1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetLowering.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/CodeGen/CallingConvLower.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/SelectionDAG.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Target/TargetLoweringObjectFile.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include "llvm/Target/TargetRegisterInfo.h" 34 #include "llvm/Target/TargetSubtargetInfo.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 bool TargetLowering::isPositionIndependent() const { 47 return getTargetMachine().isPositionIndependent(); 48 } 49 50 /// Check whether a given call node is in tail position within its function. If 51 /// so, it sets Chain to the input chain of the tail call. 52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 53 SDValue &Chain) const { 54 const Function *F = DAG.getMachineFunction().getFunction(); 55 56 // Conservatively require the attributes of the call to match those of 57 // the return. Ignore noalias because it doesn't affect the call sequence. 58 AttributeList CallerAttrs = F->getAttributes(); 59 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 60 .removeAttribute(Attribute::NoAlias) 61 .hasAttributes()) 62 return false; 63 64 // It's not safe to eliminate the sign / zero extension of the return value. 65 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 66 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 67 return false; 68 69 // Check if the only use is a function return node. 70 return isUsedByReturnOnly(Node, Chain); 71 } 72 73 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 74 const uint32_t *CallerPreservedMask, 75 const SmallVectorImpl<CCValAssign> &ArgLocs, 76 const SmallVectorImpl<SDValue> &OutVals) const { 77 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 78 const CCValAssign &ArgLoc = ArgLocs[I]; 79 if (!ArgLoc.isRegLoc()) 80 continue; 81 unsigned Reg = ArgLoc.getLocReg(); 82 // Only look at callee saved registers. 83 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 84 continue; 85 // Check that we pass the value used for the caller. 86 // (We look for a CopyFromReg reading a virtual register that is used 87 // for the function live-in value of register Reg) 88 SDValue Value = OutVals[I]; 89 if (Value->getOpcode() != ISD::CopyFromReg) 90 return false; 91 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 92 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 93 return false; 94 } 95 return true; 96 } 97 98 /// \brief Set CallLoweringInfo attribute flags based on a call instruction 99 /// and called function attributes. 100 void TargetLoweringBase::ArgListEntry::setAttributes(ImmutableCallSite *CS, 101 unsigned AttrIdx) { 102 IsSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); 103 IsZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); 104 IsInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); 105 IsSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); 106 IsNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); 107 IsByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); 108 IsInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); 109 IsReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); 110 IsSwiftSelf = CS->paramHasAttr(AttrIdx, Attribute::SwiftSelf); 111 IsSwiftError = CS->paramHasAttr(AttrIdx, Attribute::SwiftError); 112 Alignment = CS->getParamAlignment(AttrIdx); 113 } 114 115 /// Generate a libcall taking the given operands as arguments and returning a 116 /// result of type RetVT. 117 std::pair<SDValue, SDValue> 118 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 119 ArrayRef<SDValue> Ops, bool isSigned, 120 const SDLoc &dl, bool doesNotReturn, 121 bool isReturnValueUsed) const { 122 TargetLowering::ArgListTy Args; 123 Args.reserve(Ops.size()); 124 125 TargetLowering::ArgListEntry Entry; 126 for (SDValue Op : Ops) { 127 Entry.Node = Op; 128 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 129 Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 130 Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 131 Args.push_back(Entry); 132 } 133 134 if (LC == RTLIB::UNKNOWN_LIBCALL) 135 report_fatal_error("Unsupported library call operation!"); 136 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 137 getPointerTy(DAG.getDataLayout())); 138 139 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 140 TargetLowering::CallLoweringInfo CLI(DAG); 141 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); 142 CLI.setDebugLoc(dl) 143 .setChain(DAG.getEntryNode()) 144 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 145 .setNoReturn(doesNotReturn) 146 .setDiscardResult(!isReturnValueUsed) 147 .setSExtResult(signExtend) 148 .setZExtResult(!signExtend); 149 return LowerCallTo(CLI); 150 } 151 152 /// Soften the operands of a comparison. This code is shared among BR_CC, 153 /// SELECT_CC, and SETCC handlers. 154 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 155 SDValue &NewLHS, SDValue &NewRHS, 156 ISD::CondCode &CCCode, 157 const SDLoc &dl) const { 158 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 159 && "Unsupported setcc type!"); 160 161 // Expand into one or more soft-fp libcall(s). 162 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 163 bool ShouldInvertCC = false; 164 switch (CCCode) { 165 case ISD::SETEQ: 166 case ISD::SETOEQ: 167 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 168 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 169 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 170 break; 171 case ISD::SETNE: 172 case ISD::SETUNE: 173 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 174 (VT == MVT::f64) ? RTLIB::UNE_F64 : 175 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 176 break; 177 case ISD::SETGE: 178 case ISD::SETOGE: 179 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 180 (VT == MVT::f64) ? RTLIB::OGE_F64 : 181 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 182 break; 183 case ISD::SETLT: 184 case ISD::SETOLT: 185 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 186 (VT == MVT::f64) ? RTLIB::OLT_F64 : 187 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 188 break; 189 case ISD::SETLE: 190 case ISD::SETOLE: 191 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 192 (VT == MVT::f64) ? RTLIB::OLE_F64 : 193 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 194 break; 195 case ISD::SETGT: 196 case ISD::SETOGT: 197 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 198 (VT == MVT::f64) ? RTLIB::OGT_F64 : 199 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 200 break; 201 case ISD::SETUO: 202 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 203 (VT == MVT::f64) ? RTLIB::UO_F64 : 204 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 205 break; 206 case ISD::SETO: 207 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 208 (VT == MVT::f64) ? RTLIB::O_F64 : 209 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 210 break; 211 case ISD::SETONE: 212 // SETONE = SETOLT | SETOGT 213 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 214 (VT == MVT::f64) ? RTLIB::OLT_F64 : 215 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 216 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 217 (VT == MVT::f64) ? RTLIB::OGT_F64 : 218 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 219 break; 220 case ISD::SETUEQ: 221 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 222 (VT == MVT::f64) ? RTLIB::UO_F64 : 223 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 224 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 225 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 226 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 227 break; 228 default: 229 // Invert CC for unordered comparisons 230 ShouldInvertCC = true; 231 switch (CCCode) { 232 case ISD::SETULT: 233 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 234 (VT == MVT::f64) ? RTLIB::OGE_F64 : 235 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 236 break; 237 case ISD::SETULE: 238 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 239 (VT == MVT::f64) ? RTLIB::OGT_F64 : 240 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 241 break; 242 case ISD::SETUGT: 243 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 244 (VT == MVT::f64) ? RTLIB::OLE_F64 : 245 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 246 break; 247 case ISD::SETUGE: 248 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 249 (VT == MVT::f64) ? RTLIB::OLT_F64 : 250 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 251 break; 252 default: llvm_unreachable("Do not know how to soften this setcc!"); 253 } 254 } 255 256 // Use the target specific return value for comparions lib calls. 257 EVT RetVT = getCmpLibcallReturnType(); 258 SDValue Ops[2] = {NewLHS, NewRHS}; 259 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/, 260 dl).first; 261 NewRHS = DAG.getConstant(0, dl, RetVT); 262 263 CCCode = getCmpLibcallCC(LC1); 264 if (ShouldInvertCC) 265 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); 266 267 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 268 SDValue Tmp = DAG.getNode( 269 ISD::SETCC, dl, 270 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 271 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 272 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/, 273 dl).first; 274 NewLHS = DAG.getNode( 275 ISD::SETCC, dl, 276 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 277 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 278 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 279 NewRHS = SDValue(); 280 } 281 } 282 283 /// Return the entry encoding for a jump table in the current function. The 284 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 285 unsigned TargetLowering::getJumpTableEncoding() const { 286 // In non-pic modes, just use the address of a block. 287 if (!isPositionIndependent()) 288 return MachineJumpTableInfo::EK_BlockAddress; 289 290 // In PIC mode, if the target supports a GPRel32 directive, use it. 291 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 292 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 293 294 // Otherwise, use a label difference. 295 return MachineJumpTableInfo::EK_LabelDifference32; 296 } 297 298 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 299 SelectionDAG &DAG) const { 300 // If our PIC model is GP relative, use the global offset table as the base. 301 unsigned JTEncoding = getJumpTableEncoding(); 302 303 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 304 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 305 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 306 307 return Table; 308 } 309 310 /// This returns the relocation base for the given PIC jumptable, the same as 311 /// getPICJumpTableRelocBase, but as an MCExpr. 312 const MCExpr * 313 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 314 unsigned JTI,MCContext &Ctx) const{ 315 // The normal PIC reloc base is the label at the start of the jump table. 316 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 317 } 318 319 bool 320 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 321 const TargetMachine &TM = getTargetMachine(); 322 const GlobalValue *GV = GA->getGlobal(); 323 324 // If the address is not even local to this DSO we will have to load it from 325 // a got and then add the offset. 326 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 327 return false; 328 329 // If the code is position independent we will have to add a base register. 330 if (isPositionIndependent()) 331 return false; 332 333 // Otherwise we can do it. 334 return true; 335 } 336 337 //===----------------------------------------------------------------------===// 338 // Optimization Methods 339 //===----------------------------------------------------------------------===// 340 341 /// If the specified instruction has a constant integer operand and there are 342 /// bits set in that constant that are not demanded, then clear those bits and 343 /// return true. 344 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant( 345 SDValue Op, const APInt &Demanded) { 346 SDLoc DL(Op); 347 unsigned Opcode = Op.getOpcode(); 348 349 // FIXME: ISD::SELECT, ISD::SELECT_CC 350 switch (Opcode) { 351 default: 352 break; 353 case ISD::XOR: 354 case ISD::AND: 355 case ISD::OR: { 356 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 357 if (!Op1C) 358 return false; 359 360 // If this is a 'not' op, don't touch it because that's a canonical form. 361 const APInt &C = Op1C->getAPIntValue(); 362 if (Opcode == ISD::XOR && (C | ~Demanded).isAllOnesValue()) 363 return false; 364 365 if (C.intersects(~Demanded)) { 366 EVT VT = Op.getValueType(); 367 SDValue NewC = DAG.getConstant(Demanded & C, DL, VT); 368 SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 369 return CombineTo(Op, NewOp); 370 } 371 372 break; 373 } 374 } 375 376 return false; 377 } 378 379 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 380 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 381 /// generalized for targets with other types of implicit widening casts. 382 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op, 383 unsigned BitWidth, 384 const APInt &Demanded, 385 const SDLoc &dl) { 386 assert(Op.getNumOperands() == 2 && 387 "ShrinkDemandedOp only supports binary operators!"); 388 assert(Op.getNode()->getNumValues() == 1 && 389 "ShrinkDemandedOp only supports nodes with one result!"); 390 391 // Early return, as this function cannot handle vector types. 392 if (Op.getValueType().isVector()) 393 return false; 394 395 // Don't do this if the node has another user, which may require the 396 // full value. 397 if (!Op.getNode()->hasOneUse()) 398 return false; 399 400 // Search for the smallest integer type with free casts to and from 401 // Op's type. For expedience, just check power-of-2 integer types. 402 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 403 unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros(); 404 unsigned SmallVTBits = DemandedSize; 405 if (!isPowerOf2_32(SmallVTBits)) 406 SmallVTBits = NextPowerOf2(SmallVTBits); 407 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 408 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 409 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 410 TLI.isZExtFree(SmallVT, Op.getValueType())) { 411 // We found a type with free casts. 412 SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT, 413 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 414 Op.getNode()->getOperand(0)), 415 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 416 Op.getNode()->getOperand(1))); 417 bool NeedZext = DemandedSize > SmallVTBits; 418 SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, 419 dl, Op.getValueType(), X); 420 return CombineTo(Op, Z); 421 } 422 } 423 return false; 424 } 425 426 bool 427 TargetLowering::TargetLoweringOpt::SimplifyDemandedBits(SDNode *User, 428 unsigned OpIdx, 429 const APInt &Demanded, 430 DAGCombinerInfo &DCI) { 431 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 432 SDValue Op = User->getOperand(OpIdx); 433 APInt KnownZero, KnownOne; 434 435 if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, 436 *this, 0, true)) 437 return false; 438 439 440 // Old will not always be the same as Op. For example: 441 // 442 // Demanded = 0xffffff 443 // Op = i64 truncate (i32 and x, 0xffffff) 444 // In this case simplify demand bits will want to replace the 'and' node 445 // with the value 'x', which will give us: 446 // Old = i32 and x, 0xffffff 447 // New = x 448 if (Old.hasOneUse()) { 449 // For the one use case, we just commit the change. 450 DCI.CommitTargetLoweringOpt(*this); 451 return true; 452 } 453 454 // If Old has more than one use then it must be Op, because the 455 // AssumeSingleUse flag is not propogated to recursive calls of 456 // SimplifyDemanded bits, so the only node with multiple use that 457 // it will attempt to combine will be opt. 458 assert(Old == Op); 459 460 SmallVector <SDValue, 4> NewOps; 461 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 462 if (i == OpIdx) { 463 NewOps.push_back(New); 464 continue; 465 } 466 NewOps.push_back(User->getOperand(i)); 467 } 468 DAG.UpdateNodeOperands(User, NewOps); 469 // Op has less users now, so we may be able to perform additional combines 470 // with it. 471 DCI.AddToWorklist(Op.getNode()); 472 // User's operands have been updated, so we may be able to do new combines 473 // with it. 474 DCI.AddToWorklist(User); 475 return true; 476 } 477 478 bool TargetLowering::SimplifyDemandedBits(SDValue Op, APInt &DemandedMask, 479 DAGCombinerInfo &DCI) const { 480 481 SelectionDAG &DAG = DCI.DAG; 482 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 483 !DCI.isBeforeLegalizeOps()); 484 APInt KnownZero, KnownOne; 485 486 bool Simplified = SimplifyDemandedBits(Op, DemandedMask, KnownZero, KnownOne, 487 TLO); 488 if (Simplified) 489 DCI.CommitTargetLoweringOpt(TLO); 490 return Simplified; 491 } 492 493 /// Look at Op. At this point, we know that only the DemandedMask bits of the 494 /// result of Op are ever used downstream. If we can use this information to 495 /// simplify Op, create a new simplified DAG node and return true, returning the 496 /// original and new nodes in Old and New. Otherwise, analyze the expression and 497 /// return a mask of KnownOne and KnownZero bits for the expression (used to 498 /// simplify the caller). The KnownZero/One bits may only be accurate for those 499 /// bits in the DemandedMask. 500 bool TargetLowering::SimplifyDemandedBits(SDValue Op, 501 const APInt &DemandedMask, 502 APInt &KnownZero, 503 APInt &KnownOne, 504 TargetLoweringOpt &TLO, 505 unsigned Depth, 506 bool AssumeSingleUse) const { 507 unsigned BitWidth = DemandedMask.getBitWidth(); 508 assert(Op.getScalarValueSizeInBits() == BitWidth && 509 "Mask size mismatches value type size!"); 510 APInt NewMask = DemandedMask; 511 SDLoc dl(Op); 512 auto &DL = TLO.DAG.getDataLayout(); 513 514 // Don't know anything. 515 KnownZero = KnownOne = APInt(BitWidth, 0); 516 517 // Other users may use these bits. 518 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 519 if (Depth != 0) { 520 // If not at the root, Just compute the KnownZero/KnownOne bits to 521 // simplify things downstream. 522 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 523 return false; 524 } 525 // If this is the root being simplified, allow it to have multiple uses, 526 // just set the NewMask to all bits. 527 NewMask = APInt::getAllOnesValue(BitWidth); 528 } else if (DemandedMask == 0) { 529 // Not demanding any bits from Op. 530 if (!Op.isUndef()) 531 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType())); 532 return false; 533 } else if (Depth == 6) { // Limit search depth. 534 return false; 535 } 536 537 APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; 538 switch (Op.getOpcode()) { 539 case ISD::Constant: 540 // We know all of the bits for a constant! 541 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); 542 KnownZero = ~KnownOne; 543 return false; // Don't fall through, will infinitely loop. 544 case ISD::BUILD_VECTOR: 545 // Collect the known bits that are shared by every constant vector element. 546 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 547 for (SDValue SrcOp : Op->ops()) { 548 if (!isa<ConstantSDNode>(SrcOp)) { 549 // We can only handle all constant values - bail out with no known bits. 550 KnownZero = KnownOne = APInt(BitWidth, 0); 551 return false; 552 } 553 KnownOne2 = cast<ConstantSDNode>(SrcOp)->getAPIntValue(); 554 KnownZero2 = ~KnownOne2; 555 556 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 557 if (KnownOne2.getBitWidth() != BitWidth) { 558 assert(KnownOne2.getBitWidth() > BitWidth && 559 KnownZero2.getBitWidth() > BitWidth && 560 "Expected BUILD_VECTOR implicit truncation"); 561 KnownOne2 = KnownOne2.trunc(BitWidth); 562 KnownZero2 = KnownZero2.trunc(BitWidth); 563 } 564 565 // Known bits are the values that are shared by every element. 566 // TODO: support per-element known bits. 567 KnownOne &= KnownOne2; 568 KnownZero &= KnownZero2; 569 } 570 return false; // Don't fall through, will infinitely loop. 571 case ISD::AND: 572 // If the RHS is a constant, check to see if the LHS would be zero without 573 // using the bits from the RHS. Below, we use knowledge about the RHS to 574 // simplify the LHS, here we're using information from the LHS to simplify 575 // the RHS. 576 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 577 SDValue Op0 = Op.getOperand(0); 578 APInt LHSZero, LHSOne; 579 // Do not increment Depth here; that can cause an infinite loop. 580 TLO.DAG.computeKnownBits(Op0, LHSZero, LHSOne, Depth); 581 // If the LHS already has zeros where RHSC does, this and is dead. 582 if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) 583 return TLO.CombineTo(Op, Op0); 584 585 // If any of the set bits in the RHS are known zero on the LHS, shrink 586 // the constant. 587 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask)) 588 return true; 589 590 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 591 // constant, but if this 'and' is only clearing bits that were just set by 592 // the xor, then this 'and' can be eliminated by shrinking the mask of 593 // the xor. For example, for a 32-bit X: 594 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 595 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 596 LHSOne == ~RHSC->getAPIntValue()) { 597 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, Op.getValueType(), 598 Op0.getOperand(0), Op.getOperand(1)); 599 return TLO.CombineTo(Op, Xor); 600 } 601 } 602 603 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 604 KnownOne, TLO, Depth+1)) 605 return true; 606 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 607 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask, 608 KnownZero2, KnownOne2, TLO, Depth+1)) 609 return true; 610 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 611 612 // If all of the demanded bits are known one on one side, return the other. 613 // These bits cannot contribute to the result of the 'and'. 614 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 615 return TLO.CombineTo(Op, Op.getOperand(0)); 616 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 617 return TLO.CombineTo(Op, Op.getOperand(1)); 618 // If all of the demanded bits in the inputs are known zeros, return zero. 619 if ((NewMask & (KnownZero|KnownZero2)) == NewMask) 620 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType())); 621 // If the RHS is a constant, see if we can simplify it. 622 if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask)) 623 return true; 624 // If the operation can be done in a smaller type, do so. 625 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 626 return true; 627 628 // Output known-1 bits are only known if set in both the LHS & RHS. 629 KnownOne &= KnownOne2; 630 // Output known-0 are known to be clear if zero in either the LHS | RHS. 631 KnownZero |= KnownZero2; 632 break; 633 case ISD::OR: 634 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 635 KnownOne, TLO, Depth+1)) 636 return true; 637 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 638 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask, 639 KnownZero2, KnownOne2, TLO, Depth+1)) 640 return true; 641 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 642 643 // If all of the demanded bits are known zero on one side, return the other. 644 // These bits cannot contribute to the result of the 'or'. 645 if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask)) 646 return TLO.CombineTo(Op, Op.getOperand(0)); 647 if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask)) 648 return TLO.CombineTo(Op, Op.getOperand(1)); 649 // If all of the potentially set bits on one side are known to be set on 650 // the other side, just use the 'other' side. 651 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 652 return TLO.CombineTo(Op, Op.getOperand(0)); 653 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 654 return TLO.CombineTo(Op, Op.getOperand(1)); 655 // If the RHS is a constant, see if we can simplify it. 656 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 657 return true; 658 // If the operation can be done in a smaller type, do so. 659 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 660 return true; 661 662 // Output known-0 bits are only known if clear in both the LHS & RHS. 663 KnownZero &= KnownZero2; 664 // Output known-1 are known to be set if set in either the LHS | RHS. 665 KnownOne |= KnownOne2; 666 break; 667 case ISD::XOR: 668 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 669 KnownOne, TLO, Depth+1)) 670 return true; 671 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 672 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2, 673 KnownOne2, TLO, Depth+1)) 674 return true; 675 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 676 677 // If all of the demanded bits are known zero on one side, return the other. 678 // These bits cannot contribute to the result of the 'xor'. 679 if ((KnownZero & NewMask) == NewMask) 680 return TLO.CombineTo(Op, Op.getOperand(0)); 681 if ((KnownZero2 & NewMask) == NewMask) 682 return TLO.CombineTo(Op, Op.getOperand(1)); 683 // If the operation can be done in a smaller type, do so. 684 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 685 return true; 686 687 // If all of the unknown bits are known to be zero on one side or the other 688 // (but not both) turn this into an *inclusive* or. 689 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 690 if ((NewMask & ~KnownZero & ~KnownZero2) == 0) 691 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(), 692 Op.getOperand(0), 693 Op.getOperand(1))); 694 695 // Output known-0 bits are known if clear or set in both the LHS & RHS. 696 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 697 // Output known-1 are known to be set if set in only one of the LHS, RHS. 698 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 699 700 // If all of the demanded bits on one side are known, and all of the set 701 // bits on that side are also known to be set on the other side, turn this 702 // into an AND, as we know the bits will be cleared. 703 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 704 // NB: it is okay if more bits are known than are requested 705 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side 706 if (KnownOne == KnownOne2) { // set bits are the same on both sides 707 EVT VT = Op.getValueType(); 708 SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, dl, VT); 709 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, 710 Op.getOperand(0), ANDC)); 711 } 712 } 713 714 // If the RHS is a constant, see if we can simplify it. 715 // for XOR, we prefer to force bits to 1 if they will make a -1. 716 // If we can't force bits, try to shrink the constant. 717 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 718 APInt Expanded = C->getAPIntValue() | (~NewMask); 719 // If we can expand it to have all bits set, do it. 720 if (Expanded.isAllOnesValue()) { 721 if (Expanded != C->getAPIntValue()) { 722 EVT VT = Op.getValueType(); 723 SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0), 724 TLO.DAG.getConstant(Expanded, dl, VT)); 725 return TLO.CombineTo(Op, New); 726 } 727 // If it already has all the bits set, nothing to change 728 // but don't shrink either! 729 } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) { 730 return true; 731 } 732 } 733 734 KnownZero = std::move(KnownZeroOut); 735 KnownOne = std::move(KnownOneOut); 736 break; 737 case ISD::SELECT: 738 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero, 739 KnownOne, TLO, Depth+1)) 740 return true; 741 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2, 742 KnownOne2, TLO, Depth+1)) 743 return true; 744 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 745 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 746 747 // If the operands are constants, see if we can simplify them. 748 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 749 return true; 750 751 // Only known if known in both the LHS and RHS. 752 KnownOne &= KnownOne2; 753 KnownZero &= KnownZero2; 754 break; 755 case ISD::SELECT_CC: 756 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero, 757 KnownOne, TLO, Depth+1)) 758 return true; 759 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2, 760 KnownOne2, TLO, Depth+1)) 761 return true; 762 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 763 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 764 765 // If the operands are constants, see if we can simplify them. 766 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 767 return true; 768 769 // Only known if known in both the LHS and RHS. 770 KnownOne &= KnownOne2; 771 KnownZero &= KnownZero2; 772 break; 773 case ISD::SETCC: { 774 SDValue Op0 = Op.getOperand(0); 775 SDValue Op1 = Op.getOperand(1); 776 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 777 // If (1) we only need the sign-bit, (2) the setcc operands are the same 778 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 779 // -1, we may be able to bypass the setcc. 780 if (NewMask.isSignBit() && Op0.getScalarValueSizeInBits() == BitWidth && 781 getBooleanContents(Op.getValueType()) == 782 BooleanContent::ZeroOrNegativeOneBooleanContent) { 783 // If we're testing X < 0, then this compare isn't needed - just use X! 784 // FIXME: We're limiting to integer types here, but this should also work 785 // if we don't care about FP signed-zero. The use of SETLT with FP means 786 // that we don't care about NaNs. 787 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 788 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 789 return TLO.CombineTo(Op, Op0); 790 791 // TODO: Should we check for other forms of sign-bit comparisons? 792 // Examples: X <= -1, X >= 0 793 } 794 if (getBooleanContents(Op0.getValueType()) == 795 TargetLowering::ZeroOrOneBooleanContent && 796 BitWidth > 1) 797 KnownZero.setBitsFrom(1); 798 break; 799 } 800 case ISD::SHL: 801 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 802 unsigned ShAmt = SA->getZExtValue(); 803 SDValue InOp = Op.getOperand(0); 804 805 // If the shift count is an invalid immediate, don't do anything. 806 if (ShAmt >= BitWidth) 807 break; 808 809 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 810 // single shift. We can do this if the bottom bits (which are shifted 811 // out) are never demanded. 812 if (InOp.getOpcode() == ISD::SRL && 813 isa<ConstantSDNode>(InOp.getOperand(1))) { 814 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 815 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 816 unsigned Opc = ISD::SHL; 817 int Diff = ShAmt-C1; 818 if (Diff < 0) { 819 Diff = -Diff; 820 Opc = ISD::SRL; 821 } 822 823 SDValue NewSA = 824 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 825 EVT VT = Op.getValueType(); 826 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 827 InOp.getOperand(0), NewSA)); 828 } 829 } 830 831 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), 832 KnownZero, KnownOne, TLO, Depth+1)) 833 return true; 834 835 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 836 // are not demanded. This will likely allow the anyext to be folded away. 837 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { 838 SDValue InnerOp = InOp.getNode()->getOperand(0); 839 EVT InnerVT = InnerOp.getValueType(); 840 unsigned InnerBits = InnerVT.getSizeInBits(); 841 if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 && 842 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 843 EVT ShTy = getShiftAmountTy(InnerVT, DL); 844 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 845 ShTy = InnerVT; 846 SDValue NarrowShl = 847 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 848 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 849 return 850 TLO.CombineTo(Op, 851 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), 852 NarrowShl)); 853 } 854 // Repeat the SHL optimization above in cases where an extension 855 // intervenes: (shl (anyext (shr x, c1)), c2) to 856 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 857 // aren't demanded (as above) and that the shifted upper c1 bits of 858 // x aren't demanded. 859 if (InOp.hasOneUse() && 860 InnerOp.getOpcode() == ISD::SRL && 861 InnerOp.hasOneUse() && 862 isa<ConstantSDNode>(InnerOp.getOperand(1))) { 863 uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1)) 864 ->getZExtValue(); 865 if (InnerShAmt < ShAmt && 866 InnerShAmt < InnerBits && 867 NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 && 868 NewMask.trunc(ShAmt) == 0) { 869 SDValue NewSA = 870 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 871 Op.getOperand(1).getValueType()); 872 EVT VT = Op.getValueType(); 873 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 874 InnerOp.getOperand(0)); 875 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, 876 NewExt, NewSA)); 877 } 878 } 879 } 880 881 KnownZero <<= SA->getZExtValue(); 882 KnownOne <<= SA->getZExtValue(); 883 // low bits known zero. 884 KnownZero.setLowBits(SA->getZExtValue()); 885 } 886 break; 887 case ISD::SRL: 888 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 889 EVT VT = Op.getValueType(); 890 unsigned ShAmt = SA->getZExtValue(); 891 unsigned VTSize = VT.getSizeInBits(); 892 SDValue InOp = Op.getOperand(0); 893 894 // If the shift count is an invalid immediate, don't do anything. 895 if (ShAmt >= BitWidth) 896 break; 897 898 APInt InDemandedMask = (NewMask << ShAmt); 899 900 // If the shift is exact, then it does demand the low bits (and knows that 901 // they are zero). 902 if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()) 903 InDemandedMask.setLowBits(ShAmt); 904 905 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 906 // single shift. We can do this if the top bits (which are shifted out) 907 // are never demanded. 908 if (InOp.getOpcode() == ISD::SHL && 909 isa<ConstantSDNode>(InOp.getOperand(1))) { 910 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) { 911 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 912 unsigned Opc = ISD::SRL; 913 int Diff = ShAmt-C1; 914 if (Diff < 0) { 915 Diff = -Diff; 916 Opc = ISD::SHL; 917 } 918 919 SDValue NewSA = 920 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 921 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 922 InOp.getOperand(0), NewSA)); 923 } 924 } 925 926 // Compute the new bits that are at the top now. 927 if (SimplifyDemandedBits(InOp, InDemandedMask, 928 KnownZero, KnownOne, TLO, Depth+1)) 929 return true; 930 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 931 KnownZero = KnownZero.lshr(ShAmt); 932 KnownOne = KnownOne.lshr(ShAmt); 933 934 KnownZero.setHighBits(ShAmt); // High bits known zero. 935 } 936 break; 937 case ISD::SRA: 938 // If this is an arithmetic shift right and only the low-bit is set, we can 939 // always convert this into a logical shr, even if the shift amount is 940 // variable. The low bit of the shift cannot be an input sign bit unless 941 // the shift amount is >= the size of the datatype, which is undefined. 942 if (NewMask == 1) 943 return TLO.CombineTo(Op, 944 TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), 945 Op.getOperand(0), Op.getOperand(1))); 946 947 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 948 EVT VT = Op.getValueType(); 949 unsigned ShAmt = SA->getZExtValue(); 950 951 // If the shift count is an invalid immediate, don't do anything. 952 if (ShAmt >= BitWidth) 953 break; 954 955 APInt InDemandedMask = (NewMask << ShAmt); 956 957 // If the shift is exact, then it does demand the low bits (and knows that 958 // they are zero). 959 if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()) 960 InDemandedMask.setLowBits(ShAmt); 961 962 // If any of the demanded bits are produced by the sign extension, we also 963 // demand the input sign bit. 964 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 965 if (HighBits.intersects(NewMask)) 966 InDemandedMask |= APInt::getSignBit(VT.getScalarSizeInBits()); 967 968 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, 969 KnownZero, KnownOne, TLO, Depth+1)) 970 return true; 971 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 972 KnownZero = KnownZero.lshr(ShAmt); 973 KnownOne = KnownOne.lshr(ShAmt); 974 975 // Handle the sign bit, adjusted to where it is now in the mask. 976 APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt); 977 978 // If the input sign bit is known to be zero, or if none of the top bits 979 // are demanded, turn this into an unsigned shift right. 980 if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) { 981 SDNodeFlags Flags; 982 Flags.setExact(cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()); 983 return TLO.CombineTo(Op, 984 TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0), 985 Op.getOperand(1), &Flags)); 986 } 987 988 int Log2 = NewMask.exactLogBase2(); 989 if (Log2 >= 0) { 990 // The bit must come from the sign. 991 SDValue NewSA = 992 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, 993 Op.getOperand(1).getValueType()); 994 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 995 Op.getOperand(0), NewSA)); 996 } 997 998 if (KnownOne.intersects(SignBit)) 999 // New bits are known one. 1000 KnownOne |= HighBits; 1001 } 1002 break; 1003 case ISD::SIGN_EXTEND_INREG: { 1004 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1005 1006 APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1); 1007 // If we only care about the highest bit, don't bother shifting right. 1008 if (MsbMask == NewMask) { 1009 unsigned ShAmt = ExVT.getScalarSizeInBits(); 1010 SDValue InOp = Op.getOperand(0); 1011 unsigned VTBits = Op->getValueType(0).getScalarSizeInBits(); 1012 bool AlreadySignExtended = 1013 TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1; 1014 // However if the input is already sign extended we expect the sign 1015 // extension to be dropped altogether later and do not simplify. 1016 if (!AlreadySignExtended) { 1017 // Compute the correct shift amount type, which must be getShiftAmountTy 1018 // for scalar types after legalization. 1019 EVT ShiftAmtTy = Op.getValueType(); 1020 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1021 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1022 1023 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, dl, 1024 ShiftAmtTy); 1025 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 1026 Op.getValueType(), InOp, 1027 ShiftAmt)); 1028 } 1029 } 1030 1031 // Sign extension. Compute the demanded bits in the result that are not 1032 // present in the input. 1033 APInt NewBits = 1034 APInt::getHighBitsSet(BitWidth, 1035 BitWidth - ExVT.getScalarSizeInBits()); 1036 1037 // If none of the extended bits are demanded, eliminate the sextinreg. 1038 if ((NewBits & NewMask) == 0) 1039 return TLO.CombineTo(Op, Op.getOperand(0)); 1040 1041 APInt InSignBit = 1042 APInt::getSignBit(ExVT.getScalarSizeInBits()).zext(BitWidth); 1043 APInt InputDemandedBits = 1044 APInt::getLowBitsSet(BitWidth, 1045 ExVT.getScalarSizeInBits()) & 1046 NewMask; 1047 1048 // Since the sign extended bits are demanded, we know that the sign 1049 // bit is demanded. 1050 InputDemandedBits |= InSignBit; 1051 1052 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, 1053 KnownZero, KnownOne, TLO, Depth+1)) 1054 return true; 1055 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1056 1057 // If the sign bit of the input is known set or clear, then we know the 1058 // top bits of the result. 1059 1060 // If the input sign bit is known zero, convert this into a zero extension. 1061 if (KnownZero.intersects(InSignBit)) 1062 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg( 1063 Op.getOperand(0), dl, ExVT.getScalarType())); 1064 1065 if (KnownOne.intersects(InSignBit)) { // Input sign bit known set 1066 KnownOne |= NewBits; 1067 KnownZero &= ~NewBits; 1068 } else { // Input sign bit unknown 1069 KnownZero &= ~NewBits; 1070 KnownOne &= ~NewBits; 1071 } 1072 break; 1073 } 1074 case ISD::BUILD_PAIR: { 1075 EVT HalfVT = Op.getOperand(0).getValueType(); 1076 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1077 1078 APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1079 APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1080 1081 APInt KnownZeroLo, KnownOneLo; 1082 APInt KnownZeroHi, KnownOneHi; 1083 1084 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo, 1085 KnownOneLo, TLO, Depth + 1)) 1086 return true; 1087 1088 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi, 1089 KnownOneHi, TLO, Depth + 1)) 1090 return true; 1091 1092 KnownZero = KnownZeroLo.zext(BitWidth) | 1093 KnownZeroHi.zext(BitWidth).shl(HalfBitWidth); 1094 1095 KnownOne = KnownOneLo.zext(BitWidth) | 1096 KnownOneHi.zext(BitWidth).shl(HalfBitWidth); 1097 break; 1098 } 1099 case ISD::ZERO_EXTEND: { 1100 unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 1101 APInt InMask = NewMask.trunc(OperandBitWidth); 1102 1103 // If none of the top bits are demanded, convert this into an any_extend. 1104 APInt NewBits = 1105 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask; 1106 if (!NewBits.intersects(NewMask)) 1107 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 1108 Op.getValueType(), 1109 Op.getOperand(0))); 1110 1111 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 1112 KnownZero, KnownOne, TLO, Depth+1)) 1113 return true; 1114 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1115 KnownZero = KnownZero.zext(BitWidth); 1116 KnownOne = KnownOne.zext(BitWidth); 1117 KnownZero |= NewBits; 1118 break; 1119 } 1120 case ISD::SIGN_EXTEND: { 1121 EVT InVT = Op.getOperand(0).getValueType(); 1122 unsigned InBits = InVT.getScalarSizeInBits(); 1123 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits); 1124 APInt InSignBit = APInt::getOneBitSet(BitWidth, InBits - 1); 1125 APInt NewBits = ~InMask & NewMask; 1126 1127 // If none of the top bits are demanded, convert this into an any_extend. 1128 if (NewBits == 0) 1129 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 1130 Op.getValueType(), 1131 Op.getOperand(0))); 1132 1133 // Since some of the sign extended bits are demanded, we know that the sign 1134 // bit is demanded. 1135 APInt InDemandedBits = InMask & NewMask; 1136 InDemandedBits |= InSignBit; 1137 InDemandedBits = InDemandedBits.trunc(InBits); 1138 1139 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, 1140 KnownOne, TLO, Depth+1)) 1141 return true; 1142 KnownZero = KnownZero.zext(BitWidth); 1143 KnownOne = KnownOne.zext(BitWidth); 1144 1145 // If the sign bit is known zero, convert this to a zero extend. 1146 if (KnownZero.intersects(InSignBit)) 1147 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, 1148 Op.getValueType(), 1149 Op.getOperand(0))); 1150 1151 // If the sign bit is known one, the top bits match. 1152 if (KnownOne.intersects(InSignBit)) { 1153 KnownOne |= NewBits; 1154 assert((KnownZero & NewBits) == 0); 1155 } else { // Otherwise, top bits aren't known. 1156 assert((KnownOne & NewBits) == 0); 1157 assert((KnownZero & NewBits) == 0); 1158 } 1159 break; 1160 } 1161 case ISD::ANY_EXTEND: { 1162 unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 1163 APInt InMask = NewMask.trunc(OperandBitWidth); 1164 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 1165 KnownZero, KnownOne, TLO, Depth+1)) 1166 return true; 1167 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1168 KnownZero = KnownZero.zext(BitWidth); 1169 KnownOne = KnownOne.zext(BitWidth); 1170 break; 1171 } 1172 case ISD::TRUNCATE: { 1173 // Simplify the input, using demanded bit information, and compute the known 1174 // zero/one bits live out. 1175 unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 1176 APInt TruncMask = NewMask.zext(OperandBitWidth); 1177 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, 1178 KnownZero, KnownOne, TLO, Depth+1)) 1179 return true; 1180 KnownZero = KnownZero.trunc(BitWidth); 1181 KnownOne = KnownOne.trunc(BitWidth); 1182 1183 // If the input is only used by this truncate, see if we can shrink it based 1184 // on the known demanded bits. 1185 if (Op.getOperand(0).getNode()->hasOneUse()) { 1186 SDValue In = Op.getOperand(0); 1187 switch (In.getOpcode()) { 1188 default: break; 1189 case ISD::SRL: 1190 // Shrink SRL by a constant if none of the high bits shifted in are 1191 // demanded. 1192 if (TLO.LegalTypes() && 1193 !isTypeDesirableForOp(ISD::SRL, Op.getValueType())) 1194 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1195 // undesirable. 1196 break; 1197 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); 1198 if (!ShAmt) 1199 break; 1200 SDValue Shift = In.getOperand(1); 1201 if (TLO.LegalTypes()) { 1202 uint64_t ShVal = ShAmt->getZExtValue(); 1203 Shift = TLO.DAG.getConstant(ShVal, dl, 1204 getShiftAmountTy(Op.getValueType(), DL)); 1205 } 1206 1207 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 1208 OperandBitWidth - BitWidth); 1209 HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth); 1210 1211 if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) { 1212 // None of the shifted in bits are needed. Add a truncate of the 1213 // shift input, then shift it. 1214 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, 1215 Op.getValueType(), 1216 In.getOperand(0)); 1217 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, 1218 Op.getValueType(), 1219 NewTrunc, 1220 Shift)); 1221 } 1222 break; 1223 } 1224 } 1225 1226 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1227 break; 1228 } 1229 case ISD::AssertZext: { 1230 // AssertZext demands all of the high bits, plus any of the low bits 1231 // demanded by its users. 1232 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1233 APInt InMask = APInt::getLowBitsSet(BitWidth, 1234 VT.getSizeInBits()); 1235 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask, 1236 KnownZero, KnownOne, TLO, Depth+1)) 1237 return true; 1238 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1239 1240 KnownZero |= ~InMask; 1241 break; 1242 } 1243 case ISD::BITCAST: 1244 // If this is an FP->Int bitcast and if the sign bit is the only 1245 // thing demanded, turn this into a FGETSIGN. 1246 if (!TLO.LegalOperations() && 1247 !Op.getValueType().isVector() && 1248 !Op.getOperand(0).getValueType().isVector() && 1249 NewMask == APInt::getSignBit(Op.getValueSizeInBits()) && 1250 Op.getOperand(0).getValueType().isFloatingPoint()) { 1251 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType()); 1252 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1253 if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple() && 1254 Op.getOperand(0).getValueType() != MVT::f128) { 1255 // Cannot eliminate/lower SHL for f128 yet. 1256 EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32; 1257 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1258 // place. We expect the SHL to be eliminated by other optimizations. 1259 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0)); 1260 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1261 if (!OpVTLegal && OpVTSizeInBits > 32) 1262 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign); 1263 unsigned ShVal = Op.getValueSizeInBits() - 1; 1264 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, Op.getValueType()); 1265 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 1266 Op.getValueType(), 1267 Sign, ShAmt)); 1268 } 1269 } 1270 break; 1271 case ISD::ADD: 1272 case ISD::MUL: 1273 case ISD::SUB: { 1274 // Add, Sub, and Mul don't demand any bits in positions beyond that 1275 // of the highest bit demanded of them. 1276 APInt LoMask = APInt::getLowBitsSet(BitWidth, 1277 BitWidth - NewMask.countLeadingZeros()); 1278 if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2, 1279 KnownOne2, TLO, Depth+1) || 1280 SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2, 1281 KnownOne2, TLO, Depth+1) || 1282 // See if the operation should be performed at a smaller bit width. 1283 TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) { 1284 const SDNodeFlags *Flags = Op.getNode()->getFlags(); 1285 if (Flags->hasNoSignedWrap() || Flags->hasNoUnsignedWrap()) { 1286 // Disable the nsw and nuw flags. We can no longer guarantee that we 1287 // won't wrap after simplification. 1288 SDNodeFlags NewFlags = *Flags; 1289 NewFlags.setNoSignedWrap(false); 1290 NewFlags.setNoUnsignedWrap(false); 1291 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), 1292 Op.getOperand(0), Op.getOperand(1), 1293 &NewFlags); 1294 return TLO.CombineTo(Op, NewOp); 1295 } 1296 return true; 1297 } 1298 LLVM_FALLTHROUGH; 1299 } 1300 default: 1301 // Just use computeKnownBits to compute output bits. 1302 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 1303 break; 1304 } 1305 1306 // If we know the value of all of the demanded bits, return this as a 1307 // constant. 1308 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { 1309 // Avoid folding to a constant if any OpaqueConstant is involved. 1310 const SDNode *N = Op.getNode(); 1311 for (SDNodeIterator I = SDNodeIterator::begin(N), 1312 E = SDNodeIterator::end(N); I != E; ++I) { 1313 SDNode *Op = *I; 1314 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 1315 if (C->isOpaque()) 1316 return false; 1317 } 1318 return TLO.CombineTo(Op, 1319 TLO.DAG.getConstant(KnownOne, dl, Op.getValueType())); 1320 } 1321 1322 return false; 1323 } 1324 1325 /// Determine which of the bits specified in Mask are known to be either zero or 1326 /// one and return them in the KnownZero/KnownOne bitsets. 1327 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1328 APInt &KnownZero, 1329 APInt &KnownOne, 1330 const APInt &DemandedElts, 1331 const SelectionDAG &DAG, 1332 unsigned Depth) const { 1333 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1334 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1335 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1336 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1337 "Should use MaskedValueIsZero if you don't know whether Op" 1338 " is a target node!"); 1339 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); 1340 } 1341 1342 /// This method can be implemented by targets that want to expose additional 1343 /// information about sign bits to the DAG Combiner. 1344 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 1345 const APInt &, 1346 const SelectionDAG &, 1347 unsigned Depth) const { 1348 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1349 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1350 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1351 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1352 "Should use ComputeNumSignBits if you don't know whether Op" 1353 " is a target node!"); 1354 return 1; 1355 } 1356 1357 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 1358 if (!N) 1359 return false; 1360 1361 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1362 if (!CN) { 1363 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1364 if (!BV) 1365 return false; 1366 1367 // Only interested in constant splats, we don't care about undef 1368 // elements in identifying boolean constants and getConstantSplatNode 1369 // returns NULL if all ops are undef; 1370 CN = BV->getConstantSplatNode(); 1371 if (!CN) 1372 return false; 1373 } 1374 1375 switch (getBooleanContents(N->getValueType(0))) { 1376 case UndefinedBooleanContent: 1377 return CN->getAPIntValue()[0]; 1378 case ZeroOrOneBooleanContent: 1379 return CN->isOne(); 1380 case ZeroOrNegativeOneBooleanContent: 1381 return CN->isAllOnesValue(); 1382 } 1383 1384 llvm_unreachable("Invalid boolean contents"); 1385 } 1386 1387 SDValue TargetLowering::getConstTrueVal(SelectionDAG &DAG, EVT VT, 1388 const SDLoc &DL) const { 1389 unsigned ElementWidth = VT.getScalarSizeInBits(); 1390 APInt TrueInt = 1391 getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent 1392 ? APInt(ElementWidth, 1) 1393 : APInt::getAllOnesValue(ElementWidth); 1394 return DAG.getConstant(TrueInt, DL, VT); 1395 } 1396 1397 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 1398 if (!N) 1399 return false; 1400 1401 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1402 if (!CN) { 1403 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1404 if (!BV) 1405 return false; 1406 1407 // Only interested in constant splats, we don't care about undef 1408 // elements in identifying boolean constants and getConstantSplatNode 1409 // returns NULL if all ops are undef; 1410 CN = BV->getConstantSplatNode(); 1411 if (!CN) 1412 return false; 1413 } 1414 1415 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 1416 return !CN->getAPIntValue()[0]; 1417 1418 return CN->isNullValue(); 1419 } 1420 1421 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 1422 bool SExt) const { 1423 if (VT == MVT::i1) 1424 return N->isOne(); 1425 1426 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 1427 switch (Cnt) { 1428 case TargetLowering::ZeroOrOneBooleanContent: 1429 // An extended value of 1 is always true, unless its original type is i1, 1430 // in which case it will be sign extended to -1. 1431 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 1432 case TargetLowering::UndefinedBooleanContent: 1433 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1434 return N->isAllOnesValue() && SExt; 1435 } 1436 llvm_unreachable("Unexpected enumeration."); 1437 } 1438 1439 /// This helper function of SimplifySetCC tries to optimize the comparison when 1440 /// either operand of the SetCC node is a bitwise-and instruction. 1441 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 1442 ISD::CondCode Cond, 1443 DAGCombinerInfo &DCI, 1444 const SDLoc &DL) const { 1445 // Match these patterns in any of their permutations: 1446 // (X & Y) == Y 1447 // (X & Y) != Y 1448 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 1449 std::swap(N0, N1); 1450 1451 EVT OpVT = N0.getValueType(); 1452 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 1453 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 1454 return SDValue(); 1455 1456 SDValue X, Y; 1457 if (N0.getOperand(0) == N1) { 1458 X = N0.getOperand(1); 1459 Y = N0.getOperand(0); 1460 } else if (N0.getOperand(1) == N1) { 1461 X = N0.getOperand(0); 1462 Y = N0.getOperand(1); 1463 } else { 1464 return SDValue(); 1465 } 1466 1467 SelectionDAG &DAG = DCI.DAG; 1468 SDValue Zero = DAG.getConstant(0, DL, OpVT); 1469 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 1470 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 1471 // Note that where Y is variable and is known to have at most one bit set 1472 // (for example, if it is Z & 1) we cannot do this; the expressions are not 1473 // equivalent when Y == 0. 1474 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 1475 if (DCI.isBeforeLegalizeOps() || 1476 isCondCodeLegal(Cond, N0.getSimpleValueType())) 1477 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 1478 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 1479 // If the target supports an 'and-not' or 'and-complement' logic operation, 1480 // try to use that to make a comparison operation more efficient. 1481 // But don't do this transform if the mask is a single bit because there are 1482 // more efficient ways to deal with that case (for example, 'bt' on x86 or 1483 // 'rlwinm' on PPC). 1484 1485 // Bail out if the compare operand that we want to turn into a zero is 1486 // already a zero (otherwise, infinite loop). 1487 auto *YConst = dyn_cast<ConstantSDNode>(Y); 1488 if (YConst && YConst->isNullValue()) 1489 return SDValue(); 1490 1491 // Transform this into: ~X & Y == 0. 1492 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 1493 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 1494 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 1495 } 1496 1497 return SDValue(); 1498 } 1499 1500 /// Try to simplify a setcc built with the specified operands and cc. If it is 1501 /// unable to simplify it, return a null SDValue. 1502 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 1503 ISD::CondCode Cond, bool foldBooleans, 1504 DAGCombinerInfo &DCI, 1505 const SDLoc &dl) const { 1506 SelectionDAG &DAG = DCI.DAG; 1507 1508 // These setcc operations always fold. 1509 switch (Cond) { 1510 default: break; 1511 case ISD::SETFALSE: 1512 case ISD::SETFALSE2: return DAG.getConstant(0, dl, VT); 1513 case ISD::SETTRUE: 1514 case ISD::SETTRUE2: { 1515 TargetLowering::BooleanContent Cnt = 1516 getBooleanContents(N0->getValueType(0)); 1517 return DAG.getConstant( 1518 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl, 1519 VT); 1520 } 1521 } 1522 1523 // Ensure that the constant occurs on the RHS, and fold constant 1524 // comparisons. 1525 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 1526 if (isa<ConstantSDNode>(N0.getNode()) && 1527 (DCI.isBeforeLegalizeOps() || 1528 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 1529 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 1530 1531 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 1532 const APInt &C1 = N1C->getAPIntValue(); 1533 1534 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 1535 // equality comparison, then we're just comparing whether X itself is 1536 // zero. 1537 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) && 1538 N0.getOperand(0).getOpcode() == ISD::CTLZ && 1539 N0.getOperand(1).getOpcode() == ISD::Constant) { 1540 const APInt &ShAmt 1541 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1542 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1543 ShAmt == Log2_32(N0.getValueSizeInBits())) { 1544 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 1545 // (srl (ctlz x), 5) == 0 -> X != 0 1546 // (srl (ctlz x), 5) != 1 -> X != 0 1547 Cond = ISD::SETNE; 1548 } else { 1549 // (srl (ctlz x), 5) != 0 -> X == 0 1550 // (srl (ctlz x), 5) == 1 -> X == 0 1551 Cond = ISD::SETEQ; 1552 } 1553 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 1554 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 1555 Zero, Cond); 1556 } 1557 } 1558 1559 SDValue CTPOP = N0; 1560 // Look through truncs that don't change the value of a ctpop. 1561 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 1562 CTPOP = N0.getOperand(0); 1563 1564 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 1565 (N0 == CTPOP || 1566 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 1567 EVT CTVT = CTPOP.getValueType(); 1568 SDValue CTOp = CTPOP.getOperand(0); 1569 1570 // (ctpop x) u< 2 -> (x & x-1) == 0 1571 // (ctpop x) u> 1 -> (x & x-1) != 0 1572 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 1573 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 1574 DAG.getConstant(1, dl, CTVT)); 1575 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 1576 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 1577 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 1578 } 1579 1580 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 1581 } 1582 1583 // (zext x) == C --> x == (trunc C) 1584 // (sext x) == C --> x == (trunc C) 1585 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1586 DCI.isBeforeLegalize() && N0->hasOneUse()) { 1587 unsigned MinBits = N0.getValueSizeInBits(); 1588 SDValue PreExt; 1589 bool Signed = false; 1590 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 1591 // ZExt 1592 MinBits = N0->getOperand(0).getValueSizeInBits(); 1593 PreExt = N0->getOperand(0); 1594 } else if (N0->getOpcode() == ISD::AND) { 1595 // DAGCombine turns costly ZExts into ANDs 1596 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 1597 if ((C->getAPIntValue()+1).isPowerOf2()) { 1598 MinBits = C->getAPIntValue().countTrailingOnes(); 1599 PreExt = N0->getOperand(0); 1600 } 1601 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 1602 // SExt 1603 MinBits = N0->getOperand(0).getValueSizeInBits(); 1604 PreExt = N0->getOperand(0); 1605 Signed = true; 1606 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 1607 // ZEXTLOAD / SEXTLOAD 1608 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 1609 MinBits = LN0->getMemoryVT().getSizeInBits(); 1610 PreExt = N0; 1611 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 1612 Signed = true; 1613 MinBits = LN0->getMemoryVT().getSizeInBits(); 1614 PreExt = N0; 1615 } 1616 } 1617 1618 // Figure out how many bits we need to preserve this constant. 1619 unsigned ReqdBits = Signed ? 1620 C1.getBitWidth() - C1.getNumSignBits() + 1 : 1621 C1.getActiveBits(); 1622 1623 // Make sure we're not losing bits from the constant. 1624 if (MinBits > 0 && 1625 MinBits < C1.getBitWidth() && 1626 MinBits >= ReqdBits) { 1627 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 1628 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 1629 // Will get folded away. 1630 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 1631 if (MinBits == 1 && C1 == 1) 1632 // Invert the condition. 1633 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 1634 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1635 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 1636 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 1637 } 1638 1639 // If truncating the setcc operands is not desirable, we can still 1640 // simplify the expression in some cases: 1641 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 1642 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 1643 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 1644 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 1645 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 1646 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 1647 SDValue TopSetCC = N0->getOperand(0); 1648 unsigned N0Opc = N0->getOpcode(); 1649 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 1650 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 1651 TopSetCC.getOpcode() == ISD::SETCC && 1652 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 1653 (isConstFalseVal(N1C) || 1654 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 1655 1656 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 1657 (!N1C->isNullValue() && Cond == ISD::SETNE); 1658 1659 if (!Inverse) 1660 return TopSetCC; 1661 1662 ISD::CondCode InvCond = ISD::getSetCCInverse( 1663 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 1664 TopSetCC.getOperand(0).getValueType().isInteger()); 1665 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 1666 TopSetCC.getOperand(1), 1667 InvCond); 1668 1669 } 1670 } 1671 } 1672 1673 // If the LHS is '(and load, const)', the RHS is 0, 1674 // the test is for equality or unsigned, and all 1 bits of the const are 1675 // in the same partial word, see if we can shorten the load. 1676 if (DCI.isBeforeLegalize() && 1677 !ISD::isSignedIntSetCC(Cond) && 1678 N0.getOpcode() == ISD::AND && C1 == 0 && 1679 N0.getNode()->hasOneUse() && 1680 isa<LoadSDNode>(N0.getOperand(0)) && 1681 N0.getOperand(0).getNode()->hasOneUse() && 1682 isa<ConstantSDNode>(N0.getOperand(1))) { 1683 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 1684 APInt bestMask; 1685 unsigned bestWidth = 0, bestOffset = 0; 1686 if (!Lod->isVolatile() && Lod->isUnindexed()) { 1687 unsigned origWidth = N0.getValueSizeInBits(); 1688 unsigned maskWidth = origWidth; 1689 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 1690 // 8 bits, but have to be careful... 1691 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 1692 origWidth = Lod->getMemoryVT().getSizeInBits(); 1693 const APInt &Mask = 1694 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1695 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 1696 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 1697 for (unsigned offset=0; offset<origWidth/width; offset++) { 1698 if ((newMask & Mask) == Mask) { 1699 if (!DAG.getDataLayout().isLittleEndian()) 1700 bestOffset = (origWidth/width - offset - 1) * (width/8); 1701 else 1702 bestOffset = (uint64_t)offset * (width/8); 1703 bestMask = Mask.lshr(offset * (width/8) * 8); 1704 bestWidth = width; 1705 break; 1706 } 1707 newMask = newMask << width; 1708 } 1709 } 1710 } 1711 if (bestWidth) { 1712 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 1713 if (newVT.isRound()) { 1714 EVT PtrType = Lod->getOperand(1).getValueType(); 1715 SDValue Ptr = Lod->getBasePtr(); 1716 if (bestOffset != 0) 1717 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 1718 DAG.getConstant(bestOffset, dl, PtrType)); 1719 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 1720 SDValue NewLoad = DAG.getLoad( 1721 newVT, dl, Lod->getChain(), Ptr, 1722 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 1723 return DAG.getSetCC(dl, VT, 1724 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 1725 DAG.getConstant(bestMask.trunc(bestWidth), 1726 dl, newVT)), 1727 DAG.getConstant(0LL, dl, newVT), Cond); 1728 } 1729 } 1730 } 1731 1732 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 1733 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 1734 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 1735 1736 // If the comparison constant has bits in the upper part, the 1737 // zero-extended value could never match. 1738 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 1739 C1.getBitWidth() - InSize))) { 1740 switch (Cond) { 1741 case ISD::SETUGT: 1742 case ISD::SETUGE: 1743 case ISD::SETEQ: return DAG.getConstant(0, dl, VT); 1744 case ISD::SETULT: 1745 case ISD::SETULE: 1746 case ISD::SETNE: return DAG.getConstant(1, dl, VT); 1747 case ISD::SETGT: 1748 case ISD::SETGE: 1749 // True if the sign bit of C1 is set. 1750 return DAG.getConstant(C1.isNegative(), dl, VT); 1751 case ISD::SETLT: 1752 case ISD::SETLE: 1753 // True if the sign bit of C1 isn't set. 1754 return DAG.getConstant(C1.isNonNegative(), dl, VT); 1755 default: 1756 break; 1757 } 1758 } 1759 1760 // Otherwise, we can perform the comparison with the low bits. 1761 switch (Cond) { 1762 case ISD::SETEQ: 1763 case ISD::SETNE: 1764 case ISD::SETUGT: 1765 case ISD::SETUGE: 1766 case ISD::SETULT: 1767 case ISD::SETULE: { 1768 EVT newVT = N0.getOperand(0).getValueType(); 1769 if (DCI.isBeforeLegalizeOps() || 1770 (isOperationLegal(ISD::SETCC, newVT) && 1771 getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) { 1772 EVT NewSetCCVT = 1773 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); 1774 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 1775 1776 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 1777 NewConst, Cond); 1778 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 1779 } 1780 break; 1781 } 1782 default: 1783 break; // todo, be more careful with signed comparisons 1784 } 1785 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 1786 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1787 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 1788 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 1789 EVT ExtDstTy = N0.getValueType(); 1790 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 1791 1792 // If the constant doesn't fit into the number of bits for the source of 1793 // the sign extension, it is impossible for both sides to be equal. 1794 if (C1.getMinSignedBits() > ExtSrcTyBits) 1795 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 1796 1797 SDValue ZextOp; 1798 EVT Op0Ty = N0.getOperand(0).getValueType(); 1799 if (Op0Ty == ExtSrcTy) { 1800 ZextOp = N0.getOperand(0); 1801 } else { 1802 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 1803 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 1804 DAG.getConstant(Imm, dl, Op0Ty)); 1805 } 1806 if (!DCI.isCalledByLegalizer()) 1807 DCI.AddToWorklist(ZextOp.getNode()); 1808 // Otherwise, make this a use of a zext. 1809 return DAG.getSetCC(dl, VT, ZextOp, 1810 DAG.getConstant(C1 & APInt::getLowBitsSet( 1811 ExtDstTyBits, 1812 ExtSrcTyBits), 1813 dl, ExtDstTy), 1814 Cond); 1815 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) && 1816 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1817 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 1818 if (N0.getOpcode() == ISD::SETCC && 1819 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 1820 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1); 1821 if (TrueWhenTrue) 1822 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 1823 // Invert the condition. 1824 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 1825 CC = ISD::getSetCCInverse(CC, 1826 N0.getOperand(0).getValueType().isInteger()); 1827 if (DCI.isBeforeLegalizeOps() || 1828 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 1829 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 1830 } 1831 1832 if ((N0.getOpcode() == ISD::XOR || 1833 (N0.getOpcode() == ISD::AND && 1834 N0.getOperand(0).getOpcode() == ISD::XOR && 1835 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 1836 isa<ConstantSDNode>(N0.getOperand(1)) && 1837 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) { 1838 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 1839 // can only do this if the top bits are known zero. 1840 unsigned BitWidth = N0.getValueSizeInBits(); 1841 if (DAG.MaskedValueIsZero(N0, 1842 APInt::getHighBitsSet(BitWidth, 1843 BitWidth-1))) { 1844 // Okay, get the un-inverted input value. 1845 SDValue Val; 1846 if (N0.getOpcode() == ISD::XOR) 1847 Val = N0.getOperand(0); 1848 else { 1849 assert(N0.getOpcode() == ISD::AND && 1850 N0.getOperand(0).getOpcode() == ISD::XOR); 1851 // ((X^1)&1)^1 -> X & 1 1852 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 1853 N0.getOperand(0).getOperand(0), 1854 N0.getOperand(1)); 1855 } 1856 1857 return DAG.getSetCC(dl, VT, Val, N1, 1858 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1859 } 1860 } else if (N1C->getAPIntValue() == 1 && 1861 (VT == MVT::i1 || 1862 getBooleanContents(N0->getValueType(0)) == 1863 ZeroOrOneBooleanContent)) { 1864 SDValue Op0 = N0; 1865 if (Op0.getOpcode() == ISD::TRUNCATE) 1866 Op0 = Op0.getOperand(0); 1867 1868 if ((Op0.getOpcode() == ISD::XOR) && 1869 Op0.getOperand(0).getOpcode() == ISD::SETCC && 1870 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 1871 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 1872 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 1873 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 1874 Cond); 1875 } 1876 if (Op0.getOpcode() == ISD::AND && 1877 isa<ConstantSDNode>(Op0.getOperand(1)) && 1878 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) { 1879 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 1880 if (Op0.getValueType().bitsGT(VT)) 1881 Op0 = DAG.getNode(ISD::AND, dl, VT, 1882 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 1883 DAG.getConstant(1, dl, VT)); 1884 else if (Op0.getValueType().bitsLT(VT)) 1885 Op0 = DAG.getNode(ISD::AND, dl, VT, 1886 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 1887 DAG.getConstant(1, dl, VT)); 1888 1889 return DAG.getSetCC(dl, VT, Op0, 1890 DAG.getConstant(0, dl, Op0.getValueType()), 1891 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1892 } 1893 if (Op0.getOpcode() == ISD::AssertZext && 1894 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 1895 return DAG.getSetCC(dl, VT, Op0, 1896 DAG.getConstant(0, dl, Op0.getValueType()), 1897 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1898 } 1899 } 1900 1901 APInt MinVal, MaxVal; 1902 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits(); 1903 if (ISD::isSignedIntSetCC(Cond)) { 1904 MinVal = APInt::getSignedMinValue(OperandBitSize); 1905 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 1906 } else { 1907 MinVal = APInt::getMinValue(OperandBitSize); 1908 MaxVal = APInt::getMaxValue(OperandBitSize); 1909 } 1910 1911 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 1912 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 1913 if (C1 == MinVal) return DAG.getConstant(1, dl, VT); // X >= MIN --> true 1914 // X >= C0 --> X > (C0 - 1) 1915 APInt C = C1 - 1; 1916 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 1917 if ((DCI.isBeforeLegalizeOps() || 1918 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1919 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1920 isLegalICmpImmediate(C.getSExtValue())))) { 1921 return DAG.getSetCC(dl, VT, N0, 1922 DAG.getConstant(C, dl, N1.getValueType()), 1923 NewCC); 1924 } 1925 } 1926 1927 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 1928 if (C1 == MaxVal) return DAG.getConstant(1, dl, VT); // X <= MAX --> true 1929 // X <= C0 --> X < (C0 + 1) 1930 APInt C = C1 + 1; 1931 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 1932 if ((DCI.isBeforeLegalizeOps() || 1933 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1934 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1935 isLegalICmpImmediate(C.getSExtValue())))) { 1936 return DAG.getSetCC(dl, VT, N0, 1937 DAG.getConstant(C, dl, N1.getValueType()), 1938 NewCC); 1939 } 1940 } 1941 1942 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) 1943 return DAG.getConstant(0, dl, VT); // X < MIN --> false 1944 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal) 1945 return DAG.getConstant(1, dl, VT); // X >= MIN --> true 1946 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal) 1947 return DAG.getConstant(0, dl, VT); // X > MAX --> false 1948 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal) 1949 return DAG.getConstant(1, dl, VT); // X <= MAX --> true 1950 1951 // Canonicalize setgt X, Min --> setne X, Min 1952 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) 1953 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1954 // Canonicalize setlt X, Max --> setne X, Max 1955 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) 1956 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1957 1958 // If we have setult X, 1, turn it into seteq X, 0 1959 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) 1960 return DAG.getSetCC(dl, VT, N0, 1961 DAG.getConstant(MinVal, dl, N0.getValueType()), 1962 ISD::SETEQ); 1963 // If we have setugt X, Max-1, turn it into seteq X, Max 1964 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) 1965 return DAG.getSetCC(dl, VT, N0, 1966 DAG.getConstant(MaxVal, dl, N0.getValueType()), 1967 ISD::SETEQ); 1968 1969 // If we have "setcc X, C0", check to see if we can shrink the immediate 1970 // by changing cc. 1971 1972 // SETUGT X, SINTMAX -> SETLT X, 0 1973 if (Cond == ISD::SETUGT && 1974 C1 == APInt::getSignedMaxValue(OperandBitSize)) 1975 return DAG.getSetCC(dl, VT, N0, 1976 DAG.getConstant(0, dl, N1.getValueType()), 1977 ISD::SETLT); 1978 1979 // SETULT X, SINTMIN -> SETGT X, -1 1980 if (Cond == ISD::SETULT && 1981 C1 == APInt::getSignedMinValue(OperandBitSize)) { 1982 SDValue ConstMinusOne = 1983 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 1984 N1.getValueType()); 1985 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 1986 } 1987 1988 // Fold bit comparisons when we can. 1989 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1990 (VT == N0.getValueType() || 1991 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 1992 N0.getOpcode() == ISD::AND) { 1993 auto &DL = DAG.getDataLayout(); 1994 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1995 EVT ShiftTy = DCI.isBeforeLegalize() 1996 ? getPointerTy(DL) 1997 : getShiftAmountTy(N0.getValueType(), DL); 1998 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 1999 // Perform the xform if the AND RHS is a single bit. 2000 if (AndRHS->getAPIntValue().isPowerOf2()) { 2001 return DAG.getNode(ISD::TRUNCATE, dl, VT, 2002 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 2003 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, 2004 ShiftTy))); 2005 } 2006 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 2007 // (X & 8) == 8 --> (X & 8) >> 3 2008 // Perform the xform if C1 is a single bit. 2009 if (C1.isPowerOf2()) { 2010 return DAG.getNode(ISD::TRUNCATE, dl, VT, 2011 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 2012 DAG.getConstant(C1.logBase2(), dl, 2013 ShiftTy))); 2014 } 2015 } 2016 } 2017 } 2018 2019 if (C1.getMinSignedBits() <= 64 && 2020 !isLegalICmpImmediate(C1.getSExtValue())) { 2021 // (X & -256) == 256 -> (X >> 8) == 1 2022 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2023 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 2024 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2025 const APInt &AndRHSC = AndRHS->getAPIntValue(); 2026 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 2027 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 2028 auto &DL = DAG.getDataLayout(); 2029 EVT ShiftTy = DCI.isBeforeLegalize() 2030 ? getPointerTy(DL) 2031 : getShiftAmountTy(N0.getValueType(), DL); 2032 EVT CmpTy = N0.getValueType(); 2033 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 2034 DAG.getConstant(ShiftBits, dl, 2035 ShiftTy)); 2036 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); 2037 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 2038 } 2039 } 2040 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 2041 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 2042 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 2043 // X < 0x100000000 -> (X >> 32) < 1 2044 // X >= 0x100000000 -> (X >> 32) >= 1 2045 // X <= 0x0ffffffff -> (X >> 32) < 1 2046 // X > 0x0ffffffff -> (X >> 32) >= 1 2047 unsigned ShiftBits; 2048 APInt NewC = C1; 2049 ISD::CondCode NewCond = Cond; 2050 if (AdjOne) { 2051 ShiftBits = C1.countTrailingOnes(); 2052 NewC = NewC + 1; 2053 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 2054 } else { 2055 ShiftBits = C1.countTrailingZeros(); 2056 } 2057 NewC = NewC.lshr(ShiftBits); 2058 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 2059 isLegalICmpImmediate(NewC.getSExtValue())) { 2060 auto &DL = DAG.getDataLayout(); 2061 EVT ShiftTy = DCI.isBeforeLegalize() 2062 ? getPointerTy(DL) 2063 : getShiftAmountTy(N0.getValueType(), DL); 2064 EVT CmpTy = N0.getValueType(); 2065 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 2066 DAG.getConstant(ShiftBits, dl, ShiftTy)); 2067 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); 2068 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 2069 } 2070 } 2071 } 2072 } 2073 2074 if (isa<ConstantFPSDNode>(N0.getNode())) { 2075 // Constant fold or commute setcc. 2076 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); 2077 if (O.getNode()) return O; 2078 } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { 2079 // If the RHS of an FP comparison is a constant, simplify it away in 2080 // some cases. 2081 if (CFP->getValueAPF().isNaN()) { 2082 // If an operand is known to be a nan, we can fold it. 2083 switch (ISD::getUnorderedFlavor(Cond)) { 2084 default: llvm_unreachable("Unknown flavor!"); 2085 case 0: // Known false. 2086 return DAG.getConstant(0, dl, VT); 2087 case 1: // Known true. 2088 return DAG.getConstant(1, dl, VT); 2089 case 2: // Undefined. 2090 return DAG.getUNDEF(VT); 2091 } 2092 } 2093 2094 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 2095 // constant if knowing that the operand is non-nan is enough. We prefer to 2096 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 2097 // materialize 0.0. 2098 if (Cond == ISD::SETO || Cond == ISD::SETUO) 2099 return DAG.getSetCC(dl, VT, N0, N0, Cond); 2100 2101 // setcc (fneg x), C -> setcc swap(pred) x, -C 2102 if (N0.getOpcode() == ISD::FNEG) { 2103 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 2104 if (DCI.isBeforeLegalizeOps() || 2105 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 2106 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 2107 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 2108 } 2109 } 2110 2111 // If the condition is not legal, see if we can find an equivalent one 2112 // which is legal. 2113 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 2114 // If the comparison was an awkward floating-point == or != and one of 2115 // the comparison operands is infinity or negative infinity, convert the 2116 // condition to a less-awkward <= or >=. 2117 if (CFP->getValueAPF().isInfinity()) { 2118 if (CFP->getValueAPF().isNegative()) { 2119 if (Cond == ISD::SETOEQ && 2120 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 2121 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 2122 if (Cond == ISD::SETUEQ && 2123 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 2124 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 2125 if (Cond == ISD::SETUNE && 2126 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 2127 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 2128 if (Cond == ISD::SETONE && 2129 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 2130 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 2131 } else { 2132 if (Cond == ISD::SETOEQ && 2133 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 2134 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 2135 if (Cond == ISD::SETUEQ && 2136 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 2137 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 2138 if (Cond == ISD::SETUNE && 2139 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 2140 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 2141 if (Cond == ISD::SETONE && 2142 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 2143 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 2144 } 2145 } 2146 } 2147 } 2148 2149 if (N0 == N1) { 2150 // The sext(setcc()) => setcc() optimization relies on the appropriate 2151 // constant being emitted. 2152 uint64_t EqVal = 0; 2153 switch (getBooleanContents(N0.getValueType())) { 2154 case UndefinedBooleanContent: 2155 case ZeroOrOneBooleanContent: 2156 EqVal = ISD::isTrueWhenEqual(Cond); 2157 break; 2158 case ZeroOrNegativeOneBooleanContent: 2159 EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0; 2160 break; 2161 } 2162 2163 // We can always fold X == X for integer setcc's. 2164 if (N0.getValueType().isInteger()) { 2165 return DAG.getConstant(EqVal, dl, VT); 2166 } 2167 unsigned UOF = ISD::getUnorderedFlavor(Cond); 2168 if (UOF == 2) // FP operators that are undefined on NaNs. 2169 return DAG.getConstant(EqVal, dl, VT); 2170 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) 2171 return DAG.getConstant(EqVal, dl, VT); 2172 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 2173 // if it is not already. 2174 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 2175 if (NewCond != Cond && (DCI.isBeforeLegalizeOps() || 2176 getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal)) 2177 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 2178 } 2179 2180 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2181 N0.getValueType().isInteger()) { 2182 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 2183 N0.getOpcode() == ISD::XOR) { 2184 // Simplify (X+Y) == (X+Z) --> Y == Z 2185 if (N0.getOpcode() == N1.getOpcode()) { 2186 if (N0.getOperand(0) == N1.getOperand(0)) 2187 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 2188 if (N0.getOperand(1) == N1.getOperand(1)) 2189 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 2190 if (DAG.isCommutativeBinOp(N0.getOpcode())) { 2191 // If X op Y == Y op X, try other combinations. 2192 if (N0.getOperand(0) == N1.getOperand(1)) 2193 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 2194 Cond); 2195 if (N0.getOperand(1) == N1.getOperand(0)) 2196 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 2197 Cond); 2198 } 2199 } 2200 2201 // If RHS is a legal immediate value for a compare instruction, we need 2202 // to be careful about increasing register pressure needlessly. 2203 bool LegalRHSImm = false; 2204 2205 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 2206 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2207 // Turn (X+C1) == C2 --> X == C2-C1 2208 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 2209 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2210 DAG.getConstant(RHSC->getAPIntValue()- 2211 LHSR->getAPIntValue(), 2212 dl, N0.getValueType()), Cond); 2213 } 2214 2215 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 2216 if (N0.getOpcode() == ISD::XOR) 2217 // If we know that all of the inverted bits are zero, don't bother 2218 // performing the inversion. 2219 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 2220 return 2221 DAG.getSetCC(dl, VT, N0.getOperand(0), 2222 DAG.getConstant(LHSR->getAPIntValue() ^ 2223 RHSC->getAPIntValue(), 2224 dl, N0.getValueType()), 2225 Cond); 2226 } 2227 2228 // Turn (C1-X) == C2 --> X == C1-C2 2229 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 2230 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 2231 return 2232 DAG.getSetCC(dl, VT, N0.getOperand(1), 2233 DAG.getConstant(SUBC->getAPIntValue() - 2234 RHSC->getAPIntValue(), 2235 dl, N0.getValueType()), 2236 Cond); 2237 } 2238 } 2239 2240 // Could RHSC fold directly into a compare? 2241 if (RHSC->getValueType(0).getSizeInBits() <= 64) 2242 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 2243 } 2244 2245 // Simplify (X+Z) == X --> Z == 0 2246 // Don't do this if X is an immediate that can fold into a cmp 2247 // instruction and X+Z has other uses. It could be an induction variable 2248 // chain, and the transform would increase register pressure. 2249 if (!LegalRHSImm || N0.getNode()->hasOneUse()) { 2250 if (N0.getOperand(0) == N1) 2251 return DAG.getSetCC(dl, VT, N0.getOperand(1), 2252 DAG.getConstant(0, dl, N0.getValueType()), Cond); 2253 if (N0.getOperand(1) == N1) { 2254 if (DAG.isCommutativeBinOp(N0.getOpcode())) 2255 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2256 DAG.getConstant(0, dl, N0.getValueType()), 2257 Cond); 2258 if (N0.getNode()->hasOneUse()) { 2259 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); 2260 auto &DL = DAG.getDataLayout(); 2261 // (Z-X) == X --> Z == X<<1 2262 SDValue SH = DAG.getNode( 2263 ISD::SHL, dl, N1.getValueType(), N1, 2264 DAG.getConstant(1, dl, 2265 getShiftAmountTy(N1.getValueType(), DL))); 2266 if (!DCI.isCalledByLegalizer()) 2267 DCI.AddToWorklist(SH.getNode()); 2268 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); 2269 } 2270 } 2271 } 2272 } 2273 2274 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 2275 N1.getOpcode() == ISD::XOR) { 2276 // Simplify X == (X+Z) --> Z == 0 2277 if (N1.getOperand(0) == N0) 2278 return DAG.getSetCC(dl, VT, N1.getOperand(1), 2279 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2280 if (N1.getOperand(1) == N0) { 2281 if (DAG.isCommutativeBinOp(N1.getOpcode())) 2282 return DAG.getSetCC(dl, VT, N1.getOperand(0), 2283 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2284 if (N1.getNode()->hasOneUse()) { 2285 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); 2286 auto &DL = DAG.getDataLayout(); 2287 // X == (Z-X) --> X<<1 == Z 2288 SDValue SH = DAG.getNode( 2289 ISD::SHL, dl, N1.getValueType(), N0, 2290 DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL))); 2291 if (!DCI.isCalledByLegalizer()) 2292 DCI.AddToWorklist(SH.getNode()); 2293 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); 2294 } 2295 } 2296 } 2297 2298 if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl)) 2299 return V; 2300 } 2301 2302 // Fold away ALL boolean setcc's. 2303 SDValue Temp; 2304 if (N0.getValueType() == MVT::i1 && foldBooleans) { 2305 switch (Cond) { 2306 default: llvm_unreachable("Unknown integer setcc!"); 2307 case ISD::SETEQ: // X == Y -> ~(X^Y) 2308 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2309 N0 = DAG.getNOT(dl, Temp, MVT::i1); 2310 if (!DCI.isCalledByLegalizer()) 2311 DCI.AddToWorklist(Temp.getNode()); 2312 break; 2313 case ISD::SETNE: // X != Y --> (X^Y) 2314 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2315 break; 2316 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 2317 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 2318 Temp = DAG.getNOT(dl, N0, MVT::i1); 2319 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp); 2320 if (!DCI.isCalledByLegalizer()) 2321 DCI.AddToWorklist(Temp.getNode()); 2322 break; 2323 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 2324 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 2325 Temp = DAG.getNOT(dl, N1, MVT::i1); 2326 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp); 2327 if (!DCI.isCalledByLegalizer()) 2328 DCI.AddToWorklist(Temp.getNode()); 2329 break; 2330 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 2331 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 2332 Temp = DAG.getNOT(dl, N0, MVT::i1); 2333 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp); 2334 if (!DCI.isCalledByLegalizer()) 2335 DCI.AddToWorklist(Temp.getNode()); 2336 break; 2337 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 2338 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 2339 Temp = DAG.getNOT(dl, N1, MVT::i1); 2340 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp); 2341 break; 2342 } 2343 if (VT != MVT::i1) { 2344 if (!DCI.isCalledByLegalizer()) 2345 DCI.AddToWorklist(N0.getNode()); 2346 // FIXME: If running after legalize, we probably can't do this. 2347 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0); 2348 } 2349 return N0; 2350 } 2351 2352 // Could not fold it. 2353 return SDValue(); 2354 } 2355 2356 /// Returns true (and the GlobalValue and the offset) if the node is a 2357 /// GlobalAddress + offset. 2358 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, 2359 int64_t &Offset) const { 2360 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 2361 GA = GASD->getGlobal(); 2362 Offset += GASD->getOffset(); 2363 return true; 2364 } 2365 2366 if (N->getOpcode() == ISD::ADD) { 2367 SDValue N1 = N->getOperand(0); 2368 SDValue N2 = N->getOperand(1); 2369 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 2370 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 2371 Offset += V->getSExtValue(); 2372 return true; 2373 } 2374 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 2375 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 2376 Offset += V->getSExtValue(); 2377 return true; 2378 } 2379 } 2380 } 2381 2382 return false; 2383 } 2384 2385 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 2386 DAGCombinerInfo &DCI) const { 2387 // Default implementation: no optimization. 2388 return SDValue(); 2389 } 2390 2391 //===----------------------------------------------------------------------===// 2392 // Inline Assembler Implementation Methods 2393 //===----------------------------------------------------------------------===// 2394 2395 TargetLowering::ConstraintType 2396 TargetLowering::getConstraintType(StringRef Constraint) const { 2397 unsigned S = Constraint.size(); 2398 2399 if (S == 1) { 2400 switch (Constraint[0]) { 2401 default: break; 2402 case 'r': return C_RegisterClass; 2403 case 'm': // memory 2404 case 'o': // offsetable 2405 case 'V': // not offsetable 2406 return C_Memory; 2407 case 'i': // Simple Integer or Relocatable Constant 2408 case 'n': // Simple Integer 2409 case 'E': // Floating Point Constant 2410 case 'F': // Floating Point Constant 2411 case 's': // Relocatable Constant 2412 case 'p': // Address. 2413 case 'X': // Allow ANY value. 2414 case 'I': // Target registers. 2415 case 'J': 2416 case 'K': 2417 case 'L': 2418 case 'M': 2419 case 'N': 2420 case 'O': 2421 case 'P': 2422 case '<': 2423 case '>': 2424 return C_Other; 2425 } 2426 } 2427 2428 if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { 2429 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 2430 return C_Memory; 2431 return C_Register; 2432 } 2433 return C_Unknown; 2434 } 2435 2436 /// Try to replace an X constraint, which matches anything, with another that 2437 /// has more specific requirements based on the type of the corresponding 2438 /// operand. 2439 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ 2440 if (ConstraintVT.isInteger()) 2441 return "r"; 2442 if (ConstraintVT.isFloatingPoint()) 2443 return "f"; // works for many targets 2444 return nullptr; 2445 } 2446 2447 /// Lower the specified operand into the Ops vector. 2448 /// If it is invalid, don't add anything to Ops. 2449 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 2450 std::string &Constraint, 2451 std::vector<SDValue> &Ops, 2452 SelectionDAG &DAG) const { 2453 2454 if (Constraint.length() > 1) return; 2455 2456 char ConstraintLetter = Constraint[0]; 2457 switch (ConstraintLetter) { 2458 default: break; 2459 case 'X': // Allows any operand; labels (basic block) use this. 2460 if (Op.getOpcode() == ISD::BasicBlock) { 2461 Ops.push_back(Op); 2462 return; 2463 } 2464 LLVM_FALLTHROUGH; 2465 case 'i': // Simple Integer or Relocatable Constant 2466 case 'n': // Simple Integer 2467 case 's': { // Relocatable Constant 2468 // These operands are interested in values of the form (GV+C), where C may 2469 // be folded in as an offset of GV, or it may be explicitly added. Also, it 2470 // is possible and fine if either GV or C are missing. 2471 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2472 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 2473 2474 // If we have "(add GV, C)", pull out GV/C 2475 if (Op.getOpcode() == ISD::ADD) { 2476 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2477 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 2478 if (!C || !GA) { 2479 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 2480 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 2481 } 2482 if (!C || !GA) { 2483 C = nullptr; 2484 GA = nullptr; 2485 } 2486 } 2487 2488 // If we find a valid operand, map to the TargetXXX version so that the 2489 // value itself doesn't get selected. 2490 if (GA) { // Either &GV or &GV+C 2491 if (ConstraintLetter != 'n') { 2492 int64_t Offs = GA->getOffset(); 2493 if (C) Offs += C->getZExtValue(); 2494 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 2495 C ? SDLoc(C) : SDLoc(), 2496 Op.getValueType(), Offs)); 2497 } 2498 return; 2499 } 2500 if (C) { // just C, no GV. 2501 // Simple constants are not allowed for 's'. 2502 if (ConstraintLetter != 's') { 2503 // gcc prints these as sign extended. Sign extend value to 64 bits 2504 // now; without this it would get ZExt'd later in 2505 // ScheduleDAGSDNodes::EmitNode, which is very generic. 2506 Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(), 2507 SDLoc(C), MVT::i64)); 2508 } 2509 return; 2510 } 2511 break; 2512 } 2513 } 2514 } 2515 2516 std::pair<unsigned, const TargetRegisterClass *> 2517 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 2518 StringRef Constraint, 2519 MVT VT) const { 2520 if (Constraint.empty() || Constraint[0] != '{') 2521 return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr)); 2522 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); 2523 2524 // Remove the braces from around the name. 2525 StringRef RegName(Constraint.data()+1, Constraint.size()-2); 2526 2527 std::pair<unsigned, const TargetRegisterClass*> R = 2528 std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr)); 2529 2530 // Figure out which register class contains this reg. 2531 for (const TargetRegisterClass *RC : RI->regclasses()) { 2532 // If none of the value types for this register class are valid, we 2533 // can't use it. For example, 64-bit reg classes on 32-bit targets. 2534 if (!isLegalRC(RC)) 2535 continue; 2536 2537 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 2538 I != E; ++I) { 2539 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 2540 std::pair<unsigned, const TargetRegisterClass*> S = 2541 std::make_pair(*I, RC); 2542 2543 // If this register class has the requested value type, return it, 2544 // otherwise keep searching and return the first class found 2545 // if no other is found which explicitly has the requested type. 2546 if (RC->hasType(VT)) 2547 return S; 2548 else if (!R.second) 2549 R = S; 2550 } 2551 } 2552 } 2553 2554 return R; 2555 } 2556 2557 //===----------------------------------------------------------------------===// 2558 // Constraint Selection. 2559 2560 /// Return true of this is an input operand that is a matching constraint like 2561 /// "4". 2562 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 2563 assert(!ConstraintCode.empty() && "No known constraint!"); 2564 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 2565 } 2566 2567 /// If this is an input matching constraint, this method returns the output 2568 /// operand it matches. 2569 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 2570 assert(!ConstraintCode.empty() && "No known constraint!"); 2571 return atoi(ConstraintCode.c_str()); 2572 } 2573 2574 /// Split up the constraint string from the inline assembly value into the 2575 /// specific constraints and their prefixes, and also tie in the associated 2576 /// operand values. 2577 /// If this returns an empty vector, and if the constraint string itself 2578 /// isn't empty, there was an error parsing. 2579 TargetLowering::AsmOperandInfoVector 2580 TargetLowering::ParseConstraints(const DataLayout &DL, 2581 const TargetRegisterInfo *TRI, 2582 ImmutableCallSite CS) const { 2583 /// Information about all of the constraints. 2584 AsmOperandInfoVector ConstraintOperands; 2585 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 2586 unsigned maCount = 0; // Largest number of multiple alternative constraints. 2587 2588 // Do a prepass over the constraints, canonicalizing them, and building up the 2589 // ConstraintOperands list. 2590 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 2591 unsigned ResNo = 0; // ResNo - The result number of the next output. 2592 2593 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 2594 ConstraintOperands.emplace_back(std::move(CI)); 2595 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 2596 2597 // Update multiple alternative constraint count. 2598 if (OpInfo.multipleAlternatives.size() > maCount) 2599 maCount = OpInfo.multipleAlternatives.size(); 2600 2601 OpInfo.ConstraintVT = MVT::Other; 2602 2603 // Compute the value type for each operand. 2604 switch (OpInfo.Type) { 2605 case InlineAsm::isOutput: 2606 // Indirect outputs just consume an argument. 2607 if (OpInfo.isIndirect) { 2608 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2609 break; 2610 } 2611 2612 // The return value of the call is this value. As such, there is no 2613 // corresponding argument. 2614 assert(!CS.getType()->isVoidTy() && 2615 "Bad inline asm!"); 2616 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 2617 OpInfo.ConstraintVT = 2618 getSimpleValueType(DL, STy->getElementType(ResNo)); 2619 } else { 2620 assert(ResNo == 0 && "Asm only has one result!"); 2621 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 2622 } 2623 ++ResNo; 2624 break; 2625 case InlineAsm::isInput: 2626 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2627 break; 2628 case InlineAsm::isClobber: 2629 // Nothing to do. 2630 break; 2631 } 2632 2633 if (OpInfo.CallOperandVal) { 2634 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 2635 if (OpInfo.isIndirect) { 2636 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 2637 if (!PtrTy) 2638 report_fatal_error("Indirect operand for inline asm not a pointer!"); 2639 OpTy = PtrTy->getElementType(); 2640 } 2641 2642 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 2643 if (StructType *STy = dyn_cast<StructType>(OpTy)) 2644 if (STy->getNumElements() == 1) 2645 OpTy = STy->getElementType(0); 2646 2647 // If OpTy is not a single value, it may be a struct/union that we 2648 // can tile with integers. 2649 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 2650 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 2651 switch (BitSize) { 2652 default: break; 2653 case 1: 2654 case 8: 2655 case 16: 2656 case 32: 2657 case 64: 2658 case 128: 2659 OpInfo.ConstraintVT = 2660 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 2661 break; 2662 } 2663 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 2664 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 2665 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 2666 } else { 2667 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 2668 } 2669 } 2670 } 2671 2672 // If we have multiple alternative constraints, select the best alternative. 2673 if (!ConstraintOperands.empty()) { 2674 if (maCount) { 2675 unsigned bestMAIndex = 0; 2676 int bestWeight = -1; 2677 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 2678 int weight = -1; 2679 unsigned maIndex; 2680 // Compute the sums of the weights for each alternative, keeping track 2681 // of the best (highest weight) one so far. 2682 for (maIndex = 0; maIndex < maCount; ++maIndex) { 2683 int weightSum = 0; 2684 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2685 cIndex != eIndex; ++cIndex) { 2686 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2687 if (OpInfo.Type == InlineAsm::isClobber) 2688 continue; 2689 2690 // If this is an output operand with a matching input operand, 2691 // look up the matching input. If their types mismatch, e.g. one 2692 // is an integer, the other is floating point, or their sizes are 2693 // different, flag it as an maCantMatch. 2694 if (OpInfo.hasMatchingInput()) { 2695 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2696 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2697 if ((OpInfo.ConstraintVT.isInteger() != 2698 Input.ConstraintVT.isInteger()) || 2699 (OpInfo.ConstraintVT.getSizeInBits() != 2700 Input.ConstraintVT.getSizeInBits())) { 2701 weightSum = -1; // Can't match. 2702 break; 2703 } 2704 } 2705 } 2706 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 2707 if (weight == -1) { 2708 weightSum = -1; 2709 break; 2710 } 2711 weightSum += weight; 2712 } 2713 // Update best. 2714 if (weightSum > bestWeight) { 2715 bestWeight = weightSum; 2716 bestMAIndex = maIndex; 2717 } 2718 } 2719 2720 // Now select chosen alternative in each constraint. 2721 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2722 cIndex != eIndex; ++cIndex) { 2723 AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; 2724 if (cInfo.Type == InlineAsm::isClobber) 2725 continue; 2726 cInfo.selectAlternative(bestMAIndex); 2727 } 2728 } 2729 } 2730 2731 // Check and hook up tied operands, choose constraint code to use. 2732 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2733 cIndex != eIndex; ++cIndex) { 2734 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2735 2736 // If this is an output operand with a matching input operand, look up the 2737 // matching input. If their types mismatch, e.g. one is an integer, the 2738 // other is floating point, or their sizes are different, flag it as an 2739 // error. 2740 if (OpInfo.hasMatchingInput()) { 2741 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2742 2743 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2744 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 2745 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 2746 OpInfo.ConstraintVT); 2747 std::pair<unsigned, const TargetRegisterClass *> InputRC = 2748 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 2749 Input.ConstraintVT); 2750 if ((OpInfo.ConstraintVT.isInteger() != 2751 Input.ConstraintVT.isInteger()) || 2752 (MatchRC.second != InputRC.second)) { 2753 report_fatal_error("Unsupported asm: input constraint" 2754 " with a matching output constraint of" 2755 " incompatible type!"); 2756 } 2757 } 2758 } 2759 } 2760 2761 return ConstraintOperands; 2762 } 2763 2764 /// Return an integer indicating how general CT is. 2765 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 2766 switch (CT) { 2767 case TargetLowering::C_Other: 2768 case TargetLowering::C_Unknown: 2769 return 0; 2770 case TargetLowering::C_Register: 2771 return 1; 2772 case TargetLowering::C_RegisterClass: 2773 return 2; 2774 case TargetLowering::C_Memory: 2775 return 3; 2776 } 2777 llvm_unreachable("Invalid constraint type"); 2778 } 2779 2780 /// Examine constraint type and operand type and determine a weight value. 2781 /// This object must already have been set up with the operand type 2782 /// and the current alternative constraint selected. 2783 TargetLowering::ConstraintWeight 2784 TargetLowering::getMultipleConstraintMatchWeight( 2785 AsmOperandInfo &info, int maIndex) const { 2786 InlineAsm::ConstraintCodeVector *rCodes; 2787 if (maIndex >= (int)info.multipleAlternatives.size()) 2788 rCodes = &info.Codes; 2789 else 2790 rCodes = &info.multipleAlternatives[maIndex].Codes; 2791 ConstraintWeight BestWeight = CW_Invalid; 2792 2793 // Loop over the options, keeping track of the most general one. 2794 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 2795 ConstraintWeight weight = 2796 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 2797 if (weight > BestWeight) 2798 BestWeight = weight; 2799 } 2800 2801 return BestWeight; 2802 } 2803 2804 /// Examine constraint type and operand type and determine a weight value. 2805 /// This object must already have been set up with the operand type 2806 /// and the current alternative constraint selected. 2807 TargetLowering::ConstraintWeight 2808 TargetLowering::getSingleConstraintMatchWeight( 2809 AsmOperandInfo &info, const char *constraint) const { 2810 ConstraintWeight weight = CW_Invalid; 2811 Value *CallOperandVal = info.CallOperandVal; 2812 // If we don't have a value, we can't do a match, 2813 // but allow it at the lowest weight. 2814 if (!CallOperandVal) 2815 return CW_Default; 2816 // Look at the constraint type. 2817 switch (*constraint) { 2818 case 'i': // immediate integer. 2819 case 'n': // immediate integer with a known value. 2820 if (isa<ConstantInt>(CallOperandVal)) 2821 weight = CW_Constant; 2822 break; 2823 case 's': // non-explicit intregal immediate. 2824 if (isa<GlobalValue>(CallOperandVal)) 2825 weight = CW_Constant; 2826 break; 2827 case 'E': // immediate float if host format. 2828 case 'F': // immediate float. 2829 if (isa<ConstantFP>(CallOperandVal)) 2830 weight = CW_Constant; 2831 break; 2832 case '<': // memory operand with autodecrement. 2833 case '>': // memory operand with autoincrement. 2834 case 'm': // memory operand. 2835 case 'o': // offsettable memory operand 2836 case 'V': // non-offsettable memory operand 2837 weight = CW_Memory; 2838 break; 2839 case 'r': // general register. 2840 case 'g': // general register, memory operand or immediate integer. 2841 // note: Clang converts "g" to "imr". 2842 if (CallOperandVal->getType()->isIntegerTy()) 2843 weight = CW_Register; 2844 break; 2845 case 'X': // any operand. 2846 default: 2847 weight = CW_Default; 2848 break; 2849 } 2850 return weight; 2851 } 2852 2853 /// If there are multiple different constraints that we could pick for this 2854 /// operand (e.g. "imr") try to pick the 'best' one. 2855 /// This is somewhat tricky: constraints fall into four classes: 2856 /// Other -> immediates and magic values 2857 /// Register -> one specific register 2858 /// RegisterClass -> a group of regs 2859 /// Memory -> memory 2860 /// Ideally, we would pick the most specific constraint possible: if we have 2861 /// something that fits into a register, we would pick it. The problem here 2862 /// is that if we have something that could either be in a register or in 2863 /// memory that use of the register could cause selection of *other* 2864 /// operands to fail: they might only succeed if we pick memory. Because of 2865 /// this the heuristic we use is: 2866 /// 2867 /// 1) If there is an 'other' constraint, and if the operand is valid for 2868 /// that constraint, use it. This makes us take advantage of 'i' 2869 /// constraints when available. 2870 /// 2) Otherwise, pick the most general constraint present. This prefers 2871 /// 'm' over 'r', for example. 2872 /// 2873 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 2874 const TargetLowering &TLI, 2875 SDValue Op, SelectionDAG *DAG) { 2876 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 2877 unsigned BestIdx = 0; 2878 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 2879 int BestGenerality = -1; 2880 2881 // Loop over the options, keeping track of the most general one. 2882 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 2883 TargetLowering::ConstraintType CType = 2884 TLI.getConstraintType(OpInfo.Codes[i]); 2885 2886 // If this is an 'other' constraint, see if the operand is valid for it. 2887 // For example, on X86 we might have an 'rI' constraint. If the operand 2888 // is an integer in the range [0..31] we want to use I (saving a load 2889 // of a register), otherwise we must use 'r'. 2890 if (CType == TargetLowering::C_Other && Op.getNode()) { 2891 assert(OpInfo.Codes[i].size() == 1 && 2892 "Unhandled multi-letter 'other' constraint"); 2893 std::vector<SDValue> ResultOps; 2894 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 2895 ResultOps, *DAG); 2896 if (!ResultOps.empty()) { 2897 BestType = CType; 2898 BestIdx = i; 2899 break; 2900 } 2901 } 2902 2903 // Things with matching constraints can only be registers, per gcc 2904 // documentation. This mainly affects "g" constraints. 2905 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 2906 continue; 2907 2908 // This constraint letter is more general than the previous one, use it. 2909 int Generality = getConstraintGenerality(CType); 2910 if (Generality > BestGenerality) { 2911 BestType = CType; 2912 BestIdx = i; 2913 BestGenerality = Generality; 2914 } 2915 } 2916 2917 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 2918 OpInfo.ConstraintType = BestType; 2919 } 2920 2921 /// Determines the constraint code and constraint type to use for the specific 2922 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 2923 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 2924 SDValue Op, 2925 SelectionDAG *DAG) const { 2926 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 2927 2928 // Single-letter constraints ('r') are very common. 2929 if (OpInfo.Codes.size() == 1) { 2930 OpInfo.ConstraintCode = OpInfo.Codes[0]; 2931 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2932 } else { 2933 ChooseConstraint(OpInfo, *this, Op, DAG); 2934 } 2935 2936 // 'X' matches anything. 2937 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 2938 // Labels and constants are handled elsewhere ('X' is the only thing 2939 // that matches labels). For Functions, the type here is the type of 2940 // the result, which is not what we want to look at; leave them alone. 2941 Value *v = OpInfo.CallOperandVal; 2942 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 2943 OpInfo.CallOperandVal = v; 2944 return; 2945 } 2946 2947 // Otherwise, try to resolve it to something we know about by looking at 2948 // the actual operand type. 2949 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 2950 OpInfo.ConstraintCode = Repl; 2951 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2952 } 2953 } 2954 } 2955 2956 /// \brief Given an exact SDIV by a constant, create a multiplication 2957 /// with the multiplicative inverse of the constant. 2958 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d, 2959 const SDLoc &dl, SelectionDAG &DAG, 2960 std::vector<SDNode *> &Created) { 2961 assert(d != 0 && "Division by zero!"); 2962 2963 // Shift the value upfront if it is even, so the LSB is one. 2964 unsigned ShAmt = d.countTrailingZeros(); 2965 if (ShAmt) { 2966 // TODO: For UDIV use SRL instead of SRA. 2967 SDValue Amt = 2968 DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(), 2969 DAG.getDataLayout())); 2970 SDNodeFlags Flags; 2971 Flags.setExact(true); 2972 Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, &Flags); 2973 Created.push_back(Op1.getNode()); 2974 d = d.ashr(ShAmt); 2975 } 2976 2977 // Calculate the multiplicative inverse, using Newton's method. 2978 APInt t, xn = d; 2979 while ((t = d*xn) != 1) 2980 xn *= APInt(d.getBitWidth(), 2) - t; 2981 2982 SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType()); 2983 SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2); 2984 Created.push_back(Mul.getNode()); 2985 return Mul; 2986 } 2987 2988 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 2989 SelectionDAG &DAG, 2990 std::vector<SDNode *> *Created) const { 2991 AttributeList Attr = DAG.getMachineFunction().getFunction()->getAttributes(); 2992 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2993 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 2994 return SDValue(N,0); // Lower SDIV as SDIV 2995 return SDValue(); 2996 } 2997 2998 /// \brief Given an ISD::SDIV node expressing a divide by constant, 2999 /// return a DAG expression to select that will generate the same value by 3000 /// multiplying by a magic number. 3001 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 3002 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor, 3003 SelectionDAG &DAG, bool IsAfterLegalization, 3004 std::vector<SDNode *> *Created) const { 3005 assert(Created && "No vector to hold sdiv ops."); 3006 3007 EVT VT = N->getValueType(0); 3008 SDLoc dl(N); 3009 3010 // Check to see if we can do this. 3011 // FIXME: We should be more aggressive here. 3012 if (!isTypeLegal(VT)) 3013 return SDValue(); 3014 3015 // If the sdiv has an 'exact' bit we can use a simpler lowering. 3016 if (cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact()) 3017 return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created); 3018 3019 APInt::ms magics = Divisor.magic(); 3020 3021 // Multiply the numerator (operand 0) by the magic value 3022 // FIXME: We should support doing a MUL in a wider type 3023 SDValue Q; 3024 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) : 3025 isOperationLegalOrCustom(ISD::MULHS, VT)) 3026 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0), 3027 DAG.getConstant(magics.m, dl, VT)); 3028 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) : 3029 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) 3030 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), 3031 N->getOperand(0), 3032 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 3033 else 3034 return SDValue(); // No mulhs or equvialent 3035 // If d > 0 and m < 0, add the numerator 3036 if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 3037 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); 3038 Created->push_back(Q.getNode()); 3039 } 3040 // If d < 0 and m > 0, subtract the numerator. 3041 if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 3042 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0)); 3043 Created->push_back(Q.getNode()); 3044 } 3045 auto &DL = DAG.getDataLayout(); 3046 // Shift right algebraic if shift value is nonzero 3047 if (magics.s > 0) { 3048 Q = DAG.getNode( 3049 ISD::SRA, dl, VT, Q, 3050 DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); 3051 Created->push_back(Q.getNode()); 3052 } 3053 // Extract the sign bit and add it to the quotient 3054 SDValue T = 3055 DAG.getNode(ISD::SRL, dl, VT, Q, 3056 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, 3057 getShiftAmountTy(Q.getValueType(), DL))); 3058 Created->push_back(T.getNode()); 3059 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 3060 } 3061 3062 /// \brief Given an ISD::UDIV node expressing a divide by constant, 3063 /// return a DAG expression to select that will generate the same value by 3064 /// multiplying by a magic number. 3065 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 3066 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor, 3067 SelectionDAG &DAG, bool IsAfterLegalization, 3068 std::vector<SDNode *> *Created) const { 3069 assert(Created && "No vector to hold udiv ops."); 3070 3071 EVT VT = N->getValueType(0); 3072 SDLoc dl(N); 3073 auto &DL = DAG.getDataLayout(); 3074 3075 // Check to see if we can do this. 3076 // FIXME: We should be more aggressive here. 3077 if (!isTypeLegal(VT)) 3078 return SDValue(); 3079 3080 // FIXME: We should use a narrower constant when the upper 3081 // bits are known to be zero. 3082 APInt::mu magics = Divisor.magicu(); 3083 3084 SDValue Q = N->getOperand(0); 3085 3086 // If the divisor is even, we can avoid using the expensive fixup by shifting 3087 // the divided value upfront. 3088 if (magics.a != 0 && !Divisor[0]) { 3089 unsigned Shift = Divisor.countTrailingZeros(); 3090 Q = DAG.getNode( 3091 ISD::SRL, dl, VT, Q, 3092 DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL))); 3093 Created->push_back(Q.getNode()); 3094 3095 // Get magic number for the shifted divisor. 3096 magics = Divisor.lshr(Shift).magicu(Shift); 3097 assert(magics.a == 0 && "Should use cheap fixup now"); 3098 } 3099 3100 // Multiply the numerator (operand 0) by the magic value 3101 // FIXME: We should support doing a MUL in a wider type 3102 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) : 3103 isOperationLegalOrCustom(ISD::MULHU, VT)) 3104 Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT)); 3105 else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) : 3106 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) 3107 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q, 3108 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 3109 else 3110 return SDValue(); // No mulhu or equivalent 3111 3112 Created->push_back(Q.getNode()); 3113 3114 if (magics.a == 0) { 3115 assert(magics.s < Divisor.getBitWidth() && 3116 "We shouldn't generate an undefined shift!"); 3117 return DAG.getNode( 3118 ISD::SRL, dl, VT, Q, 3119 DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); 3120 } else { 3121 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); 3122 Created->push_back(NPQ.getNode()); 3123 NPQ = DAG.getNode( 3124 ISD::SRL, dl, VT, NPQ, 3125 DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL))); 3126 Created->push_back(NPQ.getNode()); 3127 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 3128 Created->push_back(NPQ.getNode()); 3129 return DAG.getNode( 3130 ISD::SRL, dl, VT, NPQ, 3131 DAG.getConstant(magics.s - 1, dl, 3132 getShiftAmountTy(NPQ.getValueType(), DL))); 3133 } 3134 } 3135 3136 bool TargetLowering:: 3137 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 3138 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 3139 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 3140 "be a constant integer"); 3141 return true; 3142 } 3143 3144 return false; 3145 } 3146 3147 //===----------------------------------------------------------------------===// 3148 // Legalization Utilities 3149 //===----------------------------------------------------------------------===// 3150 3151 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 3152 SDValue LHS, SDValue RHS, 3153 SmallVectorImpl<SDValue> &Result, 3154 EVT HiLoVT, SelectionDAG &DAG, 3155 MulExpansionKind Kind, SDValue LL, 3156 SDValue LH, SDValue RL, SDValue RH) const { 3157 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 3158 Opcode == ISD::SMUL_LOHI); 3159 3160 bool HasMULHS = (Kind == MulExpansionKind::Always) || 3161 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 3162 bool HasMULHU = (Kind == MulExpansionKind::Always) || 3163 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 3164 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 3165 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 3166 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 3167 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 3168 3169 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 3170 return false; 3171 3172 unsigned OuterBitSize = VT.getScalarSizeInBits(); 3173 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 3174 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 3175 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 3176 3177 // LL, LH, RL, and RH must be either all NULL or all set to a value. 3178 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 3179 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 3180 3181 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 3182 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 3183 bool Signed) -> bool { 3184 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 3185 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 3186 Hi = SDValue(Lo.getNode(), 1); 3187 return true; 3188 } 3189 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 3190 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 3191 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 3192 return true; 3193 } 3194 return false; 3195 }; 3196 3197 SDValue Lo, Hi; 3198 3199 if (!LL.getNode() && !RL.getNode() && 3200 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 3201 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 3202 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 3203 } 3204 3205 if (!LL.getNode()) 3206 return false; 3207 3208 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 3209 if (DAG.MaskedValueIsZero(LHS, HighMask) && 3210 DAG.MaskedValueIsZero(RHS, HighMask)) { 3211 // The inputs are both zero-extended. 3212 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 3213 Result.push_back(Lo); 3214 Result.push_back(Hi); 3215 if (Opcode != ISD::MUL) { 3216 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 3217 Result.push_back(Zero); 3218 Result.push_back(Zero); 3219 } 3220 return true; 3221 } 3222 } 3223 3224 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 3225 RHSSB > InnerBitSize) { 3226 // The input values are both sign-extended. 3227 // TODO non-MUL case? 3228 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 3229 Result.push_back(Lo); 3230 Result.push_back(Hi); 3231 return true; 3232 } 3233 } 3234 3235 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 3236 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 3237 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 3238 // FIXME getShiftAmountTy does not always return a sensible result when VT 3239 // is an illegal type, and so the type may be too small to fit the shift 3240 // amount. Override it with i32. The shift will have to be legalized. 3241 ShiftAmountTy = MVT::i32; 3242 } 3243 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 3244 3245 if (!LH.getNode() && !RH.getNode() && 3246 isOperationLegalOrCustom(ISD::SRL, VT) && 3247 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 3248 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 3249 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 3250 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 3251 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 3252 } 3253 3254 if (!LH.getNode()) 3255 return false; 3256 3257 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 3258 return false; 3259 3260 Result.push_back(Lo); 3261 3262 if (Opcode == ISD::MUL) { 3263 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 3264 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 3265 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 3266 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 3267 Result.push_back(Hi); 3268 return true; 3269 } 3270 3271 // Compute the full width result. 3272 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 3273 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3274 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 3275 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3276 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 3277 }; 3278 3279 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 3280 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 3281 return false; 3282 3283 // This is effectively the add part of a multiply-add of half-sized operands, 3284 // so it cannot overflow. 3285 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 3286 3287 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 3288 return false; 3289 3290 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 3291 Merge(Lo, Hi)); 3292 3293 SDValue Carry = Next.getValue(1); 3294 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 3295 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 3296 3297 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 3298 return false; 3299 3300 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 3301 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 3302 Carry); 3303 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 3304 3305 if (Opcode == ISD::SMUL_LOHI) { 3306 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 3307 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 3308 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 3309 3310 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 3311 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 3312 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 3313 } 3314 3315 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 3316 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 3317 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 3318 return true; 3319 } 3320 3321 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 3322 SelectionDAG &DAG, MulExpansionKind Kind, 3323 SDValue LL, SDValue LH, SDValue RL, 3324 SDValue RH) const { 3325 SmallVector<SDValue, 2> Result; 3326 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 3327 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 3328 DAG, Kind, LL, LH, RL, RH); 3329 if (Ok) { 3330 assert(Result.size() == 2); 3331 Lo = Result[0]; 3332 Hi = Result[1]; 3333 } 3334 return Ok; 3335 } 3336 3337 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 3338 SelectionDAG &DAG) const { 3339 EVT VT = Node->getOperand(0).getValueType(); 3340 EVT NVT = Node->getValueType(0); 3341 SDLoc dl(SDValue(Node, 0)); 3342 3343 // FIXME: Only f32 to i64 conversions are supported. 3344 if (VT != MVT::f32 || NVT != MVT::i64) 3345 return false; 3346 3347 // Expand f32 -> i64 conversion 3348 // This algorithm comes from compiler-rt's implementation of fixsfdi: 3349 // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c 3350 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), 3351 VT.getSizeInBits()); 3352 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 3353 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 3354 SDValue Bias = DAG.getConstant(127, dl, IntVT); 3355 SDValue SignMask = DAG.getConstant(APInt::getSignBit(VT.getSizeInBits()), dl, 3356 IntVT); 3357 SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT); 3358 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 3359 3360 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0)); 3361 3362 auto &DL = DAG.getDataLayout(); 3363 SDValue ExponentBits = DAG.getNode( 3364 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 3365 DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL))); 3366 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 3367 3368 SDValue Sign = DAG.getNode( 3369 ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 3370 DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL))); 3371 Sign = DAG.getSExtOrTrunc(Sign, dl, NVT); 3372 3373 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 3374 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 3375 DAG.getConstant(0x00800000, dl, IntVT)); 3376 3377 R = DAG.getZExtOrTrunc(R, dl, NVT); 3378 3379 R = DAG.getSelectCC( 3380 dl, Exponent, ExponentLoBit, 3381 DAG.getNode(ISD::SHL, dl, NVT, R, 3382 DAG.getZExtOrTrunc( 3383 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 3384 dl, getShiftAmountTy(IntVT, DL))), 3385 DAG.getNode(ISD::SRL, dl, NVT, R, 3386 DAG.getZExtOrTrunc( 3387 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 3388 dl, getShiftAmountTy(IntVT, DL))), 3389 ISD::SETGT); 3390 3391 SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT, 3392 DAG.getNode(ISD::XOR, dl, NVT, R, Sign), 3393 Sign); 3394 3395 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 3396 DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT); 3397 return true; 3398 } 3399 3400 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 3401 SelectionDAG &DAG) const { 3402 SDLoc SL(LD); 3403 SDValue Chain = LD->getChain(); 3404 SDValue BasePTR = LD->getBasePtr(); 3405 EVT SrcVT = LD->getMemoryVT(); 3406 ISD::LoadExtType ExtType = LD->getExtensionType(); 3407 3408 unsigned NumElem = SrcVT.getVectorNumElements(); 3409 3410 EVT SrcEltVT = SrcVT.getScalarType(); 3411 EVT DstEltVT = LD->getValueType(0).getScalarType(); 3412 3413 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 3414 assert(SrcEltVT.isByteSized()); 3415 3416 EVT PtrVT = BasePTR.getValueType(); 3417 3418 SmallVector<SDValue, 8> Vals; 3419 SmallVector<SDValue, 8> LoadChains; 3420 3421 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 3422 SDValue ScalarLoad = 3423 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 3424 LD->getPointerInfo().getWithOffset(Idx * Stride), 3425 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 3426 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3427 3428 BasePTR = DAG.getNode(ISD::ADD, SL, PtrVT, BasePTR, 3429 DAG.getConstant(Stride, SL, PtrVT)); 3430 3431 Vals.push_back(ScalarLoad.getValue(0)); 3432 LoadChains.push_back(ScalarLoad.getValue(1)); 3433 } 3434 3435 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 3436 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); 3437 3438 return DAG.getMergeValues({ Value, NewChain }, SL); 3439 } 3440 3441 // FIXME: This relies on each element having a byte size, otherwise the stride 3442 // is 0 and just overwrites the same location. ExpandStore currently expects 3443 // this broken behavior. 3444 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 3445 SelectionDAG &DAG) const { 3446 SDLoc SL(ST); 3447 3448 SDValue Chain = ST->getChain(); 3449 SDValue BasePtr = ST->getBasePtr(); 3450 SDValue Value = ST->getValue(); 3451 EVT StVT = ST->getMemoryVT(); 3452 3453 // The type of the data we want to save 3454 EVT RegVT = Value.getValueType(); 3455 EVT RegSclVT = RegVT.getScalarType(); 3456 3457 // The type of data as saved in memory. 3458 EVT MemSclVT = StVT.getScalarType(); 3459 3460 EVT PtrVT = BasePtr.getValueType(); 3461 3462 // Store Stride in bytes 3463 unsigned Stride = MemSclVT.getSizeInBits() / 8; 3464 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 3465 unsigned NumElem = StVT.getVectorNumElements(); 3466 3467 // Extract each of the elements from the original vector and save them into 3468 // memory individually. 3469 SmallVector<SDValue, 8> Stores; 3470 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 3471 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 3472 DAG.getConstant(Idx, SL, IdxVT)); 3473 3474 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 3475 DAG.getConstant(Idx * Stride, SL, PtrVT)); 3476 3477 // This scalar TruncStore may be illegal, but we legalize it later. 3478 SDValue Store = DAG.getTruncStore( 3479 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 3480 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 3481 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 3482 3483 Stores.push_back(Store); 3484 } 3485 3486 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 3487 } 3488 3489 std::pair<SDValue, SDValue> 3490 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 3491 assert(LD->getAddressingMode() == ISD::UNINDEXED && 3492 "unaligned indexed loads not implemented!"); 3493 SDValue Chain = LD->getChain(); 3494 SDValue Ptr = LD->getBasePtr(); 3495 EVT VT = LD->getValueType(0); 3496 EVT LoadedVT = LD->getMemoryVT(); 3497 SDLoc dl(LD); 3498 if (VT.isFloatingPoint() || VT.isVector()) { 3499 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 3500 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 3501 if (!isOperationLegalOrCustom(ISD::LOAD, intVT)) { 3502 // Scalarize the load and let the individual components be handled. 3503 SDValue Scalarized = scalarizeVectorLoad(LD, DAG); 3504 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); 3505 } 3506 3507 // Expand to a (misaligned) integer load of the same size, 3508 // then bitconvert to floating point or vector. 3509 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 3510 LD->getMemOperand()); 3511 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 3512 if (LoadedVT != VT) 3513 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 3514 ISD::ANY_EXTEND, dl, VT, Result); 3515 3516 return std::make_pair(Result, newLoad.getValue(1)); 3517 } 3518 3519 // Copy the value to a (aligned) stack slot using (unaligned) integer 3520 // loads and stores, then do a (aligned) load from the stack slot. 3521 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 3522 unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8; 3523 unsigned RegBytes = RegVT.getSizeInBits() / 8; 3524 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 3525 3526 // Make sure the stack slot is also aligned for the register type. 3527 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 3528 3529 SmallVector<SDValue, 8> Stores; 3530 SDValue StackPtr = StackBase; 3531 unsigned Offset = 0; 3532 3533 EVT PtrVT = Ptr.getValueType(); 3534 EVT StackPtrVT = StackPtr.getValueType(); 3535 3536 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 3537 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 3538 3539 // Do all but one copies using the full register width. 3540 for (unsigned i = 1; i < NumRegs; i++) { 3541 // Load one integer register's worth from the original location. 3542 SDValue Load = DAG.getLoad( 3543 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 3544 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 3545 LD->getAAInfo()); 3546 // Follow the load with a store to the stack slot. Remember the store. 3547 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr, 3548 MachinePointerInfo())); 3549 // Increment the pointers. 3550 Offset += RegBytes; 3551 Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement); 3552 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, StackPtr, 3553 StackPtrIncrement); 3554 } 3555 3556 // The last copy may be partial. Do an extending load. 3557 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 3558 8 * (LoadedBytes - Offset)); 3559 SDValue Load = 3560 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 3561 LD->getPointerInfo().getWithOffset(Offset), MemVT, 3562 MinAlign(LD->getAlignment(), Offset), 3563 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3564 // Follow the load with a store to the stack slot. Remember the store. 3565 // On big-endian machines this requires a truncating store to ensure 3566 // that the bits end up in the right place. 3567 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr, 3568 MachinePointerInfo(), MemVT)); 3569 3570 // The order of the stores doesn't matter - say it with a TokenFactor. 3571 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 3572 3573 // Finally, perform the original load only redirected to the stack slot. 3574 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 3575 MachinePointerInfo(), LoadedVT); 3576 3577 // Callers expect a MERGE_VALUES node. 3578 return std::make_pair(Load, TF); 3579 } 3580 3581 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 3582 "Unaligned load of unsupported type."); 3583 3584 // Compute the new VT that is half the size of the old one. This is an 3585 // integer MVT. 3586 unsigned NumBits = LoadedVT.getSizeInBits(); 3587 EVT NewLoadedVT; 3588 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 3589 NumBits >>= 1; 3590 3591 unsigned Alignment = LD->getAlignment(); 3592 unsigned IncrementSize = NumBits / 8; 3593 ISD::LoadExtType HiExtType = LD->getExtensionType(); 3594 3595 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 3596 if (HiExtType == ISD::NON_EXTLOAD) 3597 HiExtType = ISD::ZEXTLOAD; 3598 3599 // Load the value in two parts 3600 SDValue Lo, Hi; 3601 if (DAG.getDataLayout().isLittleEndian()) { 3602 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 3603 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 3604 LD->getAAInfo()); 3605 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 3606 DAG.getConstant(IncrementSize, dl, Ptr.getValueType())); 3607 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 3608 LD->getPointerInfo().getWithOffset(IncrementSize), 3609 NewLoadedVT, MinAlign(Alignment, IncrementSize), 3610 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3611 } else { 3612 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 3613 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 3614 LD->getAAInfo()); 3615 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 3616 DAG.getConstant(IncrementSize, dl, Ptr.getValueType())); 3617 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 3618 LD->getPointerInfo().getWithOffset(IncrementSize), 3619 NewLoadedVT, MinAlign(Alignment, IncrementSize), 3620 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3621 } 3622 3623 // aggregate the two parts 3624 SDValue ShiftAmount = 3625 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 3626 DAG.getDataLayout())); 3627 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 3628 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 3629 3630 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 3631 Hi.getValue(1)); 3632 3633 return std::make_pair(Result, TF); 3634 } 3635 3636 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 3637 SelectionDAG &DAG) const { 3638 assert(ST->getAddressingMode() == ISD::UNINDEXED && 3639 "unaligned indexed stores not implemented!"); 3640 SDValue Chain = ST->getChain(); 3641 SDValue Ptr = ST->getBasePtr(); 3642 SDValue Val = ST->getValue(); 3643 EVT VT = Val.getValueType(); 3644 int Alignment = ST->getAlignment(); 3645 3646 SDLoc dl(ST); 3647 if (ST->getMemoryVT().isFloatingPoint() || 3648 ST->getMemoryVT().isVector()) { 3649 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 3650 if (isTypeLegal(intVT)) { 3651 if (!isOperationLegalOrCustom(ISD::STORE, intVT)) { 3652 // Scalarize the store and let the individual components be handled. 3653 SDValue Result = scalarizeVectorStore(ST, DAG); 3654 3655 return Result; 3656 } 3657 // Expand to a bitconvert of the value to the integer type of the 3658 // same size, then a (misaligned) int store. 3659 // FIXME: Does not handle truncating floating point stores! 3660 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 3661 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 3662 Alignment, ST->getMemOperand()->getFlags()); 3663 return Result; 3664 } 3665 // Do a (aligned) store to a stack slot, then copy from the stack slot 3666 // to the final destination using (unaligned) integer loads and stores. 3667 EVT StoredVT = ST->getMemoryVT(); 3668 MVT RegVT = 3669 getRegisterType(*DAG.getContext(), 3670 EVT::getIntegerVT(*DAG.getContext(), 3671 StoredVT.getSizeInBits())); 3672 EVT PtrVT = Ptr.getValueType(); 3673 unsigned StoredBytes = StoredVT.getSizeInBits() / 8; 3674 unsigned RegBytes = RegVT.getSizeInBits() / 8; 3675 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 3676 3677 // Make sure the stack slot is also aligned for the register type. 3678 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 3679 3680 // Perform the original store, only redirected to the stack slot. 3681 SDValue Store = DAG.getTruncStore(Chain, dl, Val, StackPtr, 3682 MachinePointerInfo(), StoredVT); 3683 3684 EVT StackPtrVT = StackPtr.getValueType(); 3685 3686 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 3687 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 3688 SmallVector<SDValue, 8> Stores; 3689 unsigned Offset = 0; 3690 3691 // Do all but one copies using the full register width. 3692 for (unsigned i = 1; i < NumRegs; i++) { 3693 // Load one integer register's worth from the stack slot. 3694 SDValue Load = 3695 DAG.getLoad(RegVT, dl, Store, StackPtr, MachinePointerInfo()); 3696 // Store it to the final location. Remember the store. 3697 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 3698 ST->getPointerInfo().getWithOffset(Offset), 3699 MinAlign(ST->getAlignment(), Offset), 3700 ST->getMemOperand()->getFlags())); 3701 // Increment the pointers. 3702 Offset += RegBytes; 3703 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, 3704 StackPtr, StackPtrIncrement); 3705 Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement); 3706 } 3707 3708 // The last store may be partial. Do a truncating store. On big-endian 3709 // machines this requires an extending load from the stack slot to ensure 3710 // that the bits are in the right place. 3711 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 3712 8 * (StoredBytes - Offset)); 3713 3714 // Load from the stack slot. 3715 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 3716 MachinePointerInfo(), MemVT); 3717 3718 Stores.push_back( 3719 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 3720 ST->getPointerInfo().getWithOffset(Offset), MemVT, 3721 MinAlign(ST->getAlignment(), Offset), 3722 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 3723 // The order of the stores doesn't matter - say it with a TokenFactor. 3724 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 3725 return Result; 3726 } 3727 3728 assert(ST->getMemoryVT().isInteger() && 3729 !ST->getMemoryVT().isVector() && 3730 "Unaligned store of unknown type."); 3731 // Get the half-size VT 3732 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); 3733 int NumBits = NewStoredVT.getSizeInBits(); 3734 int IncrementSize = NumBits / 8; 3735 3736 // Divide the stored value in two parts. 3737 SDValue ShiftAmount = 3738 DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(), 3739 DAG.getDataLayout())); 3740 SDValue Lo = Val; 3741 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 3742 3743 // Store the two parts 3744 SDValue Store1, Store2; 3745 Store1 = DAG.getTruncStore(Chain, dl, 3746 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 3747 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 3748 ST->getMemOperand()->getFlags()); 3749 3750 EVT PtrVT = Ptr.getValueType(); 3751 Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3752 DAG.getConstant(IncrementSize, dl, PtrVT)); 3753 Alignment = MinAlign(Alignment, IncrementSize); 3754 Store2 = DAG.getTruncStore( 3755 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 3756 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 3757 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 3758 3759 SDValue Result = 3760 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 3761 return Result; 3762 } 3763 3764 SDValue 3765 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 3766 const SDLoc &DL, EVT DataVT, 3767 SelectionDAG &DAG, 3768 bool IsCompressedMemory) const { 3769 SDValue Increment; 3770 EVT AddrVT = Addr.getValueType(); 3771 EVT MaskVT = Mask.getValueType(); 3772 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 3773 "Incompatible types of Data and Mask"); 3774 if (IsCompressedMemory) { 3775 // Incrementing the pointer according to number of '1's in the mask. 3776 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 3777 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 3778 if (MaskIntVT.getSizeInBits() < 32) { 3779 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 3780 MaskIntVT = MVT::i32; 3781 } 3782 3783 // Count '1's with POPCNT. 3784 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 3785 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 3786 // Scale is an element size in bytes. 3787 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 3788 AddrVT); 3789 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 3790 } else 3791 Increment = DAG.getConstant(DataVT.getSizeInBits() / 8, DL, AddrVT); 3792 3793 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 3794 } 3795 3796 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 3797 SDValue Idx, 3798 EVT VecVT, 3799 const SDLoc &dl) { 3800 if (isa<ConstantSDNode>(Idx)) 3801 return Idx; 3802 3803 EVT IdxVT = Idx.getValueType(); 3804 unsigned NElts = VecVT.getVectorNumElements(); 3805 if (isPowerOf2_32(NElts)) { 3806 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 3807 Log2_32(NElts)); 3808 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 3809 DAG.getConstant(Imm, dl, IdxVT)); 3810 } 3811 3812 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 3813 DAG.getConstant(NElts - 1, dl, IdxVT)); 3814 } 3815 3816 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 3817 SDValue VecPtr, EVT VecVT, 3818 SDValue Index) const { 3819 SDLoc dl(Index); 3820 // Make sure the index type is big enough to compute in. 3821 Index = DAG.getZExtOrTrunc(Index, dl, getPointerTy(DAG.getDataLayout())); 3822 3823 EVT EltVT = VecVT.getVectorElementType(); 3824 3825 // Calculate the element offset and add it to the pointer. 3826 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 3827 assert(EltSize * 8 == EltVT.getSizeInBits() && 3828 "Converting bits to bytes lost precision"); 3829 3830 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 3831 3832 EVT IdxVT = Index.getValueType(); 3833 3834 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 3835 DAG.getConstant(EltSize, dl, IdxVT)); 3836 return DAG.getNode(ISD::ADD, dl, IdxVT, Index, VecPtr); 3837 } 3838 3839 //===----------------------------------------------------------------------===// 3840 // Implementation of Emulated TLS Model 3841 //===----------------------------------------------------------------------===// 3842 3843 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 3844 SelectionDAG &DAG) const { 3845 // Access to address of TLS varialbe xyz is lowered to a function call: 3846 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 3847 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3848 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 3849 SDLoc dl(GA); 3850 3851 ArgListTy Args; 3852 ArgListEntry Entry; 3853 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 3854 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 3855 StringRef EmuTlsVarName(NameString); 3856 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 3857 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 3858 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 3859 Entry.Ty = VoidPtrType; 3860 Args.push_back(Entry); 3861 3862 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 3863 3864 TargetLowering::CallLoweringInfo CLI(DAG); 3865 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 3866 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 3867 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3868 3869 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 3870 // At last for X86 targets, maybe good for other targets too? 3871 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 3872 MFI.setAdjustsStack(true); // Is this only for X86 target? 3873 MFI.setHasCalls(true); 3874 3875 assert((GA->getOffset() == 0) && 3876 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 3877 return CallResult.first; 3878 } 3879 3880 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 3881 SelectionDAG &DAG) const { 3882 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 3883 if (!isCtlzFast()) 3884 return SDValue(); 3885 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3886 SDLoc dl(Op); 3887 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3888 if (C->isNullValue() && CC == ISD::SETEQ) { 3889 EVT VT = Op.getOperand(0).getValueType(); 3890 SDValue Zext = Op.getOperand(0); 3891 if (VT.bitsLT(MVT::i32)) { 3892 VT = MVT::i32; 3893 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 3894 } 3895 unsigned Log2b = Log2_32(VT.getSizeInBits()); 3896 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 3897 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 3898 DAG.getConstant(Log2b, dl, MVT::i32)); 3899 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 3900 } 3901 } 3902 return SDValue(); 3903 } 3904