
324           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
325     break;
326   case ISD::SETGE:
327   case ISD::SETOGE:
328     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
329           (VT == MVT::f64) ? RTLIB::OGE_F64 :
330           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
331     break;
332   case ISD::SETLT:
333   case ISD::SETOLT:
334     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
335           (VT == MVT::f64) ? RTLIB::OLT_F64 :
336           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
337     break;
338   case ISD::SETLE:
339   case ISD::SETOLE:
340     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
341           (VT == MVT::f64) ? RTLIB::OLE_F64 :
342           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
343     break;
344   case ISD::SETGT:
345   case ISD::SETOGT:
346     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
347           (VT == MVT::f64) ? RTLIB::OGT_F64 :
348           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
349     break;
350   case ISD::SETO:
351     ShouldInvertCC = true;
352     LLVM_FALLTHROUGH;
353   case ISD::SETUO:
354     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
355           (VT == MVT::f64) ? RTLIB::UO_F64 :
356           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
357     break;
358   case ISD::SETONE:
359     // SETONE = O && UNE
360     ShouldInvertCC = true;
361     LLVM_FALLTHROUGH;
362   case ISD::SETUEQ:
363     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
364           (VT == MVT::f64) ? RTLIB::UO_F64 :
365           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
366     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
367           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
368           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
369     break;
370   default:
371     // Invert CC for unordered comparisons
372     ShouldInvertCC = true;
373     switch (CCCode) {
374     case ISD::SETULT:
375       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
376             (VT == MVT::f64) ? RTLIB::OGE_F64 :
377             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
378       break;
379     case ISD::SETULE:
380       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
381             (VT == MVT::f64) ? RTLIB::OGT_F64 :
382             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
383       break;
384     case ISD::SETUGT:
385       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
386             (VT == MVT::f64) ? RTLIB::OLE_F64 :
387             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
388       break;
389     case ISD::SETUGE:
390       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
391             (VT == MVT::f64) ? RTLIB::OLT_F64 :
392             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
393       break;
394     default: llvm_unreachable("Do not know how to soften this setcc!");
395     }
396   }
397 
398   // Use the target specific return value for comparions lib calls.
399   EVT RetVT = getCmpLibcallReturnType();
400   SDValue Ops[2] = {NewLHS, NewRHS};
401   TargetLowering::MakeLibCallOptions CallOptions;
402   EVT OpsVT[2] = { OldLHS.getValueType(),
403                    OldRHS.getValueType() };
404   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
405   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
406   NewLHS = Call.first;
407   NewRHS = DAG.getConstant(0, dl, RetVT);
408 
409   CCCode = getCmpLibcallCC(LC1);
410   if (ShouldInvertCC) {
411     assert(RetVT.isInteger());
412     CCCode = getSetCCInverse(CCCode, RetVT);
413   }
414 
415   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
416     // Update Chain.
417     Chain = Call.second;
418   } else {
419     EVT SetCCVT =
420         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
421     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
422     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
423     CCCode = getCmpLibcallCC(LC2);
424     if (ShouldInvertCC)
425       CCCode = getSetCCInverse(CCCode, RetVT);
426     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
427     if (Chain)
428       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
429                           Call2.second);
430     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
431                          Tmp.getValueType(), Tmp, NewLHS);
432     NewRHS = SDValue();
433   }
434 }
435 
436 /// Return the entry encoding for a jump table in the current function. The
437 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
438 unsigned TargetLowering::getJumpTableEncoding() const {
439   // In non-pic modes, just use the address of a block.
440   if (!isPositionIndependent())
441     return MachineJumpTableInfo::EK_BlockAddress;
442 
443   // In PIC mode, if the target supports a GPRel32 directive, use it.
444   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
445     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
446 
447   // Otherwise, use a label difference.
448   return MachineJumpTableInfo::EK_LabelDifference32;
449 }
450 
451 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
452                                                  SelectionDAG &DAG) const {
453   // If our PIC model is GP relative, use the global offset table as the base.
454   unsigned JTEncoding = getJumpTableEncoding();
455 
456   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
457       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
458     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
459 
460   return Table;
461 }
462 
463 /// This returns the relocation base for the given PIC jumptable, the same as
464 /// getPICJumpTableRelocBase, but as an MCExpr.
465 const MCExpr *
466 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
467                                              unsigned JTI,MCContext &Ctx) const{
468   // The normal PIC reloc base is the label at the start of the jump table.
469   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
470 }
471 
472 bool
473 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
474   const TargetMachine &TM = getTargetMachine();
475   const GlobalValue *GV = GA->getGlobal();
476 
477   // If the address is not even local to this DSO we will have to load it from
478   // a got and then add the offset.
479   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
480     return false;
481 
482   // If the code is position independent we will have to add a base register.
483   if (isPositionIndependent())
484     return false;
485 
486   // Otherwise we can do it.
487   return true;
488 }
489 
490 //===----------------------------------------------------------------------===//
491 //  Optimization Methods
492 //===----------------------------------------------------------------------===//
493 
494 /// If the specified instruction has a constant integer operand and there are
495 /// bits set in that constant that are not demanded, then clear those bits and
496 /// return true.
497 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
498                                             const APInt &DemandedBits,
499                                             const APInt &DemandedElts,
500                                             TargetLoweringOpt &TLO) const {
501   SDLoc DL(Op);
502   unsigned Opcode = Op.getOpcode();
503 
504   // Do target-specific constant optimization.
505   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
506     return TLO.New.getNode();
507 
508   // FIXME: ISD::SELECT, ISD::SELECT_CC
509   switch (Opcode) {
510   default:
511     break;
512   case ISD::XOR:
513   case ISD::AND:
514   case ISD::OR: {
515     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
516     if (!Op1C || Op1C->isOpaque())
517       return false;
518 
519     // If this is a 'not' op, don't touch it because that's a canonical form.
520     const APInt &C = Op1C->getAPIntValue();
521     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
522       return false;
523 
524     if (!C.isSubsetOf(DemandedBits)) {
525       EVT VT = Op.getValueType();
526       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
527       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
528       return TLO.CombineTo(Op, NewOp);
529     }
530 
531     break;
532   }
533   }
534 
535   return false;
536 }
537 
538 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
539                                             const APInt &DemandedBits,
540                                             TargetLoweringOpt &TLO) const {
541   EVT VT = Op.getValueType();
542   APInt DemandedElts = VT.isVector()
543                            ? APInt::getAllOnes(VT.getVectorNumElements())
544                            : APInt(1, 1);
545   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
546 }
547 
548 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
549 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
550 /// generalized for targets with other types of implicit widening casts.
551 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
552                                       const APInt &Demanded,
553                                       TargetLoweringOpt &TLO) const {
554   assert(Op.getNumOperands() == 2 &&
555          "ShrinkDemandedOp only supports binary operators!");
556   assert(Op.getNode()->getNumValues() == 1 &&
557          "ShrinkDemandedOp only supports nodes with one result!");
558 
559   SelectionDAG &DAG = TLO.DAG;
560   SDLoc dl(Op);
561 
562   // Early return, as this function cannot handle vector types.
563   if (Op.getValueType().isVector())
564     return false;
565 
566   // Don't do this if the node has another user, which may require the
567   // full value.
568   if (!Op.getNode()->hasOneUse())
569     return false;
570 
571   // Search for the smallest integer type with free casts to and from
572   // Op's type. For expedience, just check power-of-2 integer types.
573   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
574   unsigned DemandedSize = Demanded.getActiveBits();
575   unsigned SmallVTBits = DemandedSize;
576   if (!isPowerOf2_32(SmallVTBits))
577     SmallVTBits = NextPowerOf2(SmallVTBits);
578   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
579     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
580     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
581         TLI.isZExtFree(SmallVT, Op.getValueType())) {
582       // We found a type with free casts.
583       SDValue X = DAG.getNode(
584           Op.getOpcode(), dl, SmallVT,
585           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
586           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
587       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
588       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
589       return TLO.CombineTo(Op, Z);
590     }
591   }
592   return false;
593 }
594 
595 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
596                                           DAGCombinerInfo &DCI) const {
597   SelectionDAG &DAG = DCI.DAG;
598   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
599                         !DCI.isBeforeLegalizeOps());
600   KnownBits Known;
601 
602   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
603   if (Simplified) {
604     DCI.AddToWorklist(Op.getNode());
605     DCI.CommitTargetLoweringOpt(TLO);
606   }
607   return Simplified;
608 }
609 
610 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
611                                           const APInt &DemandedElts,
612                                           DAGCombinerInfo &DCI) const {
613   SelectionDAG &DAG = DCI.DAG;
614   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
615                         !DCI.isBeforeLegalizeOps());
616   KnownBits Known;
617 
618   bool Simplified =
619       SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO);
620   if (Simplified) {
621     DCI.AddToWorklist(Op.getNode());
622     DCI.CommitTargetLoweringOpt(TLO);
623   }
624   return Simplified;
625 }
626 
627 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
628                                           KnownBits &Known,
629                                           TargetLoweringOpt &TLO,
630                                           unsigned Depth,
631                                           bool AssumeSingleUse) const {
632   EVT VT = Op.getValueType();
633 
634   // TODO: We can probably do more work on calculating the known bits and
635   // simplifying the operations for scalable vectors, but for now we just
636   // bail out.
637   if (VT.isScalableVector()) {
638     // Pretend we don't know anything for now.
639     Known = KnownBits(DemandedBits.getBitWidth());
640     return false;
641   }
642 
643   APInt DemandedElts = VT.isVector()
644                            ? APInt::getAllOnes(VT.getVectorNumElements())
645                            : APInt(1, 1);
646   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
647                               AssumeSingleUse);
648 }
649 
650 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
651 // TODO: Under what circumstances can we create nodes? Constant folding?
652 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
653     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
654     SelectionDAG &DAG, unsigned Depth) const {
655   // Limit search depth.
656   if (Depth >= SelectionDAG::MaxRecursionDepth)
657     return SDValue();
658 
659   // Ignore UNDEFs.
660   if (Op.isUndef())
661     return SDValue();
662 
663   // Not demanding any bits/elts from Op.
664   if (DemandedBits == 0 || DemandedElts == 0)
665     return DAG.getUNDEF(Op.getValueType());
666 
667   bool IsLE = DAG.getDataLayout().isLittleEndian();
668   unsigned NumElts = DemandedElts.getBitWidth();
669   unsigned BitWidth = DemandedBits.getBitWidth();
670   KnownBits LHSKnown, RHSKnown;
671   switch (Op.getOpcode()) {
672   case ISD::BITCAST: {
673     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
674     EVT SrcVT = Src.getValueType();
675     EVT DstVT = Op.getValueType();
676     if (SrcVT == DstVT)
677       return Src;
678 
679     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
680     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
681     if (NumSrcEltBits == NumDstEltBits)
682       if (SDValue V = SimplifyMultipleUseDemandedBits(
683               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
684         return DAG.getBitcast(DstVT, V);
685 
686     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
687       unsigned Scale = NumDstEltBits / NumSrcEltBits;
688       unsigned NumSrcElts = SrcVT.getVectorNumElements();
689       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
690       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
691       for (unsigned i = 0; i != Scale; ++i) {
692         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
693         unsigned BitOffset = EltOffset * NumSrcEltBits;
694         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
695         if (!Sub.isZero()) {
696           DemandedSrcBits |= Sub;
697           for (unsigned j = 0; j != NumElts; ++j)
698             if (DemandedElts[j])
699               DemandedSrcElts.setBit((j * Scale) + i);
700         }
701       }
702 
703       if (SDValue V = SimplifyMultipleUseDemandedBits(
704               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
705         return DAG.getBitcast(DstVT, V);
706     }
707 
708     // TODO - bigendian once we have test coverage.
709     if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
710       unsigned Scale = NumSrcEltBits / NumDstEltBits;
711       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
712       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
713       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
714       for (unsigned i = 0; i != NumElts; ++i)
715         if (DemandedElts[i]) {
716           unsigned Offset = (i % Scale) * NumDstEltBits;
717           DemandedSrcBits.insertBits(DemandedBits, Offset);
718           DemandedSrcElts.setBit(i / Scale);
719         }
720 
721       if (SDValue V = SimplifyMultipleUseDemandedBits(
722               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
723         return DAG.getBitcast(DstVT, V);
724     }
725 
726     break;
727   }
728   case ISD::AND: {
729     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
730     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
731 
732     // If all of the demanded bits are known 1 on one side, return the other.
733     // These bits cannot contribute to the result of the 'and' in this
734     // context.
735     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
736       return Op.getOperand(0);
737     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
738       return Op.getOperand(1);
739     break;
740   }
741   case ISD::OR: {
742     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
743     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
744 
745     // If all of the demanded bits are known zero on one side, return the
746     // other.  These bits cannot contribute to the result of the 'or' in this
747     // context.
748     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
749       return Op.getOperand(0);
750     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
751       return Op.getOperand(1);
752     break;
753   }
754   case ISD::XOR: {
755     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
756     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
757 
758     // If all of the demanded bits are known zero on one side, return the
759     // other.
760     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
761       return Op.getOperand(0);
762     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
763       return Op.getOperand(1);
764     break;
765   }
766   case ISD::SHL: {
767     // If we are only demanding sign bits then we can use the shift source
768     // directly.
769     if (const APInt *MaxSA =
770             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
771       SDValue Op0 = Op.getOperand(0);
772       unsigned ShAmt = MaxSA->getZExtValue();
773       unsigned NumSignBits =
774           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
775       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
776       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
777         return Op0;
778     }
779     break;
780   }
781   case ISD::SETCC: {
782     SDValue Op0 = Op.getOperand(0);
783     SDValue Op1 = Op.getOperand(1);
784     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
785     // If (1) we only need the sign-bit, (2) the setcc operands are the same
786     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
787     // -1, we may be able to bypass the setcc.
788     if (DemandedBits.isSignMask() &&
789         Op0.getScalarValueSizeInBits() == BitWidth &&
790         getBooleanContents(Op0.getValueType()) ==
791             BooleanContent::ZeroOrNegativeOneBooleanContent) {
792       // If we're testing X < 0, then this compare isn't needed - just use X!
793       // FIXME: We're limiting to integer types here, but this should also work
794       // if we don't care about FP signed-zero. The use of SETLT with FP means
795       // that we don't care about NaNs.
796       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
797           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
798         return Op0;
799     }
800     break;
801   }
802   case ISD::SIGN_EXTEND_INREG: {
803     // If none of the extended bits are demanded, eliminate the sextinreg.
804     SDValue Op0 = Op.getOperand(0);
805     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
806     unsigned ExBits = ExVT.getScalarSizeInBits();
807     if (DemandedBits.getActiveBits() <= ExBits)
808       return Op0;
809     // If the input is already sign extended, just drop the extension.
810     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
811     if (NumSignBits >= (BitWidth - ExBits + 1))
812       return Op0;
813     break;
814   }
815   case ISD::ANY_EXTEND_VECTOR_INREG:
816   case ISD::SIGN_EXTEND_VECTOR_INREG:
817   case ISD::ZERO_EXTEND_VECTOR_INREG: {
818     // If we only want the lowest element and none of extended bits, then we can
819     // return the bitcasted source vector.
820     SDValue Src = Op.getOperand(0);
821     EVT SrcVT = Src.getValueType();
822     EVT DstVT = Op.getValueType();
823     if (IsLE && DemandedElts == 1 &&
824         DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
825         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
826       return DAG.getBitcast(DstVT, Src);
827     }
828     break;
829   }
830   case ISD::INSERT_VECTOR_ELT: {
831     // If we don't demand the inserted element, return the base vector.
832     SDValue Vec = Op.getOperand(0);
833     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
834     EVT VecVT = Vec.getValueType();
835     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
836         !DemandedElts[CIdx->getZExtValue()])
837       return Vec;
838     break;
839   }
840   case ISD::INSERT_SUBVECTOR: {
841     SDValue Vec = Op.getOperand(0);
842     SDValue Sub = Op.getOperand(1);
843     uint64_t Idx = Op.getConstantOperandVal(2);
844     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
845     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
846     // If we don't demand the inserted subvector, return the base vector.
847     if (DemandedSubElts == 0)
848       return Vec;
849     // If this simply widens the lowest subvector, see if we can do it earlier.
850     if (Idx == 0 && Vec.isUndef()) {
851       if (SDValue NewSub = SimplifyMultipleUseDemandedBits(
852               Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1))
853         return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
854                            Op.getOperand(0), NewSub, Op.getOperand(2));
855     }
856     break;
857   }
858   case ISD::VECTOR_SHUFFLE: {
859     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
860 
861     // If all the demanded elts are from one operand and are inline,
862     // then we can use the operand directly.
863     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
864     for (unsigned i = 0; i != NumElts; ++i) {
865       int M = ShuffleMask[i];
866       if (M < 0 || !DemandedElts[i])
867         continue;
868       AllUndef = false;
869       IdentityLHS &= (M == (int)i);
870       IdentityRHS &= ((M - NumElts) == i);
871     }
872 
873     if (AllUndef)
874       return DAG.getUNDEF(Op.getValueType());
875     if (IdentityLHS)
876       return Op.getOperand(0);
877     if (IdentityRHS)
878       return Op.getOperand(1);
879     break;
880   }
881   default:
882     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
883       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
884               Op, DemandedBits, DemandedElts, DAG, Depth))
885         return V;
886     break;
887   }
888   return SDValue();
889 }
890 
891 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
892     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
893     unsigned Depth) const {
894   EVT VT = Op.getValueType();
895   APInt DemandedElts = VT.isVector()
896                            ? APInt::getAllOnes(VT.getVectorNumElements())
897                            : APInt(1, 1);
898   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
899                                          Depth);
900 }
901 
902 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
903     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
904     unsigned Depth) const {
905   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
906   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
907                                          Depth);
908 }
909 
910 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1).
911 //      or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1).
912 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG,
913                                  const TargetLowering &TLI,
914                                  const APInt &DemandedBits,
915                                  const APInt &DemandedElts,
916                                  unsigned Depth) {
917   assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) &&
918          "SRL or SRA node is required here!");
919   // Is the right shift using an immediate value of 1?
920   ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
921   if (!N1C || !N1C->isOne())
922     return SDValue();
923 
924   // We are looking for an avgfloor
925   // add(ext, ext)
926   // or one of these as a avgceil
927   // add(add(ext, ext), 1)
928   // add(add(ext, 1), ext)
929   // add(ext, add(ext, 1))
930   SDValue Add = Op.getOperand(0);
931   if (Add.getOpcode() != ISD::ADD)
932     return SDValue();
933 
934   SDValue ExtOpA = Add.getOperand(0);
935   SDValue ExtOpB = Add.getOperand(1);
936   auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) {
937     ConstantSDNode *ConstOp;
938     if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) &&
939         ConstOp->isOne()) {
940       ExtOpA = Op2;
941       ExtOpB = Op3;
942       return true;
943     }
944     if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) &&
945         ConstOp->isOne()) {
946       ExtOpA = Op1;
947       ExtOpB = Op3;
948       return true;
949     }
950     if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) &&
951         ConstOp->isOne()) {
952       ExtOpA = Op1;
953       ExtOpB = Op2;
954       return true;
955     }
956     return false;
957   };
958   bool IsCeil =
959       (ExtOpA.getOpcode() == ISD::ADD &&
960        MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) ||
961       (ExtOpB.getOpcode() == ISD::ADD &&
962        MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA));
963 
964   // If the shift is signed (sra):
965   //  - Needs >= 2 sign bit for both operands.
966   //  - Needs >= 2 zero bits.
967   // If the shift is unsigned (srl):
968   //  - Needs >= 1 zero bit for both operands.
969   //  - Needs 1 demanded bit zero and >= 2 sign bits.
970   unsigned ShiftOpc = Op.getOpcode();
971   bool IsSigned = false;
972   unsigned KnownBits;
973   unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth);
974   unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth);
975   unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
976   unsigned NumZeroA =
977       DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros();
978   unsigned NumZeroB =
979       DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros();
980   unsigned NumZero = std::min(NumZeroA, NumZeroB);
981 
982   switch (ShiftOpc) {
983   default:
984     llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG");
985   case ISD::SRA: {
986     if (NumZero >= 2 && NumSigned < NumZero) {
987       IsSigned = false;
988       KnownBits = NumZero;
989       break;
990     }
991     if (NumSigned >= 1) {
992       IsSigned = true;
993       KnownBits = NumSigned;
994       break;
995     }
996     return SDValue();
997   }
998   case ISD::SRL: {
999     if (NumZero >= 1 && NumSigned < NumZero) {
1000       IsSigned = false;
1001       KnownBits = NumZero;
1002       break;
1003     }
1004     if (NumSigned >= 1 && DemandedBits.isSignBitClear()) {
1005       IsSigned = true;
1006       KnownBits = NumSigned;
1007       break;
1008     }
1009     return SDValue();
1010   }
1011   }
1012 
1013   unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU)
1014                            : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU);
1015 
1016   // Find the smallest power-2 type that is legal for this vector size and
1017   // operation, given the original type size and the number of known sign/zero
1018   // bits.
1019   EVT VT = Op.getValueType();
1020   unsigned MinWidth =
1021       std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8);
1022   EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth));
1023   if (VT.isVector())
1024     NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
1025   if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT))
1026     return SDValue();
1027 
1028   SDLoc DL(Op);
1029   SDValue ResultAVG =
1030       DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA),
1031                   DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB));
1032   return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT,
1033                      ResultAVG);
1034 }
1035 
1036 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
1037 /// result of Op are ever used downstream. If we can use this information to
1038 /// simplify Op, create a new simplified DAG node and return true, returning the
1039 /// original and new nodes in Old and New. Otherwise, analyze the expression and
1040 /// return a mask of Known bits for the expression (used to simplify the
1041 /// caller).  The Known bits may only be accurate for those bits in the
1042 /// OriginalDemandedBits and OriginalDemandedElts.
1043 bool TargetLowering::SimplifyDemandedBits(
1044     SDValue Op, const APInt &OriginalDemandedBits,
1045     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
1046     unsigned Depth, bool AssumeSingleUse) const {
1047   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
1048   assert(Op.getScalarValueSizeInBits() == BitWidth &&
1049          "Mask size mismatches value type size!");
1050 
1051   // Don't know anything.
1052   Known = KnownBits(BitWidth);
1053 
1054   // TODO: We can probably do more work on calculating the known bits and
1055   // simplifying the operations for scalable vectors, but for now we just
1056   // bail out.
1057   if (Op.getValueType().isScalableVector())
1058     return false;
1059 
1060   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
1061   unsigned NumElts = OriginalDemandedElts.getBitWidth();
1062   assert((!Op.getValueType().isVector() ||
1063           NumElts == Op.getValueType().getVectorNumElements()) &&
1064          "Unexpected vector size");
1065 
1066   APInt DemandedBits = OriginalDemandedBits;
1067   APInt DemandedElts = OriginalDemandedElts;
1068   SDLoc dl(Op);
1069   auto &DL = TLO.DAG.getDataLayout();
1070 
1071   // Undef operand.
1072   if (Op.isUndef())
1073     return false;
1074 
1075   if (Op.getOpcode() == ISD::Constant) {
1076     // We know all of the bits for a constant!
1077     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
1078     return false;
1079   }
1080 
1081   if (Op.getOpcode() == ISD::ConstantFP) {
1082     // We know all of the bits for a floating point constant!
1083     Known = KnownBits::makeConstant(
1084         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
1085     return false;
1086   }
1087 
1088   // Other users may use these bits.
1089   EVT VT = Op.getValueType();
1090   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
1091     if (Depth != 0) {
1092       // If not at the root, Just compute the Known bits to
1093       // simplify things downstream.
1094       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1095       return false;
1096     }
1097     // If this is the root being simplified, allow it to have multiple uses,
1098     // just set the DemandedBits/Elts to all bits.
1099     DemandedBits = APInt::getAllOnes(BitWidth);
1100     DemandedElts = APInt::getAllOnes(NumElts);
1101   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
1102     // Not demanding any bits/elts from Op.
1103     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1104   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
1105     // Limit search depth.
1106     return false;
1107   }
1108 
1109   KnownBits Known2;
1110   switch (Op.getOpcode()) {
1111   case ISD::TargetConstant:
1112     llvm_unreachable("Can't simplify this node");
1113   case ISD::SCALAR_TO_VECTOR: {
1114     if (!DemandedElts[0])
1115       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1116 
1117     KnownBits SrcKnown;
1118     SDValue Src = Op.getOperand(0);
1119     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
1120     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
1121     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
1122       return true;
1123 
1124     // Upper elements are undef, so only get the knownbits if we just demand
1125     // the bottom element.
1126     if (DemandedElts == 1)
1127       Known = SrcKnown.anyextOrTrunc(BitWidth);
1128     break;
1129   }
1130   case ISD::BUILD_VECTOR:
1131     // Collect the known bits that are shared by every demanded element.
1132     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
1133     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1134     return false; // Don't fall through, will infinitely loop.
1135   case ISD::LOAD: {
1136     auto *LD = cast<LoadSDNode>(Op);
1137     if (getTargetConstantFromLoad(LD)) {
1138       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1139       return false; // Don't fall through, will infinitely loop.
1140     }
1141     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
1142       // If this is a ZEXTLoad and we are looking at the loaded value.
1143       EVT MemVT = LD->getMemoryVT();
1144       unsigned MemBits = MemVT.getScalarSizeInBits();
1145       Known.Zero.setBitsFrom(MemBits);
1146       return false; // Don't fall through, will infinitely loop.
1147     }
1148     break;
1149   }
1150   case ISD::INSERT_VECTOR_ELT: {
1151     SDValue Vec = Op.getOperand(0);
1152     SDValue Scl = Op.getOperand(1);
1153     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1154     EVT VecVT = Vec.getValueType();
1155 
1156     // If index isn't constant, assume we need all vector elements AND the
1157     // inserted element.
1158     APInt DemandedVecElts(DemandedElts);
1159     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1160       unsigned Idx = CIdx->getZExtValue();
1161       DemandedVecElts.clearBit(Idx);
1162 
1163       // Inserted element is not required.
1164       if (!DemandedElts[Idx])
1165         return TLO.CombineTo(Op, Vec);
1166     }
1167 
1168     KnownBits KnownScl;
1169     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1170     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1171     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1172       return true;
1173 
1174     Known = KnownScl.anyextOrTrunc(BitWidth);
1175 
1176     KnownBits KnownVec;
1177     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1178                              Depth + 1))
1179       return true;
1180 
1181     if (!!DemandedVecElts)
1182       Known = KnownBits::commonBits(Known, KnownVec);
1183 
1184     return false;
1185   }
1186   case ISD::INSERT_SUBVECTOR: {
1187     // Demand any elements from the subvector and the remainder from the src its
1188     // inserted into.
1189     SDValue Src = Op.getOperand(0);
1190     SDValue Sub = Op.getOperand(1);
1191     uint64_t Idx = Op.getConstantOperandVal(2);
1192     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1193     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1194     APInt DemandedSrcElts = DemandedElts;
1195     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1196 
1197     KnownBits KnownSub, KnownSrc;
1198     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1199                              Depth + 1))
1200       return true;
1201     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1202                              Depth + 1))
1203       return true;
1204 
1205     Known.Zero.setAllBits();
1206     Known.One.setAllBits();
1207     if (!!DemandedSubElts)
1208       Known = KnownBits::commonBits(Known, KnownSub);
1209     if (!!DemandedSrcElts)
1210       Known = KnownBits::commonBits(Known, KnownSrc);
1211 
1212     // Attempt to avoid multi-use src if we don't need anything from it.
1213     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1214         !DemandedSrcElts.isAllOnes()) {
1215       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1216           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1217       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1218           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1219       if (NewSub || NewSrc) {
1220         NewSub = NewSub ? NewSub : Sub;
1221         NewSrc = NewSrc ? NewSrc : Src;
1222         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1223                                         Op.getOperand(2));
1224         return TLO.CombineTo(Op, NewOp);
1225       }
1226     }
1227     break;
1228   }
1229   case ISD::EXTRACT_SUBVECTOR: {
1230     // Offset the demanded elts by the subvector index.
1231     SDValue Src = Op.getOperand(0);
1232     if (Src.getValueType().isScalableVector())
1233       break;
1234     uint64_t Idx = Op.getConstantOperandVal(1);
1235     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1236     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1237 
1238     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1239                              Depth + 1))
1240       return true;
1241 
1242     // Attempt to avoid multi-use src if we don't need anything from it.
1243     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1244       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1245           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1246       if (DemandedSrc) {
1247         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1248                                         Op.getOperand(1));
1249         return TLO.CombineTo(Op, NewOp);
1250       }
1251     }
1252     break;
1253   }
1254   case ISD::CONCAT_VECTORS: {
1255     Known.Zero.setAllBits();
1256     Known.One.setAllBits();
1257     EVT SubVT = Op.getOperand(0).getValueType();
1258     unsigned NumSubVecs = Op.getNumOperands();
1259     unsigned NumSubElts = SubVT.getVectorNumElements();
1260     for (unsigned i = 0; i != NumSubVecs; ++i) {
1261       APInt DemandedSubElts =
1262           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1263       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1264                                Known2, TLO, Depth + 1))
1265         return true;
1266       // Known bits are shared by every demanded subvector element.
1267       if (!!DemandedSubElts)
1268         Known = KnownBits::commonBits(Known, Known2);
1269     }
1270     break;
1271   }
1272   case ISD::VECTOR_SHUFFLE: {
1273     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1274 
1275     // Collect demanded elements from shuffle operands..
1276     APInt DemandedLHS(NumElts, 0);
1277     APInt DemandedRHS(NumElts, 0);
1278     for (unsigned i = 0; i != NumElts; ++i) {
1279       if (!DemandedElts[i])
1280         continue;
1281       int M = ShuffleMask[i];
1282       if (M < 0) {
1283         // For UNDEF elements, we don't know anything about the common state of
1284         // the shuffle result.
1285         DemandedLHS.clearAllBits();
1286         DemandedRHS.clearAllBits();
1287         break;
1288       }
1289       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1290       if (M < (int)NumElts)
1291         DemandedLHS.setBit(M);
1292       else
1293         DemandedRHS.setBit(M - NumElts);
1294     }
1295 
1296     if (!!DemandedLHS || !!DemandedRHS) {
1297       SDValue Op0 = Op.getOperand(0);
1298       SDValue Op1 = Op.getOperand(1);
1299 
1300       Known.Zero.setAllBits();
1301       Known.One.setAllBits();
1302       if (!!DemandedLHS) {
1303         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1304                                  Depth + 1))
1305           return true;
1306         Known = KnownBits::commonBits(Known, Known2);
1307       }
1308       if (!!DemandedRHS) {
1309         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1310                                  Depth + 1))
1311           return true;
1312         Known = KnownBits::commonBits(Known, Known2);
1313       }
1314 
1315       // Attempt to avoid multi-use ops if we don't need anything from them.
1316       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1317           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1318       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1319           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1320       if (DemandedOp0 || DemandedOp1) {
1321         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1322         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1323         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1324         return TLO.CombineTo(Op, NewOp);
1325       }
1326     }
1327     break;
1328   }
1329   case ISD::AND: {
1330     SDValue Op0 = Op.getOperand(0);
1331     SDValue Op1 = Op.getOperand(1);
1332 
1333     // If the RHS is a constant, check to see if the LHS would be zero without
1334     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1335     // simplify the LHS, here we're using information from the LHS to simplify
1336     // the RHS.
1337     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1338       // Do not increment Depth here; that can cause an infinite loop.
1339       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1340       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1341       if ((LHSKnown.Zero & DemandedBits) ==
1342           (~RHSC->getAPIntValue() & DemandedBits))
1343         return TLO.CombineTo(Op, Op0);
1344 
1345       // If any of the set bits in the RHS are known zero on the LHS, shrink
1346       // the constant.
1347       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1348                                  DemandedElts, TLO))
1349         return true;
1350 
1351       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1352       // constant, but if this 'and' is only clearing bits that were just set by
1353       // the xor, then this 'and' can be eliminated by shrinking the mask of
1354       // the xor. For example, for a 32-bit X:
1355       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1356       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1357           LHSKnown.One == ~RHSC->getAPIntValue()) {
1358         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1359         return TLO.CombineTo(Op, Xor);
1360       }
1361     }
1362 
1363     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1364                              Depth + 1))
1365       return true;
1366     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1367     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1368                              Known2, TLO, Depth + 1))
1369       return true;
1370     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1371 
1372     // Attempt to avoid multi-use ops if we don't need anything from them.
1373     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1374       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1375           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1376       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1377           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1378       if (DemandedOp0 || DemandedOp1) {
1379         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1380         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1381         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1382         return TLO.CombineTo(Op, NewOp);
1383       }
1384     }
1385 
1386     // If all of the demanded bits are known one on one side, return the other.
1387     // These bits cannot contribute to the result of the 'and'.
1388     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1389       return TLO.CombineTo(Op, Op0);
1390     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1391       return TLO.CombineTo(Op, Op1);
1392     // If all of the demanded bits in the inputs are known zeros, return zero.
1393     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1394       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1395     // If the RHS is a constant, see if we can simplify it.
1396     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1397                                TLO))
1398       return true;
1399     // If the operation can be done in a smaller type, do so.
1400     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1401       return true;
1402 
1403     Known &= Known2;
1404     break;
1405   }
1406   case ISD::OR: {
1407     SDValue Op0 = Op.getOperand(0);
1408     SDValue Op1 = Op.getOperand(1);
1409 
1410     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1411                              Depth + 1))
1412       return true;
1413     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1414     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1415                              Known2, TLO, Depth + 1))
1416       return true;
1417     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1418 
1419     // Attempt to avoid multi-use ops if we don't need anything from them.
1420     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1421       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1422           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1423       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1424           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1425       if (DemandedOp0 || DemandedOp1) {
1426         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1427         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1428         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1429         return TLO.CombineTo(Op, NewOp);
1430       }
1431     }
1432 
1433     // If all of the demanded bits are known zero on one side, return the other.
1434     // These bits cannot contribute to the result of the 'or'.
1435     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1436       return TLO.CombineTo(Op, Op0);
1437     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1438       return TLO.CombineTo(Op, Op1);
1439     // If the RHS is a constant, see if we can simplify it.
1440     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1441       return true;
1442     // If the operation can be done in a smaller type, do so.
1443     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1444       return true;
1445 
1446     Known |= Known2;
1447     break;
1448   }
1449   case ISD::XOR: {
1450     SDValue Op0 = Op.getOperand(0);
1451     SDValue Op1 = Op.getOperand(1);
1452 
1453     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1454                              Depth + 1))
1455       return true;
1456     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1457     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1458                              Depth + 1))
1459       return true;
1460     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1461 
1462     // Attempt to avoid multi-use ops if we don't need anything from them.
1463     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1464       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1465           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1466       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1467           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1468       if (DemandedOp0 || DemandedOp1) {
1469         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1470         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1471         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1472         return TLO.CombineTo(Op, NewOp);
1473       }
1474     }
1475 
1476     // If all of the demanded bits are known zero on one side, return the other.
1477     // These bits cannot contribute to the result of the 'xor'.
1478     if (DemandedBits.isSubsetOf(Known.Zero))
1479       return TLO.CombineTo(Op, Op0);
1480     if (DemandedBits.isSubsetOf(Known2.Zero))
1481       return TLO.CombineTo(Op, Op1);
1482     // If the operation can be done in a smaller type, do so.
1483     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1484       return true;
1485 
1486     // If all of the unknown bits are known to be zero on one side or the other
1487     // turn this into an *inclusive* or.
1488     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1489     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1490       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1491 
1492     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1493     if (C) {
1494       // If one side is a constant, and all of the set bits in the constant are
1495       // also known set on the other side, turn this into an AND, as we know
1496       // the bits will be cleared.
1497       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1498       // NB: it is okay if more bits are known than are requested
1499       if (C->getAPIntValue() == Known2.One) {
1500         SDValue ANDC =
1501             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1502         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1503       }
1504 
1505       // If the RHS is a constant, see if we can change it. Don't alter a -1
1506       // constant because that's a 'not' op, and that is better for combining
1507       // and codegen.
1508       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1509         // We're flipping all demanded bits. Flip the undemanded bits too.
1510         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1511         return TLO.CombineTo(Op, New);
1512       }
1513     }
1514 
1515     // If we can't turn this into a 'not', try to shrink the constant.
1516     if (!C || !C->isAllOnes())
1517       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1518         return true;
1519 
1520     Known ^= Known2;
1521     break;
1522   }
1523   case ISD::SELECT:
1524     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1525                              Depth + 1))
1526       return true;
1527     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1528                              Depth + 1))
1529       return true;
1530     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1531     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1532 
1533     // If the operands are constants, see if we can simplify them.
1534     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1535       return true;
1536 
1537     // Only known if known in both the LHS and RHS.
1538     Known = KnownBits::commonBits(Known, Known2);
1539     break;
1540   case ISD::SELECT_CC:
1541     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1542                              Depth + 1))
1543       return true;
1544     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1545                              Depth + 1))
1546       return true;
1547     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1548     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1549 
1550     // If the operands are constants, see if we can simplify them.
1551     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1552       return true;
1553 
1554     // Only known if known in both the LHS and RHS.
1555     Known = KnownBits::commonBits(Known, Known2);
1556     break;
1557   case ISD::SETCC: {
1558     SDValue Op0 = Op.getOperand(0);
1559     SDValue Op1 = Op.getOperand(1);
1560     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1561     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1562     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1563     // -1, we may be able to bypass the setcc.
1564     if (DemandedBits.isSignMask() &&
1565         Op0.getScalarValueSizeInBits() == BitWidth &&
1566         getBooleanContents(Op0.getValueType()) ==
1567             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1568       // If we're testing X < 0, then this compare isn't needed - just use X!
1569       // FIXME: We're limiting to integer types here, but this should also work
1570       // if we don't care about FP signed-zero. The use of SETLT with FP means
1571       // that we don't care about NaNs.
1572       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1573           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1574         return TLO.CombineTo(Op, Op0);
1575 
1576       // TODO: Should we check for other forms of sign-bit comparisons?
1577       // Examples: X <= -1, X >= 0
1578     }
1579     if (getBooleanContents(Op0.getValueType()) ==
1580             TargetLowering::ZeroOrOneBooleanContent &&
1581         BitWidth > 1)
1582       Known.Zero.setBitsFrom(1);
1583     break;
1584   }
1585   case ISD::SHL: {
1586     SDValue Op0 = Op.getOperand(0);
1587     SDValue Op1 = Op.getOperand(1);
1588     EVT ShiftVT = Op1.getValueType();
1589 
1590     if (const APInt *SA =
1591             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1592       unsigned ShAmt = SA->getZExtValue();
1593       if (ShAmt == 0)
1594         return TLO.CombineTo(Op, Op0);
1595 
1596       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1597       // single shift.  We can do this if the bottom bits (which are shifted
1598       // out) are never demanded.
1599       // TODO - support non-uniform vector amounts.
1600       if (Op0.getOpcode() == ISD::SRL) {
1601         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1602           if (const APInt *SA2 =
1603                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1604             unsigned C1 = SA2->getZExtValue();
1605             unsigned Opc = ISD::SHL;
1606             int Diff = ShAmt - C1;
1607             if (Diff < 0) {
1608               Diff = -Diff;
1609               Opc = ISD::SRL;
1610             }
1611             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1612             return TLO.CombineTo(
1613                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1614           }
1615         }
1616       }
1617 
1618       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1619       // are not demanded. This will likely allow the anyext to be folded away.
1620       // TODO - support non-uniform vector amounts.
1621       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1622         SDValue InnerOp = Op0.getOperand(0);
1623         EVT InnerVT = InnerOp.getValueType();
1624         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1625         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1626             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1627           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1628           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1629             ShTy = InnerVT;
1630           SDValue NarrowShl =
1631               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1632                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1633           return TLO.CombineTo(
1634               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1635         }
1636 
1637         // Repeat the SHL optimization above in cases where an extension
1638         // intervenes: (shl (anyext (shr x, c1)), c2) to
1639         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1640         // aren't demanded (as above) and that the shifted upper c1 bits of
1641         // x aren't demanded.
1642         // TODO - support non-uniform vector amounts.
1643         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1644             InnerOp.hasOneUse()) {
1645           if (const APInt *SA2 =
1646                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1647             unsigned InnerShAmt = SA2->getZExtValue();
1648             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1649                 DemandedBits.getActiveBits() <=
1650                     (InnerBits - InnerShAmt + ShAmt) &&
1651                 DemandedBits.countTrailingZeros() >= ShAmt) {
1652               SDValue NewSA =
1653                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1654               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1655                                                InnerOp.getOperand(0));
1656               return TLO.CombineTo(
1657                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1658             }
1659           }
1660         }
1661       }
1662 
1663       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1664       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1665                                Depth + 1))
1666         return true;
1667       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1668       Known.Zero <<= ShAmt;
1669       Known.One <<= ShAmt;
1670       // low bits known zero.
1671       Known.Zero.setLowBits(ShAmt);
1672 
1673       // Try shrinking the operation as long as the shift amount will still be
1674       // in range.
1675       if ((ShAmt < DemandedBits.getActiveBits()) &&
1676           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1677         return true;
1678     }
1679 
1680     // If we are only demanding sign bits then we can use the shift source
1681     // directly.
1682     if (const APInt *MaxSA =
1683             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1684       unsigned ShAmt = MaxSA->getZExtValue();
1685       unsigned NumSignBits =
1686           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1687       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1688       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1689         return TLO.CombineTo(Op, Op0);
1690     }
1691     break;
1692   }
1693   case ISD::SRL: {
1694     SDValue Op0 = Op.getOperand(0);
1695     SDValue Op1 = Op.getOperand(1);
1696     EVT ShiftVT = Op1.getValueType();
1697 
1698     // Try to match AVG patterns.
1699     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1700                                         DemandedElts, Depth + 1))
1701       return TLO.CombineTo(Op, AVG);
1702 
1703     if (const APInt *SA =
1704             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1705       unsigned ShAmt = SA->getZExtValue();
1706       if (ShAmt == 0)
1707         return TLO.CombineTo(Op, Op0);
1708 
1709       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1710       // single shift.  We can do this if the top bits (which are shifted out)
1711       // are never demanded.
1712       // TODO - support non-uniform vector amounts.
1713       if (Op0.getOpcode() == ISD::SHL) {
1714         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1715           if (const APInt *SA2 =
1716                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1717             unsigned C1 = SA2->getZExtValue();
1718             unsigned Opc = ISD::SRL;
1719             int Diff = ShAmt - C1;
1720             if (Diff < 0) {
1721               Diff = -Diff;
1722               Opc = ISD::SHL;
1723             }
1724             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1725             return TLO.CombineTo(
1726                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1727           }
1728         }
1729       }
1730 
1731       APInt InDemandedMask = (DemandedBits << ShAmt);
1732 
1733       // If the shift is exact, then it does demand the low bits (and knows that
1734       // they are zero).
1735       if (Op->getFlags().hasExact())
1736         InDemandedMask.setLowBits(ShAmt);
1737 
1738       // Compute the new bits that are at the top now.
1739       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1740                                Depth + 1))
1741         return true;
1742       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1743       Known.Zero.lshrInPlace(ShAmt);
1744       Known.One.lshrInPlace(ShAmt);
1745       // High bits known zero.
1746       Known.Zero.setHighBits(ShAmt);
1747     }
1748     break;
1749   }
1750   case ISD::SRA: {
1751     SDValue Op0 = Op.getOperand(0);
1752     SDValue Op1 = Op.getOperand(1);
1753     EVT ShiftVT = Op1.getValueType();
1754 
1755     // If we only want bits that already match the signbit then we don't need
1756     // to shift.
1757     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1758     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1759         NumHiDemandedBits)
1760       return TLO.CombineTo(Op, Op0);
1761 
1762     // If this is an arithmetic shift right and only the low-bit is set, we can
1763     // always convert this into a logical shr, even if the shift amount is
1764     // variable.  The low bit of the shift cannot be an input sign bit unless
1765     // the shift amount is >= the size of the datatype, which is undefined.
1766     if (DemandedBits.isOne())
1767       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1768 
1769     // Try to match AVG patterns.
1770     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1771                                         DemandedElts, Depth + 1))
1772       return TLO.CombineTo(Op, AVG);
1773 
1774     if (const APInt *SA =
1775             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1776       unsigned ShAmt = SA->getZExtValue();
1777       if (ShAmt == 0)
1778         return TLO.CombineTo(Op, Op0);
1779 
1780       APInt InDemandedMask = (DemandedBits << ShAmt);
1781 
1782       // If the shift is exact, then it does demand the low bits (and knows that
1783       // they are zero).
1784       if (Op->getFlags().hasExact())
1785         InDemandedMask.setLowBits(ShAmt);
1786 
1787       // If any of the demanded bits are produced by the sign extension, we also
1788       // demand the input sign bit.
1789       if (DemandedBits.countLeadingZeros() < ShAmt)
1790         InDemandedMask.setSignBit();
1791 
1792       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1793                                Depth + 1))
1794         return true;
1795       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1796       Known.Zero.lshrInPlace(ShAmt);
1797       Known.One.lshrInPlace(ShAmt);
1798 
1799       // If the input sign bit is known to be zero, or if none of the top bits
1800       // are demanded, turn this into an unsigned shift right.
1801       if (Known.Zero[BitWidth - ShAmt - 1] ||
1802           DemandedBits.countLeadingZeros() >= ShAmt) {
1803         SDNodeFlags Flags;
1804         Flags.setExact(Op->getFlags().hasExact());
1805         return TLO.CombineTo(
1806             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1807       }
1808 
1809       int Log2 = DemandedBits.exactLogBase2();
1810       if (Log2 >= 0) {
1811         // The bit must come from the sign.
1812         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1813         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1814       }
1815 
1816       if (Known.One[BitWidth - ShAmt - 1])
1817         // New bits are known one.
1818         Known.One.setHighBits(ShAmt);
1819 
1820       // Attempt to avoid multi-use ops if we don't need anything from them.
1821       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1822         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1823             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1824         if (DemandedOp0) {
1825           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1826           return TLO.CombineTo(Op, NewOp);
1827         }
1828       }
1829     }
1830     break;
1831   }
1832   case ISD::FSHL:
1833   case ISD::FSHR: {
1834     SDValue Op0 = Op.getOperand(0);
1835     SDValue Op1 = Op.getOperand(1);
1836     SDValue Op2 = Op.getOperand(2);
1837     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1838 
1839     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1840       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1841 
1842       // For fshl, 0-shift returns the 1st arg.
1843       // For fshr, 0-shift returns the 2nd arg.
1844       if (Amt == 0) {
1845         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1846                                  Known, TLO, Depth + 1))
1847           return true;
1848         break;
1849       }
1850 
1851       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1852       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1853       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1854       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1855       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1856                                Depth + 1))
1857         return true;
1858       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1859                                Depth + 1))
1860         return true;
1861 
1862       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1863       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1864       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1865       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1866       Known.One |= Known2.One;
1867       Known.Zero |= Known2.Zero;
1868     }
1869 
1870     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1871     if (isPowerOf2_32(BitWidth)) {
1872       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1873       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1874                                Known2, TLO, Depth + 1))
1875         return true;
1876     }
1877     break;
1878   }
1879   case ISD::ROTL:
1880   case ISD::ROTR: {
1881     SDValue Op0 = Op.getOperand(0);
1882     SDValue Op1 = Op.getOperand(1);
1883     bool IsROTL = (Op.getOpcode() == ISD::ROTL);
1884 
1885     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1886     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1887       return TLO.CombineTo(Op, Op0);
1888 
1889     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1890       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1891       unsigned RevAmt = BitWidth - Amt;
1892 
1893       // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
1894       // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
1895       APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
1896       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1897                                Depth + 1))
1898         return true;
1899 
1900       // rot*(x, 0) --> x
1901       if (Amt == 0)
1902         return TLO.CombineTo(Op, Op0);
1903 
1904       // See if we don't demand either half of the rotated bits.
1905       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
1906           DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) {
1907         Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
1908         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
1909       }
1910       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
1911           DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) {
1912         Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
1913         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1914       }
1915     }
1916 
1917     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1918     if (isPowerOf2_32(BitWidth)) {
1919       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1920       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1921                                Depth + 1))
1922         return true;
1923     }
1924     break;
1925   }
1926   case ISD::UMIN: {
1927     // Check if one arg is always less than (or equal) to the other arg.
1928     SDValue Op0 = Op.getOperand(0);
1929     SDValue Op1 = Op.getOperand(1);
1930     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1931     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1932     Known = KnownBits::umin(Known0, Known1);
1933     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
1934       return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1);
1935     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
1936       return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1);
1937     break;
1938   }
1939   case ISD::UMAX: {
1940     // Check if one arg is always greater than (or equal) to the other arg.
1941     SDValue Op0 = Op.getOperand(0);
1942     SDValue Op1 = Op.getOperand(1);
1943     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1944     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1945     Known = KnownBits::umax(Known0, Known1);
1946     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
1947       return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1);
1948     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
1949       return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1);
1950     break;
1951   }
1952   case ISD::BITREVERSE: {
1953     SDValue Src = Op.getOperand(0);
1954     APInt DemandedSrcBits = DemandedBits.reverseBits();
1955     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1956                              Depth + 1))
1957       return true;
1958     Known.One = Known2.One.reverseBits();
1959     Known.Zero = Known2.Zero.reverseBits();
1960     break;
1961   }
1962   case ISD::BSWAP: {
1963     SDValue Src = Op.getOperand(0);
1964 
1965     // If the only bits demanded come from one byte of the bswap result,
1966     // just shift the input byte into position to eliminate the bswap.
1967     unsigned NLZ = DemandedBits.countLeadingZeros();
1968     unsigned NTZ = DemandedBits.countTrailingZeros();
1969 
1970     // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
1971     // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
1972     // have 14 leading zeros, round to 8.
1973     NLZ = alignDown(NLZ, 8);
1974     NTZ = alignDown(NTZ, 8);
1975     // If we need exactly one byte, we can do this transformation.
1976     if (BitWidth - NLZ - NTZ == 8) {
1977       // Replace this with either a left or right shift to get the byte into
1978       // the right place.
1979       unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL;
1980       if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
1981         EVT ShiftAmtTy = getShiftAmountTy(VT, DL);
1982         unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
1983         SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy);
1984         SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
1985         return TLO.CombineTo(Op, NewOp);
1986       }
1987     }
1988 
1989     APInt DemandedSrcBits = DemandedBits.byteSwap();
1990     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1991                              Depth + 1))
1992       return true;
1993     Known.One = Known2.One.byteSwap();
1994     Known.Zero = Known2.Zero.byteSwap();
1995     break;
1996   }
1997   case ISD::CTPOP: {
1998     // If only 1 bit is demanded, replace with PARITY as long as we're before
1999     // op legalization.
2000     // FIXME: Limit to scalars for now.
2001     if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
2002       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
2003                                                Op.getOperand(0)));
2004 
2005     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2006     break;
2007   }
2008   case ISD::SIGN_EXTEND_INREG: {
2009     SDValue Op0 = Op.getOperand(0);
2010     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2011     unsigned ExVTBits = ExVT.getScalarSizeInBits();
2012 
2013     // If we only care about the highest bit, don't bother shifting right.
2014     if (DemandedBits.isSignMask()) {
2015       unsigned MinSignedBits =
2016           TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
2017       bool AlreadySignExtended = ExVTBits >= MinSignedBits;
2018       // However if the input is already sign extended we expect the sign
2019       // extension to be dropped altogether later and do not simplify.
2020       if (!AlreadySignExtended) {
2021         // Compute the correct shift amount type, which must be getShiftAmountTy
2022         // for scalar types after legalization.
2023         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl,
2024                                                getShiftAmountTy(VT, DL));
2025         return TLO.CombineTo(Op,
2026                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
2027       }
2028     }
2029 
2030     // If none of the extended bits are demanded, eliminate the sextinreg.
2031     if (DemandedBits.getActiveBits() <= ExVTBits)
2032       return TLO.CombineTo(Op, Op0);
2033 
2034     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
2035 
2036     // Since the sign extended bits are demanded, we know that the sign
2037     // bit is demanded.
2038     InputDemandedBits.setBit(ExVTBits - 1);
2039 
2040     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
2041       return true;
2042     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2043 
2044     // If the sign bit of the input is known set or clear, then we know the
2045     // top bits of the result.
2046 
2047     // If the input sign bit is known zero, convert this into a zero extension.
2048     if (Known.Zero[ExVTBits - 1])
2049       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
2050 
2051     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
2052     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
2053       Known.One.setBitsFrom(ExVTBits);
2054       Known.Zero &= Mask;
2055     } else { // Input sign bit unknown
2056       Known.Zero &= Mask;
2057       Known.One &= Mask;
2058     }
2059     break;
2060   }
2061   case ISD::BUILD_PAIR: {
2062     EVT HalfVT = Op.getOperand(0).getValueType();
2063     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
2064 
2065     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
2066     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
2067 
2068     KnownBits KnownLo, KnownHi;
2069 
2070     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
2071       return true;
2072 
2073     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
2074       return true;
2075 
2076     Known.Zero = KnownLo.Zero.zext(BitWidth) |
2077                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
2078 
2079     Known.One = KnownLo.One.zext(BitWidth) |
2080                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
2081     break;
2082   }
2083   case ISD::ZERO_EXTEND:
2084   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2085     SDValue Src = Op.getOperand(0);
2086     EVT SrcVT = Src.getValueType();
2087     unsigned InBits = SrcVT.getScalarSizeInBits();
2088     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2089     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
2090 
2091     // If none of the top bits are demanded, convert this into an any_extend.
2092     if (DemandedBits.getActiveBits() <= InBits) {
2093       // If we only need the non-extended bits of the bottom element
2094       // then we can just bitcast to the result.
2095       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2096           VT.getSizeInBits() == SrcVT.getSizeInBits())
2097         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2098 
2099       unsigned Opc =
2100           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2101       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2102         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2103     }
2104 
2105     APInt InDemandedBits = DemandedBits.trunc(InBits);
2106     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
2107     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2108                              Depth + 1))
2109       return true;
2110     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2111     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2112     Known = Known.zext(BitWidth);
2113 
2114     // Attempt to avoid multi-use ops if we don't need anything from them.
2115     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2116             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2117       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2118     break;
2119   }
2120   case ISD::SIGN_EXTEND:
2121   case ISD::SIGN_EXTEND_VECTOR_INREG: {
2122     SDValue Src = Op.getOperand(0);
2123     EVT SrcVT = Src.getValueType();
2124     unsigned InBits = SrcVT.getScalarSizeInBits();
2125     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2126     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
2127 
2128     // If none of the top bits are demanded, convert this into an any_extend.
2129     if (DemandedBits.getActiveBits() <= InBits) {
2130       // If we only need the non-extended bits of the bottom element
2131       // then we can just bitcast to the result.
2132       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2133           VT.getSizeInBits() == SrcVT.getSizeInBits())
2134         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2135 
2136       unsigned Opc =
2137           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2138       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2139         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2140     }
2141 
2142     APInt InDemandedBits = DemandedBits.trunc(InBits);
2143     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
2144 
2145     // Since some of the sign extended bits are demanded, we know that the sign
2146     // bit is demanded.
2147     InDemandedBits.setBit(InBits - 1);
2148 
2149     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2150                              Depth + 1))
2151       return true;
2152     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2153     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2154 
2155     // If the sign bit is known one, the top bits match.
2156     Known = Known.sext(BitWidth);
2157 
2158     // If the sign bit is known zero, convert this to a zero extend.
2159     if (Known.isNonNegative()) {
2160       unsigned Opc =
2161           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
2162       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2163         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2164     }
2165 
2166     // Attempt to avoid multi-use ops if we don't need anything from them.
2167     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2168             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2169       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2170     break;
2171   }
2172   case ISD::ANY_EXTEND:
2173   case ISD::ANY_EXTEND_VECTOR_INREG: {
2174     SDValue Src = Op.getOperand(0);
2175     EVT SrcVT = Src.getValueType();
2176     unsigned InBits = SrcVT.getScalarSizeInBits();
2177     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2178     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2179 
2180     // If we only need the bottom element then we can just bitcast.
2181     // TODO: Handle ANY_EXTEND?
2182     if (IsLE && IsVecInReg && DemandedElts == 1 &&
2183         VT.getSizeInBits() == SrcVT.getSizeInBits())
2184       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2185 
2186     APInt InDemandedBits = DemandedBits.trunc(InBits);
2187     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
2188     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2189                              Depth + 1))
2190       return true;
2191     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2192     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2193     Known = Known.anyext(BitWidth);
2194 
2195     // Attempt to avoid multi-use ops if we don't need anything from them.
2196     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2197             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2198       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2199     break;
2200   }
2201   case ISD::TRUNCATE: {
2202     SDValue Src = Op.getOperand(0);
2203 
2204     // Simplify the input, using demanded bit information, and compute the known
2205     // zero/one bits live out.
2206     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2207     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2208     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2209                              Depth + 1))
2210       return true;
2211     Known = Known.trunc(BitWidth);
2212 
2213     // Attempt to avoid multi-use ops if we don't need anything from them.
2214     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2215             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2216       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2217 
2218     // If the input is only used by this truncate, see if we can shrink it based
2219     // on the known demanded bits.
2220     if (Src.getNode()->hasOneUse()) {
2221       switch (Src.getOpcode()) {
2222       default:
2223         break;
2224       case ISD::SRL:
2225         // Shrink SRL by a constant if none of the high bits shifted in are
2226         // demanded.
2227         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2228           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2229           // undesirable.
2230           break;
2231 
2232         const APInt *ShAmtC =
2233             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2234         if (!ShAmtC || ShAmtC->uge(BitWidth))
2235           break;
2236         uint64_t ShVal = ShAmtC->getZExtValue();
2237 
2238         APInt HighBits =
2239             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2240         HighBits.lshrInPlace(ShVal);
2241         HighBits = HighBits.trunc(BitWidth);
2242 
2243         if (!(HighBits & DemandedBits)) {
2244           // None of the shifted in bits are needed.  Add a truncate of the
2245           // shift input, then shift it.
2246           SDValue NewShAmt = TLO.DAG.getConstant(
2247               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2248           SDValue NewTrunc =
2249               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2250           return TLO.CombineTo(
2251               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2252         }
2253         break;
2254       }
2255     }
2256 
2257     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2258     break;
2259   }
2260   case ISD::AssertZext: {
2261     // AssertZext demands all of the high bits, plus any of the low bits
2262     // demanded by its users.
2263     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2264     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2265     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2266                              TLO, Depth + 1))
2267       return true;
2268     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2269 
2270     Known.Zero |= ~InMask;
2271     break;
2272   }
2273   case ISD::EXTRACT_VECTOR_ELT: {
2274     SDValue Src = Op.getOperand(0);
2275     SDValue Idx = Op.getOperand(1);
2276     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2277     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2278 
2279     if (SrcEltCnt.isScalable())
2280       return false;
2281 
2282     // Demand the bits from every vector element without a constant index.
2283     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2284     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2285     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2286       if (CIdx->getAPIntValue().ult(NumSrcElts))
2287         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2288 
2289     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2290     // anything about the extended bits.
2291     APInt DemandedSrcBits = DemandedBits;
2292     if (BitWidth > EltBitWidth)
2293       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2294 
2295     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2296                              Depth + 1))
2297       return true;
2298 
2299     // Attempt to avoid multi-use ops if we don't need anything from them.
2300     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2301       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2302               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2303         SDValue NewOp =
2304             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2305         return TLO.CombineTo(Op, NewOp);
2306       }
2307     }
2308 
2309     Known = Known2;
2310     if (BitWidth > EltBitWidth)
2311       Known = Known.anyext(BitWidth);
2312     break;
2313   }
2314   case ISD::BITCAST: {
2315     SDValue Src = Op.getOperand(0);
2316     EVT SrcVT = Src.getValueType();
2317     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2318 
2319     // If this is an FP->Int bitcast and if the sign bit is the only
2320     // thing demanded, turn this into a FGETSIGN.
2321     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2322         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2323         SrcVT.isFloatingPoint()) {
2324       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2325       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2326       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2327           SrcVT != MVT::f128) {
2328         // Cannot eliminate/lower SHL for f128 yet.
2329         EVT Ty = OpVTLegal ? VT : MVT::i32;
2330         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2331         // place.  We expect the SHL to be eliminated by other optimizations.
2332         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2333         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2334         if (!OpVTLegal && OpVTSizeInBits > 32)
2335           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2336         unsigned ShVal = Op.getValueSizeInBits() - 1;
2337         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2338         return TLO.CombineTo(Op,
2339                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2340       }
2341     }
2342 
2343     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2344     // Demand the elt/bit if any of the original elts/bits are demanded.
2345     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2346       unsigned Scale = BitWidth / NumSrcEltBits;
2347       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2348       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2349       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2350       for (unsigned i = 0; i != Scale; ++i) {
2351         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2352         unsigned BitOffset = EltOffset * NumSrcEltBits;
2353         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2354         if (!Sub.isZero()) {
2355           DemandedSrcBits |= Sub;
2356           for (unsigned j = 0; j != NumElts; ++j)
2357             if (DemandedElts[j])
2358               DemandedSrcElts.setBit((j * Scale) + i);
2359         }
2360       }
2361 
2362       APInt KnownSrcUndef, KnownSrcZero;
2363       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2364                                      KnownSrcZero, TLO, Depth + 1))
2365         return true;
2366 
2367       KnownBits KnownSrcBits;
2368       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2369                                KnownSrcBits, TLO, Depth + 1))
2370         return true;
2371     } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2372       // TODO - bigendian once we have test coverage.
2373       unsigned Scale = NumSrcEltBits / BitWidth;
2374       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2375       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2376       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2377       for (unsigned i = 0; i != NumElts; ++i)
2378         if (DemandedElts[i]) {
2379           unsigned Offset = (i % Scale) * BitWidth;
2380           DemandedSrcBits.insertBits(DemandedBits, Offset);
2381           DemandedSrcElts.setBit(i / Scale);
2382         }
2383 
2384       if (SrcVT.isVector()) {
2385         APInt KnownSrcUndef, KnownSrcZero;
2386         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2387                                        KnownSrcZero, TLO, Depth + 1))
2388           return true;
2389       }
2390 
2391       KnownBits KnownSrcBits;
2392       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2393                                KnownSrcBits, TLO, Depth + 1))
2394         return true;
2395     }
2396 
2397     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2398     // recursive call where Known may be useful to the caller.
2399     if (Depth > 0) {
2400       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2401       return false;
2402     }
2403     break;
2404   }
2405   case ISD::MUL:
2406     if (DemandedBits.isPowerOf2()) {
2407       // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
2408       // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
2409       // odd (has LSB set), then the left-shifted low bit of X is the answer.
2410       unsigned CTZ = DemandedBits.countTrailingZeros();
2411       ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
2412       if (C && C->getAPIntValue().countTrailingZeros() == CTZ) {
2413         EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2414         SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy);
2415         SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC);
2416         return TLO.CombineTo(Op, Shl);
2417       }
2418     }
2419     // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
2420     // X * X is odd iff X is odd.
2421     // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
2422     if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) {
2423       SDValue One = TLO.DAG.getConstant(1, dl, VT);
2424       SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One);
2425       return TLO.CombineTo(Op, And1);
2426     }
2427     LLVM_FALLTHROUGH;
2428   case ISD::ADD:
2429   case ISD::SUB: {
2430     // Add, Sub, and Mul don't demand any bits in positions beyond that
2431     // of the highest bit demanded of them.
2432     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2433     SDNodeFlags Flags = Op.getNode()->getFlags();
2434     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2435     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2436     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2437                              Depth + 1) ||
2438         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2439                              Depth + 1) ||
2440         // See if the operation should be performed at a smaller bit width.
2441         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2442       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2443         // Disable the nsw and nuw flags. We can no longer guarantee that we
2444         // won't wrap after simplification.
2445         Flags.setNoSignedWrap(false);
2446         Flags.setNoUnsignedWrap(false);
2447         SDValue NewOp =
2448             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2449         return TLO.CombineTo(Op, NewOp);
2450       }
2451       return true;
2452     }
2453 
2454     // Attempt to avoid multi-use ops if we don't need anything from them.
2455     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2456       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2457           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2458       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2459           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2460       if (DemandedOp0 || DemandedOp1) {
2461         Flags.setNoSignedWrap(false);
2462         Flags.setNoUnsignedWrap(false);
2463         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2464         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2465         SDValue NewOp =
2466             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2467         return TLO.CombineTo(Op, NewOp);
2468       }
2469     }
2470 
2471     // If we have a constant operand, we may be able to turn it into -1 if we
2472     // do not demand the high bits. This can make the constant smaller to
2473     // encode, allow more general folding, or match specialized instruction
2474     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2475     // is probably not useful (and could be detrimental).
2476     ConstantSDNode *C = isConstOrConstSplat(Op1);
2477     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2478     if (C && !C->isAllOnes() && !C->isOne() &&
2479         (C->getAPIntValue() | HighMask).isAllOnes()) {
2480       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2481       // Disable the nsw and nuw flags. We can no longer guarantee that we
2482       // won't wrap after simplification.
2483       Flags.setNoSignedWrap(false);
2484       Flags.setNoUnsignedWrap(false);
2485       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2486       return TLO.CombineTo(Op, NewOp);
2487     }
2488 
2489     // Match a multiply with a disguised negated-power-of-2 and convert to a
2490     // an equivalent shift-left amount.
2491     // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2492     auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned {
2493       if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse())
2494         return 0;
2495 
2496       // Don't touch opaque constants. Also, ignore zero and power-of-2
2497       // multiplies. Those will get folded later.
2498       ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1));
2499       if (MulC && !MulC->isOpaque() && !MulC->isZero() &&
2500           !MulC->getAPIntValue().isPowerOf2()) {
2501         APInt UnmaskedC = MulC->getAPIntValue() | HighMask;
2502         if (UnmaskedC.isNegatedPowerOf2())
2503           return (-UnmaskedC).logBase2();
2504       }
2505       return 0;
2506     };
2507 
2508     auto foldMul = [&](SDValue X, SDValue Y, unsigned ShlAmt) {
2509       EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2510       SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy);
2511       SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC);
2512       SDValue Sub = TLO.DAG.getNode(ISD::SUB, dl, VT, Y, Shl);
2513       return TLO.CombineTo(Op, Sub);
2514     };
2515 
2516     if (isOperationLegalOrCustom(ISD::SHL, VT)) {
2517       if (Op.getOpcode() == ISD::ADD) {
2518         // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2519         if (unsigned ShAmt = getShiftLeftAmt(Op0))
2520           return foldMul(Op0.getOperand(0), Op1, ShAmt);
2521         // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC))
2522         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2523           return foldMul(Op1.getOperand(0), Op0, ShAmt);
2524         // TODO:
2525         // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC))
2526       }
2527     }
2528 
2529     LLVM_FALLTHROUGH;
2530   }
2531   default:
2532     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2533       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2534                                             Known, TLO, Depth))
2535         return true;
2536       break;
2537     }
2538 
2539     // Just use computeKnownBits to compute output bits.
2540     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2541     break;
2542   }
2543 
2544   // If we know the value of all of the demanded bits, return this as a
2545   // constant.
2546   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2547     // Avoid folding to a constant if any OpaqueConstant is involved.
2548     const SDNode *N = Op.getNode();
2549     for (SDNode *Op :
2550          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2551       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2552         if (C->isOpaque())
2553           return false;
2554     }
2555     if (VT.isInteger())
2556       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2557     if (VT.isFloatingPoint())
2558       return TLO.CombineTo(
2559           Op,
2560           TLO.DAG.getConstantFP(
2561               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2562   }
2563 
2564   return false;
2565 }
2566 
2567 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2568                                                 const APInt &DemandedElts,
2569                                                 DAGCombinerInfo &DCI) const {
2570   SelectionDAG &DAG = DCI.DAG;
2571   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2572                         !DCI.isBeforeLegalizeOps());
2573 
2574   APInt KnownUndef, KnownZero;
2575   bool Simplified =
2576       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2577   if (Simplified) {
2578     DCI.AddToWorklist(Op.getNode());
2579     DCI.CommitTargetLoweringOpt(TLO);
2580   }
2581 
2582   return Simplified;
2583 }
2584 
2585 /// Given a vector binary operation and known undefined elements for each input
2586 /// operand, compute whether each element of the output is undefined.
2587 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2588                                          const APInt &UndefOp0,
2589                                          const APInt &UndefOp1) {
2590   EVT VT = BO.getValueType();
2591   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2592          "Vector binop only");
2593 
2594   EVT EltVT = VT.getVectorElementType();
2595   unsigned NumElts = VT.getVectorNumElements();
2596   assert(UndefOp0.getBitWidth() == NumElts &&
2597          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2598 
2599   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2600                                    const APInt &UndefVals) {
2601     if (UndefVals[Index])
2602       return DAG.getUNDEF(EltVT);
2603 
2604     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2605       // Try hard to make sure that the getNode() call is not creating temporary
2606       // nodes. Ignore opaque integers because they do not constant fold.
2607       SDValue Elt = BV->getOperand(Index);
2608       auto *C = dyn_cast<ConstantSDNode>(Elt);
2609       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2610         return Elt;
2611     }
2612 
2613     return SDValue();
2614   };
2615 
2616   APInt KnownUndef = APInt::getZero(NumElts);
2617   for (unsigned i = 0; i != NumElts; ++i) {
2618     // If both inputs for this element are either constant or undef and match
2619     // the element type, compute the constant/undef result for this element of
2620     // the vector.
2621     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2622     // not handle FP constants. The code within getNode() should be refactored
2623     // to avoid the danger of creating a bogus temporary node here.
2624     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2625     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2626     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2627       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2628         KnownUndef.setBit(i);
2629   }
2630   return KnownUndef;
2631 }
2632 
2633 bool TargetLowering::SimplifyDemandedVectorElts(
2634     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2635     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2636     bool AssumeSingleUse) const {
2637   EVT VT = Op.getValueType();
2638   unsigned Opcode = Op.getOpcode();
2639   APInt DemandedElts = OriginalDemandedElts;
2640   unsigned NumElts = DemandedElts.getBitWidth();
2641   assert(VT.isVector() && "Expected vector op");
2642 
2643   KnownUndef = KnownZero = APInt::getZero(NumElts);
2644 
2645   const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo();
2646   if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO))
2647     return false;
2648 
2649   // TODO: For now we assume we know nothing about scalable vectors.
2650   if (VT.isScalableVector())
2651     return false;
2652 
2653   assert(VT.getVectorNumElements() == NumElts &&
2654          "Mask size mismatches value type element count!");
2655 
2656   // Undef operand.
2657   if (Op.isUndef()) {
2658     KnownUndef.setAllBits();
2659     return false;
2660   }
2661 
2662   // If Op has other users, assume that all elements are needed.
2663   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2664     DemandedElts.setAllBits();
2665 
2666   // Not demanding any elements from Op.
2667   if (DemandedElts == 0) {
2668     KnownUndef.setAllBits();
2669     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2670   }
2671 
2672   // Limit search depth.
2673   if (Depth >= SelectionDAG::MaxRecursionDepth)
2674     return false;
2675 
2676   SDLoc DL(Op);
2677   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2678   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
2679 
2680   // Helper for demanding the specified elements and all the bits of both binary
2681   // operands.
2682   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2683     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2684                                                            TLO.DAG, Depth + 1);
2685     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2686                                                            TLO.DAG, Depth + 1);
2687     if (NewOp0 || NewOp1) {
2688       SDValue NewOp = TLO.DAG.getNode(
2689           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2690       return TLO.CombineTo(Op, NewOp);
2691     }
2692     return false;
2693   };
2694 
2695   switch (Opcode) {
2696   case ISD::SCALAR_TO_VECTOR: {
2697     if (!DemandedElts[0]) {
2698       KnownUndef.setAllBits();
2699       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2700     }
2701     SDValue ScalarSrc = Op.getOperand(0);
2702     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2703       SDValue Src = ScalarSrc.getOperand(0);
2704       SDValue Idx = ScalarSrc.getOperand(1);
2705       EVT SrcVT = Src.getValueType();
2706 
2707       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
2708 
2709       if (SrcEltCnt.isScalable())
2710         return false;
2711 
2712       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2713       if (isNullConstant(Idx)) {
2714         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
2715         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
2716         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
2717         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2718                                        TLO, Depth + 1))
2719           return true;
2720       }
2721     }
2722     KnownUndef.setHighBits(NumElts - 1);
2723     break;
2724   }
2725   case ISD::BITCAST: {
2726     SDValue Src = Op.getOperand(0);
2727     EVT SrcVT = Src.getValueType();
2728 
2729     // We only handle vectors here.
2730     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2731     if (!SrcVT.isVector())
2732       break;
2733 
2734     // Fast handling of 'identity' bitcasts.
2735     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2736     if (NumSrcElts == NumElts)
2737       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2738                                         KnownZero, TLO, Depth + 1);
2739 
2740     APInt SrcDemandedElts, SrcZero, SrcUndef;
2741 
2742     // Bitcast from 'large element' src vector to 'small element' vector, we
2743     // must demand a source element if any DemandedElt maps to it.
2744     if ((NumElts % NumSrcElts) == 0) {
2745       unsigned Scale = NumElts / NumSrcElts;
2746       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2747       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2748                                      TLO, Depth + 1))
2749         return true;
2750 
2751       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2752       // of the large element.
2753       // TODO - bigendian once we have test coverage.
2754       if (IsLE) {
2755         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2756         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
2757         for (unsigned i = 0; i != NumElts; ++i)
2758           if (DemandedElts[i]) {
2759             unsigned Ofs = (i % Scale) * EltSizeInBits;
2760             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2761           }
2762 
2763         KnownBits Known;
2764         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2765                                  TLO, Depth + 1))
2766           return true;
2767 
2768         // The bitcast has split each wide element into a number of
2769         // narrow subelements. We have just computed the Known bits
2770         // for wide elements. See if element splitting results in
2771         // some subelements being zero. Only for demanded elements!
2772         for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) {
2773           if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits)
2774                    .isAllOnes())
2775             continue;
2776           for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) {
2777             unsigned Elt = Scale * SrcElt + SubElt;
2778             if (DemandedElts[Elt])
2779               KnownZero.setBit(Elt);
2780           }
2781         }
2782       }
2783 
2784       // If the src element is zero/undef then all the output elements will be -
2785       // only demanded elements are guaranteed to be correct.
2786       for (unsigned i = 0; i != NumSrcElts; ++i) {
2787         if (SrcDemandedElts[i]) {
2788           if (SrcZero[i])
2789             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2790           if (SrcUndef[i])
2791             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2792         }
2793       }
2794     }
2795 
2796     // Bitcast from 'small element' src vector to 'large element' vector, we
2797     // demand all smaller source elements covered by the larger demanded element
2798     // of this vector.
2799     if ((NumSrcElts % NumElts) == 0) {
2800       unsigned Scale = NumSrcElts / NumElts;
2801       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2802       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2803                                      TLO, Depth + 1))
2804         return true;
2805 
2806       // If all the src elements covering an output element are zero/undef, then
2807       // the output element will be as well, assuming it was demanded.
2808       for (unsigned i = 0; i != NumElts; ++i) {
2809         if (DemandedElts[i]) {
2810           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
2811             KnownZero.setBit(i);
2812           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
2813             KnownUndef.setBit(i);
2814         }
2815       }
2816     }
2817     break;
2818   }
2819   case ISD::BUILD_VECTOR: {
2820     // Check all elements and simplify any unused elements with UNDEF.
2821     if (!DemandedElts.isAllOnes()) {
2822       // Don't simplify BROADCASTS.
2823       if (llvm::any_of(Op->op_values(),
2824                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2825         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2826         bool Updated = false;
2827         for (unsigned i = 0; i != NumElts; ++i) {
2828           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2829             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2830             KnownUndef.setBit(i);
2831             Updated = true;
2832           }
2833         }
2834         if (Updated)
2835           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2836       }
2837     }
2838     for (unsigned i = 0; i != NumElts; ++i) {
2839       SDValue SrcOp = Op.getOperand(i);
2840       if (SrcOp.isUndef()) {
2841         KnownUndef.setBit(i);
2842       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2843                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2844         KnownZero.setBit(i);
2845       }
2846     }
2847     break;
2848   }
2849   case ISD::CONCAT_VECTORS: {
2850     EVT SubVT = Op.getOperand(0).getValueType();
2851     unsigned NumSubVecs = Op.getNumOperands();
2852     unsigned NumSubElts = SubVT.getVectorNumElements();
2853     for (unsigned i = 0; i != NumSubVecs; ++i) {
2854       SDValue SubOp = Op.getOperand(i);
2855       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2856       APInt SubUndef, SubZero;
2857       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2858                                      Depth + 1))
2859         return true;
2860       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2861       KnownZero.insertBits(SubZero, i * NumSubElts);
2862     }
2863     break;
2864   }
2865   case ISD::INSERT_SUBVECTOR: {
2866     // Demand any elements from the subvector and the remainder from the src its
2867     // inserted into.
2868     SDValue Src = Op.getOperand(0);
2869     SDValue Sub = Op.getOperand(1);
2870     uint64_t Idx = Op.getConstantOperandVal(2);
2871     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2872     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2873     APInt DemandedSrcElts = DemandedElts;
2874     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2875 
2876     APInt SubUndef, SubZero;
2877     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2878                                    Depth + 1))
2879       return true;
2880 
2881     // If none of the src operand elements are demanded, replace it with undef.
2882     if (!DemandedSrcElts && !Src.isUndef())
2883       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2884                                                TLO.DAG.getUNDEF(VT), Sub,
2885                                                Op.getOperand(2)));
2886 
2887     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2888                                    TLO, Depth + 1))
2889       return true;
2890     KnownUndef.insertBits(SubUndef, Idx);
2891     KnownZero.insertBits(SubZero, Idx);
2892 
2893     // Attempt to avoid multi-use ops if we don't need anything from them.
2894     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
2895       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2896           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2897       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2898           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2899       if (NewSrc || NewSub) {
2900         NewSrc = NewSrc ? NewSrc : Src;
2901         NewSub = NewSub ? NewSub : Sub;
2902         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2903                                         NewSub, Op.getOperand(2));
2904         return TLO.CombineTo(Op, NewOp);
2905       }
2906     }
2907     break;
2908   }
2909   case ISD::EXTRACT_SUBVECTOR: {
2910     // Offset the demanded elts by the subvector index.
2911     SDValue Src = Op.getOperand(0);
2912     if (Src.getValueType().isScalableVector())
2913       break;
2914     uint64_t Idx = Op.getConstantOperandVal(1);
2915     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2916     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2917 
2918     APInt SrcUndef, SrcZero;
2919     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2920                                    Depth + 1))
2921       return true;
2922     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2923     KnownZero = SrcZero.extractBits(NumElts, Idx);
2924 
2925     // Attempt to avoid multi-use ops if we don't need anything from them.
2926     if (!DemandedElts.isAllOnes()) {
2927       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2928           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2929       if (NewSrc) {
2930         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2931                                         Op.getOperand(1));
2932         return TLO.CombineTo(Op, NewOp);
2933       }
2934     }
2935     break;
2936   }
2937   case ISD::INSERT_VECTOR_ELT: {
2938     SDValue Vec = Op.getOperand(0);
2939     SDValue Scl = Op.getOperand(1);
2940     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2941 
2942     // For a legal, constant insertion index, if we don't need this insertion
2943     // then strip it, else remove it from the demanded elts.
2944     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2945       unsigned Idx = CIdx->getZExtValue();
2946       if (!DemandedElts[Idx])
2947         return TLO.CombineTo(Op, Vec);
2948 
2949       APInt DemandedVecElts(DemandedElts);
2950       DemandedVecElts.clearBit(Idx);
2951       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2952                                      KnownZero, TLO, Depth + 1))
2953         return true;
2954 
2955       KnownUndef.setBitVal(Idx, Scl.isUndef());
2956 
2957       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
2958       break;
2959     }
2960 
2961     APInt VecUndef, VecZero;
2962     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2963                                    Depth + 1))
2964       return true;
2965     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2966     break;
2967   }
2968   case ISD::VSELECT: {
2969     // Try to transform the select condition based on the current demanded
2970     // elements.
2971     // TODO: If a condition element is undef, we can choose from one arm of the
2972     //       select (and if one arm is undef, then we can propagate that to the
2973     //       result).
2974     // TODO - add support for constant vselect masks (see IR version of this).
2975     APInt UnusedUndef, UnusedZero;
2976     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2977                                    UnusedZero, TLO, Depth + 1))
2978       return true;
2979 
2980     // See if we can simplify either vselect operand.
2981     APInt DemandedLHS(DemandedElts);
2982     APInt DemandedRHS(DemandedElts);
2983     APInt UndefLHS, ZeroLHS;
2984     APInt UndefRHS, ZeroRHS;
2985     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2986                                    ZeroLHS, TLO, Depth + 1))
2987       return true;
2988     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2989                                    ZeroRHS, TLO, Depth + 1))
2990       return true;
2991 
2992     KnownUndef = UndefLHS & UndefRHS;
2993     KnownZero = ZeroLHS & ZeroRHS;
2994     break;
2995   }
2996   case ISD::VECTOR_SHUFFLE: {
2997     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2998 
2999     // Collect demanded elements from shuffle operands..
3000     APInt DemandedLHS(NumElts, 0);
3001     APInt DemandedRHS(NumElts, 0);
3002     for (unsigned i = 0; i != NumElts; ++i) {
3003       int M = ShuffleMask[i];
3004       if (M < 0 || !DemandedElts[i])
3005         continue;
3006       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
3007       if (M < (int)NumElts)
3008         DemandedLHS.setBit(M);
3009       else
3010         DemandedRHS.setBit(M - NumElts);
3011     }
3012 
3013     // See if we can simplify either shuffle operand.
3014     APInt UndefLHS, ZeroLHS;
3015     APInt UndefRHS, ZeroRHS;
3016     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
3017                                    ZeroLHS, TLO, Depth + 1))
3018       return true;
3019     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
3020                                    ZeroRHS, TLO, Depth + 1))
3021       return true;
3022 
3023     // Simplify mask using undef elements from LHS/RHS.
3024     bool Updated = false;
3025     bool IdentityLHS = true, IdentityRHS = true;
3026     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
3027     for (unsigned i = 0; i != NumElts; ++i) {
3028       int &M = NewMask[i];
3029       if (M < 0)
3030         continue;
3031       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
3032           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
3033         Updated = true;
3034         M = -1;
3035       }
3036       IdentityLHS &= (M < 0) || (M == (int)i);
3037       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
3038     }
3039 
3040     // Update legal shuffle masks based on demanded elements if it won't reduce
3041     // to Identity which can cause premature removal of the shuffle mask.
3042     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
3043       SDValue LegalShuffle =
3044           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
3045                                   NewMask, TLO.DAG);
3046       if (LegalShuffle)
3047         return TLO.CombineTo(Op, LegalShuffle);
3048     }
3049 
3050     // Propagate undef/zero elements from LHS/RHS.
3051     for (unsigned i = 0; i != NumElts; ++i) {
3052       int M = ShuffleMask[i];
3053       if (M < 0) {
3054         KnownUndef.setBit(i);
3055       } else if (M < (int)NumElts) {
3056         if (UndefLHS[M])
3057           KnownUndef.setBit(i);
3058         if (ZeroLHS[M])
3059           KnownZero.setBit(i);
3060       } else {
3061         if (UndefRHS[M - NumElts])
3062           KnownUndef.setBit(i);
3063         if (ZeroRHS[M - NumElts])
3064           KnownZero.setBit(i);
3065       }
3066     }
3067     break;
3068   }
3069   case ISD::ANY_EXTEND_VECTOR_INREG:
3070   case ISD::SIGN_EXTEND_VECTOR_INREG:
3071   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3072     APInt SrcUndef, SrcZero;
3073     SDValue Src = Op.getOperand(0);
3074     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3075     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
3076     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3077                                    Depth + 1))
3078       return true;
3079     KnownZero = SrcZero.zextOrTrunc(NumElts);
3080     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
3081 
3082     if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
3083         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
3084         DemandedSrcElts == 1) {
3085       // aext - if we just need the bottom element then we can bitcast.
3086       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
3087     }
3088 
3089     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
3090       // zext(undef) upper bits are guaranteed to be zero.
3091       if (DemandedElts.isSubsetOf(KnownUndef))
3092         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3093       KnownUndef.clearAllBits();
3094 
3095       // zext - if we just need the bottom element then we can mask:
3096       // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
3097       if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
3098           Op->isOnlyUserOf(Src.getNode()) &&
3099           Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
3100         SDLoc DL(Op);
3101         EVT SrcVT = Src.getValueType();
3102         EVT SrcSVT = SrcVT.getScalarType();
3103         SmallVector<SDValue> MaskElts;
3104         MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
3105         MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
3106         SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
3107         if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
3108                 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
3109           Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
3110           return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
3111         }
3112       }
3113     }
3114     break;
3115   }
3116 
3117   // TODO: There are more binop opcodes that could be handled here - MIN,
3118   // MAX, saturated math, etc.
3119   case ISD::ADD: {
3120     SDValue Op0 = Op.getOperand(0);
3121     SDValue Op1 = Op.getOperand(1);
3122     if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
3123       APInt UndefLHS, ZeroLHS;
3124       if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3125                                      Depth + 1, /*AssumeSingleUse*/ true))
3126         return true;
3127     }
3128     LLVM_FALLTHROUGH;
3129   }
3130   case ISD::OR:
3131   case ISD::XOR:
3132   case ISD::SUB:
3133   case ISD::FADD:
3134   case ISD::FSUB:
3135   case ISD::FMUL:
3136   case ISD::FDIV:
3137   case ISD::FREM: {
3138     SDValue Op0 = Op.getOperand(0);
3139     SDValue Op1 = Op.getOperand(1);
3140 
3141     APInt UndefRHS, ZeroRHS;
3142     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3143                                    Depth + 1))
3144       return true;
3145     APInt UndefLHS, ZeroLHS;
3146     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3147                                    Depth + 1))
3148       return true;
3149 
3150     KnownZero = ZeroLHS & ZeroRHS;
3151     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
3152 
3153     // Attempt to avoid multi-use ops if we don't need anything from them.
3154     // TODO - use KnownUndef to relax the demandedelts?
3155     if (!DemandedElts.isAllOnes())
3156       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3157         return true;
3158     break;
3159   }
3160   case ISD::SHL:
3161   case ISD::SRL:
3162   case ISD::SRA:
3163   case ISD::ROTL:
3164   case ISD::ROTR: {
3165     SDValue Op0 = Op.getOperand(0);
3166     SDValue Op1 = Op.getOperand(1);
3167 
3168     APInt UndefRHS, ZeroRHS;
3169     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3170                                    Depth + 1))
3171       return true;
3172     APInt UndefLHS, ZeroLHS;
3173     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3174                                    Depth + 1))
3175       return true;
3176 
3177     KnownZero = ZeroLHS;
3178     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
3179 
3180     // Attempt to avoid multi-use ops if we don't need anything from them.
3181     // TODO - use KnownUndef to relax the demandedelts?
3182     if (!DemandedElts.isAllOnes())
3183       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3184         return true;
3185     break;
3186   }
3187   case ISD::MUL:
3188   case ISD::AND: {
3189     SDValue Op0 = Op.getOperand(0);
3190     SDValue Op1 = Op.getOperand(1);
3191 
3192     APInt SrcUndef, SrcZero;
3193     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
3194                                    Depth + 1))
3195       return true;
3196     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
3197                                    TLO, Depth + 1))
3198       return true;
3199 
3200     // If either side has a zero element, then the result element is zero, even
3201     // if the other is an UNDEF.
3202     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
3203     // and then handle 'and' nodes with the rest of the binop opcodes.
3204     KnownZero |= SrcZero;
3205     KnownUndef &= SrcUndef;
3206     KnownUndef &= ~KnownZero;
3207 
3208     // Attempt to avoid multi-use ops if we don't need anything from them.
3209     // TODO - use KnownUndef to relax the demandedelts?
3210     if (!DemandedElts.isAllOnes())
3211       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3212         return true;
3213     break;
3214   }
3215   case ISD::TRUNCATE:
3216   case ISD::SIGN_EXTEND:
3217   case ISD::ZERO_EXTEND:
3218     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
3219                                    KnownZero, TLO, Depth + 1))
3220       return true;
3221 
3222     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
3223       // zext(undef) upper bits are guaranteed to be zero.
3224       if (DemandedElts.isSubsetOf(KnownUndef))
3225         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3226       KnownUndef.clearAllBits();
3227     }
3228     break;
3229   default: {
3230     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
3231       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
3232                                                   KnownZero, TLO, Depth))
3233         return true;
3234     } else {
3235       KnownBits Known;
3236       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
3237       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
3238                                TLO, Depth, AssumeSingleUse))
3239         return true;
3240     }
3241     break;
3242   }
3243   }
3244   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
3245 
3246   // Constant fold all undef cases.
3247   // TODO: Handle zero cases as well.
3248   if (DemandedElts.isSubsetOf(KnownUndef))
3249     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3250 
3251   return false;
3252 }
3253 
3254 /// Determine which of the bits specified in Mask are known to be either zero or
3255 /// one and return them in the Known.
3256 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
3257                                                    KnownBits &Known,
3258                                                    const APInt &DemandedElts,
3259                                                    const SelectionDAG &DAG,
3260                                                    unsigned Depth) const {
3261   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3262           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3263           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3264           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3265          "Should use MaskedValueIsZero if you don't know whether Op"
3266          " is a target node!");
3267   Known.resetAll();
3268 }
3269 
3270 void TargetLowering::computeKnownBitsForTargetInstr(
3271     GISelKnownBits &Analysis, Register R, KnownBits &Known,
3272     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3273     unsigned Depth) const {
3274   Known.resetAll();
3275 }
3276 
3277 void TargetLowering::computeKnownBitsForFrameIndex(
3278   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3279   // The low bits are known zero if the pointer is aligned.
3280   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3281 }
3282 
3283 Align TargetLowering::computeKnownAlignForTargetInstr(
3284   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
3285   unsigned Depth) const {
3286   return Align(1);
3287 }
3288 
3289 /// This method can be implemented by targets that want to expose additional
3290 /// information about sign bits to the DAG Combiner.
3291 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
3292                                                          const APInt &,
3293                                                          const SelectionDAG &,
3294                                                          unsigned Depth) const {
3295   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3296           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3297           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3298           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3299          "Should use ComputeNumSignBits if you don't know whether Op"
3300          " is a target node!");
3301   return 1;
3302 }
3303 
3304 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3305   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3306   const MachineRegisterInfo &MRI, unsigned Depth) const {
3307   return 1;
3308 }
3309 
3310 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3311     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3312     TargetLoweringOpt &TLO, unsigned Depth) const {
3313   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3314           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3315           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3316           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3317          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3318          " is a target node!");
3319   return false;
3320 }
3321 
3322 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3323     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3324     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3325   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3326           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3327           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3328           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3329          "Should use SimplifyDemandedBits if you don't know whether Op"
3330          " is a target node!");
3331   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3332   return false;
3333 }
3334 
3335 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3336     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3337     SelectionDAG &DAG, unsigned Depth) const {
3338   assert(
3339       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3340        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3341        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3342        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3343       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3344       " is a target node!");
3345   return SDValue();
3346 }
3347 
3348 SDValue
3349 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3350                                         SDValue N1, MutableArrayRef<int> Mask,
3351                                         SelectionDAG &DAG) const {
3352   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3353   if (!LegalMask) {
3354     std::swap(N0, N1);
3355     ShuffleVectorSDNode::commuteMask(Mask);
3356     LegalMask = isShuffleMaskLegal(Mask, VT);
3357   }
3358 
3359   if (!LegalMask)
3360     return SDValue();
3361 
3362   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3363 }
3364 
3365 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3366   return nullptr;
3367 }
3368 
3369 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3370     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3371     bool PoisonOnly, unsigned Depth) const {
3372   assert(
3373       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3374        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3375        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3376        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3377       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3378       " is a target node!");
3379   return false;
3380 }
3381 
3382 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3383                                                   const SelectionDAG &DAG,
3384                                                   bool SNaN,
3385                                                   unsigned Depth) const {
3386   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3387           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3388           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3389           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3390          "Should use isKnownNeverNaN if you don't know whether Op"
3391          " is a target node!");
3392   return false;
3393 }
3394 
3395 bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
3396                                                const APInt &DemandedElts,
3397                                                APInt &UndefElts,
3398                                                unsigned Depth) const {
3399   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3400           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3401           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3402           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3403          "Should use isSplatValue if you don't know whether Op"
3404          " is a target node!");
3405   return false;
3406 }
3407 
3408 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3409 // work with truncating build vectors and vectors with elements of less than
3410 // 8 bits.
3411 bool TargetLowering::isConstTrueVal(SDValue N) const {
3412   if (!N)
3413     return false;
3414 
3415   unsigned EltWidth;
3416   APInt CVal;
3417   if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false,
3418                                                /*AllowTruncation=*/true)) {
3419     CVal = CN->getAPIntValue();
3420     EltWidth = N.getValueType().getScalarSizeInBits();
3421   } else
3422     return false;
3423 
3424   // If this is a truncating splat, truncate the splat value.
3425   // Otherwise, we may fail to match the expected values below.
3426   if (EltWidth < CVal.getBitWidth())
3427     CVal = CVal.trunc(EltWidth);
3428 
3429   switch (getBooleanContents(N.getValueType())) {
3430   case UndefinedBooleanContent:
3431     return CVal[0];
3432   case ZeroOrOneBooleanContent:
3433     return CVal.isOne();
3434   case ZeroOrNegativeOneBooleanContent:
3435     return CVal.isAllOnes();
3436   }
3437 
3438   llvm_unreachable("Invalid boolean contents");
3439 }
3440 
3441 bool TargetLowering::isConstFalseVal(SDValue N) const {
3442   if (!N)
3443     return false;
3444 
3445   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3446   if (!CN) {
3447     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3448     if (!BV)
3449       return false;
3450 
3451     // Only interested in constant splats, we don't care about undef
3452     // elements in identifying boolean constants and getConstantSplatNode
3453     // returns NULL if all ops are undef;
3454     CN = BV->getConstantSplatNode();
3455     if (!CN)
3456       return false;
3457   }
3458 
3459   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3460     return !CN->getAPIntValue()[0];
3461 
3462   return CN->isZero();
3463 }
3464 
3465 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3466                                        bool SExt) const {
3467   if (VT == MVT::i1)
3468     return N->isOne();
3469 
3470   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3471   switch (Cnt) {
3472   case TargetLowering::ZeroOrOneBooleanContent:
3473     // An extended value of 1 is always true, unless its original type is i1,
3474     // in which case it will be sign extended to -1.
3475     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3476   case TargetLowering::UndefinedBooleanContent:
3477   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3478     return N->isAllOnes() && SExt;
3479   }
3480   llvm_unreachable("Unexpected enumeration.");
3481 }
3482 
3483 /// This helper function of SimplifySetCC tries to optimize the comparison when
3484 /// either operand of the SetCC node is a bitwise-and instruction.
3485 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3486                                          ISD::CondCode Cond, const SDLoc &DL,
3487                                          DAGCombinerInfo &DCI) const {
3488   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3489     std::swap(N0, N1);
3490 
3491   SelectionDAG &DAG = DCI.DAG;
3492   EVT OpVT = N0.getValueType();
3493   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3494       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3495     return SDValue();
3496 
3497   // (X & Y) != 0 --> zextOrTrunc(X & Y)
3498   // iff everything but LSB is known zero:
3499   if (Cond == ISD::SETNE && isNullConstant(N1) &&
3500       (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent ||
3501        getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) {
3502     unsigned NumEltBits = OpVT.getScalarSizeInBits();
3503     APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1);
3504     if (DAG.MaskedValueIsZero(N0, UpperBits))
3505       return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT);
3506   }
3507 
3508   // Match these patterns in any of their permutations:
3509   // (X & Y) == Y
3510   // (X & Y) != Y
3511   SDValue X, Y;
3512   if (N0.getOperand(0) == N1) {
3513     X = N0.getOperand(1);
3514     Y = N0.getOperand(0);
3515   } else if (N0.getOperand(1) == N1) {
3516     X = N0.getOperand(0);
3517     Y = N0.getOperand(1);
3518   } else {
3519     return SDValue();
3520   }
3521 
3522   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3523   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3524     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3525     // Note that where Y is variable and is known to have at most one bit set
3526     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3527     // equivalent when Y == 0.
3528     assert(OpVT.isInteger());
3529     Cond = ISD::getSetCCInverse(Cond, OpVT);
3530     if (DCI.isBeforeLegalizeOps() ||
3531         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3532       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3533   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3534     // If the target supports an 'and-not' or 'and-complement' logic operation,
3535     // try to use that to make a comparison operation more efficient.
3536     // But don't do this transform if the mask is a single bit because there are
3537     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3538     // 'rlwinm' on PPC).
3539 
3540     // Bail out if the compare operand that we want to turn into a zero is
3541     // already a zero (otherwise, infinite loop).
3542     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3543     if (YConst && YConst->isZero())
3544       return SDValue();
3545 
3546     // Transform this into: ~X & Y == 0.
3547     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3548     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3549     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3550   }
3551 
3552   return SDValue();
3553 }
3554 
3555 /// There are multiple IR patterns that could be checking whether certain
3556 /// truncation of a signed number would be lossy or not. The pattern which is
3557 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3558 /// We are looking for the following pattern: (KeptBits is a constant)
3559 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3560 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3561 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3562 /// We will unfold it into the natural trunc+sext pattern:
3563 ///   ((%x << C) a>> C) dstcond %x
3564 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3565 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3566     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3567     const SDLoc &DL) const {
3568   // We must be comparing with a constant.
3569   ConstantSDNode *C1;
3570   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3571     return SDValue();
3572 
3573   // N0 should be:  add %x, (1 << (KeptBits-1))
3574   if (N0->getOpcode() != ISD::ADD)
3575     return SDValue();
3576 
3577   // And we must be 'add'ing a constant.
3578   ConstantSDNode *C01;
3579   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3580     return SDValue();
3581 
3582   SDValue X = N0->getOperand(0);
3583   EVT XVT = X.getValueType();
3584 
3585   // Validate constants ...
3586 
3587   APInt I1 = C1->getAPIntValue();
3588 
3589   ISD::CondCode NewCond;
3590   if (Cond == ISD::CondCode::SETULT) {
3591     NewCond = ISD::CondCode::SETEQ;
3592   } else if (Cond == ISD::CondCode::SETULE) {
3593     NewCond = ISD::CondCode::SETEQ;
3594     // But need to 'canonicalize' the constant.
3595     I1 += 1;
3596   } else if (Cond == ISD::CondCode::SETUGT) {
3597     NewCond = ISD::CondCode::SETNE;
3598     // But need to 'canonicalize' the constant.
3599     I1 += 1;
3600   } else if (Cond == ISD::CondCode::SETUGE) {
3601     NewCond = ISD::CondCode::SETNE;
3602   } else
3603     return SDValue();
3604 
3605   APInt I01 = C01->getAPIntValue();
3606 
3607   auto checkConstants = [&I1, &I01]() -> bool {
3608     // Both of them must be power-of-two, and the constant from setcc is bigger.
3609     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3610   };
3611 
3612   if (checkConstants()) {
3613     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3614   } else {
3615     // What if we invert constants? (and the target predicate)
3616     I1.negate();
3617     I01.negate();
3618     assert(XVT.isInteger());
3619     NewCond = getSetCCInverse(NewCond, XVT);
3620     if (!checkConstants())
3621       return SDValue();
3622     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3623   }
3624 
3625   // They are power-of-two, so which bit is set?
3626   const unsigned KeptBits = I1.logBase2();
3627   const unsigned KeptBitsMinusOne = I01.logBase2();
3628 
3629   // Magic!
3630   if (KeptBits != (KeptBitsMinusOne + 1))
3631     return SDValue();
3632   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3633 
3634   // We don't want to do this in every single case.
3635   SelectionDAG &DAG = DCI.DAG;
3636   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3637           XVT, KeptBits))
3638     return SDValue();
3639 
3640   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3641   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3642 
3643   // Unfold into:  ((%x << C) a>> C) cond %x
3644   // Where 'cond' will be either 'eq' or 'ne'.
3645   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3646   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3647   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3648   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3649 
3650   return T2;
3651 }
3652 
3653 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3654 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3655     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3656     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3657   assert(isConstOrConstSplat(N1C) &&
3658          isConstOrConstSplat(N1C)->getAPIntValue().isZero() &&
3659          "Should be a comparison with 0.");
3660   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3661          "Valid only for [in]equality comparisons.");
3662 
3663   unsigned NewShiftOpcode;
3664   SDValue X, C, Y;
3665 
3666   SelectionDAG &DAG = DCI.DAG;
3667   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3668 
3669   // Look for '(C l>>/<< Y)'.
3670   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3671     // The shift should be one-use.
3672     if (!V.hasOneUse())
3673       return false;
3674     unsigned OldShiftOpcode = V.getOpcode();
3675     switch (OldShiftOpcode) {
3676     case ISD::SHL:
3677       NewShiftOpcode = ISD::SRL;
3678       break;
3679     case ISD::SRL:
3680       NewShiftOpcode = ISD::SHL;
3681       break;
3682     default:
3683       return false; // must be a logical shift.
3684     }
3685     // We should be shifting a constant.
3686     // FIXME: best to use isConstantOrConstantVector().
3687     C = V.getOperand(0);
3688     ConstantSDNode *CC =
3689         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3690     if (!CC)
3691       return false;
3692     Y = V.getOperand(1);
3693 
3694     ConstantSDNode *XC =
3695         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3696     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3697         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3698   };
3699 
3700   // LHS of comparison should be an one-use 'and'.
3701   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3702     return SDValue();
3703 
3704   X = N0.getOperand(0);
3705   SDValue Mask = N0.getOperand(1);
3706 
3707   // 'and' is commutative!
3708   if (!Match(Mask)) {
3709     std::swap(X, Mask);
3710     if (!Match(Mask))
3711       return SDValue();
3712   }
3713 
3714   EVT VT = X.getValueType();
3715 
3716   // Produce:
3717   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3718   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3719   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3720   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3721   return T2;
3722 }
3723 
3724 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3725 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3726 /// handle the commuted versions of these patterns.
3727 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3728                                            ISD::CondCode Cond, const SDLoc &DL,
3729                                            DAGCombinerInfo &DCI) const {
3730   unsigned BOpcode = N0.getOpcode();
3731   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3732          "Unexpected binop");
3733   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3734 
3735   // (X + Y) == X --> Y == 0
3736   // (X - Y) == X --> Y == 0
3737   // (X ^ Y) == X --> Y == 0
3738   SelectionDAG &DAG = DCI.DAG;
3739   EVT OpVT = N0.getValueType();
3740   SDValue X = N0.getOperand(0);
3741   SDValue Y = N0.getOperand(1);
3742   if (X == N1)
3743     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3744 
3745   if (Y != N1)
3746     return SDValue();
3747 
3748   // (X + Y) == Y --> X == 0
3749   // (X ^ Y) == Y --> X == 0
3750   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3751     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3752 
3753   // The shift would not be valid if the operands are boolean (i1).
3754   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3755     return SDValue();
3756 
3757   // (X - Y) == Y --> X == Y << 1
3758   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3759                                  !DCI.isBeforeLegalize());
3760   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3761   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3762   if (!DCI.isCalledByLegalizer())
3763     DCI.AddToWorklist(YShl1.getNode());
3764   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3765 }
3766 
3767 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3768                                       SDValue N0, const APInt &C1,
3769                                       ISD::CondCode Cond, const SDLoc &dl,
3770                                       SelectionDAG &DAG) {
3771   // Look through truncs that don't change the value of a ctpop.
3772   // FIXME: Add vector support? Need to be careful with setcc result type below.
3773   SDValue CTPOP = N0;
3774   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3775       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3776     CTPOP = N0.getOperand(0);
3777 
3778   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3779     return SDValue();
3780 
3781   EVT CTVT = CTPOP.getValueType();
3782   SDValue CTOp = CTPOP.getOperand(0);
3783 
3784   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3785   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3786   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3787     return SDValue();
3788 
3789   // (ctpop x) u< 2 -> (x & x-1) == 0
3790   // (ctpop x) u> 1 -> (x & x-1) != 0
3791   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3792     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3793     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3794       return SDValue();
3795     if (C1 == 0 && (Cond == ISD::SETULT))
3796       return SDValue(); // This is handled elsewhere.
3797 
3798     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3799 
3800     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3801     SDValue Result = CTOp;
3802     for (unsigned i = 0; i < Passes; i++) {
3803       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3804       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3805     }
3806     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3807     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3808   }
3809 
3810   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3811   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3812     // For scalars, keep CTPOP if it is legal or custom.
3813     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3814       return SDValue();
3815     // This is based on X86's custom lowering for CTPOP which produces more
3816     // instructions than the expansion here.
3817 
3818     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3819     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3820     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3821     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3822     assert(CTVT.isInteger());
3823     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3824     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3825     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3826     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3827     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3828     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3829     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3830   }
3831 
3832   return SDValue();
3833 }
3834 
3835 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1,
3836                                    ISD::CondCode Cond, const SDLoc &dl,
3837                                    SelectionDAG &DAG) {
3838   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
3839     return SDValue();
3840 
3841   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
3842   if (!C1 || !(C1->isZero() || C1->isAllOnes()))
3843     return SDValue();
3844 
3845   auto getRotateSource = [](SDValue X) {
3846     if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR)
3847       return X.getOperand(0);
3848     return SDValue();
3849   };
3850 
3851   // Peek through a rotated value compared against 0 or -1:
3852   // (rot X, Y) == 0/-1 --> X == 0/-1
3853   // (rot X, Y) != 0/-1 --> X != 0/-1
3854   if (SDValue R = getRotateSource(N0))
3855     return DAG.getSetCC(dl, VT, R, N1, Cond);
3856 
3857   // Peek through an 'or' of a rotated value compared against 0:
3858   // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0
3859   // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0
3860   //
3861   // TODO: Add the 'and' with -1 sibling.
3862   // TODO: Recurse through a series of 'or' ops to find the rotate.
3863   EVT OpVT = N0.getValueType();
3864   if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) {
3865     if (SDValue R = getRotateSource(N0.getOperand(0))) {
3866       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1));
3867       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
3868     }
3869     if (SDValue R = getRotateSource(N0.getOperand(1))) {
3870       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0));
3871       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
3872     }
3873   }
3874 
3875   return SDValue();
3876 }
3877 
3878 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1,
3879                                         ISD::CondCode Cond, const SDLoc &dl,
3880                                         SelectionDAG &DAG) {
3881   // If we are testing for all-bits-clear, we might be able to do that with
3882   // less shifting since bit-order does not matter.
3883   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
3884     return SDValue();
3885 
3886   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
3887   if (!C1 || !C1->isZero())
3888     return SDValue();
3889 
3890   if (!N0.hasOneUse() ||
3891       (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR))
3892     return SDValue();
3893 
3894   unsigned BitWidth = N0.getScalarValueSizeInBits();
3895   auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2));
3896   if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
3897     return SDValue();
3898 
3899   // Canonicalize fshr as fshl to reduce pattern-matching.
3900   unsigned ShAmt = ShAmtC->getZExtValue();
3901   if (N0.getOpcode() == ISD::FSHR)
3902     ShAmt = BitWidth - ShAmt;
3903 
3904   // Match an 'or' with a specific operand 'Other' in either commuted variant.
3905   SDValue X, Y;
3906   auto matchOr = [&X, &Y](SDValue Or, SDValue Other) {
3907     if (Or.getOpcode() != ISD::OR || !Or.hasOneUse())
3908       return false;
3909     if (Or.getOperand(0) == Other) {
3910       X = Or.getOperand(0);
3911       Y = Or.getOperand(1);
3912       return true;
3913     }
3914     if (Or.getOperand(1) == Other) {
3915       X = Or.getOperand(1);
3916       Y = Or.getOperand(0);
3917       return true;
3918     }
3919     return false;
3920   };
3921 
3922   EVT OpVT = N0.getValueType();
3923   EVT ShAmtVT = N0.getOperand(2).getValueType();
3924   SDValue F0 = N0.getOperand(0);
3925   SDValue F1 = N0.getOperand(1);
3926   if (matchOr(F0, F1)) {
3927     // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0
3928     SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT);
3929     SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt);
3930     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
3931     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
3932   }
3933   if (matchOr(F1, F0)) {
3934     // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0
3935     SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT);
3936     SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt);
3937     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
3938     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
3939   }
3940 
3941   return SDValue();
3942 }
3943 
3944 /// Try to simplify a setcc built with the specified operands and cc. If it is
3945 /// unable to simplify it, return a null SDValue.
3946 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3947                                       ISD::CondCode Cond, bool foldBooleans,
3948                                       DAGCombinerInfo &DCI,
3949                                       const SDLoc &dl) const {
3950   SelectionDAG &DAG = DCI.DAG;
3951   const DataLayout &Layout = DAG.getDataLayout();
3952   EVT OpVT = N0.getValueType();
3953 
3954   // Constant fold or commute setcc.
3955   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3956     return Fold;
3957 
3958   bool N0ConstOrSplat =
3959       isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
3960   bool N1ConstOrSplat =
3961       isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
3962 
3963   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3964   // TODO: Handle non-splat vector constants. All undef causes trouble.
3965   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
3966   // infinite loop here when we encounter one.
3967   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3968   if (N0ConstOrSplat && (!OpVT.isScalableVector() || !N1ConstOrSplat) &&
3969       (DCI.isBeforeLegalizeOps() ||
3970        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3971     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3972 
3973   // If we have a subtract with the same 2 non-constant operands as this setcc
3974   // -- but in reverse order -- then try to commute the operands of this setcc
3975   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3976   // instruction on some targets.
3977   if (!N0ConstOrSplat && !N1ConstOrSplat &&
3978       (DCI.isBeforeLegalizeOps() ||
3979        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3980       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
3981       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
3982     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3983 
3984   if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG))
3985     return V;
3986 
3987   if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG))
3988     return V;
3989 
3990   if (auto *N1C = isConstOrConstSplat(N1)) {
3991     const APInt &C1 = N1C->getAPIntValue();
3992 
3993     // Optimize some CTPOP cases.
3994     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
3995       return V;
3996 
3997     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3998     // equality comparison, then we're just comparing whether X itself is
3999     // zero.
4000     if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
4001         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
4002         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
4003       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
4004         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4005             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
4006           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
4007             // (srl (ctlz x), 5) == 0  -> X != 0
4008             // (srl (ctlz x), 5) != 1  -> X != 0
4009             Cond = ISD::SETNE;
4010           } else {
4011             // (srl (ctlz x), 5) != 0  -> X == 0
4012             // (srl (ctlz x), 5) == 1  -> X == 0
4013             Cond = ISD::SETEQ;
4014           }
4015           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
4016           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
4017                               Cond);
4018         }
4019       }
4020     }
4021   }
4022 
4023   // FIXME: Support vectors.
4024   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4025     const APInt &C1 = N1C->getAPIntValue();
4026 
4027     // (zext x) == C --> x == (trunc C)
4028     // (sext x) == C --> x == (trunc C)
4029     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4030         DCI.isBeforeLegalize() && N0->hasOneUse()) {
4031       unsigned MinBits = N0.getValueSizeInBits();
4032       SDValue PreExt;
4033       bool Signed = false;
4034       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
4035         // ZExt
4036         MinBits = N0->getOperand(0).getValueSizeInBits();
4037         PreExt = N0->getOperand(0);
4038       } else if (N0->getOpcode() == ISD::AND) {
4039         // DAGCombine turns costly ZExts into ANDs
4040         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
4041           if ((C->getAPIntValue()+1).isPowerOf2()) {
4042             MinBits = C->getAPIntValue().countTrailingOnes();
4043             PreExt = N0->getOperand(0);
4044           }
4045       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
4046         // SExt
4047         MinBits = N0->getOperand(0).getValueSizeInBits();
4048         PreExt = N0->getOperand(0);
4049         Signed = true;
4050       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
4051         // ZEXTLOAD / SEXTLOAD
4052         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
4053           MinBits = LN0->getMemoryVT().getSizeInBits();
4054           PreExt = N0;
4055         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
4056           Signed = true;
4057           MinBits = LN0->getMemoryVT().getSizeInBits();
4058           PreExt = N0;
4059         }
4060       }
4061 
4062       // Figure out how many bits we need to preserve this constant.
4063       unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits();
4064 
4065       // Make sure we're not losing bits from the constant.
4066       if (MinBits > 0 &&
4067           MinBits < C1.getBitWidth() &&
4068           MinBits >= ReqdBits) {
4069         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
4070         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
4071           // Will get folded away.
4072           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
4073           if (MinBits == 1 && C1 == 1)
4074             // Invert the condition.
4075             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
4076                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4077           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
4078           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
4079         }
4080 
4081         // If truncating the setcc operands is not desirable, we can still
4082         // simplify the expression in some cases:
4083         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
4084         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
4085         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
4086         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
4087         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
4088         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
4089         SDValue TopSetCC = N0->getOperand(0);
4090         unsigned N0Opc = N0->getOpcode();
4091         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
4092         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
4093             TopSetCC.getOpcode() == ISD::SETCC &&
4094             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
4095             (isConstFalseVal(N1) ||
4096              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
4097 
4098           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
4099                          (!N1C->isZero() && Cond == ISD::SETNE);
4100 
4101           if (!Inverse)
4102             return TopSetCC;
4103 
4104           ISD::CondCode InvCond = ISD::getSetCCInverse(
4105               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
4106               TopSetCC.getOperand(0).getValueType());
4107           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
4108                                       TopSetCC.getOperand(1),
4109                                       InvCond);
4110         }
4111       }
4112     }
4113 
4114     // If the LHS is '(and load, const)', the RHS is 0, the test is for
4115     // equality or unsigned, and all 1 bits of the const are in the same
4116     // partial word, see if we can shorten the load.
4117     if (DCI.isBeforeLegalize() &&
4118         !ISD::isSignedIntSetCC(Cond) &&
4119         N0.getOpcode() == ISD::AND && C1 == 0 &&
4120         N0.getNode()->hasOneUse() &&
4121         isa<LoadSDNode>(N0.getOperand(0)) &&
4122         N0.getOperand(0).getNode()->hasOneUse() &&
4123         isa<ConstantSDNode>(N0.getOperand(1))) {
4124       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
4125       APInt bestMask;
4126       unsigned bestWidth = 0, bestOffset = 0;
4127       if (Lod->isSimple() && Lod->isUnindexed()) {
4128         unsigned origWidth = N0.getValueSizeInBits();
4129         unsigned maskWidth = origWidth;
4130         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
4131         // 8 bits, but have to be careful...
4132         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
4133           origWidth = Lod->getMemoryVT().getSizeInBits();
4134         const APInt &Mask = N0.getConstantOperandAPInt(1);
4135         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
4136           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
4137           for (unsigned offset=0; offset<origWidth/width; offset++) {
4138             if (Mask.isSubsetOf(newMask)) {
4139               if (Layout.isLittleEndian())
4140                 bestOffset = (uint64_t)offset * (width/8);
4141               else
4142                 bestOffset = (origWidth/width - offset - 1) * (width/8);
4143               bestMask = Mask.lshr(offset * (width/8) * 8);
4144               bestWidth = width;
4145               break;
4146             }
4147             newMask <<= width;
4148           }
4149         }
4150       }
4151       if (bestWidth) {
4152         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
4153         if (newVT.isRound() &&
4154             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
4155           SDValue Ptr = Lod->getBasePtr();
4156           if (bestOffset != 0)
4157             Ptr =
4158                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
4159           SDValue NewLoad =
4160               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
4161                           Lod->getPointerInfo().getWithOffset(bestOffset),
4162                           Lod->getOriginalAlign());
4163           return DAG.getSetCC(dl, VT,
4164                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
4165                                       DAG.getConstant(bestMask.trunc(bestWidth),
4166                                                       dl, newVT)),
4167                               DAG.getConstant(0LL, dl, newVT), Cond);
4168         }
4169       }
4170     }
4171 
4172     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
4173     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
4174       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
4175 
4176       // If the comparison constant has bits in the upper part, the
4177       // zero-extended value could never match.
4178       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
4179                                               C1.getBitWidth() - InSize))) {
4180         switch (Cond) {
4181         case ISD::SETUGT:
4182         case ISD::SETUGE:
4183         case ISD::SETEQ:
4184           return DAG.getConstant(0, dl, VT);
4185         case ISD::SETULT:
4186         case ISD::SETULE:
4187         case ISD::SETNE:
4188           return DAG.getConstant(1, dl, VT);
4189         case ISD::SETGT:
4190         case ISD::SETGE:
4191           // True if the sign bit of C1 is set.
4192           return DAG.getConstant(C1.isNegative(), dl, VT);
4193         case ISD::SETLT:
4194         case ISD::SETLE:
4195           // True if the sign bit of C1 isn't set.
4196           return DAG.getConstant(C1.isNonNegative(), dl, VT);
4197         default:
4198           break;
4199         }
4200       }
4201 
4202       // Otherwise, we can perform the comparison with the low bits.
4203       switch (Cond) {
4204       case ISD::SETEQ:
4205       case ISD::SETNE:
4206       case ISD::SETUGT:
4207       case ISD::SETUGE:
4208       case ISD::SETULT:
4209       case ISD::SETULE: {
4210         EVT newVT = N0.getOperand(0).getValueType();
4211         if (DCI.isBeforeLegalizeOps() ||
4212             (isOperationLegal(ISD::SETCC, newVT) &&
4213              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
4214           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
4215           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
4216 
4217           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
4218                                           NewConst, Cond);
4219           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
4220         }
4221         break;
4222       }
4223       default:
4224         break; // todo, be more careful with signed comparisons
4225       }
4226     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4227                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4228                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
4229                                       OpVT)) {
4230       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
4231       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
4232       EVT ExtDstTy = N0.getValueType();
4233       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
4234 
4235       // If the constant doesn't fit into the number of bits for the source of
4236       // the sign extension, it is impossible for both sides to be equal.
4237       if (C1.getMinSignedBits() > ExtSrcTyBits)
4238         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
4239 
4240       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
4241              ExtDstTy != ExtSrcTy && "Unexpected types!");
4242       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
4243       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
4244                                    DAG.getConstant(Imm, dl, ExtDstTy));
4245       if (!DCI.isCalledByLegalizer())
4246         DCI.AddToWorklist(ZextOp.getNode());
4247       // Otherwise, make this a use of a zext.
4248       return DAG.getSetCC(dl, VT, ZextOp,
4249                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
4250     } else if ((N1C->isZero() || N1C->isOne()) &&
4251                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4252       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
4253       if (N0.getOpcode() == ISD::SETCC &&
4254           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
4255           (N0.getValueType() == MVT::i1 ||
4256            getBooleanContents(N0.getOperand(0).getValueType()) ==
4257                        ZeroOrOneBooleanContent)) {
4258         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
4259         if (TrueWhenTrue)
4260           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
4261         // Invert the condition.
4262         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4263         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
4264         if (DCI.isBeforeLegalizeOps() ||
4265             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
4266           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
4267       }
4268 
4269       if ((N0.getOpcode() == ISD::XOR ||
4270            (N0.getOpcode() == ISD::AND &&
4271             N0.getOperand(0).getOpcode() == ISD::XOR &&
4272             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
4273           isOneConstant(N0.getOperand(1))) {
4274         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
4275         // can only do this if the top bits are known zero.
4276         unsigned BitWidth = N0.getValueSizeInBits();
4277         if (DAG.MaskedValueIsZero(N0,
4278                                   APInt::getHighBitsSet(BitWidth,
4279                                                         BitWidth-1))) {
4280           // Okay, get the un-inverted input value.
4281           SDValue Val;
4282           if (N0.getOpcode() == ISD::XOR) {
4283             Val = N0.getOperand(0);
4284           } else {
4285             assert(N0.getOpcode() == ISD::AND &&
4286                     N0.getOperand(0).getOpcode() == ISD::XOR);
4287             // ((X^1)&1)^1 -> X & 1
4288             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
4289                               N0.getOperand(0).getOperand(0),
4290                               N0.getOperand(1));
4291           }
4292 
4293           return DAG.getSetCC(dl, VT, Val, N1,
4294                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4295         }
4296       } else if (N1C->isOne()) {
4297         SDValue Op0 = N0;
4298         if (Op0.getOpcode() == ISD::TRUNCATE)
4299           Op0 = Op0.getOperand(0);
4300 
4301         if ((Op0.getOpcode() == ISD::XOR) &&
4302             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
4303             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
4304           SDValue XorLHS = Op0.getOperand(0);
4305           SDValue XorRHS = Op0.getOperand(1);
4306           // Ensure that the input setccs return an i1 type or 0/1 value.
4307           if (Op0.getValueType() == MVT::i1 ||
4308               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
4309                       ZeroOrOneBooleanContent &&
4310                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
4311                         ZeroOrOneBooleanContent)) {
4312             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
4313             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
4314             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
4315           }
4316         }
4317         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
4318           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
4319           if (Op0.getValueType().bitsGT(VT))
4320             Op0 = DAG.getNode(ISD::AND, dl, VT,
4321                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
4322                           DAG.getConstant(1, dl, VT));
4323           else if (Op0.getValueType().bitsLT(VT))
4324             Op0 = DAG.getNode(ISD::AND, dl, VT,
4325                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
4326                         DAG.getConstant(1, dl, VT));
4327 
4328           return DAG.getSetCC(dl, VT, Op0,
4329                               DAG.getConstant(0, dl, Op0.getValueType()),
4330                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4331         }
4332         if (Op0.getOpcode() == ISD::AssertZext &&
4333             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
4334           return DAG.getSetCC(dl, VT, Op0,
4335                               DAG.getConstant(0, dl, Op0.getValueType()),
4336                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4337       }
4338     }
4339 
4340     // Given:
4341     //   icmp eq/ne (urem %x, %y), 0
4342     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
4343     //   icmp eq/ne %x, 0
4344     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
4345         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4346       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
4347       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
4348       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
4349         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4350     }
4351 
4352     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
4353     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
4354     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4355         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
4356         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
4357         N1C && N1C->isAllOnes()) {
4358       return DAG.getSetCC(dl, VT, N0.getOperand(0),
4359                           DAG.getConstant(0, dl, OpVT),
4360                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
4361     }
4362 
4363     if (SDValue V =
4364             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
4365       return V;
4366   }
4367 
4368   // These simplifications apply to splat vectors as well.
4369   // TODO: Handle more splat vector cases.
4370   if (auto *N1C = isConstOrConstSplat(N1)) {
4371     const APInt &C1 = N1C->getAPIntValue();
4372 
4373     APInt MinVal, MaxVal;
4374     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
4375     if (ISD::isSignedIntSetCC(Cond)) {
4376       MinVal = APInt::getSignedMinValue(OperandBitSize);
4377       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
4378     } else {
4379       MinVal = APInt::getMinValue(OperandBitSize);
4380       MaxVal = APInt::getMaxValue(OperandBitSize);
4381     }
4382 
4383     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
4384     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
4385       // X >= MIN --> true
4386       if (C1 == MinVal)
4387         return DAG.getBoolConstant(true, dl, VT, OpVT);
4388 
4389       if (!VT.isVector()) { // TODO: Support this for vectors.
4390         // X >= C0 --> X > (C0 - 1)
4391         APInt C = C1 - 1;
4392         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
4393         if ((DCI.isBeforeLegalizeOps() ||
4394              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4395             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4396                                   isLegalICmpImmediate(C.getSExtValue())))) {
4397           return DAG.getSetCC(dl, VT, N0,
4398                               DAG.getConstant(C, dl, N1.getValueType()),
4399                               NewCC);
4400         }
4401       }
4402     }
4403 
4404     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
4405       // X <= MAX --> true
4406       if (C1 == MaxVal)
4407         return DAG.getBoolConstant(true, dl, VT, OpVT);
4408 
4409       // X <= C0 --> X < (C0 + 1)
4410       if (!VT.isVector()) { // TODO: Support this for vectors.
4411         APInt C = C1 + 1;
4412         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
4413         if ((DCI.isBeforeLegalizeOps() ||
4414              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4415             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4416                                   isLegalICmpImmediate(C.getSExtValue())))) {
4417           return DAG.getSetCC(dl, VT, N0,
4418                               DAG.getConstant(C, dl, N1.getValueType()),
4419                               NewCC);
4420         }
4421       }
4422     }
4423 
4424     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
4425       if (C1 == MinVal)
4426         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
4427 
4428       // TODO: Support this for vectors after legalize ops.
4429       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4430         // Canonicalize setlt X, Max --> setne X, Max
4431         if (C1 == MaxVal)
4432           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4433 
4434         // If we have setult X, 1, turn it into seteq X, 0
4435         if (C1 == MinVal+1)
4436           return DAG.getSetCC(dl, VT, N0,
4437                               DAG.getConstant(MinVal, dl, N0.getValueType()),
4438                               ISD::SETEQ);
4439       }
4440     }
4441 
4442     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
4443       if (C1 == MaxVal)
4444         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
4445 
4446       // TODO: Support this for vectors after legalize ops.
4447       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4448         // Canonicalize setgt X, Min --> setne X, Min
4449         if (C1 == MinVal)
4450           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4451 
4452         // If we have setugt X, Max-1, turn it into seteq X, Max
4453         if (C1 == MaxVal-1)
4454           return DAG.getSetCC(dl, VT, N0,
4455                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
4456                               ISD::SETEQ);
4457       }
4458     }
4459 
4460     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
4461       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4462       if (C1.isZero())
4463         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
4464                 VT, N0, N1, Cond, DCI, dl))
4465           return CC;
4466 
4467       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
4468       // For example, when high 32-bits of i64 X are known clear:
4469       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
4470       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
4471       bool CmpZero = N1C->getAPIntValue().isZero();
4472       bool CmpNegOne = N1C->getAPIntValue().isAllOnes();
4473       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
4474         // Match or(lo,shl(hi,bw/2)) pattern.
4475         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
4476           unsigned EltBits = V.getScalarValueSizeInBits();
4477           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
4478             return false;
4479           SDValue LHS = V.getOperand(0);
4480           SDValue RHS = V.getOperand(1);
4481           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
4482           // Unshifted element must have zero upperbits.
4483           if (RHS.getOpcode() == ISD::SHL &&
4484               isa<ConstantSDNode>(RHS.getOperand(1)) &&
4485               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4486               DAG.MaskedValueIsZero(LHS, HiBits)) {
4487             Lo = LHS;
4488             Hi = RHS.getOperand(0);
4489             return true;
4490           }
4491           if (LHS.getOpcode() == ISD::SHL &&
4492               isa<ConstantSDNode>(LHS.getOperand(1)) &&
4493               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4494               DAG.MaskedValueIsZero(RHS, HiBits)) {
4495             Lo = RHS;
4496             Hi = LHS.getOperand(0);
4497             return true;
4498           }
4499           return false;
4500         };
4501 
4502         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4503           unsigned EltBits = N0.getScalarValueSizeInBits();
4504           unsigned HalfBits = EltBits / 2;
4505           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4506           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4507           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4508           SDValue NewN0 =
4509               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4510           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4511           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4512         };
4513 
4514         SDValue Lo, Hi;
4515         if (IsConcat(N0, Lo, Hi))
4516           return MergeConcat(Lo, Hi);
4517 
4518         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4519           SDValue Lo0, Lo1, Hi0, Hi1;
4520           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4521               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4522             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4523                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4524           }
4525         }
4526       }
4527     }
4528 
4529     // If we have "setcc X, C0", check to see if we can shrink the immediate
4530     // by changing cc.
4531     // TODO: Support this for vectors after legalize ops.
4532     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4533       // SETUGT X, SINTMAX  -> SETLT X, 0
4534       // SETUGE X, SINTMIN -> SETLT X, 0
4535       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4536           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4537         return DAG.getSetCC(dl, VT, N0,
4538                             DAG.getConstant(0, dl, N1.getValueType()),
4539                             ISD::SETLT);
4540 
4541       // SETULT X, SINTMIN  -> SETGT X, -1
4542       // SETULE X, SINTMAX  -> SETGT X, -1
4543       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4544           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4545         return DAG.getSetCC(dl, VT, N0,
4546                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4547                             ISD::SETGT);
4548     }
4549   }
4550 
4551   // Back to non-vector simplifications.
4552   // TODO: Can we do these for vector splats?
4553   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4554     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4555     const APInt &C1 = N1C->getAPIntValue();
4556     EVT ShValTy = N0.getValueType();
4557 
4558     // Fold bit comparisons when we can. This will result in an
4559     // incorrect value when boolean false is negative one, unless
4560     // the bitsize is 1 in which case the false value is the same
4561     // in practice regardless of the representation.
4562     if ((VT.getSizeInBits() == 1 ||
4563          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4564         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4565         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4566         N0.getOpcode() == ISD::AND) {
4567       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4568         EVT ShiftTy =
4569             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4570         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4571           // Perform the xform if the AND RHS is a single bit.
4572           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4573           if (AndRHS->getAPIntValue().isPowerOf2() &&
4574               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4575             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4576                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4577                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4578           }
4579         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4580           // (X & 8) == 8  -->  (X & 8) >> 3
4581           // Perform the xform if C1 is a single bit.
4582           unsigned ShCt = C1.logBase2();
4583           if (C1.isPowerOf2() &&
4584               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4585             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4586                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4587                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4588           }
4589         }
4590       }
4591     }
4592 
4593     if (C1.getMinSignedBits() <= 64 &&
4594         !isLegalICmpImmediate(C1.getSExtValue())) {
4595       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4596       // (X & -256) == 256 -> (X >> 8) == 1
4597       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4598           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4599         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4600           const APInt &AndRHSC = AndRHS->getAPIntValue();
4601           if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) {
4602             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4603             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4604               SDValue Shift =
4605                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4606                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4607               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4608               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4609             }
4610           }
4611         }
4612       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4613                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4614         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4615         // X <  0x100000000 -> (X >> 32) <  1
4616         // X >= 0x100000000 -> (X >> 32) >= 1
4617         // X <= 0x0ffffffff -> (X >> 32) <  1
4618         // X >  0x0ffffffff -> (X >> 32) >= 1
4619         unsigned ShiftBits;
4620         APInt NewC = C1;
4621         ISD::CondCode NewCond = Cond;
4622         if (AdjOne) {
4623           ShiftBits = C1.countTrailingOnes();
4624           NewC = NewC + 1;
4625           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4626         } else {
4627           ShiftBits = C1.countTrailingZeros();
4628         }
4629         NewC.lshrInPlace(ShiftBits);
4630         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4631             isLegalICmpImmediate(NewC.getSExtValue()) &&
4632             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4633           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4634                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4635           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4636           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4637         }
4638       }
4639     }
4640   }
4641 
4642   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4643     auto *CFP = cast<ConstantFPSDNode>(N1);
4644     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4645 
4646     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4647     // constant if knowing that the operand is non-nan is enough.  We prefer to
4648     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4649     // materialize 0.0.
4650     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4651       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4652 
4653     // setcc (fneg x), C -> setcc swap(pred) x, -C
4654     if (N0.getOpcode() == ISD::FNEG) {
4655       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4656       if (DCI.isBeforeLegalizeOps() ||
4657           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4658         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4659         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4660       }
4661     }
4662 
4663     // If the condition is not legal, see if we can find an equivalent one
4664     // which is legal.
4665     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4666       // If the comparison was an awkward floating-point == or != and one of
4667       // the comparison operands is infinity or negative infinity, convert the
4668       // condition to a less-awkward <= or >=.
4669       if (CFP->getValueAPF().isInfinity()) {
4670         bool IsNegInf = CFP->getValueAPF().isNegative();
4671         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4672         switch (Cond) {
4673         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4674         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4675         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4676         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4677         default: break;
4678         }
4679         if (NewCond != ISD::SETCC_INVALID &&
4680             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4681           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4682       }
4683     }
4684   }
4685 
4686   if (N0 == N1) {
4687     // The sext(setcc()) => setcc() optimization relies on the appropriate
4688     // constant being emitted.
4689     assert(!N0.getValueType().isInteger() &&
4690            "Integer types should be handled by FoldSetCC");
4691 
4692     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4693     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4694     if (UOF == 2) // FP operators that are undefined on NaNs.
4695       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4696     if (UOF == unsigned(EqTrue))
4697       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4698     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4699     // if it is not already.
4700     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4701     if (NewCond != Cond &&
4702         (DCI.isBeforeLegalizeOps() ||
4703                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4704       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4705   }
4706 
4707   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4708       N0.getValueType().isInteger()) {
4709     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4710         N0.getOpcode() == ISD::XOR) {
4711       // Simplify (X+Y) == (X+Z) -->  Y == Z
4712       if (N0.getOpcode() == N1.getOpcode()) {
4713         if (N0.getOperand(0) == N1.getOperand(0))
4714           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4715         if (N0.getOperand(1) == N1.getOperand(1))
4716           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4717         if (isCommutativeBinOp(N0.getOpcode())) {
4718           // If X op Y == Y op X, try other combinations.
4719           if (N0.getOperand(0) == N1.getOperand(1))
4720             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4721                                 Cond);
4722           if (N0.getOperand(1) == N1.getOperand(0))
4723             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4724                                 Cond);
4725         }
4726       }
4727 
4728       // If RHS is a legal immediate value for a compare instruction, we need
4729       // to be careful about increasing register pressure needlessly.
4730       bool LegalRHSImm = false;
4731 
4732       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4733         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4734           // Turn (X+C1) == C2 --> X == C2-C1
4735           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse())
4736             return DAG.getSetCC(
4737                 dl, VT, N0.getOperand(0),
4738                 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(),
4739                                 dl, N0.getValueType()),
4740                 Cond);
4741 
4742           // Turn (X^C1) == C2 --> X == C1^C2
4743           if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse())
4744             return DAG.getSetCC(
4745                 dl, VT, N0.getOperand(0),
4746                 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(),
4747                                 dl, N0.getValueType()),
4748                 Cond);
4749         }
4750 
4751         // Turn (C1-X) == C2 --> X == C1-C2
4752         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
4753           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse())
4754             return DAG.getSetCC(
4755                 dl, VT, N0.getOperand(1),
4756                 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(),
4757                                 dl, N0.getValueType()),
4758                 Cond);
4759 
4760         // Could RHSC fold directly into a compare?
4761         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4762           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4763       }
4764 
4765       // (X+Y) == X --> Y == 0 and similar folds.
4766       // Don't do this if X is an immediate that can fold into a cmp
4767       // instruction and X+Y has other uses. It could be an induction variable
4768       // chain, and the transform would increase register pressure.
4769       if (!LegalRHSImm || N0.hasOneUse())
4770         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4771           return V;
4772     }
4773 
4774     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4775         N1.getOpcode() == ISD::XOR)
4776       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4777         return V;
4778 
4779     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4780       return V;
4781   }
4782 
4783   // Fold remainder of division by a constant.
4784   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4785       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4786     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4787 
4788     // When division is cheap or optimizing for minimum size,
4789     // fall through to DIVREM creation by skipping this fold.
4790     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
4791       if (N0.getOpcode() == ISD::UREM) {
4792         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4793           return Folded;
4794       } else if (N0.getOpcode() == ISD::SREM) {
4795         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4796           return Folded;
4797       }
4798     }
4799   }
4800 
4801   // Fold away ALL boolean setcc's.
4802   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4803     SDValue Temp;
4804     switch (Cond) {
4805     default: llvm_unreachable("Unknown integer setcc!");
4806     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4807       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4808       N0 = DAG.getNOT(dl, Temp, OpVT);
4809       if (!DCI.isCalledByLegalizer())
4810         DCI.AddToWorklist(Temp.getNode());
4811       break;
4812     case ISD::SETNE:  // X != Y   -->  (X^Y)
4813       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4814       break;
4815     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4816     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4817       Temp = DAG.getNOT(dl, N0, OpVT);
4818       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4819       if (!DCI.isCalledByLegalizer())
4820         DCI.AddToWorklist(Temp.getNode());
4821       break;
4822     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4823     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4824       Temp = DAG.getNOT(dl, N1, OpVT);
4825       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4826       if (!DCI.isCalledByLegalizer())
4827         DCI.AddToWorklist(Temp.getNode());
4828       break;
4829     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4830     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4831       Temp = DAG.getNOT(dl, N0, OpVT);
4832       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4833       if (!DCI.isCalledByLegalizer())
4834         DCI.AddToWorklist(Temp.getNode());
4835       break;
4836     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4837     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4838       Temp = DAG.getNOT(dl, N1, OpVT);
4839       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4840       break;
4841     }
4842     if (VT.getScalarType() != MVT::i1) {
4843       if (!DCI.isCalledByLegalizer())
4844         DCI.AddToWorklist(N0.getNode());
4845       // FIXME: If running after legalize, we probably can't do this.
4846       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4847       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4848     }
4849     return N0;
4850   }
4851 
4852   // Could not fold it.
4853   return SDValue();
4854 }
4855 
4856 /// Returns true (and the GlobalValue and the offset) if the node is a
4857 /// GlobalAddress + offset.
4858 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4859                                     int64_t &Offset) const {
4860 
4861   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4862 
4863   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4864     GA = GASD->getGlobal();
4865     Offset += GASD->getOffset();
4866     return true;
4867   }
4868 
4869   if (N->getOpcode() == ISD::ADD) {
4870     SDValue N1 = N->getOperand(0);
4871     SDValue N2 = N->getOperand(1);
4872     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4873       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4874         Offset += V->getSExtValue();
4875         return true;
4876       }
4877     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4878       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4879         Offset += V->getSExtValue();
4880         return true;
4881       }
4882     }
4883   }
4884 
4885   return false;
4886 }
4887 
4888 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4889                                           DAGCombinerInfo &DCI) const {
4890   // Default implementation: no optimization.
4891   return SDValue();
4892 }
4893 
4894 //===----------------------------------------------------------------------===//
4895 //  Inline Assembler Implementation Methods
4896 //===----------------------------------------------------------------------===//
4897 
4898 TargetLowering::ConstraintType
4899 TargetLowering::getConstraintType(StringRef Constraint) const {
4900   unsigned S = Constraint.size();
4901 
4902   if (S == 1) {
4903     switch (Constraint[0]) {
4904     default: break;
4905     case 'r':
4906       return C_RegisterClass;
4907     case 'm': // memory
4908     case 'o': // offsetable
4909     case 'V': // not offsetable
4910       return C_Memory;
4911     case 'n': // Simple Integer
4912     case 'E': // Floating Point Constant
4913     case 'F': // Floating Point Constant
4914       return C_Immediate;
4915     case 'i': // Simple Integer or Relocatable Constant
4916     case 's': // Relocatable Constant
4917     case 'p': // Address.
4918     case 'X': // Allow ANY value.
4919     case 'I': // Target registers.
4920     case 'J':
4921     case 'K':
4922     case 'L':
4923     case 'M':
4924     case 'N':
4925     case 'O':
4926     case 'P':
4927     case '<':
4928     case '>':
4929       return C_Other;
4930     }
4931   }
4932 
4933   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4934     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4935       return C_Memory;
4936     return C_Register;
4937   }
4938   return C_Unknown;
4939 }
4940 
4941 /// Try to replace an X constraint, which matches anything, with another that
4942 /// has more specific requirements based on the type of the corresponding
4943 /// operand.
4944 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4945   if (ConstraintVT.isInteger())
4946     return "r";
4947   if (ConstraintVT.isFloatingPoint())
4948     return "f"; // works for many targets
4949   return nullptr;
4950 }
4951 
4952 SDValue TargetLowering::LowerAsmOutputForConstraint(
4953     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
4954     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
4955   return SDValue();
4956 }
4957 
4958 /// Lower the specified operand into the Ops vector.
4959 /// If it is invalid, don't add anything to Ops.
4960 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4961                                                   std::string &Constraint,
4962                                                   std::vector<SDValue> &Ops,
4963                                                   SelectionDAG &DAG) const {
4964 
4965   if (Constraint.length() > 1) return;
4966 
4967   char ConstraintLetter = Constraint[0];
4968   switch (ConstraintLetter) {
4969   default: break;
4970   case 'X':    // Allows any operand
4971   case 'i':    // Simple Integer or Relocatable Constant
4972   case 'n':    // Simple Integer
4973   case 's': {  // Relocatable Constant
4974 
4975     ConstantSDNode *C;
4976     uint64_t Offset = 0;
4977 
4978     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4979     // etc., since getelementpointer is variadic. We can't use
4980     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4981     // while in this case the GA may be furthest from the root node which is
4982     // likely an ISD::ADD.
4983     while (true) {
4984       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
4985         // gcc prints these as sign extended.  Sign extend value to 64 bits
4986         // now; without this it would get ZExt'd later in
4987         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4988         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4989         BooleanContent BCont = getBooleanContents(MVT::i64);
4990         ISD::NodeType ExtOpc =
4991             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
4992         int64_t ExtVal =
4993             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
4994         Ops.push_back(
4995             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
4996         return;
4997       }
4998       if (ConstraintLetter != 'n') {
4999         if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5000           Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
5001                                                    GA->getValueType(0),
5002                                                    Offset + GA->getOffset()));
5003           return;
5004         }
5005         if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
5006           Ops.push_back(DAG.getTargetBlockAddress(
5007               BA->getBlockAddress(), BA->getValueType(0),
5008               Offset + BA->getOffset(), BA->getTargetFlags()));
5009           return;
5010         }
5011         if (isa<BasicBlockSDNode>(Op)) {
5012           Ops.push_back(Op);
5013           return;
5014         }
5015       }
5016       const unsigned OpCode = Op.getOpcode();
5017       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
5018         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
5019           Op = Op.getOperand(1);
5020         // Subtraction is not commutative.
5021         else if (OpCode == ISD::ADD &&
5022                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
5023           Op = Op.getOperand(0);
5024         else
5025           return;
5026         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
5027         continue;
5028       }
5029       return;
5030     }
5031     break;
5032   }
5033   }
5034 }
5035 
5036 std::pair<unsigned, const TargetRegisterClass *>
5037 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
5038                                              StringRef Constraint,
5039                                              MVT VT) const {
5040   if (Constraint.empty() || Constraint[0] != '{')
5041     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
5042   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
5043 
5044   // Remove the braces from around the name.
5045   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
5046 
5047   std::pair<unsigned, const TargetRegisterClass *> R =
5048       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
5049 
5050   // Figure out which register class contains this reg.
5051   for (const TargetRegisterClass *RC : RI->regclasses()) {
5052     // If none of the value types for this register class are valid, we
5053     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5054     if (!isLegalRC(*RI, *RC))
5055       continue;
5056 
5057     for (const MCPhysReg &PR : *RC) {
5058       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
5059         std::pair<unsigned, const TargetRegisterClass *> S =
5060             std::make_pair(PR, RC);
5061 
5062         // If this register class has the requested value type, return it,
5063         // otherwise keep searching and return the first class found
5064         // if no other is found which explicitly has the requested type.
5065         if (RI->isTypeLegalForClass(*RC, VT))
5066           return S;
5067         if (!R.second)
5068           R = S;
5069       }
5070     }
5071   }
5072 
5073   return R;
5074 }
5075 
5076 //===----------------------------------------------------------------------===//
5077 // Constraint Selection.
5078 
5079 /// Return true of this is an input operand that is a matching constraint like
5080 /// "4".
5081 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
5082   assert(!ConstraintCode.empty() && "No known constraint!");
5083   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
5084 }
5085 
5086 /// If this is an input matching constraint, this method returns the output
5087 /// operand it matches.
5088 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
5089   assert(!ConstraintCode.empty() && "No known constraint!");
5090   return atoi(ConstraintCode.c_str());
5091 }
5092 
5093 /// Split up the constraint string from the inline assembly value into the
5094 /// specific constraints and their prefixes, and also tie in the associated
5095 /// operand values.
5096 /// If this returns an empty vector, and if the constraint string itself
5097 /// isn't empty, there was an error parsing.
5098 TargetLowering::AsmOperandInfoVector
5099 TargetLowering::ParseConstraints(const DataLayout &DL,
5100                                  const TargetRegisterInfo *TRI,
5101                                  const CallBase &Call) const {
5102   /// Information about all of the constraints.
5103   AsmOperandInfoVector ConstraintOperands;
5104   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
5105   unsigned maCount = 0; // Largest number of multiple alternative constraints.
5106 
5107   // Do a prepass over the constraints, canonicalizing them, and building up the
5108   // ConstraintOperands list.
5109   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
5110   unsigned ResNo = 0; // ResNo - The result number of the next output.
5111 
5112   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
5113     ConstraintOperands.emplace_back(std::move(CI));
5114     AsmOperandInfo &OpInfo = ConstraintOperands.back();
5115 
5116     // Update multiple alternative constraint count.
5117     if (OpInfo.multipleAlternatives.size() > maCount)
5118       maCount = OpInfo.multipleAlternatives.size();
5119 
5120     OpInfo.ConstraintVT = MVT::Other;
5121 
5122     // Compute the value type for each operand.
5123     switch (OpInfo.Type) {
5124     case InlineAsm::isOutput:
5125       // Indirect outputs just consume an argument.
5126       if (OpInfo.isIndirect) {
5127         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5128         break;
5129       }
5130 
5131       // The return value of the call is this value.  As such, there is no
5132       // corresponding argument.
5133       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
5134       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
5135         OpInfo.ConstraintVT =
5136             getSimpleValueType(DL, STy->getElementType(ResNo));
5137       } else {
5138         assert(ResNo == 0 && "Asm only has one result!");
5139         OpInfo.ConstraintVT =
5140             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
5141       }
5142       ++ResNo;
5143       break;
5144     case InlineAsm::isInput:
5145       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5146       break;
5147     case InlineAsm::isClobber:
5148       // Nothing to do.
5149       break;
5150     }
5151 
5152     if (OpInfo.CallOperandVal) {
5153       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
5154       if (OpInfo.isIndirect) {
5155         OpTy = Call.getParamElementType(ArgNo);
5156         assert(OpTy && "Indirect operand must have elementtype attribute");
5157       }
5158 
5159       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5160       if (StructType *STy = dyn_cast<StructType>(OpTy))
5161         if (STy->getNumElements() == 1)
5162           OpTy = STy->getElementType(0);
5163 
5164       // If OpTy is not a single value, it may be a struct/union that we
5165       // can tile with integers.
5166       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5167         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
5168         switch (BitSize) {
5169         default: break;
5170         case 1:
5171         case 8:
5172         case 16:
5173         case 32:
5174         case 64:
5175         case 128:
5176           OpInfo.ConstraintVT =
5177               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
5178           break;
5179         }
5180       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
5181         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
5182         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
5183       } else {
5184         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
5185       }
5186 
5187       ArgNo++;
5188     }
5189   }
5190 
5191   // If we have multiple alternative constraints, select the best alternative.
5192   if (!ConstraintOperands.empty()) {
5193     if (maCount) {
5194       unsigned bestMAIndex = 0;
5195       int bestWeight = -1;
5196       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
5197       int weight = -1;
5198       unsigned maIndex;
5199       // Compute the sums of the weights for each alternative, keeping track
5200       // of the best (highest weight) one so far.
5201       for (maIndex = 0; maIndex < maCount; ++maIndex) {
5202         int weightSum = 0;
5203         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5204              cIndex != eIndex; ++cIndex) {
5205           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5206           if (OpInfo.Type == InlineAsm::isClobber)
5207             continue;
5208 
5209           // If this is an output operand with a matching input operand,
5210           // look up the matching input. If their types mismatch, e.g. one
5211           // is an integer, the other is floating point, or their sizes are
5212           // different, flag it as an maCantMatch.
5213           if (OpInfo.hasMatchingInput()) {
5214             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5215             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5216               if ((OpInfo.ConstraintVT.isInteger() !=
5217                    Input.ConstraintVT.isInteger()) ||
5218                   (OpInfo.ConstraintVT.getSizeInBits() !=
5219                    Input.ConstraintVT.getSizeInBits())) {
5220                 weightSum = -1; // Can't match.
5221                 break;
5222               }
5223             }
5224           }
5225           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
5226           if (weight == -1) {
5227             weightSum = -1;
5228             break;
5229           }
5230           weightSum += weight;
5231         }
5232         // Update best.
5233         if (weightSum > bestWeight) {
5234           bestWeight = weightSum;
5235           bestMAIndex = maIndex;
5236         }
5237       }
5238 
5239       // Now select chosen alternative in each constraint.
5240       for (AsmOperandInfo &cInfo : ConstraintOperands)
5241         if (cInfo.Type != InlineAsm::isClobber)
5242           cInfo.selectAlternative(bestMAIndex);
5243     }
5244   }
5245 
5246   // Check and hook up tied operands, choose constraint code to use.
5247   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5248        cIndex != eIndex; ++cIndex) {
5249     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5250 
5251     // If this is an output operand with a matching input operand, look up the
5252     // matching input. If their types mismatch, e.g. one is an integer, the
5253     // other is floating point, or their sizes are different, flag it as an
5254     // error.
5255     if (OpInfo.hasMatchingInput()) {
5256       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5257 
5258       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5259         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
5260             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
5261                                          OpInfo.ConstraintVT);
5262         std::pair<unsigned, const TargetRegisterClass *> InputRC =
5263             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
5264                                          Input.ConstraintVT);
5265         if ((OpInfo.ConstraintVT.isInteger() !=
5266              Input.ConstraintVT.isInteger()) ||
5267             (MatchRC.second != InputRC.second)) {
5268           report_fatal_error("Unsupported asm: input constraint"
5269                              " with a matching output constraint of"
5270                              " incompatible type!");
5271         }
5272       }
5273     }
5274   }
5275 
5276   return ConstraintOperands;
5277 }
5278 
5279 /// Return an integer indicating how general CT is.
5280 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
5281   switch (CT) {
5282   case TargetLowering::C_Immediate:
5283   case TargetLowering::C_Other:
5284   case TargetLowering::C_Unknown:
5285     return 0;
5286   case TargetLowering::C_Register:
5287     return 1;
5288   case TargetLowering::C_RegisterClass:
5289     return 2;
5290   case TargetLowering::C_Memory:
5291     return 3;
5292   }
5293   llvm_unreachable("Invalid constraint type");
5294 }
5295 
5296 /// Examine constraint type and operand type and determine a weight value.
5297 /// This object must already have been set up with the operand type
5298 /// and the current alternative constraint selected.
5299 TargetLowering::ConstraintWeight
5300   TargetLowering::getMultipleConstraintMatchWeight(
5301     AsmOperandInfo &info, int maIndex) const {
5302   InlineAsm::ConstraintCodeVector *rCodes;
5303   if (maIndex >= (int)info.multipleAlternatives.size())
5304     rCodes = &info.Codes;
5305   else
5306     rCodes = &info.multipleAlternatives[maIndex].Codes;
5307   ConstraintWeight BestWeight = CW_Invalid;
5308 
5309   // Loop over the options, keeping track of the most general one.
5310   for (const std::string &rCode : *rCodes) {
5311     ConstraintWeight weight =
5312         getSingleConstraintMatchWeight(info, rCode.c_str());
5313     if (weight > BestWeight)
5314       BestWeight = weight;
5315   }
5316 
5317   return BestWeight;
5318 }
5319 
5320 /// Examine constraint type and operand type and determine a weight value.
5321 /// This object must already have been set up with the operand type
5322 /// and the current alternative constraint selected.
5323 TargetLowering::ConstraintWeight
5324   TargetLowering::getSingleConstraintMatchWeight(
5325     AsmOperandInfo &info, const char *constraint) const {
5326   ConstraintWeight weight = CW_Invalid;
5327   Value *CallOperandVal = info.CallOperandVal;
5328     // If we don't have a value, we can't do a match,
5329     // but allow it at the lowest weight.
5330   if (!CallOperandVal)
5331     return CW_Default;
5332   // Look at the constraint type.
5333   switch (*constraint) {
5334     case 'i': // immediate integer.
5335     case 'n': // immediate integer with a known value.
5336       if (isa<ConstantInt>(CallOperandVal))
5337         weight = CW_Constant;
5338       break;
5339     case 's': // non-explicit intregal immediate.
5340       if (isa<GlobalValue>(CallOperandVal))
5341         weight = CW_Constant;
5342       break;
5343     case 'E': // immediate float if host format.
5344     case 'F': // immediate float.
5345       if (isa<ConstantFP>(CallOperandVal))
5346         weight = CW_Constant;
5347       break;
5348     case '<': // memory operand with autodecrement.
5349     case '>': // memory operand with autoincrement.
5350     case 'm': // memory operand.
5351     case 'o': // offsettable memory operand
5352     case 'V': // non-offsettable memory operand
5353       weight = CW_Memory;
5354       break;
5355     case 'r': // general register.
5356     case 'g': // general register, memory operand or immediate integer.
5357               // note: Clang converts "g" to "imr".
5358       if (CallOperandVal->getType()->isIntegerTy())
5359         weight = CW_Register;
5360       break;
5361     case 'X': // any operand.
5362   default:
5363     weight = CW_Default;
5364     break;
5365   }
5366   return weight;
5367 }
5368 
5369 /// If there are multiple different constraints that we could pick for this
5370 /// operand (e.g. "imr") try to pick the 'best' one.
5371 /// This is somewhat tricky: constraints fall into four classes:
5372 ///    Other         -> immediates and magic values
5373 ///    Register      -> one specific register
5374 ///    RegisterClass -> a group of regs
5375 ///    Memory        -> memory
5376 /// Ideally, we would pick the most specific constraint possible: if we have
5377 /// something that fits into a register, we would pick it.  The problem here
5378 /// is that if we have something that could either be in a register or in
5379 /// memory that use of the register could cause selection of *other*
5380 /// operands to fail: they might only succeed if we pick memory.  Because of
5381 /// this the heuristic we use is:
5382 ///
5383 ///  1) If there is an 'other' constraint, and if the operand is valid for
5384 ///     that constraint, use it.  This makes us take advantage of 'i'
5385 ///     constraints when available.
5386 ///  2) Otherwise, pick the most general constraint present.  This prefers
5387 ///     'm' over 'r', for example.
5388 ///
5389 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
5390                              const TargetLowering &TLI,
5391                              SDValue Op, SelectionDAG *DAG) {
5392   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
5393   unsigned BestIdx = 0;
5394   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
5395   int BestGenerality = -1;
5396 
5397   // Loop over the options, keeping track of the most general one.
5398   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
5399     TargetLowering::ConstraintType CType =
5400       TLI.getConstraintType(OpInfo.Codes[i]);
5401 
5402     // Indirect 'other' or 'immediate' constraints are not allowed.
5403     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
5404                                CType == TargetLowering::C_Register ||
5405                                CType == TargetLowering::C_RegisterClass))
5406       continue;
5407 
5408     // If this is an 'other' or 'immediate' constraint, see if the operand is
5409     // valid for it. For example, on X86 we might have an 'rI' constraint. If
5410     // the operand is an integer in the range [0..31] we want to use I (saving a
5411     // load of a register), otherwise we must use 'r'.
5412     if ((CType == TargetLowering::C_Other ||
5413          CType == TargetLowering::C_Immediate) && Op.getNode()) {
5414       assert(OpInfo.Codes[i].size() == 1 &&
5415              "Unhandled multi-letter 'other' constraint");
5416       std::vector<SDValue> ResultOps;
5417       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
5418                                        ResultOps, *DAG);
5419       if (!ResultOps.empty()) {
5420         BestType = CType;
5421         BestIdx = i;
5422         break;
5423       }
5424     }
5425 
5426     // Things with matching constraints can only be registers, per gcc
5427     // documentation.  This mainly affects "g" constraints.
5428     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
5429       continue;
5430 
5431     // This constraint letter is more general than the previous one, use it.
5432     int Generality = getConstraintGenerality(CType);
5433     if (Generality > BestGenerality) {
5434       BestType = CType;
5435       BestIdx = i;
5436       BestGenerality = Generality;
5437     }
5438   }
5439 
5440   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
5441   OpInfo.ConstraintType = BestType;
5442 }
5443 
5444 /// Determines the constraint code and constraint type to use for the specific
5445 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5446 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5447                                             SDValue Op,
5448                                             SelectionDAG *DAG) const {
5449   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
5450 
5451   // Single-letter constraints ('r') are very common.
5452   if (OpInfo.Codes.size() == 1) {
5453     OpInfo.ConstraintCode = OpInfo.Codes[0];
5454     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5455   } else {
5456     ChooseConstraint(OpInfo, *this, Op, DAG);
5457   }
5458 
5459   // 'X' matches anything.
5460   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
5461     // Constants are handled elsewhere.  For Functions, the type here is the
5462     // type of the result, which is not what we want to look at; leave them
5463     // alone.
5464     Value *v = OpInfo.CallOperandVal;
5465     if (isa<ConstantInt>(v) || isa<Function>(v)) {
5466       return;
5467     }
5468 
5469     if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
5470       OpInfo.ConstraintCode = "i";
5471       return;
5472     }
5473 
5474     // Otherwise, try to resolve it to something we know about by looking at
5475     // the actual operand type.
5476     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5477       OpInfo.ConstraintCode = Repl;
5478       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5479     }
5480   }
5481 }
5482 
5483 /// Given an exact SDIV by a constant, create a multiplication
5484 /// with the multiplicative inverse of the constant.
5485 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5486                               const SDLoc &dl, SelectionDAG &DAG,
5487                               SmallVectorImpl<SDNode *> &Created) {
5488   SDValue Op0 = N->getOperand(0);
5489   SDValue Op1 = N->getOperand(1);
5490   EVT VT = N->getValueType(0);
5491   EVT SVT = VT.getScalarType();
5492   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5493   EVT ShSVT = ShVT.getScalarType();
5494 
5495   bool UseSRA = false;
5496   SmallVector<SDValue, 16> Shifts, Factors;
5497 
5498   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5499     if (C->isZero())
5500       return false;
5501     APInt Divisor = C->getAPIntValue();
5502     unsigned Shift = Divisor.countTrailingZeros();
5503     if (Shift) {
5504       Divisor.ashrInPlace(Shift);
5505       UseSRA = true;
5506     }
5507     // Calculate the multiplicative inverse, using Newton's method.
5508     APInt t;
5509     APInt Factor = Divisor;
5510     while ((t = Divisor * Factor) != 1)
5511       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5512     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5513     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5514     return true;
5515   };
5516 
5517   // Collect all magic values from the build vector.
5518   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5519     return SDValue();
5520 
5521   SDValue Shift, Factor;
5522   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5523     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5524     Factor = DAG.getBuildVector(VT, dl, Factors);
5525   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5526     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5527            "Expected matchUnaryPredicate to return one element for scalable "
5528            "vectors");
5529     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5530     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5531   } else {
5532     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5533     Shift = Shifts[0];
5534     Factor = Factors[0];
5535   }
5536 
5537   SDValue Res = Op0;
5538 
5539   // Shift the value upfront if it is even, so the LSB is one.
5540   if (UseSRA) {
5541     // TODO: For UDIV use SRL instead of SRA.
5542     SDNodeFlags Flags;
5543     Flags.setExact(true);
5544     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5545     Created.push_back(Res.getNode());
5546   }
5547 
5548   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5549 }
5550 
5551 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5552                               SelectionDAG &DAG,
5553                               SmallVectorImpl<SDNode *> &Created) const {
5554   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5555   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5556   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5557     return SDValue(N, 0); // Lower SDIV as SDIV
5558   return SDValue();
5559 }
5560 
5561 /// Given an ISD::SDIV node expressing a divide by constant,
5562 /// return a DAG expression to select that will generate the same value by
5563 /// multiplying by a magic number.
5564 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5565 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5566                                   bool IsAfterLegalization,
5567                                   SmallVectorImpl<SDNode *> &Created) const {
5568   SDLoc dl(N);
5569   EVT VT = N->getValueType(0);
5570   EVT SVT = VT.getScalarType();
5571   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5572   EVT ShSVT = ShVT.getScalarType();
5573   unsigned EltBits = VT.getScalarSizeInBits();
5574   EVT MulVT;
5575 
5576   // Check to see if we can do this.
5577   // FIXME: We should be more aggressive here.
5578   if (!isTypeLegal(VT)) {
5579     // Limit this to simple scalars for now.
5580     if (VT.isVector() || !VT.isSimple())
5581       return SDValue();
5582 
5583     // If this type will be promoted to a large enough type with a legal
5584     // multiply operation, we can go ahead and do this transform.
5585     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5586       return SDValue();
5587 
5588     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5589     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5590         !isOperationLegal(ISD::MUL, MulVT))
5591       return SDValue();
5592   }
5593 
5594   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5595   if (N->getFlags().hasExact())
5596     return BuildExactSDIV(*this, N, dl, DAG, Created);
5597 
5598   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5599 
5600   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5601     if (C->isZero())
5602       return false;
5603 
5604     const APInt &Divisor = C->getAPIntValue();
5605     SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
5606     int NumeratorFactor = 0;
5607     int ShiftMask = -1;
5608 
5609     if (Divisor.isOne() || Divisor.isAllOnes()) {
5610       // If d is +1/-1, we just multiply the numerator by +1/-1.
5611       NumeratorFactor = Divisor.getSExtValue();
5612       magics.Magic = 0;
5613       magics.ShiftAmount = 0;
5614       ShiftMask = 0;
5615     } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
5616       // If d > 0 and m < 0, add the numerator.
5617       NumeratorFactor = 1;
5618     } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
5619       // If d < 0 and m > 0, subtract the numerator.
5620       NumeratorFactor = -1;
5621     }
5622 
5623     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
5624     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5625     Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
5626     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5627     return true;
5628   };
5629 
5630   SDValue N0 = N->getOperand(0);
5631   SDValue N1 = N->getOperand(1);
5632 
5633   // Collect the shifts / magic values from each element.
5634   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5635     return SDValue();
5636 
5637   SDValue MagicFactor, Factor, Shift, ShiftMask;
5638   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5639     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5640     Factor = DAG.getBuildVector(VT, dl, Factors);
5641     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5642     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5643   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5644     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5645            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5646            "Expected matchUnaryPredicate to return one element for scalable "
5647            "vectors");
5648     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5649     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5650     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5651     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5652   } else {
5653     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5654     MagicFactor = MagicFactors[0];
5655     Factor = Factors[0];
5656     Shift = Shifts[0];
5657     ShiftMask = ShiftMasks[0];
5658   }
5659 
5660   // Multiply the numerator (operand 0) by the magic value.
5661   // FIXME: We should support doing a MUL in a wider type.
5662   auto GetMULHS = [&](SDValue X, SDValue Y) {
5663     // If the type isn't legal, use a wider mul of the the type calculated
5664     // earlier.
5665     if (!isTypeLegal(VT)) {
5666       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5667       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5668       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5669       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5670                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5671       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5672     }
5673 
5674     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5675       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5676     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5677       SDValue LoHi =
5678           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5679       return SDValue(LoHi.getNode(), 1);
5680     }
5681     return SDValue();
5682   };
5683 
5684   SDValue Q = GetMULHS(N0, MagicFactor);
5685   if (!Q)
5686     return SDValue();
5687 
5688   Created.push_back(Q.getNode());
5689 
5690   // (Optionally) Add/subtract the numerator using Factor.
5691   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5692   Created.push_back(Factor.getNode());
5693   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5694   Created.push_back(Q.getNode());
5695 
5696   // Shift right algebraic by shift value.
5697   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5698   Created.push_back(Q.getNode());
5699 
5700   // Extract the sign bit, mask it and add it to the quotient.
5701   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5702   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5703   Created.push_back(T.getNode());
5704   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5705   Created.push_back(T.getNode());
5706   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5707 }
5708 
5709 /// Given an ISD::UDIV node expressing a divide by constant,
5710 /// return a DAG expression to select that will generate the same value by
5711 /// multiplying by a magic number.
5712 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5713 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5714                                   bool IsAfterLegalization,
5715                                   SmallVectorImpl<SDNode *> &Created) const {
5716   SDLoc dl(N);
5717   EVT VT = N->getValueType(0);
5718   EVT SVT = VT.getScalarType();
5719   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5720   EVT ShSVT = ShVT.getScalarType();
5721   unsigned EltBits = VT.getScalarSizeInBits();
5722   EVT MulVT;
5723 
5724   // Check to see if we can do this.
5725   // FIXME: We should be more aggressive here.
5726   if (!isTypeLegal(VT)) {
5727     // Limit this to simple scalars for now.
5728     if (VT.isVector() || !VT.isSimple())
5729       return SDValue();
5730 
5731     // If this type will be promoted to a large enough type with a legal
5732     // multiply operation, we can go ahead and do this transform.
5733     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5734       return SDValue();
5735 
5736     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5737     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5738         !isOperationLegal(ISD::MUL, MulVT))
5739       return SDValue();
5740   }
5741 
5742   bool UseNPQ = false;
5743   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5744 
5745   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5746     if (C->isZero())
5747       return false;
5748     // FIXME: We should use a narrower constant when the upper
5749     // bits are known to be zero.
5750     const APInt& Divisor = C->getAPIntValue();
5751     UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor);
5752     unsigned PreShift = 0, PostShift = 0;
5753 
5754     // If the divisor is even, we can avoid using the expensive fixup by
5755     // shifting the divided value upfront.
5756     if (magics.IsAdd != 0 && !Divisor[0]) {
5757       PreShift = Divisor.countTrailingZeros();
5758       // Get magic number for the shifted divisor.
5759       magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift);
5760       assert(magics.IsAdd == 0 && "Should use cheap fixup now");
5761     }
5762 
5763     APInt Magic = magics.Magic;
5764 
5765     unsigned SelNPQ;
5766     if (magics.IsAdd == 0 || Divisor.isOne()) {
5767       assert(magics.ShiftAmount < Divisor.getBitWidth() &&
5768              "We shouldn't generate an undefined shift!");
5769       PostShift = magics.ShiftAmount;
5770       SelNPQ = false;
5771     } else {
5772       PostShift = magics.ShiftAmount - 1;
5773       SelNPQ = true;
5774     }
5775 
5776     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5777     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5778     NPQFactors.push_back(
5779         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5780                                : APInt::getZero(EltBits),
5781                         dl, SVT));
5782     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5783     UseNPQ |= SelNPQ;
5784     return true;
5785   };
5786 
5787   SDValue N0 = N->getOperand(0);
5788   SDValue N1 = N->getOperand(1);
5789 
5790   // Collect the shifts/magic values from each element.
5791   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5792     return SDValue();
5793 
5794   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5795   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5796     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5797     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5798     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5799     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5800   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5801     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
5802            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
5803            "Expected matchUnaryPredicate to return one for scalable vectors");
5804     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5805     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5806     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5807     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5808   } else {
5809     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5810     PreShift = PreShifts[0];
5811     MagicFactor = MagicFactors[0];
5812     PostShift = PostShifts[0];
5813   }
5814 
5815   SDValue Q = N0;
5816   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5817   Created.push_back(Q.getNode());
5818 
5819   // FIXME: We should support doing a MUL in a wider type.
5820   auto GetMULHU = [&](SDValue X, SDValue Y) {
5821     // If the type isn't legal, use a wider mul of the the type calculated
5822     // earlier.
5823     if (!isTypeLegal(VT)) {
5824       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
5825       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
5826       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5827       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5828                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5829       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5830     }
5831 
5832     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
5833       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5834     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
5835       SDValue LoHi =
5836           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5837       return SDValue(LoHi.getNode(), 1);
5838     }
5839     return SDValue(); // No mulhu or equivalent
5840   };
5841 
5842   // Multiply the numerator (operand 0) by the magic value.
5843   Q = GetMULHU(Q, MagicFactor);
5844   if (!Q)
5845     return SDValue();
5846 
5847   Created.push_back(Q.getNode());
5848 
5849   if (UseNPQ) {
5850     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5851     Created.push_back(NPQ.getNode());
5852 
5853     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5854     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5855     if (VT.isVector())
5856       NPQ = GetMULHU(NPQ, NPQFactor);
5857     else
5858       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5859 
5860     Created.push_back(NPQ.getNode());
5861 
5862     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5863     Created.push_back(Q.getNode());
5864   }
5865 
5866   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5867   Created.push_back(Q.getNode());
5868 
5869   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5870 
5871   SDValue One = DAG.getConstant(1, dl, VT);
5872   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
5873   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5874 }
5875 
5876 /// If all values in Values that *don't* match the predicate are same 'splat'
5877 /// value, then replace all values with that splat value.
5878 /// Else, if AlternativeReplacement was provided, then replace all values that
5879 /// do match predicate with AlternativeReplacement value.
5880 static void
5881 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5882                           std::function<bool(SDValue)> Predicate,
5883                           SDValue AlternativeReplacement = SDValue()) {
5884   SDValue Replacement;
5885   // Is there a value for which the Predicate does *NOT* match? What is it?
5886   auto SplatValue = llvm::find_if_not(Values, Predicate);
5887   if (SplatValue != Values.end()) {
5888     // Does Values consist only of SplatValue's and values matching Predicate?
5889     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5890           return Value == *SplatValue || Predicate(Value);
5891         })) // Then we shall replace values matching predicate with SplatValue.
5892       Replacement = *SplatValue;
5893   }
5894   if (!Replacement) {
5895     // Oops, we did not find the "baseline" splat value.
5896     if (!AlternativeReplacement)
5897       return; // Nothing to do.
5898     // Let's replace with provided value then.
5899     Replacement = AlternativeReplacement;
5900   }
5901   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5902 }
5903 
5904 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5905 /// where the divisor is constant and the comparison target is zero,
5906 /// return a DAG expression that will generate the same comparison result
5907 /// using only multiplications, additions and shifts/rotations.
5908 /// Ref: "Hacker's Delight" 10-17.
5909 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5910                                         SDValue CompTargetNode,
5911                                         ISD::CondCode Cond,
5912                                         DAGCombinerInfo &DCI,
5913                                         const SDLoc &DL) const {
5914   SmallVector<SDNode *, 5> Built;
5915   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5916                                          DCI, DL, Built)) {
5917     for (SDNode *N : Built)
5918       DCI.AddToWorklist(N);
5919     return Folded;
5920   }
5921 
5922   return SDValue();
5923 }
5924 
5925 SDValue
5926 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5927                                   SDValue CompTargetNode, ISD::CondCode Cond,
5928                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5929                                   SmallVectorImpl<SDNode *> &Created) const {
5930   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5931   // - D must be constant, with D = D0 * 2^K where D0 is odd
5932   // - P is the multiplicative inverse of D0 modulo 2^W
5933   // - Q = floor(((2^W) - 1) / D)
5934   // where W is the width of the common type of N and D.
5935   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5936          "Only applicable for (in)equality comparisons.");
5937 
5938   SelectionDAG &DAG = DCI.DAG;
5939 
5940   EVT VT = REMNode.getValueType();
5941   EVT SVT = VT.getScalarType();
5942   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5943   EVT ShSVT = ShVT.getScalarType();
5944 
5945   // If MUL is unavailable, we cannot proceed in any case.
5946   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5947     return SDValue();
5948 
5949   bool ComparingWithAllZeros = true;
5950   bool AllComparisonsWithNonZerosAreTautological = true;
5951   bool HadTautologicalLanes = false;
5952   bool AllLanesAreTautological = true;
5953   bool HadEvenDivisor = false;
5954   bool AllDivisorsArePowerOfTwo = true;
5955   bool HadTautologicalInvertedLanes = false;
5956   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5957 
5958   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5959     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5960     if (CDiv->isZero())
5961       return false;
5962 
5963     const APInt &D = CDiv->getAPIntValue();
5964     const APInt &Cmp = CCmp->getAPIntValue();
5965 
5966     ComparingWithAllZeros &= Cmp.isZero();
5967 
5968     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5969     // if C2 is not less than C1, the comparison is always false.
5970     // But we will only be able to produce the comparison that will give the
5971     // opposive tautological answer. So this lane would need to be fixed up.
5972     bool TautologicalInvertedLane = D.ule(Cmp);
5973     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5974 
5975     // If all lanes are tautological (either all divisors are ones, or divisor
5976     // is not greater than the constant we are comparing with),
5977     // we will prefer to avoid the fold.
5978     bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
5979     HadTautologicalLanes |= TautologicalLane;
5980     AllLanesAreTautological &= TautologicalLane;
5981 
5982     // If we are comparing with non-zero, we need'll need  to subtract said
5983     // comparison value from the LHS. But there is no point in doing that if
5984     // every lane where we are comparing with non-zero is tautological..
5985     if (!Cmp.isZero())
5986       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5987 
5988     // Decompose D into D0 * 2^K
5989     unsigned K = D.countTrailingZeros();
5990     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
5991     APInt D0 = D.lshr(K);
5992 
5993     // D is even if it has trailing zeros.
5994     HadEvenDivisor |= (K != 0);
5995     // D is a power-of-two if D0 is one.
5996     // If all divisors are power-of-two, we will prefer to avoid the fold.
5997     AllDivisorsArePowerOfTwo &= D0.isOne();
5998 
5999     // P = inv(D0, 2^W)
6000     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6001     unsigned W = D.getBitWidth();
6002     APInt P = D0.zext(W + 1)
6003                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6004                   .trunc(W);
6005     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6006     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6007 
6008     // Q = floor((2^W - 1) u/ D)
6009     // R = ((2^W - 1) u% D)
6010     APInt Q, R;
6011     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
6012 
6013     // If we are comparing with zero, then that comparison constant is okay,
6014     // else it may need to be one less than that.
6015     if (Cmp.ugt(R))
6016       Q -= 1;
6017 
6018     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6019            "We are expecting that K is always less than all-ones for ShSVT");
6020 
6021     // If the lane is tautological the result can be constant-folded.
6022     if (TautologicalLane) {
6023       // Set P and K amount to a bogus values so we can try to splat them.
6024       P = 0;
6025       K = -1;
6026       // And ensure that comparison constant is tautological,
6027       // it will always compare true/false.
6028       Q = -1;
6029     }
6030 
6031     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6032     KAmts.push_back(
6033         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6034     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6035     return true;
6036   };
6037 
6038   SDValue N = REMNode.getOperand(0);
6039   SDValue D = REMNode.getOperand(1);
6040 
6041   // Collect the values from each element.
6042   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
6043     return SDValue();
6044 
6045   // If all lanes are tautological, the result can be constant-folded.
6046   if (AllLanesAreTautological)
6047     return SDValue();
6048 
6049   // If this is a urem by a powers-of-two, avoid the fold since it can be
6050   // best implemented as a bit test.
6051   if (AllDivisorsArePowerOfTwo)
6052     return SDValue();
6053 
6054   SDValue PVal, KVal, QVal;
6055   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6056     if (HadTautologicalLanes) {
6057       // Try to turn PAmts into a splat, since we don't care about the values
6058       // that are currently '0'. If we can't, just keep '0'`s.
6059       turnVectorIntoSplatVector(PAmts, isNullConstant);
6060       // Try to turn KAmts into a splat, since we don't care about the values
6061       // that are currently '-1'. If we can't, change them to '0'`s.
6062       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6063                                 DAG.getConstant(0, DL, ShSVT));
6064     }
6065 
6066     PVal = DAG.getBuildVector(VT, DL, PAmts);
6067     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6068     QVal = DAG.getBuildVector(VT, DL, QAmts);
6069   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6070     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
6071            "Expected matchBinaryPredicate to return one element for "
6072            "SPLAT_VECTORs");
6073     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6074     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6075     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6076   } else {
6077     PVal = PAmts[0];
6078     KVal = KAmts[0];
6079     QVal = QAmts[0];
6080   }
6081 
6082   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
6083     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
6084       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
6085     assert(CompTargetNode.getValueType() == N.getValueType() &&
6086            "Expecting that the types on LHS and RHS of comparisons match.");
6087     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
6088   }
6089 
6090   // (mul N, P)
6091   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6092   Created.push_back(Op0.getNode());
6093 
6094   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6095   // divisors as a performance improvement, since rotating by 0 is a no-op.
6096   if (HadEvenDivisor) {
6097     // We need ROTR to do this.
6098     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6099       return SDValue();
6100     // UREM: (rotr (mul N, P), K)
6101     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6102     Created.push_back(Op0.getNode());
6103   }
6104 
6105   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
6106   SDValue NewCC =
6107       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6108                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6109   if (!HadTautologicalInvertedLanes)
6110     return NewCC;
6111 
6112   // If any lanes previously compared always-false, the NewCC will give
6113   // always-true result for them, so we need to fixup those lanes.
6114   // Or the other way around for inequality predicate.
6115   assert(VT.isVector() && "Can/should only get here for vectors.");
6116   Created.push_back(NewCC.getNode());
6117 
6118   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6119   // if C2 is not less than C1, the comparison is always false.
6120   // But we have produced the comparison that will give the
6121   // opposive tautological answer. So these lanes would need to be fixed up.
6122   SDValue TautologicalInvertedChannels =
6123       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
6124   Created.push_back(TautologicalInvertedChannels.getNode());
6125 
6126   // NOTE: we avoid letting illegal types through even if we're before legalize
6127   // ops – legalization has a hard time producing good code for this.
6128   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
6129     // If we have a vector select, let's replace the comparison results in the
6130     // affected lanes with the correct tautological result.
6131     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
6132                                               DL, SETCCVT, SETCCVT);
6133     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
6134                        Replacement, NewCC);
6135   }
6136 
6137   // Else, we can just invert the comparison result in the appropriate lanes.
6138   //
6139   // NOTE: see the note above VSELECT above.
6140   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
6141     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
6142                        TautologicalInvertedChannels);
6143 
6144   return SDValue(); // Don't know how to lower.
6145 }
6146 
6147 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
6148 /// where the divisor is constant and the comparison target is zero,
6149 /// return a DAG expression that will generate the same comparison result
6150 /// using only multiplications, additions and shifts/rotations.
6151 /// Ref: "Hacker's Delight" 10-17.
6152 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
6153                                         SDValue CompTargetNode,
6154                                         ISD::CondCode Cond,
6155                                         DAGCombinerInfo &DCI,
6156                                         const SDLoc &DL) const {
6157   SmallVector<SDNode *, 7> Built;
6158   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6159                                          DCI, DL, Built)) {
6160     assert(Built.size() <= 7 && "Max size prediction failed.");
6161     for (SDNode *N : Built)
6162       DCI.AddToWorklist(N);
6163     return Folded;
6164   }
6165 
6166   return SDValue();
6167 }
6168 
6169 SDValue
6170 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
6171                                   SDValue CompTargetNode, ISD::CondCode Cond,
6172                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6173                                   SmallVectorImpl<SDNode *> &Created) const {
6174   // Fold:
6175   //   (seteq/ne (srem N, D), 0)
6176   // To:
6177   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
6178   //
6179   // - D must be constant, with D = D0 * 2^K where D0 is odd
6180   // - P is the multiplicative inverse of D0 modulo 2^W
6181   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
6182   // - Q = floor((2 * A) / (2^K))
6183   // where W is the width of the common type of N and D.
6184   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6185          "Only applicable for (in)equality comparisons.");
6186 
6187   SelectionDAG &DAG = DCI.DAG;
6188 
6189   EVT VT = REMNode.getValueType();
6190   EVT SVT = VT.getScalarType();
6191   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
6192   EVT ShSVT = ShVT.getScalarType();
6193 
6194   // If we are after ops legalization, and MUL is unavailable, we can not
6195   // proceed.
6196   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6197     return SDValue();
6198 
6199   // TODO: Could support comparing with non-zero too.
6200   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
6201   if (!CompTarget || !CompTarget->isZero())
6202     return SDValue();
6203 
6204   bool HadIntMinDivisor = false;
6205   bool HadOneDivisor = false;
6206   bool AllDivisorsAreOnes = true;
6207   bool HadEvenDivisor = false;
6208   bool NeedToApplyOffset = false;
6209   bool AllDivisorsArePowerOfTwo = true;
6210   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
6211 
6212   auto BuildSREMPattern = [&](ConstantSDNode *C) {
6213     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6214     if (C->isZero())
6215       return false;
6216 
6217     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
6218 
6219     // WARNING: this fold is only valid for positive divisors!
6220     APInt D = C->getAPIntValue();
6221     if (D.isNegative())
6222       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
6223 
6224     HadIntMinDivisor |= D.isMinSignedValue();
6225 
6226     // If all divisors are ones, we will prefer to avoid the fold.
6227     HadOneDivisor |= D.isOne();
6228     AllDivisorsAreOnes &= D.isOne();
6229 
6230     // Decompose D into D0 * 2^K
6231     unsigned K = D.countTrailingZeros();
6232     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6233     APInt D0 = D.lshr(K);
6234 
6235     if (!D.isMinSignedValue()) {
6236       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
6237       // we don't care about this lane in this fold, we'll special-handle it.
6238       HadEvenDivisor |= (K != 0);
6239     }
6240 
6241     // D is a power-of-two if D0 is one. This includes INT_MIN.
6242     // If all divisors are power-of-two, we will prefer to avoid the fold.
6243     AllDivisorsArePowerOfTwo &= D0.isOne();
6244 
6245     // P = inv(D0, 2^W)
6246     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6247     unsigned W = D.getBitWidth();
6248     APInt P = D0.zext(W + 1)
6249                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6250                   .trunc(W);
6251     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6252     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6253 
6254     // A = floor((2^(W - 1) - 1) / D0) & -2^K
6255     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
6256     A.clearLowBits(K);
6257 
6258     if (!D.isMinSignedValue()) {
6259       // If divisor INT_MIN, then we don't care about this lane in this fold,
6260       // we'll special-handle it.
6261       NeedToApplyOffset |= A != 0;
6262     }
6263 
6264     // Q = floor((2 * A) / (2^K))
6265     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
6266 
6267     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
6268            "We are expecting that A is always less than all-ones for SVT");
6269     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6270            "We are expecting that K is always less than all-ones for ShSVT");
6271 
6272     // If the divisor is 1 the result can be constant-folded. Likewise, we
6273     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
6274     if (D.isOne()) {
6275       // Set P, A and K to a bogus values so we can try to splat them.
6276       P = 0;
6277       A = -1;
6278       K = -1;
6279 
6280       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
6281       Q = -1;
6282     }
6283 
6284     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6285     AAmts.push_back(DAG.getConstant(A, DL, SVT));
6286     KAmts.push_back(
6287         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6288     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6289     return true;
6290   };
6291 
6292   SDValue N = REMNode.getOperand(0);
6293   SDValue D = REMNode.getOperand(1);
6294 
6295   // Collect the values from each element.
6296   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
6297     return SDValue();
6298 
6299   // If this is a srem by a one, avoid the fold since it can be constant-folded.
6300   if (AllDivisorsAreOnes)
6301     return SDValue();
6302 
6303   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
6304   // since it can be best implemented as a bit test.
6305   if (AllDivisorsArePowerOfTwo)
6306     return SDValue();
6307 
6308   SDValue PVal, AVal, KVal, QVal;
6309   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6310     if (HadOneDivisor) {
6311       // Try to turn PAmts into a splat, since we don't care about the values
6312       // that are currently '0'. If we can't, just keep '0'`s.
6313       turnVectorIntoSplatVector(PAmts, isNullConstant);
6314       // Try to turn AAmts into a splat, since we don't care about the
6315       // values that are currently '-1'. If we can't, change them to '0'`s.
6316       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
6317                                 DAG.getConstant(0, DL, SVT));
6318       // Try to turn KAmts into a splat, since we don't care about the values
6319       // that are currently '-1'. If we can't, change them to '0'`s.
6320       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6321                                 DAG.getConstant(0, DL, ShSVT));
6322     }
6323 
6324     PVal = DAG.getBuildVector(VT, DL, PAmts);
6325     AVal = DAG.getBuildVector(VT, DL, AAmts);
6326     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6327     QVal = DAG.getBuildVector(VT, DL, QAmts);
6328   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6329     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
6330            QAmts.size() == 1 &&
6331            "Expected matchUnaryPredicate to return one element for scalable "
6332            "vectors");
6333     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6334     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
6335     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6336     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6337   } else {
6338     assert(isa<ConstantSDNode>(D) && "Expected a constant");
6339     PVal = PAmts[0];
6340     AVal = AAmts[0];
6341     KVal = KAmts[0];
6342     QVal = QAmts[0];
6343   }
6344 
6345   // (mul N, P)
6346   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6347   Created.push_back(Op0.getNode());
6348 
6349   if (NeedToApplyOffset) {
6350     // We need ADD to do this.
6351     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
6352       return SDValue();
6353 
6354     // (add (mul N, P), A)
6355     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
6356     Created.push_back(Op0.getNode());
6357   }
6358 
6359   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6360   // divisors as a performance improvement, since rotating by 0 is a no-op.
6361   if (HadEvenDivisor) {
6362     // We need ROTR to do this.
6363     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6364       return SDValue();
6365     // SREM: (rotr (add (mul N, P), A), K)
6366     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6367     Created.push_back(Op0.getNode());
6368   }
6369 
6370   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
6371   SDValue Fold =
6372       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6373                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6374 
6375   // If we didn't have lanes with INT_MIN divisor, then we're done.
6376   if (!HadIntMinDivisor)
6377     return Fold;
6378 
6379   // That fold is only valid for positive divisors. Which effectively means,
6380   // it is invalid for INT_MIN divisors. So if we have such a lane,
6381   // we must fix-up results for said lanes.
6382   assert(VT.isVector() && "Can/should only get here for vectors.");
6383 
6384   // NOTE: we avoid letting illegal types through even if we're before legalize
6385   // ops – legalization has a hard time producing good code for the code that
6386   // follows.
6387   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
6388       !isOperationLegalOrCustom(ISD::AND, VT) ||
6389       !isOperationLegalOrCustom(Cond, VT) ||
6390       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
6391     return SDValue();
6392 
6393   Created.push_back(Fold.getNode());
6394 
6395   SDValue IntMin = DAG.getConstant(
6396       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
6397   SDValue IntMax = DAG.getConstant(
6398       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
6399   SDValue Zero =
6400       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
6401 
6402   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
6403   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
6404   Created.push_back(DivisorIsIntMin.getNode());
6405 
6406   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
6407   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
6408   Created.push_back(Masked.getNode());
6409   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
6410   Created.push_back(MaskedIsZero.getNode());
6411 
6412   // To produce final result we need to blend 2 vectors: 'SetCC' and
6413   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
6414   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
6415   // constant-folded, select can get lowered to a shuffle with constant mask.
6416   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
6417                                 MaskedIsZero, Fold);
6418 
6419   return Blended;
6420 }
6421 
6422 bool TargetLowering::
6423 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
6424   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
6425     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
6426                                 "be a constant integer");
6427     return true;
6428   }
6429 
6430   return false;
6431 }
6432 
6433 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
6434                                          const DenormalMode &Mode) const {
6435   SDLoc DL(Op);
6436   EVT VT = Op.getValueType();
6437   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6438   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
6439   // Testing it with denormal inputs to avoid wrong estimate.
6440   if (Mode.Input == DenormalMode::IEEE) {
6441     // This is specifically a check for the handling of denormal inputs,
6442     // not the result.
6443 
6444     // Test = fabs(X) < SmallestNormal
6445     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
6446     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
6447     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
6448     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
6449     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
6450   }
6451   // Test = X == 0.0
6452   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
6453 }
6454 
6455 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
6456                                              bool LegalOps, bool OptForSize,
6457                                              NegatibleCost &Cost,
6458                                              unsigned Depth) const {
6459   // fneg is removable even if it has multiple uses.
6460   if (Op.getOpcode() == ISD::FNEG) {
6461     Cost = NegatibleCost::Cheaper;
6462     return Op.getOperand(0);
6463   }
6464 
6465   // Don't recurse exponentially.
6466   if (Depth > SelectionDAG::MaxRecursionDepth)
6467     return SDValue();
6468 
6469   // Pre-increment recursion depth for use in recursive calls.
6470   ++Depth;
6471   const SDNodeFlags Flags = Op->getFlags();
6472   const TargetOptions &Options = DAG.getTarget().Options;
6473   EVT VT = Op.getValueType();
6474   unsigned Opcode = Op.getOpcode();
6475 
6476   // Don't allow anything with multiple uses unless we know it is free.
6477   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6478     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6479                         isFPExtFree(VT, Op.getOperand(0).getValueType());
6480     if (!IsFreeExtend)
6481       return SDValue();
6482   }
6483 
6484   auto RemoveDeadNode = [&](SDValue N) {
6485     if (N && N.getNode()->use_empty())
6486       DAG.RemoveDeadNode(N.getNode());
6487   };
6488 
6489   SDLoc DL(Op);
6490 
6491   // Because getNegatedExpression can delete nodes we need a handle to keep
6492   // temporary nodes alive in case the recursion manages to create an identical
6493   // node.
6494   std::list<HandleSDNode> Handles;
6495 
6496   switch (Opcode) {
6497   case ISD::ConstantFP: {
6498     // Don't invert constant FP values after legalization unless the target says
6499     // the negated constant is legal.
6500     bool IsOpLegal =
6501         isOperationLegal(ISD::ConstantFP, VT) ||
6502         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6503                      OptForSize);
6504 
6505     if (LegalOps && !IsOpLegal)
6506       break;
6507 
6508     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6509     V.changeSign();
6510     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6511 
6512     // If we already have the use of the negated floating constant, it is free
6513     // to negate it even it has multiple uses.
6514     if (!Op.hasOneUse() && CFP.use_empty())
6515       break;
6516     Cost = NegatibleCost::Neutral;
6517     return CFP;
6518   }
6519   case ISD::BUILD_VECTOR: {
6520     // Only permit BUILD_VECTOR of constants.
6521     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6522           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6523         }))
6524       break;
6525 
6526     bool IsOpLegal =
6527         (isOperationLegal(ISD::ConstantFP, VT) &&
6528          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6529         llvm::all_of(Op->op_values(), [&](SDValue N) {
6530           return N.isUndef() ||
6531                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6532                               OptForSize);
6533         });
6534 
6535     if (LegalOps && !IsOpLegal)
6536       break;
6537 
6538     SmallVector<SDValue, 4> Ops;
6539     for (SDValue C : Op->op_values()) {
6540       if (C.isUndef()) {
6541         Ops.push_back(C);
6542         continue;
6543       }
6544       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6545       V.changeSign();
6546       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6547     }
6548     Cost = NegatibleCost::Neutral;
6549     return DAG.getBuildVector(VT, DL, Ops);
6550   }
6551   case ISD::FADD: {
6552     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6553       break;
6554 
6555     // After operation legalization, it might not be legal to create new FSUBs.
6556     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6557       break;
6558     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6559 
6560     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6561     NegatibleCost CostX = NegatibleCost::Expensive;
6562     SDValue NegX =
6563         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6564     // Prevent this node from being deleted by the next call.
6565     if (NegX)
6566       Handles.emplace_back(NegX);
6567 
6568     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6569     NegatibleCost CostY = NegatibleCost::Expensive;
6570     SDValue NegY =
6571         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6572 
6573     // We're done with the handles.
6574     Handles.clear();
6575 
6576     // Negate the X if its cost is less or equal than Y.
6577     if (NegX && (CostX <= CostY)) {
6578       Cost = CostX;
6579       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6580       if (NegY != N)
6581         RemoveDeadNode(NegY);
6582       return N;
6583     }
6584 
6585     // Negate the Y if it is not expensive.
6586     if (NegY) {
6587       Cost = CostY;
6588       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6589       if (NegX != N)
6590         RemoveDeadNode(NegX);
6591       return N;
6592     }
6593     break;
6594   }
6595   case ISD::FSUB: {
6596     // We can't turn -(A-B) into B-A when we honor signed zeros.
6597     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6598       break;
6599 
6600     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6601     // fold (fneg (fsub 0, Y)) -> Y
6602     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6603       if (C->isZero()) {
6604         Cost = NegatibleCost::Cheaper;
6605         return Y;
6606       }
6607 
6608     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6609     Cost = NegatibleCost::Neutral;
6610     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6611   }
6612   case ISD::FMUL:
6613   case ISD::FDIV: {
6614     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6615 
6616     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6617     NegatibleCost CostX = NegatibleCost::Expensive;
6618     SDValue NegX =
6619         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6620     // Prevent this node from being deleted by the next call.
6621     if (NegX)
6622       Handles.emplace_back(NegX);
6623 
6624     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6625     NegatibleCost CostY = NegatibleCost::Expensive;
6626     SDValue NegY =
6627         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6628 
6629     // We're done with the handles.
6630     Handles.clear();
6631 
6632     // Negate the X if its cost is less or equal than Y.
6633     if (NegX && (CostX <= CostY)) {
6634       Cost = CostX;
6635       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6636       if (NegY != N)
6637         RemoveDeadNode(NegY);
6638       return N;
6639     }
6640 
6641     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6642     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6643       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6644         break;
6645 
6646     // Negate the Y if it is not expensive.
6647     if (NegY) {
6648       Cost = CostY;
6649       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6650       if (NegX != N)
6651         RemoveDeadNode(NegX);
6652       return N;
6653     }
6654     break;
6655   }
6656   case ISD::FMA:
6657   case ISD::FMAD: {
6658     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6659       break;
6660 
6661     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6662     NegatibleCost CostZ = NegatibleCost::Expensive;
6663     SDValue NegZ =
6664         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6665     // Give up if fail to negate the Z.
6666     if (!NegZ)
6667       break;
6668 
6669     // Prevent this node from being deleted by the next two calls.
6670     Handles.emplace_back(NegZ);
6671 
6672     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6673     NegatibleCost CostX = NegatibleCost::Expensive;
6674     SDValue NegX =
6675         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6676     // Prevent this node from being deleted by the next call.
6677     if (NegX)
6678       Handles.emplace_back(NegX);
6679 
6680     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6681     NegatibleCost CostY = NegatibleCost::Expensive;
6682     SDValue NegY =
6683         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6684 
6685     // We're done with the handles.
6686     Handles.clear();
6687 
6688     // Negate the X if its cost is less or equal than Y.
6689     if (NegX && (CostX <= CostY)) {
6690       Cost = std::min(CostX, CostZ);
6691       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6692       if (NegY != N)
6693         RemoveDeadNode(NegY);
6694       return N;
6695     }
6696 
6697     // Negate the Y if it is not expensive.
6698     if (NegY) {
6699       Cost = std::min(CostY, CostZ);
6700       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6701       if (NegX != N)
6702         RemoveDeadNode(NegX);
6703       return N;
6704     }
6705     break;
6706   }
6707 
6708   case ISD::FP_EXTEND:
6709   case ISD::FSIN:
6710     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6711                                             OptForSize, Cost, Depth))
6712       return DAG.getNode(Opcode, DL, VT, NegV);
6713     break;
6714   case ISD::FP_ROUND:
6715     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6716                                             OptForSize, Cost, Depth))
6717       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6718     break;
6719   }
6720 
6721   return SDValue();
6722 }
6723 
6724 //===----------------------------------------------------------------------===//
6725 // Legalization Utilities
6726 //===----------------------------------------------------------------------===//
6727 
6728 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6729                                     SDValue LHS, SDValue RHS,
6730                                     SmallVectorImpl<SDValue> &Result,
6731                                     EVT HiLoVT, SelectionDAG &DAG,
6732                                     MulExpansionKind Kind, SDValue LL,
6733                                     SDValue LH, SDValue RL, SDValue RH) const {
6734   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6735          Opcode == ISD::SMUL_LOHI);
6736 
6737   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6738                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6739   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6740                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6741   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6742                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6743   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6744                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6745 
6746   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6747     return false;
6748 
6749   unsigned OuterBitSize = VT.getScalarSizeInBits();
6750   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6751 
6752   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6753   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6754          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6755 
6756   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6757   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6758                           bool Signed) -> bool {
6759     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6760       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6761       Hi = SDValue(Lo.getNode(), 1);
6762       return true;
6763     }
6764     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6765       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6766       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6767       return true;
6768     }
6769     return false;
6770   };
6771 
6772   SDValue Lo, Hi;
6773 
6774   if (!LL.getNode() && !RL.getNode() &&
6775       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6776     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6777     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6778   }
6779 
6780   if (!LL.getNode())
6781     return false;
6782 
6783   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6784   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6785       DAG.MaskedValueIsZero(RHS, HighMask)) {
6786     // The inputs are both zero-extended.
6787     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6788       Result.push_back(Lo);
6789       Result.push_back(Hi);
6790       if (Opcode != ISD::MUL) {
6791         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6792         Result.push_back(Zero);
6793         Result.push_back(Zero);
6794       }
6795       return true;
6796     }
6797   }
6798 
6799   if (!VT.isVector() && Opcode == ISD::MUL &&
6800       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6801       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6802     // The input values are both sign-extended.
6803     // TODO non-MUL case?
6804     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6805       Result.push_back(Lo);
6806       Result.push_back(Hi);
6807       return true;
6808     }
6809   }
6810 
6811   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6812   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6813   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6814 
6815   if (!LH.getNode() && !RH.getNode() &&
6816       isOperationLegalOrCustom(ISD::SRL, VT) &&
6817       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6818     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6819     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6820     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6821     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6822   }
6823 
6824   if (!LH.getNode())
6825     return false;
6826 
6827   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6828     return false;
6829 
6830   Result.push_back(Lo);
6831 
6832   if (Opcode == ISD::MUL) {
6833     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6834     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6835     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6836     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6837     Result.push_back(Hi);
6838     return true;
6839   }
6840 
6841   // Compute the full width result.
6842   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6843     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6844     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6845     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6846     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6847   };
6848 
6849   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6850   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6851     return false;
6852 
6853   // This is effectively the add part of a multiply-add of half-sized operands,
6854   // so it cannot overflow.
6855   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6856 
6857   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6858     return false;
6859 
6860   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6861   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6862 
6863   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6864                   isOperationLegalOrCustom(ISD::ADDE, VT));
6865   if (UseGlue)
6866     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6867                        Merge(Lo, Hi));
6868   else
6869     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6870                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6871 
6872   SDValue Carry = Next.getValue(1);
6873   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6874   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6875 
6876   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6877     return false;
6878 
6879   if (UseGlue)
6880     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6881                      Carry);
6882   else
6883     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6884                      Zero, Carry);
6885 
6886   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6887 
6888   if (Opcode == ISD::SMUL_LOHI) {
6889     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6890                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6891     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6892 
6893     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6894                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6895     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6896   }
6897 
6898   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6899   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6900   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6901   return true;
6902 }
6903 
6904 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6905                                SelectionDAG &DAG, MulExpansionKind Kind,
6906                                SDValue LL, SDValue LH, SDValue RL,
6907                                SDValue RH) const {
6908   SmallVector<SDValue, 2> Result;
6909   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6910                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6911                            DAG, Kind, LL, LH, RL, RH);
6912   if (Ok) {
6913     assert(Result.size() == 2);
6914     Lo = Result[0];
6915     Hi = Result[1];
6916   }
6917   return Ok;
6918 }
6919 
6920 // Check that (every element of) Z is undef or not an exact multiple of BW.
6921 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
6922   return ISD::matchUnaryPredicate(
6923       Z,
6924       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
6925       true);
6926 }
6927 
6928 SDValue TargetLowering::expandFunnelShift(SDNode *Node,
6929                                           SelectionDAG &DAG) const {
6930   EVT VT = Node->getValueType(0);
6931 
6932   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6933                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6934                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6935                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6936     return SDValue();
6937 
6938   SDValue X = Node->getOperand(0);
6939   SDValue Y = Node->getOperand(1);
6940   SDValue Z = Node->getOperand(2);
6941 
6942   unsigned BW = VT.getScalarSizeInBits();
6943   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6944   SDLoc DL(SDValue(Node, 0));
6945 
6946   EVT ShVT = Z.getValueType();
6947 
6948   // If a funnel shift in the other direction is more supported, use it.
6949   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
6950   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6951       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
6952     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6953       // fshl X, Y, Z -> fshr X, Y, -Z
6954       // fshr X, Y, Z -> fshl X, Y, -Z
6955       SDValue Zero = DAG.getConstant(0, DL, ShVT);
6956       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
6957     } else {
6958       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
6959       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
6960       SDValue One = DAG.getConstant(1, DL, ShVT);
6961       if (IsFSHL) {
6962         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6963         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
6964       } else {
6965         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6966         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
6967       }
6968       Z = DAG.getNOT(DL, Z, ShVT);
6969     }
6970     return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
6971   }
6972 
6973   SDValue ShX, ShY;
6974   SDValue ShAmt, InvShAmt;
6975   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6976     // fshl: X << C | Y >> (BW - C)
6977     // fshr: X << (BW - C) | Y >> C
6978     // where C = Z % BW is not zero
6979     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6980     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6981     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6982     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6983     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6984   } else {
6985     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6986     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6987     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
6988     if (isPowerOf2_32(BW)) {
6989       // Z % BW -> Z & (BW - 1)
6990       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6991       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
6992       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
6993     } else {
6994       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6995       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6996       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
6997     }
6998 
6999     SDValue One = DAG.getConstant(1, DL, ShVT);
7000     if (IsFSHL) {
7001       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
7002       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
7003       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
7004     } else {
7005       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
7006       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
7007       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
7008     }
7009   }
7010   return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
7011 }
7012 
7013 // TODO: Merge with expandFunnelShift.
7014 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
7015                                   SelectionDAG &DAG) const {
7016   EVT VT = Node->getValueType(0);
7017   unsigned EltSizeInBits = VT.getScalarSizeInBits();
7018   bool IsLeft = Node->getOpcode() == ISD::ROTL;
7019   SDValue Op0 = Node->getOperand(0);
7020   SDValue Op1 = Node->getOperand(1);
7021   SDLoc DL(SDValue(Node, 0));
7022 
7023   EVT ShVT = Op1.getValueType();
7024   SDValue Zero = DAG.getConstant(0, DL, ShVT);
7025 
7026   // If a rotate in the other direction is more supported, use it.
7027   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
7028   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
7029       isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
7030     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
7031     return DAG.getNode(RevRot, DL, VT, Op0, Sub);
7032   }
7033 
7034   if (!AllowVectorOps && VT.isVector() &&
7035       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
7036        !isOperationLegalOrCustom(ISD::SRL, VT) ||
7037        !isOperationLegalOrCustom(ISD::SUB, VT) ||
7038        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
7039        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
7040     return SDValue();
7041 
7042   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
7043   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
7044   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
7045   SDValue ShVal;
7046   SDValue HsVal;
7047   if (isPowerOf2_32(EltSizeInBits)) {
7048     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
7049     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
7050     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
7051     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
7052     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
7053     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
7054     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
7055   } else {
7056     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
7057     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
7058     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
7059     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
7060     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
7061     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
7062     SDValue One = DAG.getConstant(1, DL, ShVT);
7063     HsVal =
7064         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
7065   }
7066   return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
7067 }
7068 
7069 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
7070                                       SelectionDAG &DAG) const {
7071   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
7072   EVT VT = Node->getValueType(0);
7073   unsigned VTBits = VT.getScalarSizeInBits();
7074   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
7075 
7076   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
7077   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
7078   SDValue ShOpLo = Node->getOperand(0);
7079   SDValue ShOpHi = Node->getOperand(1);
7080   SDValue ShAmt = Node->getOperand(2);
7081   EVT ShAmtVT = ShAmt.getValueType();
7082   EVT ShAmtCCVT =
7083       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
7084   SDLoc dl(Node);
7085 
7086   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
7087   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
7088   // away during isel.
7089   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
7090                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
7091   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7092                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
7093                        : DAG.getConstant(0, dl, VT);
7094 
7095   SDValue Tmp2, Tmp3;
7096   if (IsSHL) {
7097     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
7098     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
7099   } else {
7100     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
7101     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
7102   }
7103 
7104   // If the shift amount is larger or equal than the width of a part we don't
7105   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
7106   // values for large shift amounts.
7107   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
7108                                 DAG.getConstant(VTBits, dl, ShAmtVT));
7109   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
7110                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
7111 
7112   if (IsSHL) {
7113     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7114     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7115   } else {
7116     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7117     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7118   }
7119 }
7120 
7121 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
7122                                       SelectionDAG &DAG) const {
7123   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7124   SDValue Src = Node->getOperand(OpNo);
7125   EVT SrcVT = Src.getValueType();
7126   EVT DstVT = Node->getValueType(0);
7127   SDLoc dl(SDValue(Node, 0));
7128 
7129   // FIXME: Only f32 to i64 conversions are supported.
7130   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
7131     return false;
7132 
7133   if (Node->isStrictFPOpcode())
7134     // When a NaN is converted to an integer a trap is allowed. We can't
7135     // use this expansion here because it would eliminate that trap. Other
7136     // traps are also allowed and cannot be eliminated. See
7137     // IEEE 754-2008 sec 5.8.
7138     return false;
7139 
7140   // Expand f32 -> i64 conversion
7141   // This algorithm comes from compiler-rt's implementation of fixsfdi:
7142   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
7143   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
7144   EVT IntVT = SrcVT.changeTypeToInteger();
7145   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
7146 
7147   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
7148   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
7149   SDValue Bias = DAG.getConstant(127, dl, IntVT);
7150   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
7151   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
7152   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
7153 
7154   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
7155 
7156   SDValue ExponentBits = DAG.getNode(
7157       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
7158       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
7159   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
7160 
7161   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
7162                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
7163                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
7164   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
7165 
7166   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
7167                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
7168                           DAG.getConstant(0x00800000, dl, IntVT));
7169 
7170   R = DAG.getZExtOrTrunc(R, dl, DstVT);
7171 
7172   R = DAG.getSelectCC(
7173       dl, Exponent, ExponentLoBit,
7174       DAG.getNode(ISD::SHL, dl, DstVT, R,
7175                   DAG.getZExtOrTrunc(
7176                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
7177                       dl, IntShVT)),
7178       DAG.getNode(ISD::SRL, dl, DstVT, R,
7179                   DAG.getZExtOrTrunc(
7180                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
7181                       dl, IntShVT)),
7182       ISD::SETGT);
7183 
7184   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
7185                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
7186 
7187   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
7188                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
7189   return true;
7190 }
7191 
7192 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
7193                                       SDValue &Chain,
7194                                       SelectionDAG &DAG) const {
7195   SDLoc dl(SDValue(Node, 0));
7196   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7197   SDValue Src = Node->getOperand(OpNo);
7198 
7199   EVT SrcVT = Src.getValueType();
7200   EVT DstVT = Node->getValueType(0);
7201   EVT SetCCVT =
7202       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
7203   EVT DstSetCCVT =
7204       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
7205 
7206   // Only expand vector types if we have the appropriate vector bit operations.
7207   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
7208                                                    ISD::FP_TO_SINT;
7209   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
7210                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
7211     return false;
7212 
7213   // If the maximum float value is smaller then the signed integer range,
7214   // the destination signmask can't be represented by the float, so we can
7215   // just use FP_TO_SINT directly.
7216   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
7217   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
7218   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
7219   if (APFloat::opOverflow &
7220       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
7221     if (Node->isStrictFPOpcode()) {
7222       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7223                            { Node->getOperand(0), Src });
7224       Chain = Result.getValue(1);
7225     } else
7226       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7227     return true;
7228   }
7229 
7230   // Don't expand it if there isn't cheap fsub instruction.
7231   if (!isOperationLegalOrCustom(
7232           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
7233     return false;
7234 
7235   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
7236   SDValue Sel;
7237 
7238   if (Node->isStrictFPOpcode()) {
7239     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
7240                        Node->getOperand(0), /*IsSignaling*/ true);
7241     Chain = Sel.getValue(1);
7242   } else {
7243     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
7244   }
7245 
7246   bool Strict = Node->isStrictFPOpcode() ||
7247                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
7248 
7249   if (Strict) {
7250     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
7251     // signmask then offset (the result of which should be fully representable).
7252     // Sel = Src < 0x8000000000000000
7253     // FltOfs = select Sel, 0, 0x8000000000000000
7254     // IntOfs = select Sel, 0, 0x8000000000000000
7255     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
7256 
7257     // TODO: Should any fast-math-flags be set for the FSUB?
7258     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
7259                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
7260     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7261     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
7262                                    DAG.getConstant(0, dl, DstVT),
7263                                    DAG.getConstant(SignMask, dl, DstVT));
7264     SDValue SInt;
7265     if (Node->isStrictFPOpcode()) {
7266       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
7267                                 { Chain, Src, FltOfs });
7268       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7269                          { Val.getValue(1), Val });
7270       Chain = SInt.getValue(1);
7271     } else {
7272       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
7273       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
7274     }
7275     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
7276   } else {
7277     // Expand based on maximum range of FP_TO_SINT:
7278     // True = fp_to_sint(Src)
7279     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
7280     // Result = select (Src < 0x8000000000000000), True, False
7281 
7282     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7283     // TODO: Should any fast-math-flags be set for the FSUB?
7284     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
7285                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
7286     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
7287                         DAG.getConstant(SignMask, dl, DstVT));
7288     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7289     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
7290   }
7291   return true;
7292 }
7293 
7294 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
7295                                       SDValue &Chain,
7296                                       SelectionDAG &DAG) const {
7297   // This transform is not correct for converting 0 when rounding mode is set
7298   // to round toward negative infinity which will produce -0.0. So disable under
7299   // strictfp.
7300   if (Node->isStrictFPOpcode())
7301     return false;
7302 
7303   SDValue Src = Node->getOperand(0);
7304   EVT SrcVT = Src.getValueType();
7305   EVT DstVT = Node->getValueType(0);
7306 
7307   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
7308     return false;
7309 
7310   // Only expand vector types if we have the appropriate vector bit operations.
7311   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
7312                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
7313                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
7314                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
7315                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
7316     return false;
7317 
7318   SDLoc dl(SDValue(Node, 0));
7319   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
7320 
7321   // Implementation of unsigned i64 to f64 following the algorithm in
7322   // __floatundidf in compiler_rt.  This implementation performs rounding
7323   // correctly in all rounding modes with the exception of converting 0
7324   // when rounding toward negative infinity. In that case the fsub will produce
7325   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
7326   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
7327   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
7328       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
7329   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
7330   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
7331   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
7332 
7333   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
7334   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
7335   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
7336   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
7337   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
7338   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
7339   SDValue HiSub =
7340       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
7341   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
7342   return true;
7343 }
7344 
7345 SDValue
7346 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node,
7347                                                SelectionDAG &DAG) const {
7348   unsigned Opcode = Node->getOpcode();
7349   assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM ||
7350           Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) &&
7351          "Wrong opcode");
7352 
7353   if (Node->getFlags().hasNoNaNs()) {
7354     ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
7355     SDValue Op1 = Node->getOperand(0);
7356     SDValue Op2 = Node->getOperand(1);
7357     SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred);
7358     // Copy FMF flags, but always set the no-signed-zeros flag
7359     // as this is implied by the FMINNUM/FMAXNUM semantics.
7360     SDNodeFlags Flags = Node->getFlags();
7361     Flags.setNoSignedZeros(true);
7362     SelCC->setFlags(Flags);
7363     return SelCC;
7364   }
7365 
7366   return SDValue();
7367 }
7368 
7369 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
7370                                               SelectionDAG &DAG) const {
7371   SDLoc dl(Node);
7372   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
7373     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
7374   EVT VT = Node->getValueType(0);
7375 
7376   if (VT.isScalableVector())
7377     report_fatal_error(
7378         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
7379 
7380   if (isOperationLegalOrCustom(NewOp, VT)) {
7381     SDValue Quiet0 = Node->getOperand(0);
7382     SDValue Quiet1 = Node->getOperand(1);
7383 
7384     if (!Node->getFlags().hasNoNaNs()) {
7385       // Insert canonicalizes if it's possible we need to quiet to get correct
7386       // sNaN behavior.
7387       if (!DAG.isKnownNeverSNaN(Quiet0)) {
7388         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
7389                              Node->getFlags());
7390       }
7391       if (!DAG.isKnownNeverSNaN(Quiet1)) {
7392         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
7393                              Node->getFlags());
7394       }
7395     }
7396 
7397     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
7398   }
7399 
7400   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
7401   // instead if there are no NaNs.
7402   if (Node->getFlags().hasNoNaNs()) {
7403     unsigned IEEE2018Op =
7404         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
7405     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
7406       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
7407                          Node->getOperand(1), Node->getFlags());
7408     }
7409   }
7410 
7411   if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG))
7412     return SelCC;
7413 
7414   return SDValue();
7415 }
7416 
7417 // Only expand vector types if we have the appropriate vector bit operations.
7418 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
7419   assert(VT.isVector() && "Expected vector type");
7420   unsigned Len = VT.getScalarSizeInBits();
7421   return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
7422          TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
7423          TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
7424          (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
7425          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
7426 }
7427 
7428 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
7429   SDLoc dl(Node);
7430   EVT VT = Node->getValueType(0);
7431   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7432   SDValue Op = Node->getOperand(0);
7433   unsigned Len = VT.getScalarSizeInBits();
7434   assert(VT.isInteger() && "CTPOP not implemented for this type.");
7435 
7436   // TODO: Add support for irregular type lengths.
7437   if (!(Len <= 128 && Len % 8 == 0))
7438     return SDValue();
7439 
7440   // Only expand vector types if we have the appropriate vector bit operations.
7441   if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
7442     return SDValue();
7443 
7444   // This is the "best" algorithm from
7445   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
7446   SDValue Mask55 =
7447       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
7448   SDValue Mask33 =
7449       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
7450   SDValue Mask0F =
7451       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
7452   SDValue Mask01 =
7453       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
7454 
7455   // v = v - ((v >> 1) & 0x55555555...)
7456   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
7457                    DAG.getNode(ISD::AND, dl, VT,
7458                                DAG.getNode(ISD::SRL, dl, VT, Op,
7459                                            DAG.getConstant(1, dl, ShVT)),
7460                                Mask55));
7461   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
7462   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
7463                    DAG.getNode(ISD::AND, dl, VT,
7464                                DAG.getNode(ISD::SRL, dl, VT, Op,
7465                                            DAG.getConstant(2, dl, ShVT)),
7466                                Mask33));
7467   // v = (v + (v >> 4)) & 0x0F0F0F0F...
7468   Op = DAG.getNode(ISD::AND, dl, VT,
7469                    DAG.getNode(ISD::ADD, dl, VT, Op,
7470                                DAG.getNode(ISD::SRL, dl, VT, Op,
7471                                            DAG.getConstant(4, dl, ShVT))),
7472                    Mask0F);
7473   // v = (v * 0x01010101...) >> (Len - 8)
7474   if (Len > 8)
7475     Op =
7476         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
7477                     DAG.getConstant(Len - 8, dl, ShVT));
7478 
7479   return Op;
7480 }
7481 
7482 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
7483   SDLoc dl(Node);
7484   EVT VT = Node->getValueType(0);
7485   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7486   SDValue Op = Node->getOperand(0);
7487   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7488 
7489   // If the non-ZERO_UNDEF version is supported we can use that instead.
7490   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
7491       isOperationLegalOrCustom(ISD::CTLZ, VT))
7492     return DAG.getNode(ISD::CTLZ, dl, VT, Op);
7493 
7494   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7495   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
7496     EVT SetCCVT =
7497         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7498     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
7499     SDValue Zero = DAG.getConstant(0, dl, VT);
7500     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7501     return DAG.getSelect(dl, VT, SrcIsZero,
7502                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
7503   }
7504 
7505   // Only expand vector types if we have the appropriate vector bit operations.
7506   // This includes the operations needed to expand CTPOP if it isn't supported.
7507   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7508                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7509                          !canExpandVectorCTPOP(*this, VT)) ||
7510                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7511                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7512     return SDValue();
7513 
7514   // for now, we do this:
7515   // x = x | (x >> 1);
7516   // x = x | (x >> 2);
7517   // ...
7518   // x = x | (x >>16);
7519   // x = x | (x >>32); // for 64-bit input
7520   // return popcount(~x);
7521   //
7522   // Ref: "Hacker's Delight" by Henry Warren
7523   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
7524     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
7525     Op = DAG.getNode(ISD::OR, dl, VT, Op,
7526                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
7527   }
7528   Op = DAG.getNOT(dl, Op, VT);
7529   return DAG.getNode(ISD::CTPOP, dl, VT, Op);
7530 }
7531 
7532 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
7533   SDLoc dl(Node);
7534   EVT VT = Node->getValueType(0);
7535   SDValue Op = Node->getOperand(0);
7536   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7537 
7538   // If the non-ZERO_UNDEF version is supported we can use that instead.
7539   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
7540       isOperationLegalOrCustom(ISD::CTTZ, VT))
7541     return DAG.getNode(ISD::CTTZ, dl, VT, Op);
7542 
7543   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7544   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7545     EVT SetCCVT =
7546         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7547     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7548     SDValue Zero = DAG.getConstant(0, dl, VT);
7549     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7550     return DAG.getSelect(dl, VT, SrcIsZero,
7551                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7552   }
7553 
7554   // Only expand vector types if we have the appropriate vector bit operations.
7555   // This includes the operations needed to expand CTPOP if it isn't supported.
7556   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7557                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7558                          !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
7559                          !canExpandVectorCTPOP(*this, VT)) ||
7560                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7561                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
7562                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7563     return SDValue();
7564 
7565   // for now, we use: { return popcount(~x & (x - 1)); }
7566   // unless the target has ctlz but not ctpop, in which case we use:
7567   // { return 32 - nlz(~x & (x-1)); }
7568   // Ref: "Hacker's Delight" by Henry Warren
7569   SDValue Tmp = DAG.getNode(
7570       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
7571       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
7572 
7573   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
7574   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
7575     return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
7576                        DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
7577   }
7578 
7579   return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
7580 }
7581 
7582 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
7583                                   bool IsNegative) const {
7584   SDLoc dl(N);
7585   EVT VT = N->getValueType(0);
7586   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7587   SDValue Op = N->getOperand(0);
7588 
7589   // abs(x) -> smax(x,sub(0,x))
7590   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7591       isOperationLegal(ISD::SMAX, VT)) {
7592     SDValue Zero = DAG.getConstant(0, dl, VT);
7593     return DAG.getNode(ISD::SMAX, dl, VT, Op,
7594                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7595   }
7596 
7597   // abs(x) -> umin(x,sub(0,x))
7598   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7599       isOperationLegal(ISD::UMIN, VT)) {
7600     SDValue Zero = DAG.getConstant(0, dl, VT);
7601     return DAG.getNode(ISD::UMIN, dl, VT, Op,
7602                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7603   }
7604 
7605   // 0 - abs(x) -> smin(x, sub(0,x))
7606   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
7607       isOperationLegal(ISD::SMIN, VT)) {
7608     SDValue Zero = DAG.getConstant(0, dl, VT);
7609     return DAG.getNode(ISD::SMIN, dl, VT, Op,
7610                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7611   }
7612 
7613   // Only expand vector types if we have the appropriate vector operations.
7614   if (VT.isVector() &&
7615       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
7616        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
7617        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
7618        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7619     return SDValue();
7620 
7621   SDValue Shift =
7622       DAG.getNode(ISD::SRA, dl, VT, Op,
7623                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
7624   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
7625 
7626   // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y)
7627   if (!IsNegative)
7628     return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift);
7629 
7630   // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
7631   return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
7632 }
7633 
7634 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
7635   SDLoc dl(N);
7636   EVT VT = N->getValueType(0);
7637   SDValue Op = N->getOperand(0);
7638 
7639   if (!VT.isSimple())
7640     return SDValue();
7641 
7642   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7643   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
7644   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
7645   default:
7646     return SDValue();
7647   case MVT::i16:
7648     // Use a rotate by 8. This can be further expanded if necessary.
7649     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7650   case MVT::i32:
7651     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7652     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7653     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7654     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7655     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7656                        DAG.getConstant(0xFF0000, dl, VT));
7657     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
7658     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7659     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7660     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7661   case MVT::i64:
7662     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7663     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7664     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7665     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7666     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7667     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7668     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7669     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7670     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
7671                        DAG.getConstant(255ULL<<48, dl, VT));
7672     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
7673                        DAG.getConstant(255ULL<<40, dl, VT));
7674     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
7675                        DAG.getConstant(255ULL<<32, dl, VT));
7676     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
7677                        DAG.getConstant(255ULL<<24, dl, VT));
7678     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7679                        DAG.getConstant(255ULL<<16, dl, VT));
7680     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
7681                        DAG.getConstant(255ULL<<8 , dl, VT));
7682     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
7683     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
7684     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7685     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7686     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
7687     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7688     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
7689   }
7690 }
7691 
7692 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
7693   SDLoc dl(N);
7694   EVT VT = N->getValueType(0);
7695   SDValue Op = N->getOperand(0);
7696   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7697   unsigned Sz = VT.getScalarSizeInBits();
7698 
7699   SDValue Tmp, Tmp2, Tmp3;
7700 
7701   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
7702   // and finally the i1 pairs.
7703   // TODO: We can easily support i4/i2 legal types if any target ever does.
7704   if (Sz >= 8 && isPowerOf2_32(Sz)) {
7705     // Create the masks - repeating the pattern every byte.
7706     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
7707     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
7708     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
7709 
7710     // BSWAP if the type is wider than a single byte.
7711     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
7712 
7713     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
7714     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
7715     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
7716     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
7717     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
7718     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7719 
7720     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
7721     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
7722     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
7723     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
7724     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
7725     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7726 
7727     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
7728     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
7729     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
7730     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
7731     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
7732     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7733     return Tmp;
7734   }
7735 
7736   Tmp = DAG.getConstant(0, dl, VT);
7737   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
7738     if (I < J)
7739       Tmp2 =
7740           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
7741     else
7742       Tmp2 =
7743           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
7744 
7745     APInt Shift(Sz, 1);
7746     Shift <<= J;
7747     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
7748     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
7749   }
7750 
7751   return Tmp;
7752 }
7753 
7754 std::pair<SDValue, SDValue>
7755 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
7756                                     SelectionDAG &DAG) const {
7757   SDLoc SL(LD);
7758   SDValue Chain = LD->getChain();
7759   SDValue BasePTR = LD->getBasePtr();
7760   EVT SrcVT = LD->getMemoryVT();
7761   EVT DstVT = LD->getValueType(0);
7762   ISD::LoadExtType ExtType = LD->getExtensionType();
7763 
7764   if (SrcVT.isScalableVector())
7765     report_fatal_error("Cannot scalarize scalable vector loads");
7766 
7767   unsigned NumElem = SrcVT.getVectorNumElements();
7768 
7769   EVT SrcEltVT = SrcVT.getScalarType();
7770   EVT DstEltVT = DstVT.getScalarType();
7771 
7772   // A vector must always be stored in memory as-is, i.e. without any padding
7773   // between the elements, since various code depend on it, e.g. in the
7774   // handling of a bitcast of a vector type to int, which may be done with a
7775   // vector store followed by an integer load. A vector that does not have
7776   // elements that are byte-sized must therefore be stored as an integer
7777   // built out of the extracted vector elements.
7778   if (!SrcEltVT.isByteSized()) {
7779     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
7780     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
7781 
7782     unsigned NumSrcBits = SrcVT.getSizeInBits();
7783     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
7784 
7785     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
7786     SDValue SrcEltBitMask = DAG.getConstant(
7787         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
7788 
7789     // Load the whole vector and avoid masking off the top bits as it makes
7790     // the codegen worse.
7791     SDValue Load =
7792         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
7793                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
7794                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7795 
7796     SmallVector<SDValue, 8> Vals;
7797     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7798       unsigned ShiftIntoIdx =
7799           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7800       SDValue ShiftAmount =
7801           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
7802                                      LoadVT, SL, /*LegalTypes=*/false);
7803       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
7804       SDValue Elt =
7805           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
7806       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
7807 
7808       if (ExtType != ISD::NON_EXTLOAD) {
7809         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
7810         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
7811       }
7812 
7813       Vals.push_back(Scalar);
7814     }
7815 
7816     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7817     return std::make_pair(Value, Load.getValue(1));
7818   }
7819 
7820   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
7821   assert(SrcEltVT.isByteSized());
7822 
7823   SmallVector<SDValue, 8> Vals;
7824   SmallVector<SDValue, 8> LoadChains;
7825 
7826   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7827     SDValue ScalarLoad =
7828         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
7829                        LD->getPointerInfo().getWithOffset(Idx * Stride),
7830                        SrcEltVT, LD->getOriginalAlign(),
7831                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7832 
7833     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
7834 
7835     Vals.push_back(ScalarLoad.getValue(0));
7836     LoadChains.push_back(ScalarLoad.getValue(1));
7837   }
7838 
7839   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
7840   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7841 
7842   return std::make_pair(Value, NewChain);
7843 }
7844 
7845 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
7846                                              SelectionDAG &DAG) const {
7847   SDLoc SL(ST);
7848 
7849   SDValue Chain = ST->getChain();
7850   SDValue BasePtr = ST->getBasePtr();
7851   SDValue Value = ST->getValue();
7852   EVT StVT = ST->getMemoryVT();
7853 
7854   if (StVT.isScalableVector())
7855     report_fatal_error("Cannot scalarize scalable vector stores");
7856 
7857   // The type of the data we want to save
7858   EVT RegVT = Value.getValueType();
7859   EVT RegSclVT = RegVT.getScalarType();
7860 
7861   // The type of data as saved in memory.
7862   EVT MemSclVT = StVT.getScalarType();
7863 
7864   unsigned NumElem = StVT.getVectorNumElements();
7865 
7866   // A vector must always be stored in memory as-is, i.e. without any padding
7867   // between the elements, since various code depend on it, e.g. in the
7868   // handling of a bitcast of a vector type to int, which may be done with a
7869   // vector store followed by an integer load. A vector that does not have
7870   // elements that are byte-sized must therefore be stored as an integer
7871   // built out of the extracted vector elements.
7872   if (!MemSclVT.isByteSized()) {
7873     unsigned NumBits = StVT.getSizeInBits();
7874     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
7875 
7876     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
7877 
7878     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7879       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7880                                 DAG.getVectorIdxConstant(Idx, SL));
7881       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
7882       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
7883       unsigned ShiftIntoIdx =
7884           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7885       SDValue ShiftAmount =
7886           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
7887       SDValue ShiftedElt =
7888           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
7889       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
7890     }
7891 
7892     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
7893                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7894                         ST->getAAInfo());
7895   }
7896 
7897   // Store Stride in bytes
7898   unsigned Stride = MemSclVT.getSizeInBits() / 8;
7899   assert(Stride && "Zero stride!");
7900   // Extract each of the elements from the original vector and save them into
7901   // memory individually.
7902   SmallVector<SDValue, 8> Stores;
7903   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7904     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7905                               DAG.getVectorIdxConstant(Idx, SL));
7906 
7907     SDValue Ptr =
7908         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
7909 
7910     // This scalar TruncStore may be illegal, but we legalize it later.
7911     SDValue Store = DAG.getTruncStore(
7912         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
7913         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7914         ST->getAAInfo());
7915 
7916     Stores.push_back(Store);
7917   }
7918 
7919   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
7920 }
7921 
7922 std::pair<SDValue, SDValue>
7923 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
7924   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
7925          "unaligned indexed loads not implemented!");
7926   SDValue Chain = LD->getChain();
7927   SDValue Ptr = LD->getBasePtr();
7928   EVT VT = LD->getValueType(0);
7929   EVT LoadedVT = LD->getMemoryVT();
7930   SDLoc dl(LD);
7931   auto &MF = DAG.getMachineFunction();
7932 
7933   if (VT.isFloatingPoint() || VT.isVector()) {
7934     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
7935     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
7936       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
7937           LoadedVT.isVector()) {
7938         // Scalarize the load and let the individual components be handled.
7939         return scalarizeVectorLoad(LD, DAG);
7940       }
7941 
7942       // Expand to a (misaligned) integer load of the same size,
7943       // then bitconvert to floating point or vector.
7944       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
7945                                     LD->getMemOperand());
7946       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
7947       if (LoadedVT != VT)
7948         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
7949                              ISD::ANY_EXTEND, dl, VT, Result);
7950 
7951       return std::make_pair(Result, newLoad.getValue(1));
7952     }
7953 
7954     // Copy the value to a (aligned) stack slot using (unaligned) integer
7955     // loads and stores, then do a (aligned) load from the stack slot.
7956     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
7957     unsigned LoadedBytes = LoadedVT.getStoreSize();
7958     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7959     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
7960 
7961     // Make sure the stack slot is also aligned for the register type.
7962     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
7963     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
7964     SmallVector<SDValue, 8> Stores;
7965     SDValue StackPtr = StackBase;
7966     unsigned Offset = 0;
7967 
7968     EVT PtrVT = Ptr.getValueType();
7969     EVT StackPtrVT = StackPtr.getValueType();
7970 
7971     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7972     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7973 
7974     // Do all but one copies using the full register width.
7975     for (unsigned i = 1; i < NumRegs; i++) {
7976       // Load one integer register's worth from the original location.
7977       SDValue Load = DAG.getLoad(
7978           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
7979           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7980           LD->getAAInfo());
7981       // Follow the load with a store to the stack slot.  Remember the store.
7982       Stores.push_back(DAG.getStore(
7983           Load.getValue(1), dl, Load, StackPtr,
7984           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
7985       // Increment the pointers.
7986       Offset += RegBytes;
7987 
7988       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7989       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7990     }
7991 
7992     // The last copy may be partial.  Do an extending load.
7993     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
7994                                   8 * (LoadedBytes - Offset));
7995     SDValue Load =
7996         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
7997                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
7998                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7999                        LD->getAAInfo());
8000     // Follow the load with a store to the stack slot.  Remember the store.
8001     // On big-endian machines this requires a truncating store to ensure
8002     // that the bits end up in the right place.
8003     Stores.push_back(DAG.getTruncStore(
8004         Load.getValue(1), dl, Load, StackPtr,
8005         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
8006 
8007     // The order of the stores doesn't matter - say it with a TokenFactor.
8008     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8009 
8010     // Finally, perform the original load only redirected to the stack slot.
8011     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
8012                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
8013                           LoadedVT);
8014 
8015     // Callers expect a MERGE_VALUES node.
8016     return std::make_pair(Load, TF);
8017   }
8018 
8019   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
8020          "Unaligned load of unsupported type.");
8021 
8022   // Compute the new VT that is half the size of the old one.  This is an
8023   // integer MVT.
8024   unsigned NumBits = LoadedVT.getSizeInBits();
8025   EVT NewLoadedVT;
8026   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
8027   NumBits >>= 1;
8028 
8029   Align Alignment = LD->getOriginalAlign();
8030   unsigned IncrementSize = NumBits / 8;
8031   ISD::LoadExtType HiExtType = LD->getExtensionType();
8032 
8033   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
8034   if (HiExtType == ISD::NON_EXTLOAD)
8035     HiExtType = ISD::ZEXTLOAD;
8036 
8037   // Load the value in two parts
8038   SDValue Lo, Hi;
8039   if (DAG.getDataLayout().isLittleEndian()) {
8040     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
8041                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8042                         LD->getAAInfo());
8043 
8044     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8045     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
8046                         LD->getPointerInfo().getWithOffset(IncrementSize),
8047                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8048                         LD->getAAInfo());
8049   } else {
8050     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
8051                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8052                         LD->getAAInfo());
8053 
8054     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8055     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
8056                         LD->getPointerInfo().getWithOffset(IncrementSize),
8057                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8058                         LD->getAAInfo());
8059   }
8060 
8061   // aggregate the two parts
8062   SDValue ShiftAmount =
8063       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
8064                                                     DAG.getDataLayout()));
8065   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
8066   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
8067 
8068   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
8069                              Hi.getValue(1));
8070 
8071   return std::make_pair(Result, TF);
8072 }
8073 
8074 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
8075                                              SelectionDAG &DAG) const {
8076   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
8077          "unaligned indexed stores not implemented!");
8078   SDValue Chain = ST->getChain();
8079   SDValue Ptr = ST->getBasePtr();
8080   SDValue Val = ST->getValue();
8081   EVT VT = Val.getValueType();
8082   Align Alignment = ST->getOriginalAlign();
8083   auto &MF = DAG.getMachineFunction();
8084   EVT StoreMemVT = ST->getMemoryVT();
8085 
8086   SDLoc dl(ST);
8087   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
8088     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
8089     if (isTypeLegal(intVT)) {
8090       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
8091           StoreMemVT.isVector()) {
8092         // Scalarize the store and let the individual components be handled.
8093         SDValue Result = scalarizeVectorStore(ST, DAG);
8094         return Result;
8095       }
8096       // Expand to a bitconvert of the value to the integer type of the
8097       // same size, then a (misaligned) int store.
8098       // FIXME: Does not handle truncating floating point stores!
8099       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
8100       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
8101                             Alignment, ST->getMemOperand()->getFlags());
8102       return Result;
8103     }
8104     // Do a (aligned) store to a stack slot, then copy from the stack slot
8105     // to the final destination using (unaligned) integer loads and stores.
8106     MVT RegVT = getRegisterType(
8107         *DAG.getContext(),
8108         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
8109     EVT PtrVT = Ptr.getValueType();
8110     unsigned StoredBytes = StoreMemVT.getStoreSize();
8111     unsigned RegBytes = RegVT.getSizeInBits() / 8;
8112     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
8113 
8114     // Make sure the stack slot is also aligned for the register type.
8115     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
8116     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
8117 
8118     // Perform the original store, only redirected to the stack slot.
8119     SDValue Store = DAG.getTruncStore(
8120         Chain, dl, Val, StackPtr,
8121         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
8122 
8123     EVT StackPtrVT = StackPtr.getValueType();
8124 
8125     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
8126     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
8127     SmallVector<SDValue, 8> Stores;
8128     unsigned Offset = 0;
8129 
8130     // Do all but one copies using the full register width.
8131     for (unsigned i = 1; i < NumRegs; i++) {
8132       // Load one integer register's worth from the stack slot.
8133       SDValue Load = DAG.getLoad(
8134           RegVT, dl, Store, StackPtr,
8135           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
8136       // Store it to the final location.  Remember the store.
8137       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
8138                                     ST->getPointerInfo().getWithOffset(Offset),
8139                                     ST->getOriginalAlign(),
8140                                     ST->getMemOperand()->getFlags()));
8141       // Increment the pointers.
8142       Offset += RegBytes;
8143       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
8144       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
8145     }
8146 
8147     // The last store may be partial.  Do a truncating store.  On big-endian
8148     // machines this requires an extending load from the stack slot to ensure
8149     // that the bits are in the right place.
8150     EVT LoadMemVT =
8151         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
8152 
8153     // Load from the stack slot.
8154     SDValue Load = DAG.getExtLoad(
8155         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
8156         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
8157 
8158     Stores.push_back(
8159         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
8160                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
8161                           ST->getOriginalAlign(),
8162                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
8163     // The order of the stores doesn't matter - say it with a TokenFactor.
8164     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8165     return Result;
8166   }
8167 
8168   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
8169          "Unaligned store of unknown type.");
8170   // Get the half-size VT
8171   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
8172   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
8173   unsigned IncrementSize = NumBits / 8;
8174 
8175   // Divide the stored value in two parts.
8176   SDValue ShiftAmount = DAG.getConstant(
8177       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
8178   SDValue Lo = Val;
8179   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
8180 
8181   // Store the two parts
8182   SDValue Store1, Store2;
8183   Store1 = DAG.getTruncStore(Chain, dl,
8184                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
8185                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
8186                              ST->getMemOperand()->getFlags());
8187 
8188   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8189   Store2 = DAG.getTruncStore(
8190       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
8191       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
8192       ST->getMemOperand()->getFlags(), ST->getAAInfo());
8193 
8194   SDValue Result =
8195       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
8196   return Result;
8197 }
8198 
8199 SDValue
8200 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
8201                                        const SDLoc &DL, EVT DataVT,
8202                                        SelectionDAG &DAG,
8203                                        bool IsCompressedMemory) const {
8204   SDValue Increment;
8205   EVT AddrVT = Addr.getValueType();
8206   EVT MaskVT = Mask.getValueType();
8207   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
8208          "Incompatible types of Data and Mask");
8209   if (IsCompressedMemory) {
8210     if (DataVT.isScalableVector())
8211       report_fatal_error(
8212           "Cannot currently handle compressed memory with scalable vectors");
8213     // Incrementing the pointer according to number of '1's in the mask.
8214     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
8215     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
8216     if (MaskIntVT.getSizeInBits() < 32) {
8217       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
8218       MaskIntVT = MVT::i32;
8219     }
8220 
8221     // Count '1's with POPCNT.
8222     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
8223     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
8224     // Scale is an element size in bytes.
8225     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
8226                                     AddrVT);
8227     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
8228   } else if (DataVT.isScalableVector()) {
8229     Increment = DAG.getVScale(DL, AddrVT,
8230                               APInt(AddrVT.getFixedSizeInBits(),
8231                                     DataVT.getStoreSize().getKnownMinSize()));
8232   } else
8233     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
8234 
8235   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
8236 }
8237 
8238 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
8239                                        EVT VecVT, const SDLoc &dl,
8240                                        ElementCount SubEC) {
8241   assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
8242          "Cannot index a scalable vector within a fixed-width vector");
8243 
8244   unsigned NElts = VecVT.getVectorMinNumElements();
8245   unsigned NumSubElts = SubEC.getKnownMinValue();
8246   EVT IdxVT = Idx.getValueType();
8247 
8248   if (VecVT.isScalableVector() && !SubEC.isScalable()) {
8249     // If this is a constant index and we know the value plus the number of the
8250     // elements in the subvector minus one is less than the minimum number of
8251     // elements then it's safe to return Idx.
8252     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
8253       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
8254         return Idx;
8255     SDValue VS =
8256         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
8257     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
8258     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
8259                               DAG.getConstant(NumSubElts, dl, IdxVT));
8260     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
8261   }
8262   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
8263     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
8264     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
8265                        DAG.getConstant(Imm, dl, IdxVT));
8266   }
8267   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
8268   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
8269                      DAG.getConstant(MaxIndex, dl, IdxVT));
8270 }
8271 
8272 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
8273                                                 SDValue VecPtr, EVT VecVT,
8274                                                 SDValue Index) const {
8275   return getVectorSubVecPointer(
8276       DAG, VecPtr, VecVT,
8277       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
8278       Index);
8279 }
8280 
8281 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
8282                                                SDValue VecPtr, EVT VecVT,
8283                                                EVT SubVecVT,
8284                                                SDValue Index) const {
8285   SDLoc dl(Index);
8286   // Make sure the index type is big enough to compute in.
8287   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
8288 
8289   EVT EltVT = VecVT.getVectorElementType();
8290 
8291   // Calculate the element offset and add it to the pointer.
8292   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
8293   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
8294          "Converting bits to bytes lost precision");
8295   assert(SubVecVT.getVectorElementType() == EltVT &&
8296          "Sub-vector must be a vector with matching element type");
8297   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
8298                                   SubVecVT.getVectorElementCount());
8299 
8300   EVT IdxVT = Index.getValueType();
8301   if (SubVecVT.isScalableVector())
8302     Index =
8303         DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8304                     DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
8305 
8306   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8307                       DAG.getConstant(EltSize, dl, IdxVT));
8308   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
8309 }
8310 
8311 //===----------------------------------------------------------------------===//
8312 // Implementation of Emulated TLS Model
8313 //===----------------------------------------------------------------------===//
8314 
8315 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
8316                                                 SelectionDAG &DAG) const {
8317   // Access to address of TLS varialbe xyz is lowered to a function call:
8318   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
8319   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8320   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
8321   SDLoc dl(GA);
8322 
8323   ArgListTy Args;
8324   ArgListEntry Entry;
8325   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
8326   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
8327   StringRef EmuTlsVarName(NameString);
8328   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
8329   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
8330   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
8331   Entry.Ty = VoidPtrType;
8332   Args.push_back(Entry);
8333 
8334   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
8335 
8336   TargetLowering::CallLoweringInfo CLI(DAG);
8337   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
8338   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
8339   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
8340 
8341   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
8342   // At last for X86 targets, maybe good for other targets too?
8343   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8344   MFI.setAdjustsStack(true); // Is this only for X86 target?
8345   MFI.setHasCalls(true);
8346 
8347   assert((GA->getOffset() == 0) &&
8348          "Emulated TLS must have zero offset in GlobalAddressSDNode");
8349   return CallResult.first;
8350 }
8351 
8352 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
8353                                                 SelectionDAG &DAG) const {
8354   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
8355   if (!isCtlzFast())
8356     return SDValue();
8357   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8358   SDLoc dl(Op);
8359   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8360     if (C->isZero() && CC == ISD::SETEQ) {
8361       EVT VT = Op.getOperand(0).getValueType();
8362       SDValue Zext = Op.getOperand(0);
8363       if (VT.bitsLT(MVT::i32)) {
8364         VT = MVT::i32;
8365         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
8366       }
8367       unsigned Log2b = Log2_32(VT.getSizeInBits());
8368       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
8369       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
8370                                 DAG.getConstant(Log2b, dl, MVT::i32));
8371       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
8372     }
8373   }
8374   return SDValue();
8375 }
8376 
8377 // Convert redundant addressing modes (e.g. scaling is redundant
8378 // when accessing bytes).
8379 ISD::MemIndexType
8380 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT,
8381                                       SDValue Offsets) const {
8382   bool IsScaledIndex =
8383       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED);
8384   bool IsSignedIndex =
8385       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED);
8386 
8387   // Scaling is unimportant for bytes, canonicalize to unscaled.
8388   if (IsScaledIndex && MemVT.getScalarType() == MVT::i8)
8389     return IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED;
8390 
8391   return IndexType;
8392 }
8393 
8394 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
8395   SDValue Op0 = Node->getOperand(0);
8396   SDValue Op1 = Node->getOperand(1);
8397   EVT VT = Op0.getValueType();
8398   unsigned Opcode = Node->getOpcode();
8399   SDLoc DL(Node);
8400 
8401   // umin(x,y) -> sub(x,usubsat(x,y))
8402   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
8403       isOperationLegal(ISD::USUBSAT, VT)) {
8404     return DAG.getNode(ISD::SUB, DL, VT, Op0,
8405                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
8406   }
8407 
8408   // umax(x,y) -> add(x,usubsat(y,x))
8409   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
8410       isOperationLegal(ISD::USUBSAT, VT)) {
8411     return DAG.getNode(ISD::ADD, DL, VT, Op0,
8412                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
8413   }
8414 
8415   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
8416   ISD::CondCode CC;
8417   switch (Opcode) {
8418   default: llvm_unreachable("How did we get here?");
8419   case ISD::SMAX: CC = ISD::SETGT; break;
8420   case ISD::SMIN: CC = ISD::SETLT; break;
8421   case ISD::UMAX: CC = ISD::SETUGT; break;
8422   case ISD::UMIN: CC = ISD::SETULT; break;
8423   }
8424 
8425   // FIXME: Should really try to split the vector in case it's legal on a
8426   // subvector.
8427   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8428     return DAG.UnrollVectorOp(Node);
8429 
8430   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8431   SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
8432   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
8433 }
8434 
8435 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
8436   unsigned Opcode = Node->getOpcode();
8437   SDValue LHS = Node->getOperand(0);
8438   SDValue RHS = Node->getOperand(1);
8439   EVT VT = LHS.getValueType();
8440   SDLoc dl(Node);
8441 
8442   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8443   assert(VT.isInteger() && "Expected operands to be integers");
8444 
8445   // usub.sat(a, b) -> umax(a, b) - b
8446   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
8447     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
8448     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
8449   }
8450 
8451   // uadd.sat(a, b) -> umin(a, ~b) + b
8452   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
8453     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
8454     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
8455     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
8456   }
8457 
8458   unsigned OverflowOp;
8459   switch (Opcode) {
8460   case ISD::SADDSAT:
8461     OverflowOp = ISD::SADDO;
8462     break;
8463   case ISD::UADDSAT:
8464     OverflowOp = ISD::UADDO;
8465     break;
8466   case ISD::SSUBSAT:
8467     OverflowOp = ISD::SSUBO;
8468     break;
8469   case ISD::USUBSAT:
8470     OverflowOp = ISD::USUBO;
8471     break;
8472   default:
8473     llvm_unreachable("Expected method to receive signed or unsigned saturation "
8474                      "addition or subtraction node.");
8475   }
8476 
8477   // FIXME: Should really try to split the vector in case it's legal on a
8478   // subvector.
8479   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8480     return DAG.UnrollVectorOp(Node);
8481 
8482   unsigned BitWidth = LHS.getScalarValueSizeInBits();
8483   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8484   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8485   SDValue SumDiff = Result.getValue(0);
8486   SDValue Overflow = Result.getValue(1);
8487   SDValue Zero = DAG.getConstant(0, dl, VT);
8488   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
8489 
8490   if (Opcode == ISD::UADDSAT) {
8491     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8492       // (LHS + RHS) | OverflowMask
8493       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8494       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
8495     }
8496     // Overflow ? 0xffff.... : (LHS + RHS)
8497     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
8498   }
8499 
8500   if (Opcode == ISD::USUBSAT) {
8501     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8502       // (LHS - RHS) & ~OverflowMask
8503       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8504       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
8505       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
8506     }
8507     // Overflow ? 0 : (LHS - RHS)
8508     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
8509   }
8510 
8511   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
8512   APInt MinVal = APInt::getSignedMinValue(BitWidth);
8513   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8514   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
8515                               DAG.getConstant(BitWidth - 1, dl, VT));
8516   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
8517   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
8518 }
8519 
8520 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
8521   unsigned Opcode = Node->getOpcode();
8522   bool IsSigned = Opcode == ISD::SSHLSAT;
8523   SDValue LHS = Node->getOperand(0);
8524   SDValue RHS = Node->getOperand(1);
8525   EVT VT = LHS.getValueType();
8526   SDLoc dl(Node);
8527 
8528   assert((Node->getOpcode() == ISD::SSHLSAT ||
8529           Node->getOpcode() == ISD::USHLSAT) &&
8530           "Expected a SHLSAT opcode");
8531   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8532   assert(VT.isInteger() && "Expected operands to be integers");
8533 
8534   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
8535 
8536   unsigned BW = VT.getScalarSizeInBits();
8537   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
8538   SDValue Orig =
8539       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
8540 
8541   SDValue SatVal;
8542   if (IsSigned) {
8543     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8544     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8545     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8546                              SatMin, SatMax, ISD::SETLT);
8547   } else {
8548     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8549   }
8550   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8551 
8552   return Result;
8553 }
8554 
8555 SDValue
8556 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8557   assert((Node->getOpcode() == ISD::SMULFIX ||
8558           Node->getOpcode() == ISD::UMULFIX ||
8559           Node->getOpcode() == ISD::SMULFIXSAT ||
8560           Node->getOpcode() == ISD::UMULFIXSAT) &&
8561          "Expected a fixed point multiplication opcode");
8562 
8563   SDLoc dl(Node);
8564   SDValue LHS = Node->getOperand(0);
8565   SDValue RHS = Node->getOperand(1);
8566   EVT VT = LHS.getValueType();
8567   unsigned Scale = Node->getConstantOperandVal(2);
8568   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8569                      Node->getOpcode() == ISD::UMULFIXSAT);
8570   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8571                  Node->getOpcode() == ISD::SMULFIXSAT);
8572   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8573   unsigned VTSize = VT.getScalarSizeInBits();
8574 
8575   if (!Scale) {
8576     // [us]mul.fix(a, b, 0) -> mul(a, b)
8577     if (!Saturating) {
8578       if (isOperationLegalOrCustom(ISD::MUL, VT))
8579         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8580     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
8581       SDValue Result =
8582           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8583       SDValue Product = Result.getValue(0);
8584       SDValue Overflow = Result.getValue(1);
8585       SDValue Zero = DAG.getConstant(0, dl, VT);
8586 
8587       APInt MinVal = APInt::getSignedMinValue(VTSize);
8588       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
8589       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8590       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8591       // Xor the inputs, if resulting sign bit is 0 the product will be
8592       // positive, else negative.
8593       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
8594       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
8595       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
8596       return DAG.getSelect(dl, VT, Overflow, Result, Product);
8597     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
8598       SDValue Result =
8599           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8600       SDValue Product = Result.getValue(0);
8601       SDValue Overflow = Result.getValue(1);
8602 
8603       APInt MaxVal = APInt::getMaxValue(VTSize);
8604       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8605       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
8606     }
8607   }
8608 
8609   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
8610          "Expected scale to be less than the number of bits if signed or at "
8611          "most the number of bits if unsigned.");
8612   assert(LHS.getValueType() == RHS.getValueType() &&
8613          "Expected both operands to be the same type");
8614 
8615   // Get the upper and lower bits of the result.
8616   SDValue Lo, Hi;
8617   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
8618   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
8619   if (isOperationLegalOrCustom(LoHiOp, VT)) {
8620     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
8621     Lo = Result.getValue(0);
8622     Hi = Result.getValue(1);
8623   } else if (isOperationLegalOrCustom(HiOp, VT)) {
8624     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8625     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
8626   } else if (VT.isVector()) {
8627     return SDValue();
8628   } else {
8629     report_fatal_error("Unable to expand fixed point multiplication.");
8630   }
8631 
8632   if (Scale == VTSize)
8633     // Result is just the top half since we'd be shifting by the width of the
8634     // operand. Overflow impossible so this works for both UMULFIX and
8635     // UMULFIXSAT.
8636     return Hi;
8637 
8638   // The result will need to be shifted right by the scale since both operands
8639   // are scaled. The result is given to us in 2 halves, so we only want part of
8640   // both in the result.
8641   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8642   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
8643                                DAG.getConstant(Scale, dl, ShiftTy));
8644   if (!Saturating)
8645     return Result;
8646 
8647   if (!Signed) {
8648     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
8649     // widened multiplication) aren't all zeroes.
8650 
8651     // Saturate to max if ((Hi >> Scale) != 0),
8652     // which is the same as if (Hi > ((1 << Scale) - 1))
8653     APInt MaxVal = APInt::getMaxValue(VTSize);
8654     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
8655                                       dl, VT);
8656     Result = DAG.getSelectCC(dl, Hi, LowMask,
8657                              DAG.getConstant(MaxVal, dl, VT), Result,
8658                              ISD::SETUGT);
8659 
8660     return Result;
8661   }
8662 
8663   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
8664   // widened multiplication) aren't all ones or all zeroes.
8665 
8666   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
8667   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
8668 
8669   if (Scale == 0) {
8670     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
8671                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
8672     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
8673     // Saturated to SatMin if wide product is negative, and SatMax if wide
8674     // product is positive ...
8675     SDValue Zero = DAG.getConstant(0, dl, VT);
8676     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
8677                                                ISD::SETLT);
8678     // ... but only if we overflowed.
8679     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
8680   }
8681 
8682   //  We handled Scale==0 above so all the bits to examine is in Hi.
8683 
8684   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
8685   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
8686   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
8687                                     dl, VT);
8688   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
8689   // Saturate to min if (Hi >> (Scale - 1)) < -1),
8690   // which is the same as if (HI < (-1 << (Scale - 1))
8691   SDValue HighMask =
8692       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
8693                       dl, VT);
8694   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
8695   return Result;
8696 }
8697 
8698 SDValue
8699 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
8700                                     SDValue LHS, SDValue RHS,
8701                                     unsigned Scale, SelectionDAG &DAG) const {
8702   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
8703           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
8704          "Expected a fixed point division opcode");
8705 
8706   EVT VT = LHS.getValueType();
8707   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
8708   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
8709   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8710 
8711   // If there is enough room in the type to upscale the LHS or downscale the
8712   // RHS before the division, we can perform it in this type without having to
8713   // resize. For signed operations, the LHS headroom is the number of
8714   // redundant sign bits, and for unsigned ones it is the number of zeroes.
8715   // The headroom for the RHS is the number of trailing zeroes.
8716   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
8717                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
8718   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
8719 
8720   // For signed saturating operations, we need to be able to detect true integer
8721   // division overflow; that is, when you have MIN / -EPS. However, this
8722   // is undefined behavior and if we emit divisions that could take such
8723   // values it may cause undesired behavior (arithmetic exceptions on x86, for
8724   // example).
8725   // Avoid this by requiring an extra bit so that we never get this case.
8726   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
8727   // signed saturating division, we need to emit a whopping 32-bit division.
8728   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
8729     return SDValue();
8730 
8731   unsigned LHSShift = std::min(LHSLead, Scale);
8732   unsigned RHSShift = Scale - LHSShift;
8733 
8734   // At this point, we know that if we shift the LHS up by LHSShift and the
8735   // RHS down by RHSShift, we can emit a regular division with a final scaling
8736   // factor of Scale.
8737 
8738   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8739   if (LHSShift)
8740     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
8741                       DAG.getConstant(LHSShift, dl, ShiftTy));
8742   if (RHSShift)
8743     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
8744                       DAG.getConstant(RHSShift, dl, ShiftTy));
8745 
8746   SDValue Quot;
8747   if (Signed) {
8748     // For signed operations, if the resulting quotient is negative and the
8749     // remainder is nonzero, subtract 1 from the quotient to round towards
8750     // negative infinity.
8751     SDValue Rem;
8752     // FIXME: Ideally we would always produce an SDIVREM here, but if the
8753     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
8754     // we couldn't just form a libcall, but the type legalizer doesn't do it.
8755     if (isTypeLegal(VT) &&
8756         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
8757       Quot = DAG.getNode(ISD::SDIVREM, dl,
8758                          DAG.getVTList(VT, VT),
8759                          LHS, RHS);
8760       Rem = Quot.getValue(1);
8761       Quot = Quot.getValue(0);
8762     } else {
8763       Quot = DAG.getNode(ISD::SDIV, dl, VT,
8764                          LHS, RHS);
8765       Rem = DAG.getNode(ISD::SREM, dl, VT,
8766                         LHS, RHS);
8767     }
8768     SDValue Zero = DAG.getConstant(0, dl, VT);
8769     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
8770     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
8771     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
8772     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
8773     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
8774                                DAG.getConstant(1, dl, VT));
8775     Quot = DAG.getSelect(dl, VT,
8776                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
8777                          Sub1, Quot);
8778   } else
8779     Quot = DAG.getNode(ISD::UDIV, dl, VT,
8780                        LHS, RHS);
8781 
8782   return Quot;
8783 }
8784 
8785 void TargetLowering::expandUADDSUBO(
8786     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8787   SDLoc dl(Node);
8788   SDValue LHS = Node->getOperand(0);
8789   SDValue RHS = Node->getOperand(1);
8790   bool IsAdd = Node->getOpcode() == ISD::UADDO;
8791 
8792   // If ADD/SUBCARRY is legal, use that instead.
8793   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
8794   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
8795     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
8796     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
8797                                     { LHS, RHS, CarryIn });
8798     Result = SDValue(NodeCarry.getNode(), 0);
8799     Overflow = SDValue(NodeCarry.getNode(), 1);
8800     return;
8801   }
8802 
8803   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8804                             LHS.getValueType(), LHS, RHS);
8805 
8806   EVT ResultType = Node->getValueType(1);
8807   EVT SetCCType = getSetCCResultType(
8808       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8809   SDValue SetCC;
8810   if (IsAdd && isOneConstant(RHS)) {
8811     // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces
8812     // the live range of X. We assume comparing with 0 is cheap.
8813     // TODO: This generalizes to (X + C) < C.
8814     SetCC =
8815         DAG.getSetCC(dl, SetCCType, Result,
8816                      DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ);
8817   } else {
8818     ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
8819     SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
8820   }
8821   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8822 }
8823 
8824 void TargetLowering::expandSADDSUBO(
8825     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8826   SDLoc dl(Node);
8827   SDValue LHS = Node->getOperand(0);
8828   SDValue RHS = Node->getOperand(1);
8829   bool IsAdd = Node->getOpcode() == ISD::SADDO;
8830 
8831   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8832                             LHS.getValueType(), LHS, RHS);
8833 
8834   EVT ResultType = Node->getValueType(1);
8835   EVT OType = getSetCCResultType(
8836       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8837 
8838   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
8839   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
8840   if (isOperationLegal(OpcSat, LHS.getValueType())) {
8841     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
8842     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
8843     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8844     return;
8845   }
8846 
8847   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
8848 
8849   // For an addition, the result should be less than one of the operands (LHS)
8850   // if and only if the other operand (RHS) is negative, otherwise there will
8851   // be overflow.
8852   // For a subtraction, the result should be less than one of the operands
8853   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
8854   // otherwise there will be overflow.
8855   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
8856   SDValue ConditionRHS =
8857       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
8858 
8859   Overflow = DAG.getBoolExtOrTrunc(
8860       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
8861       ResultType, ResultType);
8862 }
8863 
8864 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
8865                                 SDValue &Overflow, SelectionDAG &DAG) const {
8866   SDLoc dl(Node);
8867   EVT VT = Node->getValueType(0);
8868   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8869   SDValue LHS = Node->getOperand(0);
8870   SDValue RHS = Node->getOperand(1);
8871   bool isSigned = Node->getOpcode() == ISD::SMULO;
8872 
8873   // For power-of-two multiplications we can use a simpler shift expansion.
8874   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
8875     const APInt &C = RHSC->getAPIntValue();
8876     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
8877     if (C.isPowerOf2()) {
8878       // smulo(x, signed_min) is same as umulo(x, signed_min).
8879       bool UseArithShift = isSigned && !C.isMinSignedValue();
8880       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
8881       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
8882       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
8883       Overflow = DAG.getSetCC(dl, SetCCVT,
8884           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
8885                       dl, VT, Result, ShiftAmt),
8886           LHS, ISD::SETNE);
8887       return true;
8888     }
8889   }
8890 
8891   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
8892   if (VT.isVector())
8893     WideVT =
8894         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
8895 
8896   SDValue BottomHalf;
8897   SDValue TopHalf;
8898   static const unsigned Ops[2][3] =
8899       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
8900         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
8901   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
8902     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8903     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
8904   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
8905     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
8906                              RHS);
8907     TopHalf = BottomHalf.getValue(1);
8908   } else if (isTypeLegal(WideVT)) {
8909     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
8910     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
8911     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
8912     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
8913     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
8914         getShiftAmountTy(WideVT, DAG.getDataLayout()));
8915     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
8916                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
8917   } else {
8918     if (VT.isVector())
8919       return false;
8920 
8921     // We can fall back to a libcall with an illegal type for the MUL if we
8922     // have a libcall big enough.
8923     // Also, we can fall back to a division in some cases, but that's a big
8924     // performance hit in the general case.
8925     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
8926     if (WideVT == MVT::i16)
8927       LC = RTLIB::MUL_I16;
8928     else if (WideVT == MVT::i32)
8929       LC = RTLIB::MUL_I32;
8930     else if (WideVT == MVT::i64)
8931       LC = RTLIB::MUL_I64;
8932     else if (WideVT == MVT::i128)
8933       LC = RTLIB::MUL_I128;
8934     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
8935 
8936     SDValue HiLHS;
8937     SDValue HiRHS;
8938     if (isSigned) {
8939       // The high part is obtained by SRA'ing all but one of the bits of low
8940       // part.
8941       unsigned LoSize = VT.getFixedSizeInBits();
8942       HiLHS =
8943           DAG.getNode(ISD::SRA, dl, VT, LHS,
8944                       DAG.getConstant(LoSize - 1, dl,
8945                                       getPointerTy(DAG.getDataLayout())));
8946       HiRHS =
8947           DAG.getNode(ISD::SRA, dl, VT, RHS,
8948                       DAG.getConstant(LoSize - 1, dl,
8949                                       getPointerTy(DAG.getDataLayout())));
8950     } else {
8951         HiLHS = DAG.getConstant(0, dl, VT);
8952         HiRHS = DAG.getConstant(0, dl, VT);
8953     }
8954 
8955     // Here we're passing the 2 arguments explicitly as 4 arguments that are
8956     // pre-lowered to the correct types. This all depends upon WideVT not
8957     // being a legal type for the architecture and thus has to be split to
8958     // two arguments.
8959     SDValue Ret;
8960     TargetLowering::MakeLibCallOptions CallOptions;
8961     CallOptions.setSExt(isSigned);
8962     CallOptions.setIsPostTypeLegalization(true);
8963     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
8964       // Halves of WideVT are packed into registers in different order
8965       // depending on platform endianness. This is usually handled by
8966       // the C calling convention, but we can't defer to it in
8967       // the legalizer.
8968       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
8969       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8970     } else {
8971       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
8972       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8973     }
8974     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
8975            "Ret value is a collection of constituent nodes holding result.");
8976     if (DAG.getDataLayout().isLittleEndian()) {
8977       // Same as above.
8978       BottomHalf = Ret.getOperand(0);
8979       TopHalf = Ret.getOperand(1);
8980     } else {
8981       BottomHalf = Ret.getOperand(1);
8982       TopHalf = Ret.getOperand(0);
8983     }
8984   }
8985 
8986   Result = BottomHalf;
8987   if (isSigned) {
8988     SDValue ShiftAmt = DAG.getConstant(
8989         VT.getScalarSizeInBits() - 1, dl,
8990         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
8991     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
8992     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
8993   } else {
8994     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
8995                             DAG.getConstant(0, dl, VT), ISD::SETNE);
8996   }
8997 
8998   // Truncate the result if SetCC returns a larger type than needed.
8999   EVT RType = Node->getValueType(1);
9000   if (RType.bitsLT(Overflow.getValueType()))
9001     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
9002 
9003   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
9004          "Unexpected result type for S/UMULO legalization");
9005   return true;
9006 }
9007 
9008 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
9009   SDLoc dl(Node);
9010   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
9011   SDValue Op = Node->getOperand(0);
9012   EVT VT = Op.getValueType();
9013 
9014   if (VT.isScalableVector())
9015     report_fatal_error(
9016         "Expanding reductions for scalable vectors is undefined.");
9017 
9018   // Try to use a shuffle reduction for power of two vectors.
9019   if (VT.isPow2VectorType()) {
9020     while (VT.getVectorNumElements() > 1) {
9021       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
9022       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
9023         break;
9024 
9025       SDValue Lo, Hi;
9026       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
9027       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
9028       VT = HalfVT;
9029     }
9030   }
9031 
9032   EVT EltVT = VT.getVectorElementType();
9033   unsigned NumElts = VT.getVectorNumElements();
9034 
9035   SmallVector<SDValue, 8> Ops;
9036   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
9037 
9038   SDValue Res = Ops[0];
9039   for (unsigned i = 1; i < NumElts; i++)
9040     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
9041 
9042   // Result type may be wider than element type.
9043   if (EltVT != Node->getValueType(0))
9044     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
9045   return Res;
9046 }
9047 
9048 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
9049   SDLoc dl(Node);
9050   SDValue AccOp = Node->getOperand(0);
9051   SDValue VecOp = Node->getOperand(1);
9052   SDNodeFlags Flags = Node->getFlags();
9053 
9054   EVT VT = VecOp.getValueType();
9055   EVT EltVT = VT.getVectorElementType();
9056 
9057   if (VT.isScalableVector())
9058     report_fatal_error(
9059         "Expanding reductions for scalable vectors is undefined.");
9060 
9061   unsigned NumElts = VT.getVectorNumElements();
9062 
9063   SmallVector<SDValue, 8> Ops;
9064   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
9065 
9066   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
9067 
9068   SDValue Res = AccOp;
9069   for (unsigned i = 0; i < NumElts; i++)
9070     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
9071 
9072   return Res;
9073 }
9074 
9075 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
9076                                SelectionDAG &DAG) const {
9077   EVT VT = Node->getValueType(0);
9078   SDLoc dl(Node);
9079   bool isSigned = Node->getOpcode() == ISD::SREM;
9080   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
9081   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
9082   SDValue Dividend = Node->getOperand(0);
9083   SDValue Divisor = Node->getOperand(1);
9084   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
9085     SDVTList VTs = DAG.getVTList(VT, VT);
9086     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
9087     return true;
9088   }
9089   if (isOperationLegalOrCustom(DivOpc, VT)) {
9090     // X % Y -> X-X/Y*Y
9091     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
9092     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
9093     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
9094     return true;
9095   }
9096   return false;
9097 }
9098 
9099 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
9100                                             SelectionDAG &DAG) const {
9101   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
9102   SDLoc dl(SDValue(Node, 0));
9103   SDValue Src = Node->getOperand(0);
9104 
9105   // DstVT is the result type, while SatVT is the size to which we saturate
9106   EVT SrcVT = Src.getValueType();
9107   EVT DstVT = Node->getValueType(0);
9108 
9109   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
9110   unsigned SatWidth = SatVT.getScalarSizeInBits();
9111   unsigned DstWidth = DstVT.getScalarSizeInBits();
9112   assert(SatWidth <= DstWidth &&
9113          "Expected saturation width smaller than result width");
9114 
9115   // Determine minimum and maximum integer values and their corresponding
9116   // floating-point values.
9117   APInt MinInt, MaxInt;
9118   if (IsSigned) {
9119     MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth);
9120     MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth);
9121   } else {
9122     MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth);
9123     MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth);
9124   }
9125 
9126   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
9127   // libcall emission cannot handle this. Large result types will fail.
9128   if (SrcVT == MVT::f16) {
9129     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
9130     SrcVT = Src.getValueType();
9131   }
9132 
9133   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
9134   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
9135 
9136   APFloat::opStatus MinStatus =
9137       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
9138   APFloat::opStatus MaxStatus =
9139       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
9140   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
9141                              !(MaxStatus & APFloat::opStatus::opInexact);
9142 
9143   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
9144   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
9145 
9146   // If the integer bounds are exactly representable as floats and min/max are
9147   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
9148   // of comparisons and selects.
9149   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
9150                      isOperationLegal(ISD::FMAXNUM, SrcVT);
9151   if (AreExactFloatBounds && MinMaxLegal) {
9152     SDValue Clamped = Src;
9153 
9154     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
9155     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
9156     // Clamp by MaxFloat from above. NaN cannot occur.
9157     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
9158     // Convert clamped value to integer.
9159     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
9160                                   dl, DstVT, Clamped);
9161 
9162     // In the unsigned case we're done, because we mapped NaN to MinFloat,
9163     // which will cast to zero.
9164     if (!IsSigned)
9165       return FpToInt;
9166 
9167     // Otherwise, select 0 if Src is NaN.
9168     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9169     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
9170                            ISD::CondCode::SETUO);
9171   }
9172 
9173   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
9174   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
9175 
9176   // Result of direct conversion. The assumption here is that the operation is
9177   // non-trapping and it's fine to apply it to an out-of-range value if we
9178   // select it away later.
9179   SDValue FpToInt =
9180       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
9181 
9182   SDValue Select = FpToInt;
9183 
9184   // If Src ULT MinFloat, select MinInt. In particular, this also selects
9185   // MinInt if Src is NaN.
9186   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
9187                            ISD::CondCode::SETULT);
9188   // If Src OGT MaxFloat, select MaxInt.
9189   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
9190                            ISD::CondCode::SETOGT);
9191 
9192   // In the unsigned case we are done, because we mapped NaN to MinInt, which
9193   // is already zero.
9194   if (!IsSigned)
9195     return Select;
9196 
9197   // Otherwise, select 0 if Src is NaN.
9198   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9199   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
9200 }
9201 
9202 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
9203                                            SelectionDAG &DAG) const {
9204   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
9205   assert(Node->getValueType(0).isScalableVector() &&
9206          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
9207 
9208   EVT VT = Node->getValueType(0);
9209   SDValue V1 = Node->getOperand(0);
9210   SDValue V2 = Node->getOperand(1);
9211   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
9212   SDLoc DL(Node);
9213 
9214   // Expand through memory thusly:
9215   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
9216   //  Store V1, Ptr
9217   //  Store V2, Ptr + sizeof(V1)
9218   //  If (Imm < 0)
9219   //    TrailingElts = -Imm
9220   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
9221   //  else
9222   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
9223   //  Res = Load Ptr
9224 
9225   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
9226 
9227   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
9228                                VT.getVectorElementCount() * 2);
9229   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
9230   EVT PtrVT = StackPtr.getValueType();
9231   auto &MF = DAG.getMachineFunction();
9232   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
9233   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
9234 
9235   // Store the lo part of CONCAT_VECTORS(V1, V2)
9236   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
9237   // Store the hi part of CONCAT_VECTORS(V1, V2)
9238   SDValue OffsetToV2 = DAG.getVScale(
9239       DL, PtrVT,
9240       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9241   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
9242   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
9243 
9244   if (Imm >= 0) {
9245     // Load back the required element. getVectorElementPointer takes care of
9246     // clamping the index if it's out-of-bounds.
9247     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
9248     // Load the spliced result
9249     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
9250                        MachinePointerInfo::getUnknownStack(MF));
9251   }
9252 
9253   uint64_t TrailingElts = -Imm;
9254 
9255   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
9256   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
9257   SDValue TrailingBytes =
9258       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
9259 
9260   if (TrailingElts > VT.getVectorMinNumElements()) {
9261     SDValue VLBytes = DAG.getVScale(
9262         DL, PtrVT,
9263         APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9264     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
9265   }
9266 
9267   // Calculate the start address of the spliced result.
9268   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
9269 
9270   // Load the spliced result
9271   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
9272                      MachinePointerInfo::getUnknownStack(MF));
9273 }
9274 
9275 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
9276                                            SDValue &LHS, SDValue &RHS,
9277                                            SDValue &CC, SDValue Mask,
9278                                            SDValue EVL, bool &NeedInvert,
9279                                            const SDLoc &dl, SDValue &Chain,
9280                                            bool IsSignaling) const {
9281   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9282   MVT OpVT = LHS.getSimpleValueType();
9283   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
9284   NeedInvert = false;
9285   assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset");
9286   bool IsNonVP = !EVL;
9287   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
9288   default:
9289     llvm_unreachable("Unknown condition code action!");
9290   case TargetLowering::Legal:
9291     // Nothing to do.
9292     break;
9293   case TargetLowering::Expand: {
9294     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
9295     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9296       std::swap(LHS, RHS);
9297       CC = DAG.getCondCode(InvCC);
9298       return true;
9299     }
9300     // Swapping operands didn't work. Try inverting the condition.
9301     bool NeedSwap = false;
9302     InvCC = getSetCCInverse(CCCode, OpVT);
9303     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9304       // If inverting the condition is not enough, try swapping operands
9305       // on top of it.
9306       InvCC = ISD::getSetCCSwappedOperands(InvCC);
9307       NeedSwap = true;
9308     }
9309     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9310       CC = DAG.getCondCode(InvCC);
9311       NeedInvert = true;
9312       if (NeedSwap)
9313         std::swap(LHS, RHS);
9314       return true;
9315     }
9316 
9317     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
9318     unsigned Opc = 0;
9319     switch (CCCode) {
9320     default:
9321       llvm_unreachable("Don't know how to expand this condition!");
9322     case ISD::SETUO:
9323       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
9324         CC1 = ISD::SETUNE;
9325         CC2 = ISD::SETUNE;
9326         Opc = ISD::OR;
9327         break;
9328       }
9329       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9330              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
9331       NeedInvert = true;
9332       LLVM_FALLTHROUGH;
9333     case ISD::SETO:
9334       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9335              "If SETO is expanded, SETOEQ must be legal!");
9336       CC1 = ISD::SETOEQ;
9337       CC2 = ISD::SETOEQ;
9338       Opc = ISD::AND;
9339       break;
9340     case ISD::SETONE:
9341     case ISD::SETUEQ:
9342       // If the SETUO or SETO CC isn't legal, we might be able to use
9343       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
9344       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
9345       // the operands.
9346       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9347       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
9348           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
9349            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
9350         CC1 = ISD::SETOGT;
9351         CC2 = ISD::SETOLT;
9352         Opc = ISD::OR;
9353         NeedInvert = ((unsigned)CCCode & 0x8U);
9354         break;
9355       }
9356       LLVM_FALLTHROUGH;
9357     case ISD::SETOEQ:
9358     case ISD::SETOGT:
9359     case ISD::SETOGE:
9360     case ISD::SETOLT:
9361     case ISD::SETOLE:
9362     case ISD::SETUNE:
9363     case ISD::SETUGT:
9364     case ISD::SETUGE:
9365     case ISD::SETULT:
9366     case ISD::SETULE:
9367       // If we are floating point, assign and break, otherwise fall through.
9368       if (!OpVT.isInteger()) {
9369         // We can use the 4th bit to tell if we are the unordered
9370         // or ordered version of the opcode.
9371         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9372         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
9373         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
9374         break;
9375       }
9376       // Fallthrough if we are unsigned integer.
9377       LLVM_FALLTHROUGH;
9378     case ISD::SETLE:
9379     case ISD::SETGT:
9380     case ISD::SETGE:
9381     case ISD::SETLT:
9382     case ISD::SETNE:
9383     case ISD::SETEQ:
9384       // If all combinations of inverting the condition and swapping operands
9385       // didn't work then we have no means to expand the condition.
9386       llvm_unreachable("Don't know how to expand this condition!");
9387     }
9388 
9389     SDValue SetCC1, SetCC2;
9390     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
9391       // If we aren't the ordered or unorder operation,
9392       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
9393       if (IsNonVP) {
9394         SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
9395         SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
9396       } else {
9397         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL);
9398         SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL);
9399       }
9400     } else {
9401       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
9402       if (IsNonVP) {
9403         SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
9404         SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
9405       } else {
9406         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL);
9407         SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL);
9408       }
9409     }
9410     if (Chain)
9411       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
9412                           SetCC2.getValue(1));
9413     if (IsNonVP)
9414       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
9415     else {
9416       // Transform the binary opcode to the VP equivalent.
9417       assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode");
9418       Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND;
9419       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL);
9420     }
9421     RHS = SDValue();
9422     CC = SDValue();
9423     return true;
9424   }
9425   }
9426   return false;
9427 }
9428