1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/TargetLowering.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/CodeGen/CallingConvLower.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/CodeGen/TargetRegisterInfo.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/KnownBits.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Target/TargetLoweringObjectFile.h"
35 #include "llvm/Target/TargetMachine.h"
36 #include <cctype>
37 using namespace llvm;
38 
39 /// NOTE: The TargetMachine owns TLOF.
40 TargetLowering::TargetLowering(const TargetMachine &tm)
41   : TargetLoweringBase(tm) {}
42 
43 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
44   return nullptr;
45 }
46 
47 bool TargetLowering::isPositionIndependent() const {
48   return getTargetMachine().isPositionIndependent();
49 }
50 
51 /// Check whether a given call node is in tail position within its function. If
52 /// so, it sets Chain to the input chain of the tail call.
53 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
54                                           SDValue &Chain) const {
55   const Function &F = DAG.getMachineFunction().getFunction();
56 
57   // Conservatively require the attributes of the call to match those of
58   // the return. Ignore noalias because it doesn't affect the call sequence.
59   AttributeList CallerAttrs = F.getAttributes();
60   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
61           .removeAttribute(Attribute::NoAlias)
62           .hasAttributes())
63     return false;
64 
65   // It's not safe to eliminate the sign / zero extension of the return value.
66   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
67       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
68     return false;
69 
70   // Check if the only use is a function return node.
71   return isUsedByReturnOnly(Node, Chain);
72 }
73 
74 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
75     const uint32_t *CallerPreservedMask,
76     const SmallVectorImpl<CCValAssign> &ArgLocs,
77     const SmallVectorImpl<SDValue> &OutVals) const {
78   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
79     const CCValAssign &ArgLoc = ArgLocs[I];
80     if (!ArgLoc.isRegLoc())
81       continue;
82     unsigned Reg = ArgLoc.getLocReg();
83     // Only look at callee saved registers.
84     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
85       continue;
86     // Check that we pass the value used for the caller.
87     // (We look for a CopyFromReg reading a virtual register that is used
88     //  for the function live-in value of register Reg)
89     SDValue Value = OutVals[I];
90     if (Value->getOpcode() != ISD::CopyFromReg)
91       return false;
92     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
93     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
94       return false;
95   }
96   return true;
97 }
98 
99 /// Set CallLoweringInfo attribute flags based on a call instruction
100 /// and called function attributes.
101 void TargetLoweringBase::ArgListEntry::setAttributes(ImmutableCallSite *CS,
102                                                      unsigned ArgIdx) {
103   IsSExt = CS->paramHasAttr(ArgIdx, Attribute::SExt);
104   IsZExt = CS->paramHasAttr(ArgIdx, Attribute::ZExt);
105   IsInReg = CS->paramHasAttr(ArgIdx, Attribute::InReg);
106   IsSRet = CS->paramHasAttr(ArgIdx, Attribute::StructRet);
107   IsNest = CS->paramHasAttr(ArgIdx, Attribute::Nest);
108   IsByVal = CS->paramHasAttr(ArgIdx, Attribute::ByVal);
109   IsInAlloca = CS->paramHasAttr(ArgIdx, Attribute::InAlloca);
110   IsReturned = CS->paramHasAttr(ArgIdx, Attribute::Returned);
111   IsSwiftSelf = CS->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
112   IsSwiftError = CS->paramHasAttr(ArgIdx, Attribute::SwiftError);
113   Alignment  = CS->getParamAlignment(ArgIdx);
114 }
115 
116 /// Generate a libcall taking the given operands as arguments and returning a
117 /// result of type RetVT.
118 std::pair<SDValue, SDValue>
119 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
120                             ArrayRef<SDValue> Ops, bool isSigned,
121                             const SDLoc &dl, bool doesNotReturn,
122                             bool isReturnValueUsed) const {
123   TargetLowering::ArgListTy Args;
124   Args.reserve(Ops.size());
125 
126   TargetLowering::ArgListEntry Entry;
127   for (SDValue Op : Ops) {
128     Entry.Node = Op;
129     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
130     Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
131     Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
132     Args.push_back(Entry);
133   }
134 
135   if (LC == RTLIB::UNKNOWN_LIBCALL)
136     report_fatal_error("Unsupported library call operation!");
137   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
138                                          getPointerTy(DAG.getDataLayout()));
139 
140   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
141   TargetLowering::CallLoweringInfo CLI(DAG);
142   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
143   CLI.setDebugLoc(dl)
144       .setChain(DAG.getEntryNode())
145       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
146       .setNoReturn(doesNotReturn)
147       .setDiscardResult(!isReturnValueUsed)
148       .setSExtResult(signExtend)
149       .setZExtResult(!signExtend);
150   return LowerCallTo(CLI);
151 }
152 
153 /// Soften the operands of a comparison. This code is shared among BR_CC,
154 /// SELECT_CC, and SETCC handlers.
155 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
156                                          SDValue &NewLHS, SDValue &NewRHS,
157                                          ISD::CondCode &CCCode,
158                                          const SDLoc &dl) const {
159   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
160          && "Unsupported setcc type!");
161 
162   // Expand into one or more soft-fp libcall(s).
163   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
164   bool ShouldInvertCC = false;
165   switch (CCCode) {
166   case ISD::SETEQ:
167   case ISD::SETOEQ:
168     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
169           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
170           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
171     break;
172   case ISD::SETNE:
173   case ISD::SETUNE:
174     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
175           (VT == MVT::f64) ? RTLIB::UNE_F64 :
176           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
177     break;
178   case ISD::SETGE:
179   case ISD::SETOGE:
180     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
181           (VT == MVT::f64) ? RTLIB::OGE_F64 :
182           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
183     break;
184   case ISD::SETLT:
185   case ISD::SETOLT:
186     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
187           (VT == MVT::f64) ? RTLIB::OLT_F64 :
188           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
189     break;
190   case ISD::SETLE:
191   case ISD::SETOLE:
192     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
193           (VT == MVT::f64) ? RTLIB::OLE_F64 :
194           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
195     break;
196   case ISD::SETGT:
197   case ISD::SETOGT:
198     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
199           (VT == MVT::f64) ? RTLIB::OGT_F64 :
200           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
201     break;
202   case ISD::SETUO:
203     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
204           (VT == MVT::f64) ? RTLIB::UO_F64 :
205           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
206     break;
207   case ISD::SETO:
208     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
209           (VT == MVT::f64) ? RTLIB::O_F64 :
210           (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
211     break;
212   case ISD::SETONE:
213     // SETONE = SETOLT | SETOGT
214     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
215           (VT == MVT::f64) ? RTLIB::OLT_F64 :
216           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
217     LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
218           (VT == MVT::f64) ? RTLIB::OGT_F64 :
219           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
220     break;
221   case ISD::SETUEQ:
222     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
223           (VT == MVT::f64) ? RTLIB::UO_F64 :
224           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
225     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
226           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
227           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
228     break;
229   default:
230     // Invert CC for unordered comparisons
231     ShouldInvertCC = true;
232     switch (CCCode) {
233     case ISD::SETULT:
234       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
235             (VT == MVT::f64) ? RTLIB::OGE_F64 :
236             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
237       break;
238     case ISD::SETULE:
239       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
240             (VT == MVT::f64) ? RTLIB::OGT_F64 :
241             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
242       break;
243     case ISD::SETUGT:
244       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
245             (VT == MVT::f64) ? RTLIB::OLE_F64 :
246             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
247       break;
248     case ISD::SETUGE:
249       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
250             (VT == MVT::f64) ? RTLIB::OLT_F64 :
251             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
252       break;
253     default: llvm_unreachable("Do not know how to soften this setcc!");
254     }
255   }
256 
257   // Use the target specific return value for comparions lib calls.
258   EVT RetVT = getCmpLibcallReturnType();
259   SDValue Ops[2] = {NewLHS, NewRHS};
260   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
261                        dl).first;
262   NewRHS = DAG.getConstant(0, dl, RetVT);
263 
264   CCCode = getCmpLibcallCC(LC1);
265   if (ShouldInvertCC)
266     CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
267 
268   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
269     SDValue Tmp = DAG.getNode(
270         ISD::SETCC, dl,
271         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
272         NewLHS, NewRHS, DAG.getCondCode(CCCode));
273     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
274                          dl).first;
275     NewLHS = DAG.getNode(
276         ISD::SETCC, dl,
277         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
278         NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
279     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
280     NewRHS = SDValue();
281   }
282 }
283 
284 /// Return the entry encoding for a jump table in the current function. The
285 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
286 unsigned TargetLowering::getJumpTableEncoding() const {
287   // In non-pic modes, just use the address of a block.
288   if (!isPositionIndependent())
289     return MachineJumpTableInfo::EK_BlockAddress;
290 
291   // In PIC mode, if the target supports a GPRel32 directive, use it.
292   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
293     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
294 
295   // Otherwise, use a label difference.
296   return MachineJumpTableInfo::EK_LabelDifference32;
297 }
298 
299 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
300                                                  SelectionDAG &DAG) const {
301   // If our PIC model is GP relative, use the global offset table as the base.
302   unsigned JTEncoding = getJumpTableEncoding();
303 
304   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
305       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
306     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
307 
308   return Table;
309 }
310 
311 /// This returns the relocation base for the given PIC jumptable, the same as
312 /// getPICJumpTableRelocBase, but as an MCExpr.
313 const MCExpr *
314 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
315                                              unsigned JTI,MCContext &Ctx) const{
316   // The normal PIC reloc base is the label at the start of the jump table.
317   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
318 }
319 
320 bool
321 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
322   const TargetMachine &TM = getTargetMachine();
323   const GlobalValue *GV = GA->getGlobal();
324 
325   // If the address is not even local to this DSO we will have to load it from
326   // a got and then add the offset.
327   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
328     return false;
329 
330   // If the code is position independent we will have to add a base register.
331   if (isPositionIndependent())
332     return false;
333 
334   // Otherwise we can do it.
335   return true;
336 }
337 
338 //===----------------------------------------------------------------------===//
339 //  Optimization Methods
340 //===----------------------------------------------------------------------===//
341 
342 /// If the specified instruction has a constant integer operand and there are
343 /// bits set in that constant that are not demanded, then clear those bits and
344 /// return true.
345 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
346                                             TargetLoweringOpt &TLO) const {
347   SelectionDAG &DAG = TLO.DAG;
348   SDLoc DL(Op);
349   unsigned Opcode = Op.getOpcode();
350 
351   // Do target-specific constant optimization.
352   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
353     return TLO.New.getNode();
354 
355   // FIXME: ISD::SELECT, ISD::SELECT_CC
356   switch (Opcode) {
357   default:
358     break;
359   case ISD::XOR:
360   case ISD::AND:
361   case ISD::OR: {
362     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
363     if (!Op1C)
364       return false;
365 
366     // If this is a 'not' op, don't touch it because that's a canonical form.
367     const APInt &C = Op1C->getAPIntValue();
368     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
369       return false;
370 
371     if (!C.isSubsetOf(Demanded)) {
372       EVT VT = Op.getValueType();
373       SDValue NewC = DAG.getConstant(Demanded & C, DL, VT);
374       SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
375       return TLO.CombineTo(Op, NewOp);
376     }
377 
378     break;
379   }
380   }
381 
382   return false;
383 }
384 
385 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
386 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
387 /// generalized for targets with other types of implicit widening casts.
388 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
389                                       const APInt &Demanded,
390                                       TargetLoweringOpt &TLO) const {
391   assert(Op.getNumOperands() == 2 &&
392          "ShrinkDemandedOp only supports binary operators!");
393   assert(Op.getNode()->getNumValues() == 1 &&
394          "ShrinkDemandedOp only supports nodes with one result!");
395 
396   SelectionDAG &DAG = TLO.DAG;
397   SDLoc dl(Op);
398 
399   // Early return, as this function cannot handle vector types.
400   if (Op.getValueType().isVector())
401     return false;
402 
403   // Don't do this if the node has another user, which may require the
404   // full value.
405   if (!Op.getNode()->hasOneUse())
406     return false;
407 
408   // Search for the smallest integer type with free casts to and from
409   // Op's type. For expedience, just check power-of-2 integer types.
410   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
411   unsigned DemandedSize = Demanded.getActiveBits();
412   unsigned SmallVTBits = DemandedSize;
413   if (!isPowerOf2_32(SmallVTBits))
414     SmallVTBits = NextPowerOf2(SmallVTBits);
415   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
416     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
417     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
418         TLI.isZExtFree(SmallVT, Op.getValueType())) {
419       // We found a type with free casts.
420       SDValue X = DAG.getNode(
421           Op.getOpcode(), dl, SmallVT,
422           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
423           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
424       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
425       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
426       return TLO.CombineTo(Op, Z);
427     }
428   }
429   return false;
430 }
431 
432 bool
433 TargetLowering::SimplifyDemandedBits(SDNode *User, unsigned OpIdx,
434                                      const APInt &Demanded,
435                                      DAGCombinerInfo &DCI,
436                                      TargetLoweringOpt &TLO) const {
437   SDValue Op = User->getOperand(OpIdx);
438   KnownBits Known;
439 
440   if (!SimplifyDemandedBits(Op, Demanded, Known, TLO, 0, true))
441     return false;
442 
443 
444   // Old will not always be the same as Op.  For example:
445   //
446   // Demanded = 0xffffff
447   // Op = i64 truncate (i32 and x, 0xffffff)
448   // In this case simplify demand bits will want to replace the 'and' node
449   // with the value 'x', which will give us:
450   // Old = i32 and x, 0xffffff
451   // New = x
452   if (TLO.Old.hasOneUse()) {
453     // For the one use case, we just commit the change.
454     DCI.CommitTargetLoweringOpt(TLO);
455     return true;
456   }
457 
458   // If Old has more than one use then it must be Op, because the
459   // AssumeSingleUse flag is not propogated to recursive calls of
460   // SimplifyDemanded bits, so the only node with multiple use that
461   // it will attempt to combine will be Op.
462   assert(TLO.Old == Op);
463 
464   SmallVector <SDValue, 4> NewOps;
465   for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
466     if (i == OpIdx) {
467       NewOps.push_back(TLO.New);
468       continue;
469     }
470     NewOps.push_back(User->getOperand(i));
471   }
472   User = TLO.DAG.UpdateNodeOperands(User, NewOps);
473   // Op has less users now, so we may be able to perform additional combines
474   // with it.
475   DCI.AddToWorklist(Op.getNode());
476   // User's operands have been updated, so we may be able to do new combines
477   // with it.
478   DCI.AddToWorklist(User);
479   return true;
480 }
481 
482 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
483                                           DAGCombinerInfo &DCI) const {
484 
485   SelectionDAG &DAG = DCI.DAG;
486   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
487                         !DCI.isBeforeLegalizeOps());
488   KnownBits Known;
489 
490   bool Simplified = SimplifyDemandedBits(Op, DemandedMask, Known, TLO);
491   if (Simplified)
492     DCI.CommitTargetLoweringOpt(TLO);
493   return Simplified;
494 }
495 
496 /// Look at Op. At this point, we know that only the DemandedMask bits of the
497 /// result of Op are ever used downstream. If we can use this information to
498 /// simplify Op, create a new simplified DAG node and return true, returning the
499 /// original and new nodes in Old and New. Otherwise, analyze the expression and
500 /// return a mask of Known bits for the expression (used to simplify the
501 /// caller).  The Known bits may only be accurate for those bits in the
502 /// DemandedMask.
503 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
504                                           const APInt &DemandedMask,
505                                           KnownBits &Known,
506                                           TargetLoweringOpt &TLO,
507                                           unsigned Depth,
508                                           bool AssumeSingleUse) const {
509   unsigned BitWidth = DemandedMask.getBitWidth();
510   assert(Op.getScalarValueSizeInBits() == BitWidth &&
511          "Mask size mismatches value type size!");
512   APInt NewMask = DemandedMask;
513   SDLoc dl(Op);
514   auto &DL = TLO.DAG.getDataLayout();
515 
516   // Don't know anything.
517   Known = KnownBits(BitWidth);
518 
519   if (Op.getOpcode() == ISD::Constant) {
520     // We know all of the bits for a constant!
521     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
522     Known.Zero = ~Known.One;
523     return false;
524   }
525 
526   // Other users may use these bits.
527   EVT VT = Op.getValueType();
528   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
529     if (Depth != 0) {
530       // If not at the root, Just compute the Known bits to
531       // simplify things downstream.
532       TLO.DAG.computeKnownBits(Op, Known, Depth);
533       return false;
534     }
535     // If this is the root being simplified, allow it to have multiple uses,
536     // just set the NewMask to all bits.
537     NewMask = APInt::getAllOnesValue(BitWidth);
538   } else if (DemandedMask == 0) {
539     // Not demanding any bits from Op.
540     if (!Op.isUndef())
541       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
542     return false;
543   } else if (Depth == 6) {        // Limit search depth.
544     return false;
545   }
546 
547   KnownBits Known2, KnownOut;
548   switch (Op.getOpcode()) {
549   case ISD::BUILD_VECTOR:
550     // Collect the known bits that are shared by every constant vector element.
551     Known.Zero.setAllBits(); Known.One.setAllBits();
552     for (SDValue SrcOp : Op->ops()) {
553       if (!isa<ConstantSDNode>(SrcOp)) {
554         // We can only handle all constant values - bail out with no known bits.
555         Known = KnownBits(BitWidth);
556         return false;
557       }
558       Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue();
559       Known2.Zero = ~Known2.One;
560 
561       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
562       if (Known2.One.getBitWidth() != BitWidth) {
563         assert(Known2.getBitWidth() > BitWidth &&
564                "Expected BUILD_VECTOR implicit truncation");
565         Known2 = Known2.trunc(BitWidth);
566       }
567 
568       // Known bits are the values that are shared by every element.
569       // TODO: support per-element known bits.
570       Known.One &= Known2.One;
571       Known.Zero &= Known2.Zero;
572     }
573     return false;   // Don't fall through, will infinitely loop.
574   case ISD::AND:
575     // If the RHS is a constant, check to see if the LHS would be zero without
576     // using the bits from the RHS.  Below, we use knowledge about the RHS to
577     // simplify the LHS, here we're using information from the LHS to simplify
578     // the RHS.
579     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op.getOperand(1))) {
580       SDValue Op0 = Op.getOperand(0);
581       KnownBits LHSKnown;
582       // Do not increment Depth here; that can cause an infinite loop.
583       TLO.DAG.computeKnownBits(Op0, LHSKnown, Depth);
584       // If the LHS already has zeros where RHSC does, this 'and' is dead.
585       if ((LHSKnown.Zero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
586         return TLO.CombineTo(Op, Op0);
587 
588       // If any of the set bits in the RHS are known zero on the LHS, shrink
589       // the constant.
590       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & NewMask, TLO))
591         return true;
592 
593       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
594       // constant, but if this 'and' is only clearing bits that were just set by
595       // the xor, then this 'and' can be eliminated by shrinking the mask of
596       // the xor. For example, for a 32-bit X:
597       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
598       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
599           LHSKnown.One == ~RHSC->getAPIntValue()) {
600         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0),
601                                       Op.getOperand(1));
602         return TLO.CombineTo(Op, Xor);
603       }
604     }
605 
606     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1))
607       return true;
608     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
609     if (SimplifyDemandedBits(Op.getOperand(0), ~Known.Zero & NewMask,
610                              Known2, TLO, Depth+1))
611       return true;
612     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
613 
614     // If all of the demanded bits are known one on one side, return the other.
615     // These bits cannot contribute to the result of the 'and'.
616     if (NewMask.isSubsetOf(Known2.Zero | Known.One))
617       return TLO.CombineTo(Op, Op.getOperand(0));
618     if (NewMask.isSubsetOf(Known.Zero | Known2.One))
619       return TLO.CombineTo(Op, Op.getOperand(1));
620     // If all of the demanded bits in the inputs are known zeros, return zero.
621     if (NewMask.isSubsetOf(Known.Zero | Known2.Zero))
622       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
623     // If the RHS is a constant, see if we can simplify it.
624     if (ShrinkDemandedConstant(Op, ~Known2.Zero & NewMask, TLO))
625       return true;
626     // If the operation can be done in a smaller type, do so.
627     if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO))
628       return true;
629 
630     // Output known-1 bits are only known if set in both the LHS & RHS.
631     Known.One &= Known2.One;
632     // Output known-0 are known to be clear if zero in either the LHS | RHS.
633     Known.Zero |= Known2.Zero;
634     break;
635   case ISD::OR:
636     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1))
637       return true;
638     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
639     if (SimplifyDemandedBits(Op.getOperand(0), ~Known.One & NewMask,
640                              Known2, TLO, Depth+1))
641       return true;
642     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
643 
644     // If all of the demanded bits are known zero on one side, return the other.
645     // These bits cannot contribute to the result of the 'or'.
646     if (NewMask.isSubsetOf(Known2.One | Known.Zero))
647       return TLO.CombineTo(Op, Op.getOperand(0));
648     if (NewMask.isSubsetOf(Known.One | Known2.Zero))
649       return TLO.CombineTo(Op, Op.getOperand(1));
650     // If the RHS is a constant, see if we can simplify it.
651     if (ShrinkDemandedConstant(Op, NewMask, TLO))
652       return true;
653     // If the operation can be done in a smaller type, do so.
654     if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO))
655       return true;
656 
657     // Output known-0 bits are only known if clear in both the LHS & RHS.
658     Known.Zero &= Known2.Zero;
659     // Output known-1 are known to be set if set in either the LHS | RHS.
660     Known.One |= Known2.One;
661     break;
662   case ISD::XOR: {
663     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1))
664       return true;
665     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
666     if (SimplifyDemandedBits(Op.getOperand(0), NewMask, Known2, TLO, Depth+1))
667       return true;
668     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
669 
670     // If all of the demanded bits are known zero on one side, return the other.
671     // These bits cannot contribute to the result of the 'xor'.
672     if (NewMask.isSubsetOf(Known.Zero))
673       return TLO.CombineTo(Op, Op.getOperand(0));
674     if (NewMask.isSubsetOf(Known2.Zero))
675       return TLO.CombineTo(Op, Op.getOperand(1));
676     // If the operation can be done in a smaller type, do so.
677     if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO))
678       return true;
679 
680     // If all of the unknown bits are known to be zero on one side or the other
681     // (but not both) turn this into an *inclusive* or.
682     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
683     if (NewMask.isSubsetOf(Known.Zero|Known2.Zero))
684       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT,
685                                                Op.getOperand(0),
686                                                Op.getOperand(1)));
687 
688     // Output known-0 bits are known if clear or set in both the LHS & RHS.
689     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
690     // Output known-1 are known to be set if set in only one of the LHS, RHS.
691     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
692 
693     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1))) {
694       // If one side is a constant, and all of the known set bits on the other
695       // side are also set in the constant, turn this into an AND, as we know
696       // the bits will be cleared.
697       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
698       // NB: it is okay if more bits are known than are requested
699       if (C->getAPIntValue() == Known2.One) {
700         SDValue ANDC = TLO.DAG.getConstant(~C->getAPIntValue() & NewMask,
701                                            dl, VT);
702         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
703                                                  Op.getOperand(0), ANDC));
704       }
705 
706       // If the RHS is a constant, see if we can change it. Don't alter a -1
707       // constant because that's a 'not' op, and that is better for combining
708       // and codegen.
709       if (!C->isAllOnesValue()) {
710         if (NewMask.isSubsetOf(C->getAPIntValue())) {
711           // We're flipping all demanded bits. Flip the undemanded bits too.
712           SDValue New = TLO.DAG.getNOT(dl, Op.getOperand(0), VT);
713           return TLO.CombineTo(Op, New);
714         }
715         // If we can't turn this into a 'not', try to shrink the constant.
716         if (ShrinkDemandedConstant(Op, NewMask, TLO))
717           return true;
718       }
719     }
720 
721     Known = std::move(KnownOut);
722     break;
723   }
724   case ISD::SELECT:
725     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, Known, TLO, Depth+1))
726       return true;
727     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known2, TLO, Depth+1))
728       return true;
729     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
730     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
731 
732     // If the operands are constants, see if we can simplify them.
733     if (ShrinkDemandedConstant(Op, NewMask, TLO))
734       return true;
735 
736     // Only known if known in both the LHS and RHS.
737     Known.One &= Known2.One;
738     Known.Zero &= Known2.Zero;
739     break;
740   case ISD::SELECT_CC:
741     if (SimplifyDemandedBits(Op.getOperand(3), NewMask, Known, TLO, Depth+1))
742       return true;
743     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, Known2, TLO, Depth+1))
744       return true;
745     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
746     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
747 
748     // If the operands are constants, see if we can simplify them.
749     if (ShrinkDemandedConstant(Op, NewMask, TLO))
750       return true;
751 
752     // Only known if known in both the LHS and RHS.
753     Known.One &= Known2.One;
754     Known.Zero &= Known2.Zero;
755     break;
756   case ISD::SETCC: {
757     SDValue Op0 = Op.getOperand(0);
758     SDValue Op1 = Op.getOperand(1);
759     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
760     // If (1) we only need the sign-bit, (2) the setcc operands are the same
761     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
762     // -1, we may be able to bypass the setcc.
763     if (NewMask.isSignMask() && Op0.getScalarValueSizeInBits() == BitWidth &&
764         getBooleanContents(VT) ==
765             BooleanContent::ZeroOrNegativeOneBooleanContent) {
766       // If we're testing X < 0, then this compare isn't needed - just use X!
767       // FIXME: We're limiting to integer types here, but this should also work
768       // if we don't care about FP signed-zero. The use of SETLT with FP means
769       // that we don't care about NaNs.
770       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
771           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
772         return TLO.CombineTo(Op, Op0);
773 
774       // TODO: Should we check for other forms of sign-bit comparisons?
775       // Examples: X <= -1, X >= 0
776     }
777     if (getBooleanContents(Op0.getValueType()) ==
778             TargetLowering::ZeroOrOneBooleanContent &&
779         BitWidth > 1)
780       Known.Zero.setBitsFrom(1);
781     break;
782   }
783   case ISD::SHL:
784     if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) {
785       SDValue InOp = Op.getOperand(0);
786 
787       // If the shift count is an invalid immediate, don't do anything.
788       if (SA->getAPIntValue().uge(BitWidth))
789         break;
790 
791       unsigned ShAmt = SA->getZExtValue();
792 
793       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
794       // single shift.  We can do this if the bottom bits (which are shifted
795       // out) are never demanded.
796       if (InOp.getOpcode() == ISD::SRL) {
797         if (ConstantSDNode *SA2 = isConstOrConstSplat(InOp.getOperand(1))) {
798           if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
799             if (SA2->getAPIntValue().ult(BitWidth)) {
800               unsigned C1 = SA2->getZExtValue();
801               unsigned Opc = ISD::SHL;
802               int Diff = ShAmt-C1;
803               if (Diff < 0) {
804                 Diff = -Diff;
805                 Opc = ISD::SRL;
806               }
807 
808               SDValue NewSA =
809                 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
810               return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
811                                                        InOp.getOperand(0),
812                                                        NewSA));
813             }
814           }
815         }
816       }
817 
818       if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), Known, TLO, Depth+1))
819         return true;
820 
821       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
822       // are not demanded. This will likely allow the anyext to be folded away.
823       if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
824         SDValue InnerOp = InOp.getOperand(0);
825         EVT InnerVT = InnerOp.getValueType();
826         unsigned InnerBits = InnerVT.getScalarSizeInBits();
827         if (ShAmt < InnerBits && NewMask.getActiveBits() <= InnerBits &&
828             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
829           EVT ShTy = getShiftAmountTy(InnerVT, DL);
830           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
831             ShTy = InnerVT;
832           SDValue NarrowShl =
833             TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
834                             TLO.DAG.getConstant(ShAmt, dl, ShTy));
835           return
836             TLO.CombineTo(Op,
837                           TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
838         }
839         // Repeat the SHL optimization above in cases where an extension
840         // intervenes: (shl (anyext (shr x, c1)), c2) to
841         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
842         // aren't demanded (as above) and that the shifted upper c1 bits of
843         // x aren't demanded.
844         if (InOp.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
845             InnerOp.hasOneUse()) {
846           if (ConstantSDNode *SA2 = isConstOrConstSplat(InnerOp.getOperand(1))) {
847             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
848             if (InnerShAmt < ShAmt &&
849                 InnerShAmt < InnerBits &&
850                 NewMask.getActiveBits() <= (InnerBits - InnerShAmt + ShAmt) &&
851                 NewMask.countTrailingZeros() >= ShAmt) {
852               SDValue NewSA =
853                 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
854                                     Op.getOperand(1).getValueType());
855               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
856                                                InnerOp.getOperand(0));
857               return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT,
858                                                        NewExt, NewSA));
859             }
860           }
861         }
862       }
863 
864       Known.Zero <<= ShAmt;
865       Known.One  <<= ShAmt;
866       // low bits known zero.
867       Known.Zero.setLowBits(ShAmt);
868     }
869     break;
870   case ISD::SRL:
871     if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) {
872       SDValue InOp = Op.getOperand(0);
873 
874       // If the shift count is an invalid immediate, don't do anything.
875       if (SA->getAPIntValue().uge(BitWidth))
876         break;
877 
878       unsigned ShAmt = SA->getZExtValue();
879       APInt InDemandedMask = (NewMask << ShAmt);
880 
881       // If the shift is exact, then it does demand the low bits (and knows that
882       // they are zero).
883       if (Op->getFlags().hasExact())
884         InDemandedMask.setLowBits(ShAmt);
885 
886       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
887       // single shift.  We can do this if the top bits (which are shifted out)
888       // are never demanded.
889       if (InOp.getOpcode() == ISD::SHL) {
890         if (ConstantSDNode *SA2 = isConstOrConstSplat(InOp.getOperand(1))) {
891           if (ShAmt &&
892               (NewMask & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) {
893             if (SA2->getAPIntValue().ult(BitWidth)) {
894               unsigned C1 = SA2->getZExtValue();
895               unsigned Opc = ISD::SRL;
896               int Diff = ShAmt-C1;
897               if (Diff < 0) {
898                 Diff = -Diff;
899                 Opc = ISD::SHL;
900               }
901 
902               SDValue NewSA =
903                 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
904               return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
905                                                        InOp.getOperand(0),
906                                                        NewSA));
907             }
908           }
909         }
910       }
911 
912       // Compute the new bits that are at the top now.
913       if (SimplifyDemandedBits(InOp, InDemandedMask, Known, TLO, Depth+1))
914         return true;
915       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
916       Known.Zero.lshrInPlace(ShAmt);
917       Known.One.lshrInPlace(ShAmt);
918 
919       Known.Zero.setHighBits(ShAmt);  // High bits known zero.
920     }
921     break;
922   case ISD::SRA:
923     // If this is an arithmetic shift right and only the low-bit is set, we can
924     // always convert this into a logical shr, even if the shift amount is
925     // variable.  The low bit of the shift cannot be an input sign bit unless
926     // the shift amount is >= the size of the datatype, which is undefined.
927     if (NewMask.isOneValue())
928       return TLO.CombineTo(Op,
929                            TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0),
930                                            Op.getOperand(1)));
931 
932     if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) {
933       // If the shift count is an invalid immediate, don't do anything.
934       if (SA->getAPIntValue().uge(BitWidth))
935         break;
936 
937       unsigned ShAmt = SA->getZExtValue();
938       APInt InDemandedMask = (NewMask << ShAmt);
939 
940       // If the shift is exact, then it does demand the low bits (and knows that
941       // they are zero).
942       if (Op->getFlags().hasExact())
943         InDemandedMask.setLowBits(ShAmt);
944 
945       // If any of the demanded bits are produced by the sign extension, we also
946       // demand the input sign bit.
947       if (NewMask.countLeadingZeros() < ShAmt)
948         InDemandedMask.setSignBit();
949 
950       if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, Known, TLO,
951                                Depth+1))
952         return true;
953       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
954       Known.Zero.lshrInPlace(ShAmt);
955       Known.One.lshrInPlace(ShAmt);
956 
957       // If the input sign bit is known to be zero, or if none of the top bits
958       // are demanded, turn this into an unsigned shift right.
959       if (Known.Zero[BitWidth - ShAmt - 1] ||
960           NewMask.countLeadingZeros() >= ShAmt) {
961         SDNodeFlags Flags;
962         Flags.setExact(Op->getFlags().hasExact());
963         return TLO.CombineTo(Op,
964                              TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0),
965                                              Op.getOperand(1), Flags));
966       }
967 
968       int Log2 = NewMask.exactLogBase2();
969       if (Log2 >= 0) {
970         // The bit must come from the sign.
971         SDValue NewSA =
972           TLO.DAG.getConstant(BitWidth - 1 - Log2, dl,
973                               Op.getOperand(1).getValueType());
974         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
975                                                  Op.getOperand(0), NewSA));
976       }
977 
978       if (Known.One[BitWidth - ShAmt - 1])
979         // New bits are known one.
980         Known.One.setHighBits(ShAmt);
981     }
982     break;
983   case ISD::SIGN_EXTEND_INREG: {
984     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
985     unsigned ExVTBits = ExVT.getScalarSizeInBits();
986 
987     // If we only care about the highest bit, don't bother shifting right.
988     if (NewMask.isSignMask()) {
989       SDValue InOp = Op.getOperand(0);
990       bool AlreadySignExtended =
991         TLO.DAG.ComputeNumSignBits(InOp) >= BitWidth-ExVTBits+1;
992       // However if the input is already sign extended we expect the sign
993       // extension to be dropped altogether later and do not simplify.
994       if (!AlreadySignExtended) {
995         // Compute the correct shift amount type, which must be getShiftAmountTy
996         // for scalar types after legalization.
997         EVT ShiftAmtTy = VT;
998         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
999           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1000 
1001         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl,
1002                                                ShiftAmtTy);
1003         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, InOp,
1004                                                  ShiftAmt));
1005       }
1006     }
1007 
1008     // If none of the extended bits are demanded, eliminate the sextinreg.
1009     if (NewMask.getActiveBits() <= ExVTBits)
1010       return TLO.CombineTo(Op, Op.getOperand(0));
1011 
1012     APInt InputDemandedBits = NewMask.getLoBits(ExVTBits);
1013 
1014     // Since the sign extended bits are demanded, we know that the sign
1015     // bit is demanded.
1016     InputDemandedBits.setBit(ExVTBits - 1);
1017 
1018     if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1019                              Known, TLO, Depth+1))
1020       return true;
1021     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1022 
1023     // If the sign bit of the input is known set or clear, then we know the
1024     // top bits of the result.
1025 
1026     // If the input sign bit is known zero, convert this into a zero extension.
1027     if (Known.Zero[ExVTBits - 1])
1028       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(
1029                                    Op.getOperand(0), dl, ExVT.getScalarType()));
1030 
1031     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1032     if (Known.One[ExVTBits - 1]) {    // Input sign bit known set
1033       Known.One.setBitsFrom(ExVTBits);
1034       Known.Zero &= Mask;
1035     } else {                       // Input sign bit unknown
1036       Known.Zero &= Mask;
1037       Known.One &= Mask;
1038     }
1039     break;
1040   }
1041   case ISD::BUILD_PAIR: {
1042     EVT HalfVT = Op.getOperand(0).getValueType();
1043     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1044 
1045     APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1046     APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1047 
1048     KnownBits KnownLo, KnownHi;
1049 
1050     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1051       return true;
1052 
1053     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1054       return true;
1055 
1056     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1057                 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1058 
1059     Known.One = KnownLo.One.zext(BitWidth) |
1060                KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1061     break;
1062   }
1063   case ISD::ZERO_EXTEND: {
1064     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
1065 
1066     // If none of the top bits are demanded, convert this into an any_extend.
1067     if (NewMask.getActiveBits() <= OperandBitWidth)
1068       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1069                                                Op.getOperand(0)));
1070 
1071     APInt InMask = NewMask.trunc(OperandBitWidth);
1072     if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1))
1073       return true;
1074     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1075     Known = Known.zext(BitWidth);
1076     Known.Zero.setBitsFrom(OperandBitWidth);
1077     break;
1078   }
1079   case ISD::SIGN_EXTEND: {
1080     unsigned InBits = Op.getOperand(0).getValueType().getScalarSizeInBits();
1081 
1082     // If none of the top bits are demanded, convert this into an any_extend.
1083     if (NewMask.getActiveBits() <= InBits)
1084       return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1085                                               Op.getOperand(0)));
1086 
1087     // Since some of the sign extended bits are demanded, we know that the sign
1088     // bit is demanded.
1089     APInt InDemandedBits = NewMask.trunc(InBits);
1090     InDemandedBits.setBit(InBits - 1);
1091 
1092     if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, Known, TLO,
1093                              Depth+1))
1094       return true;
1095     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1096     // If the sign bit is known one, the top bits match.
1097     Known = Known.sext(BitWidth);
1098 
1099     // If the sign bit is known zero, convert this to a zero extend.
1100     if (Known.isNonNegative())
1101       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT,
1102                                                Op.getOperand(0)));
1103     break;
1104   }
1105   case ISD::ANY_EXTEND: {
1106     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
1107     APInt InMask = NewMask.trunc(OperandBitWidth);
1108     if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1))
1109       return true;
1110     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1111     Known = Known.zext(BitWidth);
1112     break;
1113   }
1114   case ISD::TRUNCATE: {
1115     // Simplify the input, using demanded bit information, and compute the known
1116     // zero/one bits live out.
1117     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
1118     APInt TruncMask = NewMask.zext(OperandBitWidth);
1119     if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, Known, TLO, Depth+1))
1120       return true;
1121     Known = Known.trunc(BitWidth);
1122 
1123     // If the input is only used by this truncate, see if we can shrink it based
1124     // on the known demanded bits.
1125     if (Op.getOperand(0).getNode()->hasOneUse()) {
1126       SDValue In = Op.getOperand(0);
1127       switch (In.getOpcode()) {
1128       default: break;
1129       case ISD::SRL:
1130         // Shrink SRL by a constant if none of the high bits shifted in are
1131         // demanded.
1132         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1133           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1134           // undesirable.
1135           break;
1136         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1137         if (!ShAmt)
1138           break;
1139         SDValue Shift = In.getOperand(1);
1140         if (TLO.LegalTypes()) {
1141           uint64_t ShVal = ShAmt->getZExtValue();
1142           Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1143         }
1144 
1145         if (ShAmt->getZExtValue() < BitWidth) {
1146           APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1147                                                  OperandBitWidth - BitWidth);
1148           HighBits.lshrInPlace(ShAmt->getZExtValue());
1149           HighBits = HighBits.trunc(BitWidth);
1150 
1151           if (!(HighBits & NewMask)) {
1152             // None of the shifted in bits are needed.  Add a truncate of the
1153             // shift input, then shift it.
1154             SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, VT,
1155                                                In.getOperand(0));
1156             return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc,
1157                                                      Shift));
1158           }
1159         }
1160         break;
1161       }
1162     }
1163 
1164     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1165     break;
1166   }
1167   case ISD::AssertZext: {
1168     // AssertZext demands all of the high bits, plus any of the low bits
1169     // demanded by its users.
1170     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1171     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1172     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
1173                              Known, TLO, Depth+1))
1174       return true;
1175     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1176 
1177     Known.Zero |= ~InMask;
1178     break;
1179   }
1180   case ISD::BITCAST:
1181     // If this is an FP->Int bitcast and if the sign bit is the only
1182     // thing demanded, turn this into a FGETSIGN.
1183     if (!TLO.LegalOperations() && !VT.isVector() &&
1184         !Op.getOperand(0).getValueType().isVector() &&
1185         NewMask == APInt::getSignMask(Op.getValueSizeInBits()) &&
1186         Op.getOperand(0).getValueType().isFloatingPoint()) {
1187       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1188       bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1189       if ((OpVTLegal || i32Legal) && VT.isSimple() &&
1190            Op.getOperand(0).getValueType() != MVT::f16 &&
1191            Op.getOperand(0).getValueType() != MVT::f128) {
1192         // Cannot eliminate/lower SHL for f128 yet.
1193         EVT Ty = OpVTLegal ? VT : MVT::i32;
1194         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1195         // place.  We expect the SHL to be eliminated by other optimizations.
1196         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
1197         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1198         if (!OpVTLegal && OpVTSizeInBits > 32)
1199           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1200         unsigned ShVal = Op.getValueSizeInBits() - 1;
1201         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1202         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1203       }
1204     }
1205     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
1206     // recursive call where Known may be useful to the caller.
1207     if (Depth > 0) {
1208       TLO.DAG.computeKnownBits(Op, Known, Depth);
1209       return false;
1210     }
1211     break;
1212   case ISD::ADD:
1213   case ISD::MUL:
1214   case ISD::SUB: {
1215     // Add, Sub, and Mul don't demand any bits in positions beyond that
1216     // of the highest bit demanded of them.
1217     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
1218     unsigned NewMaskLZ = NewMask.countLeadingZeros();
1219     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - NewMaskLZ);
1220     if (SimplifyDemandedBits(Op0, LoMask, Known2, TLO, Depth + 1) ||
1221         SimplifyDemandedBits(Op1, LoMask, Known2, TLO, Depth + 1) ||
1222         // See if the operation should be performed at a smaller bit width.
1223         ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) {
1224       SDNodeFlags Flags = Op.getNode()->getFlags();
1225       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1226         // Disable the nsw and nuw flags. We can no longer guarantee that we
1227         // won't wrap after simplification.
1228         Flags.setNoSignedWrap(false);
1229         Flags.setNoUnsignedWrap(false);
1230         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1,
1231                                         Flags);
1232         return TLO.CombineTo(Op, NewOp);
1233       }
1234       return true;
1235     }
1236 
1237     // If we have a constant operand, we may be able to turn it into -1 if we
1238     // do not demand the high bits. This can make the constant smaller to
1239     // encode, allow more general folding, or match specialized instruction
1240     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
1241     // is probably not useful (and could be detrimental).
1242     ConstantSDNode *C = isConstOrConstSplat(Op1);
1243     APInt HighMask = APInt::getHighBitsSet(NewMask.getBitWidth(), NewMaskLZ);
1244     if (C && !C->isAllOnesValue() && !C->isOne() &&
1245         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
1246       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
1247       // We can't guarantee that the new math op doesn't wrap, so explicitly
1248       // clear those flags to prevent folding with a potential existing node
1249       // that has those flags set.
1250       SDNodeFlags Flags;
1251       Flags.setNoSignedWrap(false);
1252       Flags.setNoUnsignedWrap(false);
1253       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
1254       return TLO.CombineTo(Op, NewOp);
1255     }
1256 
1257     LLVM_FALLTHROUGH;
1258   }
1259   default:
1260     // Just use computeKnownBits to compute output bits.
1261     TLO.DAG.computeKnownBits(Op, Known, Depth);
1262     break;
1263   }
1264 
1265   // If we know the value of all of the demanded bits, return this as a
1266   // constant.
1267   if (NewMask.isSubsetOf(Known.Zero|Known.One)) {
1268     // Avoid folding to a constant if any OpaqueConstant is involved.
1269     const SDNode *N = Op.getNode();
1270     for (SDNodeIterator I = SDNodeIterator::begin(N),
1271          E = SDNodeIterator::end(N); I != E; ++I) {
1272       SDNode *Op = *I;
1273       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
1274         if (C->isOpaque())
1275           return false;
1276     }
1277     return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
1278   }
1279 
1280   return false;
1281 }
1282 
1283 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
1284                                                 const APInt &DemandedElts,
1285                                                 APInt &KnownUndef,
1286                                                 APInt &KnownZero,
1287                                                 DAGCombinerInfo &DCI) const {
1288   SelectionDAG &DAG = DCI.DAG;
1289   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1290                         !DCI.isBeforeLegalizeOps());
1291 
1292   bool Simplified =
1293       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
1294   if (Simplified)
1295     DCI.CommitTargetLoweringOpt(TLO);
1296   return Simplified;
1297 }
1298 
1299 bool TargetLowering::SimplifyDemandedVectorElts(
1300     SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef,
1301     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
1302     bool AssumeSingleUse) const {
1303   EVT VT = Op.getValueType();
1304   APInt DemandedElts = DemandedEltMask;
1305   unsigned NumElts = DemandedElts.getBitWidth();
1306   assert(VT.isVector() && "Expected vector op");
1307   assert(VT.getVectorNumElements() == NumElts &&
1308          "Mask size mismatches value type element count!");
1309 
1310   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
1311 
1312   // Undef operand.
1313   if (Op.isUndef()) {
1314     KnownUndef.setAllBits();
1315     return false;
1316   }
1317 
1318   // If Op has other users, assume that all elements are needed.
1319   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
1320     DemandedElts.setAllBits();
1321 
1322   // Not demanding any elements from Op.
1323   if (DemandedElts == 0) {
1324     KnownUndef.setAllBits();
1325     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1326   }
1327 
1328   // Limit search depth.
1329   if (Depth >= 6)
1330     return false;
1331 
1332   SDLoc DL(Op);
1333   unsigned EltSizeInBits = VT.getScalarSizeInBits();
1334 
1335   switch (Op.getOpcode()) {
1336   case ISD::SCALAR_TO_VECTOR: {
1337     if (!DemandedElts[0]) {
1338       KnownUndef.setAllBits();
1339       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1340     }
1341     KnownUndef.setHighBits(NumElts - 1);
1342     break;
1343   }
1344   case ISD::BITCAST: {
1345     SDValue Src = Op.getOperand(0);
1346     EVT SrcVT = Src.getValueType();
1347 
1348     // We only handle vectors here.
1349     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
1350     if (!SrcVT.isVector())
1351       break;
1352 
1353     // Fast handling of 'identity' bitcasts.
1354     unsigned NumSrcElts = SrcVT.getVectorNumElements();
1355     if (NumSrcElts == NumElts)
1356       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
1357                                         KnownZero, TLO, Depth + 1);
1358 
1359     APInt SrcZero, SrcUndef;
1360     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
1361 
1362     // Bitcast from 'large element' src vector to 'small element' vector, we
1363     // must demand a source element if any DemandedElt maps to it.
1364     if ((NumElts % NumSrcElts) == 0) {
1365       unsigned Scale = NumElts / NumSrcElts;
1366       for (unsigned i = 0; i != NumElts; ++i)
1367         if (DemandedElts[i])
1368           SrcDemandedElts.setBit(i / Scale);
1369 
1370       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
1371                                      TLO, Depth + 1))
1372         return true;
1373 
1374       // If the src element is zero/undef then all the output elements will be -
1375       // only demanded elements are guaranteed to be correct.
1376       for (unsigned i = 0; i != NumSrcElts; ++i) {
1377         if (SrcDemandedElts[i]) {
1378           if (SrcZero[i])
1379             KnownZero.setBits(i * Scale, (i + 1) * Scale);
1380           if (SrcUndef[i])
1381             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
1382         }
1383       }
1384     }
1385 
1386     // Bitcast from 'small element' src vector to 'large element' vector, we
1387     // demand all smaller source elements covered by the larger demanded element
1388     // of this vector.
1389     if ((NumSrcElts % NumElts) == 0) {
1390       unsigned Scale = NumSrcElts / NumElts;
1391       for (unsigned i = 0; i != NumElts; ++i)
1392         if (DemandedElts[i])
1393           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
1394 
1395       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
1396                                      TLO, Depth + 1))
1397         return true;
1398 
1399       // If all the src elements covering an output element are zero/undef, then
1400       // the output element will be as well, assuming it was demanded.
1401       for (unsigned i = 0; i != NumElts; ++i) {
1402         if (DemandedElts[i]) {
1403           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
1404             KnownZero.setBit(i);
1405           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
1406             KnownUndef.setBit(i);
1407         }
1408       }
1409     }
1410     break;
1411   }
1412   case ISD::BUILD_VECTOR: {
1413     // Check all elements and simplify any unused elements with UNDEF.
1414     if (!DemandedElts.isAllOnesValue()) {
1415       // Don't simplify BROADCASTS.
1416       if (llvm::any_of(Op->op_values(),
1417                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
1418         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
1419         bool Updated = false;
1420         for (unsigned i = 0; i != NumElts; ++i) {
1421           if (!DemandedElts[i] && !Ops[i].isUndef()) {
1422             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
1423             KnownUndef.setBit(i);
1424             Updated = true;
1425           }
1426         }
1427         if (Updated)
1428           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
1429       }
1430     }
1431     for (unsigned i = 0; i != NumElts; ++i) {
1432       SDValue SrcOp = Op.getOperand(i);
1433       if (SrcOp.isUndef()) {
1434         KnownUndef.setBit(i);
1435       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
1436                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
1437         KnownZero.setBit(i);
1438       }
1439     }
1440     break;
1441   }
1442   case ISD::CONCAT_VECTORS: {
1443     EVT SubVT = Op.getOperand(0).getValueType();
1444     unsigned NumSubVecs = Op.getNumOperands();
1445     unsigned NumSubElts = SubVT.getVectorNumElements();
1446     for (unsigned i = 0; i != NumSubVecs; ++i) {
1447       SDValue SubOp = Op.getOperand(i);
1448       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1449       APInt SubUndef, SubZero;
1450       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
1451                                      Depth + 1))
1452         return true;
1453       KnownUndef.insertBits(SubUndef, i * NumSubElts);
1454       KnownZero.insertBits(SubZero, i * NumSubElts);
1455     }
1456     break;
1457   }
1458   case ISD::INSERT_SUBVECTOR: {
1459     if (!isa<ConstantSDNode>(Op.getOperand(2)))
1460       break;
1461     SDValue Base = Op.getOperand(0);
1462     SDValue Sub = Op.getOperand(1);
1463     EVT SubVT = Sub.getValueType();
1464     unsigned NumSubElts = SubVT.getVectorNumElements();
1465     const APInt& Idx = cast<ConstantSDNode>(Op.getOperand(2))->getAPIntValue();
1466     if (Idx.uge(NumElts - NumSubElts))
1467       break;
1468     unsigned SubIdx = Idx.getZExtValue();
1469     APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
1470     APInt SubUndef, SubZero;
1471     if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
1472                                    Depth + 1))
1473       return true;
1474     APInt BaseElts = DemandedElts;
1475     BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
1476     if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
1477                                    Depth + 1))
1478       return true;
1479     KnownUndef.insertBits(SubUndef, SubIdx);
1480     KnownZero.insertBits(SubZero, SubIdx);
1481     break;
1482   }
1483   case ISD::EXTRACT_SUBVECTOR: {
1484     SDValue Src = Op.getOperand(0);
1485     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1486     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1487     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
1488       // Offset the demanded elts by the subvector index.
1489       uint64_t Idx = SubIdx->getZExtValue();
1490       APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1491       APInt SrcUndef, SrcZero;
1492       if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
1493                                      Depth + 1))
1494         return true;
1495       KnownUndef = SrcUndef.extractBits(NumElts, Idx);
1496       KnownZero = SrcZero.extractBits(NumElts, Idx);
1497     }
1498     break;
1499   }
1500   case ISD::INSERT_VECTOR_ELT: {
1501     SDValue Vec = Op.getOperand(0);
1502     SDValue Scl = Op.getOperand(1);
1503     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1504 
1505     // For a legal, constant insertion index, if we don't need this insertion
1506     // then strip it, else remove it from the demanded elts.
1507     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
1508       unsigned Idx = CIdx->getZExtValue();
1509       if (!DemandedElts[Idx])
1510         return TLO.CombineTo(Op, Vec);
1511       DemandedElts.clearBit(Idx);
1512 
1513       if (SimplifyDemandedVectorElts(Vec, DemandedElts, KnownUndef,
1514                                      KnownZero, TLO, Depth + 1))
1515         return true;
1516 
1517       KnownUndef.clearBit(Idx);
1518       if (Scl.isUndef())
1519         KnownUndef.setBit(Idx);
1520 
1521       KnownZero.clearBit(Idx);
1522       if (isNullConstant(Scl) || isNullFPConstant(Scl))
1523         KnownZero.setBit(Idx);
1524       break;
1525     }
1526 
1527     APInt VecUndef, VecZero;
1528     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
1529                                    Depth + 1))
1530       return true;
1531     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
1532     break;
1533   }
1534   case ISD::VSELECT: {
1535     // Try to transform the select condition based on the current demanded
1536     // elements.
1537     // TODO: If a condition element is undef, we can choose from one arm of the
1538     //       select (and if one arm is undef, then we can propagate that to the
1539     //       result).
1540     // TODO - add support for constant vselect masks (see IR version of this).
1541     APInt UnusedUndef, UnusedZero;
1542     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
1543                                    UnusedZero, TLO, Depth + 1))
1544       return true;
1545 
1546     // See if we can simplify either vselect operand.
1547     APInt DemandedLHS(DemandedElts);
1548     APInt DemandedRHS(DemandedElts);
1549     APInt UndefLHS, ZeroLHS;
1550     APInt UndefRHS, ZeroRHS;
1551     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
1552                                    ZeroLHS, TLO, Depth + 1))
1553       return true;
1554     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
1555                                    ZeroRHS, TLO, Depth + 1))
1556       return true;
1557 
1558     KnownUndef = UndefLHS & UndefRHS;
1559     KnownZero = ZeroLHS & ZeroRHS;
1560     break;
1561   }
1562   case ISD::VECTOR_SHUFFLE: {
1563     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1564 
1565     // Collect demanded elements from shuffle operands..
1566     APInt DemandedLHS(NumElts, 0);
1567     APInt DemandedRHS(NumElts, 0);
1568     for (unsigned i = 0; i != NumElts; ++i) {
1569       int M = ShuffleMask[i];
1570       if (M < 0 || !DemandedElts[i])
1571         continue;
1572       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1573       if (M < (int)NumElts)
1574         DemandedLHS.setBit(M);
1575       else
1576         DemandedRHS.setBit(M - NumElts);
1577     }
1578 
1579     // See if we can simplify either shuffle operand.
1580     APInt UndefLHS, ZeroLHS;
1581     APInt UndefRHS, ZeroRHS;
1582     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
1583                                    ZeroLHS, TLO, Depth + 1))
1584       return true;
1585     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
1586                                    ZeroRHS, TLO, Depth + 1))
1587       return true;
1588 
1589     // Simplify mask using undef elements from LHS/RHS.
1590     bool Updated = false;
1591     bool IdentityLHS = true, IdentityRHS = true;
1592     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
1593     for (unsigned i = 0; i != NumElts; ++i) {
1594       int &M = NewMask[i];
1595       if (M < 0)
1596         continue;
1597       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
1598           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
1599         Updated = true;
1600         M = -1;
1601       }
1602       IdentityLHS &= (M < 0) || (M == (int)i);
1603       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
1604     }
1605 
1606     // Update legal shuffle masks based on demanded elements if it won't reduce
1607     // to Identity which can cause premature removal of the shuffle mask.
1608     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps &&
1609         isShuffleMaskLegal(NewMask, VT))
1610       return TLO.CombineTo(Op,
1611                            TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0),
1612                                                     Op.getOperand(1), NewMask));
1613 
1614     // Propagate undef/zero elements from LHS/RHS.
1615     for (unsigned i = 0; i != NumElts; ++i) {
1616       int M = ShuffleMask[i];
1617       if (M < 0) {
1618         KnownUndef.setBit(i);
1619       } else if (M < (int)NumElts) {
1620         if (UndefLHS[M])
1621           KnownUndef.setBit(i);
1622         if (ZeroLHS[M])
1623           KnownZero.setBit(i);
1624       } else {
1625         if (UndefRHS[M - NumElts])
1626           KnownUndef.setBit(i);
1627         if (ZeroRHS[M - NumElts])
1628           KnownZero.setBit(i);
1629       }
1630     }
1631     break;
1632   }
1633   case ISD::ADD:
1634   case ISD::SUB: {
1635     APInt SrcUndef, SrcZero;
1636     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
1637                                    SrcZero, TLO, Depth + 1))
1638       return true;
1639     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
1640                                    KnownZero, TLO, Depth + 1))
1641       return true;
1642     KnownZero &= SrcZero;
1643     KnownUndef &= SrcUndef;
1644     break;
1645   }
1646   case ISD::TRUNCATE:
1647     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
1648                                    KnownZero, TLO, Depth + 1))
1649       return true;
1650     break;
1651   default: {
1652     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
1653       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
1654                                                   KnownZero, TLO, Depth))
1655         return true;
1656     break;
1657   }
1658   }
1659 
1660   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
1661   return false;
1662 }
1663 
1664 /// Determine which of the bits specified in Mask are known to be either zero or
1665 /// one and return them in the Known.
1666 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1667                                                    KnownBits &Known,
1668                                                    const APInt &DemandedElts,
1669                                                    const SelectionDAG &DAG,
1670                                                    unsigned Depth) const {
1671   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1672           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1673           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1674           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1675          "Should use MaskedValueIsZero if you don't know whether Op"
1676          " is a target node!");
1677   Known.resetAll();
1678 }
1679 
1680 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
1681                                                    KnownBits &Known,
1682                                                    const APInt &DemandedElts,
1683                                                    const SelectionDAG &DAG,
1684                                                    unsigned Depth) const {
1685   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
1686 
1687   if (unsigned Align = DAG.InferPtrAlignment(Op)) {
1688     // The low bits are known zero if the pointer is aligned.
1689     Known.Zero.setLowBits(Log2_32(Align));
1690   }
1691 }
1692 
1693 /// This method can be implemented by targets that want to expose additional
1694 /// information about sign bits to the DAG Combiner.
1695 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1696                                                          const APInt &,
1697                                                          const SelectionDAG &,
1698                                                          unsigned Depth) const {
1699   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1700           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1701           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1702           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1703          "Should use ComputeNumSignBits if you don't know whether Op"
1704          " is a target node!");
1705   return 1;
1706 }
1707 
1708 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
1709     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
1710     TargetLoweringOpt &TLO, unsigned Depth) const {
1711   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1712           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1713           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1714           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1715          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
1716          " is a target node!");
1717   return false;
1718 }
1719 
1720 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
1721                                                   const SelectionDAG &DAG,
1722                                                   bool SNaN,
1723                                                   unsigned Depth) const {
1724   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1725           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1726           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1727           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1728          "Should use isKnownNeverNaN if you don't know whether Op"
1729          " is a target node!");
1730   return false;
1731 }
1732 
1733 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
1734 // work with truncating build vectors and vectors with elements of less than
1735 // 8 bits.
1736 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
1737   if (!N)
1738     return false;
1739 
1740   APInt CVal;
1741   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
1742     CVal = CN->getAPIntValue();
1743   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
1744     auto *CN = BV->getConstantSplatNode();
1745     if (!CN)
1746       return false;
1747 
1748     // If this is a truncating build vector, truncate the splat value.
1749     // Otherwise, we may fail to match the expected values below.
1750     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
1751     CVal = CN->getAPIntValue();
1752     if (BVEltWidth < CVal.getBitWidth())
1753       CVal = CVal.trunc(BVEltWidth);
1754   } else {
1755     return false;
1756   }
1757 
1758   switch (getBooleanContents(N->getValueType(0))) {
1759   case UndefinedBooleanContent:
1760     return CVal[0];
1761   case ZeroOrOneBooleanContent:
1762     return CVal.isOneValue();
1763   case ZeroOrNegativeOneBooleanContent:
1764     return CVal.isAllOnesValue();
1765   }
1766 
1767   llvm_unreachable("Invalid boolean contents");
1768 }
1769 
1770 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
1771   if (!N)
1772     return false;
1773 
1774   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
1775   if (!CN) {
1776     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
1777     if (!BV)
1778       return false;
1779 
1780     // Only interested in constant splats, we don't care about undef
1781     // elements in identifying boolean constants and getConstantSplatNode
1782     // returns NULL if all ops are undef;
1783     CN = BV->getConstantSplatNode();
1784     if (!CN)
1785       return false;
1786   }
1787 
1788   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
1789     return !CN->getAPIntValue()[0];
1790 
1791   return CN->isNullValue();
1792 }
1793 
1794 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
1795                                        bool SExt) const {
1796   if (VT == MVT::i1)
1797     return N->isOne();
1798 
1799   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
1800   switch (Cnt) {
1801   case TargetLowering::ZeroOrOneBooleanContent:
1802     // An extended value of 1 is always true, unless its original type is i1,
1803     // in which case it will be sign extended to -1.
1804     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
1805   case TargetLowering::UndefinedBooleanContent:
1806   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1807     return N->isAllOnesValue() && SExt;
1808   }
1809   llvm_unreachable("Unexpected enumeration.");
1810 }
1811 
1812 /// This helper function of SimplifySetCC tries to optimize the comparison when
1813 /// either operand of the SetCC node is a bitwise-and instruction.
1814 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
1815                                              ISD::CondCode Cond,
1816                                              DAGCombinerInfo &DCI,
1817                                              const SDLoc &DL) const {
1818   // Match these patterns in any of their permutations:
1819   // (X & Y) == Y
1820   // (X & Y) != Y
1821   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
1822     std::swap(N0, N1);
1823 
1824   EVT OpVT = N0.getValueType();
1825   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
1826       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
1827     return SDValue();
1828 
1829   SDValue X, Y;
1830   if (N0.getOperand(0) == N1) {
1831     X = N0.getOperand(1);
1832     Y = N0.getOperand(0);
1833   } else if (N0.getOperand(1) == N1) {
1834     X = N0.getOperand(0);
1835     Y = N0.getOperand(1);
1836   } else {
1837     return SDValue();
1838   }
1839 
1840   SelectionDAG &DAG = DCI.DAG;
1841   SDValue Zero = DAG.getConstant(0, DL, OpVT);
1842   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
1843     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
1844     // Note that where Y is variable and is known to have at most one bit set
1845     // (for example, if it is Z & 1) we cannot do this; the expressions are not
1846     // equivalent when Y == 0.
1847     Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1848     if (DCI.isBeforeLegalizeOps() ||
1849         isCondCodeLegal(Cond, N0.getSimpleValueType()))
1850       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
1851   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
1852     // If the target supports an 'and-not' or 'and-complement' logic operation,
1853     // try to use that to make a comparison operation more efficient.
1854     // But don't do this transform if the mask is a single bit because there are
1855     // more efficient ways to deal with that case (for example, 'bt' on x86 or
1856     // 'rlwinm' on PPC).
1857 
1858     // Bail out if the compare operand that we want to turn into a zero is
1859     // already a zero (otherwise, infinite loop).
1860     auto *YConst = dyn_cast<ConstantSDNode>(Y);
1861     if (YConst && YConst->isNullValue())
1862       return SDValue();
1863 
1864     // Transform this into: ~X & Y == 0.
1865     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
1866     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
1867     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
1868   }
1869 
1870   return SDValue();
1871 }
1872 
1873 /// There are multiple IR patterns that could be checking whether certain
1874 /// truncation of a signed number would be lossy or not. The pattern which is
1875 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
1876 /// We are looking for the following pattern: (KeptBits is a constant)
1877 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
1878 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
1879 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
1880 /// We will unfold it into the natural trunc+sext pattern:
1881 ///   ((%x << C) a>> C) dstcond %x
1882 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
1883 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
1884     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
1885     const SDLoc &DL) const {
1886   // We must be comparing with a constant.
1887   ConstantSDNode *C1;
1888   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
1889     return SDValue();
1890 
1891   // N0 should be:  add %x, (1 << (KeptBits-1))
1892   if (N0->getOpcode() != ISD::ADD)
1893     return SDValue();
1894 
1895   // And we must be 'add'ing a constant.
1896   ConstantSDNode *C01;
1897   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
1898     return SDValue();
1899 
1900   SDValue X = N0->getOperand(0);
1901   EVT XVT = X.getValueType();
1902 
1903   // Validate constants ...
1904 
1905   APInt I1 = C1->getAPIntValue();
1906 
1907   ISD::CondCode NewCond;
1908   if (Cond == ISD::CondCode::SETULT) {
1909     NewCond = ISD::CondCode::SETEQ;
1910   } else if (Cond == ISD::CondCode::SETULE) {
1911     NewCond = ISD::CondCode::SETEQ;
1912     // But need to 'canonicalize' the constant.
1913     I1 += 1;
1914   } else if (Cond == ISD::CondCode::SETUGT) {
1915     NewCond = ISD::CondCode::SETNE;
1916     // But need to 'canonicalize' the constant.
1917     I1 += 1;
1918   } else if (Cond == ISD::CondCode::SETUGE) {
1919     NewCond = ISD::CondCode::SETNE;
1920   } else
1921     return SDValue();
1922 
1923   APInt I01 = C01->getAPIntValue();
1924 
1925   auto checkConstants = [&I1, &I01]() -> bool {
1926     // Both of them must be power-of-two, and the constant from setcc is bigger.
1927     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
1928   };
1929 
1930   if (checkConstants()) {
1931     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
1932   } else {
1933     // What if we invert constants? (and the target predicate)
1934     I1.negate();
1935     I01.negate();
1936     NewCond = getSetCCInverse(NewCond, /*isInteger=*/true);
1937     if (!checkConstants())
1938       return SDValue();
1939     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
1940   }
1941 
1942   // They are power-of-two, so which bit is set?
1943   const unsigned KeptBits = I1.logBase2();
1944   const unsigned KeptBitsMinusOne = I01.logBase2();
1945 
1946   // Magic!
1947   if (KeptBits != (KeptBitsMinusOne + 1))
1948     return SDValue();
1949   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
1950 
1951   // We don't want to do this in every single case.
1952   SelectionDAG &DAG = DCI.DAG;
1953   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
1954           XVT, KeptBits))
1955     return SDValue();
1956 
1957   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
1958   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
1959 
1960   // Unfold into:  ((%x << C) a>> C) cond %x
1961   // Where 'cond' will be either 'eq' or 'ne'.
1962   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
1963   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
1964   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
1965   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
1966 
1967   return T2;
1968 }
1969 
1970 /// Try to simplify a setcc built with the specified operands and cc. If it is
1971 /// unable to simplify it, return a null SDValue.
1972 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1973                                       ISD::CondCode Cond, bool foldBooleans,
1974                                       DAGCombinerInfo &DCI,
1975                                       const SDLoc &dl) const {
1976   SelectionDAG &DAG = DCI.DAG;
1977   EVT OpVT = N0.getValueType();
1978 
1979   // These setcc operations always fold.
1980   switch (Cond) {
1981   default: break;
1982   case ISD::SETFALSE:
1983   case ISD::SETFALSE2: return DAG.getBoolConstant(false, dl, VT, OpVT);
1984   case ISD::SETTRUE:
1985   case ISD::SETTRUE2:  return DAG.getBoolConstant(true, dl, VT, OpVT);
1986   }
1987 
1988   // Ensure that the constant occurs on the RHS and fold constant comparisons.
1989   // TODO: Handle non-splat vector constants. All undef causes trouble.
1990   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
1991   if (isConstOrConstSplat(N0) &&
1992       (DCI.isBeforeLegalizeOps() ||
1993        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
1994     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
1995 
1996   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1997     const APInt &C1 = N1C->getAPIntValue();
1998 
1999     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
2000     // equality comparison, then we're just comparing whether X itself is
2001     // zero.
2002     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
2003         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
2004         N0.getOperand(1).getOpcode() == ISD::Constant) {
2005       const APInt &ShAmt
2006         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2007       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2008           ShAmt == Log2_32(N0.getValueSizeInBits())) {
2009         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
2010           // (srl (ctlz x), 5) == 0  -> X != 0
2011           // (srl (ctlz x), 5) != 1  -> X != 0
2012           Cond = ISD::SETNE;
2013         } else {
2014           // (srl (ctlz x), 5) != 0  -> X == 0
2015           // (srl (ctlz x), 5) == 1  -> X == 0
2016           Cond = ISD::SETEQ;
2017         }
2018         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
2019         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
2020                             Zero, Cond);
2021       }
2022     }
2023 
2024     SDValue CTPOP = N0;
2025     // Look through truncs that don't change the value of a ctpop.
2026     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
2027       CTPOP = N0.getOperand(0);
2028 
2029     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
2030         (N0 == CTPOP ||
2031          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
2032       EVT CTVT = CTPOP.getValueType();
2033       SDValue CTOp = CTPOP.getOperand(0);
2034 
2035       // (ctpop x) u< 2 -> (x & x-1) == 0
2036       // (ctpop x) u> 1 -> (x & x-1) != 0
2037       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
2038         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
2039                                   DAG.getConstant(1, dl, CTVT));
2040         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
2041         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
2042         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
2043       }
2044 
2045       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
2046     }
2047 
2048     // (zext x) == C --> x == (trunc C)
2049     // (sext x) == C --> x == (trunc C)
2050     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2051         DCI.isBeforeLegalize() && N0->hasOneUse()) {
2052       unsigned MinBits = N0.getValueSizeInBits();
2053       SDValue PreExt;
2054       bool Signed = false;
2055       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
2056         // ZExt
2057         MinBits = N0->getOperand(0).getValueSizeInBits();
2058         PreExt = N0->getOperand(0);
2059       } else if (N0->getOpcode() == ISD::AND) {
2060         // DAGCombine turns costly ZExts into ANDs
2061         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
2062           if ((C->getAPIntValue()+1).isPowerOf2()) {
2063             MinBits = C->getAPIntValue().countTrailingOnes();
2064             PreExt = N0->getOperand(0);
2065           }
2066       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
2067         // SExt
2068         MinBits = N0->getOperand(0).getValueSizeInBits();
2069         PreExt = N0->getOperand(0);
2070         Signed = true;
2071       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
2072         // ZEXTLOAD / SEXTLOAD
2073         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
2074           MinBits = LN0->getMemoryVT().getSizeInBits();
2075           PreExt = N0;
2076         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
2077           Signed = true;
2078           MinBits = LN0->getMemoryVT().getSizeInBits();
2079           PreExt = N0;
2080         }
2081       }
2082 
2083       // Figure out how many bits we need to preserve this constant.
2084       unsigned ReqdBits = Signed ?
2085         C1.getBitWidth() - C1.getNumSignBits() + 1 :
2086         C1.getActiveBits();
2087 
2088       // Make sure we're not losing bits from the constant.
2089       if (MinBits > 0 &&
2090           MinBits < C1.getBitWidth() &&
2091           MinBits >= ReqdBits) {
2092         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
2093         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
2094           // Will get folded away.
2095           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
2096           if (MinBits == 1 && C1 == 1)
2097             // Invert the condition.
2098             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
2099                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2100           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
2101           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
2102         }
2103 
2104         // If truncating the setcc operands is not desirable, we can still
2105         // simplify the expression in some cases:
2106         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
2107         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
2108         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
2109         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
2110         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
2111         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
2112         SDValue TopSetCC = N0->getOperand(0);
2113         unsigned N0Opc = N0->getOpcode();
2114         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
2115         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
2116             TopSetCC.getOpcode() == ISD::SETCC &&
2117             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
2118             (isConstFalseVal(N1C) ||
2119              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
2120 
2121           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
2122                          (!N1C->isNullValue() && Cond == ISD::SETNE);
2123 
2124           if (!Inverse)
2125             return TopSetCC;
2126 
2127           ISD::CondCode InvCond = ISD::getSetCCInverse(
2128               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
2129               TopSetCC.getOperand(0).getValueType().isInteger());
2130           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
2131                                       TopSetCC.getOperand(1),
2132                                       InvCond);
2133         }
2134       }
2135     }
2136 
2137     // If the LHS is '(and load, const)', the RHS is 0, the test is for
2138     // equality or unsigned, and all 1 bits of the const are in the same
2139     // partial word, see if we can shorten the load.
2140     if (DCI.isBeforeLegalize() &&
2141         !ISD::isSignedIntSetCC(Cond) &&
2142         N0.getOpcode() == ISD::AND && C1 == 0 &&
2143         N0.getNode()->hasOneUse() &&
2144         isa<LoadSDNode>(N0.getOperand(0)) &&
2145         N0.getOperand(0).getNode()->hasOneUse() &&
2146         isa<ConstantSDNode>(N0.getOperand(1))) {
2147       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
2148       APInt bestMask;
2149       unsigned bestWidth = 0, bestOffset = 0;
2150       if (!Lod->isVolatile() && Lod->isUnindexed()) {
2151         unsigned origWidth = N0.getValueSizeInBits();
2152         unsigned maskWidth = origWidth;
2153         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
2154         // 8 bits, but have to be careful...
2155         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
2156           origWidth = Lod->getMemoryVT().getSizeInBits();
2157         const APInt &Mask =
2158           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2159         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
2160           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
2161           for (unsigned offset=0; offset<origWidth/width; offset++) {
2162             if (Mask.isSubsetOf(newMask)) {
2163               if (DAG.getDataLayout().isLittleEndian())
2164                 bestOffset = (uint64_t)offset * (width/8);
2165               else
2166                 bestOffset = (origWidth/width - offset - 1) * (width/8);
2167               bestMask = Mask.lshr(offset * (width/8) * 8);
2168               bestWidth = width;
2169               break;
2170             }
2171             newMask <<= width;
2172           }
2173         }
2174       }
2175       if (bestWidth) {
2176         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
2177         if (newVT.isRound()) {
2178           EVT PtrType = Lod->getOperand(1).getValueType();
2179           SDValue Ptr = Lod->getBasePtr();
2180           if (bestOffset != 0)
2181             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
2182                               DAG.getConstant(bestOffset, dl, PtrType));
2183           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
2184           SDValue NewLoad = DAG.getLoad(
2185               newVT, dl, Lod->getChain(), Ptr,
2186               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
2187           return DAG.getSetCC(dl, VT,
2188                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
2189                                       DAG.getConstant(bestMask.trunc(bestWidth),
2190                                                       dl, newVT)),
2191                               DAG.getConstant(0LL, dl, newVT), Cond);
2192         }
2193       }
2194     }
2195 
2196     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
2197     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
2198       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
2199 
2200       // If the comparison constant has bits in the upper part, the
2201       // zero-extended value could never match.
2202       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
2203                                               C1.getBitWidth() - InSize))) {
2204         switch (Cond) {
2205         case ISD::SETUGT:
2206         case ISD::SETUGE:
2207         case ISD::SETEQ:
2208           return DAG.getConstant(0, dl, VT);
2209         case ISD::SETULT:
2210         case ISD::SETULE:
2211         case ISD::SETNE:
2212           return DAG.getConstant(1, dl, VT);
2213         case ISD::SETGT:
2214         case ISD::SETGE:
2215           // True if the sign bit of C1 is set.
2216           return DAG.getConstant(C1.isNegative(), dl, VT);
2217         case ISD::SETLT:
2218         case ISD::SETLE:
2219           // True if the sign bit of C1 isn't set.
2220           return DAG.getConstant(C1.isNonNegative(), dl, VT);
2221         default:
2222           break;
2223         }
2224       }
2225 
2226       // Otherwise, we can perform the comparison with the low bits.
2227       switch (Cond) {
2228       case ISD::SETEQ:
2229       case ISD::SETNE:
2230       case ISD::SETUGT:
2231       case ISD::SETUGE:
2232       case ISD::SETULT:
2233       case ISD::SETULE: {
2234         EVT newVT = N0.getOperand(0).getValueType();
2235         if (DCI.isBeforeLegalizeOps() ||
2236             (isOperationLegal(ISD::SETCC, newVT) &&
2237              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
2238           EVT NewSetCCVT =
2239               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
2240           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
2241 
2242           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
2243                                           NewConst, Cond);
2244           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
2245         }
2246         break;
2247       }
2248       default:
2249         break;   // todo, be more careful with signed comparisons
2250       }
2251     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2252                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2253       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
2254       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
2255       EVT ExtDstTy = N0.getValueType();
2256       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
2257 
2258       // If the constant doesn't fit into the number of bits for the source of
2259       // the sign extension, it is impossible for both sides to be equal.
2260       if (C1.getMinSignedBits() > ExtSrcTyBits)
2261         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
2262 
2263       SDValue ZextOp;
2264       EVT Op0Ty = N0.getOperand(0).getValueType();
2265       if (Op0Ty == ExtSrcTy) {
2266         ZextOp = N0.getOperand(0);
2267       } else {
2268         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
2269         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
2270                               DAG.getConstant(Imm, dl, Op0Ty));
2271       }
2272       if (!DCI.isCalledByLegalizer())
2273         DCI.AddToWorklist(ZextOp.getNode());
2274       // Otherwise, make this a use of a zext.
2275       return DAG.getSetCC(dl, VT, ZextOp,
2276                           DAG.getConstant(C1 & APInt::getLowBitsSet(
2277                                                               ExtDstTyBits,
2278                                                               ExtSrcTyBits),
2279                                           dl, ExtDstTy),
2280                           Cond);
2281     } else if ((N1C->isNullValue() || N1C->isOne()) &&
2282                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2283       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
2284       if (N0.getOpcode() == ISD::SETCC &&
2285           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
2286         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
2287         if (TrueWhenTrue)
2288           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
2289         // Invert the condition.
2290         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
2291         CC = ISD::getSetCCInverse(CC,
2292                                   N0.getOperand(0).getValueType().isInteger());
2293         if (DCI.isBeforeLegalizeOps() ||
2294             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
2295           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
2296       }
2297 
2298       if ((N0.getOpcode() == ISD::XOR ||
2299            (N0.getOpcode() == ISD::AND &&
2300             N0.getOperand(0).getOpcode() == ISD::XOR &&
2301             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
2302           isa<ConstantSDNode>(N0.getOperand(1)) &&
2303           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
2304         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
2305         // can only do this if the top bits are known zero.
2306         unsigned BitWidth = N0.getValueSizeInBits();
2307         if (DAG.MaskedValueIsZero(N0,
2308                                   APInt::getHighBitsSet(BitWidth,
2309                                                         BitWidth-1))) {
2310           // Okay, get the un-inverted input value.
2311           SDValue Val;
2312           if (N0.getOpcode() == ISD::XOR) {
2313             Val = N0.getOperand(0);
2314           } else {
2315             assert(N0.getOpcode() == ISD::AND &&
2316                     N0.getOperand(0).getOpcode() == ISD::XOR);
2317             // ((X^1)&1)^1 -> X & 1
2318             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
2319                               N0.getOperand(0).getOperand(0),
2320                               N0.getOperand(1));
2321           }
2322 
2323           return DAG.getSetCC(dl, VT, Val, N1,
2324                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2325         }
2326       } else if (N1C->isOne() &&
2327                  (VT == MVT::i1 ||
2328                   getBooleanContents(N0->getValueType(0)) ==
2329                       ZeroOrOneBooleanContent)) {
2330         SDValue Op0 = N0;
2331         if (Op0.getOpcode() == ISD::TRUNCATE)
2332           Op0 = Op0.getOperand(0);
2333 
2334         if ((Op0.getOpcode() == ISD::XOR) &&
2335             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
2336             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
2337           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
2338           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
2339           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
2340                               Cond);
2341         }
2342         if (Op0.getOpcode() == ISD::AND &&
2343             isa<ConstantSDNode>(Op0.getOperand(1)) &&
2344             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
2345           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
2346           if (Op0.getValueType().bitsGT(VT))
2347             Op0 = DAG.getNode(ISD::AND, dl, VT,
2348                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
2349                           DAG.getConstant(1, dl, VT));
2350           else if (Op0.getValueType().bitsLT(VT))
2351             Op0 = DAG.getNode(ISD::AND, dl, VT,
2352                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
2353                         DAG.getConstant(1, dl, VT));
2354 
2355           return DAG.getSetCC(dl, VT, Op0,
2356                               DAG.getConstant(0, dl, Op0.getValueType()),
2357                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2358         }
2359         if (Op0.getOpcode() == ISD::AssertZext &&
2360             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
2361           return DAG.getSetCC(dl, VT, Op0,
2362                               DAG.getConstant(0, dl, Op0.getValueType()),
2363                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2364       }
2365     }
2366 
2367     if (SDValue V =
2368             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
2369       return V;
2370   }
2371 
2372   // These simplifications apply to splat vectors as well.
2373   // TODO: Handle more splat vector cases.
2374   if (auto *N1C = isConstOrConstSplat(N1)) {
2375     const APInt &C1 = N1C->getAPIntValue();
2376 
2377     APInt MinVal, MaxVal;
2378     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
2379     if (ISD::isSignedIntSetCC(Cond)) {
2380       MinVal = APInt::getSignedMinValue(OperandBitSize);
2381       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
2382     } else {
2383       MinVal = APInt::getMinValue(OperandBitSize);
2384       MaxVal = APInt::getMaxValue(OperandBitSize);
2385     }
2386 
2387     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2388     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
2389       // X >= MIN --> true
2390       if (C1 == MinVal)
2391         return DAG.getBoolConstant(true, dl, VT, OpVT);
2392 
2393       if (!VT.isVector()) { // TODO: Support this for vectors.
2394         // X >= C0 --> X > (C0 - 1)
2395         APInt C = C1 - 1;
2396         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
2397         if ((DCI.isBeforeLegalizeOps() ||
2398              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
2399             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
2400                                   isLegalICmpImmediate(C.getSExtValue())))) {
2401           return DAG.getSetCC(dl, VT, N0,
2402                               DAG.getConstant(C, dl, N1.getValueType()),
2403                               NewCC);
2404         }
2405       }
2406     }
2407 
2408     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
2409       // X <= MAX --> true
2410       if (C1 == MaxVal)
2411         return DAG.getBoolConstant(true, dl, VT, OpVT);
2412 
2413       // X <= C0 --> X < (C0 + 1)
2414       if (!VT.isVector()) { // TODO: Support this for vectors.
2415         APInt C = C1 + 1;
2416         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
2417         if ((DCI.isBeforeLegalizeOps() ||
2418              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
2419             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
2420                                   isLegalICmpImmediate(C.getSExtValue())))) {
2421           return DAG.getSetCC(dl, VT, N0,
2422                               DAG.getConstant(C, dl, N1.getValueType()),
2423                               NewCC);
2424         }
2425       }
2426     }
2427 
2428     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
2429       if (C1 == MinVal)
2430         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
2431 
2432       // TODO: Support this for vectors after legalize ops.
2433       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
2434         // Canonicalize setlt X, Max --> setne X, Max
2435         if (C1 == MaxVal)
2436           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2437 
2438         // If we have setult X, 1, turn it into seteq X, 0
2439         if (C1 == MinVal+1)
2440           return DAG.getSetCC(dl, VT, N0,
2441                               DAG.getConstant(MinVal, dl, N0.getValueType()),
2442                               ISD::SETEQ);
2443       }
2444     }
2445 
2446     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
2447       if (C1 == MaxVal)
2448         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
2449 
2450       // TODO: Support this for vectors after legalize ops.
2451       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
2452         // Canonicalize setgt X, Min --> setne X, Min
2453         if (C1 == MinVal)
2454           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2455 
2456         // If we have setugt X, Max-1, turn it into seteq X, Max
2457         if (C1 == MaxVal-1)
2458           return DAG.getSetCC(dl, VT, N0,
2459                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
2460                               ISD::SETEQ);
2461       }
2462     }
2463 
2464     // If we have "setcc X, C0", check to see if we can shrink the immediate
2465     // by changing cc.
2466     // TODO: Support this for vectors after legalize ops.
2467     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
2468       // SETUGT X, SINTMAX  -> SETLT X, 0
2469       if (Cond == ISD::SETUGT &&
2470           C1 == APInt::getSignedMaxValue(OperandBitSize))
2471         return DAG.getSetCC(dl, VT, N0,
2472                             DAG.getConstant(0, dl, N1.getValueType()),
2473                             ISD::SETLT);
2474 
2475       // SETULT X, SINTMIN  -> SETGT X, -1
2476       if (Cond == ISD::SETULT &&
2477           C1 == APInt::getSignedMinValue(OperandBitSize)) {
2478         SDValue ConstMinusOne =
2479             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
2480                             N1.getValueType());
2481         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2482       }
2483     }
2484   }
2485 
2486   // Back to non-vector simplifications.
2487   // TODO: Can we do these for vector splats?
2488   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
2489     const APInt &C1 = N1C->getAPIntValue();
2490 
2491     // Fold bit comparisons when we can.
2492     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2493         (VT == N0.getValueType() ||
2494          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2495         N0.getOpcode() == ISD::AND) {
2496       auto &DL = DAG.getDataLayout();
2497       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2498         EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
2499                                        !DCI.isBeforeLegalize());
2500         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
2501           // Perform the xform if the AND RHS is a single bit.
2502           if (AndRHS->getAPIntValue().isPowerOf2()) {
2503             return DAG.getNode(ISD::TRUNCATE, dl, VT,
2504                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2505                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
2506                                    ShiftTy)));
2507           }
2508         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2509           // (X & 8) == 8  -->  (X & 8) >> 3
2510           // Perform the xform if C1 is a single bit.
2511           if (C1.isPowerOf2()) {
2512             return DAG.getNode(ISD::TRUNCATE, dl, VT,
2513                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2514                                       DAG.getConstant(C1.logBase2(), dl,
2515                                                       ShiftTy)));
2516           }
2517         }
2518       }
2519     }
2520 
2521     if (C1.getMinSignedBits() <= 64 &&
2522         !isLegalICmpImmediate(C1.getSExtValue())) {
2523       // (X & -256) == 256 -> (X >> 8) == 1
2524       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2525           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
2526         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2527           const APInt &AndRHSC = AndRHS->getAPIntValue();
2528           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
2529             unsigned ShiftBits = AndRHSC.countTrailingZeros();
2530             auto &DL = DAG.getDataLayout();
2531             EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
2532                                            !DCI.isBeforeLegalize());
2533             EVT CmpTy = N0.getValueType();
2534             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
2535                                         DAG.getConstant(ShiftBits, dl,
2536                                                         ShiftTy));
2537             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
2538             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
2539           }
2540         }
2541       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
2542                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
2543         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
2544         // X <  0x100000000 -> (X >> 32) <  1
2545         // X >= 0x100000000 -> (X >> 32) >= 1
2546         // X <= 0x0ffffffff -> (X >> 32) <  1
2547         // X >  0x0ffffffff -> (X >> 32) >= 1
2548         unsigned ShiftBits;
2549         APInt NewC = C1;
2550         ISD::CondCode NewCond = Cond;
2551         if (AdjOne) {
2552           ShiftBits = C1.countTrailingOnes();
2553           NewC = NewC + 1;
2554           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2555         } else {
2556           ShiftBits = C1.countTrailingZeros();
2557         }
2558         NewC.lshrInPlace(ShiftBits);
2559         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
2560           isLegalICmpImmediate(NewC.getSExtValue())) {
2561           auto &DL = DAG.getDataLayout();
2562           EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
2563                                          !DCI.isBeforeLegalize());
2564           EVT CmpTy = N0.getValueType();
2565           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
2566                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
2567           SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
2568           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
2569         }
2570       }
2571     }
2572   }
2573 
2574   if (isa<ConstantFPSDNode>(N0.getNode())) {
2575     // Constant fold or commute setcc.
2576     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2577     if (O.getNode()) return O;
2578   } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2579     // If the RHS of an FP comparison is a constant, simplify it away in
2580     // some cases.
2581     if (CFP->getValueAPF().isNaN()) {
2582       // If an operand is known to be a nan, we can fold it.
2583       switch (ISD::getUnorderedFlavor(Cond)) {
2584       default: llvm_unreachable("Unknown flavor!");
2585       case 0:  // Known false.
2586         return DAG.getBoolConstant(false, dl, VT, OpVT);
2587       case 1:  // Known true.
2588         return DAG.getBoolConstant(true, dl, VT, OpVT);
2589       case 2:  // Undefined.
2590         return DAG.getUNDEF(VT);
2591       }
2592     }
2593 
2594     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2595     // constant if knowing that the operand is non-nan is enough.  We prefer to
2596     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2597     // materialize 0.0.
2598     if (Cond == ISD::SETO || Cond == ISD::SETUO)
2599       return DAG.getSetCC(dl, VT, N0, N0, Cond);
2600 
2601     // setcc (fneg x), C -> setcc swap(pred) x, -C
2602     if (N0.getOpcode() == ISD::FNEG) {
2603       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
2604       if (DCI.isBeforeLegalizeOps() ||
2605           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
2606         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
2607         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
2608       }
2609     }
2610 
2611     // If the condition is not legal, see if we can find an equivalent one
2612     // which is legal.
2613     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
2614       // If the comparison was an awkward floating-point == or != and one of
2615       // the comparison operands is infinity or negative infinity, convert the
2616       // condition to a less-awkward <= or >=.
2617       if (CFP->getValueAPF().isInfinity()) {
2618         if (CFP->getValueAPF().isNegative()) {
2619           if (Cond == ISD::SETOEQ &&
2620               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
2621             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2622           if (Cond == ISD::SETUEQ &&
2623               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
2624             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2625           if (Cond == ISD::SETUNE &&
2626               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
2627             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2628           if (Cond == ISD::SETONE &&
2629               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
2630             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2631         } else {
2632           if (Cond == ISD::SETOEQ &&
2633               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
2634             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2635           if (Cond == ISD::SETUEQ &&
2636               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
2637             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2638           if (Cond == ISD::SETUNE &&
2639               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
2640             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2641           if (Cond == ISD::SETONE &&
2642               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
2643             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2644         }
2645       }
2646     }
2647   }
2648 
2649   if (N0 == N1) {
2650     // The sext(setcc()) => setcc() optimization relies on the appropriate
2651     // constant being emitted.
2652 
2653     bool EqTrue = ISD::isTrueWhenEqual(Cond);
2654 
2655     // We can always fold X == X for integer setcc's.
2656     if (N0.getValueType().isInteger())
2657       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
2658 
2659     unsigned UOF = ISD::getUnorderedFlavor(Cond);
2660     if (UOF == 2)   // FP operators that are undefined on NaNs.
2661       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
2662     if (UOF == unsigned(EqTrue))
2663       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
2664     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2665     // if it is not already.
2666     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2667     if (NewCond != Cond &&
2668         (DCI.isBeforeLegalizeOps() ||
2669          isCondCodeLegal(NewCond, N0.getSimpleValueType())))
2670       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2671   }
2672 
2673   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2674       N0.getValueType().isInteger()) {
2675     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2676         N0.getOpcode() == ISD::XOR) {
2677       // Simplify (X+Y) == (X+Z) -->  Y == Z
2678       if (N0.getOpcode() == N1.getOpcode()) {
2679         if (N0.getOperand(0) == N1.getOperand(0))
2680           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2681         if (N0.getOperand(1) == N1.getOperand(1))
2682           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2683         if (isCommutativeBinOp(N0.getOpcode())) {
2684           // If X op Y == Y op X, try other combinations.
2685           if (N0.getOperand(0) == N1.getOperand(1))
2686             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2687                                 Cond);
2688           if (N0.getOperand(1) == N1.getOperand(0))
2689             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2690                                 Cond);
2691         }
2692       }
2693 
2694       // If RHS is a legal immediate value for a compare instruction, we need
2695       // to be careful about increasing register pressure needlessly.
2696       bool LegalRHSImm = false;
2697 
2698       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2699         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2700           // Turn (X+C1) == C2 --> X == C2-C1
2701           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2702             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2703                                 DAG.getConstant(RHSC->getAPIntValue()-
2704                                                 LHSR->getAPIntValue(),
2705                                 dl, N0.getValueType()), Cond);
2706           }
2707 
2708           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2709           if (N0.getOpcode() == ISD::XOR)
2710             // If we know that all of the inverted bits are zero, don't bother
2711             // performing the inversion.
2712             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2713               return
2714                 DAG.getSetCC(dl, VT, N0.getOperand(0),
2715                              DAG.getConstant(LHSR->getAPIntValue() ^
2716                                                RHSC->getAPIntValue(),
2717                                              dl, N0.getValueType()),
2718                              Cond);
2719         }
2720 
2721         // Turn (C1-X) == C2 --> X == C1-C2
2722         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2723           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2724             return
2725               DAG.getSetCC(dl, VT, N0.getOperand(1),
2726                            DAG.getConstant(SUBC->getAPIntValue() -
2727                                              RHSC->getAPIntValue(),
2728                                            dl, N0.getValueType()),
2729                            Cond);
2730           }
2731         }
2732 
2733         // Could RHSC fold directly into a compare?
2734         if (RHSC->getValueType(0).getSizeInBits() <= 64)
2735           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
2736       }
2737 
2738       // Simplify (X+Z) == X -->  Z == 0
2739       // Don't do this if X is an immediate that can fold into a cmp
2740       // instruction and X+Z has other uses. It could be an induction variable
2741       // chain, and the transform would increase register pressure.
2742       if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
2743         if (N0.getOperand(0) == N1)
2744           return DAG.getSetCC(dl, VT, N0.getOperand(1),
2745                               DAG.getConstant(0, dl, N0.getValueType()), Cond);
2746         if (N0.getOperand(1) == N1) {
2747           if (isCommutativeBinOp(N0.getOpcode()))
2748             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2749                                 DAG.getConstant(0, dl, N0.getValueType()),
2750                                 Cond);
2751           if (N0.getNode()->hasOneUse()) {
2752             assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2753             auto &DL = DAG.getDataLayout();
2754             // (Z-X) == X  --> Z == X<<1
2755             SDValue SH = DAG.getNode(
2756                 ISD::SHL, dl, N1.getValueType(), N1,
2757                 DAG.getConstant(1, dl,
2758                                 getShiftAmountTy(N1.getValueType(), DL,
2759                                                  !DCI.isBeforeLegalize())));
2760             if (!DCI.isCalledByLegalizer())
2761               DCI.AddToWorklist(SH.getNode());
2762             return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2763           }
2764         }
2765       }
2766     }
2767 
2768     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2769         N1.getOpcode() == ISD::XOR) {
2770       // Simplify  X == (X+Z) -->  Z == 0
2771       if (N1.getOperand(0) == N0)
2772         return DAG.getSetCC(dl, VT, N1.getOperand(1),
2773                         DAG.getConstant(0, dl, N1.getValueType()), Cond);
2774       if (N1.getOperand(1) == N0) {
2775         if (isCommutativeBinOp(N1.getOpcode()))
2776           return DAG.getSetCC(dl, VT, N1.getOperand(0),
2777                           DAG.getConstant(0, dl, N1.getValueType()), Cond);
2778         if (N1.getNode()->hasOneUse()) {
2779           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2780           auto &DL = DAG.getDataLayout();
2781           // X == (Z-X)  --> X<<1 == Z
2782           SDValue SH = DAG.getNode(
2783               ISD::SHL, dl, N1.getValueType(), N0,
2784               DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL,
2785                                                       !DCI.isBeforeLegalize())));
2786           if (!DCI.isCalledByLegalizer())
2787             DCI.AddToWorklist(SH.getNode());
2788           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2789         }
2790       }
2791     }
2792 
2793     if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl))
2794       return V;
2795   }
2796 
2797   // Fold away ALL boolean setcc's.
2798   SDValue Temp;
2799   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
2800     EVT OpVT = N0.getValueType();
2801     switch (Cond) {
2802     default: llvm_unreachable("Unknown integer setcc!");
2803     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2804       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
2805       N0 = DAG.getNOT(dl, Temp, OpVT);
2806       if (!DCI.isCalledByLegalizer())
2807         DCI.AddToWorklist(Temp.getNode());
2808       break;
2809     case ISD::SETNE:  // X != Y   -->  (X^Y)
2810       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
2811       break;
2812     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2813     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2814       Temp = DAG.getNOT(dl, N0, OpVT);
2815       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
2816       if (!DCI.isCalledByLegalizer())
2817         DCI.AddToWorklist(Temp.getNode());
2818       break;
2819     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2820     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2821       Temp = DAG.getNOT(dl, N1, OpVT);
2822       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
2823       if (!DCI.isCalledByLegalizer())
2824         DCI.AddToWorklist(Temp.getNode());
2825       break;
2826     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2827     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2828       Temp = DAG.getNOT(dl, N0, OpVT);
2829       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
2830       if (!DCI.isCalledByLegalizer())
2831         DCI.AddToWorklist(Temp.getNode());
2832       break;
2833     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2834     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2835       Temp = DAG.getNOT(dl, N1, OpVT);
2836       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
2837       break;
2838     }
2839     if (VT.getScalarType() != MVT::i1) {
2840       if (!DCI.isCalledByLegalizer())
2841         DCI.AddToWorklist(N0.getNode());
2842       // FIXME: If running after legalize, we probably can't do this.
2843       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
2844       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
2845     }
2846     return N0;
2847   }
2848 
2849   // Could not fold it.
2850   return SDValue();
2851 }
2852 
2853 /// Returns true (and the GlobalValue and the offset) if the node is a
2854 /// GlobalAddress + offset.
2855 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2856                                     int64_t &Offset) const {
2857   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
2858     GA = GASD->getGlobal();
2859     Offset += GASD->getOffset();
2860     return true;
2861   }
2862 
2863   if (N->getOpcode() == ISD::ADD) {
2864     SDValue N1 = N->getOperand(0);
2865     SDValue N2 = N->getOperand(1);
2866     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2867       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
2868         Offset += V->getSExtValue();
2869         return true;
2870       }
2871     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2872       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
2873         Offset += V->getSExtValue();
2874         return true;
2875       }
2876     }
2877   }
2878 
2879   return false;
2880 }
2881 
2882 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
2883                                           DAGCombinerInfo &DCI) const {
2884   // Default implementation: no optimization.
2885   return SDValue();
2886 }
2887 
2888 //===----------------------------------------------------------------------===//
2889 //  Inline Assembler Implementation Methods
2890 //===----------------------------------------------------------------------===//
2891 
2892 TargetLowering::ConstraintType
2893 TargetLowering::getConstraintType(StringRef Constraint) const {
2894   unsigned S = Constraint.size();
2895 
2896   if (S == 1) {
2897     switch (Constraint[0]) {
2898     default: break;
2899     case 'r': return C_RegisterClass;
2900     case 'm':    // memory
2901     case 'o':    // offsetable
2902     case 'V':    // not offsetable
2903       return C_Memory;
2904     case 'i':    // Simple Integer or Relocatable Constant
2905     case 'n':    // Simple Integer
2906     case 'E':    // Floating Point Constant
2907     case 'F':    // Floating Point Constant
2908     case 's':    // Relocatable Constant
2909     case 'p':    // Address.
2910     case 'X':    // Allow ANY value.
2911     case 'I':    // Target registers.
2912     case 'J':
2913     case 'K':
2914     case 'L':
2915     case 'M':
2916     case 'N':
2917     case 'O':
2918     case 'P':
2919     case '<':
2920     case '>':
2921       return C_Other;
2922     }
2923   }
2924 
2925   if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
2926     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
2927       return C_Memory;
2928     return C_Register;
2929   }
2930   return C_Unknown;
2931 }
2932 
2933 /// Try to replace an X constraint, which matches anything, with another that
2934 /// has more specific requirements based on the type of the corresponding
2935 /// operand.
2936 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2937   if (ConstraintVT.isInteger())
2938     return "r";
2939   if (ConstraintVT.isFloatingPoint())
2940     return "f";      // works for many targets
2941   return nullptr;
2942 }
2943 
2944 /// Lower the specified operand into the Ops vector.
2945 /// If it is invalid, don't add anything to Ops.
2946 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2947                                                   std::string &Constraint,
2948                                                   std::vector<SDValue> &Ops,
2949                                                   SelectionDAG &DAG) const {
2950 
2951   if (Constraint.length() > 1) return;
2952 
2953   char ConstraintLetter = Constraint[0];
2954   switch (ConstraintLetter) {
2955   default: break;
2956   case 'X':     // Allows any operand; labels (basic block) use this.
2957     if (Op.getOpcode() == ISD::BasicBlock) {
2958       Ops.push_back(Op);
2959       return;
2960     }
2961     LLVM_FALLTHROUGH;
2962   case 'i':    // Simple Integer or Relocatable Constant
2963   case 'n':    // Simple Integer
2964   case 's': {  // Relocatable Constant
2965     // These operands are interested in values of the form (GV+C), where C may
2966     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2967     // is possible and fine if either GV or C are missing.
2968     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2969     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2970 
2971     // If we have "(add GV, C)", pull out GV/C
2972     if (Op.getOpcode() == ISD::ADD) {
2973       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2974       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2975       if (!C || !GA) {
2976         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2977         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2978       }
2979       if (!C || !GA) {
2980         C = nullptr;
2981         GA = nullptr;
2982       }
2983     }
2984 
2985     // If we find a valid operand, map to the TargetXXX version so that the
2986     // value itself doesn't get selected.
2987     if (GA) {   // Either &GV   or   &GV+C
2988       if (ConstraintLetter != 'n') {
2989         int64_t Offs = GA->getOffset();
2990         if (C) Offs += C->getZExtValue();
2991         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2992                                                  C ? SDLoc(C) : SDLoc(),
2993                                                  Op.getValueType(), Offs));
2994       }
2995       return;
2996     }
2997     if (C) {   // just C, no GV.
2998       // Simple constants are not allowed for 's'.
2999       if (ConstraintLetter != 's') {
3000         // gcc prints these as sign extended.  Sign extend value to 64 bits
3001         // now; without this it would get ZExt'd later in
3002         // ScheduleDAGSDNodes::EmitNode, which is very generic.
3003         Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
3004                                             SDLoc(C), MVT::i64));
3005       }
3006       return;
3007     }
3008     break;
3009   }
3010   }
3011 }
3012 
3013 std::pair<unsigned, const TargetRegisterClass *>
3014 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
3015                                              StringRef Constraint,
3016                                              MVT VT) const {
3017   if (Constraint.empty() || Constraint[0] != '{')
3018     return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr));
3019   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
3020 
3021   // Remove the braces from around the name.
3022   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
3023 
3024   std::pair<unsigned, const TargetRegisterClass*> R =
3025     std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr));
3026 
3027   // Figure out which register class contains this reg.
3028   for (const TargetRegisterClass *RC : RI->regclasses()) {
3029     // If none of the value types for this register class are valid, we
3030     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3031     if (!isLegalRC(*RI, *RC))
3032       continue;
3033 
3034     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
3035          I != E; ++I) {
3036       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
3037         std::pair<unsigned, const TargetRegisterClass*> S =
3038           std::make_pair(*I, RC);
3039 
3040         // If this register class has the requested value type, return it,
3041         // otherwise keep searching and return the first class found
3042         // if no other is found which explicitly has the requested type.
3043         if (RI->isTypeLegalForClass(*RC, VT))
3044           return S;
3045         if (!R.second)
3046           R = S;
3047       }
3048     }
3049   }
3050 
3051   return R;
3052 }
3053 
3054 //===----------------------------------------------------------------------===//
3055 // Constraint Selection.
3056 
3057 /// Return true of this is an input operand that is a matching constraint like
3058 /// "4".
3059 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
3060   assert(!ConstraintCode.empty() && "No known constraint!");
3061   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
3062 }
3063 
3064 /// If this is an input matching constraint, this method returns the output
3065 /// operand it matches.
3066 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
3067   assert(!ConstraintCode.empty() && "No known constraint!");
3068   return atoi(ConstraintCode.c_str());
3069 }
3070 
3071 /// Split up the constraint string from the inline assembly value into the
3072 /// specific constraints and their prefixes, and also tie in the associated
3073 /// operand values.
3074 /// If this returns an empty vector, and if the constraint string itself
3075 /// isn't empty, there was an error parsing.
3076 TargetLowering::AsmOperandInfoVector
3077 TargetLowering::ParseConstraints(const DataLayout &DL,
3078                                  const TargetRegisterInfo *TRI,
3079                                  ImmutableCallSite CS) const {
3080   /// Information about all of the constraints.
3081   AsmOperandInfoVector ConstraintOperands;
3082   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
3083   unsigned maCount = 0; // Largest number of multiple alternative constraints.
3084 
3085   // Do a prepass over the constraints, canonicalizing them, and building up the
3086   // ConstraintOperands list.
3087   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
3088   unsigned ResNo = 0;   // ResNo - The result number of the next output.
3089 
3090   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
3091     ConstraintOperands.emplace_back(std::move(CI));
3092     AsmOperandInfo &OpInfo = ConstraintOperands.back();
3093 
3094     // Update multiple alternative constraint count.
3095     if (OpInfo.multipleAlternatives.size() > maCount)
3096       maCount = OpInfo.multipleAlternatives.size();
3097 
3098     OpInfo.ConstraintVT = MVT::Other;
3099 
3100     // Compute the value type for each operand.
3101     switch (OpInfo.Type) {
3102     case InlineAsm::isOutput:
3103       // Indirect outputs just consume an argument.
3104       if (OpInfo.isIndirect) {
3105         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
3106         break;
3107       }
3108 
3109       // The return value of the call is this value.  As such, there is no
3110       // corresponding argument.
3111       assert(!CS.getType()->isVoidTy() &&
3112              "Bad inline asm!");
3113       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
3114         OpInfo.ConstraintVT =
3115             getSimpleValueType(DL, STy->getElementType(ResNo));
3116       } else {
3117         assert(ResNo == 0 && "Asm only has one result!");
3118         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
3119       }
3120       ++ResNo;
3121       break;
3122     case InlineAsm::isInput:
3123       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
3124       break;
3125     case InlineAsm::isClobber:
3126       // Nothing to do.
3127       break;
3128     }
3129 
3130     if (OpInfo.CallOperandVal) {
3131       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
3132       if (OpInfo.isIndirect) {
3133         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
3134         if (!PtrTy)
3135           report_fatal_error("Indirect operand for inline asm not a pointer!");
3136         OpTy = PtrTy->getElementType();
3137       }
3138 
3139       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
3140       if (StructType *STy = dyn_cast<StructType>(OpTy))
3141         if (STy->getNumElements() == 1)
3142           OpTy = STy->getElementType(0);
3143 
3144       // If OpTy is not a single value, it may be a struct/union that we
3145       // can tile with integers.
3146       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
3147         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
3148         switch (BitSize) {
3149         default: break;
3150         case 1:
3151         case 8:
3152         case 16:
3153         case 32:
3154         case 64:
3155         case 128:
3156           OpInfo.ConstraintVT =
3157             MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
3158           break;
3159         }
3160       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
3161         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
3162         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
3163       } else {
3164         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
3165       }
3166     }
3167   }
3168 
3169   // If we have multiple alternative constraints, select the best alternative.
3170   if (!ConstraintOperands.empty()) {
3171     if (maCount) {
3172       unsigned bestMAIndex = 0;
3173       int bestWeight = -1;
3174       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
3175       int weight = -1;
3176       unsigned maIndex;
3177       // Compute the sums of the weights for each alternative, keeping track
3178       // of the best (highest weight) one so far.
3179       for (maIndex = 0; maIndex < maCount; ++maIndex) {
3180         int weightSum = 0;
3181         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3182             cIndex != eIndex; ++cIndex) {
3183           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
3184           if (OpInfo.Type == InlineAsm::isClobber)
3185             continue;
3186 
3187           // If this is an output operand with a matching input operand,
3188           // look up the matching input. If their types mismatch, e.g. one
3189           // is an integer, the other is floating point, or their sizes are
3190           // different, flag it as an maCantMatch.
3191           if (OpInfo.hasMatchingInput()) {
3192             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
3193             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
3194               if ((OpInfo.ConstraintVT.isInteger() !=
3195                    Input.ConstraintVT.isInteger()) ||
3196                   (OpInfo.ConstraintVT.getSizeInBits() !=
3197                    Input.ConstraintVT.getSizeInBits())) {
3198                 weightSum = -1;  // Can't match.
3199                 break;
3200               }
3201             }
3202           }
3203           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
3204           if (weight == -1) {
3205             weightSum = -1;
3206             break;
3207           }
3208           weightSum += weight;
3209         }
3210         // Update best.
3211         if (weightSum > bestWeight) {
3212           bestWeight = weightSum;
3213           bestMAIndex = maIndex;
3214         }
3215       }
3216 
3217       // Now select chosen alternative in each constraint.
3218       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3219           cIndex != eIndex; ++cIndex) {
3220         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
3221         if (cInfo.Type == InlineAsm::isClobber)
3222           continue;
3223         cInfo.selectAlternative(bestMAIndex);
3224       }
3225     }
3226   }
3227 
3228   // Check and hook up tied operands, choose constraint code to use.
3229   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3230       cIndex != eIndex; ++cIndex) {
3231     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
3232 
3233     // If this is an output operand with a matching input operand, look up the
3234     // matching input. If their types mismatch, e.g. one is an integer, the
3235     // other is floating point, or their sizes are different, flag it as an
3236     // error.
3237     if (OpInfo.hasMatchingInput()) {
3238       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
3239 
3240       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
3241         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
3242             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
3243                                          OpInfo.ConstraintVT);
3244         std::pair<unsigned, const TargetRegisterClass *> InputRC =
3245             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
3246                                          Input.ConstraintVT);
3247         if ((OpInfo.ConstraintVT.isInteger() !=
3248              Input.ConstraintVT.isInteger()) ||
3249             (MatchRC.second != InputRC.second)) {
3250           report_fatal_error("Unsupported asm: input constraint"
3251                              " with a matching output constraint of"
3252                              " incompatible type!");
3253         }
3254       }
3255     }
3256   }
3257 
3258   return ConstraintOperands;
3259 }
3260 
3261 /// Return an integer indicating how general CT is.
3262 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3263   switch (CT) {
3264   case TargetLowering::C_Other:
3265   case TargetLowering::C_Unknown:
3266     return 0;
3267   case TargetLowering::C_Register:
3268     return 1;
3269   case TargetLowering::C_RegisterClass:
3270     return 2;
3271   case TargetLowering::C_Memory:
3272     return 3;
3273   }
3274   llvm_unreachable("Invalid constraint type");
3275 }
3276 
3277 /// Examine constraint type and operand type and determine a weight value.
3278 /// This object must already have been set up with the operand type
3279 /// and the current alternative constraint selected.
3280 TargetLowering::ConstraintWeight
3281   TargetLowering::getMultipleConstraintMatchWeight(
3282     AsmOperandInfo &info, int maIndex) const {
3283   InlineAsm::ConstraintCodeVector *rCodes;
3284   if (maIndex >= (int)info.multipleAlternatives.size())
3285     rCodes = &info.Codes;
3286   else
3287     rCodes = &info.multipleAlternatives[maIndex].Codes;
3288   ConstraintWeight BestWeight = CW_Invalid;
3289 
3290   // Loop over the options, keeping track of the most general one.
3291   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
3292     ConstraintWeight weight =
3293       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
3294     if (weight > BestWeight)
3295       BestWeight = weight;
3296   }
3297 
3298   return BestWeight;
3299 }
3300 
3301 /// Examine constraint type and operand type and determine a weight value.
3302 /// This object must already have been set up with the operand type
3303 /// and the current alternative constraint selected.
3304 TargetLowering::ConstraintWeight
3305   TargetLowering::getSingleConstraintMatchWeight(
3306     AsmOperandInfo &info, const char *constraint) const {
3307   ConstraintWeight weight = CW_Invalid;
3308   Value *CallOperandVal = info.CallOperandVal;
3309     // If we don't have a value, we can't do a match,
3310     // but allow it at the lowest weight.
3311   if (!CallOperandVal)
3312     return CW_Default;
3313   // Look at the constraint type.
3314   switch (*constraint) {
3315     case 'i': // immediate integer.
3316     case 'n': // immediate integer with a known value.
3317       if (isa<ConstantInt>(CallOperandVal))
3318         weight = CW_Constant;
3319       break;
3320     case 's': // non-explicit intregal immediate.
3321       if (isa<GlobalValue>(CallOperandVal))
3322         weight = CW_Constant;
3323       break;
3324     case 'E': // immediate float if host format.
3325     case 'F': // immediate float.
3326       if (isa<ConstantFP>(CallOperandVal))
3327         weight = CW_Constant;
3328       break;
3329     case '<': // memory operand with autodecrement.
3330     case '>': // memory operand with autoincrement.
3331     case 'm': // memory operand.
3332     case 'o': // offsettable memory operand
3333     case 'V': // non-offsettable memory operand
3334       weight = CW_Memory;
3335       break;
3336     case 'r': // general register.
3337     case 'g': // general register, memory operand or immediate integer.
3338               // note: Clang converts "g" to "imr".
3339       if (CallOperandVal->getType()->isIntegerTy())
3340         weight = CW_Register;
3341       break;
3342     case 'X': // any operand.
3343     default:
3344       weight = CW_Default;
3345       break;
3346   }
3347   return weight;
3348 }
3349 
3350 /// If there are multiple different constraints that we could pick for this
3351 /// operand (e.g. "imr") try to pick the 'best' one.
3352 /// This is somewhat tricky: constraints fall into four classes:
3353 ///    Other         -> immediates and magic values
3354 ///    Register      -> one specific register
3355 ///    RegisterClass -> a group of regs
3356 ///    Memory        -> memory
3357 /// Ideally, we would pick the most specific constraint possible: if we have
3358 /// something that fits into a register, we would pick it.  The problem here
3359 /// is that if we have something that could either be in a register or in
3360 /// memory that use of the register could cause selection of *other*
3361 /// operands to fail: they might only succeed if we pick memory.  Because of
3362 /// this the heuristic we use is:
3363 ///
3364 ///  1) If there is an 'other' constraint, and if the operand is valid for
3365 ///     that constraint, use it.  This makes us take advantage of 'i'
3366 ///     constraints when available.
3367 ///  2) Otherwise, pick the most general constraint present.  This prefers
3368 ///     'm' over 'r', for example.
3369 ///
3370 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
3371                              const TargetLowering &TLI,
3372                              SDValue Op, SelectionDAG *DAG) {
3373   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
3374   unsigned BestIdx = 0;
3375   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
3376   int BestGenerality = -1;
3377 
3378   // Loop over the options, keeping track of the most general one.
3379   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
3380     TargetLowering::ConstraintType CType =
3381       TLI.getConstraintType(OpInfo.Codes[i]);
3382 
3383     // If this is an 'other' constraint, see if the operand is valid for it.
3384     // For example, on X86 we might have an 'rI' constraint.  If the operand
3385     // is an integer in the range [0..31] we want to use I (saving a load
3386     // of a register), otherwise we must use 'r'.
3387     if (CType == TargetLowering::C_Other && Op.getNode()) {
3388       assert(OpInfo.Codes[i].size() == 1 &&
3389              "Unhandled multi-letter 'other' constraint");
3390       std::vector<SDValue> ResultOps;
3391       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
3392                                        ResultOps, *DAG);
3393       if (!ResultOps.empty()) {
3394         BestType = CType;
3395         BestIdx = i;
3396         break;
3397       }
3398     }
3399 
3400     // Things with matching constraints can only be registers, per gcc
3401     // documentation.  This mainly affects "g" constraints.
3402     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
3403       continue;
3404 
3405     // This constraint letter is more general than the previous one, use it.
3406     int Generality = getConstraintGenerality(CType);
3407     if (Generality > BestGenerality) {
3408       BestType = CType;
3409       BestIdx = i;
3410       BestGenerality = Generality;
3411     }
3412   }
3413 
3414   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
3415   OpInfo.ConstraintType = BestType;
3416 }
3417 
3418 /// Determines the constraint code and constraint type to use for the specific
3419 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
3420 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
3421                                             SDValue Op,
3422                                             SelectionDAG *DAG) const {
3423   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
3424 
3425   // Single-letter constraints ('r') are very common.
3426   if (OpInfo.Codes.size() == 1) {
3427     OpInfo.ConstraintCode = OpInfo.Codes[0];
3428     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3429   } else {
3430     ChooseConstraint(OpInfo, *this, Op, DAG);
3431   }
3432 
3433   // 'X' matches anything.
3434   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
3435     // Labels and constants are handled elsewhere ('X' is the only thing
3436     // that matches labels).  For Functions, the type here is the type of
3437     // the result, which is not what we want to look at; leave them alone.
3438     Value *v = OpInfo.CallOperandVal;
3439     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
3440       OpInfo.CallOperandVal = v;
3441       return;
3442     }
3443 
3444     // Otherwise, try to resolve it to something we know about by looking at
3445     // the actual operand type.
3446     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
3447       OpInfo.ConstraintCode = Repl;
3448       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3449     }
3450   }
3451 }
3452 
3453 /// Given an exact SDIV by a constant, create a multiplication
3454 /// with the multiplicative inverse of the constant.
3455 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
3456                               const SDLoc &dl, SelectionDAG &DAG,
3457                               SmallVectorImpl<SDNode *> &Created) {
3458   SDValue Op0 = N->getOperand(0);
3459   SDValue Op1 = N->getOperand(1);
3460   EVT VT = N->getValueType(0);
3461   EVT SVT = VT.getScalarType();
3462   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
3463   EVT ShSVT = ShVT.getScalarType();
3464 
3465   bool UseSRA = false;
3466   SmallVector<SDValue, 16> Shifts, Factors;
3467 
3468   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
3469     if (C->isNullValue())
3470       return false;
3471     APInt Divisor = C->getAPIntValue();
3472     unsigned Shift = Divisor.countTrailingZeros();
3473     if (Shift) {
3474       Divisor.ashrInPlace(Shift);
3475       UseSRA = true;
3476     }
3477     // Calculate the multiplicative inverse, using Newton's method.
3478     APInt t;
3479     APInt Factor = Divisor;
3480     while ((t = Divisor * Factor) != 1)
3481       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
3482     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
3483     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
3484     return true;
3485   };
3486 
3487   // Collect all magic values from the build vector.
3488   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
3489     return SDValue();
3490 
3491   SDValue Shift, Factor;
3492   if (VT.isVector()) {
3493     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
3494     Factor = DAG.getBuildVector(VT, dl, Factors);
3495   } else {
3496     Shift = Shifts[0];
3497     Factor = Factors[0];
3498   }
3499 
3500   SDValue Res = Op0;
3501 
3502   // Shift the value upfront if it is even, so the LSB is one.
3503   if (UseSRA) {
3504     // TODO: For UDIV use SRL instead of SRA.
3505     SDNodeFlags Flags;
3506     Flags.setExact(true);
3507     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
3508     Created.push_back(Res.getNode());
3509   }
3510 
3511   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
3512 }
3513 
3514 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
3515                                      SelectionDAG &DAG,
3516                                      SmallVectorImpl<SDNode *> &Created) const {
3517   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3518   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3519   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
3520     return SDValue(N,0); // Lower SDIV as SDIV
3521   return SDValue();
3522 }
3523 
3524 /// Given an ISD::SDIV node expressing a divide by constant,
3525 /// return a DAG expression to select that will generate the same value by
3526 /// multiplying by a magic number.
3527 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
3528 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
3529                                   bool IsAfterLegalization,
3530                                   SmallVectorImpl<SDNode *> &Created) const {
3531   SDLoc dl(N);
3532   EVT VT = N->getValueType(0);
3533   EVT SVT = VT.getScalarType();
3534   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
3535   EVT ShSVT = ShVT.getScalarType();
3536   unsigned EltBits = VT.getScalarSizeInBits();
3537 
3538   // Check to see if we can do this.
3539   // FIXME: We should be more aggressive here.
3540   if (!isTypeLegal(VT))
3541     return SDValue();
3542 
3543   // If the sdiv has an 'exact' bit we can use a simpler lowering.
3544   if (N->getFlags().hasExact())
3545     return BuildExactSDIV(*this, N, dl, DAG, Created);
3546 
3547   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
3548 
3549   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
3550     if (C->isNullValue())
3551       return false;
3552 
3553     const APInt &Divisor = C->getAPIntValue();
3554     APInt::ms magics = Divisor.magic();
3555     int NumeratorFactor = 0;
3556     int ShiftMask = -1;
3557 
3558     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
3559       // If d is +1/-1, we just multiply the numerator by +1/-1.
3560       NumeratorFactor = Divisor.getSExtValue();
3561       magics.m = 0;
3562       magics.s = 0;
3563       ShiftMask = 0;
3564     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
3565       // If d > 0 and m < 0, add the numerator.
3566       NumeratorFactor = 1;
3567     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
3568       // If d < 0 and m > 0, subtract the numerator.
3569       NumeratorFactor = -1;
3570     }
3571 
3572     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
3573     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
3574     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
3575     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
3576     return true;
3577   };
3578 
3579   SDValue N0 = N->getOperand(0);
3580   SDValue N1 = N->getOperand(1);
3581 
3582   // Collect the shifts / magic values from each element.
3583   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
3584     return SDValue();
3585 
3586   SDValue MagicFactor, Factor, Shift, ShiftMask;
3587   if (VT.isVector()) {
3588     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
3589     Factor = DAG.getBuildVector(VT, dl, Factors);
3590     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
3591     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
3592   } else {
3593     MagicFactor = MagicFactors[0];
3594     Factor = Factors[0];
3595     Shift = Shifts[0];
3596     ShiftMask = ShiftMasks[0];
3597   }
3598 
3599   // Multiply the numerator (operand 0) by the magic value.
3600   // FIXME: We should support doing a MUL in a wider type.
3601   SDValue Q;
3602   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
3603                           : isOperationLegalOrCustom(ISD::MULHS, VT))
3604     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
3605   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
3606                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
3607     SDValue LoHi =
3608         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
3609     Q = SDValue(LoHi.getNode(), 1);
3610   } else
3611     return SDValue(); // No mulhs or equivalent.
3612   Created.push_back(Q.getNode());
3613 
3614   // (Optionally) Add/subtract the numerator using Factor.
3615   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
3616   Created.push_back(Factor.getNode());
3617   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
3618   Created.push_back(Q.getNode());
3619 
3620   // Shift right algebraic by shift value.
3621   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
3622   Created.push_back(Q.getNode());
3623 
3624   // Extract the sign bit, mask it and add it to the quotient.
3625   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
3626   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
3627   Created.push_back(T.getNode());
3628   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
3629   Created.push_back(T.getNode());
3630   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3631 }
3632 
3633 /// Given an ISD::UDIV node expressing a divide by constant,
3634 /// return a DAG expression to select that will generate the same value by
3635 /// multiplying by a magic number.
3636 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
3637 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
3638                                   bool IsAfterLegalization,
3639                                   SmallVectorImpl<SDNode *> &Created) const {
3640   SDLoc dl(N);
3641   EVT VT = N->getValueType(0);
3642   EVT SVT = VT.getScalarType();
3643   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
3644   EVT ShSVT = ShVT.getScalarType();
3645   unsigned EltBits = VT.getScalarSizeInBits();
3646 
3647   // Check to see if we can do this.
3648   // FIXME: We should be more aggressive here.
3649   if (!isTypeLegal(VT))
3650     return SDValue();
3651 
3652   bool UseNPQ = false;
3653   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
3654 
3655   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
3656     if (C->isNullValue())
3657       return false;
3658     // FIXME: We should use a narrower constant when the upper
3659     // bits are known to be zero.
3660     APInt Divisor = C->getAPIntValue();
3661     APInt::mu magics = Divisor.magicu();
3662     unsigned PreShift = 0, PostShift = 0;
3663 
3664     // If the divisor is even, we can avoid using the expensive fixup by
3665     // shifting the divided value upfront.
3666     if (magics.a != 0 && !Divisor[0]) {
3667       PreShift = Divisor.countTrailingZeros();
3668       // Get magic number for the shifted divisor.
3669       magics = Divisor.lshr(PreShift).magicu(PreShift);
3670       assert(magics.a == 0 && "Should use cheap fixup now");
3671     }
3672 
3673     APInt Magic = magics.m;
3674 
3675     unsigned SelNPQ;
3676     if (magics.a == 0 || Divisor.isOneValue()) {
3677       assert(magics.s < Divisor.getBitWidth() &&
3678              "We shouldn't generate an undefined shift!");
3679       PostShift = magics.s;
3680       SelNPQ = false;
3681     } else {
3682       PostShift = magics.s - 1;
3683       SelNPQ = true;
3684     }
3685 
3686     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
3687     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
3688     NPQFactors.push_back(
3689         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
3690                                : APInt::getNullValue(EltBits),
3691                         dl, SVT));
3692     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
3693     UseNPQ |= SelNPQ;
3694     return true;
3695   };
3696 
3697   SDValue N0 = N->getOperand(0);
3698   SDValue N1 = N->getOperand(1);
3699 
3700   // Collect the shifts/magic values from each element.
3701   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
3702     return SDValue();
3703 
3704   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
3705   if (VT.isVector()) {
3706     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
3707     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
3708     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
3709     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
3710   } else {
3711     PreShift = PreShifts[0];
3712     MagicFactor = MagicFactors[0];
3713     PostShift = PostShifts[0];
3714   }
3715 
3716   SDValue Q = N0;
3717   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
3718   Created.push_back(Q.getNode());
3719 
3720   // FIXME: We should support doing a MUL in a wider type.
3721   auto GetMULHU = [&](SDValue X, SDValue Y) {
3722     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
3723                             : isOperationLegalOrCustom(ISD::MULHU, VT))
3724       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
3725     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
3726                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
3727       SDValue LoHi =
3728           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
3729       return SDValue(LoHi.getNode(), 1);
3730     }
3731     return SDValue(); // No mulhu or equivalent
3732   };
3733 
3734   // Multiply the numerator (operand 0) by the magic value.
3735   Q = GetMULHU(Q, MagicFactor);
3736   if (!Q)
3737     return SDValue();
3738 
3739   Created.push_back(Q.getNode());
3740 
3741   if (UseNPQ) {
3742     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
3743     Created.push_back(NPQ.getNode());
3744 
3745     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
3746     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
3747     if (VT.isVector())
3748       NPQ = GetMULHU(NPQ, NPQFactor);
3749     else
3750       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
3751 
3752     Created.push_back(NPQ.getNode());
3753 
3754     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
3755     Created.push_back(Q.getNode());
3756   }
3757 
3758   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
3759   Created.push_back(Q.getNode());
3760 
3761   SDValue One = DAG.getConstant(1, dl, VT);
3762   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
3763   return DAG.getSelect(dl, VT, IsOne, N0, Q);
3764 }
3765 
3766 bool TargetLowering::
3767 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
3768   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
3769     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
3770                                 "be a constant integer");
3771     return true;
3772   }
3773 
3774   return false;
3775 }
3776 
3777 //===----------------------------------------------------------------------===//
3778 // Legalization Utilities
3779 //===----------------------------------------------------------------------===//
3780 
3781 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
3782                                     SDValue LHS, SDValue RHS,
3783                                     SmallVectorImpl<SDValue> &Result,
3784                                     EVT HiLoVT, SelectionDAG &DAG,
3785                                     MulExpansionKind Kind, SDValue LL,
3786                                     SDValue LH, SDValue RL, SDValue RH) const {
3787   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
3788          Opcode == ISD::SMUL_LOHI);
3789 
3790   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
3791                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
3792   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
3793                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
3794   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
3795                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
3796   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
3797                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
3798 
3799   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
3800     return false;
3801 
3802   unsigned OuterBitSize = VT.getScalarSizeInBits();
3803   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
3804   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
3805   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
3806 
3807   // LL, LH, RL, and RH must be either all NULL or all set to a value.
3808   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
3809          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
3810 
3811   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
3812   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
3813                           bool Signed) -> bool {
3814     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
3815       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
3816       Hi = SDValue(Lo.getNode(), 1);
3817       return true;
3818     }
3819     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
3820       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
3821       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
3822       return true;
3823     }
3824     return false;
3825   };
3826 
3827   SDValue Lo, Hi;
3828 
3829   if (!LL.getNode() && !RL.getNode() &&
3830       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
3831     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
3832     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
3833   }
3834 
3835   if (!LL.getNode())
3836     return false;
3837 
3838   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
3839   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
3840       DAG.MaskedValueIsZero(RHS, HighMask)) {
3841     // The inputs are both zero-extended.
3842     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
3843       Result.push_back(Lo);
3844       Result.push_back(Hi);
3845       if (Opcode != ISD::MUL) {
3846         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
3847         Result.push_back(Zero);
3848         Result.push_back(Zero);
3849       }
3850       return true;
3851     }
3852   }
3853 
3854   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
3855       RHSSB > InnerBitSize) {
3856     // The input values are both sign-extended.
3857     // TODO non-MUL case?
3858     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
3859       Result.push_back(Lo);
3860       Result.push_back(Hi);
3861       return true;
3862     }
3863   }
3864 
3865   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
3866   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
3867   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
3868     // FIXME getShiftAmountTy does not always return a sensible result when VT
3869     // is an illegal type, and so the type may be too small to fit the shift
3870     // amount. Override it with i32. The shift will have to be legalized.
3871     ShiftAmountTy = MVT::i32;
3872   }
3873   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
3874 
3875   if (!LH.getNode() && !RH.getNode() &&
3876       isOperationLegalOrCustom(ISD::SRL, VT) &&
3877       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
3878     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
3879     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
3880     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
3881     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
3882   }
3883 
3884   if (!LH.getNode())
3885     return false;
3886 
3887   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
3888     return false;
3889 
3890   Result.push_back(Lo);
3891 
3892   if (Opcode == ISD::MUL) {
3893     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
3894     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
3895     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
3896     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
3897     Result.push_back(Hi);
3898     return true;
3899   }
3900 
3901   // Compute the full width result.
3902   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
3903     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
3904     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
3905     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3906     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
3907   };
3908 
3909   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
3910   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
3911     return false;
3912 
3913   // This is effectively the add part of a multiply-add of half-sized operands,
3914   // so it cannot overflow.
3915   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
3916 
3917   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
3918     return false;
3919 
3920   Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
3921                      Merge(Lo, Hi));
3922 
3923   SDValue Carry = Next.getValue(1);
3924   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
3925   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
3926 
3927   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
3928     return false;
3929 
3930   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
3931   Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
3932                    Carry);
3933   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
3934 
3935   if (Opcode == ISD::SMUL_LOHI) {
3936     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
3937                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
3938     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
3939 
3940     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
3941                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
3942     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
3943   }
3944 
3945   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
3946   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
3947   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
3948   return true;
3949 }
3950 
3951 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
3952                                SelectionDAG &DAG, MulExpansionKind Kind,
3953                                SDValue LL, SDValue LH, SDValue RL,
3954                                SDValue RH) const {
3955   SmallVector<SDValue, 2> Result;
3956   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
3957                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
3958                            DAG, Kind, LL, LH, RL, RH);
3959   if (Ok) {
3960     assert(Result.size() == 2);
3961     Lo = Result[0];
3962     Hi = Result[1];
3963   }
3964   return Ok;
3965 }
3966 
3967 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
3968                                SelectionDAG &DAG) const {
3969   EVT VT = Node->getOperand(0).getValueType();
3970   EVT NVT = Node->getValueType(0);
3971   SDLoc dl(SDValue(Node, 0));
3972 
3973   // FIXME: Only f32 to i64 conversions are supported.
3974   if (VT != MVT::f32 || NVT != MVT::i64)
3975     return false;
3976 
3977   // Expand f32 -> i64 conversion
3978   // This algorithm comes from compiler-rt's implementation of fixsfdi:
3979   // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c
3980   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(),
3981                                 VT.getSizeInBits());
3982   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
3983   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
3984   SDValue Bias = DAG.getConstant(127, dl, IntVT);
3985   SDValue SignMask = DAG.getConstant(APInt::getSignMask(VT.getSizeInBits()), dl,
3986                                      IntVT);
3987   SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT);
3988   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
3989 
3990   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0));
3991 
3992   auto &DL = DAG.getDataLayout();
3993   SDValue ExponentBits = DAG.getNode(
3994       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
3995       DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL)));
3996   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
3997 
3998   SDValue Sign = DAG.getNode(
3999       ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
4000       DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL)));
4001   Sign = DAG.getSExtOrTrunc(Sign, dl, NVT);
4002 
4003   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
4004       DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
4005       DAG.getConstant(0x00800000, dl, IntVT));
4006 
4007   R = DAG.getZExtOrTrunc(R, dl, NVT);
4008 
4009   R = DAG.getSelectCC(
4010       dl, Exponent, ExponentLoBit,
4011       DAG.getNode(ISD::SHL, dl, NVT, R,
4012                   DAG.getZExtOrTrunc(
4013                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
4014                       dl, getShiftAmountTy(IntVT, DL))),
4015       DAG.getNode(ISD::SRL, dl, NVT, R,
4016                   DAG.getZExtOrTrunc(
4017                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
4018                       dl, getShiftAmountTy(IntVT, DL))),
4019       ISD::SETGT);
4020 
4021   SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT,
4022       DAG.getNode(ISD::XOR, dl, NVT, R, Sign),
4023       Sign);
4024 
4025   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
4026       DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT);
4027   return true;
4028 }
4029 
4030 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
4031                                             SelectionDAG &DAG) const {
4032   SDLoc SL(LD);
4033   SDValue Chain = LD->getChain();
4034   SDValue BasePTR = LD->getBasePtr();
4035   EVT SrcVT = LD->getMemoryVT();
4036   ISD::LoadExtType ExtType = LD->getExtensionType();
4037 
4038   unsigned NumElem = SrcVT.getVectorNumElements();
4039 
4040   EVT SrcEltVT = SrcVT.getScalarType();
4041   EVT DstEltVT = LD->getValueType(0).getScalarType();
4042 
4043   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
4044   assert(SrcEltVT.isByteSized());
4045 
4046   SmallVector<SDValue, 8> Vals;
4047   SmallVector<SDValue, 8> LoadChains;
4048 
4049   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
4050     SDValue ScalarLoad =
4051         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
4052                        LD->getPointerInfo().getWithOffset(Idx * Stride),
4053                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
4054                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
4055 
4056     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
4057 
4058     Vals.push_back(ScalarLoad.getValue(0));
4059     LoadChains.push_back(ScalarLoad.getValue(1));
4060   }
4061 
4062   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
4063   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
4064 
4065   return DAG.getMergeValues({ Value, NewChain }, SL);
4066 }
4067 
4068 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
4069                                              SelectionDAG &DAG) const {
4070   SDLoc SL(ST);
4071 
4072   SDValue Chain = ST->getChain();
4073   SDValue BasePtr = ST->getBasePtr();
4074   SDValue Value = ST->getValue();
4075   EVT StVT = ST->getMemoryVT();
4076 
4077   // The type of the data we want to save
4078   EVT RegVT = Value.getValueType();
4079   EVT RegSclVT = RegVT.getScalarType();
4080 
4081   // The type of data as saved in memory.
4082   EVT MemSclVT = StVT.getScalarType();
4083 
4084   EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
4085   unsigned NumElem = StVT.getVectorNumElements();
4086 
4087   // A vector must always be stored in memory as-is, i.e. without any padding
4088   // between the elements, since various code depend on it, e.g. in the
4089   // handling of a bitcast of a vector type to int, which may be done with a
4090   // vector store followed by an integer load. A vector that does not have
4091   // elements that are byte-sized must therefore be stored as an integer
4092   // built out of the extracted vector elements.
4093   if (!MemSclVT.isByteSized()) {
4094     unsigned NumBits = StVT.getSizeInBits();
4095     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
4096 
4097     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
4098 
4099     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
4100       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
4101                                 DAG.getConstant(Idx, SL, IdxVT));
4102       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
4103       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
4104       unsigned ShiftIntoIdx =
4105           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
4106       SDValue ShiftAmount =
4107           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
4108       SDValue ShiftedElt =
4109           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
4110       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
4111     }
4112 
4113     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
4114                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
4115                         ST->getAAInfo());
4116   }
4117 
4118   // Store Stride in bytes
4119   unsigned Stride = MemSclVT.getSizeInBits() / 8;
4120   assert (Stride && "Zero stride!");
4121   // Extract each of the elements from the original vector and save them into
4122   // memory individually.
4123   SmallVector<SDValue, 8> Stores;
4124   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
4125     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
4126                               DAG.getConstant(Idx, SL, IdxVT));
4127 
4128     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
4129 
4130     // This scalar TruncStore may be illegal, but we legalize it later.
4131     SDValue Store = DAG.getTruncStore(
4132         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
4133         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
4134         ST->getMemOperand()->getFlags(), ST->getAAInfo());
4135 
4136     Stores.push_back(Store);
4137   }
4138 
4139   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
4140 }
4141 
4142 std::pair<SDValue, SDValue>
4143 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
4144   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
4145          "unaligned indexed loads not implemented!");
4146   SDValue Chain = LD->getChain();
4147   SDValue Ptr = LD->getBasePtr();
4148   EVT VT = LD->getValueType(0);
4149   EVT LoadedVT = LD->getMemoryVT();
4150   SDLoc dl(LD);
4151   auto &MF = DAG.getMachineFunction();
4152 
4153   if (VT.isFloatingPoint() || VT.isVector()) {
4154     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
4155     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
4156       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
4157           LoadedVT.isVector()) {
4158         // Scalarize the load and let the individual components be handled.
4159         SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
4160         if (Scalarized->getOpcode() == ISD::MERGE_VALUES)
4161           return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1));
4162         return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
4163       }
4164 
4165       // Expand to a (misaligned) integer load of the same size,
4166       // then bitconvert to floating point or vector.
4167       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
4168                                     LD->getMemOperand());
4169       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
4170       if (LoadedVT != VT)
4171         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
4172                              ISD::ANY_EXTEND, dl, VT, Result);
4173 
4174       return std::make_pair(Result, newLoad.getValue(1));
4175     }
4176 
4177     // Copy the value to a (aligned) stack slot using (unaligned) integer
4178     // loads and stores, then do a (aligned) load from the stack slot.
4179     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
4180     unsigned LoadedBytes = LoadedVT.getStoreSize();
4181     unsigned RegBytes = RegVT.getSizeInBits() / 8;
4182     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
4183 
4184     // Make sure the stack slot is also aligned for the register type.
4185     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
4186     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
4187     SmallVector<SDValue, 8> Stores;
4188     SDValue StackPtr = StackBase;
4189     unsigned Offset = 0;
4190 
4191     EVT PtrVT = Ptr.getValueType();
4192     EVT StackPtrVT = StackPtr.getValueType();
4193 
4194     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
4195     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
4196 
4197     // Do all but one copies using the full register width.
4198     for (unsigned i = 1; i < NumRegs; i++) {
4199       // Load one integer register's worth from the original location.
4200       SDValue Load = DAG.getLoad(
4201           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
4202           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
4203           LD->getAAInfo());
4204       // Follow the load with a store to the stack slot.  Remember the store.
4205       Stores.push_back(DAG.getStore(
4206           Load.getValue(1), dl, Load, StackPtr,
4207           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
4208       // Increment the pointers.
4209       Offset += RegBytes;
4210 
4211       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
4212       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
4213     }
4214 
4215     // The last copy may be partial.  Do an extending load.
4216     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
4217                                   8 * (LoadedBytes - Offset));
4218     SDValue Load =
4219         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
4220                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
4221                        MinAlign(LD->getAlignment(), Offset),
4222                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
4223     // Follow the load with a store to the stack slot.  Remember the store.
4224     // On big-endian machines this requires a truncating store to ensure
4225     // that the bits end up in the right place.
4226     Stores.push_back(DAG.getTruncStore(
4227         Load.getValue(1), dl, Load, StackPtr,
4228         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
4229 
4230     // The order of the stores doesn't matter - say it with a TokenFactor.
4231     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
4232 
4233     // Finally, perform the original load only redirected to the stack slot.
4234     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
4235                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
4236                           LoadedVT);
4237 
4238     // Callers expect a MERGE_VALUES node.
4239     return std::make_pair(Load, TF);
4240   }
4241 
4242   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
4243          "Unaligned load of unsupported type.");
4244 
4245   // Compute the new VT that is half the size of the old one.  This is an
4246   // integer MVT.
4247   unsigned NumBits = LoadedVT.getSizeInBits();
4248   EVT NewLoadedVT;
4249   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
4250   NumBits >>= 1;
4251 
4252   unsigned Alignment = LD->getAlignment();
4253   unsigned IncrementSize = NumBits / 8;
4254   ISD::LoadExtType HiExtType = LD->getExtensionType();
4255 
4256   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
4257   if (HiExtType == ISD::NON_EXTLOAD)
4258     HiExtType = ISD::ZEXTLOAD;
4259 
4260   // Load the value in two parts
4261   SDValue Lo, Hi;
4262   if (DAG.getDataLayout().isLittleEndian()) {
4263     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
4264                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
4265                         LD->getAAInfo());
4266 
4267     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
4268     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
4269                         LD->getPointerInfo().getWithOffset(IncrementSize),
4270                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
4271                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
4272   } else {
4273     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
4274                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
4275                         LD->getAAInfo());
4276 
4277     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
4278     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
4279                         LD->getPointerInfo().getWithOffset(IncrementSize),
4280                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
4281                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
4282   }
4283 
4284   // aggregate the two parts
4285   SDValue ShiftAmount =
4286       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
4287                                                     DAG.getDataLayout()));
4288   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
4289   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
4290 
4291   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
4292                              Hi.getValue(1));
4293 
4294   return std::make_pair(Result, TF);
4295 }
4296 
4297 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
4298                                              SelectionDAG &DAG) const {
4299   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
4300          "unaligned indexed stores not implemented!");
4301   SDValue Chain = ST->getChain();
4302   SDValue Ptr = ST->getBasePtr();
4303   SDValue Val = ST->getValue();
4304   EVT VT = Val.getValueType();
4305   int Alignment = ST->getAlignment();
4306   auto &MF = DAG.getMachineFunction();
4307   EVT MemVT = ST->getMemoryVT();
4308 
4309   SDLoc dl(ST);
4310   if (MemVT.isFloatingPoint() || MemVT.isVector()) {
4311     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
4312     if (isTypeLegal(intVT)) {
4313       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
4314           MemVT.isVector()) {
4315         // Scalarize the store and let the individual components be handled.
4316         SDValue Result = scalarizeVectorStore(ST, DAG);
4317 
4318         return Result;
4319       }
4320       // Expand to a bitconvert of the value to the integer type of the
4321       // same size, then a (misaligned) int store.
4322       // FIXME: Does not handle truncating floating point stores!
4323       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
4324       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
4325                             Alignment, ST->getMemOperand()->getFlags());
4326       return Result;
4327     }
4328     // Do a (aligned) store to a stack slot, then copy from the stack slot
4329     // to the final destination using (unaligned) integer loads and stores.
4330     EVT StoredVT = ST->getMemoryVT();
4331     MVT RegVT =
4332       getRegisterType(*DAG.getContext(),
4333                       EVT::getIntegerVT(*DAG.getContext(),
4334                                         StoredVT.getSizeInBits()));
4335     EVT PtrVT = Ptr.getValueType();
4336     unsigned StoredBytes = StoredVT.getStoreSize();
4337     unsigned RegBytes = RegVT.getSizeInBits() / 8;
4338     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
4339 
4340     // Make sure the stack slot is also aligned for the register type.
4341     SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
4342     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
4343 
4344     // Perform the original store, only redirected to the stack slot.
4345     SDValue Store = DAG.getTruncStore(
4346         Chain, dl, Val, StackPtr,
4347         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoredVT);
4348 
4349     EVT StackPtrVT = StackPtr.getValueType();
4350 
4351     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
4352     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
4353     SmallVector<SDValue, 8> Stores;
4354     unsigned Offset = 0;
4355 
4356     // Do all but one copies using the full register width.
4357     for (unsigned i = 1; i < NumRegs; i++) {
4358       // Load one integer register's worth from the stack slot.
4359       SDValue Load = DAG.getLoad(
4360           RegVT, dl, Store, StackPtr,
4361           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
4362       // Store it to the final location.  Remember the store.
4363       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
4364                                     ST->getPointerInfo().getWithOffset(Offset),
4365                                     MinAlign(ST->getAlignment(), Offset),
4366                                     ST->getMemOperand()->getFlags()));
4367       // Increment the pointers.
4368       Offset += RegBytes;
4369       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
4370       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
4371     }
4372 
4373     // The last store may be partial.  Do a truncating store.  On big-endian
4374     // machines this requires an extending load from the stack slot to ensure
4375     // that the bits are in the right place.
4376     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
4377                                   8 * (StoredBytes - Offset));
4378 
4379     // Load from the stack slot.
4380     SDValue Load = DAG.getExtLoad(
4381         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
4382         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT);
4383 
4384     Stores.push_back(
4385         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
4386                           ST->getPointerInfo().getWithOffset(Offset), MemVT,
4387                           MinAlign(ST->getAlignment(), Offset),
4388                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
4389     // The order of the stores doesn't matter - say it with a TokenFactor.
4390     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
4391     return Result;
4392   }
4393 
4394   assert(ST->getMemoryVT().isInteger() &&
4395          !ST->getMemoryVT().isVector() &&
4396          "Unaligned store of unknown type.");
4397   // Get the half-size VT
4398   EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
4399   int NumBits = NewStoredVT.getSizeInBits();
4400   int IncrementSize = NumBits / 8;
4401 
4402   // Divide the stored value in two parts.
4403   SDValue ShiftAmount =
4404       DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(),
4405                                                     DAG.getDataLayout()));
4406   SDValue Lo = Val;
4407   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
4408 
4409   // Store the two parts
4410   SDValue Store1, Store2;
4411   Store1 = DAG.getTruncStore(Chain, dl,
4412                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
4413                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
4414                              ST->getMemOperand()->getFlags());
4415 
4416   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
4417   Alignment = MinAlign(Alignment, IncrementSize);
4418   Store2 = DAG.getTruncStore(
4419       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
4420       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
4421       ST->getMemOperand()->getFlags(), ST->getAAInfo());
4422 
4423   SDValue Result =
4424     DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
4425   return Result;
4426 }
4427 
4428 SDValue
4429 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
4430                                        const SDLoc &DL, EVT DataVT,
4431                                        SelectionDAG &DAG,
4432                                        bool IsCompressedMemory) const {
4433   SDValue Increment;
4434   EVT AddrVT = Addr.getValueType();
4435   EVT MaskVT = Mask.getValueType();
4436   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
4437          "Incompatible types of Data and Mask");
4438   if (IsCompressedMemory) {
4439     // Incrementing the pointer according to number of '1's in the mask.
4440     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
4441     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
4442     if (MaskIntVT.getSizeInBits() < 32) {
4443       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
4444       MaskIntVT = MVT::i32;
4445     }
4446 
4447     // Count '1's with POPCNT.
4448     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
4449     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
4450     // Scale is an element size in bytes.
4451     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
4452                                     AddrVT);
4453     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
4454   } else
4455     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
4456 
4457   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
4458 }
4459 
4460 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
4461                                        SDValue Idx,
4462                                        EVT VecVT,
4463                                        const SDLoc &dl) {
4464   if (isa<ConstantSDNode>(Idx))
4465     return Idx;
4466 
4467   EVT IdxVT = Idx.getValueType();
4468   unsigned NElts = VecVT.getVectorNumElements();
4469   if (isPowerOf2_32(NElts)) {
4470     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
4471                                      Log2_32(NElts));
4472     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
4473                        DAG.getConstant(Imm, dl, IdxVT));
4474   }
4475 
4476   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
4477                      DAG.getConstant(NElts - 1, dl, IdxVT));
4478 }
4479 
4480 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
4481                                                 SDValue VecPtr, EVT VecVT,
4482                                                 SDValue Index) const {
4483   SDLoc dl(Index);
4484   // Make sure the index type is big enough to compute in.
4485   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
4486 
4487   EVT EltVT = VecVT.getVectorElementType();
4488 
4489   // Calculate the element offset and add it to the pointer.
4490   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
4491   assert(EltSize * 8 == EltVT.getSizeInBits() &&
4492          "Converting bits to bytes lost precision");
4493 
4494   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
4495 
4496   EVT IdxVT = Index.getValueType();
4497 
4498   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
4499                       DAG.getConstant(EltSize, dl, IdxVT));
4500   return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index);
4501 }
4502 
4503 //===----------------------------------------------------------------------===//
4504 // Implementation of Emulated TLS Model
4505 //===----------------------------------------------------------------------===//
4506 
4507 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
4508                                                 SelectionDAG &DAG) const {
4509   // Access to address of TLS varialbe xyz is lowered to a function call:
4510   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
4511   EVT PtrVT = getPointerTy(DAG.getDataLayout());
4512   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
4513   SDLoc dl(GA);
4514 
4515   ArgListTy Args;
4516   ArgListEntry Entry;
4517   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
4518   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
4519   StringRef EmuTlsVarName(NameString);
4520   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
4521   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
4522   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
4523   Entry.Ty = VoidPtrType;
4524   Args.push_back(Entry);
4525 
4526   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
4527 
4528   TargetLowering::CallLoweringInfo CLI(DAG);
4529   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
4530   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
4531   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
4532 
4533   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
4534   // At last for X86 targets, maybe good for other targets too?
4535   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
4536   MFI.setAdjustsStack(true);  // Is this only for X86 target?
4537   MFI.setHasCalls(true);
4538 
4539   assert((GA->getOffset() == 0) &&
4540          "Emulated TLS must have zero offset in GlobalAddressSDNode");
4541   return CallResult.first;
4542 }
4543 
4544 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
4545                                                 SelectionDAG &DAG) const {
4546   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
4547   if (!isCtlzFast())
4548     return SDValue();
4549   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
4550   SDLoc dl(Op);
4551   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
4552     if (C->isNullValue() && CC == ISD::SETEQ) {
4553       EVT VT = Op.getOperand(0).getValueType();
4554       SDValue Zext = Op.getOperand(0);
4555       if (VT.bitsLT(MVT::i32)) {
4556         VT = MVT::i32;
4557         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
4558       }
4559       unsigned Log2b = Log2_32(VT.getSizeInBits());
4560       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
4561       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
4562                                 DAG.getConstant(Log2b, dl, MVT::i32));
4563       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
4564     }
4565   }
4566   return SDValue();
4567 }
4568