1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/TargetLowering.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/CodeGen/CallingConvLower.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/SelectionDAG.h" 23 #include "llvm/CodeGen/TargetRegisterInfo.h" 24 #include "llvm/CodeGen/TargetSubtargetInfo.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/MC/MCAsmInfo.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/KnownBits.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Target/TargetLoweringObjectFile.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include <cctype> 37 using namespace llvm; 38 39 /// NOTE: The TargetMachine owns TLOF. 40 TargetLowering::TargetLowering(const TargetMachine &tm) 41 : TargetLoweringBase(tm) {} 42 43 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 44 return nullptr; 45 } 46 47 bool TargetLowering::isPositionIndependent() const { 48 return getTargetMachine().isPositionIndependent(); 49 } 50 51 /// Check whether a given call node is in tail position within its function. If 52 /// so, it sets Chain to the input chain of the tail call. 53 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 54 SDValue &Chain) const { 55 const Function &F = DAG.getMachineFunction().getFunction(); 56 57 // Conservatively require the attributes of the call to match those of 58 // the return. Ignore noalias because it doesn't affect the call sequence. 59 AttributeList CallerAttrs = F.getAttributes(); 60 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 61 .removeAttribute(Attribute::NoAlias) 62 .hasAttributes()) 63 return false; 64 65 // It's not safe to eliminate the sign / zero extension of the return value. 66 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 67 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 68 return false; 69 70 // Check if the only use is a function return node. 71 return isUsedByReturnOnly(Node, Chain); 72 } 73 74 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 75 const uint32_t *CallerPreservedMask, 76 const SmallVectorImpl<CCValAssign> &ArgLocs, 77 const SmallVectorImpl<SDValue> &OutVals) const { 78 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 79 const CCValAssign &ArgLoc = ArgLocs[I]; 80 if (!ArgLoc.isRegLoc()) 81 continue; 82 unsigned Reg = ArgLoc.getLocReg(); 83 // Only look at callee saved registers. 84 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 85 continue; 86 // Check that we pass the value used for the caller. 87 // (We look for a CopyFromReg reading a virtual register that is used 88 // for the function live-in value of register Reg) 89 SDValue Value = OutVals[I]; 90 if (Value->getOpcode() != ISD::CopyFromReg) 91 return false; 92 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 93 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 94 return false; 95 } 96 return true; 97 } 98 99 /// Set CallLoweringInfo attribute flags based on a call instruction 100 /// and called function attributes. 101 void TargetLoweringBase::ArgListEntry::setAttributes(ImmutableCallSite *CS, 102 unsigned ArgIdx) { 103 IsSExt = CS->paramHasAttr(ArgIdx, Attribute::SExt); 104 IsZExt = CS->paramHasAttr(ArgIdx, Attribute::ZExt); 105 IsInReg = CS->paramHasAttr(ArgIdx, Attribute::InReg); 106 IsSRet = CS->paramHasAttr(ArgIdx, Attribute::StructRet); 107 IsNest = CS->paramHasAttr(ArgIdx, Attribute::Nest); 108 IsByVal = CS->paramHasAttr(ArgIdx, Attribute::ByVal); 109 IsInAlloca = CS->paramHasAttr(ArgIdx, Attribute::InAlloca); 110 IsReturned = CS->paramHasAttr(ArgIdx, Attribute::Returned); 111 IsSwiftSelf = CS->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 112 IsSwiftError = CS->paramHasAttr(ArgIdx, Attribute::SwiftError); 113 Alignment = CS->getParamAlignment(ArgIdx); 114 } 115 116 /// Generate a libcall taking the given operands as arguments and returning a 117 /// result of type RetVT. 118 std::pair<SDValue, SDValue> 119 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 120 ArrayRef<SDValue> Ops, bool isSigned, 121 const SDLoc &dl, bool doesNotReturn, 122 bool isReturnValueUsed) const { 123 TargetLowering::ArgListTy Args; 124 Args.reserve(Ops.size()); 125 126 TargetLowering::ArgListEntry Entry; 127 for (SDValue Op : Ops) { 128 Entry.Node = Op; 129 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 130 Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 131 Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 132 Args.push_back(Entry); 133 } 134 135 if (LC == RTLIB::UNKNOWN_LIBCALL) 136 report_fatal_error("Unsupported library call operation!"); 137 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 138 getPointerTy(DAG.getDataLayout())); 139 140 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 141 TargetLowering::CallLoweringInfo CLI(DAG); 142 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); 143 CLI.setDebugLoc(dl) 144 .setChain(DAG.getEntryNode()) 145 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 146 .setNoReturn(doesNotReturn) 147 .setDiscardResult(!isReturnValueUsed) 148 .setSExtResult(signExtend) 149 .setZExtResult(!signExtend); 150 return LowerCallTo(CLI); 151 } 152 153 /// Soften the operands of a comparison. This code is shared among BR_CC, 154 /// SELECT_CC, and SETCC handlers. 155 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 156 SDValue &NewLHS, SDValue &NewRHS, 157 ISD::CondCode &CCCode, 158 const SDLoc &dl) const { 159 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 160 && "Unsupported setcc type!"); 161 162 // Expand into one or more soft-fp libcall(s). 163 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 164 bool ShouldInvertCC = false; 165 switch (CCCode) { 166 case ISD::SETEQ: 167 case ISD::SETOEQ: 168 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 169 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 170 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 171 break; 172 case ISD::SETNE: 173 case ISD::SETUNE: 174 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 175 (VT == MVT::f64) ? RTLIB::UNE_F64 : 176 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 177 break; 178 case ISD::SETGE: 179 case ISD::SETOGE: 180 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 181 (VT == MVT::f64) ? RTLIB::OGE_F64 : 182 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 183 break; 184 case ISD::SETLT: 185 case ISD::SETOLT: 186 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 187 (VT == MVT::f64) ? RTLIB::OLT_F64 : 188 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 189 break; 190 case ISD::SETLE: 191 case ISD::SETOLE: 192 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 193 (VT == MVT::f64) ? RTLIB::OLE_F64 : 194 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 195 break; 196 case ISD::SETGT: 197 case ISD::SETOGT: 198 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 199 (VT == MVT::f64) ? RTLIB::OGT_F64 : 200 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 201 break; 202 case ISD::SETUO: 203 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 204 (VT == MVT::f64) ? RTLIB::UO_F64 : 205 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 206 break; 207 case ISD::SETO: 208 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 209 (VT == MVT::f64) ? RTLIB::O_F64 : 210 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 211 break; 212 case ISD::SETONE: 213 // SETONE = SETOLT | SETOGT 214 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 215 (VT == MVT::f64) ? RTLIB::OLT_F64 : 216 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 217 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 218 (VT == MVT::f64) ? RTLIB::OGT_F64 : 219 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 220 break; 221 case ISD::SETUEQ: 222 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 223 (VT == MVT::f64) ? RTLIB::UO_F64 : 224 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 225 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 226 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 227 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 228 break; 229 default: 230 // Invert CC for unordered comparisons 231 ShouldInvertCC = true; 232 switch (CCCode) { 233 case ISD::SETULT: 234 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 235 (VT == MVT::f64) ? RTLIB::OGE_F64 : 236 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 237 break; 238 case ISD::SETULE: 239 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 240 (VT == MVT::f64) ? RTLIB::OGT_F64 : 241 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 242 break; 243 case ISD::SETUGT: 244 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 245 (VT == MVT::f64) ? RTLIB::OLE_F64 : 246 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 247 break; 248 case ISD::SETUGE: 249 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 250 (VT == MVT::f64) ? RTLIB::OLT_F64 : 251 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 252 break; 253 default: llvm_unreachable("Do not know how to soften this setcc!"); 254 } 255 } 256 257 // Use the target specific return value for comparions lib calls. 258 EVT RetVT = getCmpLibcallReturnType(); 259 SDValue Ops[2] = {NewLHS, NewRHS}; 260 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/, 261 dl).first; 262 NewRHS = DAG.getConstant(0, dl, RetVT); 263 264 CCCode = getCmpLibcallCC(LC1); 265 if (ShouldInvertCC) 266 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); 267 268 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 269 SDValue Tmp = DAG.getNode( 270 ISD::SETCC, dl, 271 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 272 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 273 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/, 274 dl).first; 275 NewLHS = DAG.getNode( 276 ISD::SETCC, dl, 277 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 278 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 279 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 280 NewRHS = SDValue(); 281 } 282 } 283 284 /// Return the entry encoding for a jump table in the current function. The 285 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 286 unsigned TargetLowering::getJumpTableEncoding() const { 287 // In non-pic modes, just use the address of a block. 288 if (!isPositionIndependent()) 289 return MachineJumpTableInfo::EK_BlockAddress; 290 291 // In PIC mode, if the target supports a GPRel32 directive, use it. 292 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 293 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 294 295 // Otherwise, use a label difference. 296 return MachineJumpTableInfo::EK_LabelDifference32; 297 } 298 299 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 300 SelectionDAG &DAG) const { 301 // If our PIC model is GP relative, use the global offset table as the base. 302 unsigned JTEncoding = getJumpTableEncoding(); 303 304 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 305 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 306 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 307 308 return Table; 309 } 310 311 /// This returns the relocation base for the given PIC jumptable, the same as 312 /// getPICJumpTableRelocBase, but as an MCExpr. 313 const MCExpr * 314 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 315 unsigned JTI,MCContext &Ctx) const{ 316 // The normal PIC reloc base is the label at the start of the jump table. 317 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 318 } 319 320 bool 321 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 322 const TargetMachine &TM = getTargetMachine(); 323 const GlobalValue *GV = GA->getGlobal(); 324 325 // If the address is not even local to this DSO we will have to load it from 326 // a got and then add the offset. 327 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 328 return false; 329 330 // If the code is position independent we will have to add a base register. 331 if (isPositionIndependent()) 332 return false; 333 334 // Otherwise we can do it. 335 return true; 336 } 337 338 //===----------------------------------------------------------------------===// 339 // Optimization Methods 340 //===----------------------------------------------------------------------===// 341 342 /// If the specified instruction has a constant integer operand and there are 343 /// bits set in that constant that are not demanded, then clear those bits and 344 /// return true. 345 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 346 TargetLoweringOpt &TLO) const { 347 SelectionDAG &DAG = TLO.DAG; 348 SDLoc DL(Op); 349 unsigned Opcode = Op.getOpcode(); 350 351 // Do target-specific constant optimization. 352 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 353 return TLO.New.getNode(); 354 355 // FIXME: ISD::SELECT, ISD::SELECT_CC 356 switch (Opcode) { 357 default: 358 break; 359 case ISD::XOR: 360 case ISD::AND: 361 case ISD::OR: { 362 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 363 if (!Op1C) 364 return false; 365 366 // If this is a 'not' op, don't touch it because that's a canonical form. 367 const APInt &C = Op1C->getAPIntValue(); 368 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 369 return false; 370 371 if (!C.isSubsetOf(Demanded)) { 372 EVT VT = Op.getValueType(); 373 SDValue NewC = DAG.getConstant(Demanded & C, DL, VT); 374 SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 375 return TLO.CombineTo(Op, NewOp); 376 } 377 378 break; 379 } 380 } 381 382 return false; 383 } 384 385 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 386 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 387 /// generalized for targets with other types of implicit widening casts. 388 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 389 const APInt &Demanded, 390 TargetLoweringOpt &TLO) const { 391 assert(Op.getNumOperands() == 2 && 392 "ShrinkDemandedOp only supports binary operators!"); 393 assert(Op.getNode()->getNumValues() == 1 && 394 "ShrinkDemandedOp only supports nodes with one result!"); 395 396 SelectionDAG &DAG = TLO.DAG; 397 SDLoc dl(Op); 398 399 // Early return, as this function cannot handle vector types. 400 if (Op.getValueType().isVector()) 401 return false; 402 403 // Don't do this if the node has another user, which may require the 404 // full value. 405 if (!Op.getNode()->hasOneUse()) 406 return false; 407 408 // Search for the smallest integer type with free casts to and from 409 // Op's type. For expedience, just check power-of-2 integer types. 410 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 411 unsigned DemandedSize = Demanded.getActiveBits(); 412 unsigned SmallVTBits = DemandedSize; 413 if (!isPowerOf2_32(SmallVTBits)) 414 SmallVTBits = NextPowerOf2(SmallVTBits); 415 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 416 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 417 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 418 TLI.isZExtFree(SmallVT, Op.getValueType())) { 419 // We found a type with free casts. 420 SDValue X = DAG.getNode( 421 Op.getOpcode(), dl, SmallVT, 422 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 423 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 424 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 425 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 426 return TLO.CombineTo(Op, Z); 427 } 428 } 429 return false; 430 } 431 432 bool 433 TargetLowering::SimplifyDemandedBits(SDNode *User, unsigned OpIdx, 434 const APInt &Demanded, 435 DAGCombinerInfo &DCI, 436 TargetLoweringOpt &TLO) const { 437 SDValue Op = User->getOperand(OpIdx); 438 KnownBits Known; 439 440 if (!SimplifyDemandedBits(Op, Demanded, Known, TLO, 0, true)) 441 return false; 442 443 444 // Old will not always be the same as Op. For example: 445 // 446 // Demanded = 0xffffff 447 // Op = i64 truncate (i32 and x, 0xffffff) 448 // In this case simplify demand bits will want to replace the 'and' node 449 // with the value 'x', which will give us: 450 // Old = i32 and x, 0xffffff 451 // New = x 452 if (TLO.Old.hasOneUse()) { 453 // For the one use case, we just commit the change. 454 DCI.CommitTargetLoweringOpt(TLO); 455 return true; 456 } 457 458 // If Old has more than one use then it must be Op, because the 459 // AssumeSingleUse flag is not propogated to recursive calls of 460 // SimplifyDemanded bits, so the only node with multiple use that 461 // it will attempt to combine will be Op. 462 assert(TLO.Old == Op); 463 464 SmallVector <SDValue, 4> NewOps; 465 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 466 if (i == OpIdx) { 467 NewOps.push_back(TLO.New); 468 continue; 469 } 470 NewOps.push_back(User->getOperand(i)); 471 } 472 User = TLO.DAG.UpdateNodeOperands(User, NewOps); 473 // Op has less users now, so we may be able to perform additional combines 474 // with it. 475 DCI.AddToWorklist(Op.getNode()); 476 // User's operands have been updated, so we may be able to do new combines 477 // with it. 478 DCI.AddToWorklist(User); 479 return true; 480 } 481 482 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask, 483 DAGCombinerInfo &DCI) const { 484 485 SelectionDAG &DAG = DCI.DAG; 486 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 487 !DCI.isBeforeLegalizeOps()); 488 KnownBits Known; 489 490 bool Simplified = SimplifyDemandedBits(Op, DemandedMask, Known, TLO); 491 if (Simplified) 492 DCI.CommitTargetLoweringOpt(TLO); 493 return Simplified; 494 } 495 496 /// Look at Op. At this point, we know that only the DemandedMask bits of the 497 /// result of Op are ever used downstream. If we can use this information to 498 /// simplify Op, create a new simplified DAG node and return true, returning the 499 /// original and new nodes in Old and New. Otherwise, analyze the expression and 500 /// return a mask of Known bits for the expression (used to simplify the 501 /// caller). The Known bits may only be accurate for those bits in the 502 /// DemandedMask. 503 bool TargetLowering::SimplifyDemandedBits(SDValue Op, 504 const APInt &DemandedMask, 505 KnownBits &Known, 506 TargetLoweringOpt &TLO, 507 unsigned Depth, 508 bool AssumeSingleUse) const { 509 unsigned BitWidth = DemandedMask.getBitWidth(); 510 assert(Op.getScalarValueSizeInBits() == BitWidth && 511 "Mask size mismatches value type size!"); 512 APInt NewMask = DemandedMask; 513 SDLoc dl(Op); 514 auto &DL = TLO.DAG.getDataLayout(); 515 516 // Don't know anything. 517 Known = KnownBits(BitWidth); 518 519 if (Op.getOpcode() == ISD::Constant) { 520 // We know all of the bits for a constant! 521 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 522 Known.Zero = ~Known.One; 523 return false; 524 } 525 526 // Other users may use these bits. 527 EVT VT = Op.getValueType(); 528 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 529 if (Depth != 0) { 530 // If not at the root, Just compute the Known bits to 531 // simplify things downstream. 532 TLO.DAG.computeKnownBits(Op, Known, Depth); 533 return false; 534 } 535 // If this is the root being simplified, allow it to have multiple uses, 536 // just set the NewMask to all bits. 537 NewMask = APInt::getAllOnesValue(BitWidth); 538 } else if (DemandedMask == 0) { 539 // Not demanding any bits from Op. 540 if (!Op.isUndef()) 541 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 542 return false; 543 } else if (Depth == 6) { // Limit search depth. 544 return false; 545 } 546 547 KnownBits Known2, KnownOut; 548 switch (Op.getOpcode()) { 549 case ISD::BUILD_VECTOR: 550 // Collect the known bits that are shared by every constant vector element. 551 Known.Zero.setAllBits(); Known.One.setAllBits(); 552 for (SDValue SrcOp : Op->ops()) { 553 if (!isa<ConstantSDNode>(SrcOp)) { 554 // We can only handle all constant values - bail out with no known bits. 555 Known = KnownBits(BitWidth); 556 return false; 557 } 558 Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue(); 559 Known2.Zero = ~Known2.One; 560 561 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 562 if (Known2.One.getBitWidth() != BitWidth) { 563 assert(Known2.getBitWidth() > BitWidth && 564 "Expected BUILD_VECTOR implicit truncation"); 565 Known2 = Known2.trunc(BitWidth); 566 } 567 568 // Known bits are the values that are shared by every element. 569 // TODO: support per-element known bits. 570 Known.One &= Known2.One; 571 Known.Zero &= Known2.Zero; 572 } 573 return false; // Don't fall through, will infinitely loop. 574 case ISD::AND: 575 // If the RHS is a constant, check to see if the LHS would be zero without 576 // using the bits from the RHS. Below, we use knowledge about the RHS to 577 // simplify the LHS, here we're using information from the LHS to simplify 578 // the RHS. 579 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op.getOperand(1))) { 580 SDValue Op0 = Op.getOperand(0); 581 KnownBits LHSKnown; 582 // Do not increment Depth here; that can cause an infinite loop. 583 TLO.DAG.computeKnownBits(Op0, LHSKnown, Depth); 584 // If the LHS already has zeros where RHSC does, this 'and' is dead. 585 if ((LHSKnown.Zero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) 586 return TLO.CombineTo(Op, Op0); 587 588 // If any of the set bits in the RHS are known zero on the LHS, shrink 589 // the constant. 590 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & NewMask, TLO)) 591 return true; 592 593 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 594 // constant, but if this 'and' is only clearing bits that were just set by 595 // the xor, then this 'and' can be eliminated by shrinking the mask of 596 // the xor. For example, for a 32-bit X: 597 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 598 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 599 LHSKnown.One == ~RHSC->getAPIntValue()) { 600 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), 601 Op.getOperand(1)); 602 return TLO.CombineTo(Op, Xor); 603 } 604 } 605 606 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1)) 607 return true; 608 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 609 if (SimplifyDemandedBits(Op.getOperand(0), ~Known.Zero & NewMask, 610 Known2, TLO, Depth+1)) 611 return true; 612 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 613 614 // If all of the demanded bits are known one on one side, return the other. 615 // These bits cannot contribute to the result of the 'and'. 616 if (NewMask.isSubsetOf(Known2.Zero | Known.One)) 617 return TLO.CombineTo(Op, Op.getOperand(0)); 618 if (NewMask.isSubsetOf(Known.Zero | Known2.One)) 619 return TLO.CombineTo(Op, Op.getOperand(1)); 620 // If all of the demanded bits in the inputs are known zeros, return zero. 621 if (NewMask.isSubsetOf(Known.Zero | Known2.Zero)) 622 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 623 // If the RHS is a constant, see if we can simplify it. 624 if (ShrinkDemandedConstant(Op, ~Known2.Zero & NewMask, TLO)) 625 return true; 626 // If the operation can be done in a smaller type, do so. 627 if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) 628 return true; 629 630 // Output known-1 bits are only known if set in both the LHS & RHS. 631 Known.One &= Known2.One; 632 // Output known-0 are known to be clear if zero in either the LHS | RHS. 633 Known.Zero |= Known2.Zero; 634 break; 635 case ISD::OR: 636 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1)) 637 return true; 638 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 639 if (SimplifyDemandedBits(Op.getOperand(0), ~Known.One & NewMask, 640 Known2, TLO, Depth+1)) 641 return true; 642 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 643 644 // If all of the demanded bits are known zero on one side, return the other. 645 // These bits cannot contribute to the result of the 'or'. 646 if (NewMask.isSubsetOf(Known2.One | Known.Zero)) 647 return TLO.CombineTo(Op, Op.getOperand(0)); 648 if (NewMask.isSubsetOf(Known.One | Known2.Zero)) 649 return TLO.CombineTo(Op, Op.getOperand(1)); 650 // If the RHS is a constant, see if we can simplify it. 651 if (ShrinkDemandedConstant(Op, NewMask, TLO)) 652 return true; 653 // If the operation can be done in a smaller type, do so. 654 if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) 655 return true; 656 657 // Output known-0 bits are only known if clear in both the LHS & RHS. 658 Known.Zero &= Known2.Zero; 659 // Output known-1 are known to be set if set in either the LHS | RHS. 660 Known.One |= Known2.One; 661 break; 662 case ISD::XOR: { 663 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1)) 664 return true; 665 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 666 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, Known2, TLO, Depth+1)) 667 return true; 668 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 669 670 // If all of the demanded bits are known zero on one side, return the other. 671 // These bits cannot contribute to the result of the 'xor'. 672 if (NewMask.isSubsetOf(Known.Zero)) 673 return TLO.CombineTo(Op, Op.getOperand(0)); 674 if (NewMask.isSubsetOf(Known2.Zero)) 675 return TLO.CombineTo(Op, Op.getOperand(1)); 676 // If the operation can be done in a smaller type, do so. 677 if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) 678 return true; 679 680 // If all of the unknown bits are known to be zero on one side or the other 681 // (but not both) turn this into an *inclusive* or. 682 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 683 if (NewMask.isSubsetOf(Known.Zero|Known2.Zero)) 684 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, 685 Op.getOperand(0), 686 Op.getOperand(1))); 687 688 // Output known-0 bits are known if clear or set in both the LHS & RHS. 689 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 690 // Output known-1 are known to be set if set in only one of the LHS, RHS. 691 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 692 693 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1))) { 694 // If one side is a constant, and all of the known set bits on the other 695 // side are also set in the constant, turn this into an AND, as we know 696 // the bits will be cleared. 697 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 698 // NB: it is okay if more bits are known than are requested 699 if (C->getAPIntValue() == Known2.One) { 700 SDValue ANDC = TLO.DAG.getConstant(~C->getAPIntValue() & NewMask, 701 dl, VT); 702 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, 703 Op.getOperand(0), ANDC)); 704 } 705 706 // If the RHS is a constant, see if we can change it. Don't alter a -1 707 // constant because that's a 'not' op, and that is better for combining 708 // and codegen. 709 if (!C->isAllOnesValue()) { 710 if (NewMask.isSubsetOf(C->getAPIntValue())) { 711 // We're flipping all demanded bits. Flip the undemanded bits too. 712 SDValue New = TLO.DAG.getNOT(dl, Op.getOperand(0), VT); 713 return TLO.CombineTo(Op, New); 714 } 715 // If we can't turn this into a 'not', try to shrink the constant. 716 if (ShrinkDemandedConstant(Op, NewMask, TLO)) 717 return true; 718 } 719 } 720 721 Known = std::move(KnownOut); 722 break; 723 } 724 case ISD::SELECT: 725 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, Known, TLO, Depth+1)) 726 return true; 727 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known2, TLO, Depth+1)) 728 return true; 729 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 730 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 731 732 // If the operands are constants, see if we can simplify them. 733 if (ShrinkDemandedConstant(Op, NewMask, TLO)) 734 return true; 735 736 // Only known if known in both the LHS and RHS. 737 Known.One &= Known2.One; 738 Known.Zero &= Known2.Zero; 739 break; 740 case ISD::SELECT_CC: 741 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, Known, TLO, Depth+1)) 742 return true; 743 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, Known2, TLO, Depth+1)) 744 return true; 745 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 746 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 747 748 // If the operands are constants, see if we can simplify them. 749 if (ShrinkDemandedConstant(Op, NewMask, TLO)) 750 return true; 751 752 // Only known if known in both the LHS and RHS. 753 Known.One &= Known2.One; 754 Known.Zero &= Known2.Zero; 755 break; 756 case ISD::SETCC: { 757 SDValue Op0 = Op.getOperand(0); 758 SDValue Op1 = Op.getOperand(1); 759 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 760 // If (1) we only need the sign-bit, (2) the setcc operands are the same 761 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 762 // -1, we may be able to bypass the setcc. 763 if (NewMask.isSignMask() && Op0.getScalarValueSizeInBits() == BitWidth && 764 getBooleanContents(VT) == 765 BooleanContent::ZeroOrNegativeOneBooleanContent) { 766 // If we're testing X < 0, then this compare isn't needed - just use X! 767 // FIXME: We're limiting to integer types here, but this should also work 768 // if we don't care about FP signed-zero. The use of SETLT with FP means 769 // that we don't care about NaNs. 770 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 771 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 772 return TLO.CombineTo(Op, Op0); 773 774 // TODO: Should we check for other forms of sign-bit comparisons? 775 // Examples: X <= -1, X >= 0 776 } 777 if (getBooleanContents(Op0.getValueType()) == 778 TargetLowering::ZeroOrOneBooleanContent && 779 BitWidth > 1) 780 Known.Zero.setBitsFrom(1); 781 break; 782 } 783 case ISD::SHL: 784 if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) { 785 SDValue InOp = Op.getOperand(0); 786 787 // If the shift count is an invalid immediate, don't do anything. 788 if (SA->getAPIntValue().uge(BitWidth)) 789 break; 790 791 unsigned ShAmt = SA->getZExtValue(); 792 793 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 794 // single shift. We can do this if the bottom bits (which are shifted 795 // out) are never demanded. 796 if (InOp.getOpcode() == ISD::SRL) { 797 if (ConstantSDNode *SA2 = isConstOrConstSplat(InOp.getOperand(1))) { 798 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 799 if (SA2->getAPIntValue().ult(BitWidth)) { 800 unsigned C1 = SA2->getZExtValue(); 801 unsigned Opc = ISD::SHL; 802 int Diff = ShAmt-C1; 803 if (Diff < 0) { 804 Diff = -Diff; 805 Opc = ISD::SRL; 806 } 807 808 SDValue NewSA = 809 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 810 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 811 InOp.getOperand(0), 812 NewSA)); 813 } 814 } 815 } 816 } 817 818 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), Known, TLO, Depth+1)) 819 return true; 820 821 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 822 // are not demanded. This will likely allow the anyext to be folded away. 823 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { 824 SDValue InnerOp = InOp.getOperand(0); 825 EVT InnerVT = InnerOp.getValueType(); 826 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 827 if (ShAmt < InnerBits && NewMask.getActiveBits() <= InnerBits && 828 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 829 EVT ShTy = getShiftAmountTy(InnerVT, DL); 830 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 831 ShTy = InnerVT; 832 SDValue NarrowShl = 833 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 834 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 835 return 836 TLO.CombineTo(Op, 837 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 838 } 839 // Repeat the SHL optimization above in cases where an extension 840 // intervenes: (shl (anyext (shr x, c1)), c2) to 841 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 842 // aren't demanded (as above) and that the shifted upper c1 bits of 843 // x aren't demanded. 844 if (InOp.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 845 InnerOp.hasOneUse()) { 846 if (ConstantSDNode *SA2 = isConstOrConstSplat(InnerOp.getOperand(1))) { 847 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 848 if (InnerShAmt < ShAmt && 849 InnerShAmt < InnerBits && 850 NewMask.getActiveBits() <= (InnerBits - InnerShAmt + ShAmt) && 851 NewMask.countTrailingZeros() >= ShAmt) { 852 SDValue NewSA = 853 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 854 Op.getOperand(1).getValueType()); 855 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 856 InnerOp.getOperand(0)); 857 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, 858 NewExt, NewSA)); 859 } 860 } 861 } 862 } 863 864 Known.Zero <<= ShAmt; 865 Known.One <<= ShAmt; 866 // low bits known zero. 867 Known.Zero.setLowBits(ShAmt); 868 } 869 break; 870 case ISD::SRL: 871 if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) { 872 SDValue InOp = Op.getOperand(0); 873 874 // If the shift count is an invalid immediate, don't do anything. 875 if (SA->getAPIntValue().uge(BitWidth)) 876 break; 877 878 unsigned ShAmt = SA->getZExtValue(); 879 APInt InDemandedMask = (NewMask << ShAmt); 880 881 // If the shift is exact, then it does demand the low bits (and knows that 882 // they are zero). 883 if (Op->getFlags().hasExact()) 884 InDemandedMask.setLowBits(ShAmt); 885 886 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 887 // single shift. We can do this if the top bits (which are shifted out) 888 // are never demanded. 889 if (InOp.getOpcode() == ISD::SHL) { 890 if (ConstantSDNode *SA2 = isConstOrConstSplat(InOp.getOperand(1))) { 891 if (ShAmt && 892 (NewMask & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) { 893 if (SA2->getAPIntValue().ult(BitWidth)) { 894 unsigned C1 = SA2->getZExtValue(); 895 unsigned Opc = ISD::SRL; 896 int Diff = ShAmt-C1; 897 if (Diff < 0) { 898 Diff = -Diff; 899 Opc = ISD::SHL; 900 } 901 902 SDValue NewSA = 903 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 904 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 905 InOp.getOperand(0), 906 NewSA)); 907 } 908 } 909 } 910 } 911 912 // Compute the new bits that are at the top now. 913 if (SimplifyDemandedBits(InOp, InDemandedMask, Known, TLO, Depth+1)) 914 return true; 915 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 916 Known.Zero.lshrInPlace(ShAmt); 917 Known.One.lshrInPlace(ShAmt); 918 919 Known.Zero.setHighBits(ShAmt); // High bits known zero. 920 } 921 break; 922 case ISD::SRA: 923 // If this is an arithmetic shift right and only the low-bit is set, we can 924 // always convert this into a logical shr, even if the shift amount is 925 // variable. The low bit of the shift cannot be an input sign bit unless 926 // the shift amount is >= the size of the datatype, which is undefined. 927 if (NewMask.isOneValue()) 928 return TLO.CombineTo(Op, 929 TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0), 930 Op.getOperand(1))); 931 932 if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) { 933 // If the shift count is an invalid immediate, don't do anything. 934 if (SA->getAPIntValue().uge(BitWidth)) 935 break; 936 937 unsigned ShAmt = SA->getZExtValue(); 938 APInt InDemandedMask = (NewMask << ShAmt); 939 940 // If the shift is exact, then it does demand the low bits (and knows that 941 // they are zero). 942 if (Op->getFlags().hasExact()) 943 InDemandedMask.setLowBits(ShAmt); 944 945 // If any of the demanded bits are produced by the sign extension, we also 946 // demand the input sign bit. 947 if (NewMask.countLeadingZeros() < ShAmt) 948 InDemandedMask.setSignBit(); 949 950 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, Known, TLO, 951 Depth+1)) 952 return true; 953 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 954 Known.Zero.lshrInPlace(ShAmt); 955 Known.One.lshrInPlace(ShAmt); 956 957 // If the input sign bit is known to be zero, or if none of the top bits 958 // are demanded, turn this into an unsigned shift right. 959 if (Known.Zero[BitWidth - ShAmt - 1] || 960 NewMask.countLeadingZeros() >= ShAmt) { 961 SDNodeFlags Flags; 962 Flags.setExact(Op->getFlags().hasExact()); 963 return TLO.CombineTo(Op, 964 TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0), 965 Op.getOperand(1), Flags)); 966 } 967 968 int Log2 = NewMask.exactLogBase2(); 969 if (Log2 >= 0) { 970 // The bit must come from the sign. 971 SDValue NewSA = 972 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, 973 Op.getOperand(1).getValueType()); 974 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 975 Op.getOperand(0), NewSA)); 976 } 977 978 if (Known.One[BitWidth - ShAmt - 1]) 979 // New bits are known one. 980 Known.One.setHighBits(ShAmt); 981 } 982 break; 983 case ISD::SIGN_EXTEND_INREG: { 984 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 985 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 986 987 // If we only care about the highest bit, don't bother shifting right. 988 if (NewMask.isSignMask()) { 989 SDValue InOp = Op.getOperand(0); 990 bool AlreadySignExtended = 991 TLO.DAG.ComputeNumSignBits(InOp) >= BitWidth-ExVTBits+1; 992 // However if the input is already sign extended we expect the sign 993 // extension to be dropped altogether later and do not simplify. 994 if (!AlreadySignExtended) { 995 // Compute the correct shift amount type, which must be getShiftAmountTy 996 // for scalar types after legalization. 997 EVT ShiftAmtTy = VT; 998 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 999 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1000 1001 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl, 1002 ShiftAmtTy); 1003 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, InOp, 1004 ShiftAmt)); 1005 } 1006 } 1007 1008 // If none of the extended bits are demanded, eliminate the sextinreg. 1009 if (NewMask.getActiveBits() <= ExVTBits) 1010 return TLO.CombineTo(Op, Op.getOperand(0)); 1011 1012 APInt InputDemandedBits = NewMask.getLoBits(ExVTBits); 1013 1014 // Since the sign extended bits are demanded, we know that the sign 1015 // bit is demanded. 1016 InputDemandedBits.setBit(ExVTBits - 1); 1017 1018 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, 1019 Known, TLO, Depth+1)) 1020 return true; 1021 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1022 1023 // If the sign bit of the input is known set or clear, then we know the 1024 // top bits of the result. 1025 1026 // If the input sign bit is known zero, convert this into a zero extension. 1027 if (Known.Zero[ExVTBits - 1]) 1028 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg( 1029 Op.getOperand(0), dl, ExVT.getScalarType())); 1030 1031 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1032 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1033 Known.One.setBitsFrom(ExVTBits); 1034 Known.Zero &= Mask; 1035 } else { // Input sign bit unknown 1036 Known.Zero &= Mask; 1037 Known.One &= Mask; 1038 } 1039 break; 1040 } 1041 case ISD::BUILD_PAIR: { 1042 EVT HalfVT = Op.getOperand(0).getValueType(); 1043 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1044 1045 APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1046 APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1047 1048 KnownBits KnownLo, KnownHi; 1049 1050 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1051 return true; 1052 1053 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1054 return true; 1055 1056 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1057 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1058 1059 Known.One = KnownLo.One.zext(BitWidth) | 1060 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1061 break; 1062 } 1063 case ISD::ZERO_EXTEND: { 1064 unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 1065 1066 // If none of the top bits are demanded, convert this into an any_extend. 1067 if (NewMask.getActiveBits() <= OperandBitWidth) 1068 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1069 Op.getOperand(0))); 1070 1071 APInt InMask = NewMask.trunc(OperandBitWidth); 1072 if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1)) 1073 return true; 1074 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1075 Known = Known.zext(BitWidth); 1076 Known.Zero.setBitsFrom(OperandBitWidth); 1077 break; 1078 } 1079 case ISD::SIGN_EXTEND: { 1080 unsigned InBits = Op.getOperand(0).getValueType().getScalarSizeInBits(); 1081 1082 // If none of the top bits are demanded, convert this into an any_extend. 1083 if (NewMask.getActiveBits() <= InBits) 1084 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1085 Op.getOperand(0))); 1086 1087 // Since some of the sign extended bits are demanded, we know that the sign 1088 // bit is demanded. 1089 APInt InDemandedBits = NewMask.trunc(InBits); 1090 InDemandedBits.setBit(InBits - 1); 1091 1092 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, Known, TLO, 1093 Depth+1)) 1094 return true; 1095 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1096 // If the sign bit is known one, the top bits match. 1097 Known = Known.sext(BitWidth); 1098 1099 // If the sign bit is known zero, convert this to a zero extend. 1100 if (Known.isNonNegative()) 1101 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, 1102 Op.getOperand(0))); 1103 break; 1104 } 1105 case ISD::ANY_EXTEND: { 1106 unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 1107 APInt InMask = NewMask.trunc(OperandBitWidth); 1108 if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1)) 1109 return true; 1110 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1111 Known = Known.zext(BitWidth); 1112 break; 1113 } 1114 case ISD::TRUNCATE: { 1115 // Simplify the input, using demanded bit information, and compute the known 1116 // zero/one bits live out. 1117 unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 1118 APInt TruncMask = NewMask.zext(OperandBitWidth); 1119 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, Known, TLO, Depth+1)) 1120 return true; 1121 Known = Known.trunc(BitWidth); 1122 1123 // If the input is only used by this truncate, see if we can shrink it based 1124 // on the known demanded bits. 1125 if (Op.getOperand(0).getNode()->hasOneUse()) { 1126 SDValue In = Op.getOperand(0); 1127 switch (In.getOpcode()) { 1128 default: break; 1129 case ISD::SRL: 1130 // Shrink SRL by a constant if none of the high bits shifted in are 1131 // demanded. 1132 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1133 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1134 // undesirable. 1135 break; 1136 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); 1137 if (!ShAmt) 1138 break; 1139 SDValue Shift = In.getOperand(1); 1140 if (TLO.LegalTypes()) { 1141 uint64_t ShVal = ShAmt->getZExtValue(); 1142 Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1143 } 1144 1145 if (ShAmt->getZExtValue() < BitWidth) { 1146 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 1147 OperandBitWidth - BitWidth); 1148 HighBits.lshrInPlace(ShAmt->getZExtValue()); 1149 HighBits = HighBits.trunc(BitWidth); 1150 1151 if (!(HighBits & NewMask)) { 1152 // None of the shifted in bits are needed. Add a truncate of the 1153 // shift input, then shift it. 1154 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, 1155 In.getOperand(0)); 1156 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, 1157 Shift)); 1158 } 1159 } 1160 break; 1161 } 1162 } 1163 1164 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1165 break; 1166 } 1167 case ISD::AssertZext: { 1168 // AssertZext demands all of the high bits, plus any of the low bits 1169 // demanded by its users. 1170 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1171 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1172 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask, 1173 Known, TLO, Depth+1)) 1174 return true; 1175 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1176 1177 Known.Zero |= ~InMask; 1178 break; 1179 } 1180 case ISD::BITCAST: 1181 // If this is an FP->Int bitcast and if the sign bit is the only 1182 // thing demanded, turn this into a FGETSIGN. 1183 if (!TLO.LegalOperations() && !VT.isVector() && 1184 !Op.getOperand(0).getValueType().isVector() && 1185 NewMask == APInt::getSignMask(Op.getValueSizeInBits()) && 1186 Op.getOperand(0).getValueType().isFloatingPoint()) { 1187 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1188 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1189 if ((OpVTLegal || i32Legal) && VT.isSimple() && 1190 Op.getOperand(0).getValueType() != MVT::f16 && 1191 Op.getOperand(0).getValueType() != MVT::f128) { 1192 // Cannot eliminate/lower SHL for f128 yet. 1193 EVT Ty = OpVTLegal ? VT : MVT::i32; 1194 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1195 // place. We expect the SHL to be eliminated by other optimizations. 1196 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0)); 1197 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1198 if (!OpVTLegal && OpVTSizeInBits > 32) 1199 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 1200 unsigned ShVal = Op.getValueSizeInBits() - 1; 1201 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 1202 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 1203 } 1204 } 1205 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 1206 // recursive call where Known may be useful to the caller. 1207 if (Depth > 0) { 1208 TLO.DAG.computeKnownBits(Op, Known, Depth); 1209 return false; 1210 } 1211 break; 1212 case ISD::ADD: 1213 case ISD::MUL: 1214 case ISD::SUB: { 1215 // Add, Sub, and Mul don't demand any bits in positions beyond that 1216 // of the highest bit demanded of them. 1217 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 1218 unsigned NewMaskLZ = NewMask.countLeadingZeros(); 1219 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - NewMaskLZ); 1220 if (SimplifyDemandedBits(Op0, LoMask, Known2, TLO, Depth + 1) || 1221 SimplifyDemandedBits(Op1, LoMask, Known2, TLO, Depth + 1) || 1222 // See if the operation should be performed at a smaller bit width. 1223 ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) { 1224 SDNodeFlags Flags = Op.getNode()->getFlags(); 1225 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 1226 // Disable the nsw and nuw flags. We can no longer guarantee that we 1227 // won't wrap after simplification. 1228 Flags.setNoSignedWrap(false); 1229 Flags.setNoUnsignedWrap(false); 1230 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, 1231 Flags); 1232 return TLO.CombineTo(Op, NewOp); 1233 } 1234 return true; 1235 } 1236 1237 // If we have a constant operand, we may be able to turn it into -1 if we 1238 // do not demand the high bits. This can make the constant smaller to 1239 // encode, allow more general folding, or match specialized instruction 1240 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 1241 // is probably not useful (and could be detrimental). 1242 ConstantSDNode *C = isConstOrConstSplat(Op1); 1243 APInt HighMask = APInt::getHighBitsSet(NewMask.getBitWidth(), NewMaskLZ); 1244 if (C && !C->isAllOnesValue() && !C->isOne() && 1245 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 1246 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 1247 // We can't guarantee that the new math op doesn't wrap, so explicitly 1248 // clear those flags to prevent folding with a potential existing node 1249 // that has those flags set. 1250 SDNodeFlags Flags; 1251 Flags.setNoSignedWrap(false); 1252 Flags.setNoUnsignedWrap(false); 1253 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 1254 return TLO.CombineTo(Op, NewOp); 1255 } 1256 1257 LLVM_FALLTHROUGH; 1258 } 1259 default: 1260 // Just use computeKnownBits to compute output bits. 1261 TLO.DAG.computeKnownBits(Op, Known, Depth); 1262 break; 1263 } 1264 1265 // If we know the value of all of the demanded bits, return this as a 1266 // constant. 1267 if (NewMask.isSubsetOf(Known.Zero|Known.One)) { 1268 // Avoid folding to a constant if any OpaqueConstant is involved. 1269 const SDNode *N = Op.getNode(); 1270 for (SDNodeIterator I = SDNodeIterator::begin(N), 1271 E = SDNodeIterator::end(N); I != E; ++I) { 1272 SDNode *Op = *I; 1273 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 1274 if (C->isOpaque()) 1275 return false; 1276 } 1277 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 1278 } 1279 1280 return false; 1281 } 1282 1283 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 1284 const APInt &DemandedElts, 1285 APInt &KnownUndef, 1286 APInt &KnownZero, 1287 DAGCombinerInfo &DCI) const { 1288 SelectionDAG &DAG = DCI.DAG; 1289 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 1290 !DCI.isBeforeLegalizeOps()); 1291 1292 bool Simplified = 1293 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 1294 if (Simplified) 1295 DCI.CommitTargetLoweringOpt(TLO); 1296 return Simplified; 1297 } 1298 1299 bool TargetLowering::SimplifyDemandedVectorElts( 1300 SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef, 1301 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 1302 bool AssumeSingleUse) const { 1303 EVT VT = Op.getValueType(); 1304 APInt DemandedElts = DemandedEltMask; 1305 unsigned NumElts = DemandedElts.getBitWidth(); 1306 assert(VT.isVector() && "Expected vector op"); 1307 assert(VT.getVectorNumElements() == NumElts && 1308 "Mask size mismatches value type element count!"); 1309 1310 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 1311 1312 // Undef operand. 1313 if (Op.isUndef()) { 1314 KnownUndef.setAllBits(); 1315 return false; 1316 } 1317 1318 // If Op has other users, assume that all elements are needed. 1319 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 1320 DemandedElts.setAllBits(); 1321 1322 // Not demanding any elements from Op. 1323 if (DemandedElts == 0) { 1324 KnownUndef.setAllBits(); 1325 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1326 } 1327 1328 // Limit search depth. 1329 if (Depth >= 6) 1330 return false; 1331 1332 SDLoc DL(Op); 1333 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 1334 1335 switch (Op.getOpcode()) { 1336 case ISD::SCALAR_TO_VECTOR: { 1337 if (!DemandedElts[0]) { 1338 KnownUndef.setAllBits(); 1339 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1340 } 1341 KnownUndef.setHighBits(NumElts - 1); 1342 break; 1343 } 1344 case ISD::BITCAST: { 1345 SDValue Src = Op.getOperand(0); 1346 EVT SrcVT = Src.getValueType(); 1347 1348 // We only handle vectors here. 1349 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 1350 if (!SrcVT.isVector()) 1351 break; 1352 1353 // Fast handling of 'identity' bitcasts. 1354 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1355 if (NumSrcElts == NumElts) 1356 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 1357 KnownZero, TLO, Depth + 1); 1358 1359 APInt SrcZero, SrcUndef; 1360 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 1361 1362 // Bitcast from 'large element' src vector to 'small element' vector, we 1363 // must demand a source element if any DemandedElt maps to it. 1364 if ((NumElts % NumSrcElts) == 0) { 1365 unsigned Scale = NumElts / NumSrcElts; 1366 for (unsigned i = 0; i != NumElts; ++i) 1367 if (DemandedElts[i]) 1368 SrcDemandedElts.setBit(i / Scale); 1369 1370 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 1371 TLO, Depth + 1)) 1372 return true; 1373 1374 // If the src element is zero/undef then all the output elements will be - 1375 // only demanded elements are guaranteed to be correct. 1376 for (unsigned i = 0; i != NumSrcElts; ++i) { 1377 if (SrcDemandedElts[i]) { 1378 if (SrcZero[i]) 1379 KnownZero.setBits(i * Scale, (i + 1) * Scale); 1380 if (SrcUndef[i]) 1381 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 1382 } 1383 } 1384 } 1385 1386 // Bitcast from 'small element' src vector to 'large element' vector, we 1387 // demand all smaller source elements covered by the larger demanded element 1388 // of this vector. 1389 if ((NumSrcElts % NumElts) == 0) { 1390 unsigned Scale = NumSrcElts / NumElts; 1391 for (unsigned i = 0; i != NumElts; ++i) 1392 if (DemandedElts[i]) 1393 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 1394 1395 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 1396 TLO, Depth + 1)) 1397 return true; 1398 1399 // If all the src elements covering an output element are zero/undef, then 1400 // the output element will be as well, assuming it was demanded. 1401 for (unsigned i = 0; i != NumElts; ++i) { 1402 if (DemandedElts[i]) { 1403 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 1404 KnownZero.setBit(i); 1405 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 1406 KnownUndef.setBit(i); 1407 } 1408 } 1409 } 1410 break; 1411 } 1412 case ISD::BUILD_VECTOR: { 1413 // Check all elements and simplify any unused elements with UNDEF. 1414 if (!DemandedElts.isAllOnesValue()) { 1415 // Don't simplify BROADCASTS. 1416 if (llvm::any_of(Op->op_values(), 1417 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 1418 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 1419 bool Updated = false; 1420 for (unsigned i = 0; i != NumElts; ++i) { 1421 if (!DemandedElts[i] && !Ops[i].isUndef()) { 1422 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 1423 KnownUndef.setBit(i); 1424 Updated = true; 1425 } 1426 } 1427 if (Updated) 1428 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 1429 } 1430 } 1431 for (unsigned i = 0; i != NumElts; ++i) { 1432 SDValue SrcOp = Op.getOperand(i); 1433 if (SrcOp.isUndef()) { 1434 KnownUndef.setBit(i); 1435 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 1436 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 1437 KnownZero.setBit(i); 1438 } 1439 } 1440 break; 1441 } 1442 case ISD::CONCAT_VECTORS: { 1443 EVT SubVT = Op.getOperand(0).getValueType(); 1444 unsigned NumSubVecs = Op.getNumOperands(); 1445 unsigned NumSubElts = SubVT.getVectorNumElements(); 1446 for (unsigned i = 0; i != NumSubVecs; ++i) { 1447 SDValue SubOp = Op.getOperand(i); 1448 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1449 APInt SubUndef, SubZero; 1450 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 1451 Depth + 1)) 1452 return true; 1453 KnownUndef.insertBits(SubUndef, i * NumSubElts); 1454 KnownZero.insertBits(SubZero, i * NumSubElts); 1455 } 1456 break; 1457 } 1458 case ISD::INSERT_SUBVECTOR: { 1459 if (!isa<ConstantSDNode>(Op.getOperand(2))) 1460 break; 1461 SDValue Base = Op.getOperand(0); 1462 SDValue Sub = Op.getOperand(1); 1463 EVT SubVT = Sub.getValueType(); 1464 unsigned NumSubElts = SubVT.getVectorNumElements(); 1465 const APInt& Idx = cast<ConstantSDNode>(Op.getOperand(2))->getAPIntValue(); 1466 if (Idx.uge(NumElts - NumSubElts)) 1467 break; 1468 unsigned SubIdx = Idx.getZExtValue(); 1469 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 1470 APInt SubUndef, SubZero; 1471 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 1472 Depth + 1)) 1473 return true; 1474 APInt BaseElts = DemandedElts; 1475 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 1476 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 1477 Depth + 1)) 1478 return true; 1479 KnownUndef.insertBits(SubUndef, SubIdx); 1480 KnownZero.insertBits(SubZero, SubIdx); 1481 break; 1482 } 1483 case ISD::EXTRACT_SUBVECTOR: { 1484 SDValue Src = Op.getOperand(0); 1485 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 1486 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1487 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 1488 // Offset the demanded elts by the subvector index. 1489 uint64_t Idx = SubIdx->getZExtValue(); 1490 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1491 APInt SrcUndef, SrcZero; 1492 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, 1493 Depth + 1)) 1494 return true; 1495 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 1496 KnownZero = SrcZero.extractBits(NumElts, Idx); 1497 } 1498 break; 1499 } 1500 case ISD::INSERT_VECTOR_ELT: { 1501 SDValue Vec = Op.getOperand(0); 1502 SDValue Scl = Op.getOperand(1); 1503 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1504 1505 // For a legal, constant insertion index, if we don't need this insertion 1506 // then strip it, else remove it from the demanded elts. 1507 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 1508 unsigned Idx = CIdx->getZExtValue(); 1509 if (!DemandedElts[Idx]) 1510 return TLO.CombineTo(Op, Vec); 1511 DemandedElts.clearBit(Idx); 1512 1513 if (SimplifyDemandedVectorElts(Vec, DemandedElts, KnownUndef, 1514 KnownZero, TLO, Depth + 1)) 1515 return true; 1516 1517 KnownUndef.clearBit(Idx); 1518 if (Scl.isUndef()) 1519 KnownUndef.setBit(Idx); 1520 1521 KnownZero.clearBit(Idx); 1522 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 1523 KnownZero.setBit(Idx); 1524 break; 1525 } 1526 1527 APInt VecUndef, VecZero; 1528 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 1529 Depth + 1)) 1530 return true; 1531 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 1532 break; 1533 } 1534 case ISD::VSELECT: { 1535 // Try to transform the select condition based on the current demanded 1536 // elements. 1537 // TODO: If a condition element is undef, we can choose from one arm of the 1538 // select (and if one arm is undef, then we can propagate that to the 1539 // result). 1540 // TODO - add support for constant vselect masks (see IR version of this). 1541 APInt UnusedUndef, UnusedZero; 1542 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 1543 UnusedZero, TLO, Depth + 1)) 1544 return true; 1545 1546 // See if we can simplify either vselect operand. 1547 APInt DemandedLHS(DemandedElts); 1548 APInt DemandedRHS(DemandedElts); 1549 APInt UndefLHS, ZeroLHS; 1550 APInt UndefRHS, ZeroRHS; 1551 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 1552 ZeroLHS, TLO, Depth + 1)) 1553 return true; 1554 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 1555 ZeroRHS, TLO, Depth + 1)) 1556 return true; 1557 1558 KnownUndef = UndefLHS & UndefRHS; 1559 KnownZero = ZeroLHS & ZeroRHS; 1560 break; 1561 } 1562 case ISD::VECTOR_SHUFFLE: { 1563 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1564 1565 // Collect demanded elements from shuffle operands.. 1566 APInt DemandedLHS(NumElts, 0); 1567 APInt DemandedRHS(NumElts, 0); 1568 for (unsigned i = 0; i != NumElts; ++i) { 1569 int M = ShuffleMask[i]; 1570 if (M < 0 || !DemandedElts[i]) 1571 continue; 1572 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1573 if (M < (int)NumElts) 1574 DemandedLHS.setBit(M); 1575 else 1576 DemandedRHS.setBit(M - NumElts); 1577 } 1578 1579 // See if we can simplify either shuffle operand. 1580 APInt UndefLHS, ZeroLHS; 1581 APInt UndefRHS, ZeroRHS; 1582 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 1583 ZeroLHS, TLO, Depth + 1)) 1584 return true; 1585 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 1586 ZeroRHS, TLO, Depth + 1)) 1587 return true; 1588 1589 // Simplify mask using undef elements from LHS/RHS. 1590 bool Updated = false; 1591 bool IdentityLHS = true, IdentityRHS = true; 1592 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 1593 for (unsigned i = 0; i != NumElts; ++i) { 1594 int &M = NewMask[i]; 1595 if (M < 0) 1596 continue; 1597 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 1598 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 1599 Updated = true; 1600 M = -1; 1601 } 1602 IdentityLHS &= (M < 0) || (M == (int)i); 1603 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 1604 } 1605 1606 // Update legal shuffle masks based on demanded elements if it won't reduce 1607 // to Identity which can cause premature removal of the shuffle mask. 1608 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps && 1609 isShuffleMaskLegal(NewMask, VT)) 1610 return TLO.CombineTo(Op, 1611 TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0), 1612 Op.getOperand(1), NewMask)); 1613 1614 // Propagate undef/zero elements from LHS/RHS. 1615 for (unsigned i = 0; i != NumElts; ++i) { 1616 int M = ShuffleMask[i]; 1617 if (M < 0) { 1618 KnownUndef.setBit(i); 1619 } else if (M < (int)NumElts) { 1620 if (UndefLHS[M]) 1621 KnownUndef.setBit(i); 1622 if (ZeroLHS[M]) 1623 KnownZero.setBit(i); 1624 } else { 1625 if (UndefRHS[M - NumElts]) 1626 KnownUndef.setBit(i); 1627 if (ZeroRHS[M - NumElts]) 1628 KnownZero.setBit(i); 1629 } 1630 } 1631 break; 1632 } 1633 case ISD::ADD: 1634 case ISD::SUB: { 1635 APInt SrcUndef, SrcZero; 1636 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 1637 SrcZero, TLO, Depth + 1)) 1638 return true; 1639 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 1640 KnownZero, TLO, Depth + 1)) 1641 return true; 1642 KnownZero &= SrcZero; 1643 KnownUndef &= SrcUndef; 1644 break; 1645 } 1646 case ISD::TRUNCATE: 1647 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 1648 KnownZero, TLO, Depth + 1)) 1649 return true; 1650 break; 1651 default: { 1652 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 1653 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 1654 KnownZero, TLO, Depth)) 1655 return true; 1656 break; 1657 } 1658 } 1659 1660 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 1661 return false; 1662 } 1663 1664 /// Determine which of the bits specified in Mask are known to be either zero or 1665 /// one and return them in the Known. 1666 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1667 KnownBits &Known, 1668 const APInt &DemandedElts, 1669 const SelectionDAG &DAG, 1670 unsigned Depth) const { 1671 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1672 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1673 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1674 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1675 "Should use MaskedValueIsZero if you don't know whether Op" 1676 " is a target node!"); 1677 Known.resetAll(); 1678 } 1679 1680 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 1681 KnownBits &Known, 1682 const APInt &DemandedElts, 1683 const SelectionDAG &DAG, 1684 unsigned Depth) const { 1685 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 1686 1687 if (unsigned Align = DAG.InferPtrAlignment(Op)) { 1688 // The low bits are known zero if the pointer is aligned. 1689 Known.Zero.setLowBits(Log2_32(Align)); 1690 } 1691 } 1692 1693 /// This method can be implemented by targets that want to expose additional 1694 /// information about sign bits to the DAG Combiner. 1695 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 1696 const APInt &, 1697 const SelectionDAG &, 1698 unsigned Depth) const { 1699 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1700 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1701 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1702 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1703 "Should use ComputeNumSignBits if you don't know whether Op" 1704 " is a target node!"); 1705 return 1; 1706 } 1707 1708 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 1709 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 1710 TargetLoweringOpt &TLO, unsigned Depth) const { 1711 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1712 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1713 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1714 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1715 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 1716 " is a target node!"); 1717 return false; 1718 } 1719 1720 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 1721 const SelectionDAG &DAG, 1722 bool SNaN, 1723 unsigned Depth) const { 1724 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1725 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1726 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1727 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1728 "Should use isKnownNeverNaN if you don't know whether Op" 1729 " is a target node!"); 1730 return false; 1731 } 1732 1733 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 1734 // work with truncating build vectors and vectors with elements of less than 1735 // 8 bits. 1736 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 1737 if (!N) 1738 return false; 1739 1740 APInt CVal; 1741 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 1742 CVal = CN->getAPIntValue(); 1743 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 1744 auto *CN = BV->getConstantSplatNode(); 1745 if (!CN) 1746 return false; 1747 1748 // If this is a truncating build vector, truncate the splat value. 1749 // Otherwise, we may fail to match the expected values below. 1750 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 1751 CVal = CN->getAPIntValue(); 1752 if (BVEltWidth < CVal.getBitWidth()) 1753 CVal = CVal.trunc(BVEltWidth); 1754 } else { 1755 return false; 1756 } 1757 1758 switch (getBooleanContents(N->getValueType(0))) { 1759 case UndefinedBooleanContent: 1760 return CVal[0]; 1761 case ZeroOrOneBooleanContent: 1762 return CVal.isOneValue(); 1763 case ZeroOrNegativeOneBooleanContent: 1764 return CVal.isAllOnesValue(); 1765 } 1766 1767 llvm_unreachable("Invalid boolean contents"); 1768 } 1769 1770 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 1771 if (!N) 1772 return false; 1773 1774 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1775 if (!CN) { 1776 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1777 if (!BV) 1778 return false; 1779 1780 // Only interested in constant splats, we don't care about undef 1781 // elements in identifying boolean constants and getConstantSplatNode 1782 // returns NULL if all ops are undef; 1783 CN = BV->getConstantSplatNode(); 1784 if (!CN) 1785 return false; 1786 } 1787 1788 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 1789 return !CN->getAPIntValue()[0]; 1790 1791 return CN->isNullValue(); 1792 } 1793 1794 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 1795 bool SExt) const { 1796 if (VT == MVT::i1) 1797 return N->isOne(); 1798 1799 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 1800 switch (Cnt) { 1801 case TargetLowering::ZeroOrOneBooleanContent: 1802 // An extended value of 1 is always true, unless its original type is i1, 1803 // in which case it will be sign extended to -1. 1804 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 1805 case TargetLowering::UndefinedBooleanContent: 1806 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1807 return N->isAllOnesValue() && SExt; 1808 } 1809 llvm_unreachable("Unexpected enumeration."); 1810 } 1811 1812 /// This helper function of SimplifySetCC tries to optimize the comparison when 1813 /// either operand of the SetCC node is a bitwise-and instruction. 1814 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 1815 ISD::CondCode Cond, 1816 DAGCombinerInfo &DCI, 1817 const SDLoc &DL) const { 1818 // Match these patterns in any of their permutations: 1819 // (X & Y) == Y 1820 // (X & Y) != Y 1821 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 1822 std::swap(N0, N1); 1823 1824 EVT OpVT = N0.getValueType(); 1825 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 1826 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 1827 return SDValue(); 1828 1829 SDValue X, Y; 1830 if (N0.getOperand(0) == N1) { 1831 X = N0.getOperand(1); 1832 Y = N0.getOperand(0); 1833 } else if (N0.getOperand(1) == N1) { 1834 X = N0.getOperand(0); 1835 Y = N0.getOperand(1); 1836 } else { 1837 return SDValue(); 1838 } 1839 1840 SelectionDAG &DAG = DCI.DAG; 1841 SDValue Zero = DAG.getConstant(0, DL, OpVT); 1842 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 1843 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 1844 // Note that where Y is variable and is known to have at most one bit set 1845 // (for example, if it is Z & 1) we cannot do this; the expressions are not 1846 // equivalent when Y == 0. 1847 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 1848 if (DCI.isBeforeLegalizeOps() || 1849 isCondCodeLegal(Cond, N0.getSimpleValueType())) 1850 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 1851 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 1852 // If the target supports an 'and-not' or 'and-complement' logic operation, 1853 // try to use that to make a comparison operation more efficient. 1854 // But don't do this transform if the mask is a single bit because there are 1855 // more efficient ways to deal with that case (for example, 'bt' on x86 or 1856 // 'rlwinm' on PPC). 1857 1858 // Bail out if the compare operand that we want to turn into a zero is 1859 // already a zero (otherwise, infinite loop). 1860 auto *YConst = dyn_cast<ConstantSDNode>(Y); 1861 if (YConst && YConst->isNullValue()) 1862 return SDValue(); 1863 1864 // Transform this into: ~X & Y == 0. 1865 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 1866 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 1867 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 1868 } 1869 1870 return SDValue(); 1871 } 1872 1873 /// There are multiple IR patterns that could be checking whether certain 1874 /// truncation of a signed number would be lossy or not. The pattern which is 1875 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 1876 /// We are looking for the following pattern: (KeptBits is a constant) 1877 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 1878 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 1879 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 1880 /// We will unfold it into the natural trunc+sext pattern: 1881 /// ((%x << C) a>> C) dstcond %x 1882 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 1883 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 1884 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 1885 const SDLoc &DL) const { 1886 // We must be comparing with a constant. 1887 ConstantSDNode *C1; 1888 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 1889 return SDValue(); 1890 1891 // N0 should be: add %x, (1 << (KeptBits-1)) 1892 if (N0->getOpcode() != ISD::ADD) 1893 return SDValue(); 1894 1895 // And we must be 'add'ing a constant. 1896 ConstantSDNode *C01; 1897 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 1898 return SDValue(); 1899 1900 SDValue X = N0->getOperand(0); 1901 EVT XVT = X.getValueType(); 1902 1903 // Validate constants ... 1904 1905 APInt I1 = C1->getAPIntValue(); 1906 1907 ISD::CondCode NewCond; 1908 if (Cond == ISD::CondCode::SETULT) { 1909 NewCond = ISD::CondCode::SETEQ; 1910 } else if (Cond == ISD::CondCode::SETULE) { 1911 NewCond = ISD::CondCode::SETEQ; 1912 // But need to 'canonicalize' the constant. 1913 I1 += 1; 1914 } else if (Cond == ISD::CondCode::SETUGT) { 1915 NewCond = ISD::CondCode::SETNE; 1916 // But need to 'canonicalize' the constant. 1917 I1 += 1; 1918 } else if (Cond == ISD::CondCode::SETUGE) { 1919 NewCond = ISD::CondCode::SETNE; 1920 } else 1921 return SDValue(); 1922 1923 APInt I01 = C01->getAPIntValue(); 1924 1925 auto checkConstants = [&I1, &I01]() -> bool { 1926 // Both of them must be power-of-two, and the constant from setcc is bigger. 1927 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 1928 }; 1929 1930 if (checkConstants()) { 1931 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 1932 } else { 1933 // What if we invert constants? (and the target predicate) 1934 I1.negate(); 1935 I01.negate(); 1936 NewCond = getSetCCInverse(NewCond, /*isInteger=*/true); 1937 if (!checkConstants()) 1938 return SDValue(); 1939 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 1940 } 1941 1942 // They are power-of-two, so which bit is set? 1943 const unsigned KeptBits = I1.logBase2(); 1944 const unsigned KeptBitsMinusOne = I01.logBase2(); 1945 1946 // Magic! 1947 if (KeptBits != (KeptBitsMinusOne + 1)) 1948 return SDValue(); 1949 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 1950 1951 // We don't want to do this in every single case. 1952 SelectionDAG &DAG = DCI.DAG; 1953 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 1954 XVT, KeptBits)) 1955 return SDValue(); 1956 1957 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 1958 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 1959 1960 // Unfold into: ((%x << C) a>> C) cond %x 1961 // Where 'cond' will be either 'eq' or 'ne'. 1962 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 1963 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 1964 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 1965 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 1966 1967 return T2; 1968 } 1969 1970 /// Try to simplify a setcc built with the specified operands and cc. If it is 1971 /// unable to simplify it, return a null SDValue. 1972 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 1973 ISD::CondCode Cond, bool foldBooleans, 1974 DAGCombinerInfo &DCI, 1975 const SDLoc &dl) const { 1976 SelectionDAG &DAG = DCI.DAG; 1977 EVT OpVT = N0.getValueType(); 1978 1979 // These setcc operations always fold. 1980 switch (Cond) { 1981 default: break; 1982 case ISD::SETFALSE: 1983 case ISD::SETFALSE2: return DAG.getBoolConstant(false, dl, VT, OpVT); 1984 case ISD::SETTRUE: 1985 case ISD::SETTRUE2: return DAG.getBoolConstant(true, dl, VT, OpVT); 1986 } 1987 1988 // Ensure that the constant occurs on the RHS and fold constant comparisons. 1989 // TODO: Handle non-splat vector constants. All undef causes trouble. 1990 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 1991 if (isConstOrConstSplat(N0) && 1992 (DCI.isBeforeLegalizeOps() || 1993 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 1994 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 1995 1996 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 1997 const APInt &C1 = N1C->getAPIntValue(); 1998 1999 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 2000 // equality comparison, then we're just comparing whether X itself is 2001 // zero. 2002 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 2003 N0.getOperand(0).getOpcode() == ISD::CTLZ && 2004 N0.getOperand(1).getOpcode() == ISD::Constant) { 2005 const APInt &ShAmt 2006 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 2007 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2008 ShAmt == Log2_32(N0.getValueSizeInBits())) { 2009 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 2010 // (srl (ctlz x), 5) == 0 -> X != 0 2011 // (srl (ctlz x), 5) != 1 -> X != 0 2012 Cond = ISD::SETNE; 2013 } else { 2014 // (srl (ctlz x), 5) != 0 -> X == 0 2015 // (srl (ctlz x), 5) == 1 -> X == 0 2016 Cond = ISD::SETEQ; 2017 } 2018 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 2019 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 2020 Zero, Cond); 2021 } 2022 } 2023 2024 SDValue CTPOP = N0; 2025 // Look through truncs that don't change the value of a ctpop. 2026 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 2027 CTPOP = N0.getOperand(0); 2028 2029 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 2030 (N0 == CTPOP || 2031 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 2032 EVT CTVT = CTPOP.getValueType(); 2033 SDValue CTOp = CTPOP.getOperand(0); 2034 2035 // (ctpop x) u< 2 -> (x & x-1) == 0 2036 // (ctpop x) u> 1 -> (x & x-1) != 0 2037 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 2038 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 2039 DAG.getConstant(1, dl, CTVT)); 2040 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 2041 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 2042 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 2043 } 2044 2045 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 2046 } 2047 2048 // (zext x) == C --> x == (trunc C) 2049 // (sext x) == C --> x == (trunc C) 2050 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2051 DCI.isBeforeLegalize() && N0->hasOneUse()) { 2052 unsigned MinBits = N0.getValueSizeInBits(); 2053 SDValue PreExt; 2054 bool Signed = false; 2055 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 2056 // ZExt 2057 MinBits = N0->getOperand(0).getValueSizeInBits(); 2058 PreExt = N0->getOperand(0); 2059 } else if (N0->getOpcode() == ISD::AND) { 2060 // DAGCombine turns costly ZExts into ANDs 2061 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 2062 if ((C->getAPIntValue()+1).isPowerOf2()) { 2063 MinBits = C->getAPIntValue().countTrailingOnes(); 2064 PreExt = N0->getOperand(0); 2065 } 2066 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 2067 // SExt 2068 MinBits = N0->getOperand(0).getValueSizeInBits(); 2069 PreExt = N0->getOperand(0); 2070 Signed = true; 2071 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 2072 // ZEXTLOAD / SEXTLOAD 2073 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 2074 MinBits = LN0->getMemoryVT().getSizeInBits(); 2075 PreExt = N0; 2076 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 2077 Signed = true; 2078 MinBits = LN0->getMemoryVT().getSizeInBits(); 2079 PreExt = N0; 2080 } 2081 } 2082 2083 // Figure out how many bits we need to preserve this constant. 2084 unsigned ReqdBits = Signed ? 2085 C1.getBitWidth() - C1.getNumSignBits() + 1 : 2086 C1.getActiveBits(); 2087 2088 // Make sure we're not losing bits from the constant. 2089 if (MinBits > 0 && 2090 MinBits < C1.getBitWidth() && 2091 MinBits >= ReqdBits) { 2092 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 2093 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 2094 // Will get folded away. 2095 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 2096 if (MinBits == 1 && C1 == 1) 2097 // Invert the condition. 2098 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 2099 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2100 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 2101 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 2102 } 2103 2104 // If truncating the setcc operands is not desirable, we can still 2105 // simplify the expression in some cases: 2106 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 2107 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 2108 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 2109 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 2110 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 2111 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 2112 SDValue TopSetCC = N0->getOperand(0); 2113 unsigned N0Opc = N0->getOpcode(); 2114 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 2115 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 2116 TopSetCC.getOpcode() == ISD::SETCC && 2117 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 2118 (isConstFalseVal(N1C) || 2119 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 2120 2121 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 2122 (!N1C->isNullValue() && Cond == ISD::SETNE); 2123 2124 if (!Inverse) 2125 return TopSetCC; 2126 2127 ISD::CondCode InvCond = ISD::getSetCCInverse( 2128 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 2129 TopSetCC.getOperand(0).getValueType().isInteger()); 2130 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 2131 TopSetCC.getOperand(1), 2132 InvCond); 2133 } 2134 } 2135 } 2136 2137 // If the LHS is '(and load, const)', the RHS is 0, the test is for 2138 // equality or unsigned, and all 1 bits of the const are in the same 2139 // partial word, see if we can shorten the load. 2140 if (DCI.isBeforeLegalize() && 2141 !ISD::isSignedIntSetCC(Cond) && 2142 N0.getOpcode() == ISD::AND && C1 == 0 && 2143 N0.getNode()->hasOneUse() && 2144 isa<LoadSDNode>(N0.getOperand(0)) && 2145 N0.getOperand(0).getNode()->hasOneUse() && 2146 isa<ConstantSDNode>(N0.getOperand(1))) { 2147 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 2148 APInt bestMask; 2149 unsigned bestWidth = 0, bestOffset = 0; 2150 if (!Lod->isVolatile() && Lod->isUnindexed()) { 2151 unsigned origWidth = N0.getValueSizeInBits(); 2152 unsigned maskWidth = origWidth; 2153 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 2154 // 8 bits, but have to be careful... 2155 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 2156 origWidth = Lod->getMemoryVT().getSizeInBits(); 2157 const APInt &Mask = 2158 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 2159 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 2160 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 2161 for (unsigned offset=0; offset<origWidth/width; offset++) { 2162 if (Mask.isSubsetOf(newMask)) { 2163 if (DAG.getDataLayout().isLittleEndian()) 2164 bestOffset = (uint64_t)offset * (width/8); 2165 else 2166 bestOffset = (origWidth/width - offset - 1) * (width/8); 2167 bestMask = Mask.lshr(offset * (width/8) * 8); 2168 bestWidth = width; 2169 break; 2170 } 2171 newMask <<= width; 2172 } 2173 } 2174 } 2175 if (bestWidth) { 2176 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 2177 if (newVT.isRound()) { 2178 EVT PtrType = Lod->getOperand(1).getValueType(); 2179 SDValue Ptr = Lod->getBasePtr(); 2180 if (bestOffset != 0) 2181 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 2182 DAG.getConstant(bestOffset, dl, PtrType)); 2183 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 2184 SDValue NewLoad = DAG.getLoad( 2185 newVT, dl, Lod->getChain(), Ptr, 2186 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 2187 return DAG.getSetCC(dl, VT, 2188 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 2189 DAG.getConstant(bestMask.trunc(bestWidth), 2190 dl, newVT)), 2191 DAG.getConstant(0LL, dl, newVT), Cond); 2192 } 2193 } 2194 } 2195 2196 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 2197 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 2198 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 2199 2200 // If the comparison constant has bits in the upper part, the 2201 // zero-extended value could never match. 2202 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 2203 C1.getBitWidth() - InSize))) { 2204 switch (Cond) { 2205 case ISD::SETUGT: 2206 case ISD::SETUGE: 2207 case ISD::SETEQ: 2208 return DAG.getConstant(0, dl, VT); 2209 case ISD::SETULT: 2210 case ISD::SETULE: 2211 case ISD::SETNE: 2212 return DAG.getConstant(1, dl, VT); 2213 case ISD::SETGT: 2214 case ISD::SETGE: 2215 // True if the sign bit of C1 is set. 2216 return DAG.getConstant(C1.isNegative(), dl, VT); 2217 case ISD::SETLT: 2218 case ISD::SETLE: 2219 // True if the sign bit of C1 isn't set. 2220 return DAG.getConstant(C1.isNonNegative(), dl, VT); 2221 default: 2222 break; 2223 } 2224 } 2225 2226 // Otherwise, we can perform the comparison with the low bits. 2227 switch (Cond) { 2228 case ISD::SETEQ: 2229 case ISD::SETNE: 2230 case ISD::SETUGT: 2231 case ISD::SETUGE: 2232 case ISD::SETULT: 2233 case ISD::SETULE: { 2234 EVT newVT = N0.getOperand(0).getValueType(); 2235 if (DCI.isBeforeLegalizeOps() || 2236 (isOperationLegal(ISD::SETCC, newVT) && 2237 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 2238 EVT NewSetCCVT = 2239 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); 2240 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 2241 2242 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 2243 NewConst, Cond); 2244 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 2245 } 2246 break; 2247 } 2248 default: 2249 break; // todo, be more careful with signed comparisons 2250 } 2251 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 2252 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2253 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 2254 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 2255 EVT ExtDstTy = N0.getValueType(); 2256 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 2257 2258 // If the constant doesn't fit into the number of bits for the source of 2259 // the sign extension, it is impossible for both sides to be equal. 2260 if (C1.getMinSignedBits() > ExtSrcTyBits) 2261 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 2262 2263 SDValue ZextOp; 2264 EVT Op0Ty = N0.getOperand(0).getValueType(); 2265 if (Op0Ty == ExtSrcTy) { 2266 ZextOp = N0.getOperand(0); 2267 } else { 2268 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 2269 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 2270 DAG.getConstant(Imm, dl, Op0Ty)); 2271 } 2272 if (!DCI.isCalledByLegalizer()) 2273 DCI.AddToWorklist(ZextOp.getNode()); 2274 // Otherwise, make this a use of a zext. 2275 return DAG.getSetCC(dl, VT, ZextOp, 2276 DAG.getConstant(C1 & APInt::getLowBitsSet( 2277 ExtDstTyBits, 2278 ExtSrcTyBits), 2279 dl, ExtDstTy), 2280 Cond); 2281 } else if ((N1C->isNullValue() || N1C->isOne()) && 2282 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2283 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 2284 if (N0.getOpcode() == ISD::SETCC && 2285 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 2286 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 2287 if (TrueWhenTrue) 2288 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 2289 // Invert the condition. 2290 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 2291 CC = ISD::getSetCCInverse(CC, 2292 N0.getOperand(0).getValueType().isInteger()); 2293 if (DCI.isBeforeLegalizeOps() || 2294 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 2295 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 2296 } 2297 2298 if ((N0.getOpcode() == ISD::XOR || 2299 (N0.getOpcode() == ISD::AND && 2300 N0.getOperand(0).getOpcode() == ISD::XOR && 2301 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 2302 isa<ConstantSDNode>(N0.getOperand(1)) && 2303 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 2304 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 2305 // can only do this if the top bits are known zero. 2306 unsigned BitWidth = N0.getValueSizeInBits(); 2307 if (DAG.MaskedValueIsZero(N0, 2308 APInt::getHighBitsSet(BitWidth, 2309 BitWidth-1))) { 2310 // Okay, get the un-inverted input value. 2311 SDValue Val; 2312 if (N0.getOpcode() == ISD::XOR) { 2313 Val = N0.getOperand(0); 2314 } else { 2315 assert(N0.getOpcode() == ISD::AND && 2316 N0.getOperand(0).getOpcode() == ISD::XOR); 2317 // ((X^1)&1)^1 -> X & 1 2318 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 2319 N0.getOperand(0).getOperand(0), 2320 N0.getOperand(1)); 2321 } 2322 2323 return DAG.getSetCC(dl, VT, Val, N1, 2324 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2325 } 2326 } else if (N1C->isOne() && 2327 (VT == MVT::i1 || 2328 getBooleanContents(N0->getValueType(0)) == 2329 ZeroOrOneBooleanContent)) { 2330 SDValue Op0 = N0; 2331 if (Op0.getOpcode() == ISD::TRUNCATE) 2332 Op0 = Op0.getOperand(0); 2333 2334 if ((Op0.getOpcode() == ISD::XOR) && 2335 Op0.getOperand(0).getOpcode() == ISD::SETCC && 2336 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 2337 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 2338 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 2339 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 2340 Cond); 2341 } 2342 if (Op0.getOpcode() == ISD::AND && 2343 isa<ConstantSDNode>(Op0.getOperand(1)) && 2344 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 2345 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 2346 if (Op0.getValueType().bitsGT(VT)) 2347 Op0 = DAG.getNode(ISD::AND, dl, VT, 2348 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 2349 DAG.getConstant(1, dl, VT)); 2350 else if (Op0.getValueType().bitsLT(VT)) 2351 Op0 = DAG.getNode(ISD::AND, dl, VT, 2352 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 2353 DAG.getConstant(1, dl, VT)); 2354 2355 return DAG.getSetCC(dl, VT, Op0, 2356 DAG.getConstant(0, dl, Op0.getValueType()), 2357 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2358 } 2359 if (Op0.getOpcode() == ISD::AssertZext && 2360 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 2361 return DAG.getSetCC(dl, VT, Op0, 2362 DAG.getConstant(0, dl, Op0.getValueType()), 2363 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2364 } 2365 } 2366 2367 if (SDValue V = 2368 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 2369 return V; 2370 } 2371 2372 // These simplifications apply to splat vectors as well. 2373 // TODO: Handle more splat vector cases. 2374 if (auto *N1C = isConstOrConstSplat(N1)) { 2375 const APInt &C1 = N1C->getAPIntValue(); 2376 2377 APInt MinVal, MaxVal; 2378 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 2379 if (ISD::isSignedIntSetCC(Cond)) { 2380 MinVal = APInt::getSignedMinValue(OperandBitSize); 2381 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 2382 } else { 2383 MinVal = APInt::getMinValue(OperandBitSize); 2384 MaxVal = APInt::getMaxValue(OperandBitSize); 2385 } 2386 2387 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 2388 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 2389 // X >= MIN --> true 2390 if (C1 == MinVal) 2391 return DAG.getBoolConstant(true, dl, VT, OpVT); 2392 2393 if (!VT.isVector()) { // TODO: Support this for vectors. 2394 // X >= C0 --> X > (C0 - 1) 2395 APInt C = C1 - 1; 2396 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 2397 if ((DCI.isBeforeLegalizeOps() || 2398 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 2399 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 2400 isLegalICmpImmediate(C.getSExtValue())))) { 2401 return DAG.getSetCC(dl, VT, N0, 2402 DAG.getConstant(C, dl, N1.getValueType()), 2403 NewCC); 2404 } 2405 } 2406 } 2407 2408 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 2409 // X <= MAX --> true 2410 if (C1 == MaxVal) 2411 return DAG.getBoolConstant(true, dl, VT, OpVT); 2412 2413 // X <= C0 --> X < (C0 + 1) 2414 if (!VT.isVector()) { // TODO: Support this for vectors. 2415 APInt C = C1 + 1; 2416 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 2417 if ((DCI.isBeforeLegalizeOps() || 2418 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 2419 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 2420 isLegalICmpImmediate(C.getSExtValue())))) { 2421 return DAG.getSetCC(dl, VT, N0, 2422 DAG.getConstant(C, dl, N1.getValueType()), 2423 NewCC); 2424 } 2425 } 2426 } 2427 2428 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 2429 if (C1 == MinVal) 2430 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 2431 2432 // TODO: Support this for vectors after legalize ops. 2433 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2434 // Canonicalize setlt X, Max --> setne X, Max 2435 if (C1 == MaxVal) 2436 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 2437 2438 // If we have setult X, 1, turn it into seteq X, 0 2439 if (C1 == MinVal+1) 2440 return DAG.getSetCC(dl, VT, N0, 2441 DAG.getConstant(MinVal, dl, N0.getValueType()), 2442 ISD::SETEQ); 2443 } 2444 } 2445 2446 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 2447 if (C1 == MaxVal) 2448 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 2449 2450 // TODO: Support this for vectors after legalize ops. 2451 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2452 // Canonicalize setgt X, Min --> setne X, Min 2453 if (C1 == MinVal) 2454 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 2455 2456 // If we have setugt X, Max-1, turn it into seteq X, Max 2457 if (C1 == MaxVal-1) 2458 return DAG.getSetCC(dl, VT, N0, 2459 DAG.getConstant(MaxVal, dl, N0.getValueType()), 2460 ISD::SETEQ); 2461 } 2462 } 2463 2464 // If we have "setcc X, C0", check to see if we can shrink the immediate 2465 // by changing cc. 2466 // TODO: Support this for vectors after legalize ops. 2467 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2468 // SETUGT X, SINTMAX -> SETLT X, 0 2469 if (Cond == ISD::SETUGT && 2470 C1 == APInt::getSignedMaxValue(OperandBitSize)) 2471 return DAG.getSetCC(dl, VT, N0, 2472 DAG.getConstant(0, dl, N1.getValueType()), 2473 ISD::SETLT); 2474 2475 // SETULT X, SINTMIN -> SETGT X, -1 2476 if (Cond == ISD::SETULT && 2477 C1 == APInt::getSignedMinValue(OperandBitSize)) { 2478 SDValue ConstMinusOne = 2479 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 2480 N1.getValueType()); 2481 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 2482 } 2483 } 2484 } 2485 2486 // Back to non-vector simplifications. 2487 // TODO: Can we do these for vector splats? 2488 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 2489 const APInt &C1 = N1C->getAPIntValue(); 2490 2491 // Fold bit comparisons when we can. 2492 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2493 (VT == N0.getValueType() || 2494 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 2495 N0.getOpcode() == ISD::AND) { 2496 auto &DL = DAG.getDataLayout(); 2497 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2498 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 2499 !DCI.isBeforeLegalize()); 2500 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 2501 // Perform the xform if the AND RHS is a single bit. 2502 if (AndRHS->getAPIntValue().isPowerOf2()) { 2503 return DAG.getNode(ISD::TRUNCATE, dl, VT, 2504 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 2505 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, 2506 ShiftTy))); 2507 } 2508 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 2509 // (X & 8) == 8 --> (X & 8) >> 3 2510 // Perform the xform if C1 is a single bit. 2511 if (C1.isPowerOf2()) { 2512 return DAG.getNode(ISD::TRUNCATE, dl, VT, 2513 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 2514 DAG.getConstant(C1.logBase2(), dl, 2515 ShiftTy))); 2516 } 2517 } 2518 } 2519 } 2520 2521 if (C1.getMinSignedBits() <= 64 && 2522 !isLegalICmpImmediate(C1.getSExtValue())) { 2523 // (X & -256) == 256 -> (X >> 8) == 1 2524 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2525 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 2526 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2527 const APInt &AndRHSC = AndRHS->getAPIntValue(); 2528 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 2529 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 2530 auto &DL = DAG.getDataLayout(); 2531 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 2532 !DCI.isBeforeLegalize()); 2533 EVT CmpTy = N0.getValueType(); 2534 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 2535 DAG.getConstant(ShiftBits, dl, 2536 ShiftTy)); 2537 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); 2538 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 2539 } 2540 } 2541 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 2542 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 2543 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 2544 // X < 0x100000000 -> (X >> 32) < 1 2545 // X >= 0x100000000 -> (X >> 32) >= 1 2546 // X <= 0x0ffffffff -> (X >> 32) < 1 2547 // X > 0x0ffffffff -> (X >> 32) >= 1 2548 unsigned ShiftBits; 2549 APInt NewC = C1; 2550 ISD::CondCode NewCond = Cond; 2551 if (AdjOne) { 2552 ShiftBits = C1.countTrailingOnes(); 2553 NewC = NewC + 1; 2554 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 2555 } else { 2556 ShiftBits = C1.countTrailingZeros(); 2557 } 2558 NewC.lshrInPlace(ShiftBits); 2559 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 2560 isLegalICmpImmediate(NewC.getSExtValue())) { 2561 auto &DL = DAG.getDataLayout(); 2562 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 2563 !DCI.isBeforeLegalize()); 2564 EVT CmpTy = N0.getValueType(); 2565 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 2566 DAG.getConstant(ShiftBits, dl, ShiftTy)); 2567 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); 2568 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 2569 } 2570 } 2571 } 2572 } 2573 2574 if (isa<ConstantFPSDNode>(N0.getNode())) { 2575 // Constant fold or commute setcc. 2576 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); 2577 if (O.getNode()) return O; 2578 } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { 2579 // If the RHS of an FP comparison is a constant, simplify it away in 2580 // some cases. 2581 if (CFP->getValueAPF().isNaN()) { 2582 // If an operand is known to be a nan, we can fold it. 2583 switch (ISD::getUnorderedFlavor(Cond)) { 2584 default: llvm_unreachable("Unknown flavor!"); 2585 case 0: // Known false. 2586 return DAG.getBoolConstant(false, dl, VT, OpVT); 2587 case 1: // Known true. 2588 return DAG.getBoolConstant(true, dl, VT, OpVT); 2589 case 2: // Undefined. 2590 return DAG.getUNDEF(VT); 2591 } 2592 } 2593 2594 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 2595 // constant if knowing that the operand is non-nan is enough. We prefer to 2596 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 2597 // materialize 0.0. 2598 if (Cond == ISD::SETO || Cond == ISD::SETUO) 2599 return DAG.getSetCC(dl, VT, N0, N0, Cond); 2600 2601 // setcc (fneg x), C -> setcc swap(pred) x, -C 2602 if (N0.getOpcode() == ISD::FNEG) { 2603 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 2604 if (DCI.isBeforeLegalizeOps() || 2605 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 2606 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 2607 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 2608 } 2609 } 2610 2611 // If the condition is not legal, see if we can find an equivalent one 2612 // which is legal. 2613 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 2614 // If the comparison was an awkward floating-point == or != and one of 2615 // the comparison operands is infinity or negative infinity, convert the 2616 // condition to a less-awkward <= or >=. 2617 if (CFP->getValueAPF().isInfinity()) { 2618 if (CFP->getValueAPF().isNegative()) { 2619 if (Cond == ISD::SETOEQ && 2620 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 2621 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 2622 if (Cond == ISD::SETUEQ && 2623 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 2624 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 2625 if (Cond == ISD::SETUNE && 2626 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 2627 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 2628 if (Cond == ISD::SETONE && 2629 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 2630 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 2631 } else { 2632 if (Cond == ISD::SETOEQ && 2633 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 2634 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 2635 if (Cond == ISD::SETUEQ && 2636 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 2637 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 2638 if (Cond == ISD::SETUNE && 2639 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 2640 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 2641 if (Cond == ISD::SETONE && 2642 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 2643 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 2644 } 2645 } 2646 } 2647 } 2648 2649 if (N0 == N1) { 2650 // The sext(setcc()) => setcc() optimization relies on the appropriate 2651 // constant being emitted. 2652 2653 bool EqTrue = ISD::isTrueWhenEqual(Cond); 2654 2655 // We can always fold X == X for integer setcc's. 2656 if (N0.getValueType().isInteger()) 2657 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 2658 2659 unsigned UOF = ISD::getUnorderedFlavor(Cond); 2660 if (UOF == 2) // FP operators that are undefined on NaNs. 2661 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 2662 if (UOF == unsigned(EqTrue)) 2663 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 2664 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 2665 // if it is not already. 2666 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 2667 if (NewCond != Cond && 2668 (DCI.isBeforeLegalizeOps() || 2669 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 2670 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 2671 } 2672 2673 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2674 N0.getValueType().isInteger()) { 2675 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 2676 N0.getOpcode() == ISD::XOR) { 2677 // Simplify (X+Y) == (X+Z) --> Y == Z 2678 if (N0.getOpcode() == N1.getOpcode()) { 2679 if (N0.getOperand(0) == N1.getOperand(0)) 2680 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 2681 if (N0.getOperand(1) == N1.getOperand(1)) 2682 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 2683 if (isCommutativeBinOp(N0.getOpcode())) { 2684 // If X op Y == Y op X, try other combinations. 2685 if (N0.getOperand(0) == N1.getOperand(1)) 2686 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 2687 Cond); 2688 if (N0.getOperand(1) == N1.getOperand(0)) 2689 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 2690 Cond); 2691 } 2692 } 2693 2694 // If RHS is a legal immediate value for a compare instruction, we need 2695 // to be careful about increasing register pressure needlessly. 2696 bool LegalRHSImm = false; 2697 2698 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 2699 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2700 // Turn (X+C1) == C2 --> X == C2-C1 2701 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 2702 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2703 DAG.getConstant(RHSC->getAPIntValue()- 2704 LHSR->getAPIntValue(), 2705 dl, N0.getValueType()), Cond); 2706 } 2707 2708 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 2709 if (N0.getOpcode() == ISD::XOR) 2710 // If we know that all of the inverted bits are zero, don't bother 2711 // performing the inversion. 2712 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 2713 return 2714 DAG.getSetCC(dl, VT, N0.getOperand(0), 2715 DAG.getConstant(LHSR->getAPIntValue() ^ 2716 RHSC->getAPIntValue(), 2717 dl, N0.getValueType()), 2718 Cond); 2719 } 2720 2721 // Turn (C1-X) == C2 --> X == C1-C2 2722 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 2723 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 2724 return 2725 DAG.getSetCC(dl, VT, N0.getOperand(1), 2726 DAG.getConstant(SUBC->getAPIntValue() - 2727 RHSC->getAPIntValue(), 2728 dl, N0.getValueType()), 2729 Cond); 2730 } 2731 } 2732 2733 // Could RHSC fold directly into a compare? 2734 if (RHSC->getValueType(0).getSizeInBits() <= 64) 2735 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 2736 } 2737 2738 // Simplify (X+Z) == X --> Z == 0 2739 // Don't do this if X is an immediate that can fold into a cmp 2740 // instruction and X+Z has other uses. It could be an induction variable 2741 // chain, and the transform would increase register pressure. 2742 if (!LegalRHSImm || N0.getNode()->hasOneUse()) { 2743 if (N0.getOperand(0) == N1) 2744 return DAG.getSetCC(dl, VT, N0.getOperand(1), 2745 DAG.getConstant(0, dl, N0.getValueType()), Cond); 2746 if (N0.getOperand(1) == N1) { 2747 if (isCommutativeBinOp(N0.getOpcode())) 2748 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2749 DAG.getConstant(0, dl, N0.getValueType()), 2750 Cond); 2751 if (N0.getNode()->hasOneUse()) { 2752 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); 2753 auto &DL = DAG.getDataLayout(); 2754 // (Z-X) == X --> Z == X<<1 2755 SDValue SH = DAG.getNode( 2756 ISD::SHL, dl, N1.getValueType(), N1, 2757 DAG.getConstant(1, dl, 2758 getShiftAmountTy(N1.getValueType(), DL, 2759 !DCI.isBeforeLegalize()))); 2760 if (!DCI.isCalledByLegalizer()) 2761 DCI.AddToWorklist(SH.getNode()); 2762 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); 2763 } 2764 } 2765 } 2766 } 2767 2768 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 2769 N1.getOpcode() == ISD::XOR) { 2770 // Simplify X == (X+Z) --> Z == 0 2771 if (N1.getOperand(0) == N0) 2772 return DAG.getSetCC(dl, VT, N1.getOperand(1), 2773 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2774 if (N1.getOperand(1) == N0) { 2775 if (isCommutativeBinOp(N1.getOpcode())) 2776 return DAG.getSetCC(dl, VT, N1.getOperand(0), 2777 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2778 if (N1.getNode()->hasOneUse()) { 2779 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); 2780 auto &DL = DAG.getDataLayout(); 2781 // X == (Z-X) --> X<<1 == Z 2782 SDValue SH = DAG.getNode( 2783 ISD::SHL, dl, N1.getValueType(), N0, 2784 DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL, 2785 !DCI.isBeforeLegalize()))); 2786 if (!DCI.isCalledByLegalizer()) 2787 DCI.AddToWorklist(SH.getNode()); 2788 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); 2789 } 2790 } 2791 } 2792 2793 if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl)) 2794 return V; 2795 } 2796 2797 // Fold away ALL boolean setcc's. 2798 SDValue Temp; 2799 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 2800 EVT OpVT = N0.getValueType(); 2801 switch (Cond) { 2802 default: llvm_unreachable("Unknown integer setcc!"); 2803 case ISD::SETEQ: // X == Y -> ~(X^Y) 2804 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 2805 N0 = DAG.getNOT(dl, Temp, OpVT); 2806 if (!DCI.isCalledByLegalizer()) 2807 DCI.AddToWorklist(Temp.getNode()); 2808 break; 2809 case ISD::SETNE: // X != Y --> (X^Y) 2810 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 2811 break; 2812 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 2813 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 2814 Temp = DAG.getNOT(dl, N0, OpVT); 2815 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 2816 if (!DCI.isCalledByLegalizer()) 2817 DCI.AddToWorklist(Temp.getNode()); 2818 break; 2819 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 2820 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 2821 Temp = DAG.getNOT(dl, N1, OpVT); 2822 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 2823 if (!DCI.isCalledByLegalizer()) 2824 DCI.AddToWorklist(Temp.getNode()); 2825 break; 2826 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 2827 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 2828 Temp = DAG.getNOT(dl, N0, OpVT); 2829 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 2830 if (!DCI.isCalledByLegalizer()) 2831 DCI.AddToWorklist(Temp.getNode()); 2832 break; 2833 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 2834 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 2835 Temp = DAG.getNOT(dl, N1, OpVT); 2836 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 2837 break; 2838 } 2839 if (VT.getScalarType() != MVT::i1) { 2840 if (!DCI.isCalledByLegalizer()) 2841 DCI.AddToWorklist(N0.getNode()); 2842 // FIXME: If running after legalize, we probably can't do this. 2843 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 2844 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 2845 } 2846 return N0; 2847 } 2848 2849 // Could not fold it. 2850 return SDValue(); 2851 } 2852 2853 /// Returns true (and the GlobalValue and the offset) if the node is a 2854 /// GlobalAddress + offset. 2855 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, 2856 int64_t &Offset) const { 2857 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 2858 GA = GASD->getGlobal(); 2859 Offset += GASD->getOffset(); 2860 return true; 2861 } 2862 2863 if (N->getOpcode() == ISD::ADD) { 2864 SDValue N1 = N->getOperand(0); 2865 SDValue N2 = N->getOperand(1); 2866 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 2867 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 2868 Offset += V->getSExtValue(); 2869 return true; 2870 } 2871 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 2872 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 2873 Offset += V->getSExtValue(); 2874 return true; 2875 } 2876 } 2877 } 2878 2879 return false; 2880 } 2881 2882 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 2883 DAGCombinerInfo &DCI) const { 2884 // Default implementation: no optimization. 2885 return SDValue(); 2886 } 2887 2888 //===----------------------------------------------------------------------===// 2889 // Inline Assembler Implementation Methods 2890 //===----------------------------------------------------------------------===// 2891 2892 TargetLowering::ConstraintType 2893 TargetLowering::getConstraintType(StringRef Constraint) const { 2894 unsigned S = Constraint.size(); 2895 2896 if (S == 1) { 2897 switch (Constraint[0]) { 2898 default: break; 2899 case 'r': return C_RegisterClass; 2900 case 'm': // memory 2901 case 'o': // offsetable 2902 case 'V': // not offsetable 2903 return C_Memory; 2904 case 'i': // Simple Integer or Relocatable Constant 2905 case 'n': // Simple Integer 2906 case 'E': // Floating Point Constant 2907 case 'F': // Floating Point Constant 2908 case 's': // Relocatable Constant 2909 case 'p': // Address. 2910 case 'X': // Allow ANY value. 2911 case 'I': // Target registers. 2912 case 'J': 2913 case 'K': 2914 case 'L': 2915 case 'M': 2916 case 'N': 2917 case 'O': 2918 case 'P': 2919 case '<': 2920 case '>': 2921 return C_Other; 2922 } 2923 } 2924 2925 if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { 2926 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 2927 return C_Memory; 2928 return C_Register; 2929 } 2930 return C_Unknown; 2931 } 2932 2933 /// Try to replace an X constraint, which matches anything, with another that 2934 /// has more specific requirements based on the type of the corresponding 2935 /// operand. 2936 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ 2937 if (ConstraintVT.isInteger()) 2938 return "r"; 2939 if (ConstraintVT.isFloatingPoint()) 2940 return "f"; // works for many targets 2941 return nullptr; 2942 } 2943 2944 /// Lower the specified operand into the Ops vector. 2945 /// If it is invalid, don't add anything to Ops. 2946 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 2947 std::string &Constraint, 2948 std::vector<SDValue> &Ops, 2949 SelectionDAG &DAG) const { 2950 2951 if (Constraint.length() > 1) return; 2952 2953 char ConstraintLetter = Constraint[0]; 2954 switch (ConstraintLetter) { 2955 default: break; 2956 case 'X': // Allows any operand; labels (basic block) use this. 2957 if (Op.getOpcode() == ISD::BasicBlock) { 2958 Ops.push_back(Op); 2959 return; 2960 } 2961 LLVM_FALLTHROUGH; 2962 case 'i': // Simple Integer or Relocatable Constant 2963 case 'n': // Simple Integer 2964 case 's': { // Relocatable Constant 2965 // These operands are interested in values of the form (GV+C), where C may 2966 // be folded in as an offset of GV, or it may be explicitly added. Also, it 2967 // is possible and fine if either GV or C are missing. 2968 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2969 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 2970 2971 // If we have "(add GV, C)", pull out GV/C 2972 if (Op.getOpcode() == ISD::ADD) { 2973 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2974 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 2975 if (!C || !GA) { 2976 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 2977 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 2978 } 2979 if (!C || !GA) { 2980 C = nullptr; 2981 GA = nullptr; 2982 } 2983 } 2984 2985 // If we find a valid operand, map to the TargetXXX version so that the 2986 // value itself doesn't get selected. 2987 if (GA) { // Either &GV or &GV+C 2988 if (ConstraintLetter != 'n') { 2989 int64_t Offs = GA->getOffset(); 2990 if (C) Offs += C->getZExtValue(); 2991 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 2992 C ? SDLoc(C) : SDLoc(), 2993 Op.getValueType(), Offs)); 2994 } 2995 return; 2996 } 2997 if (C) { // just C, no GV. 2998 // Simple constants are not allowed for 's'. 2999 if (ConstraintLetter != 's') { 3000 // gcc prints these as sign extended. Sign extend value to 64 bits 3001 // now; without this it would get ZExt'd later in 3002 // ScheduleDAGSDNodes::EmitNode, which is very generic. 3003 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), 3004 SDLoc(C), MVT::i64)); 3005 } 3006 return; 3007 } 3008 break; 3009 } 3010 } 3011 } 3012 3013 std::pair<unsigned, const TargetRegisterClass *> 3014 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 3015 StringRef Constraint, 3016 MVT VT) const { 3017 if (Constraint.empty() || Constraint[0] != '{') 3018 return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr)); 3019 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); 3020 3021 // Remove the braces from around the name. 3022 StringRef RegName(Constraint.data()+1, Constraint.size()-2); 3023 3024 std::pair<unsigned, const TargetRegisterClass*> R = 3025 std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr)); 3026 3027 // Figure out which register class contains this reg. 3028 for (const TargetRegisterClass *RC : RI->regclasses()) { 3029 // If none of the value types for this register class are valid, we 3030 // can't use it. For example, 64-bit reg classes on 32-bit targets. 3031 if (!isLegalRC(*RI, *RC)) 3032 continue; 3033 3034 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 3035 I != E; ++I) { 3036 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 3037 std::pair<unsigned, const TargetRegisterClass*> S = 3038 std::make_pair(*I, RC); 3039 3040 // If this register class has the requested value type, return it, 3041 // otherwise keep searching and return the first class found 3042 // if no other is found which explicitly has the requested type. 3043 if (RI->isTypeLegalForClass(*RC, VT)) 3044 return S; 3045 if (!R.second) 3046 R = S; 3047 } 3048 } 3049 } 3050 3051 return R; 3052 } 3053 3054 //===----------------------------------------------------------------------===// 3055 // Constraint Selection. 3056 3057 /// Return true of this is an input operand that is a matching constraint like 3058 /// "4". 3059 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 3060 assert(!ConstraintCode.empty() && "No known constraint!"); 3061 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 3062 } 3063 3064 /// If this is an input matching constraint, this method returns the output 3065 /// operand it matches. 3066 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 3067 assert(!ConstraintCode.empty() && "No known constraint!"); 3068 return atoi(ConstraintCode.c_str()); 3069 } 3070 3071 /// Split up the constraint string from the inline assembly value into the 3072 /// specific constraints and their prefixes, and also tie in the associated 3073 /// operand values. 3074 /// If this returns an empty vector, and if the constraint string itself 3075 /// isn't empty, there was an error parsing. 3076 TargetLowering::AsmOperandInfoVector 3077 TargetLowering::ParseConstraints(const DataLayout &DL, 3078 const TargetRegisterInfo *TRI, 3079 ImmutableCallSite CS) const { 3080 /// Information about all of the constraints. 3081 AsmOperandInfoVector ConstraintOperands; 3082 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 3083 unsigned maCount = 0; // Largest number of multiple alternative constraints. 3084 3085 // Do a prepass over the constraints, canonicalizing them, and building up the 3086 // ConstraintOperands list. 3087 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 3088 unsigned ResNo = 0; // ResNo - The result number of the next output. 3089 3090 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 3091 ConstraintOperands.emplace_back(std::move(CI)); 3092 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 3093 3094 // Update multiple alternative constraint count. 3095 if (OpInfo.multipleAlternatives.size() > maCount) 3096 maCount = OpInfo.multipleAlternatives.size(); 3097 3098 OpInfo.ConstraintVT = MVT::Other; 3099 3100 // Compute the value type for each operand. 3101 switch (OpInfo.Type) { 3102 case InlineAsm::isOutput: 3103 // Indirect outputs just consume an argument. 3104 if (OpInfo.isIndirect) { 3105 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 3106 break; 3107 } 3108 3109 // The return value of the call is this value. As such, there is no 3110 // corresponding argument. 3111 assert(!CS.getType()->isVoidTy() && 3112 "Bad inline asm!"); 3113 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 3114 OpInfo.ConstraintVT = 3115 getSimpleValueType(DL, STy->getElementType(ResNo)); 3116 } else { 3117 assert(ResNo == 0 && "Asm only has one result!"); 3118 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 3119 } 3120 ++ResNo; 3121 break; 3122 case InlineAsm::isInput: 3123 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 3124 break; 3125 case InlineAsm::isClobber: 3126 // Nothing to do. 3127 break; 3128 } 3129 3130 if (OpInfo.CallOperandVal) { 3131 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 3132 if (OpInfo.isIndirect) { 3133 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 3134 if (!PtrTy) 3135 report_fatal_error("Indirect operand for inline asm not a pointer!"); 3136 OpTy = PtrTy->getElementType(); 3137 } 3138 3139 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 3140 if (StructType *STy = dyn_cast<StructType>(OpTy)) 3141 if (STy->getNumElements() == 1) 3142 OpTy = STy->getElementType(0); 3143 3144 // If OpTy is not a single value, it may be a struct/union that we 3145 // can tile with integers. 3146 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 3147 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 3148 switch (BitSize) { 3149 default: break; 3150 case 1: 3151 case 8: 3152 case 16: 3153 case 32: 3154 case 64: 3155 case 128: 3156 OpInfo.ConstraintVT = 3157 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 3158 break; 3159 } 3160 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 3161 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 3162 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 3163 } else { 3164 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 3165 } 3166 } 3167 } 3168 3169 // If we have multiple alternative constraints, select the best alternative. 3170 if (!ConstraintOperands.empty()) { 3171 if (maCount) { 3172 unsigned bestMAIndex = 0; 3173 int bestWeight = -1; 3174 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 3175 int weight = -1; 3176 unsigned maIndex; 3177 // Compute the sums of the weights for each alternative, keeping track 3178 // of the best (highest weight) one so far. 3179 for (maIndex = 0; maIndex < maCount; ++maIndex) { 3180 int weightSum = 0; 3181 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3182 cIndex != eIndex; ++cIndex) { 3183 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 3184 if (OpInfo.Type == InlineAsm::isClobber) 3185 continue; 3186 3187 // If this is an output operand with a matching input operand, 3188 // look up the matching input. If their types mismatch, e.g. one 3189 // is an integer, the other is floating point, or their sizes are 3190 // different, flag it as an maCantMatch. 3191 if (OpInfo.hasMatchingInput()) { 3192 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 3193 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 3194 if ((OpInfo.ConstraintVT.isInteger() != 3195 Input.ConstraintVT.isInteger()) || 3196 (OpInfo.ConstraintVT.getSizeInBits() != 3197 Input.ConstraintVT.getSizeInBits())) { 3198 weightSum = -1; // Can't match. 3199 break; 3200 } 3201 } 3202 } 3203 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 3204 if (weight == -1) { 3205 weightSum = -1; 3206 break; 3207 } 3208 weightSum += weight; 3209 } 3210 // Update best. 3211 if (weightSum > bestWeight) { 3212 bestWeight = weightSum; 3213 bestMAIndex = maIndex; 3214 } 3215 } 3216 3217 // Now select chosen alternative in each constraint. 3218 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3219 cIndex != eIndex; ++cIndex) { 3220 AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; 3221 if (cInfo.Type == InlineAsm::isClobber) 3222 continue; 3223 cInfo.selectAlternative(bestMAIndex); 3224 } 3225 } 3226 } 3227 3228 // Check and hook up tied operands, choose constraint code to use. 3229 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3230 cIndex != eIndex; ++cIndex) { 3231 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 3232 3233 // If this is an output operand with a matching input operand, look up the 3234 // matching input. If their types mismatch, e.g. one is an integer, the 3235 // other is floating point, or their sizes are different, flag it as an 3236 // error. 3237 if (OpInfo.hasMatchingInput()) { 3238 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 3239 3240 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 3241 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 3242 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 3243 OpInfo.ConstraintVT); 3244 std::pair<unsigned, const TargetRegisterClass *> InputRC = 3245 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 3246 Input.ConstraintVT); 3247 if ((OpInfo.ConstraintVT.isInteger() != 3248 Input.ConstraintVT.isInteger()) || 3249 (MatchRC.second != InputRC.second)) { 3250 report_fatal_error("Unsupported asm: input constraint" 3251 " with a matching output constraint of" 3252 " incompatible type!"); 3253 } 3254 } 3255 } 3256 } 3257 3258 return ConstraintOperands; 3259 } 3260 3261 /// Return an integer indicating how general CT is. 3262 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 3263 switch (CT) { 3264 case TargetLowering::C_Other: 3265 case TargetLowering::C_Unknown: 3266 return 0; 3267 case TargetLowering::C_Register: 3268 return 1; 3269 case TargetLowering::C_RegisterClass: 3270 return 2; 3271 case TargetLowering::C_Memory: 3272 return 3; 3273 } 3274 llvm_unreachable("Invalid constraint type"); 3275 } 3276 3277 /// Examine constraint type and operand type and determine a weight value. 3278 /// This object must already have been set up with the operand type 3279 /// and the current alternative constraint selected. 3280 TargetLowering::ConstraintWeight 3281 TargetLowering::getMultipleConstraintMatchWeight( 3282 AsmOperandInfo &info, int maIndex) const { 3283 InlineAsm::ConstraintCodeVector *rCodes; 3284 if (maIndex >= (int)info.multipleAlternatives.size()) 3285 rCodes = &info.Codes; 3286 else 3287 rCodes = &info.multipleAlternatives[maIndex].Codes; 3288 ConstraintWeight BestWeight = CW_Invalid; 3289 3290 // Loop over the options, keeping track of the most general one. 3291 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 3292 ConstraintWeight weight = 3293 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 3294 if (weight > BestWeight) 3295 BestWeight = weight; 3296 } 3297 3298 return BestWeight; 3299 } 3300 3301 /// Examine constraint type and operand type and determine a weight value. 3302 /// This object must already have been set up with the operand type 3303 /// and the current alternative constraint selected. 3304 TargetLowering::ConstraintWeight 3305 TargetLowering::getSingleConstraintMatchWeight( 3306 AsmOperandInfo &info, const char *constraint) const { 3307 ConstraintWeight weight = CW_Invalid; 3308 Value *CallOperandVal = info.CallOperandVal; 3309 // If we don't have a value, we can't do a match, 3310 // but allow it at the lowest weight. 3311 if (!CallOperandVal) 3312 return CW_Default; 3313 // Look at the constraint type. 3314 switch (*constraint) { 3315 case 'i': // immediate integer. 3316 case 'n': // immediate integer with a known value. 3317 if (isa<ConstantInt>(CallOperandVal)) 3318 weight = CW_Constant; 3319 break; 3320 case 's': // non-explicit intregal immediate. 3321 if (isa<GlobalValue>(CallOperandVal)) 3322 weight = CW_Constant; 3323 break; 3324 case 'E': // immediate float if host format. 3325 case 'F': // immediate float. 3326 if (isa<ConstantFP>(CallOperandVal)) 3327 weight = CW_Constant; 3328 break; 3329 case '<': // memory operand with autodecrement. 3330 case '>': // memory operand with autoincrement. 3331 case 'm': // memory operand. 3332 case 'o': // offsettable memory operand 3333 case 'V': // non-offsettable memory operand 3334 weight = CW_Memory; 3335 break; 3336 case 'r': // general register. 3337 case 'g': // general register, memory operand or immediate integer. 3338 // note: Clang converts "g" to "imr". 3339 if (CallOperandVal->getType()->isIntegerTy()) 3340 weight = CW_Register; 3341 break; 3342 case 'X': // any operand. 3343 default: 3344 weight = CW_Default; 3345 break; 3346 } 3347 return weight; 3348 } 3349 3350 /// If there are multiple different constraints that we could pick for this 3351 /// operand (e.g. "imr") try to pick the 'best' one. 3352 /// This is somewhat tricky: constraints fall into four classes: 3353 /// Other -> immediates and magic values 3354 /// Register -> one specific register 3355 /// RegisterClass -> a group of regs 3356 /// Memory -> memory 3357 /// Ideally, we would pick the most specific constraint possible: if we have 3358 /// something that fits into a register, we would pick it. The problem here 3359 /// is that if we have something that could either be in a register or in 3360 /// memory that use of the register could cause selection of *other* 3361 /// operands to fail: they might only succeed if we pick memory. Because of 3362 /// this the heuristic we use is: 3363 /// 3364 /// 1) If there is an 'other' constraint, and if the operand is valid for 3365 /// that constraint, use it. This makes us take advantage of 'i' 3366 /// constraints when available. 3367 /// 2) Otherwise, pick the most general constraint present. This prefers 3368 /// 'm' over 'r', for example. 3369 /// 3370 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 3371 const TargetLowering &TLI, 3372 SDValue Op, SelectionDAG *DAG) { 3373 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 3374 unsigned BestIdx = 0; 3375 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 3376 int BestGenerality = -1; 3377 3378 // Loop over the options, keeping track of the most general one. 3379 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 3380 TargetLowering::ConstraintType CType = 3381 TLI.getConstraintType(OpInfo.Codes[i]); 3382 3383 // If this is an 'other' constraint, see if the operand is valid for it. 3384 // For example, on X86 we might have an 'rI' constraint. If the operand 3385 // is an integer in the range [0..31] we want to use I (saving a load 3386 // of a register), otherwise we must use 'r'. 3387 if (CType == TargetLowering::C_Other && Op.getNode()) { 3388 assert(OpInfo.Codes[i].size() == 1 && 3389 "Unhandled multi-letter 'other' constraint"); 3390 std::vector<SDValue> ResultOps; 3391 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 3392 ResultOps, *DAG); 3393 if (!ResultOps.empty()) { 3394 BestType = CType; 3395 BestIdx = i; 3396 break; 3397 } 3398 } 3399 3400 // Things with matching constraints can only be registers, per gcc 3401 // documentation. This mainly affects "g" constraints. 3402 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 3403 continue; 3404 3405 // This constraint letter is more general than the previous one, use it. 3406 int Generality = getConstraintGenerality(CType); 3407 if (Generality > BestGenerality) { 3408 BestType = CType; 3409 BestIdx = i; 3410 BestGenerality = Generality; 3411 } 3412 } 3413 3414 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 3415 OpInfo.ConstraintType = BestType; 3416 } 3417 3418 /// Determines the constraint code and constraint type to use for the specific 3419 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 3420 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 3421 SDValue Op, 3422 SelectionDAG *DAG) const { 3423 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 3424 3425 // Single-letter constraints ('r') are very common. 3426 if (OpInfo.Codes.size() == 1) { 3427 OpInfo.ConstraintCode = OpInfo.Codes[0]; 3428 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 3429 } else { 3430 ChooseConstraint(OpInfo, *this, Op, DAG); 3431 } 3432 3433 // 'X' matches anything. 3434 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 3435 // Labels and constants are handled elsewhere ('X' is the only thing 3436 // that matches labels). For Functions, the type here is the type of 3437 // the result, which is not what we want to look at; leave them alone. 3438 Value *v = OpInfo.CallOperandVal; 3439 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 3440 OpInfo.CallOperandVal = v; 3441 return; 3442 } 3443 3444 // Otherwise, try to resolve it to something we know about by looking at 3445 // the actual operand type. 3446 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 3447 OpInfo.ConstraintCode = Repl; 3448 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 3449 } 3450 } 3451 } 3452 3453 /// Given an exact SDIV by a constant, create a multiplication 3454 /// with the multiplicative inverse of the constant. 3455 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 3456 const SDLoc &dl, SelectionDAG &DAG, 3457 SmallVectorImpl<SDNode *> &Created) { 3458 SDValue Op0 = N->getOperand(0); 3459 SDValue Op1 = N->getOperand(1); 3460 EVT VT = N->getValueType(0); 3461 EVT SVT = VT.getScalarType(); 3462 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 3463 EVT ShSVT = ShVT.getScalarType(); 3464 3465 bool UseSRA = false; 3466 SmallVector<SDValue, 16> Shifts, Factors; 3467 3468 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 3469 if (C->isNullValue()) 3470 return false; 3471 APInt Divisor = C->getAPIntValue(); 3472 unsigned Shift = Divisor.countTrailingZeros(); 3473 if (Shift) { 3474 Divisor.ashrInPlace(Shift); 3475 UseSRA = true; 3476 } 3477 // Calculate the multiplicative inverse, using Newton's method. 3478 APInt t; 3479 APInt Factor = Divisor; 3480 while ((t = Divisor * Factor) != 1) 3481 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 3482 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 3483 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 3484 return true; 3485 }; 3486 3487 // Collect all magic values from the build vector. 3488 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 3489 return SDValue(); 3490 3491 SDValue Shift, Factor; 3492 if (VT.isVector()) { 3493 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 3494 Factor = DAG.getBuildVector(VT, dl, Factors); 3495 } else { 3496 Shift = Shifts[0]; 3497 Factor = Factors[0]; 3498 } 3499 3500 SDValue Res = Op0; 3501 3502 // Shift the value upfront if it is even, so the LSB is one. 3503 if (UseSRA) { 3504 // TODO: For UDIV use SRL instead of SRA. 3505 SDNodeFlags Flags; 3506 Flags.setExact(true); 3507 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 3508 Created.push_back(Res.getNode()); 3509 } 3510 3511 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 3512 } 3513 3514 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 3515 SelectionDAG &DAG, 3516 SmallVectorImpl<SDNode *> &Created) const { 3517 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 3518 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3519 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 3520 return SDValue(N,0); // Lower SDIV as SDIV 3521 return SDValue(); 3522 } 3523 3524 /// Given an ISD::SDIV node expressing a divide by constant, 3525 /// return a DAG expression to select that will generate the same value by 3526 /// multiplying by a magic number. 3527 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 3528 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 3529 bool IsAfterLegalization, 3530 SmallVectorImpl<SDNode *> &Created) const { 3531 SDLoc dl(N); 3532 EVT VT = N->getValueType(0); 3533 EVT SVT = VT.getScalarType(); 3534 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 3535 EVT ShSVT = ShVT.getScalarType(); 3536 unsigned EltBits = VT.getScalarSizeInBits(); 3537 3538 // Check to see if we can do this. 3539 // FIXME: We should be more aggressive here. 3540 if (!isTypeLegal(VT)) 3541 return SDValue(); 3542 3543 // If the sdiv has an 'exact' bit we can use a simpler lowering. 3544 if (N->getFlags().hasExact()) 3545 return BuildExactSDIV(*this, N, dl, DAG, Created); 3546 3547 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 3548 3549 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 3550 if (C->isNullValue()) 3551 return false; 3552 3553 const APInt &Divisor = C->getAPIntValue(); 3554 APInt::ms magics = Divisor.magic(); 3555 int NumeratorFactor = 0; 3556 int ShiftMask = -1; 3557 3558 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 3559 // If d is +1/-1, we just multiply the numerator by +1/-1. 3560 NumeratorFactor = Divisor.getSExtValue(); 3561 magics.m = 0; 3562 magics.s = 0; 3563 ShiftMask = 0; 3564 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 3565 // If d > 0 and m < 0, add the numerator. 3566 NumeratorFactor = 1; 3567 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 3568 // If d < 0 and m > 0, subtract the numerator. 3569 NumeratorFactor = -1; 3570 } 3571 3572 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 3573 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 3574 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 3575 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 3576 return true; 3577 }; 3578 3579 SDValue N0 = N->getOperand(0); 3580 SDValue N1 = N->getOperand(1); 3581 3582 // Collect the shifts / magic values from each element. 3583 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 3584 return SDValue(); 3585 3586 SDValue MagicFactor, Factor, Shift, ShiftMask; 3587 if (VT.isVector()) { 3588 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 3589 Factor = DAG.getBuildVector(VT, dl, Factors); 3590 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 3591 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 3592 } else { 3593 MagicFactor = MagicFactors[0]; 3594 Factor = Factors[0]; 3595 Shift = Shifts[0]; 3596 ShiftMask = ShiftMasks[0]; 3597 } 3598 3599 // Multiply the numerator (operand 0) by the magic value. 3600 // FIXME: We should support doing a MUL in a wider type. 3601 SDValue Q; 3602 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 3603 : isOperationLegalOrCustom(ISD::MULHS, VT)) 3604 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 3605 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 3606 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 3607 SDValue LoHi = 3608 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 3609 Q = SDValue(LoHi.getNode(), 1); 3610 } else 3611 return SDValue(); // No mulhs or equivalent. 3612 Created.push_back(Q.getNode()); 3613 3614 // (Optionally) Add/subtract the numerator using Factor. 3615 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 3616 Created.push_back(Factor.getNode()); 3617 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 3618 Created.push_back(Q.getNode()); 3619 3620 // Shift right algebraic by shift value. 3621 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 3622 Created.push_back(Q.getNode()); 3623 3624 // Extract the sign bit, mask it and add it to the quotient. 3625 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 3626 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 3627 Created.push_back(T.getNode()); 3628 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 3629 Created.push_back(T.getNode()); 3630 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 3631 } 3632 3633 /// Given an ISD::UDIV node expressing a divide by constant, 3634 /// return a DAG expression to select that will generate the same value by 3635 /// multiplying by a magic number. 3636 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 3637 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 3638 bool IsAfterLegalization, 3639 SmallVectorImpl<SDNode *> &Created) const { 3640 SDLoc dl(N); 3641 EVT VT = N->getValueType(0); 3642 EVT SVT = VT.getScalarType(); 3643 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 3644 EVT ShSVT = ShVT.getScalarType(); 3645 unsigned EltBits = VT.getScalarSizeInBits(); 3646 3647 // Check to see if we can do this. 3648 // FIXME: We should be more aggressive here. 3649 if (!isTypeLegal(VT)) 3650 return SDValue(); 3651 3652 bool UseNPQ = false; 3653 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 3654 3655 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 3656 if (C->isNullValue()) 3657 return false; 3658 // FIXME: We should use a narrower constant when the upper 3659 // bits are known to be zero. 3660 APInt Divisor = C->getAPIntValue(); 3661 APInt::mu magics = Divisor.magicu(); 3662 unsigned PreShift = 0, PostShift = 0; 3663 3664 // If the divisor is even, we can avoid using the expensive fixup by 3665 // shifting the divided value upfront. 3666 if (magics.a != 0 && !Divisor[0]) { 3667 PreShift = Divisor.countTrailingZeros(); 3668 // Get magic number for the shifted divisor. 3669 magics = Divisor.lshr(PreShift).magicu(PreShift); 3670 assert(magics.a == 0 && "Should use cheap fixup now"); 3671 } 3672 3673 APInt Magic = magics.m; 3674 3675 unsigned SelNPQ; 3676 if (magics.a == 0 || Divisor.isOneValue()) { 3677 assert(magics.s < Divisor.getBitWidth() && 3678 "We shouldn't generate an undefined shift!"); 3679 PostShift = magics.s; 3680 SelNPQ = false; 3681 } else { 3682 PostShift = magics.s - 1; 3683 SelNPQ = true; 3684 } 3685 3686 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 3687 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 3688 NPQFactors.push_back( 3689 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 3690 : APInt::getNullValue(EltBits), 3691 dl, SVT)); 3692 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 3693 UseNPQ |= SelNPQ; 3694 return true; 3695 }; 3696 3697 SDValue N0 = N->getOperand(0); 3698 SDValue N1 = N->getOperand(1); 3699 3700 // Collect the shifts/magic values from each element. 3701 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 3702 return SDValue(); 3703 3704 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 3705 if (VT.isVector()) { 3706 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 3707 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 3708 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 3709 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 3710 } else { 3711 PreShift = PreShifts[0]; 3712 MagicFactor = MagicFactors[0]; 3713 PostShift = PostShifts[0]; 3714 } 3715 3716 SDValue Q = N0; 3717 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 3718 Created.push_back(Q.getNode()); 3719 3720 // FIXME: We should support doing a MUL in a wider type. 3721 auto GetMULHU = [&](SDValue X, SDValue Y) { 3722 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 3723 : isOperationLegalOrCustom(ISD::MULHU, VT)) 3724 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 3725 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 3726 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 3727 SDValue LoHi = 3728 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 3729 return SDValue(LoHi.getNode(), 1); 3730 } 3731 return SDValue(); // No mulhu or equivalent 3732 }; 3733 3734 // Multiply the numerator (operand 0) by the magic value. 3735 Q = GetMULHU(Q, MagicFactor); 3736 if (!Q) 3737 return SDValue(); 3738 3739 Created.push_back(Q.getNode()); 3740 3741 if (UseNPQ) { 3742 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 3743 Created.push_back(NPQ.getNode()); 3744 3745 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 3746 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 3747 if (VT.isVector()) 3748 NPQ = GetMULHU(NPQ, NPQFactor); 3749 else 3750 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 3751 3752 Created.push_back(NPQ.getNode()); 3753 3754 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 3755 Created.push_back(Q.getNode()); 3756 } 3757 3758 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 3759 Created.push_back(Q.getNode()); 3760 3761 SDValue One = DAG.getConstant(1, dl, VT); 3762 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 3763 return DAG.getSelect(dl, VT, IsOne, N0, Q); 3764 } 3765 3766 bool TargetLowering:: 3767 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 3768 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 3769 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 3770 "be a constant integer"); 3771 return true; 3772 } 3773 3774 return false; 3775 } 3776 3777 //===----------------------------------------------------------------------===// 3778 // Legalization Utilities 3779 //===----------------------------------------------------------------------===// 3780 3781 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 3782 SDValue LHS, SDValue RHS, 3783 SmallVectorImpl<SDValue> &Result, 3784 EVT HiLoVT, SelectionDAG &DAG, 3785 MulExpansionKind Kind, SDValue LL, 3786 SDValue LH, SDValue RL, SDValue RH) const { 3787 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 3788 Opcode == ISD::SMUL_LOHI); 3789 3790 bool HasMULHS = (Kind == MulExpansionKind::Always) || 3791 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 3792 bool HasMULHU = (Kind == MulExpansionKind::Always) || 3793 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 3794 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 3795 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 3796 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 3797 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 3798 3799 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 3800 return false; 3801 3802 unsigned OuterBitSize = VT.getScalarSizeInBits(); 3803 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 3804 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 3805 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 3806 3807 // LL, LH, RL, and RH must be either all NULL or all set to a value. 3808 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 3809 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 3810 3811 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 3812 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 3813 bool Signed) -> bool { 3814 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 3815 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 3816 Hi = SDValue(Lo.getNode(), 1); 3817 return true; 3818 } 3819 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 3820 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 3821 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 3822 return true; 3823 } 3824 return false; 3825 }; 3826 3827 SDValue Lo, Hi; 3828 3829 if (!LL.getNode() && !RL.getNode() && 3830 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 3831 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 3832 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 3833 } 3834 3835 if (!LL.getNode()) 3836 return false; 3837 3838 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 3839 if (DAG.MaskedValueIsZero(LHS, HighMask) && 3840 DAG.MaskedValueIsZero(RHS, HighMask)) { 3841 // The inputs are both zero-extended. 3842 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 3843 Result.push_back(Lo); 3844 Result.push_back(Hi); 3845 if (Opcode != ISD::MUL) { 3846 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 3847 Result.push_back(Zero); 3848 Result.push_back(Zero); 3849 } 3850 return true; 3851 } 3852 } 3853 3854 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 3855 RHSSB > InnerBitSize) { 3856 // The input values are both sign-extended. 3857 // TODO non-MUL case? 3858 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 3859 Result.push_back(Lo); 3860 Result.push_back(Hi); 3861 return true; 3862 } 3863 } 3864 3865 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 3866 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 3867 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 3868 // FIXME getShiftAmountTy does not always return a sensible result when VT 3869 // is an illegal type, and so the type may be too small to fit the shift 3870 // amount. Override it with i32. The shift will have to be legalized. 3871 ShiftAmountTy = MVT::i32; 3872 } 3873 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 3874 3875 if (!LH.getNode() && !RH.getNode() && 3876 isOperationLegalOrCustom(ISD::SRL, VT) && 3877 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 3878 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 3879 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 3880 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 3881 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 3882 } 3883 3884 if (!LH.getNode()) 3885 return false; 3886 3887 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 3888 return false; 3889 3890 Result.push_back(Lo); 3891 3892 if (Opcode == ISD::MUL) { 3893 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 3894 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 3895 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 3896 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 3897 Result.push_back(Hi); 3898 return true; 3899 } 3900 3901 // Compute the full width result. 3902 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 3903 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3904 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 3905 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3906 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 3907 }; 3908 3909 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 3910 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 3911 return false; 3912 3913 // This is effectively the add part of a multiply-add of half-sized operands, 3914 // so it cannot overflow. 3915 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 3916 3917 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 3918 return false; 3919 3920 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 3921 Merge(Lo, Hi)); 3922 3923 SDValue Carry = Next.getValue(1); 3924 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 3925 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 3926 3927 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 3928 return false; 3929 3930 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 3931 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 3932 Carry); 3933 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 3934 3935 if (Opcode == ISD::SMUL_LOHI) { 3936 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 3937 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 3938 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 3939 3940 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 3941 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 3942 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 3943 } 3944 3945 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 3946 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 3947 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 3948 return true; 3949 } 3950 3951 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 3952 SelectionDAG &DAG, MulExpansionKind Kind, 3953 SDValue LL, SDValue LH, SDValue RL, 3954 SDValue RH) const { 3955 SmallVector<SDValue, 2> Result; 3956 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 3957 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 3958 DAG, Kind, LL, LH, RL, RH); 3959 if (Ok) { 3960 assert(Result.size() == 2); 3961 Lo = Result[0]; 3962 Hi = Result[1]; 3963 } 3964 return Ok; 3965 } 3966 3967 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 3968 SelectionDAG &DAG) const { 3969 EVT VT = Node->getOperand(0).getValueType(); 3970 EVT NVT = Node->getValueType(0); 3971 SDLoc dl(SDValue(Node, 0)); 3972 3973 // FIXME: Only f32 to i64 conversions are supported. 3974 if (VT != MVT::f32 || NVT != MVT::i64) 3975 return false; 3976 3977 // Expand f32 -> i64 conversion 3978 // This algorithm comes from compiler-rt's implementation of fixsfdi: 3979 // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c 3980 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), 3981 VT.getSizeInBits()); 3982 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 3983 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 3984 SDValue Bias = DAG.getConstant(127, dl, IntVT); 3985 SDValue SignMask = DAG.getConstant(APInt::getSignMask(VT.getSizeInBits()), dl, 3986 IntVT); 3987 SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT); 3988 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 3989 3990 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0)); 3991 3992 auto &DL = DAG.getDataLayout(); 3993 SDValue ExponentBits = DAG.getNode( 3994 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 3995 DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL))); 3996 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 3997 3998 SDValue Sign = DAG.getNode( 3999 ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 4000 DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL))); 4001 Sign = DAG.getSExtOrTrunc(Sign, dl, NVT); 4002 4003 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 4004 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 4005 DAG.getConstant(0x00800000, dl, IntVT)); 4006 4007 R = DAG.getZExtOrTrunc(R, dl, NVT); 4008 4009 R = DAG.getSelectCC( 4010 dl, Exponent, ExponentLoBit, 4011 DAG.getNode(ISD::SHL, dl, NVT, R, 4012 DAG.getZExtOrTrunc( 4013 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 4014 dl, getShiftAmountTy(IntVT, DL))), 4015 DAG.getNode(ISD::SRL, dl, NVT, R, 4016 DAG.getZExtOrTrunc( 4017 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 4018 dl, getShiftAmountTy(IntVT, DL))), 4019 ISD::SETGT); 4020 4021 SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT, 4022 DAG.getNode(ISD::XOR, dl, NVT, R, Sign), 4023 Sign); 4024 4025 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 4026 DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT); 4027 return true; 4028 } 4029 4030 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 4031 SelectionDAG &DAG) const { 4032 SDLoc SL(LD); 4033 SDValue Chain = LD->getChain(); 4034 SDValue BasePTR = LD->getBasePtr(); 4035 EVT SrcVT = LD->getMemoryVT(); 4036 ISD::LoadExtType ExtType = LD->getExtensionType(); 4037 4038 unsigned NumElem = SrcVT.getVectorNumElements(); 4039 4040 EVT SrcEltVT = SrcVT.getScalarType(); 4041 EVT DstEltVT = LD->getValueType(0).getScalarType(); 4042 4043 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 4044 assert(SrcEltVT.isByteSized()); 4045 4046 SmallVector<SDValue, 8> Vals; 4047 SmallVector<SDValue, 8> LoadChains; 4048 4049 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 4050 SDValue ScalarLoad = 4051 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 4052 LD->getPointerInfo().getWithOffset(Idx * Stride), 4053 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 4054 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 4055 4056 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 4057 4058 Vals.push_back(ScalarLoad.getValue(0)); 4059 LoadChains.push_back(ScalarLoad.getValue(1)); 4060 } 4061 4062 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 4063 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); 4064 4065 return DAG.getMergeValues({ Value, NewChain }, SL); 4066 } 4067 4068 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 4069 SelectionDAG &DAG) const { 4070 SDLoc SL(ST); 4071 4072 SDValue Chain = ST->getChain(); 4073 SDValue BasePtr = ST->getBasePtr(); 4074 SDValue Value = ST->getValue(); 4075 EVT StVT = ST->getMemoryVT(); 4076 4077 // The type of the data we want to save 4078 EVT RegVT = Value.getValueType(); 4079 EVT RegSclVT = RegVT.getScalarType(); 4080 4081 // The type of data as saved in memory. 4082 EVT MemSclVT = StVT.getScalarType(); 4083 4084 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 4085 unsigned NumElem = StVT.getVectorNumElements(); 4086 4087 // A vector must always be stored in memory as-is, i.e. without any padding 4088 // between the elements, since various code depend on it, e.g. in the 4089 // handling of a bitcast of a vector type to int, which may be done with a 4090 // vector store followed by an integer load. A vector that does not have 4091 // elements that are byte-sized must therefore be stored as an integer 4092 // built out of the extracted vector elements. 4093 if (!MemSclVT.isByteSized()) { 4094 unsigned NumBits = StVT.getSizeInBits(); 4095 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 4096 4097 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 4098 4099 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 4100 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 4101 DAG.getConstant(Idx, SL, IdxVT)); 4102 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 4103 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 4104 unsigned ShiftIntoIdx = 4105 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 4106 SDValue ShiftAmount = 4107 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 4108 SDValue ShiftedElt = 4109 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 4110 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 4111 } 4112 4113 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 4114 ST->getAlignment(), ST->getMemOperand()->getFlags(), 4115 ST->getAAInfo()); 4116 } 4117 4118 // Store Stride in bytes 4119 unsigned Stride = MemSclVT.getSizeInBits() / 8; 4120 assert (Stride && "Zero stride!"); 4121 // Extract each of the elements from the original vector and save them into 4122 // memory individually. 4123 SmallVector<SDValue, 8> Stores; 4124 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 4125 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 4126 DAG.getConstant(Idx, SL, IdxVT)); 4127 4128 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 4129 4130 // This scalar TruncStore may be illegal, but we legalize it later. 4131 SDValue Store = DAG.getTruncStore( 4132 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 4133 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 4134 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 4135 4136 Stores.push_back(Store); 4137 } 4138 4139 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 4140 } 4141 4142 std::pair<SDValue, SDValue> 4143 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 4144 assert(LD->getAddressingMode() == ISD::UNINDEXED && 4145 "unaligned indexed loads not implemented!"); 4146 SDValue Chain = LD->getChain(); 4147 SDValue Ptr = LD->getBasePtr(); 4148 EVT VT = LD->getValueType(0); 4149 EVT LoadedVT = LD->getMemoryVT(); 4150 SDLoc dl(LD); 4151 auto &MF = DAG.getMachineFunction(); 4152 4153 if (VT.isFloatingPoint() || VT.isVector()) { 4154 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 4155 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 4156 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 4157 LoadedVT.isVector()) { 4158 // Scalarize the load and let the individual components be handled. 4159 SDValue Scalarized = scalarizeVectorLoad(LD, DAG); 4160 if (Scalarized->getOpcode() == ISD::MERGE_VALUES) 4161 return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1)); 4162 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); 4163 } 4164 4165 // Expand to a (misaligned) integer load of the same size, 4166 // then bitconvert to floating point or vector. 4167 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 4168 LD->getMemOperand()); 4169 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 4170 if (LoadedVT != VT) 4171 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 4172 ISD::ANY_EXTEND, dl, VT, Result); 4173 4174 return std::make_pair(Result, newLoad.getValue(1)); 4175 } 4176 4177 // Copy the value to a (aligned) stack slot using (unaligned) integer 4178 // loads and stores, then do a (aligned) load from the stack slot. 4179 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 4180 unsigned LoadedBytes = LoadedVT.getStoreSize(); 4181 unsigned RegBytes = RegVT.getSizeInBits() / 8; 4182 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 4183 4184 // Make sure the stack slot is also aligned for the register type. 4185 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 4186 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 4187 SmallVector<SDValue, 8> Stores; 4188 SDValue StackPtr = StackBase; 4189 unsigned Offset = 0; 4190 4191 EVT PtrVT = Ptr.getValueType(); 4192 EVT StackPtrVT = StackPtr.getValueType(); 4193 4194 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 4195 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 4196 4197 // Do all but one copies using the full register width. 4198 for (unsigned i = 1; i < NumRegs; i++) { 4199 // Load one integer register's worth from the original location. 4200 SDValue Load = DAG.getLoad( 4201 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 4202 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 4203 LD->getAAInfo()); 4204 // Follow the load with a store to the stack slot. Remember the store. 4205 Stores.push_back(DAG.getStore( 4206 Load.getValue(1), dl, Load, StackPtr, 4207 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 4208 // Increment the pointers. 4209 Offset += RegBytes; 4210 4211 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 4212 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 4213 } 4214 4215 // The last copy may be partial. Do an extending load. 4216 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 4217 8 * (LoadedBytes - Offset)); 4218 SDValue Load = 4219 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 4220 LD->getPointerInfo().getWithOffset(Offset), MemVT, 4221 MinAlign(LD->getAlignment(), Offset), 4222 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 4223 // Follow the load with a store to the stack slot. Remember the store. 4224 // On big-endian machines this requires a truncating store to ensure 4225 // that the bits end up in the right place. 4226 Stores.push_back(DAG.getTruncStore( 4227 Load.getValue(1), dl, Load, StackPtr, 4228 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 4229 4230 // The order of the stores doesn't matter - say it with a TokenFactor. 4231 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 4232 4233 // Finally, perform the original load only redirected to the stack slot. 4234 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 4235 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 4236 LoadedVT); 4237 4238 // Callers expect a MERGE_VALUES node. 4239 return std::make_pair(Load, TF); 4240 } 4241 4242 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 4243 "Unaligned load of unsupported type."); 4244 4245 // Compute the new VT that is half the size of the old one. This is an 4246 // integer MVT. 4247 unsigned NumBits = LoadedVT.getSizeInBits(); 4248 EVT NewLoadedVT; 4249 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 4250 NumBits >>= 1; 4251 4252 unsigned Alignment = LD->getAlignment(); 4253 unsigned IncrementSize = NumBits / 8; 4254 ISD::LoadExtType HiExtType = LD->getExtensionType(); 4255 4256 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 4257 if (HiExtType == ISD::NON_EXTLOAD) 4258 HiExtType = ISD::ZEXTLOAD; 4259 4260 // Load the value in two parts 4261 SDValue Lo, Hi; 4262 if (DAG.getDataLayout().isLittleEndian()) { 4263 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 4264 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 4265 LD->getAAInfo()); 4266 4267 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 4268 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 4269 LD->getPointerInfo().getWithOffset(IncrementSize), 4270 NewLoadedVT, MinAlign(Alignment, IncrementSize), 4271 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 4272 } else { 4273 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 4274 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 4275 LD->getAAInfo()); 4276 4277 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 4278 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 4279 LD->getPointerInfo().getWithOffset(IncrementSize), 4280 NewLoadedVT, MinAlign(Alignment, IncrementSize), 4281 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 4282 } 4283 4284 // aggregate the two parts 4285 SDValue ShiftAmount = 4286 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 4287 DAG.getDataLayout())); 4288 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 4289 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 4290 4291 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 4292 Hi.getValue(1)); 4293 4294 return std::make_pair(Result, TF); 4295 } 4296 4297 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 4298 SelectionDAG &DAG) const { 4299 assert(ST->getAddressingMode() == ISD::UNINDEXED && 4300 "unaligned indexed stores not implemented!"); 4301 SDValue Chain = ST->getChain(); 4302 SDValue Ptr = ST->getBasePtr(); 4303 SDValue Val = ST->getValue(); 4304 EVT VT = Val.getValueType(); 4305 int Alignment = ST->getAlignment(); 4306 auto &MF = DAG.getMachineFunction(); 4307 EVT MemVT = ST->getMemoryVT(); 4308 4309 SDLoc dl(ST); 4310 if (MemVT.isFloatingPoint() || MemVT.isVector()) { 4311 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 4312 if (isTypeLegal(intVT)) { 4313 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 4314 MemVT.isVector()) { 4315 // Scalarize the store and let the individual components be handled. 4316 SDValue Result = scalarizeVectorStore(ST, DAG); 4317 4318 return Result; 4319 } 4320 // Expand to a bitconvert of the value to the integer type of the 4321 // same size, then a (misaligned) int store. 4322 // FIXME: Does not handle truncating floating point stores! 4323 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 4324 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 4325 Alignment, ST->getMemOperand()->getFlags()); 4326 return Result; 4327 } 4328 // Do a (aligned) store to a stack slot, then copy from the stack slot 4329 // to the final destination using (unaligned) integer loads and stores. 4330 EVT StoredVT = ST->getMemoryVT(); 4331 MVT RegVT = 4332 getRegisterType(*DAG.getContext(), 4333 EVT::getIntegerVT(*DAG.getContext(), 4334 StoredVT.getSizeInBits())); 4335 EVT PtrVT = Ptr.getValueType(); 4336 unsigned StoredBytes = StoredVT.getStoreSize(); 4337 unsigned RegBytes = RegVT.getSizeInBits() / 8; 4338 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 4339 4340 // Make sure the stack slot is also aligned for the register type. 4341 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 4342 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 4343 4344 // Perform the original store, only redirected to the stack slot. 4345 SDValue Store = DAG.getTruncStore( 4346 Chain, dl, Val, StackPtr, 4347 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoredVT); 4348 4349 EVT StackPtrVT = StackPtr.getValueType(); 4350 4351 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 4352 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 4353 SmallVector<SDValue, 8> Stores; 4354 unsigned Offset = 0; 4355 4356 // Do all but one copies using the full register width. 4357 for (unsigned i = 1; i < NumRegs; i++) { 4358 // Load one integer register's worth from the stack slot. 4359 SDValue Load = DAG.getLoad( 4360 RegVT, dl, Store, StackPtr, 4361 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 4362 // Store it to the final location. Remember the store. 4363 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 4364 ST->getPointerInfo().getWithOffset(Offset), 4365 MinAlign(ST->getAlignment(), Offset), 4366 ST->getMemOperand()->getFlags())); 4367 // Increment the pointers. 4368 Offset += RegBytes; 4369 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 4370 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 4371 } 4372 4373 // The last store may be partial. Do a truncating store. On big-endian 4374 // machines this requires an extending load from the stack slot to ensure 4375 // that the bits are in the right place. 4376 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 4377 8 * (StoredBytes - Offset)); 4378 4379 // Load from the stack slot. 4380 SDValue Load = DAG.getExtLoad( 4381 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 4382 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT); 4383 4384 Stores.push_back( 4385 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 4386 ST->getPointerInfo().getWithOffset(Offset), MemVT, 4387 MinAlign(ST->getAlignment(), Offset), 4388 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 4389 // The order of the stores doesn't matter - say it with a TokenFactor. 4390 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 4391 return Result; 4392 } 4393 4394 assert(ST->getMemoryVT().isInteger() && 4395 !ST->getMemoryVT().isVector() && 4396 "Unaligned store of unknown type."); 4397 // Get the half-size VT 4398 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); 4399 int NumBits = NewStoredVT.getSizeInBits(); 4400 int IncrementSize = NumBits / 8; 4401 4402 // Divide the stored value in two parts. 4403 SDValue ShiftAmount = 4404 DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(), 4405 DAG.getDataLayout())); 4406 SDValue Lo = Val; 4407 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 4408 4409 // Store the two parts 4410 SDValue Store1, Store2; 4411 Store1 = DAG.getTruncStore(Chain, dl, 4412 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 4413 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 4414 ST->getMemOperand()->getFlags()); 4415 4416 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 4417 Alignment = MinAlign(Alignment, IncrementSize); 4418 Store2 = DAG.getTruncStore( 4419 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 4420 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 4421 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 4422 4423 SDValue Result = 4424 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 4425 return Result; 4426 } 4427 4428 SDValue 4429 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 4430 const SDLoc &DL, EVT DataVT, 4431 SelectionDAG &DAG, 4432 bool IsCompressedMemory) const { 4433 SDValue Increment; 4434 EVT AddrVT = Addr.getValueType(); 4435 EVT MaskVT = Mask.getValueType(); 4436 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 4437 "Incompatible types of Data and Mask"); 4438 if (IsCompressedMemory) { 4439 // Incrementing the pointer according to number of '1's in the mask. 4440 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 4441 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 4442 if (MaskIntVT.getSizeInBits() < 32) { 4443 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 4444 MaskIntVT = MVT::i32; 4445 } 4446 4447 // Count '1's with POPCNT. 4448 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 4449 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 4450 // Scale is an element size in bytes. 4451 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 4452 AddrVT); 4453 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 4454 } else 4455 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 4456 4457 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 4458 } 4459 4460 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 4461 SDValue Idx, 4462 EVT VecVT, 4463 const SDLoc &dl) { 4464 if (isa<ConstantSDNode>(Idx)) 4465 return Idx; 4466 4467 EVT IdxVT = Idx.getValueType(); 4468 unsigned NElts = VecVT.getVectorNumElements(); 4469 if (isPowerOf2_32(NElts)) { 4470 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 4471 Log2_32(NElts)); 4472 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 4473 DAG.getConstant(Imm, dl, IdxVT)); 4474 } 4475 4476 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 4477 DAG.getConstant(NElts - 1, dl, IdxVT)); 4478 } 4479 4480 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 4481 SDValue VecPtr, EVT VecVT, 4482 SDValue Index) const { 4483 SDLoc dl(Index); 4484 // Make sure the index type is big enough to compute in. 4485 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 4486 4487 EVT EltVT = VecVT.getVectorElementType(); 4488 4489 // Calculate the element offset and add it to the pointer. 4490 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 4491 assert(EltSize * 8 == EltVT.getSizeInBits() && 4492 "Converting bits to bytes lost precision"); 4493 4494 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 4495 4496 EVT IdxVT = Index.getValueType(); 4497 4498 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 4499 DAG.getConstant(EltSize, dl, IdxVT)); 4500 return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index); 4501 } 4502 4503 //===----------------------------------------------------------------------===// 4504 // Implementation of Emulated TLS Model 4505 //===----------------------------------------------------------------------===// 4506 4507 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 4508 SelectionDAG &DAG) const { 4509 // Access to address of TLS varialbe xyz is lowered to a function call: 4510 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 4511 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4512 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 4513 SDLoc dl(GA); 4514 4515 ArgListTy Args; 4516 ArgListEntry Entry; 4517 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 4518 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 4519 StringRef EmuTlsVarName(NameString); 4520 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 4521 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 4522 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 4523 Entry.Ty = VoidPtrType; 4524 Args.push_back(Entry); 4525 4526 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 4527 4528 TargetLowering::CallLoweringInfo CLI(DAG); 4529 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 4530 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 4531 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 4532 4533 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 4534 // At last for X86 targets, maybe good for other targets too? 4535 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 4536 MFI.setAdjustsStack(true); // Is this only for X86 target? 4537 MFI.setHasCalls(true); 4538 4539 assert((GA->getOffset() == 0) && 4540 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 4541 return CallResult.first; 4542 } 4543 4544 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 4545 SelectionDAG &DAG) const { 4546 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 4547 if (!isCtlzFast()) 4548 return SDValue(); 4549 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 4550 SDLoc dl(Op); 4551 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 4552 if (C->isNullValue() && CC == ISD::SETEQ) { 4553 EVT VT = Op.getOperand(0).getValueType(); 4554 SDValue Zext = Op.getOperand(0); 4555 if (VT.bitsLT(MVT::i32)) { 4556 VT = MVT::i32; 4557 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 4558 } 4559 unsigned Log2b = Log2_32(VT.getSizeInBits()); 4560 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 4561 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 4562 DAG.getConstant(Log2b, dl, MVT::i32)); 4563 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 4564 } 4565 } 4566 return SDValue(); 4567 } 4568