1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/CodeGen/CallingConvLower.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineJumpTableInfo.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/TargetRegisterInfo.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCExpr.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetLoweringObjectFile.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <cctype>
36 using namespace llvm;
37 
38 /// NOTE: The TargetMachine owns TLOF.
39 TargetLowering::TargetLowering(const TargetMachine &tm)
40   : TargetLoweringBase(tm) {}
41 
42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43   return nullptr;
44 }
45 
46 bool TargetLowering::isPositionIndependent() const {
47   return getTargetMachine().isPositionIndependent();
48 }
49 
50 /// Check whether a given call node is in tail position within its function. If
51 /// so, it sets Chain to the input chain of the tail call.
52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
53                                           SDValue &Chain) const {
54   const Function &F = DAG.getMachineFunction().getFunction();
55 
56   // Conservatively require the attributes of the call to match those of
57   // the return. Ignore NoAlias and NonNull because they don't affect the
58   // call sequence.
59   AttributeList CallerAttrs = F.getAttributes();
60   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
61           .removeAttribute(Attribute::NoAlias)
62           .removeAttribute(Attribute::NonNull)
63           .hasAttributes())
64     return false;
65 
66   // It's not safe to eliminate the sign / zero extension of the return value.
67   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
68       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
69     return false;
70 
71   // Check if the only use is a function return node.
72   return isUsedByReturnOnly(Node, Chain);
73 }
74 
75 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
76     const uint32_t *CallerPreservedMask,
77     const SmallVectorImpl<CCValAssign> &ArgLocs,
78     const SmallVectorImpl<SDValue> &OutVals) const {
79   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
80     const CCValAssign &ArgLoc = ArgLocs[I];
81     if (!ArgLoc.isRegLoc())
82       continue;
83     unsigned Reg = ArgLoc.getLocReg();
84     // Only look at callee saved registers.
85     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
86       continue;
87     // Check that we pass the value used for the caller.
88     // (We look for a CopyFromReg reading a virtual register that is used
89     //  for the function live-in value of register Reg)
90     SDValue Value = OutVals[I];
91     if (Value->getOpcode() != ISD::CopyFromReg)
92       return false;
93     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
94     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
95       return false;
96   }
97   return true;
98 }
99 
100 /// Set CallLoweringInfo attribute flags based on a call instruction
101 /// and called function attributes.
102 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
103                                                      unsigned ArgIdx) {
104   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
105   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
106   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
107   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
108   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
109   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
110   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
111   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
112   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
113   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
114   Alignment = Call->getParamAlignment(ArgIdx);
115   ByValType = nullptr;
116   if (Call->paramHasAttr(ArgIdx, Attribute::ByVal))
117     ByValType = Call->getParamByValType(ArgIdx);
118 }
119 
120 /// Generate a libcall taking the given operands as arguments and returning a
121 /// result of type RetVT.
122 std::pair<SDValue, SDValue>
123 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
124                             ArrayRef<SDValue> Ops, bool isSigned,
125                             const SDLoc &dl, bool doesNotReturn,
126                             bool isReturnValueUsed,
127                             bool isPostTypeLegalization) const {
128   TargetLowering::ArgListTy Args;
129   Args.reserve(Ops.size());
130 
131   TargetLowering::ArgListEntry Entry;
132   for (SDValue Op : Ops) {
133     Entry.Node = Op;
134     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
135     Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
136     Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
137     Args.push_back(Entry);
138   }
139 
140   if (LC == RTLIB::UNKNOWN_LIBCALL)
141     report_fatal_error("Unsupported library call operation!");
142   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
143                                          getPointerTy(DAG.getDataLayout()));
144 
145   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
146   TargetLowering::CallLoweringInfo CLI(DAG);
147   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
148   CLI.setDebugLoc(dl)
149       .setChain(DAG.getEntryNode())
150       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
151       .setNoReturn(doesNotReturn)
152       .setDiscardResult(!isReturnValueUsed)
153       .setIsPostTypeLegalization(isPostTypeLegalization)
154       .setSExtResult(signExtend)
155       .setZExtResult(!signExtend);
156   return LowerCallTo(CLI);
157 }
158 
159 bool
160 TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps,
161                                          unsigned Limit, uint64_t Size,
162                                          unsigned DstAlign, unsigned SrcAlign,
163                                          bool IsMemset,
164                                          bool ZeroMemset,
165                                          bool MemcpyStrSrc,
166                                          bool AllowOverlap,
167                                          unsigned DstAS, unsigned SrcAS,
168                                          const AttributeList &FuncAttributes) const {
169   // If 'SrcAlign' is zero, that means the memory operation does not need to
170   // load the value, i.e. memset or memcpy from constant string. Otherwise,
171   // it's the inferred alignment of the source. 'DstAlign', on the other hand,
172   // is the specified alignment of the memory operation. If it is zero, that
173   // means it's possible to change the alignment of the destination.
174   // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
175   // not need to be loaded.
176   if (!(SrcAlign == 0 || SrcAlign >= DstAlign))
177     return false;
178 
179   EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign,
180                                IsMemset, ZeroMemset, MemcpyStrSrc,
181                                FuncAttributes);
182 
183   if (VT == MVT::Other) {
184     // Use the largest integer type whose alignment constraints are satisfied.
185     // We only need to check DstAlign here as SrcAlign is always greater or
186     // equal to DstAlign (or zero).
187     VT = MVT::i64;
188     while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
189            !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
190       VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
191     assert(VT.isInteger());
192 
193     // Find the largest legal integer type.
194     MVT LVT = MVT::i64;
195     while (!isTypeLegal(LVT))
196       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
197     assert(LVT.isInteger());
198 
199     // If the type we've chosen is larger than the largest legal integer type
200     // then use that instead.
201     if (VT.bitsGT(LVT))
202       VT = LVT;
203   }
204 
205   unsigned NumMemOps = 0;
206   while (Size != 0) {
207     unsigned VTSize = VT.getSizeInBits() / 8;
208     while (VTSize > Size) {
209       // For now, only use non-vector load / store's for the left-over pieces.
210       EVT NewVT = VT;
211       unsigned NewVTSize;
212 
213       bool Found = false;
214       if (VT.isVector() || VT.isFloatingPoint()) {
215         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
216         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
217             isSafeMemOpType(NewVT.getSimpleVT()))
218           Found = true;
219         else if (NewVT == MVT::i64 &&
220                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
221                  isSafeMemOpType(MVT::f64)) {
222           // i64 is usually not legal on 32-bit targets, but f64 may be.
223           NewVT = MVT::f64;
224           Found = true;
225         }
226       }
227 
228       if (!Found) {
229         do {
230           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
231           if (NewVT == MVT::i8)
232             break;
233         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
234       }
235       NewVTSize = NewVT.getSizeInBits() / 8;
236 
237       // If the new VT cannot cover all of the remaining bits, then consider
238       // issuing a (or a pair of) unaligned and overlapping load / store.
239       bool Fast;
240       if (NumMemOps && AllowOverlap && NewVTSize < Size &&
241           allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign,
242                                          MachineMemOperand::MONone, &Fast) &&
243           Fast)
244         VTSize = Size;
245       else {
246         VT = NewVT;
247         VTSize = NewVTSize;
248       }
249     }
250 
251     if (++NumMemOps > Limit)
252       return false;
253 
254     MemOps.push_back(VT);
255     Size -= VTSize;
256   }
257 
258   return true;
259 }
260 
261 /// Soften the operands of a comparison. This code is shared among BR_CC,
262 /// SELECT_CC, and SETCC handlers.
263 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
264                                          SDValue &NewLHS, SDValue &NewRHS,
265                                          ISD::CondCode &CCCode,
266                                          const SDLoc &dl) const {
267   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
268          && "Unsupported setcc type!");
269 
270   // Expand into one or more soft-fp libcall(s).
271   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
272   bool ShouldInvertCC = false;
273   switch (CCCode) {
274   case ISD::SETEQ:
275   case ISD::SETOEQ:
276     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
277           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
278           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
279     break;
280   case ISD::SETNE:
281   case ISD::SETUNE:
282     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
283           (VT == MVT::f64) ? RTLIB::UNE_F64 :
284           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
285     break;
286   case ISD::SETGE:
287   case ISD::SETOGE:
288     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
289           (VT == MVT::f64) ? RTLIB::OGE_F64 :
290           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
291     break;
292   case ISD::SETLT:
293   case ISD::SETOLT:
294     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
295           (VT == MVT::f64) ? RTLIB::OLT_F64 :
296           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
297     break;
298   case ISD::SETLE:
299   case ISD::SETOLE:
300     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
301           (VT == MVT::f64) ? RTLIB::OLE_F64 :
302           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
303     break;
304   case ISD::SETGT:
305   case ISD::SETOGT:
306     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
307           (VT == MVT::f64) ? RTLIB::OGT_F64 :
308           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
309     break;
310   case ISD::SETUO:
311     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
312           (VT == MVT::f64) ? RTLIB::UO_F64 :
313           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
314     break;
315   case ISD::SETO:
316     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
317           (VT == MVT::f64) ? RTLIB::O_F64 :
318           (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
319     break;
320   case ISD::SETONE:
321     // SETONE = SETOLT | SETOGT
322     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
323           (VT == MVT::f64) ? RTLIB::OLT_F64 :
324           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
325     LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
326           (VT == MVT::f64) ? RTLIB::OGT_F64 :
327           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
328     break;
329   case ISD::SETUEQ:
330     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
331           (VT == MVT::f64) ? RTLIB::UO_F64 :
332           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
333     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
334           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
335           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
336     break;
337   default:
338     // Invert CC for unordered comparisons
339     ShouldInvertCC = true;
340     switch (CCCode) {
341     case ISD::SETULT:
342       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
343             (VT == MVT::f64) ? RTLIB::OGE_F64 :
344             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
345       break;
346     case ISD::SETULE:
347       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
348             (VT == MVT::f64) ? RTLIB::OGT_F64 :
349             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
350       break;
351     case ISD::SETUGT:
352       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
353             (VT == MVT::f64) ? RTLIB::OLE_F64 :
354             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
355       break;
356     case ISD::SETUGE:
357       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
358             (VT == MVT::f64) ? RTLIB::OLT_F64 :
359             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
360       break;
361     default: llvm_unreachable("Do not know how to soften this setcc!");
362     }
363   }
364 
365   // Use the target specific return value for comparions lib calls.
366   EVT RetVT = getCmpLibcallReturnType();
367   SDValue Ops[2] = {NewLHS, NewRHS};
368   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
369                        dl).first;
370   NewRHS = DAG.getConstant(0, dl, RetVT);
371 
372   CCCode = getCmpLibcallCC(LC1);
373   if (ShouldInvertCC)
374     CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
375 
376   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
377     SDValue Tmp = DAG.getNode(
378         ISD::SETCC, dl,
379         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
380         NewLHS, NewRHS, DAG.getCondCode(CCCode));
381     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
382                          dl).first;
383     NewLHS = DAG.getNode(
384         ISD::SETCC, dl,
385         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
386         NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
387     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
388     NewRHS = SDValue();
389   }
390 }
391 
392 /// Return the entry encoding for a jump table in the current function. The
393 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
394 unsigned TargetLowering::getJumpTableEncoding() const {
395   // In non-pic modes, just use the address of a block.
396   if (!isPositionIndependent())
397     return MachineJumpTableInfo::EK_BlockAddress;
398 
399   // In PIC mode, if the target supports a GPRel32 directive, use it.
400   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
401     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
402 
403   // Otherwise, use a label difference.
404   return MachineJumpTableInfo::EK_LabelDifference32;
405 }
406 
407 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
408                                                  SelectionDAG &DAG) const {
409   // If our PIC model is GP relative, use the global offset table as the base.
410   unsigned JTEncoding = getJumpTableEncoding();
411 
412   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
413       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
414     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
415 
416   return Table;
417 }
418 
419 /// This returns the relocation base for the given PIC jumptable, the same as
420 /// getPICJumpTableRelocBase, but as an MCExpr.
421 const MCExpr *
422 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
423                                              unsigned JTI,MCContext &Ctx) const{
424   // The normal PIC reloc base is the label at the start of the jump table.
425   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
426 }
427 
428 bool
429 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
430   const TargetMachine &TM = getTargetMachine();
431   const GlobalValue *GV = GA->getGlobal();
432 
433   // If the address is not even local to this DSO we will have to load it from
434   // a got and then add the offset.
435   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
436     return false;
437 
438   // If the code is position independent we will have to add a base register.
439   if (isPositionIndependent())
440     return false;
441 
442   // Otherwise we can do it.
443   return true;
444 }
445 
446 //===----------------------------------------------------------------------===//
447 //  Optimization Methods
448 //===----------------------------------------------------------------------===//
449 
450 /// If the specified instruction has a constant integer operand and there are
451 /// bits set in that constant that are not demanded, then clear those bits and
452 /// return true.
453 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
454                                             TargetLoweringOpt &TLO) const {
455   SDLoc DL(Op);
456   unsigned Opcode = Op.getOpcode();
457 
458   // Do target-specific constant optimization.
459   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
460     return TLO.New.getNode();
461 
462   // FIXME: ISD::SELECT, ISD::SELECT_CC
463   switch (Opcode) {
464   default:
465     break;
466   case ISD::XOR:
467   case ISD::AND:
468   case ISD::OR: {
469     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
470     if (!Op1C)
471       return false;
472 
473     // If this is a 'not' op, don't touch it because that's a canonical form.
474     const APInt &C = Op1C->getAPIntValue();
475     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
476       return false;
477 
478     if (!C.isSubsetOf(Demanded)) {
479       EVT VT = Op.getValueType();
480       SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT);
481       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
482       return TLO.CombineTo(Op, NewOp);
483     }
484 
485     break;
486   }
487   }
488 
489   return false;
490 }
491 
492 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
493 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
494 /// generalized for targets with other types of implicit widening casts.
495 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
496                                       const APInt &Demanded,
497                                       TargetLoweringOpt &TLO) const {
498   assert(Op.getNumOperands() == 2 &&
499          "ShrinkDemandedOp only supports binary operators!");
500   assert(Op.getNode()->getNumValues() == 1 &&
501          "ShrinkDemandedOp only supports nodes with one result!");
502 
503   SelectionDAG &DAG = TLO.DAG;
504   SDLoc dl(Op);
505 
506   // Early return, as this function cannot handle vector types.
507   if (Op.getValueType().isVector())
508     return false;
509 
510   // Don't do this if the node has another user, which may require the
511   // full value.
512   if (!Op.getNode()->hasOneUse())
513     return false;
514 
515   // Search for the smallest integer type with free casts to and from
516   // Op's type. For expedience, just check power-of-2 integer types.
517   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
518   unsigned DemandedSize = Demanded.getActiveBits();
519   unsigned SmallVTBits = DemandedSize;
520   if (!isPowerOf2_32(SmallVTBits))
521     SmallVTBits = NextPowerOf2(SmallVTBits);
522   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
523     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
524     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
525         TLI.isZExtFree(SmallVT, Op.getValueType())) {
526       // We found a type with free casts.
527       SDValue X = DAG.getNode(
528           Op.getOpcode(), dl, SmallVT,
529           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
530           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
531       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
532       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
533       return TLO.CombineTo(Op, Z);
534     }
535   }
536   return false;
537 }
538 
539 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
540                                           DAGCombinerInfo &DCI) const {
541   SelectionDAG &DAG = DCI.DAG;
542   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
543                         !DCI.isBeforeLegalizeOps());
544   KnownBits Known;
545 
546   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
547   if (Simplified) {
548     DCI.AddToWorklist(Op.getNode());
549     DCI.CommitTargetLoweringOpt(TLO);
550   }
551   return Simplified;
552 }
553 
554 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
555                                           KnownBits &Known,
556                                           TargetLoweringOpt &TLO,
557                                           unsigned Depth,
558                                           bool AssumeSingleUse) const {
559   EVT VT = Op.getValueType();
560   APInt DemandedElts = VT.isVector()
561                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
562                            : APInt(1, 1);
563   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
564                               AssumeSingleUse);
565 }
566 
567 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
568 // TODO: Under what circumstances can we create nodes? Constant folding?
569 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
570     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
571     SelectionDAG &DAG, unsigned Depth) const {
572   if (Depth >= 6) // Limit search depth.
573     return SDValue();
574 
575   unsigned NumElts = DemandedElts.getBitWidth();
576   KnownBits LHSKnown, RHSKnown;
577   switch (Op.getOpcode()) {
578   case ISD::BITCAST: {
579     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
580     EVT SrcVT = Src.getValueType();
581     EVT DstVT = Op.getValueType();
582     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
583     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
584 
585     if (NumSrcEltBits == NumDstEltBits)
586       if (SDValue V = SimplifyMultipleUseDemandedBits(
587               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
588         return DAG.getBitcast(DstVT, V);
589 
590     // TODO - bigendian once we have test coverage.
591     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
592         DAG.getDataLayout().isLittleEndian()) {
593       unsigned Scale = NumDstEltBits / NumSrcEltBits;
594       unsigned NumSrcElts = SrcVT.getVectorNumElements();
595       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
596       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
597       for (unsigned i = 0; i != Scale; ++i) {
598         unsigned Offset = i * NumSrcEltBits;
599         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
600         if (!Sub.isNullValue()) {
601           DemandedSrcBits |= Sub;
602           for (unsigned j = 0; j != NumElts; ++j)
603             if (DemandedElts[j])
604               DemandedSrcElts.setBit((j * Scale) + i);
605         }
606       }
607 
608       if (SDValue V = SimplifyMultipleUseDemandedBits(
609               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
610         return DAG.getBitcast(DstVT, V);
611     }
612 
613     // TODO - bigendian once we have test coverage.
614     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
615         DAG.getDataLayout().isLittleEndian()) {
616       unsigned Scale = NumSrcEltBits / NumDstEltBits;
617       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
618       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
619       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
620       for (unsigned i = 0; i != NumElts; ++i)
621         if (DemandedElts[i]) {
622           unsigned Offset = (i % Scale) * NumDstEltBits;
623           DemandedSrcBits.insertBits(DemandedBits, Offset);
624           DemandedSrcElts.setBit(i / Scale);
625         }
626 
627       if (SDValue V = SimplifyMultipleUseDemandedBits(
628               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
629         return DAG.getBitcast(DstVT, V);
630     }
631 
632     break;
633   }
634   case ISD::AND: {
635     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
636     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
637 
638     // If all of the demanded bits are known 1 on one side, return the other.
639     // These bits cannot contribute to the result of the 'and' in this
640     // context.
641     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
642       return Op.getOperand(0);
643     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
644       return Op.getOperand(1);
645     break;
646   }
647   case ISD::OR: {
648     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
649     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
650 
651     // If all of the demanded bits are known zero on one side, return the
652     // other.  These bits cannot contribute to the result of the 'or' in this
653     // context.
654     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
655       return Op.getOperand(0);
656     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
657       return Op.getOperand(1);
658     break;
659   }
660   case ISD::XOR: {
661     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
662     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
663 
664     // If all of the demanded bits are known zero on one side, return the
665     // other.
666     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
667       return Op.getOperand(0);
668     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
669       return Op.getOperand(1);
670     break;
671   }
672   case ISD::SIGN_EXTEND_INREG: {
673     // If none of the extended bits are demanded, eliminate the sextinreg.
674     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
675     if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits())
676       return Op.getOperand(0);
677     break;
678   }
679   case ISD::VECTOR_SHUFFLE: {
680     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
681 
682     // If all the demanded elts are from one operand and are inline,
683     // then we can use the operand directly.
684     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
685     for (unsigned i = 0; i != NumElts; ++i) {
686       int M = ShuffleMask[i];
687       if (M < 0 || !DemandedElts[i])
688         continue;
689       AllUndef = false;
690       IdentityLHS &= (M == (int)i);
691       IdentityRHS &= ((M - NumElts) == i);
692     }
693 
694     if (AllUndef)
695       return DAG.getUNDEF(Op.getValueType());
696     if (IdentityLHS)
697       return Op.getOperand(0);
698     if (IdentityRHS)
699       return Op.getOperand(1);
700     break;
701   }
702   default:
703     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
704       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
705               Op, DemandedBits, DemandedElts, DAG, Depth))
706         return V;
707     break;
708   }
709   return SDValue();
710 }
711 
712 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
713 /// result of Op are ever used downstream. If we can use this information to
714 /// simplify Op, create a new simplified DAG node and return true, returning the
715 /// original and new nodes in Old and New. Otherwise, analyze the expression and
716 /// return a mask of Known bits for the expression (used to simplify the
717 /// caller).  The Known bits may only be accurate for those bits in the
718 /// OriginalDemandedBits and OriginalDemandedElts.
719 bool TargetLowering::SimplifyDemandedBits(
720     SDValue Op, const APInt &OriginalDemandedBits,
721     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
722     unsigned Depth, bool AssumeSingleUse) const {
723   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
724   assert(Op.getScalarValueSizeInBits() == BitWidth &&
725          "Mask size mismatches value type size!");
726 
727   unsigned NumElts = OriginalDemandedElts.getBitWidth();
728   assert((!Op.getValueType().isVector() ||
729           NumElts == Op.getValueType().getVectorNumElements()) &&
730          "Unexpected vector size");
731 
732   APInt DemandedBits = OriginalDemandedBits;
733   APInt DemandedElts = OriginalDemandedElts;
734   SDLoc dl(Op);
735   auto &DL = TLO.DAG.getDataLayout();
736 
737   // Don't know anything.
738   Known = KnownBits(BitWidth);
739 
740   // Undef operand.
741   if (Op.isUndef())
742     return false;
743 
744   if (Op.getOpcode() == ISD::Constant) {
745     // We know all of the bits for a constant!
746     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
747     Known.Zero = ~Known.One;
748     return false;
749   }
750 
751   // Other users may use these bits.
752   EVT VT = Op.getValueType();
753   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
754     if (Depth != 0) {
755       // If not at the root, Just compute the Known bits to
756       // simplify things downstream.
757       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
758       return false;
759     }
760     // If this is the root being simplified, allow it to have multiple uses,
761     // just set the DemandedBits/Elts to all bits.
762     DemandedBits = APInt::getAllOnesValue(BitWidth);
763     DemandedElts = APInt::getAllOnesValue(NumElts);
764   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
765     // Not demanding any bits/elts from Op.
766     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
767   } else if (Depth >= 6) { // Limit search depth.
768     return false;
769   }
770 
771   KnownBits Known2, KnownOut;
772   switch (Op.getOpcode()) {
773   case ISD::SCALAR_TO_VECTOR: {
774     if (!DemandedElts[0])
775       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
776 
777     KnownBits SrcKnown;
778     SDValue Src = Op.getOperand(0);
779     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
780     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
781     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
782       return true;
783     Known = SrcKnown.zextOrTrunc(BitWidth, false);
784     break;
785   }
786   case ISD::BUILD_VECTOR:
787     // Collect the known bits that are shared by every demanded element.
788     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
789     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
790     return false; // Don't fall through, will infinitely loop.
791   case ISD::LOAD: {
792     LoadSDNode *LD = cast<LoadSDNode>(Op);
793     if (getTargetConstantFromLoad(LD)) {
794       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
795       return false; // Don't fall through, will infinitely loop.
796     }
797     break;
798   }
799   case ISD::INSERT_VECTOR_ELT: {
800     SDValue Vec = Op.getOperand(0);
801     SDValue Scl = Op.getOperand(1);
802     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
803     EVT VecVT = Vec.getValueType();
804 
805     // If index isn't constant, assume we need all vector elements AND the
806     // inserted element.
807     APInt DemandedVecElts(DemandedElts);
808     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
809       unsigned Idx = CIdx->getZExtValue();
810       DemandedVecElts.clearBit(Idx);
811 
812       // Inserted element is not required.
813       if (!DemandedElts[Idx])
814         return TLO.CombineTo(Op, Vec);
815     }
816 
817     KnownBits KnownScl;
818     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
819     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
820     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
821       return true;
822 
823     Known = KnownScl.zextOrTrunc(BitWidth, false);
824 
825     KnownBits KnownVec;
826     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
827                              Depth + 1))
828       return true;
829 
830     if (!!DemandedVecElts) {
831       Known.One &= KnownVec.One;
832       Known.Zero &= KnownVec.Zero;
833     }
834 
835     return false;
836   }
837   case ISD::INSERT_SUBVECTOR: {
838     SDValue Base = Op.getOperand(0);
839     SDValue Sub = Op.getOperand(1);
840     EVT SubVT = Sub.getValueType();
841     unsigned NumSubElts = SubVT.getVectorNumElements();
842 
843     // If index isn't constant, assume we need the original demanded base
844     // elements and ALL the inserted subvector elements.
845     APInt BaseElts = DemandedElts;
846     APInt SubElts = APInt::getAllOnesValue(NumSubElts);
847     if (isa<ConstantSDNode>(Op.getOperand(2))) {
848       const APInt &Idx = Op.getConstantOperandAPInt(2);
849       if (Idx.ule(NumElts - NumSubElts)) {
850         unsigned SubIdx = Idx.getZExtValue();
851         SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
852         BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
853       }
854     }
855 
856     KnownBits KnownSub, KnownBase;
857     if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO,
858                              Depth + 1))
859       return true;
860     if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO,
861                              Depth + 1))
862       return true;
863 
864     Known.Zero.setAllBits();
865     Known.One.setAllBits();
866     if (!!SubElts) {
867         Known.One &= KnownSub.One;
868         Known.Zero &= KnownSub.Zero;
869     }
870     if (!!BaseElts) {
871         Known.One &= KnownBase.One;
872         Known.Zero &= KnownBase.Zero;
873     }
874     break;
875   }
876   case ISD::CONCAT_VECTORS: {
877     Known.Zero.setAllBits();
878     Known.One.setAllBits();
879     EVT SubVT = Op.getOperand(0).getValueType();
880     unsigned NumSubVecs = Op.getNumOperands();
881     unsigned NumSubElts = SubVT.getVectorNumElements();
882     for (unsigned i = 0; i != NumSubVecs; ++i) {
883       APInt DemandedSubElts =
884           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
885       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
886                                Known2, TLO, Depth + 1))
887         return true;
888       // Known bits are shared by every demanded subvector element.
889       if (!!DemandedSubElts) {
890         Known.One &= Known2.One;
891         Known.Zero &= Known2.Zero;
892       }
893     }
894     break;
895   }
896   case ISD::VECTOR_SHUFFLE: {
897     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
898 
899     // Collect demanded elements from shuffle operands..
900     APInt DemandedLHS(NumElts, 0);
901     APInt DemandedRHS(NumElts, 0);
902     for (unsigned i = 0; i != NumElts; ++i) {
903       if (!DemandedElts[i])
904         continue;
905       int M = ShuffleMask[i];
906       if (M < 0) {
907         // For UNDEF elements, we don't know anything about the common state of
908         // the shuffle result.
909         DemandedLHS.clearAllBits();
910         DemandedRHS.clearAllBits();
911         break;
912       }
913       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
914       if (M < (int)NumElts)
915         DemandedLHS.setBit(M);
916       else
917         DemandedRHS.setBit(M - NumElts);
918     }
919 
920     if (!!DemandedLHS || !!DemandedRHS) {
921       Known.Zero.setAllBits();
922       Known.One.setAllBits();
923       if (!!DemandedLHS) {
924         if (SimplifyDemandedBits(Op.getOperand(0), DemandedBits, DemandedLHS,
925                                  Known2, TLO, Depth + 1))
926           return true;
927         Known.One &= Known2.One;
928         Known.Zero &= Known2.Zero;
929       }
930       if (!!DemandedRHS) {
931         if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedRHS,
932                                  Known2, TLO, Depth + 1))
933           return true;
934         Known.One &= Known2.One;
935         Known.Zero &= Known2.Zero;
936       }
937     }
938     break;
939   }
940   case ISD::AND: {
941     SDValue Op0 = Op.getOperand(0);
942     SDValue Op1 = Op.getOperand(1);
943 
944     // If the RHS is a constant, check to see if the LHS would be zero without
945     // using the bits from the RHS.  Below, we use knowledge about the RHS to
946     // simplify the LHS, here we're using information from the LHS to simplify
947     // the RHS.
948     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
949       // Do not increment Depth here; that can cause an infinite loop.
950       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
951       // If the LHS already has zeros where RHSC does, this 'and' is dead.
952       if ((LHSKnown.Zero & DemandedBits) ==
953           (~RHSC->getAPIntValue() & DemandedBits))
954         return TLO.CombineTo(Op, Op0);
955 
956       // If any of the set bits in the RHS are known zero on the LHS, shrink
957       // the constant.
958       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
959         return true;
960 
961       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
962       // constant, but if this 'and' is only clearing bits that were just set by
963       // the xor, then this 'and' can be eliminated by shrinking the mask of
964       // the xor. For example, for a 32-bit X:
965       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
966       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
967           LHSKnown.One == ~RHSC->getAPIntValue()) {
968         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
969         return TLO.CombineTo(Op, Xor);
970       }
971     }
972 
973     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
974                              Depth + 1))
975       return true;
976     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
977     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
978                              Known2, TLO, Depth + 1))
979       return true;
980     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
981 
982     // Attempt to avoid multi-use ops if we don't need anything from them.
983     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
984       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
985           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
986       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
987           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
988       if (DemandedOp0 || DemandedOp1) {
989         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
990         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
991         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
992         return TLO.CombineTo(Op, NewOp);
993       }
994     }
995 
996     // If all of the demanded bits are known one on one side, return the other.
997     // These bits cannot contribute to the result of the 'and'.
998     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
999       return TLO.CombineTo(Op, Op0);
1000     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1001       return TLO.CombineTo(Op, Op1);
1002     // If all of the demanded bits in the inputs are known zeros, return zero.
1003     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1004       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1005     // If the RHS is a constant, see if we can simplify it.
1006     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
1007       return true;
1008     // If the operation can be done in a smaller type, do so.
1009     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1010       return true;
1011 
1012     // Output known-1 bits are only known if set in both the LHS & RHS.
1013     Known.One &= Known2.One;
1014     // Output known-0 are known to be clear if zero in either the LHS | RHS.
1015     Known.Zero |= Known2.Zero;
1016     break;
1017   }
1018   case ISD::OR: {
1019     SDValue Op0 = Op.getOperand(0);
1020     SDValue Op1 = Op.getOperand(1);
1021 
1022     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1023                              Depth + 1))
1024       return true;
1025     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1026     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1027                              Known2, TLO, Depth + 1))
1028       return true;
1029     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1030 
1031     // Attempt to avoid multi-use ops if we don't need anything from them.
1032     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1033       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1034           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1035       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1036           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1037       if (DemandedOp0 || DemandedOp1) {
1038         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1039         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1040         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1041         return TLO.CombineTo(Op, NewOp);
1042       }
1043     }
1044 
1045     // If all of the demanded bits are known zero on one side, return the other.
1046     // These bits cannot contribute to the result of the 'or'.
1047     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1048       return TLO.CombineTo(Op, Op0);
1049     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1050       return TLO.CombineTo(Op, Op1);
1051     // If the RHS is a constant, see if we can simplify it.
1052     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1053       return true;
1054     // If the operation can be done in a smaller type, do so.
1055     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1056       return true;
1057 
1058     // Output known-0 bits are only known if clear in both the LHS & RHS.
1059     Known.Zero &= Known2.Zero;
1060     // Output known-1 are known to be set if set in either the LHS | RHS.
1061     Known.One |= Known2.One;
1062     break;
1063   }
1064   case ISD::XOR: {
1065     SDValue Op0 = Op.getOperand(0);
1066     SDValue Op1 = Op.getOperand(1);
1067 
1068     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1069                              Depth + 1))
1070       return true;
1071     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1072     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1073                              Depth + 1))
1074       return true;
1075     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1076 
1077     // Attempt to avoid multi-use ops if we don't need anything from them.
1078     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1079       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1080           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1081       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1082           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1083       if (DemandedOp0 || DemandedOp1) {
1084         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1085         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1086         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1087         return TLO.CombineTo(Op, NewOp);
1088       }
1089     }
1090 
1091     // If all of the demanded bits are known zero on one side, return the other.
1092     // These bits cannot contribute to the result of the 'xor'.
1093     if (DemandedBits.isSubsetOf(Known.Zero))
1094       return TLO.CombineTo(Op, Op0);
1095     if (DemandedBits.isSubsetOf(Known2.Zero))
1096       return TLO.CombineTo(Op, Op1);
1097     // If the operation can be done in a smaller type, do so.
1098     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1099       return true;
1100 
1101     // If all of the unknown bits are known to be zero on one side or the other
1102     // (but not both) turn this into an *inclusive* or.
1103     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1104     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1105       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1106 
1107     // Output known-0 bits are known if clear or set in both the LHS & RHS.
1108     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
1109     // Output known-1 are known to be set if set in only one of the LHS, RHS.
1110     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1111 
1112     if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
1113       // If one side is a constant, and all of the known set bits on the other
1114       // side are also set in the constant, turn this into an AND, as we know
1115       // the bits will be cleared.
1116       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1117       // NB: it is okay if more bits are known than are requested
1118       if (C->getAPIntValue() == Known2.One) {
1119         SDValue ANDC =
1120             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1121         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1122       }
1123 
1124       // If the RHS is a constant, see if we can change it. Don't alter a -1
1125       // constant because that's a 'not' op, and that is better for combining
1126       // and codegen.
1127       if (!C->isAllOnesValue()) {
1128         if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
1129           // We're flipping all demanded bits. Flip the undemanded bits too.
1130           SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1131           return TLO.CombineTo(Op, New);
1132         }
1133         // If we can't turn this into a 'not', try to shrink the constant.
1134         if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1135           return true;
1136       }
1137     }
1138 
1139     Known = std::move(KnownOut);
1140     break;
1141   }
1142   case ISD::SELECT:
1143     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1144                              Depth + 1))
1145       return true;
1146     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1147                              Depth + 1))
1148       return true;
1149     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1150     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1151 
1152     // If the operands are constants, see if we can simplify them.
1153     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1154       return true;
1155 
1156     // Only known if known in both the LHS and RHS.
1157     Known.One &= Known2.One;
1158     Known.Zero &= Known2.Zero;
1159     break;
1160   case ISD::SELECT_CC:
1161     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1162                              Depth + 1))
1163       return true;
1164     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1165                              Depth + 1))
1166       return true;
1167     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1168     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1169 
1170     // If the operands are constants, see if we can simplify them.
1171     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1172       return true;
1173 
1174     // Only known if known in both the LHS and RHS.
1175     Known.One &= Known2.One;
1176     Known.Zero &= Known2.Zero;
1177     break;
1178   case ISD::SETCC: {
1179     SDValue Op0 = Op.getOperand(0);
1180     SDValue Op1 = Op.getOperand(1);
1181     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1182     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1183     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1184     // -1, we may be able to bypass the setcc.
1185     if (DemandedBits.isSignMask() &&
1186         Op0.getScalarValueSizeInBits() == BitWidth &&
1187         getBooleanContents(VT) ==
1188             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1189       // If we're testing X < 0, then this compare isn't needed - just use X!
1190       // FIXME: We're limiting to integer types here, but this should also work
1191       // if we don't care about FP signed-zero. The use of SETLT with FP means
1192       // that we don't care about NaNs.
1193       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1194           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1195         return TLO.CombineTo(Op, Op0);
1196 
1197       // TODO: Should we check for other forms of sign-bit comparisons?
1198       // Examples: X <= -1, X >= 0
1199     }
1200     if (getBooleanContents(Op0.getValueType()) ==
1201             TargetLowering::ZeroOrOneBooleanContent &&
1202         BitWidth > 1)
1203       Known.Zero.setBitsFrom(1);
1204     break;
1205   }
1206   case ISD::SHL: {
1207     SDValue Op0 = Op.getOperand(0);
1208     SDValue Op1 = Op.getOperand(1);
1209 
1210     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1211       // If the shift count is an invalid immediate, don't do anything.
1212       if (SA->getAPIntValue().uge(BitWidth))
1213         break;
1214 
1215       unsigned ShAmt = SA->getZExtValue();
1216       if (ShAmt == 0)
1217         return TLO.CombineTo(Op, Op0);
1218 
1219       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1220       // single shift.  We can do this if the bottom bits (which are shifted
1221       // out) are never demanded.
1222       // TODO - support non-uniform vector amounts.
1223       if (Op0.getOpcode() == ISD::SRL) {
1224         if ((DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1225           if (ConstantSDNode *SA2 =
1226                   isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1227             if (SA2->getAPIntValue().ult(BitWidth)) {
1228               unsigned C1 = SA2->getZExtValue();
1229               unsigned Opc = ISD::SHL;
1230               int Diff = ShAmt - C1;
1231               if (Diff < 0) {
1232                 Diff = -Diff;
1233                 Opc = ISD::SRL;
1234               }
1235 
1236               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
1237               return TLO.CombineTo(
1238                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1239             }
1240           }
1241         }
1242       }
1243 
1244       if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts,
1245                                Known, TLO, Depth + 1))
1246         return true;
1247 
1248       // Try shrinking the operation as long as the shift amount will still be
1249       // in range.
1250       if ((ShAmt < DemandedBits.getActiveBits()) &&
1251           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1252         return true;
1253 
1254       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1255       // are not demanded. This will likely allow the anyext to be folded away.
1256       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1257         SDValue InnerOp = Op0.getOperand(0);
1258         EVT InnerVT = InnerOp.getValueType();
1259         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1260         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1261             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1262           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1263           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1264             ShTy = InnerVT;
1265           SDValue NarrowShl =
1266               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1267                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1268           return TLO.CombineTo(
1269               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1270         }
1271         // Repeat the SHL optimization above in cases where an extension
1272         // intervenes: (shl (anyext (shr x, c1)), c2) to
1273         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1274         // aren't demanded (as above) and that the shifted upper c1 bits of
1275         // x aren't demanded.
1276         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1277             InnerOp.hasOneUse()) {
1278           if (ConstantSDNode *SA2 =
1279                   isConstOrConstSplat(InnerOp.getOperand(1))) {
1280             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
1281             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1282                 DemandedBits.getActiveBits() <=
1283                     (InnerBits - InnerShAmt + ShAmt) &&
1284                 DemandedBits.countTrailingZeros() >= ShAmt) {
1285               SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
1286                                                   Op1.getValueType());
1287               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1288                                                InnerOp.getOperand(0));
1289               return TLO.CombineTo(
1290                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1291             }
1292           }
1293         }
1294       }
1295 
1296       Known.Zero <<= ShAmt;
1297       Known.One <<= ShAmt;
1298       // low bits known zero.
1299       Known.Zero.setLowBits(ShAmt);
1300     }
1301     break;
1302   }
1303   case ISD::SRL: {
1304     SDValue Op0 = Op.getOperand(0);
1305     SDValue Op1 = Op.getOperand(1);
1306 
1307     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1308       // If the shift count is an invalid immediate, don't do anything.
1309       if (SA->getAPIntValue().uge(BitWidth))
1310         break;
1311 
1312       unsigned ShAmt = SA->getZExtValue();
1313       if (ShAmt == 0)
1314         return TLO.CombineTo(Op, Op0);
1315 
1316       EVT ShiftVT = Op1.getValueType();
1317       APInt InDemandedMask = (DemandedBits << ShAmt);
1318 
1319       // If the shift is exact, then it does demand the low bits (and knows that
1320       // they are zero).
1321       if (Op->getFlags().hasExact())
1322         InDemandedMask.setLowBits(ShAmt);
1323 
1324       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1325       // single shift.  We can do this if the top bits (which are shifted out)
1326       // are never demanded.
1327       // TODO - support non-uniform vector amounts.
1328       if (Op0.getOpcode() == ISD::SHL) {
1329         if (ConstantSDNode *SA2 =
1330                 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1331           if ((DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) {
1332             if (SA2->getAPIntValue().ult(BitWidth)) {
1333               unsigned C1 = SA2->getZExtValue();
1334               unsigned Opc = ISD::SRL;
1335               int Diff = ShAmt - C1;
1336               if (Diff < 0) {
1337                 Diff = -Diff;
1338                 Opc = ISD::SHL;
1339               }
1340 
1341               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1342               return TLO.CombineTo(
1343                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1344             }
1345           }
1346         }
1347       }
1348 
1349       // Compute the new bits that are at the top now.
1350       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1351                                Depth + 1))
1352         return true;
1353       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1354       Known.Zero.lshrInPlace(ShAmt);
1355       Known.One.lshrInPlace(ShAmt);
1356 
1357       Known.Zero.setHighBits(ShAmt); // High bits known zero.
1358     }
1359     break;
1360   }
1361   case ISD::SRA: {
1362     SDValue Op0 = Op.getOperand(0);
1363     SDValue Op1 = Op.getOperand(1);
1364 
1365     // If this is an arithmetic shift right and only the low-bit is set, we can
1366     // always convert this into a logical shr, even if the shift amount is
1367     // variable.  The low bit of the shift cannot be an input sign bit unless
1368     // the shift amount is >= the size of the datatype, which is undefined.
1369     if (DemandedBits.isOneValue())
1370       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1371 
1372     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1373       // If the shift count is an invalid immediate, don't do anything.
1374       if (SA->getAPIntValue().uge(BitWidth))
1375         break;
1376 
1377       unsigned ShAmt = SA->getZExtValue();
1378       if (ShAmt == 0)
1379         return TLO.CombineTo(Op, Op0);
1380 
1381       APInt InDemandedMask = (DemandedBits << ShAmt);
1382 
1383       // If the shift is exact, then it does demand the low bits (and knows that
1384       // they are zero).
1385       if (Op->getFlags().hasExact())
1386         InDemandedMask.setLowBits(ShAmt);
1387 
1388       // If any of the demanded bits are produced by the sign extension, we also
1389       // demand the input sign bit.
1390       if (DemandedBits.countLeadingZeros() < ShAmt)
1391         InDemandedMask.setSignBit();
1392 
1393       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1394                                Depth + 1))
1395         return true;
1396       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1397       Known.Zero.lshrInPlace(ShAmt);
1398       Known.One.lshrInPlace(ShAmt);
1399 
1400       // If the input sign bit is known to be zero, or if none of the top bits
1401       // are demanded, turn this into an unsigned shift right.
1402       if (Known.Zero[BitWidth - ShAmt - 1] ||
1403           DemandedBits.countLeadingZeros() >= ShAmt) {
1404         SDNodeFlags Flags;
1405         Flags.setExact(Op->getFlags().hasExact());
1406         return TLO.CombineTo(
1407             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1408       }
1409 
1410       int Log2 = DemandedBits.exactLogBase2();
1411       if (Log2 >= 0) {
1412         // The bit must come from the sign.
1413         SDValue NewSA =
1414             TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType());
1415         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1416       }
1417 
1418       if (Known.One[BitWidth - ShAmt - 1])
1419         // New bits are known one.
1420         Known.One.setHighBits(ShAmt);
1421     }
1422     break;
1423   }
1424   case ISD::FSHL:
1425   case ISD::FSHR: {
1426     SDValue Op0 = Op.getOperand(0);
1427     SDValue Op1 = Op.getOperand(1);
1428     SDValue Op2 = Op.getOperand(2);
1429     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1430 
1431     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1432       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1433 
1434       // For fshl, 0-shift returns the 1st arg.
1435       // For fshr, 0-shift returns the 2nd arg.
1436       if (Amt == 0) {
1437         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1438                                  Known, TLO, Depth + 1))
1439           return true;
1440         break;
1441       }
1442 
1443       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1444       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1445       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1446       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1447       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1448                                Depth + 1))
1449         return true;
1450       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1451                                Depth + 1))
1452         return true;
1453 
1454       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1455       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1456       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1457       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1458       Known.One |= Known2.One;
1459       Known.Zero |= Known2.Zero;
1460     }
1461     break;
1462   }
1463   case ISD::BITREVERSE: {
1464     SDValue Src = Op.getOperand(0);
1465     APInt DemandedSrcBits = DemandedBits.reverseBits();
1466     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1467                              Depth + 1))
1468       return true;
1469     Known.One = Known2.One.reverseBits();
1470     Known.Zero = Known2.Zero.reverseBits();
1471     break;
1472   }
1473   case ISD::SIGN_EXTEND_INREG: {
1474     SDValue Op0 = Op.getOperand(0);
1475     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1476     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1477 
1478     // If we only care about the highest bit, don't bother shifting right.
1479     if (DemandedBits.isSignMask()) {
1480       unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0);
1481       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1482       // However if the input is already sign extended we expect the sign
1483       // extension to be dropped altogether later and do not simplify.
1484       if (!AlreadySignExtended) {
1485         // Compute the correct shift amount type, which must be getShiftAmountTy
1486         // for scalar types after legalization.
1487         EVT ShiftAmtTy = VT;
1488         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1489           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1490 
1491         SDValue ShiftAmt =
1492             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1493         return TLO.CombineTo(Op,
1494                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1495       }
1496     }
1497 
1498     // If none of the extended bits are demanded, eliminate the sextinreg.
1499     if (DemandedBits.getActiveBits() <= ExVTBits)
1500       return TLO.CombineTo(Op, Op0);
1501 
1502     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1503 
1504     // Since the sign extended bits are demanded, we know that the sign
1505     // bit is demanded.
1506     InputDemandedBits.setBit(ExVTBits - 1);
1507 
1508     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1509       return true;
1510     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1511 
1512     // If the sign bit of the input is known set or clear, then we know the
1513     // top bits of the result.
1514 
1515     // If the input sign bit is known zero, convert this into a zero extension.
1516     if (Known.Zero[ExVTBits - 1])
1517       return TLO.CombineTo(
1518           Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
1519 
1520     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1521     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1522       Known.One.setBitsFrom(ExVTBits);
1523       Known.Zero &= Mask;
1524     } else { // Input sign bit unknown
1525       Known.Zero &= Mask;
1526       Known.One &= Mask;
1527     }
1528     break;
1529   }
1530   case ISD::BUILD_PAIR: {
1531     EVT HalfVT = Op.getOperand(0).getValueType();
1532     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1533 
1534     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1535     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1536 
1537     KnownBits KnownLo, KnownHi;
1538 
1539     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1540       return true;
1541 
1542     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1543       return true;
1544 
1545     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1546                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1547 
1548     Known.One = KnownLo.One.zext(BitWidth) |
1549                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1550     break;
1551   }
1552   case ISD::ZERO_EXTEND:
1553   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1554     SDValue Src = Op.getOperand(0);
1555     EVT SrcVT = Src.getValueType();
1556     unsigned InBits = SrcVT.getScalarSizeInBits();
1557     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1558     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1559 
1560     // If none of the top bits are demanded, convert this into an any_extend.
1561     if (DemandedBits.getActiveBits() <= InBits) {
1562       // If we only need the non-extended bits of the bottom element
1563       // then we can just bitcast to the result.
1564       if (IsVecInReg && DemandedElts == 1 &&
1565           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1566           TLO.DAG.getDataLayout().isLittleEndian())
1567         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1568 
1569       unsigned Opc =
1570           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1571       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1572         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1573     }
1574 
1575     APInt InDemandedBits = DemandedBits.trunc(InBits);
1576     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1577     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1578                              Depth + 1))
1579       return true;
1580     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1581     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1582     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
1583     break;
1584   }
1585   case ISD::SIGN_EXTEND:
1586   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1587     SDValue Src = Op.getOperand(0);
1588     EVT SrcVT = Src.getValueType();
1589     unsigned InBits = SrcVT.getScalarSizeInBits();
1590     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1591     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1592 
1593     // If none of the top bits are demanded, convert this into an any_extend.
1594     if (DemandedBits.getActiveBits() <= InBits) {
1595       // If we only need the non-extended bits of the bottom element
1596       // then we can just bitcast to the result.
1597       if (IsVecInReg && DemandedElts == 1 &&
1598           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1599           TLO.DAG.getDataLayout().isLittleEndian())
1600         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1601 
1602       unsigned Opc =
1603           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1604       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1605         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1606     }
1607 
1608     APInt InDemandedBits = DemandedBits.trunc(InBits);
1609     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1610 
1611     // Since some of the sign extended bits are demanded, we know that the sign
1612     // bit is demanded.
1613     InDemandedBits.setBit(InBits - 1);
1614 
1615     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1616                              Depth + 1))
1617       return true;
1618     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1619     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1620 
1621     // If the sign bit is known one, the top bits match.
1622     Known = Known.sext(BitWidth);
1623 
1624     // If the sign bit is known zero, convert this to a zero extend.
1625     if (Known.isNonNegative()) {
1626       unsigned Opc =
1627           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1628       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1629         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1630     }
1631     break;
1632   }
1633   case ISD::ANY_EXTEND:
1634   case ISD::ANY_EXTEND_VECTOR_INREG: {
1635     SDValue Src = Op.getOperand(0);
1636     EVT SrcVT = Src.getValueType();
1637     unsigned InBits = SrcVT.getScalarSizeInBits();
1638     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1639     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1640 
1641     // If we only need the bottom element then we can just bitcast.
1642     // TODO: Handle ANY_EXTEND?
1643     if (IsVecInReg && DemandedElts == 1 &&
1644         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1645         TLO.DAG.getDataLayout().isLittleEndian())
1646       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1647 
1648     APInt InDemandedBits = DemandedBits.trunc(InBits);
1649     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1650     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1651                              Depth + 1))
1652       return true;
1653     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1654     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1655     Known = Known.zext(BitWidth, false /* => any extend */);
1656     break;
1657   }
1658   case ISD::TRUNCATE: {
1659     SDValue Src = Op.getOperand(0);
1660 
1661     // Simplify the input, using demanded bit information, and compute the known
1662     // zero/one bits live out.
1663     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1664     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1665     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1666       return true;
1667     Known = Known.trunc(BitWidth);
1668 
1669     // If the input is only used by this truncate, see if we can shrink it based
1670     // on the known demanded bits.
1671     if (Src.getNode()->hasOneUse()) {
1672       switch (Src.getOpcode()) {
1673       default:
1674         break;
1675       case ISD::SRL:
1676         // Shrink SRL by a constant if none of the high bits shifted in are
1677         // demanded.
1678         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1679           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1680           // undesirable.
1681           break;
1682 
1683         auto *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
1684         if (!ShAmt || ShAmt->getAPIntValue().uge(BitWidth))
1685           break;
1686 
1687         SDValue Shift = Src.getOperand(1);
1688         uint64_t ShVal = ShAmt->getZExtValue();
1689 
1690         if (TLO.LegalTypes())
1691           Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1692 
1693         APInt HighBits =
1694             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
1695         HighBits.lshrInPlace(ShVal);
1696         HighBits = HighBits.trunc(BitWidth);
1697 
1698         if (!(HighBits & DemandedBits)) {
1699           // None of the shifted in bits are needed.  Add a truncate of the
1700           // shift input, then shift it.
1701           SDValue NewTrunc =
1702               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1703           return TLO.CombineTo(
1704               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift));
1705         }
1706         break;
1707       }
1708     }
1709 
1710     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1711     break;
1712   }
1713   case ISD::AssertZext: {
1714     // AssertZext demands all of the high bits, plus any of the low bits
1715     // demanded by its users.
1716     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1717     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1718     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
1719                              TLO, Depth + 1))
1720       return true;
1721     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1722 
1723     Known.Zero |= ~InMask;
1724     break;
1725   }
1726   case ISD::EXTRACT_VECTOR_ELT: {
1727     SDValue Src = Op.getOperand(0);
1728     SDValue Idx = Op.getOperand(1);
1729     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1730     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1731 
1732     // Demand the bits from every vector element without a constant index.
1733     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1734     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1735       if (CIdx->getAPIntValue().ult(NumSrcElts))
1736         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1737 
1738     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1739     // anything about the extended bits.
1740     APInt DemandedSrcBits = DemandedBits;
1741     if (BitWidth > EltBitWidth)
1742       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1743 
1744     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1745                              Depth + 1))
1746       return true;
1747 
1748     Known = Known2;
1749     if (BitWidth > EltBitWidth)
1750       Known = Known.zext(BitWidth, false /* => any extend */);
1751     break;
1752   }
1753   case ISD::BITCAST: {
1754     SDValue Src = Op.getOperand(0);
1755     EVT SrcVT = Src.getValueType();
1756     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1757 
1758     // If this is an FP->Int bitcast and if the sign bit is the only
1759     // thing demanded, turn this into a FGETSIGN.
1760     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1761         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1762         SrcVT.isFloatingPoint()) {
1763       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1764       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1765       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1766           SrcVT != MVT::f128) {
1767         // Cannot eliminate/lower SHL for f128 yet.
1768         EVT Ty = OpVTLegal ? VT : MVT::i32;
1769         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1770         // place.  We expect the SHL to be eliminated by other optimizations.
1771         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
1772         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1773         if (!OpVTLegal && OpVTSizeInBits > 32)
1774           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1775         unsigned ShVal = Op.getValueSizeInBits() - 1;
1776         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1777         return TLO.CombineTo(Op,
1778                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1779       }
1780     }
1781 
1782     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
1783     // Demand the elt/bit if any of the original elts/bits are demanded.
1784     // TODO - bigendian once we have test coverage.
1785     // TODO - bool vectors once SimplifyDemandedVectorElts has SETCC support.
1786     if (SrcVT.isVector() && NumSrcEltBits > 1 &&
1787         (BitWidth % NumSrcEltBits) == 0 &&
1788         TLO.DAG.getDataLayout().isLittleEndian()) {
1789       unsigned Scale = BitWidth / NumSrcEltBits;
1790       unsigned NumSrcElts = SrcVT.getVectorNumElements();
1791       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1792       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1793       for (unsigned i = 0; i != Scale; ++i) {
1794         unsigned Offset = i * NumSrcEltBits;
1795         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
1796         if (!Sub.isNullValue()) {
1797           DemandedSrcBits |= Sub;
1798           for (unsigned j = 0; j != NumElts; ++j)
1799             if (DemandedElts[j])
1800               DemandedSrcElts.setBit((j * Scale) + i);
1801         }
1802       }
1803 
1804       APInt KnownSrcUndef, KnownSrcZero;
1805       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1806                                      KnownSrcZero, TLO, Depth + 1))
1807         return true;
1808 
1809       KnownBits KnownSrcBits;
1810       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1811                                KnownSrcBits, TLO, Depth + 1))
1812         return true;
1813     } else if ((NumSrcEltBits % BitWidth) == 0 &&
1814                TLO.DAG.getDataLayout().isLittleEndian()) {
1815       unsigned Scale = NumSrcEltBits / BitWidth;
1816       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1817       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1818       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1819       for (unsigned i = 0; i != NumElts; ++i)
1820         if (DemandedElts[i]) {
1821           unsigned Offset = (i % Scale) * BitWidth;
1822           DemandedSrcBits.insertBits(DemandedBits, Offset);
1823           DemandedSrcElts.setBit(i / Scale);
1824         }
1825 
1826       if (SrcVT.isVector()) {
1827         APInt KnownSrcUndef, KnownSrcZero;
1828         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1829                                        KnownSrcZero, TLO, Depth + 1))
1830           return true;
1831       }
1832 
1833       KnownBits KnownSrcBits;
1834       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1835                                KnownSrcBits, TLO, Depth + 1))
1836         return true;
1837     }
1838 
1839     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
1840     // recursive call where Known may be useful to the caller.
1841     if (Depth > 0) {
1842       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1843       return false;
1844     }
1845     break;
1846   }
1847   case ISD::ADD:
1848   case ISD::MUL:
1849   case ISD::SUB: {
1850     // Add, Sub, and Mul don't demand any bits in positions beyond that
1851     // of the highest bit demanded of them.
1852     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
1853     SDNodeFlags Flags = Op.getNode()->getFlags();
1854     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
1855     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
1856     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
1857                              Depth + 1) ||
1858         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
1859                              Depth + 1) ||
1860         // See if the operation should be performed at a smaller bit width.
1861         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
1862       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1863         // Disable the nsw and nuw flags. We can no longer guarantee that we
1864         // won't wrap after simplification.
1865         Flags.setNoSignedWrap(false);
1866         Flags.setNoUnsignedWrap(false);
1867         SDValue NewOp =
1868             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
1869         return TLO.CombineTo(Op, NewOp);
1870       }
1871       return true;
1872     }
1873 
1874     // Attempt to avoid multi-use ops if we don't need anything from them.
1875     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1876       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1877           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
1878       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1879           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
1880       if (DemandedOp0 || DemandedOp1) {
1881         Flags.setNoSignedWrap(false);
1882         Flags.setNoUnsignedWrap(false);
1883         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1884         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1885         SDValue NewOp =
1886             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
1887         return TLO.CombineTo(Op, NewOp);
1888       }
1889     }
1890 
1891     // If we have a constant operand, we may be able to turn it into -1 if we
1892     // do not demand the high bits. This can make the constant smaller to
1893     // encode, allow more general folding, or match specialized instruction
1894     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
1895     // is probably not useful (and could be detrimental).
1896     ConstantSDNode *C = isConstOrConstSplat(Op1);
1897     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
1898     if (C && !C->isAllOnesValue() && !C->isOne() &&
1899         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
1900       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
1901       // We can't guarantee that the new math op doesn't wrap, so explicitly
1902       // clear those flags to prevent folding with a potential existing node
1903       // that has those flags set.
1904       SDNodeFlags Flags;
1905       Flags.setNoSignedWrap(false);
1906       Flags.setNoUnsignedWrap(false);
1907       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
1908       return TLO.CombineTo(Op, NewOp);
1909     }
1910 
1911     LLVM_FALLTHROUGH;
1912   }
1913   default:
1914     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1915       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
1916                                             Known, TLO, Depth))
1917         return true;
1918       break;
1919     }
1920 
1921     // Just use computeKnownBits to compute output bits.
1922     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1923     break;
1924   }
1925 
1926   // If we know the value of all of the demanded bits, return this as a
1927   // constant.
1928   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
1929     // Avoid folding to a constant if any OpaqueConstant is involved.
1930     const SDNode *N = Op.getNode();
1931     for (SDNodeIterator I = SDNodeIterator::begin(N),
1932                         E = SDNodeIterator::end(N);
1933          I != E; ++I) {
1934       SDNode *Op = *I;
1935       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
1936         if (C->isOpaque())
1937           return false;
1938     }
1939     // TODO: Handle float bits as well.
1940     if (VT.isInteger())
1941       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
1942   }
1943 
1944   return false;
1945 }
1946 
1947 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
1948                                                 const APInt &DemandedElts,
1949                                                 APInt &KnownUndef,
1950                                                 APInt &KnownZero,
1951                                                 DAGCombinerInfo &DCI) const {
1952   SelectionDAG &DAG = DCI.DAG;
1953   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1954                         !DCI.isBeforeLegalizeOps());
1955 
1956   bool Simplified =
1957       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
1958   if (Simplified) {
1959     DCI.AddToWorklist(Op.getNode());
1960     DCI.CommitTargetLoweringOpt(TLO);
1961   }
1962 
1963   return Simplified;
1964 }
1965 
1966 /// Given a vector binary operation and known undefined elements for each input
1967 /// operand, compute whether each element of the output is undefined.
1968 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
1969                                          const APInt &UndefOp0,
1970                                          const APInt &UndefOp1) {
1971   EVT VT = BO.getValueType();
1972   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
1973          "Vector binop only");
1974 
1975   EVT EltVT = VT.getVectorElementType();
1976   unsigned NumElts = VT.getVectorNumElements();
1977   assert(UndefOp0.getBitWidth() == NumElts &&
1978          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
1979 
1980   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
1981                                    const APInt &UndefVals) {
1982     if (UndefVals[Index])
1983       return DAG.getUNDEF(EltVT);
1984 
1985     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1986       // Try hard to make sure that the getNode() call is not creating temporary
1987       // nodes. Ignore opaque integers because they do not constant fold.
1988       SDValue Elt = BV->getOperand(Index);
1989       auto *C = dyn_cast<ConstantSDNode>(Elt);
1990       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
1991         return Elt;
1992     }
1993 
1994     return SDValue();
1995   };
1996 
1997   APInt KnownUndef = APInt::getNullValue(NumElts);
1998   for (unsigned i = 0; i != NumElts; ++i) {
1999     // If both inputs for this element are either constant or undef and match
2000     // the element type, compute the constant/undef result for this element of
2001     // the vector.
2002     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2003     // not handle FP constants. The code within getNode() should be refactored
2004     // to avoid the danger of creating a bogus temporary node here.
2005     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2006     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2007     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2008       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2009         KnownUndef.setBit(i);
2010   }
2011   return KnownUndef;
2012 }
2013 
2014 bool TargetLowering::SimplifyDemandedVectorElts(
2015     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2016     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2017     bool AssumeSingleUse) const {
2018   EVT VT = Op.getValueType();
2019   APInt DemandedElts = OriginalDemandedElts;
2020   unsigned NumElts = DemandedElts.getBitWidth();
2021   assert(VT.isVector() && "Expected vector op");
2022   assert(VT.getVectorNumElements() == NumElts &&
2023          "Mask size mismatches value type element count!");
2024 
2025   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2026 
2027   // Undef operand.
2028   if (Op.isUndef()) {
2029     KnownUndef.setAllBits();
2030     return false;
2031   }
2032 
2033   // If Op has other users, assume that all elements are needed.
2034   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2035     DemandedElts.setAllBits();
2036 
2037   // Not demanding any elements from Op.
2038   if (DemandedElts == 0) {
2039     KnownUndef.setAllBits();
2040     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2041   }
2042 
2043   // Limit search depth.
2044   if (Depth >= 6)
2045     return false;
2046 
2047   SDLoc DL(Op);
2048   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2049 
2050   switch (Op.getOpcode()) {
2051   case ISD::SCALAR_TO_VECTOR: {
2052     if (!DemandedElts[0]) {
2053       KnownUndef.setAllBits();
2054       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2055     }
2056     KnownUndef.setHighBits(NumElts - 1);
2057     break;
2058   }
2059   case ISD::BITCAST: {
2060     SDValue Src = Op.getOperand(0);
2061     EVT SrcVT = Src.getValueType();
2062 
2063     // We only handle vectors here.
2064     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2065     if (!SrcVT.isVector())
2066       break;
2067 
2068     // Fast handling of 'identity' bitcasts.
2069     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2070     if (NumSrcElts == NumElts)
2071       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2072                                         KnownZero, TLO, Depth + 1);
2073 
2074     APInt SrcZero, SrcUndef;
2075     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2076 
2077     // Bitcast from 'large element' src vector to 'small element' vector, we
2078     // must demand a source element if any DemandedElt maps to it.
2079     if ((NumElts % NumSrcElts) == 0) {
2080       unsigned Scale = NumElts / NumSrcElts;
2081       for (unsigned i = 0; i != NumElts; ++i)
2082         if (DemandedElts[i])
2083           SrcDemandedElts.setBit(i / Scale);
2084 
2085       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2086                                      TLO, Depth + 1))
2087         return true;
2088 
2089       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2090       // of the large element.
2091       // TODO - bigendian once we have test coverage.
2092       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2093         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2094         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2095         for (unsigned i = 0; i != NumElts; ++i)
2096           if (DemandedElts[i]) {
2097             unsigned Ofs = (i % Scale) * EltSizeInBits;
2098             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2099           }
2100 
2101         KnownBits Known;
2102         if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1))
2103           return true;
2104       }
2105 
2106       // If the src element is zero/undef then all the output elements will be -
2107       // only demanded elements are guaranteed to be correct.
2108       for (unsigned i = 0; i != NumSrcElts; ++i) {
2109         if (SrcDemandedElts[i]) {
2110           if (SrcZero[i])
2111             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2112           if (SrcUndef[i])
2113             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2114         }
2115       }
2116     }
2117 
2118     // Bitcast from 'small element' src vector to 'large element' vector, we
2119     // demand all smaller source elements covered by the larger demanded element
2120     // of this vector.
2121     if ((NumSrcElts % NumElts) == 0) {
2122       unsigned Scale = NumSrcElts / NumElts;
2123       for (unsigned i = 0; i != NumElts; ++i)
2124         if (DemandedElts[i])
2125           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2126 
2127       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2128                                      TLO, Depth + 1))
2129         return true;
2130 
2131       // If all the src elements covering an output element are zero/undef, then
2132       // the output element will be as well, assuming it was demanded.
2133       for (unsigned i = 0; i != NumElts; ++i) {
2134         if (DemandedElts[i]) {
2135           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2136             KnownZero.setBit(i);
2137           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2138             KnownUndef.setBit(i);
2139         }
2140       }
2141     }
2142     break;
2143   }
2144   case ISD::BUILD_VECTOR: {
2145     // Check all elements and simplify any unused elements with UNDEF.
2146     if (!DemandedElts.isAllOnesValue()) {
2147       // Don't simplify BROADCASTS.
2148       if (llvm::any_of(Op->op_values(),
2149                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2150         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2151         bool Updated = false;
2152         for (unsigned i = 0; i != NumElts; ++i) {
2153           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2154             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2155             KnownUndef.setBit(i);
2156             Updated = true;
2157           }
2158         }
2159         if (Updated)
2160           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2161       }
2162     }
2163     for (unsigned i = 0; i != NumElts; ++i) {
2164       SDValue SrcOp = Op.getOperand(i);
2165       if (SrcOp.isUndef()) {
2166         KnownUndef.setBit(i);
2167       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2168                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2169         KnownZero.setBit(i);
2170       }
2171     }
2172     break;
2173   }
2174   case ISD::CONCAT_VECTORS: {
2175     EVT SubVT = Op.getOperand(0).getValueType();
2176     unsigned NumSubVecs = Op.getNumOperands();
2177     unsigned NumSubElts = SubVT.getVectorNumElements();
2178     for (unsigned i = 0; i != NumSubVecs; ++i) {
2179       SDValue SubOp = Op.getOperand(i);
2180       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2181       APInt SubUndef, SubZero;
2182       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2183                                      Depth + 1))
2184         return true;
2185       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2186       KnownZero.insertBits(SubZero, i * NumSubElts);
2187     }
2188     break;
2189   }
2190   case ISD::INSERT_SUBVECTOR: {
2191     if (!isa<ConstantSDNode>(Op.getOperand(2)))
2192       break;
2193     SDValue Base = Op.getOperand(0);
2194     SDValue Sub = Op.getOperand(1);
2195     EVT SubVT = Sub.getValueType();
2196     unsigned NumSubElts = SubVT.getVectorNumElements();
2197     const APInt &Idx = Op.getConstantOperandAPInt(2);
2198     if (Idx.ugt(NumElts - NumSubElts))
2199       break;
2200     unsigned SubIdx = Idx.getZExtValue();
2201     APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
2202     APInt SubUndef, SubZero;
2203     if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
2204                                    Depth + 1))
2205       return true;
2206     APInt BaseElts = DemandedElts;
2207     BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
2208     if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
2209                                    Depth + 1))
2210       return true;
2211     KnownUndef.insertBits(SubUndef, SubIdx);
2212     KnownZero.insertBits(SubZero, SubIdx);
2213     break;
2214   }
2215   case ISD::EXTRACT_SUBVECTOR: {
2216     SDValue Src = Op.getOperand(0);
2217     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2218     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2219     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2220       // Offset the demanded elts by the subvector index.
2221       uint64_t Idx = SubIdx->getZExtValue();
2222       APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2223       APInt SrcUndef, SrcZero;
2224       if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
2225                                      Depth + 1))
2226         return true;
2227       KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2228       KnownZero = SrcZero.extractBits(NumElts, Idx);
2229     }
2230     break;
2231   }
2232   case ISD::INSERT_VECTOR_ELT: {
2233     SDValue Vec = Op.getOperand(0);
2234     SDValue Scl = Op.getOperand(1);
2235     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2236 
2237     // For a legal, constant insertion index, if we don't need this insertion
2238     // then strip it, else remove it from the demanded elts.
2239     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2240       unsigned Idx = CIdx->getZExtValue();
2241       if (!DemandedElts[Idx])
2242         return TLO.CombineTo(Op, Vec);
2243 
2244       APInt DemandedVecElts(DemandedElts);
2245       DemandedVecElts.clearBit(Idx);
2246       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2247                                      KnownZero, TLO, Depth + 1))
2248         return true;
2249 
2250       KnownUndef.clearBit(Idx);
2251       if (Scl.isUndef())
2252         KnownUndef.setBit(Idx);
2253 
2254       KnownZero.clearBit(Idx);
2255       if (isNullConstant(Scl) || isNullFPConstant(Scl))
2256         KnownZero.setBit(Idx);
2257       break;
2258     }
2259 
2260     APInt VecUndef, VecZero;
2261     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2262                                    Depth + 1))
2263       return true;
2264     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2265     break;
2266   }
2267   case ISD::VSELECT: {
2268     // Try to transform the select condition based on the current demanded
2269     // elements.
2270     // TODO: If a condition element is undef, we can choose from one arm of the
2271     //       select (and if one arm is undef, then we can propagate that to the
2272     //       result).
2273     // TODO - add support for constant vselect masks (see IR version of this).
2274     APInt UnusedUndef, UnusedZero;
2275     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2276                                    UnusedZero, TLO, Depth + 1))
2277       return true;
2278 
2279     // See if we can simplify either vselect operand.
2280     APInt DemandedLHS(DemandedElts);
2281     APInt DemandedRHS(DemandedElts);
2282     APInt UndefLHS, ZeroLHS;
2283     APInt UndefRHS, ZeroRHS;
2284     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2285                                    ZeroLHS, TLO, Depth + 1))
2286       return true;
2287     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2288                                    ZeroRHS, TLO, Depth + 1))
2289       return true;
2290 
2291     KnownUndef = UndefLHS & UndefRHS;
2292     KnownZero = ZeroLHS & ZeroRHS;
2293     break;
2294   }
2295   case ISD::VECTOR_SHUFFLE: {
2296     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2297 
2298     // Collect demanded elements from shuffle operands..
2299     APInt DemandedLHS(NumElts, 0);
2300     APInt DemandedRHS(NumElts, 0);
2301     for (unsigned i = 0; i != NumElts; ++i) {
2302       int M = ShuffleMask[i];
2303       if (M < 0 || !DemandedElts[i])
2304         continue;
2305       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2306       if (M < (int)NumElts)
2307         DemandedLHS.setBit(M);
2308       else
2309         DemandedRHS.setBit(M - NumElts);
2310     }
2311 
2312     // See if we can simplify either shuffle operand.
2313     APInt UndefLHS, ZeroLHS;
2314     APInt UndefRHS, ZeroRHS;
2315     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2316                                    ZeroLHS, TLO, Depth + 1))
2317       return true;
2318     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2319                                    ZeroRHS, TLO, Depth + 1))
2320       return true;
2321 
2322     // Simplify mask using undef elements from LHS/RHS.
2323     bool Updated = false;
2324     bool IdentityLHS = true, IdentityRHS = true;
2325     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2326     for (unsigned i = 0; i != NumElts; ++i) {
2327       int &M = NewMask[i];
2328       if (M < 0)
2329         continue;
2330       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2331           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2332         Updated = true;
2333         M = -1;
2334       }
2335       IdentityLHS &= (M < 0) || (M == (int)i);
2336       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2337     }
2338 
2339     // Update legal shuffle masks based on demanded elements if it won't reduce
2340     // to Identity which can cause premature removal of the shuffle mask.
2341     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps &&
2342         isShuffleMaskLegal(NewMask, VT))
2343       return TLO.CombineTo(Op,
2344                            TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0),
2345                                                     Op.getOperand(1), NewMask));
2346 
2347     // Propagate undef/zero elements from LHS/RHS.
2348     for (unsigned i = 0; i != NumElts; ++i) {
2349       int M = ShuffleMask[i];
2350       if (M < 0) {
2351         KnownUndef.setBit(i);
2352       } else if (M < (int)NumElts) {
2353         if (UndefLHS[M])
2354           KnownUndef.setBit(i);
2355         if (ZeroLHS[M])
2356           KnownZero.setBit(i);
2357       } else {
2358         if (UndefRHS[M - NumElts])
2359           KnownUndef.setBit(i);
2360         if (ZeroRHS[M - NumElts])
2361           KnownZero.setBit(i);
2362       }
2363     }
2364     break;
2365   }
2366   case ISD::ANY_EXTEND_VECTOR_INREG:
2367   case ISD::SIGN_EXTEND_VECTOR_INREG:
2368   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2369     APInt SrcUndef, SrcZero;
2370     SDValue Src = Op.getOperand(0);
2371     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2372     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2373     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2374                                    Depth + 1))
2375       return true;
2376     KnownZero = SrcZero.zextOrTrunc(NumElts);
2377     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2378 
2379     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2380         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2381         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2382       // aext - if we just need the bottom element then we can bitcast.
2383       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2384     }
2385 
2386     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2387       // zext(undef) upper bits are guaranteed to be zero.
2388       if (DemandedElts.isSubsetOf(KnownUndef))
2389         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2390       KnownUndef.clearAllBits();
2391     }
2392     break;
2393   }
2394 
2395   // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
2396   // MAX, saturated math, etc.
2397   case ISD::OR:
2398   case ISD::XOR:
2399   case ISD::ADD:
2400   case ISD::SUB:
2401   case ISD::FADD:
2402   case ISD::FSUB:
2403   case ISD::FMUL:
2404   case ISD::FDIV:
2405   case ISD::FREM: {
2406     APInt UndefRHS, ZeroRHS;
2407     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2408                                    ZeroRHS, TLO, Depth + 1))
2409       return true;
2410     APInt UndefLHS, ZeroLHS;
2411     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2412                                    ZeroLHS, TLO, Depth + 1))
2413       return true;
2414 
2415     KnownZero = ZeroLHS & ZeroRHS;
2416     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2417     break;
2418   }
2419   case ISD::SHL:
2420   case ISD::SRL:
2421   case ISD::SRA:
2422   case ISD::ROTL:
2423   case ISD::ROTR: {
2424     APInt UndefRHS, ZeroRHS;
2425     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2426                                    ZeroRHS, TLO, Depth + 1))
2427       return true;
2428     APInt UndefLHS, ZeroLHS;
2429     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2430                                    ZeroLHS, TLO, Depth + 1))
2431       return true;
2432 
2433     KnownZero = ZeroLHS;
2434     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2435     break;
2436   }
2437   case ISD::MUL:
2438   case ISD::AND: {
2439     APInt SrcUndef, SrcZero;
2440     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
2441                                    SrcZero, TLO, Depth + 1))
2442       return true;
2443     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2444                                    KnownZero, TLO, Depth + 1))
2445       return true;
2446 
2447     // If either side has a zero element, then the result element is zero, even
2448     // if the other is an UNDEF.
2449     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2450     // and then handle 'and' nodes with the rest of the binop opcodes.
2451     KnownZero |= SrcZero;
2452     KnownUndef &= SrcUndef;
2453     KnownUndef &= ~KnownZero;
2454     break;
2455   }
2456   case ISD::TRUNCATE:
2457   case ISD::SIGN_EXTEND:
2458   case ISD::ZERO_EXTEND:
2459     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2460                                    KnownZero, TLO, Depth + 1))
2461       return true;
2462 
2463     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2464       // zext(undef) upper bits are guaranteed to be zero.
2465       if (DemandedElts.isSubsetOf(KnownUndef))
2466         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2467       KnownUndef.clearAllBits();
2468     }
2469     break;
2470   default: {
2471     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2472       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2473                                                   KnownZero, TLO, Depth))
2474         return true;
2475     } else {
2476       KnownBits Known;
2477       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2478       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2479                                TLO, Depth, AssumeSingleUse))
2480         return true;
2481     }
2482     break;
2483   }
2484   }
2485   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2486 
2487   // Constant fold all undef cases.
2488   // TODO: Handle zero cases as well.
2489   if (DemandedElts.isSubsetOf(KnownUndef))
2490     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2491 
2492   return false;
2493 }
2494 
2495 /// Determine which of the bits specified in Mask are known to be either zero or
2496 /// one and return them in the Known.
2497 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2498                                                    KnownBits &Known,
2499                                                    const APInt &DemandedElts,
2500                                                    const SelectionDAG &DAG,
2501                                                    unsigned Depth) const {
2502   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2503           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2504           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2505           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2506          "Should use MaskedValueIsZero if you don't know whether Op"
2507          " is a target node!");
2508   Known.resetAll();
2509 }
2510 
2511 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
2512                                                    KnownBits &Known,
2513                                                    const APInt &DemandedElts,
2514                                                    const SelectionDAG &DAG,
2515                                                    unsigned Depth) const {
2516   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
2517 
2518   if (unsigned Align = DAG.InferPtrAlignment(Op)) {
2519     // The low bits are known zero if the pointer is aligned.
2520     Known.Zero.setLowBits(Log2_32(Align));
2521   }
2522 }
2523 
2524 /// This method can be implemented by targets that want to expose additional
2525 /// information about sign bits to the DAG Combiner.
2526 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2527                                                          const APInt &,
2528                                                          const SelectionDAG &,
2529                                                          unsigned Depth) const {
2530   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2531           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2532           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2533           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2534          "Should use ComputeNumSignBits if you don't know whether Op"
2535          " is a target node!");
2536   return 1;
2537 }
2538 
2539 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2540     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2541     TargetLoweringOpt &TLO, unsigned Depth) const {
2542   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2543           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2544           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2545           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2546          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2547          " is a target node!");
2548   return false;
2549 }
2550 
2551 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2552     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2553     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2554   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2555           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2556           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2557           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2558          "Should use SimplifyDemandedBits if you don't know whether Op"
2559          " is a target node!");
2560   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2561   return false;
2562 }
2563 
2564 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2565     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2566     SelectionDAG &DAG, unsigned Depth) const {
2567   assert(
2568       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2569        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2570        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2571        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2572       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
2573       " is a target node!");
2574   return SDValue();
2575 }
2576 
2577 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
2578   return nullptr;
2579 }
2580 
2581 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2582                                                   const SelectionDAG &DAG,
2583                                                   bool SNaN,
2584                                                   unsigned Depth) const {
2585   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2586           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2587           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2588           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2589          "Should use isKnownNeverNaN if you don't know whether Op"
2590          " is a target node!");
2591   return false;
2592 }
2593 
2594 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2595 // work with truncating build vectors and vectors with elements of less than
2596 // 8 bits.
2597 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2598   if (!N)
2599     return false;
2600 
2601   APInt CVal;
2602   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2603     CVal = CN->getAPIntValue();
2604   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2605     auto *CN = BV->getConstantSplatNode();
2606     if (!CN)
2607       return false;
2608 
2609     // If this is a truncating build vector, truncate the splat value.
2610     // Otherwise, we may fail to match the expected values below.
2611     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2612     CVal = CN->getAPIntValue();
2613     if (BVEltWidth < CVal.getBitWidth())
2614       CVal = CVal.trunc(BVEltWidth);
2615   } else {
2616     return false;
2617   }
2618 
2619   switch (getBooleanContents(N->getValueType(0))) {
2620   case UndefinedBooleanContent:
2621     return CVal[0];
2622   case ZeroOrOneBooleanContent:
2623     return CVal.isOneValue();
2624   case ZeroOrNegativeOneBooleanContent:
2625     return CVal.isAllOnesValue();
2626   }
2627 
2628   llvm_unreachable("Invalid boolean contents");
2629 }
2630 
2631 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2632   if (!N)
2633     return false;
2634 
2635   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2636   if (!CN) {
2637     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2638     if (!BV)
2639       return false;
2640 
2641     // Only interested in constant splats, we don't care about undef
2642     // elements in identifying boolean constants and getConstantSplatNode
2643     // returns NULL if all ops are undef;
2644     CN = BV->getConstantSplatNode();
2645     if (!CN)
2646       return false;
2647   }
2648 
2649   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2650     return !CN->getAPIntValue()[0];
2651 
2652   return CN->isNullValue();
2653 }
2654 
2655 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2656                                        bool SExt) const {
2657   if (VT == MVT::i1)
2658     return N->isOne();
2659 
2660   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2661   switch (Cnt) {
2662   case TargetLowering::ZeroOrOneBooleanContent:
2663     // An extended value of 1 is always true, unless its original type is i1,
2664     // in which case it will be sign extended to -1.
2665     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
2666   case TargetLowering::UndefinedBooleanContent:
2667   case TargetLowering::ZeroOrNegativeOneBooleanContent:
2668     return N->isAllOnesValue() && SExt;
2669   }
2670   llvm_unreachable("Unexpected enumeration.");
2671 }
2672 
2673 /// This helper function of SimplifySetCC tries to optimize the comparison when
2674 /// either operand of the SetCC node is a bitwise-and instruction.
2675 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
2676                                          ISD::CondCode Cond, const SDLoc &DL,
2677                                          DAGCombinerInfo &DCI) const {
2678   // Match these patterns in any of their permutations:
2679   // (X & Y) == Y
2680   // (X & Y) != Y
2681   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
2682     std::swap(N0, N1);
2683 
2684   EVT OpVT = N0.getValueType();
2685   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
2686       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
2687     return SDValue();
2688 
2689   SDValue X, Y;
2690   if (N0.getOperand(0) == N1) {
2691     X = N0.getOperand(1);
2692     Y = N0.getOperand(0);
2693   } else if (N0.getOperand(1) == N1) {
2694     X = N0.getOperand(0);
2695     Y = N0.getOperand(1);
2696   } else {
2697     return SDValue();
2698   }
2699 
2700   SelectionDAG &DAG = DCI.DAG;
2701   SDValue Zero = DAG.getConstant(0, DL, OpVT);
2702   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
2703     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2704     // Note that where Y is variable and is known to have at most one bit set
2705     // (for example, if it is Z & 1) we cannot do this; the expressions are not
2706     // equivalent when Y == 0.
2707     Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2708     if (DCI.isBeforeLegalizeOps() ||
2709         isCondCodeLegal(Cond, N0.getSimpleValueType()))
2710       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
2711   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
2712     // If the target supports an 'and-not' or 'and-complement' logic operation,
2713     // try to use that to make a comparison operation more efficient.
2714     // But don't do this transform if the mask is a single bit because there are
2715     // more efficient ways to deal with that case (for example, 'bt' on x86 or
2716     // 'rlwinm' on PPC).
2717 
2718     // Bail out if the compare operand that we want to turn into a zero is
2719     // already a zero (otherwise, infinite loop).
2720     auto *YConst = dyn_cast<ConstantSDNode>(Y);
2721     if (YConst && YConst->isNullValue())
2722       return SDValue();
2723 
2724     // Transform this into: ~X & Y == 0.
2725     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
2726     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
2727     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
2728   }
2729 
2730   return SDValue();
2731 }
2732 
2733 /// There are multiple IR patterns that could be checking whether certain
2734 /// truncation of a signed number would be lossy or not. The pattern which is
2735 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
2736 /// We are looking for the following pattern: (KeptBits is a constant)
2737 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
2738 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
2739 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
2740 /// We will unfold it into the natural trunc+sext pattern:
2741 ///   ((%x << C) a>> C) dstcond %x
2742 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
2743 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
2744     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
2745     const SDLoc &DL) const {
2746   // We must be comparing with a constant.
2747   ConstantSDNode *C1;
2748   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
2749     return SDValue();
2750 
2751   // N0 should be:  add %x, (1 << (KeptBits-1))
2752   if (N0->getOpcode() != ISD::ADD)
2753     return SDValue();
2754 
2755   // And we must be 'add'ing a constant.
2756   ConstantSDNode *C01;
2757   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
2758     return SDValue();
2759 
2760   SDValue X = N0->getOperand(0);
2761   EVT XVT = X.getValueType();
2762 
2763   // Validate constants ...
2764 
2765   APInt I1 = C1->getAPIntValue();
2766 
2767   ISD::CondCode NewCond;
2768   if (Cond == ISD::CondCode::SETULT) {
2769     NewCond = ISD::CondCode::SETEQ;
2770   } else if (Cond == ISD::CondCode::SETULE) {
2771     NewCond = ISD::CondCode::SETEQ;
2772     // But need to 'canonicalize' the constant.
2773     I1 += 1;
2774   } else if (Cond == ISD::CondCode::SETUGT) {
2775     NewCond = ISD::CondCode::SETNE;
2776     // But need to 'canonicalize' the constant.
2777     I1 += 1;
2778   } else if (Cond == ISD::CondCode::SETUGE) {
2779     NewCond = ISD::CondCode::SETNE;
2780   } else
2781     return SDValue();
2782 
2783   APInt I01 = C01->getAPIntValue();
2784 
2785   auto checkConstants = [&I1, &I01]() -> bool {
2786     // Both of them must be power-of-two, and the constant from setcc is bigger.
2787     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
2788   };
2789 
2790   if (checkConstants()) {
2791     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
2792   } else {
2793     // What if we invert constants? (and the target predicate)
2794     I1.negate();
2795     I01.negate();
2796     NewCond = getSetCCInverse(NewCond, /*isInteger=*/true);
2797     if (!checkConstants())
2798       return SDValue();
2799     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
2800   }
2801 
2802   // They are power-of-two, so which bit is set?
2803   const unsigned KeptBits = I1.logBase2();
2804   const unsigned KeptBitsMinusOne = I01.logBase2();
2805 
2806   // Magic!
2807   if (KeptBits != (KeptBitsMinusOne + 1))
2808     return SDValue();
2809   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
2810 
2811   // We don't want to do this in every single case.
2812   SelectionDAG &DAG = DCI.DAG;
2813   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
2814           XVT, KeptBits))
2815     return SDValue();
2816 
2817   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
2818   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
2819 
2820   // Unfold into:  ((%x << C) a>> C) cond %x
2821   // Where 'cond' will be either 'eq' or 'ne'.
2822   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
2823   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
2824   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
2825   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
2826 
2827   return T2;
2828 }
2829 
2830 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
2831 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
2832     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
2833     DAGCombinerInfo &DCI, const SDLoc &DL) const {
2834   assert(isConstOrConstSplat(N1C) &&
2835          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
2836          "Should be a comparison with 0.");
2837   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2838          "Valid only for [in]equality comparisons.");
2839 
2840   unsigned NewShiftOpcode;
2841   SDValue X, C, Y;
2842 
2843   SelectionDAG &DAG = DCI.DAG;
2844   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2845 
2846   // Look for '(C l>>/<< Y)'.
2847   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
2848     // The shift should be one-use.
2849     if (!V.hasOneUse())
2850       return false;
2851     unsigned OldShiftOpcode = V.getOpcode();
2852     switch (OldShiftOpcode) {
2853     case ISD::SHL:
2854       NewShiftOpcode = ISD::SRL;
2855       break;
2856     case ISD::SRL:
2857       NewShiftOpcode = ISD::SHL;
2858       break;
2859     default:
2860       return false; // must be a logical shift.
2861     }
2862     // We should be shifting a constant.
2863     // FIXME: best to use isConstantOrConstantVector().
2864     C = V.getOperand(0);
2865     ConstantSDNode *CC =
2866         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
2867     if (!CC)
2868       return false;
2869     Y = V.getOperand(1);
2870 
2871     ConstantSDNode *XC =
2872         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
2873     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
2874         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
2875   };
2876 
2877   // LHS of comparison should be an one-use 'and'.
2878   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
2879     return SDValue();
2880 
2881   X = N0.getOperand(0);
2882   SDValue Mask = N0.getOperand(1);
2883 
2884   // 'and' is commutative!
2885   if (!Match(Mask)) {
2886     std::swap(X, Mask);
2887     if (!Match(Mask))
2888       return SDValue();
2889   }
2890 
2891   EVT VT = X.getValueType();
2892 
2893   // Produce:
2894   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
2895   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
2896   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
2897   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
2898   return T2;
2899 }
2900 
2901 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
2902 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
2903 /// handle the commuted versions of these patterns.
2904 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
2905                                            ISD::CondCode Cond, const SDLoc &DL,
2906                                            DAGCombinerInfo &DCI) const {
2907   unsigned BOpcode = N0.getOpcode();
2908   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
2909          "Unexpected binop");
2910   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
2911 
2912   // (X + Y) == X --> Y == 0
2913   // (X - Y) == X --> Y == 0
2914   // (X ^ Y) == X --> Y == 0
2915   SelectionDAG &DAG = DCI.DAG;
2916   EVT OpVT = N0.getValueType();
2917   SDValue X = N0.getOperand(0);
2918   SDValue Y = N0.getOperand(1);
2919   if (X == N1)
2920     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
2921 
2922   if (Y != N1)
2923     return SDValue();
2924 
2925   // (X + Y) == Y --> X == 0
2926   // (X ^ Y) == Y --> X == 0
2927   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
2928     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
2929 
2930   // The shift would not be valid if the operands are boolean (i1).
2931   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
2932     return SDValue();
2933 
2934   // (X - Y) == Y --> X == Y << 1
2935   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
2936                                  !DCI.isBeforeLegalize());
2937   SDValue One = DAG.getConstant(1, DL, ShiftVT);
2938   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
2939   if (!DCI.isCalledByLegalizer())
2940     DCI.AddToWorklist(YShl1.getNode());
2941   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
2942 }
2943 
2944 /// Try to simplify a setcc built with the specified operands and cc. If it is
2945 /// unable to simplify it, return a null SDValue.
2946 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
2947                                       ISD::CondCode Cond, bool foldBooleans,
2948                                       DAGCombinerInfo &DCI,
2949                                       const SDLoc &dl) const {
2950   SelectionDAG &DAG = DCI.DAG;
2951   EVT OpVT = N0.getValueType();
2952 
2953   // Constant fold or commute setcc.
2954   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
2955     return Fold;
2956 
2957   // Ensure that the constant occurs on the RHS and fold constant comparisons.
2958   // TODO: Handle non-splat vector constants. All undef causes trouble.
2959   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
2960   if (isConstOrConstSplat(N0) &&
2961       (DCI.isBeforeLegalizeOps() ||
2962        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
2963     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
2964 
2965   // If we have a subtract with the same 2 non-constant operands as this setcc
2966   // -- but in reverse order -- then try to commute the operands of this setcc
2967   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
2968   // instruction on some targets.
2969   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
2970       (DCI.isBeforeLegalizeOps() ||
2971        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
2972       DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) &&
2973       !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } ))
2974     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
2975 
2976   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
2977     const APInt &C1 = N1C->getAPIntValue();
2978 
2979     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
2980     // equality comparison, then we're just comparing whether X itself is
2981     // zero.
2982     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
2983         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
2984         N0.getOperand(1).getOpcode() == ISD::Constant) {
2985       const APInt &ShAmt = N0.getConstantOperandAPInt(1);
2986       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2987           ShAmt == Log2_32(N0.getValueSizeInBits())) {
2988         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
2989           // (srl (ctlz x), 5) == 0  -> X != 0
2990           // (srl (ctlz x), 5) != 1  -> X != 0
2991           Cond = ISD::SETNE;
2992         } else {
2993           // (srl (ctlz x), 5) != 0  -> X == 0
2994           // (srl (ctlz x), 5) == 1  -> X == 0
2995           Cond = ISD::SETEQ;
2996         }
2997         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
2998         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
2999                             Zero, Cond);
3000       }
3001     }
3002 
3003     SDValue CTPOP = N0;
3004     // Look through truncs that don't change the value of a ctpop.
3005     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
3006       CTPOP = N0.getOperand(0);
3007 
3008     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
3009         (N0 == CTPOP ||
3010          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
3011       EVT CTVT = CTPOP.getValueType();
3012       SDValue CTOp = CTPOP.getOperand(0);
3013 
3014       // (ctpop x) u< 2 -> (x & x-1) == 0
3015       // (ctpop x) u> 1 -> (x & x-1) != 0
3016       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
3017         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3018         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3019         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3020         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3021         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
3022       }
3023 
3024       // If ctpop is not supported, expand a power-of-2 comparison based on it.
3025       if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) &&
3026           (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3027         // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3028         // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3029         SDValue Zero = DAG.getConstant(0, dl, CTVT);
3030         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3031         ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, true);
3032         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3033         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3034         SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3035         SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3036         unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3037         return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3038       }
3039     }
3040 
3041     // (zext x) == C --> x == (trunc C)
3042     // (sext x) == C --> x == (trunc C)
3043     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3044         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3045       unsigned MinBits = N0.getValueSizeInBits();
3046       SDValue PreExt;
3047       bool Signed = false;
3048       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3049         // ZExt
3050         MinBits = N0->getOperand(0).getValueSizeInBits();
3051         PreExt = N0->getOperand(0);
3052       } else if (N0->getOpcode() == ISD::AND) {
3053         // DAGCombine turns costly ZExts into ANDs
3054         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3055           if ((C->getAPIntValue()+1).isPowerOf2()) {
3056             MinBits = C->getAPIntValue().countTrailingOnes();
3057             PreExt = N0->getOperand(0);
3058           }
3059       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3060         // SExt
3061         MinBits = N0->getOperand(0).getValueSizeInBits();
3062         PreExt = N0->getOperand(0);
3063         Signed = true;
3064       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3065         // ZEXTLOAD / SEXTLOAD
3066         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3067           MinBits = LN0->getMemoryVT().getSizeInBits();
3068           PreExt = N0;
3069         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3070           Signed = true;
3071           MinBits = LN0->getMemoryVT().getSizeInBits();
3072           PreExt = N0;
3073         }
3074       }
3075 
3076       // Figure out how many bits we need to preserve this constant.
3077       unsigned ReqdBits = Signed ?
3078         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3079         C1.getActiveBits();
3080 
3081       // Make sure we're not losing bits from the constant.
3082       if (MinBits > 0 &&
3083           MinBits < C1.getBitWidth() &&
3084           MinBits >= ReqdBits) {
3085         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3086         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3087           // Will get folded away.
3088           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3089           if (MinBits == 1 && C1 == 1)
3090             // Invert the condition.
3091             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3092                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3093           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3094           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3095         }
3096 
3097         // If truncating the setcc operands is not desirable, we can still
3098         // simplify the expression in some cases:
3099         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3100         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3101         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3102         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3103         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3104         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3105         SDValue TopSetCC = N0->getOperand(0);
3106         unsigned N0Opc = N0->getOpcode();
3107         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3108         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3109             TopSetCC.getOpcode() == ISD::SETCC &&
3110             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3111             (isConstFalseVal(N1C) ||
3112              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3113 
3114           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3115                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3116 
3117           if (!Inverse)
3118             return TopSetCC;
3119 
3120           ISD::CondCode InvCond = ISD::getSetCCInverse(
3121               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3122               TopSetCC.getOperand(0).getValueType().isInteger());
3123           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3124                                       TopSetCC.getOperand(1),
3125                                       InvCond);
3126         }
3127       }
3128     }
3129 
3130     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3131     // equality or unsigned, and all 1 bits of the const are in the same
3132     // partial word, see if we can shorten the load.
3133     if (DCI.isBeforeLegalize() &&
3134         !ISD::isSignedIntSetCC(Cond) &&
3135         N0.getOpcode() == ISD::AND && C1 == 0 &&
3136         N0.getNode()->hasOneUse() &&
3137         isa<LoadSDNode>(N0.getOperand(0)) &&
3138         N0.getOperand(0).getNode()->hasOneUse() &&
3139         isa<ConstantSDNode>(N0.getOperand(1))) {
3140       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3141       APInt bestMask;
3142       unsigned bestWidth = 0, bestOffset = 0;
3143       if (!Lod->isVolatile() && Lod->isUnindexed()) {
3144         unsigned origWidth = N0.getValueSizeInBits();
3145         unsigned maskWidth = origWidth;
3146         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3147         // 8 bits, but have to be careful...
3148         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3149           origWidth = Lod->getMemoryVT().getSizeInBits();
3150         const APInt &Mask = N0.getConstantOperandAPInt(1);
3151         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3152           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3153           for (unsigned offset=0; offset<origWidth/width; offset++) {
3154             if (Mask.isSubsetOf(newMask)) {
3155               if (DAG.getDataLayout().isLittleEndian())
3156                 bestOffset = (uint64_t)offset * (width/8);
3157               else
3158                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3159               bestMask = Mask.lshr(offset * (width/8) * 8);
3160               bestWidth = width;
3161               break;
3162             }
3163             newMask <<= width;
3164           }
3165         }
3166       }
3167       if (bestWidth) {
3168         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3169         if (newVT.isRound() &&
3170             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3171           EVT PtrType = Lod->getOperand(1).getValueType();
3172           SDValue Ptr = Lod->getBasePtr();
3173           if (bestOffset != 0)
3174             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
3175                               DAG.getConstant(bestOffset, dl, PtrType));
3176           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
3177           SDValue NewLoad = DAG.getLoad(
3178               newVT, dl, Lod->getChain(), Ptr,
3179               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
3180           return DAG.getSetCC(dl, VT,
3181                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3182                                       DAG.getConstant(bestMask.trunc(bestWidth),
3183                                                       dl, newVT)),
3184                               DAG.getConstant(0LL, dl, newVT), Cond);
3185         }
3186       }
3187     }
3188 
3189     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3190     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3191       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3192 
3193       // If the comparison constant has bits in the upper part, the
3194       // zero-extended value could never match.
3195       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3196                                               C1.getBitWidth() - InSize))) {
3197         switch (Cond) {
3198         case ISD::SETUGT:
3199         case ISD::SETUGE:
3200         case ISD::SETEQ:
3201           return DAG.getConstant(0, dl, VT);
3202         case ISD::SETULT:
3203         case ISD::SETULE:
3204         case ISD::SETNE:
3205           return DAG.getConstant(1, dl, VT);
3206         case ISD::SETGT:
3207         case ISD::SETGE:
3208           // True if the sign bit of C1 is set.
3209           return DAG.getConstant(C1.isNegative(), dl, VT);
3210         case ISD::SETLT:
3211         case ISD::SETLE:
3212           // True if the sign bit of C1 isn't set.
3213           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3214         default:
3215           break;
3216         }
3217       }
3218 
3219       // Otherwise, we can perform the comparison with the low bits.
3220       switch (Cond) {
3221       case ISD::SETEQ:
3222       case ISD::SETNE:
3223       case ISD::SETUGT:
3224       case ISD::SETUGE:
3225       case ISD::SETULT:
3226       case ISD::SETULE: {
3227         EVT newVT = N0.getOperand(0).getValueType();
3228         if (DCI.isBeforeLegalizeOps() ||
3229             (isOperationLegal(ISD::SETCC, newVT) &&
3230              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3231           EVT NewSetCCVT =
3232               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
3233           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3234 
3235           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3236                                           NewConst, Cond);
3237           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3238         }
3239         break;
3240       }
3241       default:
3242         break; // todo, be more careful with signed comparisons
3243       }
3244     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3245                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3246       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3247       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3248       EVT ExtDstTy = N0.getValueType();
3249       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3250 
3251       // If the constant doesn't fit into the number of bits for the source of
3252       // the sign extension, it is impossible for both sides to be equal.
3253       if (C1.getMinSignedBits() > ExtSrcTyBits)
3254         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
3255 
3256       SDValue ZextOp;
3257       EVT Op0Ty = N0.getOperand(0).getValueType();
3258       if (Op0Ty == ExtSrcTy) {
3259         ZextOp = N0.getOperand(0);
3260       } else {
3261         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3262         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
3263                              DAG.getConstant(Imm, dl, Op0Ty));
3264       }
3265       if (!DCI.isCalledByLegalizer())
3266         DCI.AddToWorklist(ZextOp.getNode());
3267       // Otherwise, make this a use of a zext.
3268       return DAG.getSetCC(dl, VT, ZextOp,
3269                           DAG.getConstant(C1 & APInt::getLowBitsSet(
3270                                                               ExtDstTyBits,
3271                                                               ExtSrcTyBits),
3272                                           dl, ExtDstTy),
3273                           Cond);
3274     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3275                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3276       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3277       if (N0.getOpcode() == ISD::SETCC &&
3278           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
3279         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3280         if (TrueWhenTrue)
3281           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3282         // Invert the condition.
3283         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3284         CC = ISD::getSetCCInverse(CC,
3285                                   N0.getOperand(0).getValueType().isInteger());
3286         if (DCI.isBeforeLegalizeOps() ||
3287             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3288           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3289       }
3290 
3291       if ((N0.getOpcode() == ISD::XOR ||
3292            (N0.getOpcode() == ISD::AND &&
3293             N0.getOperand(0).getOpcode() == ISD::XOR &&
3294             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3295           isa<ConstantSDNode>(N0.getOperand(1)) &&
3296           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
3297         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3298         // can only do this if the top bits are known zero.
3299         unsigned BitWidth = N0.getValueSizeInBits();
3300         if (DAG.MaskedValueIsZero(N0,
3301                                   APInt::getHighBitsSet(BitWidth,
3302                                                         BitWidth-1))) {
3303           // Okay, get the un-inverted input value.
3304           SDValue Val;
3305           if (N0.getOpcode() == ISD::XOR) {
3306             Val = N0.getOperand(0);
3307           } else {
3308             assert(N0.getOpcode() == ISD::AND &&
3309                     N0.getOperand(0).getOpcode() == ISD::XOR);
3310             // ((X^1)&1)^1 -> X & 1
3311             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3312                               N0.getOperand(0).getOperand(0),
3313                               N0.getOperand(1));
3314           }
3315 
3316           return DAG.getSetCC(dl, VT, Val, N1,
3317                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3318         }
3319       } else if (N1C->isOne() &&
3320                  (VT == MVT::i1 ||
3321                   getBooleanContents(N0->getValueType(0)) ==
3322                       ZeroOrOneBooleanContent)) {
3323         SDValue Op0 = N0;
3324         if (Op0.getOpcode() == ISD::TRUNCATE)
3325           Op0 = Op0.getOperand(0);
3326 
3327         if ((Op0.getOpcode() == ISD::XOR) &&
3328             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3329             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3330           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3331           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3332           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
3333                               Cond);
3334         }
3335         if (Op0.getOpcode() == ISD::AND &&
3336             isa<ConstantSDNode>(Op0.getOperand(1)) &&
3337             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
3338           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3339           if (Op0.getValueType().bitsGT(VT))
3340             Op0 = DAG.getNode(ISD::AND, dl, VT,
3341                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3342                           DAG.getConstant(1, dl, VT));
3343           else if (Op0.getValueType().bitsLT(VT))
3344             Op0 = DAG.getNode(ISD::AND, dl, VT,
3345                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3346                         DAG.getConstant(1, dl, VT));
3347 
3348           return DAG.getSetCC(dl, VT, Op0,
3349                               DAG.getConstant(0, dl, Op0.getValueType()),
3350                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3351         }
3352         if (Op0.getOpcode() == ISD::AssertZext &&
3353             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3354           return DAG.getSetCC(dl, VT, Op0,
3355                               DAG.getConstant(0, dl, Op0.getValueType()),
3356                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3357       }
3358     }
3359 
3360     // Given:
3361     //   icmp eq/ne (urem %x, %y), 0
3362     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3363     //   icmp eq/ne %x, 0
3364     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3365         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3366       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3367       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3368       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3369         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3370     }
3371 
3372     if (SDValue V =
3373             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3374       return V;
3375   }
3376 
3377   // These simplifications apply to splat vectors as well.
3378   // TODO: Handle more splat vector cases.
3379   if (auto *N1C = isConstOrConstSplat(N1)) {
3380     const APInt &C1 = N1C->getAPIntValue();
3381 
3382     APInt MinVal, MaxVal;
3383     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3384     if (ISD::isSignedIntSetCC(Cond)) {
3385       MinVal = APInt::getSignedMinValue(OperandBitSize);
3386       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3387     } else {
3388       MinVal = APInt::getMinValue(OperandBitSize);
3389       MaxVal = APInt::getMaxValue(OperandBitSize);
3390     }
3391 
3392     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3393     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3394       // X >= MIN --> true
3395       if (C1 == MinVal)
3396         return DAG.getBoolConstant(true, dl, VT, OpVT);
3397 
3398       if (!VT.isVector()) { // TODO: Support this for vectors.
3399         // X >= C0 --> X > (C0 - 1)
3400         APInt C = C1 - 1;
3401         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3402         if ((DCI.isBeforeLegalizeOps() ||
3403              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3404             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3405                                   isLegalICmpImmediate(C.getSExtValue())))) {
3406           return DAG.getSetCC(dl, VT, N0,
3407                               DAG.getConstant(C, dl, N1.getValueType()),
3408                               NewCC);
3409         }
3410       }
3411     }
3412 
3413     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3414       // X <= MAX --> true
3415       if (C1 == MaxVal)
3416         return DAG.getBoolConstant(true, dl, VT, OpVT);
3417 
3418       // X <= C0 --> X < (C0 + 1)
3419       if (!VT.isVector()) { // TODO: Support this for vectors.
3420         APInt C = C1 + 1;
3421         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3422         if ((DCI.isBeforeLegalizeOps() ||
3423              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3424             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3425                                   isLegalICmpImmediate(C.getSExtValue())))) {
3426           return DAG.getSetCC(dl, VT, N0,
3427                               DAG.getConstant(C, dl, N1.getValueType()),
3428                               NewCC);
3429         }
3430       }
3431     }
3432 
3433     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3434       if (C1 == MinVal)
3435         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3436 
3437       // TODO: Support this for vectors after legalize ops.
3438       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3439         // Canonicalize setlt X, Max --> setne X, Max
3440         if (C1 == MaxVal)
3441           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3442 
3443         // If we have setult X, 1, turn it into seteq X, 0
3444         if (C1 == MinVal+1)
3445           return DAG.getSetCC(dl, VT, N0,
3446                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3447                               ISD::SETEQ);
3448       }
3449     }
3450 
3451     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3452       if (C1 == MaxVal)
3453         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3454 
3455       // TODO: Support this for vectors after legalize ops.
3456       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3457         // Canonicalize setgt X, Min --> setne X, Min
3458         if (C1 == MinVal)
3459           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3460 
3461         // If we have setugt X, Max-1, turn it into seteq X, Max
3462         if (C1 == MaxVal-1)
3463           return DAG.getSetCC(dl, VT, N0,
3464                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3465                               ISD::SETEQ);
3466       }
3467     }
3468 
3469     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3470       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3471       if (C1.isNullValue())
3472         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3473                 VT, N0, N1, Cond, DCI, dl))
3474           return CC;
3475     }
3476 
3477     // If we have "setcc X, C0", check to see if we can shrink the immediate
3478     // by changing cc.
3479     // TODO: Support this for vectors after legalize ops.
3480     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3481       // SETUGT X, SINTMAX  -> SETLT X, 0
3482       if (Cond == ISD::SETUGT &&
3483           C1 == APInt::getSignedMaxValue(OperandBitSize))
3484         return DAG.getSetCC(dl, VT, N0,
3485                             DAG.getConstant(0, dl, N1.getValueType()),
3486                             ISD::SETLT);
3487 
3488       // SETULT X, SINTMIN  -> SETGT X, -1
3489       if (Cond == ISD::SETULT &&
3490           C1 == APInt::getSignedMinValue(OperandBitSize)) {
3491         SDValue ConstMinusOne =
3492             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
3493                             N1.getValueType());
3494         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
3495       }
3496     }
3497   }
3498 
3499   // Back to non-vector simplifications.
3500   // TODO: Can we do these for vector splats?
3501   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3502     const APInt &C1 = N1C->getAPIntValue();
3503 
3504     // Fold bit comparisons when we can.
3505     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3506         (VT == N0.getValueType() ||
3507          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
3508         N0.getOpcode() == ISD::AND) {
3509       auto &DL = DAG.getDataLayout();
3510       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3511         EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3512                                        !DCI.isBeforeLegalize());
3513         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
3514           // Perform the xform if the AND RHS is a single bit.
3515           if (AndRHS->getAPIntValue().isPowerOf2()) {
3516             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3517                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
3518                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
3519                                    ShiftTy)));
3520           }
3521         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
3522           // (X & 8) == 8  -->  (X & 8) >> 3
3523           // Perform the xform if C1 is a single bit.
3524           if (C1.isPowerOf2()) {
3525             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3526                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
3527                                       DAG.getConstant(C1.logBase2(), dl,
3528                                                       ShiftTy)));
3529           }
3530         }
3531       }
3532     }
3533 
3534     if (C1.getMinSignedBits() <= 64 &&
3535         !isLegalICmpImmediate(C1.getSExtValue())) {
3536       // (X & -256) == 256 -> (X >> 8) == 1
3537       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3538           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
3539         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3540           const APInt &AndRHSC = AndRHS->getAPIntValue();
3541           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
3542             unsigned ShiftBits = AndRHSC.countTrailingZeros();
3543             auto &DL = DAG.getDataLayout();
3544             EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3545                                            !DCI.isBeforeLegalize());
3546             EVT CmpTy = N0.getValueType();
3547             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
3548                                         DAG.getConstant(ShiftBits, dl,
3549                                                         ShiftTy));
3550             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
3551             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
3552           }
3553         }
3554       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
3555                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
3556         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
3557         // X <  0x100000000 -> (X >> 32) <  1
3558         // X >= 0x100000000 -> (X >> 32) >= 1
3559         // X <= 0x0ffffffff -> (X >> 32) <  1
3560         // X >  0x0ffffffff -> (X >> 32) >= 1
3561         unsigned ShiftBits;
3562         APInt NewC = C1;
3563         ISD::CondCode NewCond = Cond;
3564         if (AdjOne) {
3565           ShiftBits = C1.countTrailingOnes();
3566           NewC = NewC + 1;
3567           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3568         } else {
3569           ShiftBits = C1.countTrailingZeros();
3570         }
3571         NewC.lshrInPlace(ShiftBits);
3572         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
3573           isLegalICmpImmediate(NewC.getSExtValue())) {
3574           auto &DL = DAG.getDataLayout();
3575           EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3576                                          !DCI.isBeforeLegalize());
3577           EVT CmpTy = N0.getValueType();
3578           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
3579                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
3580           SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
3581           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
3582         }
3583       }
3584     }
3585   }
3586 
3587   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
3588     auto *CFP = cast<ConstantFPSDNode>(N1);
3589     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
3590 
3591     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
3592     // constant if knowing that the operand is non-nan is enough.  We prefer to
3593     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3594     // materialize 0.0.
3595     if (Cond == ISD::SETO || Cond == ISD::SETUO)
3596       return DAG.getSetCC(dl, VT, N0, N0, Cond);
3597 
3598     // setcc (fneg x), C -> setcc swap(pred) x, -C
3599     if (N0.getOpcode() == ISD::FNEG) {
3600       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
3601       if (DCI.isBeforeLegalizeOps() ||
3602           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
3603         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
3604         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
3605       }
3606     }
3607 
3608     // If the condition is not legal, see if we can find an equivalent one
3609     // which is legal.
3610     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
3611       // If the comparison was an awkward floating-point == or != and one of
3612       // the comparison operands is infinity or negative infinity, convert the
3613       // condition to a less-awkward <= or >=.
3614       if (CFP->getValueAPF().isInfinity()) {
3615         if (CFP->getValueAPF().isNegative()) {
3616           if (Cond == ISD::SETOEQ &&
3617               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3618             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
3619           if (Cond == ISD::SETUEQ &&
3620               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3621             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
3622           if (Cond == ISD::SETUNE &&
3623               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3624             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
3625           if (Cond == ISD::SETONE &&
3626               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3627             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
3628         } else {
3629           if (Cond == ISD::SETOEQ &&
3630               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3631             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
3632           if (Cond == ISD::SETUEQ &&
3633               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3634             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
3635           if (Cond == ISD::SETUNE &&
3636               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3637             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
3638           if (Cond == ISD::SETONE &&
3639               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3640             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
3641         }
3642       }
3643     }
3644   }
3645 
3646   if (N0 == N1) {
3647     // The sext(setcc()) => setcc() optimization relies on the appropriate
3648     // constant being emitted.
3649     assert(!N0.getValueType().isInteger() &&
3650            "Integer types should be handled by FoldSetCC");
3651 
3652     bool EqTrue = ISD::isTrueWhenEqual(Cond);
3653     unsigned UOF = ISD::getUnorderedFlavor(Cond);
3654     if (UOF == 2) // FP operators that are undefined on NaNs.
3655       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3656     if (UOF == unsigned(EqTrue))
3657       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3658     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
3659     // if it is not already.
3660     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3661     if (NewCond != Cond &&
3662         (DCI.isBeforeLegalizeOps() ||
3663                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
3664       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3665   }
3666 
3667   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3668       N0.getValueType().isInteger()) {
3669     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
3670         N0.getOpcode() == ISD::XOR) {
3671       // Simplify (X+Y) == (X+Z) -->  Y == Z
3672       if (N0.getOpcode() == N1.getOpcode()) {
3673         if (N0.getOperand(0) == N1.getOperand(0))
3674           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
3675         if (N0.getOperand(1) == N1.getOperand(1))
3676           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
3677         if (isCommutativeBinOp(N0.getOpcode())) {
3678           // If X op Y == Y op X, try other combinations.
3679           if (N0.getOperand(0) == N1.getOperand(1))
3680             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
3681                                 Cond);
3682           if (N0.getOperand(1) == N1.getOperand(0))
3683             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
3684                                 Cond);
3685         }
3686       }
3687 
3688       // If RHS is a legal immediate value for a compare instruction, we need
3689       // to be careful about increasing register pressure needlessly.
3690       bool LegalRHSImm = false;
3691 
3692       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
3693         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3694           // Turn (X+C1) == C2 --> X == C2-C1
3695           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
3696             return DAG.getSetCC(dl, VT, N0.getOperand(0),
3697                                 DAG.getConstant(RHSC->getAPIntValue()-
3698                                                 LHSR->getAPIntValue(),
3699                                 dl, N0.getValueType()), Cond);
3700           }
3701 
3702           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3703           if (N0.getOpcode() == ISD::XOR)
3704             // If we know that all of the inverted bits are zero, don't bother
3705             // performing the inversion.
3706             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
3707               return
3708                 DAG.getSetCC(dl, VT, N0.getOperand(0),
3709                              DAG.getConstant(LHSR->getAPIntValue() ^
3710                                                RHSC->getAPIntValue(),
3711                                              dl, N0.getValueType()),
3712                              Cond);
3713         }
3714 
3715         // Turn (C1-X) == C2 --> X == C1-C2
3716         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3717           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
3718             return
3719               DAG.getSetCC(dl, VT, N0.getOperand(1),
3720                            DAG.getConstant(SUBC->getAPIntValue() -
3721                                              RHSC->getAPIntValue(),
3722                                            dl, N0.getValueType()),
3723                            Cond);
3724           }
3725         }
3726 
3727         // Could RHSC fold directly into a compare?
3728         if (RHSC->getValueType(0).getSizeInBits() <= 64)
3729           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
3730       }
3731 
3732       // (X+Y) == X --> Y == 0 and similar folds.
3733       // Don't do this if X is an immediate that can fold into a cmp
3734       // instruction and X+Y has other uses. It could be an induction variable
3735       // chain, and the transform would increase register pressure.
3736       if (!LegalRHSImm || N0.hasOneUse())
3737         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
3738           return V;
3739     }
3740 
3741     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
3742         N1.getOpcode() == ISD::XOR)
3743       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
3744         return V;
3745 
3746     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
3747       return V;
3748   }
3749 
3750   // Fold remainder of division by a constant.
3751   if (N0.getOpcode() == ISD::UREM && N0.hasOneUse() &&
3752       (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3753     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3754 
3755     // When division is cheap or optimizing for minimum size,
3756     // fall through to DIVREM creation by skipping this fold.
3757     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize))
3758       if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
3759         return Folded;
3760   }
3761 
3762   // Fold away ALL boolean setcc's.
3763   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
3764     SDValue Temp;
3765     switch (Cond) {
3766     default: llvm_unreachable("Unknown integer setcc!");
3767     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
3768       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3769       N0 = DAG.getNOT(dl, Temp, OpVT);
3770       if (!DCI.isCalledByLegalizer())
3771         DCI.AddToWorklist(Temp.getNode());
3772       break;
3773     case ISD::SETNE:  // X != Y   -->  (X^Y)
3774       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3775       break;
3776     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
3777     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
3778       Temp = DAG.getNOT(dl, N0, OpVT);
3779       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
3780       if (!DCI.isCalledByLegalizer())
3781         DCI.AddToWorklist(Temp.getNode());
3782       break;
3783     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
3784     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
3785       Temp = DAG.getNOT(dl, N1, OpVT);
3786       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
3787       if (!DCI.isCalledByLegalizer())
3788         DCI.AddToWorklist(Temp.getNode());
3789       break;
3790     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
3791     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
3792       Temp = DAG.getNOT(dl, N0, OpVT);
3793       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
3794       if (!DCI.isCalledByLegalizer())
3795         DCI.AddToWorklist(Temp.getNode());
3796       break;
3797     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
3798     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
3799       Temp = DAG.getNOT(dl, N1, OpVT);
3800       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
3801       break;
3802     }
3803     if (VT.getScalarType() != MVT::i1) {
3804       if (!DCI.isCalledByLegalizer())
3805         DCI.AddToWorklist(N0.getNode());
3806       // FIXME: If running after legalize, we probably can't do this.
3807       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
3808       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
3809     }
3810     return N0;
3811   }
3812 
3813   // Could not fold it.
3814   return SDValue();
3815 }
3816 
3817 /// Returns true (and the GlobalValue and the offset) if the node is a
3818 /// GlobalAddress + offset.
3819 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
3820                                     int64_t &Offset) const {
3821 
3822   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
3823 
3824   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
3825     GA = GASD->getGlobal();
3826     Offset += GASD->getOffset();
3827     return true;
3828   }
3829 
3830   if (N->getOpcode() == ISD::ADD) {
3831     SDValue N1 = N->getOperand(0);
3832     SDValue N2 = N->getOperand(1);
3833     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
3834       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
3835         Offset += V->getSExtValue();
3836         return true;
3837       }
3838     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
3839       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
3840         Offset += V->getSExtValue();
3841         return true;
3842       }
3843     }
3844   }
3845 
3846   return false;
3847 }
3848 
3849 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
3850                                           DAGCombinerInfo &DCI) const {
3851   // Default implementation: no optimization.
3852   return SDValue();
3853 }
3854 
3855 //===----------------------------------------------------------------------===//
3856 //  Inline Assembler Implementation Methods
3857 //===----------------------------------------------------------------------===//
3858 
3859 TargetLowering::ConstraintType
3860 TargetLowering::getConstraintType(StringRef Constraint) const {
3861   unsigned S = Constraint.size();
3862 
3863   if (S == 1) {
3864     switch (Constraint[0]) {
3865     default: break;
3866     case 'r': return C_RegisterClass;
3867     case 'm': // memory
3868     case 'o': // offsetable
3869     case 'V': // not offsetable
3870       return C_Memory;
3871     case 'i': // Simple Integer or Relocatable Constant
3872     case 'n': // Simple Integer
3873     case 'E': // Floating Point Constant
3874     case 'F': // Floating Point Constant
3875     case 's': // Relocatable Constant
3876     case 'p': // Address.
3877     case 'X': // Allow ANY value.
3878     case 'I': // Target registers.
3879     case 'J':
3880     case 'K':
3881     case 'L':
3882     case 'M':
3883     case 'N':
3884     case 'O':
3885     case 'P':
3886     case '<':
3887     case '>':
3888       return C_Other;
3889     }
3890   }
3891 
3892   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
3893     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
3894       return C_Memory;
3895     return C_Register;
3896   }
3897   return C_Unknown;
3898 }
3899 
3900 /// Try to replace an X constraint, which matches anything, with another that
3901 /// has more specific requirements based on the type of the corresponding
3902 /// operand.
3903 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
3904   if (ConstraintVT.isInteger())
3905     return "r";
3906   if (ConstraintVT.isFloatingPoint())
3907     return "f"; // works for many targets
3908   return nullptr;
3909 }
3910 
3911 SDValue TargetLowering::LowerAsmOutputForConstraint(
3912     SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
3913     SelectionDAG &DAG) const {
3914   return SDValue();
3915 }
3916 
3917 /// Lower the specified operand into the Ops vector.
3918 /// If it is invalid, don't add anything to Ops.
3919 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3920                                                   std::string &Constraint,
3921                                                   std::vector<SDValue> &Ops,
3922                                                   SelectionDAG &DAG) const {
3923 
3924   if (Constraint.length() > 1) return;
3925 
3926   char ConstraintLetter = Constraint[0];
3927   switch (ConstraintLetter) {
3928   default: break;
3929   case 'X':     // Allows any operand; labels (basic block) use this.
3930     if (Op.getOpcode() == ISD::BasicBlock ||
3931         Op.getOpcode() == ISD::TargetBlockAddress) {
3932       Ops.push_back(Op);
3933       return;
3934     }
3935     LLVM_FALLTHROUGH;
3936   case 'i':    // Simple Integer or Relocatable Constant
3937   case 'n':    // Simple Integer
3938   case 's': {  // Relocatable Constant
3939 
3940     GlobalAddressSDNode *GA;
3941     ConstantSDNode *C;
3942     BlockAddressSDNode *BA;
3943     uint64_t Offset = 0;
3944 
3945     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
3946     // etc., since getelementpointer is variadic. We can't use
3947     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
3948     // while in this case the GA may be furthest from the root node which is
3949     // likely an ISD::ADD.
3950     while (1) {
3951       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
3952         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
3953                                                  GA->getValueType(0),
3954                                                  Offset + GA->getOffset()));
3955         return;
3956       } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
3957                  ConstraintLetter != 's') {
3958         // gcc prints these as sign extended.  Sign extend value to 64 bits
3959         // now; without this it would get ZExt'd later in
3960         // ScheduleDAGSDNodes::EmitNode, which is very generic.
3961         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
3962         BooleanContent BCont = getBooleanContents(MVT::i64);
3963         ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
3964                                       : ISD::SIGN_EXTEND;
3965         int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
3966                                                     : C->getSExtValue();
3967         Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
3968                                             SDLoc(C), MVT::i64));
3969         return;
3970       } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
3971                  ConstraintLetter != 'n') {
3972         Ops.push_back(DAG.getTargetBlockAddress(
3973             BA->getBlockAddress(), BA->getValueType(0),
3974             Offset + BA->getOffset(), BA->getTargetFlags()));
3975         return;
3976       } else {
3977         const unsigned OpCode = Op.getOpcode();
3978         if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
3979           if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
3980             Op = Op.getOperand(1);
3981           // Subtraction is not commutative.
3982           else if (OpCode == ISD::ADD &&
3983                    (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
3984             Op = Op.getOperand(0);
3985           else
3986             return;
3987           Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
3988           continue;
3989         }
3990       }
3991       return;
3992     }
3993     break;
3994   }
3995   }
3996 }
3997 
3998 std::pair<unsigned, const TargetRegisterClass *>
3999 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4000                                              StringRef Constraint,
4001                                              MVT VT) const {
4002   if (Constraint.empty() || Constraint[0] != '{')
4003     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4004   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4005 
4006   // Remove the braces from around the name.
4007   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4008 
4009   std::pair<unsigned, const TargetRegisterClass *> R =
4010       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4011 
4012   // Figure out which register class contains this reg.
4013   for (const TargetRegisterClass *RC : RI->regclasses()) {
4014     // If none of the value types for this register class are valid, we
4015     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4016     if (!isLegalRC(*RI, *RC))
4017       continue;
4018 
4019     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4020          I != E; ++I) {
4021       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4022         std::pair<unsigned, const TargetRegisterClass *> S =
4023             std::make_pair(*I, RC);
4024 
4025         // If this register class has the requested value type, return it,
4026         // otherwise keep searching and return the first class found
4027         // if no other is found which explicitly has the requested type.
4028         if (RI->isTypeLegalForClass(*RC, VT))
4029           return S;
4030         if (!R.second)
4031           R = S;
4032       }
4033     }
4034   }
4035 
4036   return R;
4037 }
4038 
4039 //===----------------------------------------------------------------------===//
4040 // Constraint Selection.
4041 
4042 /// Return true of this is an input operand that is a matching constraint like
4043 /// "4".
4044 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4045   assert(!ConstraintCode.empty() && "No known constraint!");
4046   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4047 }
4048 
4049 /// If this is an input matching constraint, this method returns the output
4050 /// operand it matches.
4051 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4052   assert(!ConstraintCode.empty() && "No known constraint!");
4053   return atoi(ConstraintCode.c_str());
4054 }
4055 
4056 /// Split up the constraint string from the inline assembly value into the
4057 /// specific constraints and their prefixes, and also tie in the associated
4058 /// operand values.
4059 /// If this returns an empty vector, and if the constraint string itself
4060 /// isn't empty, there was an error parsing.
4061 TargetLowering::AsmOperandInfoVector
4062 TargetLowering::ParseConstraints(const DataLayout &DL,
4063                                  const TargetRegisterInfo *TRI,
4064                                  ImmutableCallSite CS) const {
4065   /// Information about all of the constraints.
4066   AsmOperandInfoVector ConstraintOperands;
4067   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4068   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4069 
4070   // Do a prepass over the constraints, canonicalizing them, and building up the
4071   // ConstraintOperands list.
4072   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4073   unsigned ResNo = 0; // ResNo - The result number of the next output.
4074 
4075   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4076     ConstraintOperands.emplace_back(std::move(CI));
4077     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4078 
4079     // Update multiple alternative constraint count.
4080     if (OpInfo.multipleAlternatives.size() > maCount)
4081       maCount = OpInfo.multipleAlternatives.size();
4082 
4083     OpInfo.ConstraintVT = MVT::Other;
4084 
4085     // Compute the value type for each operand.
4086     switch (OpInfo.Type) {
4087     case InlineAsm::isOutput:
4088       // Indirect outputs just consume an argument.
4089       if (OpInfo.isIndirect) {
4090         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4091         break;
4092       }
4093 
4094       // The return value of the call is this value.  As such, there is no
4095       // corresponding argument.
4096       assert(!CS.getType()->isVoidTy() &&
4097              "Bad inline asm!");
4098       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
4099         OpInfo.ConstraintVT =
4100             getSimpleValueType(DL, STy->getElementType(ResNo));
4101       } else {
4102         assert(ResNo == 0 && "Asm only has one result!");
4103         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
4104       }
4105       ++ResNo;
4106       break;
4107     case InlineAsm::isInput:
4108       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4109       break;
4110     case InlineAsm::isClobber:
4111       // Nothing to do.
4112       break;
4113     }
4114 
4115     if (OpInfo.CallOperandVal) {
4116       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4117       if (OpInfo.isIndirect) {
4118         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4119         if (!PtrTy)
4120           report_fatal_error("Indirect operand for inline asm not a pointer!");
4121         OpTy = PtrTy->getElementType();
4122       }
4123 
4124       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4125       if (StructType *STy = dyn_cast<StructType>(OpTy))
4126         if (STy->getNumElements() == 1)
4127           OpTy = STy->getElementType(0);
4128 
4129       // If OpTy is not a single value, it may be a struct/union that we
4130       // can tile with integers.
4131       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4132         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4133         switch (BitSize) {
4134         default: break;
4135         case 1:
4136         case 8:
4137         case 16:
4138         case 32:
4139         case 64:
4140         case 128:
4141           OpInfo.ConstraintVT =
4142               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4143           break;
4144         }
4145       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4146         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4147         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4148       } else {
4149         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4150       }
4151     }
4152   }
4153 
4154   // If we have multiple alternative constraints, select the best alternative.
4155   if (!ConstraintOperands.empty()) {
4156     if (maCount) {
4157       unsigned bestMAIndex = 0;
4158       int bestWeight = -1;
4159       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4160       int weight = -1;
4161       unsigned maIndex;
4162       // Compute the sums of the weights for each alternative, keeping track
4163       // of the best (highest weight) one so far.
4164       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4165         int weightSum = 0;
4166         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4167              cIndex != eIndex; ++cIndex) {
4168           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4169           if (OpInfo.Type == InlineAsm::isClobber)
4170             continue;
4171 
4172           // If this is an output operand with a matching input operand,
4173           // look up the matching input. If their types mismatch, e.g. one
4174           // is an integer, the other is floating point, or their sizes are
4175           // different, flag it as an maCantMatch.
4176           if (OpInfo.hasMatchingInput()) {
4177             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4178             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4179               if ((OpInfo.ConstraintVT.isInteger() !=
4180                    Input.ConstraintVT.isInteger()) ||
4181                   (OpInfo.ConstraintVT.getSizeInBits() !=
4182                    Input.ConstraintVT.getSizeInBits())) {
4183                 weightSum = -1; // Can't match.
4184                 break;
4185               }
4186             }
4187           }
4188           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4189           if (weight == -1) {
4190             weightSum = -1;
4191             break;
4192           }
4193           weightSum += weight;
4194         }
4195         // Update best.
4196         if (weightSum > bestWeight) {
4197           bestWeight = weightSum;
4198           bestMAIndex = maIndex;
4199         }
4200       }
4201 
4202       // Now select chosen alternative in each constraint.
4203       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4204            cIndex != eIndex; ++cIndex) {
4205         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4206         if (cInfo.Type == InlineAsm::isClobber)
4207           continue;
4208         cInfo.selectAlternative(bestMAIndex);
4209       }
4210     }
4211   }
4212 
4213   // Check and hook up tied operands, choose constraint code to use.
4214   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4215        cIndex != eIndex; ++cIndex) {
4216     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4217 
4218     // If this is an output operand with a matching input operand, look up the
4219     // matching input. If their types mismatch, e.g. one is an integer, the
4220     // other is floating point, or their sizes are different, flag it as an
4221     // error.
4222     if (OpInfo.hasMatchingInput()) {
4223       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4224 
4225       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4226         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4227             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4228                                          OpInfo.ConstraintVT);
4229         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4230             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4231                                          Input.ConstraintVT);
4232         if ((OpInfo.ConstraintVT.isInteger() !=
4233              Input.ConstraintVT.isInteger()) ||
4234             (MatchRC.second != InputRC.second)) {
4235           report_fatal_error("Unsupported asm: input constraint"
4236                              " with a matching output constraint of"
4237                              " incompatible type!");
4238         }
4239       }
4240     }
4241   }
4242 
4243   return ConstraintOperands;
4244 }
4245 
4246 /// Return an integer indicating how general CT is.
4247 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4248   switch (CT) {
4249   case TargetLowering::C_Other:
4250   case TargetLowering::C_Unknown:
4251     return 0;
4252   case TargetLowering::C_Register:
4253     return 1;
4254   case TargetLowering::C_RegisterClass:
4255     return 2;
4256   case TargetLowering::C_Memory:
4257     return 3;
4258   }
4259   llvm_unreachable("Invalid constraint type");
4260 }
4261 
4262 /// Examine constraint type and operand type and determine a weight value.
4263 /// This object must already have been set up with the operand type
4264 /// and the current alternative constraint selected.
4265 TargetLowering::ConstraintWeight
4266   TargetLowering::getMultipleConstraintMatchWeight(
4267     AsmOperandInfo &info, int maIndex) const {
4268   InlineAsm::ConstraintCodeVector *rCodes;
4269   if (maIndex >= (int)info.multipleAlternatives.size())
4270     rCodes = &info.Codes;
4271   else
4272     rCodes = &info.multipleAlternatives[maIndex].Codes;
4273   ConstraintWeight BestWeight = CW_Invalid;
4274 
4275   // Loop over the options, keeping track of the most general one.
4276   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4277     ConstraintWeight weight =
4278       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4279     if (weight > BestWeight)
4280       BestWeight = weight;
4281   }
4282 
4283   return BestWeight;
4284 }
4285 
4286 /// Examine constraint type and operand type and determine a weight value.
4287 /// This object must already have been set up with the operand type
4288 /// and the current alternative constraint selected.
4289 TargetLowering::ConstraintWeight
4290   TargetLowering::getSingleConstraintMatchWeight(
4291     AsmOperandInfo &info, const char *constraint) const {
4292   ConstraintWeight weight = CW_Invalid;
4293   Value *CallOperandVal = info.CallOperandVal;
4294     // If we don't have a value, we can't do a match,
4295     // but allow it at the lowest weight.
4296   if (!CallOperandVal)
4297     return CW_Default;
4298   // Look at the constraint type.
4299   switch (*constraint) {
4300     case 'i': // immediate integer.
4301     case 'n': // immediate integer with a known value.
4302       if (isa<ConstantInt>(CallOperandVal))
4303         weight = CW_Constant;
4304       break;
4305     case 's': // non-explicit intregal immediate.
4306       if (isa<GlobalValue>(CallOperandVal))
4307         weight = CW_Constant;
4308       break;
4309     case 'E': // immediate float if host format.
4310     case 'F': // immediate float.
4311       if (isa<ConstantFP>(CallOperandVal))
4312         weight = CW_Constant;
4313       break;
4314     case '<': // memory operand with autodecrement.
4315     case '>': // memory operand with autoincrement.
4316     case 'm': // memory operand.
4317     case 'o': // offsettable memory operand
4318     case 'V': // non-offsettable memory operand
4319       weight = CW_Memory;
4320       break;
4321     case 'r': // general register.
4322     case 'g': // general register, memory operand or immediate integer.
4323               // note: Clang converts "g" to "imr".
4324       if (CallOperandVal->getType()->isIntegerTy())
4325         weight = CW_Register;
4326       break;
4327     case 'X': // any operand.
4328   default:
4329     weight = CW_Default;
4330     break;
4331   }
4332   return weight;
4333 }
4334 
4335 /// If there are multiple different constraints that we could pick for this
4336 /// operand (e.g. "imr") try to pick the 'best' one.
4337 /// This is somewhat tricky: constraints fall into four classes:
4338 ///    Other         -> immediates and magic values
4339 ///    Register      -> one specific register
4340 ///    RegisterClass -> a group of regs
4341 ///    Memory        -> memory
4342 /// Ideally, we would pick the most specific constraint possible: if we have
4343 /// something that fits into a register, we would pick it.  The problem here
4344 /// is that if we have something that could either be in a register or in
4345 /// memory that use of the register could cause selection of *other*
4346 /// operands to fail: they might only succeed if we pick memory.  Because of
4347 /// this the heuristic we use is:
4348 ///
4349 ///  1) If there is an 'other' constraint, and if the operand is valid for
4350 ///     that constraint, use it.  This makes us take advantage of 'i'
4351 ///     constraints when available.
4352 ///  2) Otherwise, pick the most general constraint present.  This prefers
4353 ///     'm' over 'r', for example.
4354 ///
4355 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4356                              const TargetLowering &TLI,
4357                              SDValue Op, SelectionDAG *DAG) {
4358   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4359   unsigned BestIdx = 0;
4360   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4361   int BestGenerality = -1;
4362 
4363   // Loop over the options, keeping track of the most general one.
4364   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4365     TargetLowering::ConstraintType CType =
4366       TLI.getConstraintType(OpInfo.Codes[i]);
4367 
4368     // If this is an 'other' constraint, see if the operand is valid for it.
4369     // For example, on X86 we might have an 'rI' constraint.  If the operand
4370     // is an integer in the range [0..31] we want to use I (saving a load
4371     // of a register), otherwise we must use 'r'.
4372     if (CType == TargetLowering::C_Other && Op.getNode()) {
4373       assert(OpInfo.Codes[i].size() == 1 &&
4374              "Unhandled multi-letter 'other' constraint");
4375       std::vector<SDValue> ResultOps;
4376       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4377                                        ResultOps, *DAG);
4378       if (!ResultOps.empty()) {
4379         BestType = CType;
4380         BestIdx = i;
4381         break;
4382       }
4383     }
4384 
4385     // Things with matching constraints can only be registers, per gcc
4386     // documentation.  This mainly affects "g" constraints.
4387     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4388       continue;
4389 
4390     // This constraint letter is more general than the previous one, use it.
4391     int Generality = getConstraintGenerality(CType);
4392     if (Generality > BestGenerality) {
4393       BestType = CType;
4394       BestIdx = i;
4395       BestGenerality = Generality;
4396     }
4397   }
4398 
4399   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4400   OpInfo.ConstraintType = BestType;
4401 }
4402 
4403 /// Determines the constraint code and constraint type to use for the specific
4404 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4405 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4406                                             SDValue Op,
4407                                             SelectionDAG *DAG) const {
4408   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4409 
4410   // Single-letter constraints ('r') are very common.
4411   if (OpInfo.Codes.size() == 1) {
4412     OpInfo.ConstraintCode = OpInfo.Codes[0];
4413     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4414   } else {
4415     ChooseConstraint(OpInfo, *this, Op, DAG);
4416   }
4417 
4418   // 'X' matches anything.
4419   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4420     // Labels and constants are handled elsewhere ('X' is the only thing
4421     // that matches labels).  For Functions, the type here is the type of
4422     // the result, which is not what we want to look at; leave them alone.
4423     Value *v = OpInfo.CallOperandVal;
4424     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4425       OpInfo.CallOperandVal = v;
4426       return;
4427     }
4428 
4429     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4430       return;
4431 
4432     // Otherwise, try to resolve it to something we know about by looking at
4433     // the actual operand type.
4434     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4435       OpInfo.ConstraintCode = Repl;
4436       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4437     }
4438   }
4439 }
4440 
4441 /// Given an exact SDIV by a constant, create a multiplication
4442 /// with the multiplicative inverse of the constant.
4443 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4444                               const SDLoc &dl, SelectionDAG &DAG,
4445                               SmallVectorImpl<SDNode *> &Created) {
4446   SDValue Op0 = N->getOperand(0);
4447   SDValue Op1 = N->getOperand(1);
4448   EVT VT = N->getValueType(0);
4449   EVT SVT = VT.getScalarType();
4450   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
4451   EVT ShSVT = ShVT.getScalarType();
4452 
4453   bool UseSRA = false;
4454   SmallVector<SDValue, 16> Shifts, Factors;
4455 
4456   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4457     if (C->isNullValue())
4458       return false;
4459     APInt Divisor = C->getAPIntValue();
4460     unsigned Shift = Divisor.countTrailingZeros();
4461     if (Shift) {
4462       Divisor.ashrInPlace(Shift);
4463       UseSRA = true;
4464     }
4465     // Calculate the multiplicative inverse, using Newton's method.
4466     APInt t;
4467     APInt Factor = Divisor;
4468     while ((t = Divisor * Factor) != 1)
4469       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
4470     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
4471     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
4472     return true;
4473   };
4474 
4475   // Collect all magic values from the build vector.
4476   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
4477     return SDValue();
4478 
4479   SDValue Shift, Factor;
4480   if (VT.isVector()) {
4481     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4482     Factor = DAG.getBuildVector(VT, dl, Factors);
4483   } else {
4484     Shift = Shifts[0];
4485     Factor = Factors[0];
4486   }
4487 
4488   SDValue Res = Op0;
4489 
4490   // Shift the value upfront if it is even, so the LSB is one.
4491   if (UseSRA) {
4492     // TODO: For UDIV use SRL instead of SRA.
4493     SDNodeFlags Flags;
4494     Flags.setExact(true);
4495     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
4496     Created.push_back(Res.getNode());
4497   }
4498 
4499   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
4500 }
4501 
4502 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4503                               SelectionDAG &DAG,
4504                               SmallVectorImpl<SDNode *> &Created) const {
4505   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4506   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4507   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
4508     return SDValue(N, 0); // Lower SDIV as SDIV
4509   return SDValue();
4510 }
4511 
4512 /// Given an ISD::SDIV node expressing a divide by constant,
4513 /// return a DAG expression to select that will generate the same value by
4514 /// multiplying by a magic number.
4515 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4516 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
4517                                   bool IsAfterLegalization,
4518                                   SmallVectorImpl<SDNode *> &Created) const {
4519   SDLoc dl(N);
4520   EVT VT = N->getValueType(0);
4521   EVT SVT = VT.getScalarType();
4522   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4523   EVT ShSVT = ShVT.getScalarType();
4524   unsigned EltBits = VT.getScalarSizeInBits();
4525 
4526   // Check to see if we can do this.
4527   // FIXME: We should be more aggressive here.
4528   if (!isTypeLegal(VT))
4529     return SDValue();
4530 
4531   // If the sdiv has an 'exact' bit we can use a simpler lowering.
4532   if (N->getFlags().hasExact())
4533     return BuildExactSDIV(*this, N, dl, DAG, Created);
4534 
4535   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
4536 
4537   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4538     if (C->isNullValue())
4539       return false;
4540 
4541     const APInt &Divisor = C->getAPIntValue();
4542     APInt::ms magics = Divisor.magic();
4543     int NumeratorFactor = 0;
4544     int ShiftMask = -1;
4545 
4546     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
4547       // If d is +1/-1, we just multiply the numerator by +1/-1.
4548       NumeratorFactor = Divisor.getSExtValue();
4549       magics.m = 0;
4550       magics.s = 0;
4551       ShiftMask = 0;
4552     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
4553       // If d > 0 and m < 0, add the numerator.
4554       NumeratorFactor = 1;
4555     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
4556       // If d < 0 and m > 0, subtract the numerator.
4557       NumeratorFactor = -1;
4558     }
4559 
4560     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
4561     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
4562     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
4563     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
4564     return true;
4565   };
4566 
4567   SDValue N0 = N->getOperand(0);
4568   SDValue N1 = N->getOperand(1);
4569 
4570   // Collect the shifts / magic values from each element.
4571   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
4572     return SDValue();
4573 
4574   SDValue MagicFactor, Factor, Shift, ShiftMask;
4575   if (VT.isVector()) {
4576     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4577     Factor = DAG.getBuildVector(VT, dl, Factors);
4578     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4579     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
4580   } else {
4581     MagicFactor = MagicFactors[0];
4582     Factor = Factors[0];
4583     Shift = Shifts[0];
4584     ShiftMask = ShiftMasks[0];
4585   }
4586 
4587   // Multiply the numerator (operand 0) by the magic value.
4588   // FIXME: We should support doing a MUL in a wider type.
4589   SDValue Q;
4590   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
4591                           : isOperationLegalOrCustom(ISD::MULHS, VT))
4592     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
4593   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
4594                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
4595     SDValue LoHi =
4596         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
4597     Q = SDValue(LoHi.getNode(), 1);
4598   } else
4599     return SDValue(); // No mulhs or equivalent.
4600   Created.push_back(Q.getNode());
4601 
4602   // (Optionally) Add/subtract the numerator using Factor.
4603   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
4604   Created.push_back(Factor.getNode());
4605   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
4606   Created.push_back(Q.getNode());
4607 
4608   // Shift right algebraic by shift value.
4609   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
4610   Created.push_back(Q.getNode());
4611 
4612   // Extract the sign bit, mask it and add it to the quotient.
4613   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
4614   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
4615   Created.push_back(T.getNode());
4616   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
4617   Created.push_back(T.getNode());
4618   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
4619 }
4620 
4621 /// Given an ISD::UDIV node expressing a divide by constant,
4622 /// return a DAG expression to select that will generate the same value by
4623 /// multiplying by a magic number.
4624 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4625 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
4626                                   bool IsAfterLegalization,
4627                                   SmallVectorImpl<SDNode *> &Created) const {
4628   SDLoc dl(N);
4629   EVT VT = N->getValueType(0);
4630   EVT SVT = VT.getScalarType();
4631   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4632   EVT ShSVT = ShVT.getScalarType();
4633   unsigned EltBits = VT.getScalarSizeInBits();
4634 
4635   // Check to see if we can do this.
4636   // FIXME: We should be more aggressive here.
4637   if (!isTypeLegal(VT))
4638     return SDValue();
4639 
4640   bool UseNPQ = false;
4641   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4642 
4643   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
4644     if (C->isNullValue())
4645       return false;
4646     // FIXME: We should use a narrower constant when the upper
4647     // bits are known to be zero.
4648     APInt Divisor = C->getAPIntValue();
4649     APInt::mu magics = Divisor.magicu();
4650     unsigned PreShift = 0, PostShift = 0;
4651 
4652     // If the divisor is even, we can avoid using the expensive fixup by
4653     // shifting the divided value upfront.
4654     if (magics.a != 0 && !Divisor[0]) {
4655       PreShift = Divisor.countTrailingZeros();
4656       // Get magic number for the shifted divisor.
4657       magics = Divisor.lshr(PreShift).magicu(PreShift);
4658       assert(magics.a == 0 && "Should use cheap fixup now");
4659     }
4660 
4661     APInt Magic = magics.m;
4662 
4663     unsigned SelNPQ;
4664     if (magics.a == 0 || Divisor.isOneValue()) {
4665       assert(magics.s < Divisor.getBitWidth() &&
4666              "We shouldn't generate an undefined shift!");
4667       PostShift = magics.s;
4668       SelNPQ = false;
4669     } else {
4670       PostShift = magics.s - 1;
4671       SelNPQ = true;
4672     }
4673 
4674     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
4675     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
4676     NPQFactors.push_back(
4677         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
4678                                : APInt::getNullValue(EltBits),
4679                         dl, SVT));
4680     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
4681     UseNPQ |= SelNPQ;
4682     return true;
4683   };
4684 
4685   SDValue N0 = N->getOperand(0);
4686   SDValue N1 = N->getOperand(1);
4687 
4688   // Collect the shifts/magic values from each element.
4689   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
4690     return SDValue();
4691 
4692   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
4693   if (VT.isVector()) {
4694     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
4695     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4696     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
4697     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
4698   } else {
4699     PreShift = PreShifts[0];
4700     MagicFactor = MagicFactors[0];
4701     PostShift = PostShifts[0];
4702   }
4703 
4704   SDValue Q = N0;
4705   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
4706   Created.push_back(Q.getNode());
4707 
4708   // FIXME: We should support doing a MUL in a wider type.
4709   auto GetMULHU = [&](SDValue X, SDValue Y) {
4710     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
4711                             : isOperationLegalOrCustom(ISD::MULHU, VT))
4712       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
4713     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
4714                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
4715       SDValue LoHi =
4716           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
4717       return SDValue(LoHi.getNode(), 1);
4718     }
4719     return SDValue(); // No mulhu or equivalent
4720   };
4721 
4722   // Multiply the numerator (operand 0) by the magic value.
4723   Q = GetMULHU(Q, MagicFactor);
4724   if (!Q)
4725     return SDValue();
4726 
4727   Created.push_back(Q.getNode());
4728 
4729   if (UseNPQ) {
4730     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
4731     Created.push_back(NPQ.getNode());
4732 
4733     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
4734     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
4735     if (VT.isVector())
4736       NPQ = GetMULHU(NPQ, NPQFactor);
4737     else
4738       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
4739 
4740     Created.push_back(NPQ.getNode());
4741 
4742     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
4743     Created.push_back(Q.getNode());
4744   }
4745 
4746   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
4747   Created.push_back(Q.getNode());
4748 
4749   SDValue One = DAG.getConstant(1, dl, VT);
4750   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
4751   return DAG.getSelect(dl, VT, IsOne, N0, Q);
4752 }
4753 
4754 /// If all values in Values that *don't* match the predicate are same 'splat'
4755 /// value, then replace all values with that splat value.
4756 /// Else, if AlternativeReplacement was provided, then replace all values that
4757 /// do match predicate with AlternativeReplacement value.
4758 static void
4759 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
4760                           std::function<bool(SDValue)> Predicate,
4761                           SDValue AlternativeReplacement = SDValue()) {
4762   SDValue Replacement;
4763   // Is there a value for which the Predicate does *NOT* match? What is it?
4764   auto SplatValue = llvm::find_if_not(Values, Predicate);
4765   if (SplatValue != Values.end()) {
4766     // Does Values consist only of SplatValue's and values matching Predicate?
4767     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
4768           return Value == *SplatValue || Predicate(Value);
4769         })) // Then we shall replace values matching predicate with SplatValue.
4770       Replacement = *SplatValue;
4771   }
4772   if (!Replacement) {
4773     // Oops, we did not find the "baseline" splat value.
4774     if (!AlternativeReplacement)
4775       return; // Nothing to do.
4776     // Let's replace with provided value then.
4777     Replacement = AlternativeReplacement;
4778   }
4779   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
4780 }
4781 
4782 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
4783 /// where the divisor is constant and the comparison target is zero,
4784 /// return a DAG expression that will generate the same comparison result
4785 /// using only multiplications, additions and shifts/rotations.
4786 /// Ref: "Hacker's Delight" 10-17.
4787 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
4788                                         SDValue CompTargetNode,
4789                                         ISD::CondCode Cond,
4790                                         DAGCombinerInfo &DCI,
4791                                         const SDLoc &DL) const {
4792   SmallVector<SDNode *, 2> Built;
4793   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
4794                                          DCI, DL, Built)) {
4795     for (SDNode *N : Built)
4796       DCI.AddToWorklist(N);
4797     return Folded;
4798   }
4799 
4800   return SDValue();
4801 }
4802 
4803 SDValue
4804 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
4805                                   SDValue CompTargetNode, ISD::CondCode Cond,
4806                                   DAGCombinerInfo &DCI, const SDLoc &DL,
4807                                   SmallVectorImpl<SDNode *> &Created) const {
4808   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
4809   // - D must be constant, with D = D0 * 2^K where D0 is odd
4810   // - P is the multiplicative inverse of D0 modulo 2^W
4811   // - Q = floor((2^W - 1) / D0)
4812   // where W is the width of the common type of N and D.
4813   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4814          "Only applicable for (in)equality comparisons.");
4815 
4816   SelectionDAG &DAG = DCI.DAG;
4817 
4818   EVT VT = REMNode.getValueType();
4819   EVT SVT = VT.getScalarType();
4820   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4821   EVT ShSVT = ShVT.getScalarType();
4822 
4823   // If MUL is unavailable, we cannot proceed in any case.
4824   if (!isOperationLegalOrCustom(ISD::MUL, VT))
4825     return SDValue();
4826 
4827   // TODO: Could support comparing with non-zero too.
4828   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
4829   if (!CompTarget || !CompTarget->isNullValue())
4830     return SDValue();
4831 
4832   bool HadOneDivisor = false;
4833   bool AllDivisorsAreOnes = true;
4834   bool HadEvenDivisor = false;
4835   bool AllDivisorsArePowerOfTwo = true;
4836   SmallVector<SDValue, 16> PAmts, KAmts, QAmts;
4837 
4838   auto BuildUREMPattern = [&](ConstantSDNode *C) {
4839     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
4840     if (C->isNullValue())
4841       return false;
4842 
4843     const APInt &D = C->getAPIntValue();
4844     // If all divisors are ones, we will prefer to avoid the fold.
4845     HadOneDivisor |= D.isOneValue();
4846     AllDivisorsAreOnes &= D.isOneValue();
4847 
4848     // Decompose D into D0 * 2^K
4849     unsigned K = D.countTrailingZeros();
4850     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
4851     APInt D0 = D.lshr(K);
4852 
4853     // D is even if it has trailing zeros.
4854     HadEvenDivisor |= (K != 0);
4855     // D is a power-of-two if D0 is one.
4856     // If all divisors are power-of-two, we will prefer to avoid the fold.
4857     AllDivisorsArePowerOfTwo &= D0.isOneValue();
4858 
4859     // P = inv(D0, 2^W)
4860     // 2^W requires W + 1 bits, so we have to extend and then truncate.
4861     unsigned W = D.getBitWidth();
4862     APInt P = D0.zext(W + 1)
4863                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
4864                   .trunc(W);
4865     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
4866     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
4867 
4868     // Q = floor((2^W - 1) / D)
4869     APInt Q = APInt::getAllOnesValue(W).udiv(D);
4870 
4871     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
4872            "We are expecting that K is always less than all-ones for ShSVT");
4873 
4874     // If the divisor is 1 the result can be constant-folded.
4875     if (D.isOneValue()) {
4876       // Set P and K amount to a bogus values so we can try to splat them.
4877       P = 0;
4878       K = -1;
4879       assert(Q.isAllOnesValue() &&
4880              "Expecting all-ones comparison for one divisor");
4881     }
4882 
4883     PAmts.push_back(DAG.getConstant(P, DL, SVT));
4884     KAmts.push_back(
4885         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
4886     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
4887     return true;
4888   };
4889 
4890   SDValue N = REMNode.getOperand(0);
4891   SDValue D = REMNode.getOperand(1);
4892 
4893   // Collect the values from each element.
4894   if (!ISD::matchUnaryPredicate(D, BuildUREMPattern))
4895     return SDValue();
4896 
4897   // If this is a urem by a one, avoid the fold since it can be constant-folded.
4898   if (AllDivisorsAreOnes)
4899     return SDValue();
4900 
4901   // If this is a urem by a powers-of-two, avoid the fold since it can be
4902   // best implemented as a bit test.
4903   if (AllDivisorsArePowerOfTwo)
4904     return SDValue();
4905 
4906   SDValue PVal, KVal, QVal;
4907   if (VT.isVector()) {
4908     if (HadOneDivisor) {
4909       // Try to turn PAmts into a splat, since we don't care about the values
4910       // that are currently '0'. If we can't, just keep '0'`s.
4911       turnVectorIntoSplatVector(PAmts, isNullConstant);
4912       // Try to turn KAmts into a splat, since we don't care about the values
4913       // that are currently '-1'. If we can't, change them to '0'`s.
4914       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
4915                                 DAG.getConstant(0, DL, ShSVT));
4916     }
4917 
4918     PVal = DAG.getBuildVector(VT, DL, PAmts);
4919     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
4920     QVal = DAG.getBuildVector(VT, DL, QAmts);
4921   } else {
4922     PVal = PAmts[0];
4923     KVal = KAmts[0];
4924     QVal = QAmts[0];
4925   }
4926 
4927   // (mul N, P)
4928   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
4929   Created.push_back(Op0.getNode());
4930 
4931   // Rotate right only if any divisor was even. We avoid rotates for all-odd
4932   // divisors as a performance improvement, since rotating by 0 is a no-op.
4933   if (HadEvenDivisor) {
4934     // We need ROTR to do this.
4935     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
4936       return SDValue();
4937     SDNodeFlags Flags;
4938     Flags.setExact(true);
4939     // UREM: (rotr (mul N, P), K)
4940     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
4941     Created.push_back(Op0.getNode());
4942   }
4943 
4944   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
4945   return DAG.getSetCC(DL, SETCCVT, Op0, QVal,
4946                       ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
4947 }
4948 
4949 bool TargetLowering::
4950 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
4951   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
4952     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
4953                                 "be a constant integer");
4954     return true;
4955   }
4956 
4957   return false;
4958 }
4959 
4960 //===----------------------------------------------------------------------===//
4961 // Legalization Utilities
4962 //===----------------------------------------------------------------------===//
4963 
4964 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
4965                                     SDValue LHS, SDValue RHS,
4966                                     SmallVectorImpl<SDValue> &Result,
4967                                     EVT HiLoVT, SelectionDAG &DAG,
4968                                     MulExpansionKind Kind, SDValue LL,
4969                                     SDValue LH, SDValue RL, SDValue RH) const {
4970   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
4971          Opcode == ISD::SMUL_LOHI);
4972 
4973   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
4974                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
4975   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
4976                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
4977   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
4978                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
4979   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
4980                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
4981 
4982   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
4983     return false;
4984 
4985   unsigned OuterBitSize = VT.getScalarSizeInBits();
4986   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
4987   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
4988   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
4989 
4990   // LL, LH, RL, and RH must be either all NULL or all set to a value.
4991   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
4992          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
4993 
4994   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
4995   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
4996                           bool Signed) -> bool {
4997     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
4998       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
4999       Hi = SDValue(Lo.getNode(), 1);
5000       return true;
5001     }
5002     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
5003       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
5004       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
5005       return true;
5006     }
5007     return false;
5008   };
5009 
5010   SDValue Lo, Hi;
5011 
5012   if (!LL.getNode() && !RL.getNode() &&
5013       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5014     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
5015     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
5016   }
5017 
5018   if (!LL.getNode())
5019     return false;
5020 
5021   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
5022   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
5023       DAG.MaskedValueIsZero(RHS, HighMask)) {
5024     // The inputs are both zero-extended.
5025     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
5026       Result.push_back(Lo);
5027       Result.push_back(Hi);
5028       if (Opcode != ISD::MUL) {
5029         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5030         Result.push_back(Zero);
5031         Result.push_back(Zero);
5032       }
5033       return true;
5034     }
5035   }
5036 
5037   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
5038       RHSSB > InnerBitSize) {
5039     // The input values are both sign-extended.
5040     // TODO non-MUL case?
5041     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
5042       Result.push_back(Lo);
5043       Result.push_back(Hi);
5044       return true;
5045     }
5046   }
5047 
5048   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
5049   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
5050   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
5051     // FIXME getShiftAmountTy does not always return a sensible result when VT
5052     // is an illegal type, and so the type may be too small to fit the shift
5053     // amount. Override it with i32. The shift will have to be legalized.
5054     ShiftAmountTy = MVT::i32;
5055   }
5056   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
5057 
5058   if (!LH.getNode() && !RH.getNode() &&
5059       isOperationLegalOrCustom(ISD::SRL, VT) &&
5060       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5061     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
5062     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
5063     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
5064     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
5065   }
5066 
5067   if (!LH.getNode())
5068     return false;
5069 
5070   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
5071     return false;
5072 
5073   Result.push_back(Lo);
5074 
5075   if (Opcode == ISD::MUL) {
5076     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
5077     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
5078     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
5079     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
5080     Result.push_back(Hi);
5081     return true;
5082   }
5083 
5084   // Compute the full width result.
5085   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
5086     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
5087     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5088     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
5089     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
5090   };
5091 
5092   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5093   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
5094     return false;
5095 
5096   // This is effectively the add part of a multiply-add of half-sized operands,
5097   // so it cannot overflow.
5098   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5099 
5100   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
5101     return false;
5102 
5103   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5104   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5105 
5106   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
5107                   isOperationLegalOrCustom(ISD::ADDE, VT));
5108   if (UseGlue)
5109     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
5110                        Merge(Lo, Hi));
5111   else
5112     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
5113                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
5114 
5115   SDValue Carry = Next.getValue(1);
5116   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5117   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5118 
5119   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
5120     return false;
5121 
5122   if (UseGlue)
5123     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
5124                      Carry);
5125   else
5126     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
5127                      Zero, Carry);
5128 
5129   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5130 
5131   if (Opcode == ISD::SMUL_LOHI) {
5132     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5133                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
5134     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
5135 
5136     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5137                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
5138     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
5139   }
5140 
5141   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5142   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5143   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5144   return true;
5145 }
5146 
5147 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
5148                                SelectionDAG &DAG, MulExpansionKind Kind,
5149                                SDValue LL, SDValue LH, SDValue RL,
5150                                SDValue RH) const {
5151   SmallVector<SDValue, 2> Result;
5152   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
5153                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
5154                            DAG, Kind, LL, LH, RL, RH);
5155   if (Ok) {
5156     assert(Result.size() == 2);
5157     Lo = Result[0];
5158     Hi = Result[1];
5159   }
5160   return Ok;
5161 }
5162 
5163 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
5164                                        SelectionDAG &DAG) const {
5165   EVT VT = Node->getValueType(0);
5166 
5167   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
5168                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
5169                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
5170                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
5171     return false;
5172 
5173   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5174   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5175   SDValue X = Node->getOperand(0);
5176   SDValue Y = Node->getOperand(1);
5177   SDValue Z = Node->getOperand(2);
5178 
5179   unsigned EltSizeInBits = VT.getScalarSizeInBits();
5180   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
5181   SDLoc DL(SDValue(Node, 0));
5182 
5183   EVT ShVT = Z.getValueType();
5184   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
5185   SDValue Zero = DAG.getConstant(0, DL, ShVT);
5186 
5187   SDValue ShAmt;
5188   if (isPowerOf2_32(EltSizeInBits)) {
5189     SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
5190     ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
5191   } else {
5192     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
5193   }
5194 
5195   SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
5196   SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
5197   SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
5198   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
5199 
5200   // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
5201   // and that is undefined. We must compare and select to avoid UB.
5202   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
5203 
5204   // For fshl, 0-shift returns the 1st arg (X).
5205   // For fshr, 0-shift returns the 2nd arg (Y).
5206   SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
5207   Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
5208   return true;
5209 }
5210 
5211 // TODO: Merge with expandFunnelShift.
5212 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
5213                                SelectionDAG &DAG) const {
5214   EVT VT = Node->getValueType(0);
5215   unsigned EltSizeInBits = VT.getScalarSizeInBits();
5216   bool IsLeft = Node->getOpcode() == ISD::ROTL;
5217   SDValue Op0 = Node->getOperand(0);
5218   SDValue Op1 = Node->getOperand(1);
5219   SDLoc DL(SDValue(Node, 0));
5220 
5221   EVT ShVT = Op1.getValueType();
5222   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
5223 
5224   // If a rotate in the other direction is legal, use it.
5225   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
5226   if (isOperationLegal(RevRot, VT)) {
5227     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
5228     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
5229     return true;
5230   }
5231 
5232   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
5233                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
5234                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
5235                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
5236                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
5237     return false;
5238 
5239   // Otherwise,
5240   //   (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
5241   //   (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
5242   //
5243   assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
5244          "Expecting the type bitwidth to be a power of 2");
5245   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
5246   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
5247   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
5248   SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
5249   SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
5250   SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
5251   Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
5252                        DAG.getNode(HsOpc, DL, VT, Op0, And1));
5253   return true;
5254 }
5255 
5256 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
5257                                       SelectionDAG &DAG) const {
5258   SDValue Src = Node->getOperand(0);
5259   EVT SrcVT = Src.getValueType();
5260   EVT DstVT = Node->getValueType(0);
5261   SDLoc dl(SDValue(Node, 0));
5262 
5263   // FIXME: Only f32 to i64 conversions are supported.
5264   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
5265     return false;
5266 
5267   // Expand f32 -> i64 conversion
5268   // This algorithm comes from compiler-rt's implementation of fixsfdi:
5269   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
5270   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
5271   EVT IntVT = SrcVT.changeTypeToInteger();
5272   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
5273 
5274   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
5275   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
5276   SDValue Bias = DAG.getConstant(127, dl, IntVT);
5277   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
5278   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
5279   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
5280 
5281   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
5282 
5283   SDValue ExponentBits = DAG.getNode(
5284       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
5285       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
5286   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
5287 
5288   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
5289                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
5290                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
5291   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
5292 
5293   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
5294                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
5295                           DAG.getConstant(0x00800000, dl, IntVT));
5296 
5297   R = DAG.getZExtOrTrunc(R, dl, DstVT);
5298 
5299   R = DAG.getSelectCC(
5300       dl, Exponent, ExponentLoBit,
5301       DAG.getNode(ISD::SHL, dl, DstVT, R,
5302                   DAG.getZExtOrTrunc(
5303                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
5304                       dl, IntShVT)),
5305       DAG.getNode(ISD::SRL, dl, DstVT, R,
5306                   DAG.getZExtOrTrunc(
5307                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
5308                       dl, IntShVT)),
5309       ISD::SETGT);
5310 
5311   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
5312                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
5313 
5314   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
5315                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
5316   return true;
5317 }
5318 
5319 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
5320                                       SelectionDAG &DAG) const {
5321   SDLoc dl(SDValue(Node, 0));
5322   SDValue Src = Node->getOperand(0);
5323 
5324   EVT SrcVT = Src.getValueType();
5325   EVT DstVT = Node->getValueType(0);
5326   EVT SetCCVT =
5327       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
5328 
5329   // Only expand vector types if we have the appropriate vector bit operations.
5330   if (DstVT.isVector() && (!isOperationLegalOrCustom(ISD::FP_TO_SINT, DstVT) ||
5331                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
5332     return false;
5333 
5334   // If the maximum float value is smaller then the signed integer range,
5335   // the destination signmask can't be represented by the float, so we can
5336   // just use FP_TO_SINT directly.
5337   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
5338   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
5339   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
5340   if (APFloat::opOverflow &
5341       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
5342     Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
5343     return true;
5344   }
5345 
5346   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
5347   SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
5348 
5349   bool Strict = shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
5350   if (Strict) {
5351     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
5352     // signmask then offset (the result of which should be fully representable).
5353     // Sel = Src < 0x8000000000000000
5354     // Val = select Sel, Src, Src - 0x8000000000000000
5355     // Ofs = select Sel, 0, 0x8000000000000000
5356     // Result = fp_to_sint(Val) ^ Ofs
5357 
5358     // TODO: Should any fast-math-flags be set for the FSUB?
5359     SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src,
5360                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
5361     SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT),
5362                                 DAG.getConstant(SignMask, dl, DstVT));
5363     Result = DAG.getNode(ISD::XOR, dl, DstVT,
5364                          DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val), Ofs);
5365   } else {
5366     // Expand based on maximum range of FP_TO_SINT:
5367     // True = fp_to_sint(Src)
5368     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
5369     // Result = select (Src < 0x8000000000000000), True, False
5370 
5371     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
5372     // TODO: Should any fast-math-flags be set for the FSUB?
5373     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
5374                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
5375     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
5376                         DAG.getConstant(SignMask, dl, DstVT));
5377     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
5378   }
5379   return true;
5380 }
5381 
5382 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
5383                                       SelectionDAG &DAG) const {
5384   SDValue Src = Node->getOperand(0);
5385   EVT SrcVT = Src.getValueType();
5386   EVT DstVT = Node->getValueType(0);
5387 
5388   if (SrcVT.getScalarType() != MVT::i64)
5389     return false;
5390 
5391   SDLoc dl(SDValue(Node, 0));
5392   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
5393 
5394   if (DstVT.getScalarType() == MVT::f32) {
5395     // Only expand vector types if we have the appropriate vector bit
5396     // operations.
5397     if (SrcVT.isVector() &&
5398         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
5399          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
5400          !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) ||
5401          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
5402          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
5403       return false;
5404 
5405     // For unsigned conversions, convert them to signed conversions using the
5406     // algorithm from the x86_64 __floatundidf in compiler_rt.
5407     SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src);
5408 
5409     SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
5410     SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst);
5411     SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
5412     SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst);
5413     SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
5414 
5415     SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or);
5416     SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt);
5417 
5418     // TODO: This really should be implemented using a branch rather than a
5419     // select.  We happen to get lucky and machinesink does the right
5420     // thing most of the time.  This would be a good candidate for a
5421     // pseudo-op, or, even better, for whole-function isel.
5422     EVT SetCCVT =
5423         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
5424 
5425     SDValue SignBitTest = DAG.getSetCC(
5426         dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
5427     Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast);
5428     return true;
5429   }
5430 
5431   if (DstVT.getScalarType() == MVT::f64) {
5432     // Only expand vector types if we have the appropriate vector bit
5433     // operations.
5434     if (SrcVT.isVector() &&
5435         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
5436          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
5437          !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
5438          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
5439          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
5440       return false;
5441 
5442     // Implementation of unsigned i64 to f64 following the algorithm in
5443     // __floatundidf in compiler_rt. This implementation has the advantage
5444     // of performing rounding correctly, both in the default rounding mode
5445     // and in all alternate rounding modes.
5446     SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
5447     SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
5448         BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
5449     SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
5450     SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
5451     SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
5452 
5453     SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
5454     SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
5455     SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
5456     SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
5457     SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
5458     SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
5459     SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
5460     Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
5461     return true;
5462   }
5463 
5464   return false;
5465 }
5466 
5467 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
5468                                               SelectionDAG &DAG) const {
5469   SDLoc dl(Node);
5470   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
5471     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
5472   EVT VT = Node->getValueType(0);
5473   if (isOperationLegalOrCustom(NewOp, VT)) {
5474     SDValue Quiet0 = Node->getOperand(0);
5475     SDValue Quiet1 = Node->getOperand(1);
5476 
5477     if (!Node->getFlags().hasNoNaNs()) {
5478       // Insert canonicalizes if it's possible we need to quiet to get correct
5479       // sNaN behavior.
5480       if (!DAG.isKnownNeverSNaN(Quiet0)) {
5481         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
5482                              Node->getFlags());
5483       }
5484       if (!DAG.isKnownNeverSNaN(Quiet1)) {
5485         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
5486                              Node->getFlags());
5487       }
5488     }
5489 
5490     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
5491   }
5492 
5493   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
5494   // instead if there are no NaNs.
5495   if (Node->getFlags().hasNoNaNs()) {
5496     unsigned IEEE2018Op =
5497         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
5498     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
5499       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
5500                          Node->getOperand(1), Node->getFlags());
5501     }
5502   }
5503 
5504   return SDValue();
5505 }
5506 
5507 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
5508                                  SelectionDAG &DAG) const {
5509   SDLoc dl(Node);
5510   EVT VT = Node->getValueType(0);
5511   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5512   SDValue Op = Node->getOperand(0);
5513   unsigned Len = VT.getScalarSizeInBits();
5514   assert(VT.isInteger() && "CTPOP not implemented for this type.");
5515 
5516   // TODO: Add support for irregular type lengths.
5517   if (!(Len <= 128 && Len % 8 == 0))
5518     return false;
5519 
5520   // Only expand vector types if we have the appropriate vector bit operations.
5521   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
5522                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
5523                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
5524                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
5525                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
5526     return false;
5527 
5528   // This is the "best" algorithm from
5529   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
5530   SDValue Mask55 =
5531       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
5532   SDValue Mask33 =
5533       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
5534   SDValue Mask0F =
5535       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
5536   SDValue Mask01 =
5537       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
5538 
5539   // v = v - ((v >> 1) & 0x55555555...)
5540   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
5541                    DAG.getNode(ISD::AND, dl, VT,
5542                                DAG.getNode(ISD::SRL, dl, VT, Op,
5543                                            DAG.getConstant(1, dl, ShVT)),
5544                                Mask55));
5545   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
5546   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
5547                    DAG.getNode(ISD::AND, dl, VT,
5548                                DAG.getNode(ISD::SRL, dl, VT, Op,
5549                                            DAG.getConstant(2, dl, ShVT)),
5550                                Mask33));
5551   // v = (v + (v >> 4)) & 0x0F0F0F0F...
5552   Op = DAG.getNode(ISD::AND, dl, VT,
5553                    DAG.getNode(ISD::ADD, dl, VT, Op,
5554                                DAG.getNode(ISD::SRL, dl, VT, Op,
5555                                            DAG.getConstant(4, dl, ShVT))),
5556                    Mask0F);
5557   // v = (v * 0x01010101...) >> (Len - 8)
5558   if (Len > 8)
5559     Op =
5560         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
5561                     DAG.getConstant(Len - 8, dl, ShVT));
5562 
5563   Result = Op;
5564   return true;
5565 }
5566 
5567 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
5568                                 SelectionDAG &DAG) const {
5569   SDLoc dl(Node);
5570   EVT VT = Node->getValueType(0);
5571   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5572   SDValue Op = Node->getOperand(0);
5573   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
5574 
5575   // If the non-ZERO_UNDEF version is supported we can use that instead.
5576   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
5577       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
5578     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
5579     return true;
5580   }
5581 
5582   // If the ZERO_UNDEF version is supported use that and handle the zero case.
5583   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
5584     EVT SetCCVT =
5585         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5586     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
5587     SDValue Zero = DAG.getConstant(0, dl, VT);
5588     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
5589     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
5590                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
5591     return true;
5592   }
5593 
5594   // Only expand vector types if we have the appropriate vector bit operations.
5595   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
5596                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
5597                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
5598                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
5599     return false;
5600 
5601   // for now, we do this:
5602   // x = x | (x >> 1);
5603   // x = x | (x >> 2);
5604   // ...
5605   // x = x | (x >>16);
5606   // x = x | (x >>32); // for 64-bit input
5607   // return popcount(~x);
5608   //
5609   // Ref: "Hacker's Delight" by Henry Warren
5610   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
5611     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
5612     Op = DAG.getNode(ISD::OR, dl, VT, Op,
5613                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
5614   }
5615   Op = DAG.getNOT(dl, Op, VT);
5616   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
5617   return true;
5618 }
5619 
5620 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
5621                                 SelectionDAG &DAG) const {
5622   SDLoc dl(Node);
5623   EVT VT = Node->getValueType(0);
5624   SDValue Op = Node->getOperand(0);
5625   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
5626 
5627   // If the non-ZERO_UNDEF version is supported we can use that instead.
5628   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
5629       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
5630     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
5631     return true;
5632   }
5633 
5634   // If the ZERO_UNDEF version is supported use that and handle the zero case.
5635   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
5636     EVT SetCCVT =
5637         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5638     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
5639     SDValue Zero = DAG.getConstant(0, dl, VT);
5640     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
5641     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
5642                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
5643     return true;
5644   }
5645 
5646   // Only expand vector types if we have the appropriate vector bit operations.
5647   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
5648                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
5649                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
5650                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
5651                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
5652                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
5653     return false;
5654 
5655   // for now, we use: { return popcount(~x & (x - 1)); }
5656   // unless the target has ctlz but not ctpop, in which case we use:
5657   // { return 32 - nlz(~x & (x-1)); }
5658   // Ref: "Hacker's Delight" by Henry Warren
5659   SDValue Tmp = DAG.getNode(
5660       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
5661       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
5662 
5663   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
5664   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
5665     Result =
5666         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
5667                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
5668     return true;
5669   }
5670 
5671   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
5672   return true;
5673 }
5674 
5675 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
5676                                SelectionDAG &DAG) const {
5677   SDLoc dl(N);
5678   EVT VT = N->getValueType(0);
5679   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5680   SDValue Op = N->getOperand(0);
5681 
5682   // Only expand vector types if we have the appropriate vector operations.
5683   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
5684                         !isOperationLegalOrCustom(ISD::ADD, VT) ||
5685                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
5686     return false;
5687 
5688   SDValue Shift =
5689       DAG.getNode(ISD::SRA, dl, VT, Op,
5690                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
5691   SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
5692   Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
5693   return true;
5694 }
5695 
5696 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
5697                                             SelectionDAG &DAG) const {
5698   SDLoc SL(LD);
5699   SDValue Chain = LD->getChain();
5700   SDValue BasePTR = LD->getBasePtr();
5701   EVT SrcVT = LD->getMemoryVT();
5702   ISD::LoadExtType ExtType = LD->getExtensionType();
5703 
5704   unsigned NumElem = SrcVT.getVectorNumElements();
5705 
5706   EVT SrcEltVT = SrcVT.getScalarType();
5707   EVT DstEltVT = LD->getValueType(0).getScalarType();
5708 
5709   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
5710   assert(SrcEltVT.isByteSized());
5711 
5712   SmallVector<SDValue, 8> Vals;
5713   SmallVector<SDValue, 8> LoadChains;
5714 
5715   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
5716     SDValue ScalarLoad =
5717         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
5718                        LD->getPointerInfo().getWithOffset(Idx * Stride),
5719                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
5720                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
5721 
5722     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
5723 
5724     Vals.push_back(ScalarLoad.getValue(0));
5725     LoadChains.push_back(ScalarLoad.getValue(1));
5726   }
5727 
5728   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
5729   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
5730 
5731   return DAG.getMergeValues({Value, NewChain}, SL);
5732 }
5733 
5734 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
5735                                              SelectionDAG &DAG) const {
5736   SDLoc SL(ST);
5737 
5738   SDValue Chain = ST->getChain();
5739   SDValue BasePtr = ST->getBasePtr();
5740   SDValue Value = ST->getValue();
5741   EVT StVT = ST->getMemoryVT();
5742 
5743   // The type of the data we want to save
5744   EVT RegVT = Value.getValueType();
5745   EVT RegSclVT = RegVT.getScalarType();
5746 
5747   // The type of data as saved in memory.
5748   EVT MemSclVT = StVT.getScalarType();
5749 
5750   EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
5751   unsigned NumElem = StVT.getVectorNumElements();
5752 
5753   // A vector must always be stored in memory as-is, i.e. without any padding
5754   // between the elements, since various code depend on it, e.g. in the
5755   // handling of a bitcast of a vector type to int, which may be done with a
5756   // vector store followed by an integer load. A vector that does not have
5757   // elements that are byte-sized must therefore be stored as an integer
5758   // built out of the extracted vector elements.
5759   if (!MemSclVT.isByteSized()) {
5760     unsigned NumBits = StVT.getSizeInBits();
5761     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
5762 
5763     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
5764 
5765     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
5766       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
5767                                 DAG.getConstant(Idx, SL, IdxVT));
5768       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
5769       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
5770       unsigned ShiftIntoIdx =
5771           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
5772       SDValue ShiftAmount =
5773           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
5774       SDValue ShiftedElt =
5775           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
5776       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
5777     }
5778 
5779     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
5780                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
5781                         ST->getAAInfo());
5782   }
5783 
5784   // Store Stride in bytes
5785   unsigned Stride = MemSclVT.getSizeInBits() / 8;
5786   assert(Stride && "Zero stride!");
5787   // Extract each of the elements from the original vector and save them into
5788   // memory individually.
5789   SmallVector<SDValue, 8> Stores;
5790   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
5791     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
5792                               DAG.getConstant(Idx, SL, IdxVT));
5793 
5794     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
5795 
5796     // This scalar TruncStore may be illegal, but we legalize it later.
5797     SDValue Store = DAG.getTruncStore(
5798         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
5799         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
5800         ST->getMemOperand()->getFlags(), ST->getAAInfo());
5801 
5802     Stores.push_back(Store);
5803   }
5804 
5805   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
5806 }
5807 
5808 std::pair<SDValue, SDValue>
5809 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
5810   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
5811          "unaligned indexed loads not implemented!");
5812   SDValue Chain = LD->getChain();
5813   SDValue Ptr = LD->getBasePtr();
5814   EVT VT = LD->getValueType(0);
5815   EVT LoadedVT = LD->getMemoryVT();
5816   SDLoc dl(LD);
5817   auto &MF = DAG.getMachineFunction();
5818 
5819   if (VT.isFloatingPoint() || VT.isVector()) {
5820     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
5821     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
5822       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
5823           LoadedVT.isVector()) {
5824         // Scalarize the load and let the individual components be handled.
5825         SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
5826         if (Scalarized->getOpcode() == ISD::MERGE_VALUES)
5827           return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1));
5828         return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
5829       }
5830 
5831       // Expand to a (misaligned) integer load of the same size,
5832       // then bitconvert to floating point or vector.
5833       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
5834                                     LD->getMemOperand());
5835       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
5836       if (LoadedVT != VT)
5837         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
5838                              ISD::ANY_EXTEND, dl, VT, Result);
5839 
5840       return std::make_pair(Result, newLoad.getValue(1));
5841     }
5842 
5843     // Copy the value to a (aligned) stack slot using (unaligned) integer
5844     // loads and stores, then do a (aligned) load from the stack slot.
5845     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
5846     unsigned LoadedBytes = LoadedVT.getStoreSize();
5847     unsigned RegBytes = RegVT.getSizeInBits() / 8;
5848     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
5849 
5850     // Make sure the stack slot is also aligned for the register type.
5851     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
5852     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
5853     SmallVector<SDValue, 8> Stores;
5854     SDValue StackPtr = StackBase;
5855     unsigned Offset = 0;
5856 
5857     EVT PtrVT = Ptr.getValueType();
5858     EVT StackPtrVT = StackPtr.getValueType();
5859 
5860     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
5861     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
5862 
5863     // Do all but one copies using the full register width.
5864     for (unsigned i = 1; i < NumRegs; i++) {
5865       // Load one integer register's worth from the original location.
5866       SDValue Load = DAG.getLoad(
5867           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
5868           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
5869           LD->getAAInfo());
5870       // Follow the load with a store to the stack slot.  Remember the store.
5871       Stores.push_back(DAG.getStore(
5872           Load.getValue(1), dl, Load, StackPtr,
5873           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
5874       // Increment the pointers.
5875       Offset += RegBytes;
5876 
5877       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
5878       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
5879     }
5880 
5881     // The last copy may be partial.  Do an extending load.
5882     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
5883                                   8 * (LoadedBytes - Offset));
5884     SDValue Load =
5885         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
5886                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
5887                        MinAlign(LD->getAlignment(), Offset),
5888                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
5889     // Follow the load with a store to the stack slot.  Remember the store.
5890     // On big-endian machines this requires a truncating store to ensure
5891     // that the bits end up in the right place.
5892     Stores.push_back(DAG.getTruncStore(
5893         Load.getValue(1), dl, Load, StackPtr,
5894         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
5895 
5896     // The order of the stores doesn't matter - say it with a TokenFactor.
5897     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
5898 
5899     // Finally, perform the original load only redirected to the stack slot.
5900     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
5901                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
5902                           LoadedVT);
5903 
5904     // Callers expect a MERGE_VALUES node.
5905     return std::make_pair(Load, TF);
5906   }
5907 
5908   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
5909          "Unaligned load of unsupported type.");
5910 
5911   // Compute the new VT that is half the size of the old one.  This is an
5912   // integer MVT.
5913   unsigned NumBits = LoadedVT.getSizeInBits();
5914   EVT NewLoadedVT;
5915   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
5916   NumBits >>= 1;
5917 
5918   unsigned Alignment = LD->getAlignment();
5919   unsigned IncrementSize = NumBits / 8;
5920   ISD::LoadExtType HiExtType = LD->getExtensionType();
5921 
5922   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
5923   if (HiExtType == ISD::NON_EXTLOAD)
5924     HiExtType = ISD::ZEXTLOAD;
5925 
5926   // Load the value in two parts
5927   SDValue Lo, Hi;
5928   if (DAG.getDataLayout().isLittleEndian()) {
5929     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
5930                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
5931                         LD->getAAInfo());
5932 
5933     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
5934     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
5935                         LD->getPointerInfo().getWithOffset(IncrementSize),
5936                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
5937                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
5938   } else {
5939     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
5940                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
5941                         LD->getAAInfo());
5942 
5943     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
5944     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
5945                         LD->getPointerInfo().getWithOffset(IncrementSize),
5946                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
5947                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
5948   }
5949 
5950   // aggregate the two parts
5951   SDValue ShiftAmount =
5952       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
5953                                                     DAG.getDataLayout()));
5954   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
5955   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
5956 
5957   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
5958                              Hi.getValue(1));
5959 
5960   return std::make_pair(Result, TF);
5961 }
5962 
5963 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
5964                                              SelectionDAG &DAG) const {
5965   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
5966          "unaligned indexed stores not implemented!");
5967   SDValue Chain = ST->getChain();
5968   SDValue Ptr = ST->getBasePtr();
5969   SDValue Val = ST->getValue();
5970   EVT VT = Val.getValueType();
5971   int Alignment = ST->getAlignment();
5972   auto &MF = DAG.getMachineFunction();
5973   EVT StoreMemVT = ST->getMemoryVT();
5974 
5975   SDLoc dl(ST);
5976   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
5977     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
5978     if (isTypeLegal(intVT)) {
5979       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
5980           StoreMemVT.isVector()) {
5981         // Scalarize the store and let the individual components be handled.
5982         SDValue Result = scalarizeVectorStore(ST, DAG);
5983         return Result;
5984       }
5985       // Expand to a bitconvert of the value to the integer type of the
5986       // same size, then a (misaligned) int store.
5987       // FIXME: Does not handle truncating floating point stores!
5988       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
5989       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
5990                             Alignment, ST->getMemOperand()->getFlags());
5991       return Result;
5992     }
5993     // Do a (aligned) store to a stack slot, then copy from the stack slot
5994     // to the final destination using (unaligned) integer loads and stores.
5995     MVT RegVT = getRegisterType(
5996         *DAG.getContext(),
5997         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
5998     EVT PtrVT = Ptr.getValueType();
5999     unsigned StoredBytes = StoreMemVT.getStoreSize();
6000     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6001     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
6002 
6003     // Make sure the stack slot is also aligned for the register type.
6004     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
6005     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
6006 
6007     // Perform the original store, only redirected to the stack slot.
6008     SDValue Store = DAG.getTruncStore(
6009         Chain, dl, Val, StackPtr,
6010         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
6011 
6012     EVT StackPtrVT = StackPtr.getValueType();
6013 
6014     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6015     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6016     SmallVector<SDValue, 8> Stores;
6017     unsigned Offset = 0;
6018 
6019     // Do all but one copies using the full register width.
6020     for (unsigned i = 1; i < NumRegs; i++) {
6021       // Load one integer register's worth from the stack slot.
6022       SDValue Load = DAG.getLoad(
6023           RegVT, dl, Store, StackPtr,
6024           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
6025       // Store it to the final location.  Remember the store.
6026       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
6027                                     ST->getPointerInfo().getWithOffset(Offset),
6028                                     MinAlign(ST->getAlignment(), Offset),
6029                                     ST->getMemOperand()->getFlags()));
6030       // Increment the pointers.
6031       Offset += RegBytes;
6032       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6033       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6034     }
6035 
6036     // The last store may be partial.  Do a truncating store.  On big-endian
6037     // machines this requires an extending load from the stack slot to ensure
6038     // that the bits are in the right place.
6039     EVT LoadMemVT =
6040         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
6041 
6042     // Load from the stack slot.
6043     SDValue Load = DAG.getExtLoad(
6044         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
6045         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
6046 
6047     Stores.push_back(
6048         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
6049                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
6050                           MinAlign(ST->getAlignment(), Offset),
6051                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
6052     // The order of the stores doesn't matter - say it with a TokenFactor.
6053     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6054     return Result;
6055   }
6056 
6057   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
6058          "Unaligned store of unknown type.");
6059   // Get the half-size VT
6060   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
6061   int NumBits = NewStoredVT.getSizeInBits();
6062   int IncrementSize = NumBits / 8;
6063 
6064   // Divide the stored value in two parts.
6065   SDValue ShiftAmount = DAG.getConstant(
6066       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
6067   SDValue Lo = Val;
6068   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
6069 
6070   // Store the two parts
6071   SDValue Store1, Store2;
6072   Store1 = DAG.getTruncStore(Chain, dl,
6073                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
6074                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
6075                              ST->getMemOperand()->getFlags());
6076 
6077   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6078   Alignment = MinAlign(Alignment, IncrementSize);
6079   Store2 = DAG.getTruncStore(
6080       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
6081       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
6082       ST->getMemOperand()->getFlags(), ST->getAAInfo());
6083 
6084   SDValue Result =
6085       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
6086   return Result;
6087 }
6088 
6089 SDValue
6090 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
6091                                        const SDLoc &DL, EVT DataVT,
6092                                        SelectionDAG &DAG,
6093                                        bool IsCompressedMemory) const {
6094   SDValue Increment;
6095   EVT AddrVT = Addr.getValueType();
6096   EVT MaskVT = Mask.getValueType();
6097   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
6098          "Incompatible types of Data and Mask");
6099   if (IsCompressedMemory) {
6100     // Incrementing the pointer according to number of '1's in the mask.
6101     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
6102     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
6103     if (MaskIntVT.getSizeInBits() < 32) {
6104       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
6105       MaskIntVT = MVT::i32;
6106     }
6107 
6108     // Count '1's with POPCNT.
6109     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
6110     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
6111     // Scale is an element size in bytes.
6112     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
6113                                     AddrVT);
6114     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
6115   } else
6116     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
6117 
6118   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
6119 }
6120 
6121 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
6122                                        SDValue Idx,
6123                                        EVT VecVT,
6124                                        const SDLoc &dl) {
6125   if (isa<ConstantSDNode>(Idx))
6126     return Idx;
6127 
6128   EVT IdxVT = Idx.getValueType();
6129   unsigned NElts = VecVT.getVectorNumElements();
6130   if (isPowerOf2_32(NElts)) {
6131     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
6132                                      Log2_32(NElts));
6133     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
6134                        DAG.getConstant(Imm, dl, IdxVT));
6135   }
6136 
6137   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
6138                      DAG.getConstant(NElts - 1, dl, IdxVT));
6139 }
6140 
6141 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
6142                                                 SDValue VecPtr, EVT VecVT,
6143                                                 SDValue Index) const {
6144   SDLoc dl(Index);
6145   // Make sure the index type is big enough to compute in.
6146   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
6147 
6148   EVT EltVT = VecVT.getVectorElementType();
6149 
6150   // Calculate the element offset and add it to the pointer.
6151   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
6152   assert(EltSize * 8 == EltVT.getSizeInBits() &&
6153          "Converting bits to bytes lost precision");
6154 
6155   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
6156 
6157   EVT IdxVT = Index.getValueType();
6158 
6159   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
6160                       DAG.getConstant(EltSize, dl, IdxVT));
6161   return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index);
6162 }
6163 
6164 //===----------------------------------------------------------------------===//
6165 // Implementation of Emulated TLS Model
6166 //===----------------------------------------------------------------------===//
6167 
6168 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
6169                                                 SelectionDAG &DAG) const {
6170   // Access to address of TLS varialbe xyz is lowered to a function call:
6171   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
6172   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6173   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
6174   SDLoc dl(GA);
6175 
6176   ArgListTy Args;
6177   ArgListEntry Entry;
6178   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
6179   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
6180   StringRef EmuTlsVarName(NameString);
6181   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
6182   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
6183   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
6184   Entry.Ty = VoidPtrType;
6185   Args.push_back(Entry);
6186 
6187   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
6188 
6189   TargetLowering::CallLoweringInfo CLI(DAG);
6190   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
6191   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
6192   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
6193 
6194   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6195   // At last for X86 targets, maybe good for other targets too?
6196   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6197   MFI.setAdjustsStack(true); // Is this only for X86 target?
6198   MFI.setHasCalls(true);
6199 
6200   assert((GA->getOffset() == 0) &&
6201          "Emulated TLS must have zero offset in GlobalAddressSDNode");
6202   return CallResult.first;
6203 }
6204 
6205 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
6206                                                 SelectionDAG &DAG) const {
6207   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
6208   if (!isCtlzFast())
6209     return SDValue();
6210   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6211   SDLoc dl(Op);
6212   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
6213     if (C->isNullValue() && CC == ISD::SETEQ) {
6214       EVT VT = Op.getOperand(0).getValueType();
6215       SDValue Zext = Op.getOperand(0);
6216       if (VT.bitsLT(MVT::i32)) {
6217         VT = MVT::i32;
6218         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
6219       }
6220       unsigned Log2b = Log2_32(VT.getSizeInBits());
6221       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
6222       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
6223                                 DAG.getConstant(Log2b, dl, MVT::i32));
6224       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
6225     }
6226   }
6227   return SDValue();
6228 }
6229 
6230 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
6231   unsigned Opcode = Node->getOpcode();
6232   SDValue LHS = Node->getOperand(0);
6233   SDValue RHS = Node->getOperand(1);
6234   EVT VT = LHS.getValueType();
6235   SDLoc dl(Node);
6236 
6237   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
6238   assert(VT.isInteger() && "Expected operands to be integers");
6239 
6240   // usub.sat(a, b) -> umax(a, b) - b
6241   if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
6242     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
6243     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
6244   }
6245 
6246   if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
6247     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
6248     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
6249     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
6250   }
6251 
6252   unsigned OverflowOp;
6253   switch (Opcode) {
6254   case ISD::SADDSAT:
6255     OverflowOp = ISD::SADDO;
6256     break;
6257   case ISD::UADDSAT:
6258     OverflowOp = ISD::UADDO;
6259     break;
6260   case ISD::SSUBSAT:
6261     OverflowOp = ISD::SSUBO;
6262     break;
6263   case ISD::USUBSAT:
6264     OverflowOp = ISD::USUBO;
6265     break;
6266   default:
6267     llvm_unreachable("Expected method to receive signed or unsigned saturation "
6268                      "addition or subtraction node.");
6269   }
6270 
6271   unsigned BitWidth = LHS.getScalarValueSizeInBits();
6272   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6273   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
6274                                LHS, RHS);
6275   SDValue SumDiff = Result.getValue(0);
6276   SDValue Overflow = Result.getValue(1);
6277   SDValue Zero = DAG.getConstant(0, dl, VT);
6278   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
6279 
6280   if (Opcode == ISD::UADDSAT) {
6281     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
6282       // (LHS + RHS) | OverflowMask
6283       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
6284       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
6285     }
6286     // Overflow ? 0xffff.... : (LHS + RHS)
6287     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
6288   } else if (Opcode == ISD::USUBSAT) {
6289     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
6290       // (LHS - RHS) & ~OverflowMask
6291       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
6292       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
6293       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
6294     }
6295     // Overflow ? 0 : (LHS - RHS)
6296     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
6297   } else {
6298     // SatMax -> Overflow && SumDiff < 0
6299     // SatMin -> Overflow && SumDiff >= 0
6300     APInt MinVal = APInt::getSignedMinValue(BitWidth);
6301     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
6302     SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
6303     SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
6304     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
6305     Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
6306     return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
6307   }
6308 }
6309 
6310 SDValue
6311 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
6312   assert((Node->getOpcode() == ISD::SMULFIX ||
6313           Node->getOpcode() == ISD::UMULFIX ||
6314           Node->getOpcode() == ISD::SMULFIXSAT) &&
6315          "Expected a fixed point multiplication opcode");
6316 
6317   SDLoc dl(Node);
6318   SDValue LHS = Node->getOperand(0);
6319   SDValue RHS = Node->getOperand(1);
6320   EVT VT = LHS.getValueType();
6321   unsigned Scale = Node->getConstantOperandVal(2);
6322   bool Saturating = Node->getOpcode() == ISD::SMULFIXSAT;
6323   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6324   unsigned VTSize = VT.getScalarSizeInBits();
6325 
6326   if (!Scale) {
6327     // [us]mul.fix(a, b, 0) -> mul(a, b)
6328     if (!Saturating && isOperationLegalOrCustom(ISD::MUL, VT)) {
6329       return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
6330     } else if (Saturating && isOperationLegalOrCustom(ISD::SMULO, VT)) {
6331       SDValue Result =
6332           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
6333       SDValue Product = Result.getValue(0);
6334       SDValue Overflow = Result.getValue(1);
6335       SDValue Zero = DAG.getConstant(0, dl, VT);
6336 
6337       APInt MinVal = APInt::getSignedMinValue(VTSize);
6338       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
6339       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
6340       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
6341       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
6342       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
6343       return DAG.getSelect(dl, VT, Overflow, Result, Product);
6344     }
6345   }
6346 
6347   bool Signed =
6348       Node->getOpcode() == ISD::SMULFIX || Node->getOpcode() == ISD::SMULFIXSAT;
6349   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
6350          "Expected scale to be less than the number of bits if signed or at "
6351          "most the number of bits if unsigned.");
6352   assert(LHS.getValueType() == RHS.getValueType() &&
6353          "Expected both operands to be the same type");
6354 
6355   // Get the upper and lower bits of the result.
6356   SDValue Lo, Hi;
6357   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
6358   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
6359   if (isOperationLegalOrCustom(LoHiOp, VT)) {
6360     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
6361     Lo = Result.getValue(0);
6362     Hi = Result.getValue(1);
6363   } else if (isOperationLegalOrCustom(HiOp, VT)) {
6364     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
6365     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
6366   } else if (VT.isVector()) {
6367     return SDValue();
6368   } else {
6369     report_fatal_error("Unable to expand fixed point multiplication.");
6370   }
6371 
6372   if (Scale == VTSize)
6373     // Result is just the top half since we'd be shifting by the width of the
6374     // operand.
6375     return Hi;
6376 
6377   // The result will need to be shifted right by the scale since both operands
6378   // are scaled. The result is given to us in 2 halves, so we only want part of
6379   // both in the result.
6380   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
6381   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
6382                                DAG.getConstant(Scale, dl, ShiftTy));
6383   if (!Saturating)
6384     return Result;
6385 
6386   unsigned OverflowBits = VTSize - Scale + 1; // +1 for the sign
6387   SDValue HiMask =
6388       DAG.getConstant(APInt::getHighBitsSet(VTSize, OverflowBits), dl, VT);
6389   SDValue LoMask = DAG.getConstant(
6390       APInt::getLowBitsSet(VTSize, VTSize - OverflowBits), dl, VT);
6391   APInt MaxVal = APInt::getSignedMaxValue(VTSize);
6392   APInt MinVal = APInt::getSignedMinValue(VTSize);
6393 
6394   Result = DAG.getSelectCC(dl, Hi, LoMask,
6395                            DAG.getConstant(MaxVal, dl, VT), Result,
6396                            ISD::SETGT);
6397   return DAG.getSelectCC(dl, Hi, HiMask,
6398                          DAG.getConstant(MinVal, dl, VT), Result,
6399                          ISD::SETLT);
6400 }
6401 
6402 void TargetLowering::expandUADDSUBO(
6403     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
6404   SDLoc dl(Node);
6405   SDValue LHS = Node->getOperand(0);
6406   SDValue RHS = Node->getOperand(1);
6407   bool IsAdd = Node->getOpcode() == ISD::UADDO;
6408 
6409   // If ADD/SUBCARRY is legal, use that instead.
6410   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
6411   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
6412     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
6413     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
6414                                     { LHS, RHS, CarryIn });
6415     Result = SDValue(NodeCarry.getNode(), 0);
6416     Overflow = SDValue(NodeCarry.getNode(), 1);
6417     return;
6418   }
6419 
6420   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
6421                             LHS.getValueType(), LHS, RHS);
6422 
6423   EVT ResultType = Node->getValueType(1);
6424   EVT SetCCType = getSetCCResultType(
6425       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
6426   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
6427   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
6428   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
6429 }
6430 
6431 void TargetLowering::expandSADDSUBO(
6432     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
6433   SDLoc dl(Node);
6434   SDValue LHS = Node->getOperand(0);
6435   SDValue RHS = Node->getOperand(1);
6436   bool IsAdd = Node->getOpcode() == ISD::SADDO;
6437 
6438   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
6439                             LHS.getValueType(), LHS, RHS);
6440 
6441   EVT ResultType = Node->getValueType(1);
6442   EVT OType = getSetCCResultType(
6443       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
6444 
6445   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
6446   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
6447   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
6448     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
6449     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
6450     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
6451     return;
6452   }
6453 
6454   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
6455 
6456   //   LHSSign -> LHS >= 0
6457   //   RHSSign -> RHS >= 0
6458   //   SumSign -> Result >= 0
6459   //
6460   //   Add:
6461   //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
6462   //   Sub:
6463   //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
6464   SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
6465   SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
6466   SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
6467                                     IsAdd ? ISD::SETEQ : ISD::SETNE);
6468 
6469   SDValue SumSign = DAG.getSetCC(dl, OType, Result, Zero, ISD::SETGE);
6470   SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
6471 
6472   SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
6473   Overflow = DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType);
6474 }
6475 
6476 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
6477                                 SDValue &Overflow, SelectionDAG &DAG) const {
6478   SDLoc dl(Node);
6479   EVT VT = Node->getValueType(0);
6480   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6481   SDValue LHS = Node->getOperand(0);
6482   SDValue RHS = Node->getOperand(1);
6483   bool isSigned = Node->getOpcode() == ISD::SMULO;
6484 
6485   // For power-of-two multiplications we can use a simpler shift expansion.
6486   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
6487     const APInt &C = RHSC->getAPIntValue();
6488     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
6489     if (C.isPowerOf2()) {
6490       // smulo(x, signed_min) is same as umulo(x, signed_min).
6491       bool UseArithShift = isSigned && !C.isMinSignedValue();
6492       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
6493       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
6494       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
6495       Overflow = DAG.getSetCC(dl, SetCCVT,
6496           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
6497                       dl, VT, Result, ShiftAmt),
6498           LHS, ISD::SETNE);
6499       return true;
6500     }
6501   }
6502 
6503   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
6504   if (VT.isVector())
6505     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
6506                               VT.getVectorNumElements());
6507 
6508   SDValue BottomHalf;
6509   SDValue TopHalf;
6510   static const unsigned Ops[2][3] =
6511       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
6512         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
6513   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
6514     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
6515     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
6516   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
6517     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
6518                              RHS);
6519     TopHalf = BottomHalf.getValue(1);
6520   } else if (isTypeLegal(WideVT)) {
6521     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
6522     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
6523     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
6524     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
6525     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
6526         getShiftAmountTy(WideVT, DAG.getDataLayout()));
6527     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
6528                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
6529   } else {
6530     if (VT.isVector())
6531       return false;
6532 
6533     // We can fall back to a libcall with an illegal type for the MUL if we
6534     // have a libcall big enough.
6535     // Also, we can fall back to a division in some cases, but that's a big
6536     // performance hit in the general case.
6537     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
6538     if (WideVT == MVT::i16)
6539       LC = RTLIB::MUL_I16;
6540     else if (WideVT == MVT::i32)
6541       LC = RTLIB::MUL_I32;
6542     else if (WideVT == MVT::i64)
6543       LC = RTLIB::MUL_I64;
6544     else if (WideVT == MVT::i128)
6545       LC = RTLIB::MUL_I128;
6546     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
6547 
6548     SDValue HiLHS;
6549     SDValue HiRHS;
6550     if (isSigned) {
6551       // The high part is obtained by SRA'ing all but one of the bits of low
6552       // part.
6553       unsigned LoSize = VT.getSizeInBits();
6554       HiLHS =
6555           DAG.getNode(ISD::SRA, dl, VT, LHS,
6556                       DAG.getConstant(LoSize - 1, dl,
6557                                       getPointerTy(DAG.getDataLayout())));
6558       HiRHS =
6559           DAG.getNode(ISD::SRA, dl, VT, RHS,
6560                       DAG.getConstant(LoSize - 1, dl,
6561                                       getPointerTy(DAG.getDataLayout())));
6562     } else {
6563         HiLHS = DAG.getConstant(0, dl, VT);
6564         HiRHS = DAG.getConstant(0, dl, VT);
6565     }
6566 
6567     // Here we're passing the 2 arguments explicitly as 4 arguments that are
6568     // pre-lowered to the correct types. This all depends upon WideVT not
6569     // being a legal type for the architecture and thus has to be split to
6570     // two arguments.
6571     SDValue Ret;
6572     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
6573       // Halves of WideVT are packed into registers in different order
6574       // depending on platform endianness. This is usually handled by
6575       // the C calling convention, but we can't defer to it in
6576       // the legalizer.
6577       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
6578       Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl,
6579           /* doesNotReturn */ false, /* isReturnValueUsed */ true,
6580           /* isPostTypeLegalization */ true).first;
6581     } else {
6582       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
6583       Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl,
6584           /* doesNotReturn */ false, /* isReturnValueUsed */ true,
6585           /* isPostTypeLegalization */ true).first;
6586     }
6587     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
6588            "Ret value is a collection of constituent nodes holding result.");
6589     if (DAG.getDataLayout().isLittleEndian()) {
6590       // Same as above.
6591       BottomHalf = Ret.getOperand(0);
6592       TopHalf = Ret.getOperand(1);
6593     } else {
6594       BottomHalf = Ret.getOperand(1);
6595       TopHalf = Ret.getOperand(0);
6596     }
6597   }
6598 
6599   Result = BottomHalf;
6600   if (isSigned) {
6601     SDValue ShiftAmt = DAG.getConstant(
6602         VT.getScalarSizeInBits() - 1, dl,
6603         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
6604     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
6605     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
6606   } else {
6607     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
6608                             DAG.getConstant(0, dl, VT), ISD::SETNE);
6609   }
6610 
6611   // Truncate the result if SetCC returns a larger type than needed.
6612   EVT RType = Node->getValueType(1);
6613   if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
6614     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
6615 
6616   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
6617          "Unexpected result type for S/UMULO legalization");
6618   return true;
6619 }
6620 
6621 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
6622   SDLoc dl(Node);
6623   bool NoNaN = Node->getFlags().hasNoNaNs();
6624   unsigned BaseOpcode = 0;
6625   switch (Node->getOpcode()) {
6626   default: llvm_unreachable("Expected VECREDUCE opcode");
6627   case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
6628   case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
6629   case ISD::VECREDUCE_ADD:  BaseOpcode = ISD::ADD; break;
6630   case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break;
6631   case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break;
6632   case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break;
6633   case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break;
6634   case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
6635   case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
6636   case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
6637   case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
6638   case ISD::VECREDUCE_FMAX:
6639     BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
6640     break;
6641   case ISD::VECREDUCE_FMIN:
6642     BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
6643     break;
6644   }
6645 
6646   SDValue Op = Node->getOperand(0);
6647   EVT VT = Op.getValueType();
6648 
6649   // Try to use a shuffle reduction for power of two vectors.
6650   if (VT.isPow2VectorType()) {
6651     while (VT.getVectorNumElements() > 1) {
6652       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
6653       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
6654         break;
6655 
6656       SDValue Lo, Hi;
6657       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
6658       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
6659       VT = HalfVT;
6660     }
6661   }
6662 
6663   EVT EltVT = VT.getVectorElementType();
6664   unsigned NumElts = VT.getVectorNumElements();
6665 
6666   SmallVector<SDValue, 8> Ops;
6667   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
6668 
6669   SDValue Res = Ops[0];
6670   for (unsigned i = 1; i < NumElts; i++)
6671     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
6672 
6673   // Result type may be wider than element type.
6674   if (EltVT != Node->getValueType(0))
6675     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
6676   return Res;
6677 }
6678