1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/CodeGen/CallingConvLower.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineJumpTableInfo.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/TargetRegisterInfo.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCExpr.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetLoweringObjectFile.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <cctype>
36 using namespace llvm;
37 
38 /// NOTE: The TargetMachine owns TLOF.
39 TargetLowering::TargetLowering(const TargetMachine &tm)
40   : TargetLoweringBase(tm) {}
41 
42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43   return nullptr;
44 }
45 
46 bool TargetLowering::isPositionIndependent() const {
47   return getTargetMachine().isPositionIndependent();
48 }
49 
50 /// Check whether a given call node is in tail position within its function. If
51 /// so, it sets Chain to the input chain of the tail call.
52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
53                                           SDValue &Chain) const {
54   const Function &F = DAG.getMachineFunction().getFunction();
55 
56   // Conservatively require the attributes of the call to match those of
57   // the return. Ignore NoAlias and NonNull because they don't affect the
58   // call sequence.
59   AttributeList CallerAttrs = F.getAttributes();
60   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
61           .removeAttribute(Attribute::NoAlias)
62           .removeAttribute(Attribute::NonNull)
63           .hasAttributes())
64     return false;
65 
66   // It's not safe to eliminate the sign / zero extension of the return value.
67   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
68       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
69     return false;
70 
71   // Check if the only use is a function return node.
72   return isUsedByReturnOnly(Node, Chain);
73 }
74 
75 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
76     const uint32_t *CallerPreservedMask,
77     const SmallVectorImpl<CCValAssign> &ArgLocs,
78     const SmallVectorImpl<SDValue> &OutVals) const {
79   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
80     const CCValAssign &ArgLoc = ArgLocs[I];
81     if (!ArgLoc.isRegLoc())
82       continue;
83     unsigned Reg = ArgLoc.getLocReg();
84     // Only look at callee saved registers.
85     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
86       continue;
87     // Check that we pass the value used for the caller.
88     // (We look for a CopyFromReg reading a virtual register that is used
89     //  for the function live-in value of register Reg)
90     SDValue Value = OutVals[I];
91     if (Value->getOpcode() != ISD::CopyFromReg)
92       return false;
93     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
94     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
95       return false;
96   }
97   return true;
98 }
99 
100 /// Set CallLoweringInfo attribute flags based on a call instruction
101 /// and called function attributes.
102 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
103                                                      unsigned ArgIdx) {
104   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
105   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
106   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
107   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
108   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
109   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
110   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
111   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
112   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
113   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
114   Alignment = Call->getParamAlignment(ArgIdx);
115 }
116 
117 /// Generate a libcall taking the given operands as arguments and returning a
118 /// result of type RetVT.
119 std::pair<SDValue, SDValue>
120 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
121                             ArrayRef<SDValue> Ops, bool isSigned,
122                             const SDLoc &dl, bool doesNotReturn,
123                             bool isReturnValueUsed,
124                             bool isPostTypeLegalization) const {
125   TargetLowering::ArgListTy Args;
126   Args.reserve(Ops.size());
127 
128   TargetLowering::ArgListEntry Entry;
129   for (SDValue Op : Ops) {
130     Entry.Node = Op;
131     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
132     Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
133     Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
134     Args.push_back(Entry);
135   }
136 
137   if (LC == RTLIB::UNKNOWN_LIBCALL)
138     report_fatal_error("Unsupported library call operation!");
139   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
140                                          getPointerTy(DAG.getDataLayout()));
141 
142   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
143   TargetLowering::CallLoweringInfo CLI(DAG);
144   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
145   CLI.setDebugLoc(dl)
146       .setChain(DAG.getEntryNode())
147       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
148       .setNoReturn(doesNotReturn)
149       .setDiscardResult(!isReturnValueUsed)
150       .setIsPostTypeLegalization(isPostTypeLegalization)
151       .setSExtResult(signExtend)
152       .setZExtResult(!signExtend);
153   return LowerCallTo(CLI);
154 }
155 
156 bool
157 TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps,
158                                          unsigned Limit, uint64_t Size,
159                                          unsigned DstAlign, unsigned SrcAlign,
160                                          bool IsMemset,
161                                          bool ZeroMemset,
162                                          bool MemcpyStrSrc,
163                                          bool AllowOverlap,
164                                          unsigned DstAS, unsigned SrcAS,
165                                          const AttributeList &FuncAttributes) const {
166   // If 'SrcAlign' is zero, that means the memory operation does not need to
167   // load the value, i.e. memset or memcpy from constant string. Otherwise,
168   // it's the inferred alignment of the source. 'DstAlign', on the other hand,
169   // is the specified alignment of the memory operation. If it is zero, that
170   // means it's possible to change the alignment of the destination.
171   // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
172   // not need to be loaded.
173   if (!(SrcAlign == 0 || SrcAlign >= DstAlign))
174     return false;
175 
176   EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign,
177                                IsMemset, ZeroMemset, MemcpyStrSrc,
178                                FuncAttributes);
179 
180   if (VT == MVT::Other) {
181     // Use the largest integer type whose alignment constraints are satisfied.
182     // We only need to check DstAlign here as SrcAlign is always greater or
183     // equal to DstAlign (or zero).
184     VT = MVT::i64;
185     while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
186            !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
187       VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
188     assert(VT.isInteger());
189 
190     // Find the largest legal integer type.
191     MVT LVT = MVT::i64;
192     while (!isTypeLegal(LVT))
193       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
194     assert(LVT.isInteger());
195 
196     // If the type we've chosen is larger than the largest legal integer type
197     // then use that instead.
198     if (VT.bitsGT(LVT))
199       VT = LVT;
200   }
201 
202   unsigned NumMemOps = 0;
203   while (Size != 0) {
204     unsigned VTSize = VT.getSizeInBits() / 8;
205     while (VTSize > Size) {
206       // For now, only use non-vector load / store's for the left-over pieces.
207       EVT NewVT = VT;
208       unsigned NewVTSize;
209 
210       bool Found = false;
211       if (VT.isVector() || VT.isFloatingPoint()) {
212         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
213         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
214             isSafeMemOpType(NewVT.getSimpleVT()))
215           Found = true;
216         else if (NewVT == MVT::i64 &&
217                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
218                  isSafeMemOpType(MVT::f64)) {
219           // i64 is usually not legal on 32-bit targets, but f64 may be.
220           NewVT = MVT::f64;
221           Found = true;
222         }
223       }
224 
225       if (!Found) {
226         do {
227           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
228           if (NewVT == MVT::i8)
229             break;
230         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
231       }
232       NewVTSize = NewVT.getSizeInBits() / 8;
233 
234       // If the new VT cannot cover all of the remaining bits, then consider
235       // issuing a (or a pair of) unaligned and overlapping load / store.
236       bool Fast;
237       if (NumMemOps && AllowOverlap && NewVTSize < Size &&
238           allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) &&
239           Fast)
240         VTSize = Size;
241       else {
242         VT = NewVT;
243         VTSize = NewVTSize;
244       }
245     }
246 
247     if (++NumMemOps > Limit)
248       return false;
249 
250     MemOps.push_back(VT);
251     Size -= VTSize;
252   }
253 
254   return true;
255 }
256 
257 /// Soften the operands of a comparison. This code is shared among BR_CC,
258 /// SELECT_CC, and SETCC handlers.
259 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
260                                          SDValue &NewLHS, SDValue &NewRHS,
261                                          ISD::CondCode &CCCode,
262                                          const SDLoc &dl) const {
263   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
264          && "Unsupported setcc type!");
265 
266   // Expand into one or more soft-fp libcall(s).
267   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
268   bool ShouldInvertCC = false;
269   switch (CCCode) {
270   case ISD::SETEQ:
271   case ISD::SETOEQ:
272     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
273           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
274           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
275     break;
276   case ISD::SETNE:
277   case ISD::SETUNE:
278     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
279           (VT == MVT::f64) ? RTLIB::UNE_F64 :
280           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
281     break;
282   case ISD::SETGE:
283   case ISD::SETOGE:
284     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
285           (VT == MVT::f64) ? RTLIB::OGE_F64 :
286           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
287     break;
288   case ISD::SETLT:
289   case ISD::SETOLT:
290     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
291           (VT == MVT::f64) ? RTLIB::OLT_F64 :
292           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
293     break;
294   case ISD::SETLE:
295   case ISD::SETOLE:
296     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
297           (VT == MVT::f64) ? RTLIB::OLE_F64 :
298           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
299     break;
300   case ISD::SETGT:
301   case ISD::SETOGT:
302     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
303           (VT == MVT::f64) ? RTLIB::OGT_F64 :
304           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
305     break;
306   case ISD::SETUO:
307     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
308           (VT == MVT::f64) ? RTLIB::UO_F64 :
309           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
310     break;
311   case ISD::SETO:
312     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
313           (VT == MVT::f64) ? RTLIB::O_F64 :
314           (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
315     break;
316   case ISD::SETONE:
317     // SETONE = SETOLT | SETOGT
318     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
319           (VT == MVT::f64) ? RTLIB::OLT_F64 :
320           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
321     LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
322           (VT == MVT::f64) ? RTLIB::OGT_F64 :
323           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
324     break;
325   case ISD::SETUEQ:
326     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
327           (VT == MVT::f64) ? RTLIB::UO_F64 :
328           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
329     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
330           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
331           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
332     break;
333   default:
334     // Invert CC for unordered comparisons
335     ShouldInvertCC = true;
336     switch (CCCode) {
337     case ISD::SETULT:
338       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
339             (VT == MVT::f64) ? RTLIB::OGE_F64 :
340             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
341       break;
342     case ISD::SETULE:
343       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
344             (VT == MVT::f64) ? RTLIB::OGT_F64 :
345             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
346       break;
347     case ISD::SETUGT:
348       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
349             (VT == MVT::f64) ? RTLIB::OLE_F64 :
350             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
351       break;
352     case ISD::SETUGE:
353       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
354             (VT == MVT::f64) ? RTLIB::OLT_F64 :
355             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
356       break;
357     default: llvm_unreachable("Do not know how to soften this setcc!");
358     }
359   }
360 
361   // Use the target specific return value for comparions lib calls.
362   EVT RetVT = getCmpLibcallReturnType();
363   SDValue Ops[2] = {NewLHS, NewRHS};
364   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
365                        dl).first;
366   NewRHS = DAG.getConstant(0, dl, RetVT);
367 
368   CCCode = getCmpLibcallCC(LC1);
369   if (ShouldInvertCC)
370     CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
371 
372   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
373     SDValue Tmp = DAG.getNode(
374         ISD::SETCC, dl,
375         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
376         NewLHS, NewRHS, DAG.getCondCode(CCCode));
377     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
378                          dl).first;
379     NewLHS = DAG.getNode(
380         ISD::SETCC, dl,
381         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
382         NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
383     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
384     NewRHS = SDValue();
385   }
386 }
387 
388 /// Return the entry encoding for a jump table in the current function. The
389 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
390 unsigned TargetLowering::getJumpTableEncoding() const {
391   // In non-pic modes, just use the address of a block.
392   if (!isPositionIndependent())
393     return MachineJumpTableInfo::EK_BlockAddress;
394 
395   // In PIC mode, if the target supports a GPRel32 directive, use it.
396   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
397     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
398 
399   // Otherwise, use a label difference.
400   return MachineJumpTableInfo::EK_LabelDifference32;
401 }
402 
403 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
404                                                  SelectionDAG &DAG) const {
405   // If our PIC model is GP relative, use the global offset table as the base.
406   unsigned JTEncoding = getJumpTableEncoding();
407 
408   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
409       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
410     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
411 
412   return Table;
413 }
414 
415 /// This returns the relocation base for the given PIC jumptable, the same as
416 /// getPICJumpTableRelocBase, but as an MCExpr.
417 const MCExpr *
418 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
419                                              unsigned JTI,MCContext &Ctx) const{
420   // The normal PIC reloc base is the label at the start of the jump table.
421   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
422 }
423 
424 bool
425 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
426   const TargetMachine &TM = getTargetMachine();
427   const GlobalValue *GV = GA->getGlobal();
428 
429   // If the address is not even local to this DSO we will have to load it from
430   // a got and then add the offset.
431   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
432     return false;
433 
434   // If the code is position independent we will have to add a base register.
435   if (isPositionIndependent())
436     return false;
437 
438   // Otherwise we can do it.
439   return true;
440 }
441 
442 //===----------------------------------------------------------------------===//
443 //  Optimization Methods
444 //===----------------------------------------------------------------------===//
445 
446 /// If the specified instruction has a constant integer operand and there are
447 /// bits set in that constant that are not demanded, then clear those bits and
448 /// return true.
449 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
450                                             TargetLoweringOpt &TLO) const {
451   SDLoc DL(Op);
452   unsigned Opcode = Op.getOpcode();
453 
454   // Do target-specific constant optimization.
455   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
456     return TLO.New.getNode();
457 
458   // FIXME: ISD::SELECT, ISD::SELECT_CC
459   switch (Opcode) {
460   default:
461     break;
462   case ISD::XOR:
463   case ISD::AND:
464   case ISD::OR: {
465     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
466     if (!Op1C)
467       return false;
468 
469     // If this is a 'not' op, don't touch it because that's a canonical form.
470     const APInt &C = Op1C->getAPIntValue();
471     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
472       return false;
473 
474     if (!C.isSubsetOf(Demanded)) {
475       EVT VT = Op.getValueType();
476       SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT);
477       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
478       return TLO.CombineTo(Op, NewOp);
479     }
480 
481     break;
482   }
483   }
484 
485   return false;
486 }
487 
488 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
489 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
490 /// generalized for targets with other types of implicit widening casts.
491 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
492                                       const APInt &Demanded,
493                                       TargetLoweringOpt &TLO) const {
494   assert(Op.getNumOperands() == 2 &&
495          "ShrinkDemandedOp only supports binary operators!");
496   assert(Op.getNode()->getNumValues() == 1 &&
497          "ShrinkDemandedOp only supports nodes with one result!");
498 
499   SelectionDAG &DAG = TLO.DAG;
500   SDLoc dl(Op);
501 
502   // Early return, as this function cannot handle vector types.
503   if (Op.getValueType().isVector())
504     return false;
505 
506   // Don't do this if the node has another user, which may require the
507   // full value.
508   if (!Op.getNode()->hasOneUse())
509     return false;
510 
511   // Search for the smallest integer type with free casts to and from
512   // Op's type. For expedience, just check power-of-2 integer types.
513   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
514   unsigned DemandedSize = Demanded.getActiveBits();
515   unsigned SmallVTBits = DemandedSize;
516   if (!isPowerOf2_32(SmallVTBits))
517     SmallVTBits = NextPowerOf2(SmallVTBits);
518   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
519     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
520     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
521         TLI.isZExtFree(SmallVT, Op.getValueType())) {
522       // We found a type with free casts.
523       SDValue X = DAG.getNode(
524           Op.getOpcode(), dl, SmallVT,
525           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
526           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
527       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
528       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
529       return TLO.CombineTo(Op, Z);
530     }
531   }
532   return false;
533 }
534 
535 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
536                                           DAGCombinerInfo &DCI) const {
537   SelectionDAG &DAG = DCI.DAG;
538   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
539                         !DCI.isBeforeLegalizeOps());
540   KnownBits Known;
541 
542   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
543   if (Simplified) {
544     DCI.AddToWorklist(Op.getNode());
545     DCI.CommitTargetLoweringOpt(TLO);
546   }
547   return Simplified;
548 }
549 
550 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
551                                           KnownBits &Known,
552                                           TargetLoweringOpt &TLO,
553                                           unsigned Depth,
554                                           bool AssumeSingleUse) const {
555   EVT VT = Op.getValueType();
556   APInt DemandedElts = VT.isVector()
557                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
558                            : APInt(1, 1);
559   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
560                               AssumeSingleUse);
561 }
562 
563 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
564 /// result of Op are ever used downstream. If we can use this information to
565 /// simplify Op, create a new simplified DAG node and return true, returning the
566 /// original and new nodes in Old and New. Otherwise, analyze the expression and
567 /// return a mask of Known bits for the expression (used to simplify the
568 /// caller).  The Known bits may only be accurate for those bits in the
569 /// OriginalDemandedBits and OriginalDemandedElts.
570 bool TargetLowering::SimplifyDemandedBits(
571     SDValue Op, const APInt &OriginalDemandedBits,
572     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
573     unsigned Depth, bool AssumeSingleUse) const {
574   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
575   assert(Op.getScalarValueSizeInBits() == BitWidth &&
576          "Mask size mismatches value type size!");
577 
578   unsigned NumElts = OriginalDemandedElts.getBitWidth();
579   assert((!Op.getValueType().isVector() ||
580           NumElts == Op.getValueType().getVectorNumElements()) &&
581          "Unexpected vector size");
582 
583   APInt DemandedBits = OriginalDemandedBits;
584   APInt DemandedElts = OriginalDemandedElts;
585   SDLoc dl(Op);
586   auto &DL = TLO.DAG.getDataLayout();
587 
588   // Don't know anything.
589   Known = KnownBits(BitWidth);
590 
591   // Undef operand.
592   if (Op.isUndef())
593     return false;
594 
595   if (Op.getOpcode() == ISD::Constant) {
596     // We know all of the bits for a constant!
597     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
598     Known.Zero = ~Known.One;
599     return false;
600   }
601 
602   // Other users may use these bits.
603   EVT VT = Op.getValueType();
604   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
605     if (Depth != 0) {
606       // If not at the root, Just compute the Known bits to
607       // simplify things downstream.
608       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
609       return false;
610     }
611     // If this is the root being simplified, allow it to have multiple uses,
612     // just set the DemandedBits/Elts to all bits.
613     DemandedBits = APInt::getAllOnesValue(BitWidth);
614     DemandedElts = APInt::getAllOnesValue(NumElts);
615   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
616     // Not demanding any bits/elts from Op.
617     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
618   } else if (Depth == 6) { // Limit search depth.
619     return false;
620   }
621 
622   KnownBits Known2, KnownOut;
623   switch (Op.getOpcode()) {
624   case ISD::SCALAR_TO_VECTOR: {
625     if (!DemandedElts[0])
626       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
627 
628     KnownBits SrcKnown;
629     SDValue Src = Op.getOperand(0);
630     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
631     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
632     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
633       return true;
634     Known = SrcKnown.zextOrTrunc(BitWidth, false);
635     break;
636   }
637   case ISD::BUILD_VECTOR:
638     // Collect the known bits that are shared by every constant vector element.
639     Known.Zero.setAllBits(); Known.One.setAllBits();
640     for (SDValue SrcOp : Op->ops()) {
641       if (!isa<ConstantSDNode>(SrcOp)) {
642         // We can only handle all constant values - bail out with no known bits.
643         Known = KnownBits(BitWidth);
644         return false;
645       }
646       Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue();
647       Known2.Zero = ~Known2.One;
648 
649       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
650       if (Known2.One.getBitWidth() != BitWidth) {
651         assert(Known2.getBitWidth() > BitWidth &&
652                "Expected BUILD_VECTOR implicit truncation");
653         Known2 = Known2.trunc(BitWidth);
654       }
655 
656       // Known bits are the values that are shared by every element.
657       // TODO: support per-element known bits.
658       Known.One &= Known2.One;
659       Known.Zero &= Known2.Zero;
660     }
661     return false; // Don't fall through, will infinitely loop.
662   case ISD::LOAD: {
663     LoadSDNode *LD = cast<LoadSDNode>(Op);
664     if (getTargetConstantFromLoad(LD)) {
665       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
666       return false; // Don't fall through, will infinitely loop.
667     }
668     break;
669   }
670   case ISD::INSERT_VECTOR_ELT: {
671     SDValue Vec = Op.getOperand(0);
672     SDValue Scl = Op.getOperand(1);
673     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
674     EVT VecVT = Vec.getValueType();
675 
676     // If index isn't constant, assume we need all vector elements AND the
677     // inserted element.
678     APInt DemandedVecElts(OriginalDemandedElts);
679     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
680       unsigned Idx = CIdx->getZExtValue();
681       DemandedVecElts.clearBit(Idx);
682 
683       // Inserted element is not required.
684       if (!OriginalDemandedElts[Idx])
685         return TLO.CombineTo(Op, Vec);
686     }
687 
688     KnownBits KnownScl;
689     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
690     APInt DemandedSclBits = OriginalDemandedBits.zextOrTrunc(NumSclBits);
691     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
692       return true;
693 
694     Known = KnownScl.zextOrTrunc(BitWidth, false);
695 
696     KnownBits KnownVec;
697     if (SimplifyDemandedBits(Vec, OriginalDemandedBits, DemandedVecElts,
698                              KnownVec, TLO, Depth + 1))
699       return true;
700 
701     if (!!DemandedVecElts) {
702       Known.One &= KnownVec.One;
703       Known.Zero &= KnownVec.Zero;
704     }
705 
706     return false;
707   }
708   case ISD::INSERT_SUBVECTOR: {
709     SDValue Base = Op.getOperand(0);
710     SDValue Sub = Op.getOperand(1);
711     EVT SubVT = Sub.getValueType();
712     unsigned NumSubElts = SubVT.getVectorNumElements();
713 
714     // If index isn't constant, assume we need the original demanded base
715     // elements and ALL the inserted subvector elements.
716     APInt BaseElts = DemandedElts;
717     APInt SubElts = APInt::getAllOnesValue(NumSubElts);
718     if (isa<ConstantSDNode>(Op.getOperand(2))) {
719       const APInt &Idx = Op.getConstantOperandAPInt(2);
720       if (Idx.ule(NumElts - NumSubElts)) {
721         unsigned SubIdx = Idx.getZExtValue();
722         SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
723         BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
724       }
725     }
726 
727     KnownBits KnownSub, KnownBase;
728     if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO,
729                              Depth + 1))
730       return true;
731     if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO,
732                              Depth + 1))
733       return true;
734 
735     Known.Zero.setAllBits();
736     Known.One.setAllBits();
737     if (!!SubElts) {
738         Known.One &= KnownSub.One;
739         Known.Zero &= KnownSub.Zero;
740     }
741     if (!!BaseElts) {
742         Known.One &= KnownBase.One;
743         Known.Zero &= KnownBase.Zero;
744     }
745     break;
746   }
747   case ISD::CONCAT_VECTORS: {
748     Known.Zero.setAllBits();
749     Known.One.setAllBits();
750     EVT SubVT = Op.getOperand(0).getValueType();
751     unsigned NumSubVecs = Op.getNumOperands();
752     unsigned NumSubElts = SubVT.getVectorNumElements();
753     for (unsigned i = 0; i != NumSubVecs; ++i) {
754       APInt DemandedSubElts =
755           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
756       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
757                                Known2, TLO, Depth + 1))
758         return true;
759       // Known bits are shared by every demanded subvector element.
760       if (!!DemandedSubElts) {
761         Known.One &= Known2.One;
762         Known.Zero &= Known2.Zero;
763       }
764     }
765     break;
766   }
767   case ISD::VECTOR_SHUFFLE: {
768     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
769 
770     // Collect demanded elements from shuffle operands..
771     APInt DemandedLHS(NumElts, 0);
772     APInt DemandedRHS(NumElts, 0);
773     for (unsigned i = 0; i != NumElts; ++i) {
774       if (!DemandedElts[i])
775         continue;
776       int M = ShuffleMask[i];
777       if (M < 0) {
778         // For UNDEF elements, we don't know anything about the common state of
779         // the shuffle result.
780         DemandedLHS.clearAllBits();
781         DemandedRHS.clearAllBits();
782         break;
783       }
784       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
785       if (M < (int)NumElts)
786         DemandedLHS.setBit(M);
787       else
788         DemandedRHS.setBit(M - NumElts);
789     }
790 
791     if (!!DemandedLHS || !!DemandedRHS) {
792       Known.Zero.setAllBits();
793       Known.One.setAllBits();
794       if (!!DemandedLHS) {
795         if (SimplifyDemandedBits(Op.getOperand(0), DemandedBits, DemandedLHS,
796                                  Known2, TLO, Depth + 1))
797           return true;
798         Known.One &= Known2.One;
799         Known.Zero &= Known2.Zero;
800       }
801       if (!!DemandedRHS) {
802         if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedRHS,
803                                  Known2, TLO, Depth + 1))
804           return true;
805         Known.One &= Known2.One;
806         Known.Zero &= Known2.Zero;
807       }
808     }
809     break;
810   }
811   case ISD::AND: {
812     SDValue Op0 = Op.getOperand(0);
813     SDValue Op1 = Op.getOperand(1);
814 
815     // If the RHS is a constant, check to see if the LHS would be zero without
816     // using the bits from the RHS.  Below, we use knowledge about the RHS to
817     // simplify the LHS, here we're using information from the LHS to simplify
818     // the RHS.
819     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
820       // Do not increment Depth here; that can cause an infinite loop.
821       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
822       // If the LHS already has zeros where RHSC does, this 'and' is dead.
823       if ((LHSKnown.Zero & DemandedBits) ==
824           (~RHSC->getAPIntValue() & DemandedBits))
825         return TLO.CombineTo(Op, Op0);
826 
827       // If any of the set bits in the RHS are known zero on the LHS, shrink
828       // the constant.
829       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
830         return true;
831 
832       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
833       // constant, but if this 'and' is only clearing bits that were just set by
834       // the xor, then this 'and' can be eliminated by shrinking the mask of
835       // the xor. For example, for a 32-bit X:
836       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
837       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
838           LHSKnown.One == ~RHSC->getAPIntValue()) {
839         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
840         return TLO.CombineTo(Op, Xor);
841       }
842     }
843 
844     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
845                              Depth + 1))
846       return true;
847     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
848     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
849                              Known2, TLO, Depth + 1))
850       return true;
851     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
852 
853     // If all of the demanded bits are known one on one side, return the other.
854     // These bits cannot contribute to the result of the 'and'.
855     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
856       return TLO.CombineTo(Op, Op0);
857     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
858       return TLO.CombineTo(Op, Op1);
859     // If all of the demanded bits in the inputs are known zeros, return zero.
860     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
861       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
862     // If the RHS is a constant, see if we can simplify it.
863     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
864       return true;
865     // If the operation can be done in a smaller type, do so.
866     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
867       return true;
868 
869     // Output known-1 bits are only known if set in both the LHS & RHS.
870     Known.One &= Known2.One;
871     // Output known-0 are known to be clear if zero in either the LHS | RHS.
872     Known.Zero |= Known2.Zero;
873     break;
874   }
875   case ISD::OR: {
876     SDValue Op0 = Op.getOperand(0);
877     SDValue Op1 = Op.getOperand(1);
878 
879     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
880                              Depth + 1))
881       return true;
882     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
883     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
884                              Known2, TLO, Depth + 1))
885       return true;
886     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
887 
888     // If all of the demanded bits are known zero on one side, return the other.
889     // These bits cannot contribute to the result of the 'or'.
890     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
891       return TLO.CombineTo(Op, Op0);
892     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
893       return TLO.CombineTo(Op, Op1);
894     // If the RHS is a constant, see if we can simplify it.
895     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
896       return true;
897     // If the operation can be done in a smaller type, do so.
898     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
899       return true;
900 
901     // Output known-0 bits are only known if clear in both the LHS & RHS.
902     Known.Zero &= Known2.Zero;
903     // Output known-1 are known to be set if set in either the LHS | RHS.
904     Known.One |= Known2.One;
905     break;
906   }
907   case ISD::XOR: {
908     SDValue Op0 = Op.getOperand(0);
909     SDValue Op1 = Op.getOperand(1);
910 
911     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
912                              Depth + 1))
913       return true;
914     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
915     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
916                              Depth + 1))
917       return true;
918     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
919 
920     // If all of the demanded bits are known zero on one side, return the other.
921     // These bits cannot contribute to the result of the 'xor'.
922     if (DemandedBits.isSubsetOf(Known.Zero))
923       return TLO.CombineTo(Op, Op0);
924     if (DemandedBits.isSubsetOf(Known2.Zero))
925       return TLO.CombineTo(Op, Op1);
926     // If the operation can be done in a smaller type, do so.
927     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
928       return true;
929 
930     // If all of the unknown bits are known to be zero on one side or the other
931     // (but not both) turn this into an *inclusive* or.
932     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
933     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
934       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
935 
936     // Output known-0 bits are known if clear or set in both the LHS & RHS.
937     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
938     // Output known-1 are known to be set if set in only one of the LHS, RHS.
939     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
940 
941     if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
942       // If one side is a constant, and all of the known set bits on the other
943       // side are also set in the constant, turn this into an AND, as we know
944       // the bits will be cleared.
945       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
946       // NB: it is okay if more bits are known than are requested
947       if (C->getAPIntValue() == Known2.One) {
948         SDValue ANDC =
949             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
950         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
951       }
952 
953       // If the RHS is a constant, see if we can change it. Don't alter a -1
954       // constant because that's a 'not' op, and that is better for combining
955       // and codegen.
956       if (!C->isAllOnesValue()) {
957         if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
958           // We're flipping all demanded bits. Flip the undemanded bits too.
959           SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
960           return TLO.CombineTo(Op, New);
961         }
962         // If we can't turn this into a 'not', try to shrink the constant.
963         if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
964           return true;
965       }
966     }
967 
968     Known = std::move(KnownOut);
969     break;
970   }
971   case ISD::SELECT:
972     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
973                              Depth + 1))
974       return true;
975     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
976                              Depth + 1))
977       return true;
978     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
979     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
980 
981     // If the operands are constants, see if we can simplify them.
982     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
983       return true;
984 
985     // Only known if known in both the LHS and RHS.
986     Known.One &= Known2.One;
987     Known.Zero &= Known2.Zero;
988     break;
989   case ISD::SELECT_CC:
990     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
991                              Depth + 1))
992       return true;
993     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
994                              Depth + 1))
995       return true;
996     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
997     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
998 
999     // If the operands are constants, see if we can simplify them.
1000     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1001       return true;
1002 
1003     // Only known if known in both the LHS and RHS.
1004     Known.One &= Known2.One;
1005     Known.Zero &= Known2.Zero;
1006     break;
1007   case ISD::SETCC: {
1008     SDValue Op0 = Op.getOperand(0);
1009     SDValue Op1 = Op.getOperand(1);
1010     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1011     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1012     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1013     // -1, we may be able to bypass the setcc.
1014     if (DemandedBits.isSignMask() &&
1015         Op0.getScalarValueSizeInBits() == BitWidth &&
1016         getBooleanContents(VT) ==
1017             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1018       // If we're testing X < 0, then this compare isn't needed - just use X!
1019       // FIXME: We're limiting to integer types here, but this should also work
1020       // if we don't care about FP signed-zero. The use of SETLT with FP means
1021       // that we don't care about NaNs.
1022       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1023           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1024         return TLO.CombineTo(Op, Op0);
1025 
1026       // TODO: Should we check for other forms of sign-bit comparisons?
1027       // Examples: X <= -1, X >= 0
1028     }
1029     if (getBooleanContents(Op0.getValueType()) ==
1030             TargetLowering::ZeroOrOneBooleanContent &&
1031         BitWidth > 1)
1032       Known.Zero.setBitsFrom(1);
1033     break;
1034   }
1035   case ISD::SHL: {
1036     SDValue Op0 = Op.getOperand(0);
1037     SDValue Op1 = Op.getOperand(1);
1038 
1039     if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
1040       // If the shift count is an invalid immediate, don't do anything.
1041       if (SA->getAPIntValue().uge(BitWidth))
1042         break;
1043 
1044       unsigned ShAmt = SA->getZExtValue();
1045 
1046       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1047       // single shift.  We can do this if the bottom bits (which are shifted
1048       // out) are never demanded.
1049       if (Op0.getOpcode() == ISD::SRL) {
1050         if (ShAmt &&
1051             (DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1052           if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) {
1053             if (SA2->getAPIntValue().ult(BitWidth)) {
1054               unsigned C1 = SA2->getZExtValue();
1055               unsigned Opc = ISD::SHL;
1056               int Diff = ShAmt - C1;
1057               if (Diff < 0) {
1058                 Diff = -Diff;
1059                 Opc = ISD::SRL;
1060               }
1061 
1062               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
1063               return TLO.CombineTo(
1064                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1065             }
1066           }
1067         }
1068       }
1069 
1070       if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts,
1071                                Known, TLO, Depth + 1))
1072         return true;
1073 
1074       // Try shrinking the operation as long as the shift amount will still be
1075       // in range.
1076       if ((ShAmt < DemandedBits.getActiveBits()) &&
1077           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1078         return true;
1079 
1080       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1081       // are not demanded. This will likely allow the anyext to be folded away.
1082       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1083         SDValue InnerOp = Op0.getOperand(0);
1084         EVT InnerVT = InnerOp.getValueType();
1085         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1086         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1087             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1088           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1089           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1090             ShTy = InnerVT;
1091           SDValue NarrowShl =
1092               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1093                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1094           return TLO.CombineTo(
1095               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1096         }
1097         // Repeat the SHL optimization above in cases where an extension
1098         // intervenes: (shl (anyext (shr x, c1)), c2) to
1099         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1100         // aren't demanded (as above) and that the shifted upper c1 bits of
1101         // x aren't demanded.
1102         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1103             InnerOp.hasOneUse()) {
1104           if (ConstantSDNode *SA2 =
1105                   isConstOrConstSplat(InnerOp.getOperand(1))) {
1106             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
1107             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1108                 DemandedBits.getActiveBits() <=
1109                     (InnerBits - InnerShAmt + ShAmt) &&
1110                 DemandedBits.countTrailingZeros() >= ShAmt) {
1111               SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
1112                                                   Op1.getValueType());
1113               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1114                                                InnerOp.getOperand(0));
1115               return TLO.CombineTo(
1116                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1117             }
1118           }
1119         }
1120       }
1121 
1122       Known.Zero <<= ShAmt;
1123       Known.One <<= ShAmt;
1124       // low bits known zero.
1125       Known.Zero.setLowBits(ShAmt);
1126     }
1127     break;
1128   }
1129   case ISD::SRL: {
1130     SDValue Op0 = Op.getOperand(0);
1131     SDValue Op1 = Op.getOperand(1);
1132 
1133     if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
1134       // If the shift count is an invalid immediate, don't do anything.
1135       if (SA->getAPIntValue().uge(BitWidth))
1136         break;
1137 
1138       unsigned ShAmt = SA->getZExtValue();
1139       APInt InDemandedMask = (DemandedBits << ShAmt);
1140 
1141       // If the shift is exact, then it does demand the low bits (and knows that
1142       // they are zero).
1143       if (Op->getFlags().hasExact())
1144         InDemandedMask.setLowBits(ShAmt);
1145 
1146       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1147       // single shift.  We can do this if the top bits (which are shifted out)
1148       // are never demanded.
1149       if (Op0.getOpcode() == ISD::SHL) {
1150         if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) {
1151           if (ShAmt &&
1152               (DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) {
1153             if (SA2->getAPIntValue().ult(BitWidth)) {
1154               unsigned C1 = SA2->getZExtValue();
1155               unsigned Opc = ISD::SRL;
1156               int Diff = ShAmt - C1;
1157               if (Diff < 0) {
1158                 Diff = -Diff;
1159                 Opc = ISD::SHL;
1160               }
1161 
1162               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
1163               return TLO.CombineTo(
1164                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1165             }
1166           }
1167         }
1168       }
1169 
1170       // Compute the new bits that are at the top now.
1171       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1172                                Depth + 1))
1173         return true;
1174       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1175       Known.Zero.lshrInPlace(ShAmt);
1176       Known.One.lshrInPlace(ShAmt);
1177 
1178       Known.Zero.setHighBits(ShAmt); // High bits known zero.
1179     }
1180     break;
1181   }
1182   case ISD::SRA: {
1183     SDValue Op0 = Op.getOperand(0);
1184     SDValue Op1 = Op.getOperand(1);
1185 
1186     // If this is an arithmetic shift right and only the low-bit is set, we can
1187     // always convert this into a logical shr, even if the shift amount is
1188     // variable.  The low bit of the shift cannot be an input sign bit unless
1189     // the shift amount is >= the size of the datatype, which is undefined.
1190     if (DemandedBits.isOneValue())
1191       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1192 
1193     if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
1194       // If the shift count is an invalid immediate, don't do anything.
1195       if (SA->getAPIntValue().uge(BitWidth))
1196         break;
1197 
1198       unsigned ShAmt = SA->getZExtValue();
1199       APInt InDemandedMask = (DemandedBits << ShAmt);
1200 
1201       // If the shift is exact, then it does demand the low bits (and knows that
1202       // they are zero).
1203       if (Op->getFlags().hasExact())
1204         InDemandedMask.setLowBits(ShAmt);
1205 
1206       // If any of the demanded bits are produced by the sign extension, we also
1207       // demand the input sign bit.
1208       if (DemandedBits.countLeadingZeros() < ShAmt)
1209         InDemandedMask.setSignBit();
1210 
1211       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1212                                Depth + 1))
1213         return true;
1214       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1215       Known.Zero.lshrInPlace(ShAmt);
1216       Known.One.lshrInPlace(ShAmt);
1217 
1218       // If the input sign bit is known to be zero, or if none of the top bits
1219       // are demanded, turn this into an unsigned shift right.
1220       if (Known.Zero[BitWidth - ShAmt - 1] ||
1221           DemandedBits.countLeadingZeros() >= ShAmt) {
1222         SDNodeFlags Flags;
1223         Flags.setExact(Op->getFlags().hasExact());
1224         return TLO.CombineTo(
1225             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1226       }
1227 
1228       int Log2 = DemandedBits.exactLogBase2();
1229       if (Log2 >= 0) {
1230         // The bit must come from the sign.
1231         SDValue NewSA =
1232             TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType());
1233         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1234       }
1235 
1236       if (Known.One[BitWidth - ShAmt - 1])
1237         // New bits are known one.
1238         Known.One.setHighBits(ShAmt);
1239     }
1240     break;
1241   }
1242   case ISD::FSHL:
1243   case ISD::FSHR: {
1244     SDValue Op0 = Op.getOperand(0);
1245     SDValue Op1 = Op.getOperand(1);
1246     SDValue Op2 = Op.getOperand(2);
1247     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1248 
1249     if (ConstantSDNode *SA = isConstOrConstSplat(Op2)) {
1250       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1251 
1252       // For fshl, 0-shift returns the 1st arg.
1253       // For fshr, 0-shift returns the 2nd arg.
1254       if (Amt == 0) {
1255         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1256                                  Known, TLO, Depth + 1))
1257           return true;
1258         break;
1259       }
1260 
1261       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1262       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1263       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1264       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1265       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1266                                Depth + 1))
1267         return true;
1268       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1269                                Depth + 1))
1270         return true;
1271 
1272       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1273       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1274       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1275       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1276       Known.One |= Known2.One;
1277       Known.Zero |= Known2.Zero;
1278     }
1279     break;
1280   }
1281   case ISD::BITREVERSE: {
1282     SDValue Src = Op.getOperand(0);
1283     APInt DemandedSrcBits = DemandedBits.reverseBits();
1284     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1285                              Depth + 1))
1286       return true;
1287     Known.One = Known2.One.reverseBits();
1288     Known.Zero = Known2.Zero.reverseBits();
1289     break;
1290   }
1291   case ISD::SIGN_EXTEND_INREG: {
1292     SDValue Op0 = Op.getOperand(0);
1293     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1294     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1295 
1296     // If we only care about the highest bit, don't bother shifting right.
1297     if (DemandedBits.isSignMask()) {
1298       unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0);
1299       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1300       // However if the input is already sign extended we expect the sign
1301       // extension to be dropped altogether later and do not simplify.
1302       if (!AlreadySignExtended) {
1303         // Compute the correct shift amount type, which must be getShiftAmountTy
1304         // for scalar types after legalization.
1305         EVT ShiftAmtTy = VT;
1306         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1307           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1308 
1309         SDValue ShiftAmt =
1310             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1311         return TLO.CombineTo(Op,
1312                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1313       }
1314     }
1315 
1316     // If none of the extended bits are demanded, eliminate the sextinreg.
1317     if (DemandedBits.getActiveBits() <= ExVTBits)
1318       return TLO.CombineTo(Op, Op0);
1319 
1320     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1321 
1322     // Since the sign extended bits are demanded, we know that the sign
1323     // bit is demanded.
1324     InputDemandedBits.setBit(ExVTBits - 1);
1325 
1326     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1327       return true;
1328     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1329 
1330     // If the sign bit of the input is known set or clear, then we know the
1331     // top bits of the result.
1332 
1333     // If the input sign bit is known zero, convert this into a zero extension.
1334     if (Known.Zero[ExVTBits - 1])
1335       return TLO.CombineTo(
1336           Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
1337 
1338     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1339     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1340       Known.One.setBitsFrom(ExVTBits);
1341       Known.Zero &= Mask;
1342     } else { // Input sign bit unknown
1343       Known.Zero &= Mask;
1344       Known.One &= Mask;
1345     }
1346     break;
1347   }
1348   case ISD::BUILD_PAIR: {
1349     EVT HalfVT = Op.getOperand(0).getValueType();
1350     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1351 
1352     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1353     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1354 
1355     KnownBits KnownLo, KnownHi;
1356 
1357     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1358       return true;
1359 
1360     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1361       return true;
1362 
1363     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1364                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1365 
1366     Known.One = KnownLo.One.zext(BitWidth) |
1367                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1368     break;
1369   }
1370   case ISD::ZERO_EXTEND: {
1371     SDValue Src = Op.getOperand(0);
1372     unsigned InBits = Src.getScalarValueSizeInBits();
1373 
1374     // If none of the top bits are demanded, convert this into an any_extend.
1375     if (DemandedBits.getActiveBits() <= InBits)
1376       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src));
1377 
1378     APInt InDemandedBits = DemandedBits.trunc(InBits);
1379     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1))
1380       return true;
1381     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1382     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1383     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
1384     break;
1385   }
1386   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1387     // TODO - merge this with ZERO_EXTEND above?
1388     SDValue Src = Op.getOperand(0);
1389     EVT SrcVT = Src.getValueType();
1390     unsigned InBits = SrcVT.getScalarSizeInBits();
1391     unsigned InElts = SrcVT.getVectorNumElements();
1392 
1393     // If we only need the non-extended bits of the bottom element
1394     // then we can just bitcast to the result.
1395     if (DemandedBits.getActiveBits() <= InBits && DemandedElts == 1 &&
1396         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1397         TLO.DAG.getDataLayout().isLittleEndian())
1398       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1399 
1400     APInt InDemandedBits = DemandedBits.trunc(InBits);
1401     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1402     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1403                              Depth + 1))
1404       return true;
1405     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1406     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1407     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
1408     break;
1409   }
1410   case ISD::SIGN_EXTEND: {
1411     SDValue Src = Op.getOperand(0);
1412     unsigned InBits = Src.getScalarValueSizeInBits();
1413 
1414     // If none of the top bits are demanded, convert this into an any_extend.
1415     if (DemandedBits.getActiveBits() <= InBits)
1416       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src));
1417 
1418     // Since some of the sign extended bits are demanded, we know that the sign
1419     // bit is demanded.
1420     APInt InDemandedBits = DemandedBits.trunc(InBits);
1421     InDemandedBits.setBit(InBits - 1);
1422 
1423     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1))
1424       return true;
1425     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1426     // If the sign bit is known one, the top bits match.
1427     Known = Known.sext(BitWidth);
1428 
1429     // If the sign bit is known zero, convert this to a zero extend.
1430     if (Known.isNonNegative())
1431       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Src));
1432     break;
1433   }
1434   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1435     // TODO - merge this with SIGN_EXTEND above?
1436     SDValue Src = Op.getOperand(0);
1437     unsigned InBits = Src.getScalarValueSizeInBits();
1438 
1439     APInt InDemandedBits = DemandedBits.trunc(InBits);
1440 
1441     // If some of the sign extended bits are demanded, we know that the sign
1442     // bit is demanded.
1443     if (InBits < DemandedBits.getActiveBits())
1444       InDemandedBits.setBit(InBits - 1);
1445 
1446     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1))
1447       return true;
1448     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1449     // If the sign bit is known one, the top bits match.
1450     Known = Known.sext(BitWidth);
1451     break;
1452   }
1453   case ISD::ANY_EXTEND: {
1454     SDValue Src = Op.getOperand(0);
1455     unsigned InBits = Src.getScalarValueSizeInBits();
1456     APInt InDemandedBits = DemandedBits.trunc(InBits);
1457     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1))
1458       return true;
1459     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1460     Known = Known.zext(BitWidth, false /* => any extend */);
1461     break;
1462   }
1463   case ISD::TRUNCATE: {
1464     SDValue Src = Op.getOperand(0);
1465 
1466     // Simplify the input, using demanded bit information, and compute the known
1467     // zero/one bits live out.
1468     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1469     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1470     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1471       return true;
1472     Known = Known.trunc(BitWidth);
1473 
1474     // If the input is only used by this truncate, see if we can shrink it based
1475     // on the known demanded bits.
1476     if (Src.getNode()->hasOneUse()) {
1477       switch (Src.getOpcode()) {
1478       default:
1479         break;
1480       case ISD::SRL:
1481         // Shrink SRL by a constant if none of the high bits shifted in are
1482         // demanded.
1483         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1484           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1485           // undesirable.
1486           break;
1487 
1488         auto *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
1489         if (!ShAmt || ShAmt->getAPIntValue().uge(BitWidth))
1490           break;
1491 
1492         SDValue Shift = Src.getOperand(1);
1493         uint64_t ShVal = ShAmt->getZExtValue();
1494 
1495         if (TLO.LegalTypes())
1496           Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1497 
1498         APInt HighBits =
1499             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
1500         HighBits.lshrInPlace(ShVal);
1501         HighBits = HighBits.trunc(BitWidth);
1502 
1503         if (!(HighBits & DemandedBits)) {
1504           // None of the shifted in bits are needed.  Add a truncate of the
1505           // shift input, then shift it.
1506           SDValue NewTrunc =
1507               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1508           return TLO.CombineTo(
1509               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift));
1510         }
1511         break;
1512       }
1513     }
1514 
1515     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1516     break;
1517   }
1518   case ISD::AssertZext: {
1519     // AssertZext demands all of the high bits, plus any of the low bits
1520     // demanded by its users.
1521     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1522     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1523     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
1524                              TLO, Depth + 1))
1525       return true;
1526     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1527 
1528     Known.Zero |= ~InMask;
1529     break;
1530   }
1531   case ISD::EXTRACT_VECTOR_ELT: {
1532     SDValue Src = Op.getOperand(0);
1533     SDValue Idx = Op.getOperand(1);
1534     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1535     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1536 
1537     // Demand the bits from every vector element without a constant index.
1538     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1539     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1540       if (CIdx->getAPIntValue().ult(NumSrcElts))
1541         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1542 
1543     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1544     // anything about the extended bits.
1545     APInt DemandedSrcBits = DemandedBits;
1546     if (BitWidth > EltBitWidth)
1547       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1548 
1549     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1550                              Depth + 1))
1551       return true;
1552 
1553     Known = Known2;
1554     if (BitWidth > EltBitWidth)
1555       Known = Known.zext(BitWidth, false /* => any extend */);
1556     break;
1557   }
1558   case ISD::BITCAST: {
1559     SDValue Src = Op.getOperand(0);
1560     EVT SrcVT = Src.getValueType();
1561     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1562 
1563     // If this is an FP->Int bitcast and if the sign bit is the only
1564     // thing demanded, turn this into a FGETSIGN.
1565     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1566         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1567         SrcVT.isFloatingPoint()) {
1568       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1569       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1570       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1571           SrcVT != MVT::f128) {
1572         // Cannot eliminate/lower SHL for f128 yet.
1573         EVT Ty = OpVTLegal ? VT : MVT::i32;
1574         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1575         // place.  We expect the SHL to be eliminated by other optimizations.
1576         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
1577         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1578         if (!OpVTLegal && OpVTSizeInBits > 32)
1579           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1580         unsigned ShVal = Op.getValueSizeInBits() - 1;
1581         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1582         return TLO.CombineTo(Op,
1583                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1584       }
1585     }
1586 
1587     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
1588     // Demand the elt/bit if any of the original elts/bits are demanded.
1589     // TODO - bigendian once we have test coverage.
1590     // TODO - bool vectors once SimplifyDemandedVectorElts has SETCC support.
1591     if (SrcVT.isVector() && NumSrcEltBits > 1 &&
1592         (BitWidth % NumSrcEltBits) == 0 &&
1593         TLO.DAG.getDataLayout().isLittleEndian()) {
1594       unsigned Scale = BitWidth / NumSrcEltBits;
1595       unsigned NumSrcElts = SrcVT.getVectorNumElements();
1596       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1597       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1598       for (unsigned i = 0; i != Scale; ++i) {
1599         unsigned Offset = i * NumSrcEltBits;
1600         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
1601         if (!Sub.isNullValue()) {
1602           DemandedSrcBits |= Sub;
1603           for (unsigned j = 0; j != NumElts; ++j)
1604             if (DemandedElts[j])
1605               DemandedSrcElts.setBit((j * Scale) + i);
1606         }
1607       }
1608 
1609       APInt KnownSrcUndef, KnownSrcZero;
1610       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1611                                      KnownSrcZero, TLO, Depth + 1))
1612         return true;
1613 
1614       KnownBits KnownSrcBits;
1615       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1616                                KnownSrcBits, TLO, Depth + 1))
1617         return true;
1618     } else if ((NumSrcEltBits % BitWidth) == 0 &&
1619                TLO.DAG.getDataLayout().isLittleEndian()) {
1620       unsigned Scale = NumSrcEltBits / BitWidth;
1621       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1622       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1623       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1624       for (unsigned i = 0; i != NumElts; ++i)
1625         if (DemandedElts[i]) {
1626           unsigned Offset = (i % Scale) * BitWidth;
1627           DemandedSrcBits.insertBits(DemandedBits, Offset);
1628           DemandedSrcElts.setBit(i / Scale);
1629         }
1630 
1631       if (SrcVT.isVector()) {
1632         APInt KnownSrcUndef, KnownSrcZero;
1633         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1634                                        KnownSrcZero, TLO, Depth + 1))
1635           return true;
1636       }
1637 
1638       KnownBits KnownSrcBits;
1639       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1640                                KnownSrcBits, TLO, Depth + 1))
1641         return true;
1642     }
1643 
1644     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
1645     // recursive call where Known may be useful to the caller.
1646     if (Depth > 0) {
1647       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1648       return false;
1649     }
1650     break;
1651   }
1652   case ISD::ADD:
1653   case ISD::MUL:
1654   case ISD::SUB: {
1655     // Add, Sub, and Mul don't demand any bits in positions beyond that
1656     // of the highest bit demanded of them.
1657     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
1658     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
1659     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
1660     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
1661                              Depth + 1) ||
1662         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
1663                              Depth + 1) ||
1664         // See if the operation should be performed at a smaller bit width.
1665         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
1666       SDNodeFlags Flags = Op.getNode()->getFlags();
1667       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1668         // Disable the nsw and nuw flags. We can no longer guarantee that we
1669         // won't wrap after simplification.
1670         Flags.setNoSignedWrap(false);
1671         Flags.setNoUnsignedWrap(false);
1672         SDValue NewOp =
1673             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
1674         return TLO.CombineTo(Op, NewOp);
1675       }
1676       return true;
1677     }
1678 
1679     // If we have a constant operand, we may be able to turn it into -1 if we
1680     // do not demand the high bits. This can make the constant smaller to
1681     // encode, allow more general folding, or match specialized instruction
1682     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
1683     // is probably not useful (and could be detrimental).
1684     ConstantSDNode *C = isConstOrConstSplat(Op1);
1685     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
1686     if (C && !C->isAllOnesValue() && !C->isOne() &&
1687         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
1688       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
1689       // We can't guarantee that the new math op doesn't wrap, so explicitly
1690       // clear those flags to prevent folding with a potential existing node
1691       // that has those flags set.
1692       SDNodeFlags Flags;
1693       Flags.setNoSignedWrap(false);
1694       Flags.setNoUnsignedWrap(false);
1695       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
1696       return TLO.CombineTo(Op, NewOp);
1697     }
1698 
1699     LLVM_FALLTHROUGH;
1700   }
1701   default:
1702     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1703       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
1704                                             Known, TLO, Depth))
1705         return true;
1706       break;
1707     }
1708 
1709     // Just use computeKnownBits to compute output bits.
1710     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1711     break;
1712   }
1713 
1714   // If we know the value of all of the demanded bits, return this as a
1715   // constant.
1716   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
1717     // Avoid folding to a constant if any OpaqueConstant is involved.
1718     const SDNode *N = Op.getNode();
1719     for (SDNodeIterator I = SDNodeIterator::begin(N),
1720                         E = SDNodeIterator::end(N);
1721          I != E; ++I) {
1722       SDNode *Op = *I;
1723       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
1724         if (C->isOpaque())
1725           return false;
1726     }
1727     // TODO: Handle float bits as well.
1728     if (VT.isInteger())
1729       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
1730   }
1731 
1732   return false;
1733 }
1734 
1735 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
1736                                                 const APInt &DemandedElts,
1737                                                 APInt &KnownUndef,
1738                                                 APInt &KnownZero,
1739                                                 DAGCombinerInfo &DCI) const {
1740   SelectionDAG &DAG = DCI.DAG;
1741   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1742                         !DCI.isBeforeLegalizeOps());
1743 
1744   bool Simplified =
1745       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
1746   if (Simplified) {
1747     DCI.AddToWorklist(Op.getNode());
1748     DCI.CommitTargetLoweringOpt(TLO);
1749   }
1750 
1751   return Simplified;
1752 }
1753 
1754 /// Given a vector binary operation and known undefined elements for each input
1755 /// operand, compute whether each element of the output is undefined.
1756 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
1757                                          const APInt &UndefOp0,
1758                                          const APInt &UndefOp1) {
1759   EVT VT = BO.getValueType();
1760   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
1761          "Vector binop only");
1762 
1763   EVT EltVT = VT.getVectorElementType();
1764   unsigned NumElts = VT.getVectorNumElements();
1765   assert(UndefOp0.getBitWidth() == NumElts &&
1766          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
1767 
1768   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
1769                                    const APInt &UndefVals) {
1770     if (UndefVals[Index])
1771       return DAG.getUNDEF(EltVT);
1772 
1773     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1774       // Try hard to make sure that the getNode() call is not creating temporary
1775       // nodes. Ignore opaque integers because they do not constant fold.
1776       SDValue Elt = BV->getOperand(Index);
1777       auto *C = dyn_cast<ConstantSDNode>(Elt);
1778       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
1779         return Elt;
1780     }
1781 
1782     return SDValue();
1783   };
1784 
1785   APInt KnownUndef = APInt::getNullValue(NumElts);
1786   for (unsigned i = 0; i != NumElts; ++i) {
1787     // If both inputs for this element are either constant or undef and match
1788     // the element type, compute the constant/undef result for this element of
1789     // the vector.
1790     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
1791     // not handle FP constants. The code within getNode() should be refactored
1792     // to avoid the danger of creating a bogus temporary node here.
1793     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
1794     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
1795     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
1796       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
1797         KnownUndef.setBit(i);
1798   }
1799   return KnownUndef;
1800 }
1801 
1802 bool TargetLowering::SimplifyDemandedVectorElts(
1803     SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef,
1804     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
1805     bool AssumeSingleUse) const {
1806   EVT VT = Op.getValueType();
1807   APInt DemandedElts = DemandedEltMask;
1808   unsigned NumElts = DemandedElts.getBitWidth();
1809   assert(VT.isVector() && "Expected vector op");
1810   assert(VT.getVectorNumElements() == NumElts &&
1811          "Mask size mismatches value type element count!");
1812 
1813   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
1814 
1815   // Undef operand.
1816   if (Op.isUndef()) {
1817     KnownUndef.setAllBits();
1818     return false;
1819   }
1820 
1821   // If Op has other users, assume that all elements are needed.
1822   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
1823     DemandedElts.setAllBits();
1824 
1825   // Not demanding any elements from Op.
1826   if (DemandedElts == 0) {
1827     KnownUndef.setAllBits();
1828     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1829   }
1830 
1831   // Limit search depth.
1832   if (Depth >= 6)
1833     return false;
1834 
1835   SDLoc DL(Op);
1836   unsigned EltSizeInBits = VT.getScalarSizeInBits();
1837 
1838   switch (Op.getOpcode()) {
1839   case ISD::SCALAR_TO_VECTOR: {
1840     if (!DemandedElts[0]) {
1841       KnownUndef.setAllBits();
1842       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1843     }
1844     KnownUndef.setHighBits(NumElts - 1);
1845     break;
1846   }
1847   case ISD::BITCAST: {
1848     SDValue Src = Op.getOperand(0);
1849     EVT SrcVT = Src.getValueType();
1850 
1851     // We only handle vectors here.
1852     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
1853     if (!SrcVT.isVector())
1854       break;
1855 
1856     // Fast handling of 'identity' bitcasts.
1857     unsigned NumSrcElts = SrcVT.getVectorNumElements();
1858     if (NumSrcElts == NumElts)
1859       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
1860                                         KnownZero, TLO, Depth + 1);
1861 
1862     APInt SrcZero, SrcUndef;
1863     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
1864 
1865     // Bitcast from 'large element' src vector to 'small element' vector, we
1866     // must demand a source element if any DemandedElt maps to it.
1867     if ((NumElts % NumSrcElts) == 0) {
1868       unsigned Scale = NumElts / NumSrcElts;
1869       for (unsigned i = 0; i != NumElts; ++i)
1870         if (DemandedElts[i])
1871           SrcDemandedElts.setBit(i / Scale);
1872 
1873       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
1874                                      TLO, Depth + 1))
1875         return true;
1876 
1877       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
1878       // of the large element.
1879       // TODO - bigendian once we have test coverage.
1880       if (TLO.DAG.getDataLayout().isLittleEndian()) {
1881         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
1882         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
1883         for (unsigned i = 0; i != NumElts; ++i)
1884           if (DemandedElts[i]) {
1885             unsigned Ofs = (i % Scale) * EltSizeInBits;
1886             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
1887           }
1888 
1889         KnownBits Known;
1890         if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1))
1891           return true;
1892       }
1893 
1894       // If the src element is zero/undef then all the output elements will be -
1895       // only demanded elements are guaranteed to be correct.
1896       for (unsigned i = 0; i != NumSrcElts; ++i) {
1897         if (SrcDemandedElts[i]) {
1898           if (SrcZero[i])
1899             KnownZero.setBits(i * Scale, (i + 1) * Scale);
1900           if (SrcUndef[i])
1901             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
1902         }
1903       }
1904     }
1905 
1906     // Bitcast from 'small element' src vector to 'large element' vector, we
1907     // demand all smaller source elements covered by the larger demanded element
1908     // of this vector.
1909     if ((NumSrcElts % NumElts) == 0) {
1910       unsigned Scale = NumSrcElts / NumElts;
1911       for (unsigned i = 0; i != NumElts; ++i)
1912         if (DemandedElts[i])
1913           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
1914 
1915       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
1916                                      TLO, Depth + 1))
1917         return true;
1918 
1919       // If all the src elements covering an output element are zero/undef, then
1920       // the output element will be as well, assuming it was demanded.
1921       for (unsigned i = 0; i != NumElts; ++i) {
1922         if (DemandedElts[i]) {
1923           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
1924             KnownZero.setBit(i);
1925           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
1926             KnownUndef.setBit(i);
1927         }
1928       }
1929     }
1930     break;
1931   }
1932   case ISD::BUILD_VECTOR: {
1933     // Check all elements and simplify any unused elements with UNDEF.
1934     if (!DemandedElts.isAllOnesValue()) {
1935       // Don't simplify BROADCASTS.
1936       if (llvm::any_of(Op->op_values(),
1937                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
1938         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
1939         bool Updated = false;
1940         for (unsigned i = 0; i != NumElts; ++i) {
1941           if (!DemandedElts[i] && !Ops[i].isUndef()) {
1942             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
1943             KnownUndef.setBit(i);
1944             Updated = true;
1945           }
1946         }
1947         if (Updated)
1948           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
1949       }
1950     }
1951     for (unsigned i = 0; i != NumElts; ++i) {
1952       SDValue SrcOp = Op.getOperand(i);
1953       if (SrcOp.isUndef()) {
1954         KnownUndef.setBit(i);
1955       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
1956                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
1957         KnownZero.setBit(i);
1958       }
1959     }
1960     break;
1961   }
1962   case ISD::CONCAT_VECTORS: {
1963     EVT SubVT = Op.getOperand(0).getValueType();
1964     unsigned NumSubVecs = Op.getNumOperands();
1965     unsigned NumSubElts = SubVT.getVectorNumElements();
1966     for (unsigned i = 0; i != NumSubVecs; ++i) {
1967       SDValue SubOp = Op.getOperand(i);
1968       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1969       APInt SubUndef, SubZero;
1970       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
1971                                      Depth + 1))
1972         return true;
1973       KnownUndef.insertBits(SubUndef, i * NumSubElts);
1974       KnownZero.insertBits(SubZero, i * NumSubElts);
1975     }
1976     break;
1977   }
1978   case ISD::INSERT_SUBVECTOR: {
1979     if (!isa<ConstantSDNode>(Op.getOperand(2)))
1980       break;
1981     SDValue Base = Op.getOperand(0);
1982     SDValue Sub = Op.getOperand(1);
1983     EVT SubVT = Sub.getValueType();
1984     unsigned NumSubElts = SubVT.getVectorNumElements();
1985     const APInt &Idx = Op.getConstantOperandAPInt(2);
1986     if (Idx.ugt(NumElts - NumSubElts))
1987       break;
1988     unsigned SubIdx = Idx.getZExtValue();
1989     APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
1990     APInt SubUndef, SubZero;
1991     if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
1992                                    Depth + 1))
1993       return true;
1994     APInt BaseElts = DemandedElts;
1995     BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
1996     if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
1997                                    Depth + 1))
1998       return true;
1999     KnownUndef.insertBits(SubUndef, SubIdx);
2000     KnownZero.insertBits(SubZero, SubIdx);
2001     break;
2002   }
2003   case ISD::EXTRACT_SUBVECTOR: {
2004     SDValue Src = Op.getOperand(0);
2005     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2006     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2007     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2008       // Offset the demanded elts by the subvector index.
2009       uint64_t Idx = SubIdx->getZExtValue();
2010       APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2011       APInt SrcUndef, SrcZero;
2012       if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
2013                                      Depth + 1))
2014         return true;
2015       KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2016       KnownZero = SrcZero.extractBits(NumElts, Idx);
2017     }
2018     break;
2019   }
2020   case ISD::INSERT_VECTOR_ELT: {
2021     SDValue Vec = Op.getOperand(0);
2022     SDValue Scl = Op.getOperand(1);
2023     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2024 
2025     // For a legal, constant insertion index, if we don't need this insertion
2026     // then strip it, else remove it from the demanded elts.
2027     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2028       unsigned Idx = CIdx->getZExtValue();
2029       if (!DemandedElts[Idx])
2030         return TLO.CombineTo(Op, Vec);
2031 
2032       APInt DemandedVecElts(DemandedElts);
2033       DemandedVecElts.clearBit(Idx);
2034       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2035                                      KnownZero, TLO, Depth + 1))
2036         return true;
2037 
2038       KnownUndef.clearBit(Idx);
2039       if (Scl.isUndef())
2040         KnownUndef.setBit(Idx);
2041 
2042       KnownZero.clearBit(Idx);
2043       if (isNullConstant(Scl) || isNullFPConstant(Scl))
2044         KnownZero.setBit(Idx);
2045       break;
2046     }
2047 
2048     APInt VecUndef, VecZero;
2049     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2050                                    Depth + 1))
2051       return true;
2052     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2053     break;
2054   }
2055   case ISD::VSELECT: {
2056     // Try to transform the select condition based on the current demanded
2057     // elements.
2058     // TODO: If a condition element is undef, we can choose from one arm of the
2059     //       select (and if one arm is undef, then we can propagate that to the
2060     //       result).
2061     // TODO - add support for constant vselect masks (see IR version of this).
2062     APInt UnusedUndef, UnusedZero;
2063     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2064                                    UnusedZero, TLO, Depth + 1))
2065       return true;
2066 
2067     // See if we can simplify either vselect operand.
2068     APInt DemandedLHS(DemandedElts);
2069     APInt DemandedRHS(DemandedElts);
2070     APInt UndefLHS, ZeroLHS;
2071     APInt UndefRHS, ZeroRHS;
2072     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2073                                    ZeroLHS, TLO, Depth + 1))
2074       return true;
2075     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2076                                    ZeroRHS, TLO, Depth + 1))
2077       return true;
2078 
2079     KnownUndef = UndefLHS & UndefRHS;
2080     KnownZero = ZeroLHS & ZeroRHS;
2081     break;
2082   }
2083   case ISD::VECTOR_SHUFFLE: {
2084     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2085 
2086     // Collect demanded elements from shuffle operands..
2087     APInt DemandedLHS(NumElts, 0);
2088     APInt DemandedRHS(NumElts, 0);
2089     for (unsigned i = 0; i != NumElts; ++i) {
2090       int M = ShuffleMask[i];
2091       if (M < 0 || !DemandedElts[i])
2092         continue;
2093       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2094       if (M < (int)NumElts)
2095         DemandedLHS.setBit(M);
2096       else
2097         DemandedRHS.setBit(M - NumElts);
2098     }
2099 
2100     // See if we can simplify either shuffle operand.
2101     APInt UndefLHS, ZeroLHS;
2102     APInt UndefRHS, ZeroRHS;
2103     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2104                                    ZeroLHS, TLO, Depth + 1))
2105       return true;
2106     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2107                                    ZeroRHS, TLO, Depth + 1))
2108       return true;
2109 
2110     // Simplify mask using undef elements from LHS/RHS.
2111     bool Updated = false;
2112     bool IdentityLHS = true, IdentityRHS = true;
2113     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2114     for (unsigned i = 0; i != NumElts; ++i) {
2115       int &M = NewMask[i];
2116       if (M < 0)
2117         continue;
2118       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2119           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2120         Updated = true;
2121         M = -1;
2122       }
2123       IdentityLHS &= (M < 0) || (M == (int)i);
2124       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2125     }
2126 
2127     // Update legal shuffle masks based on demanded elements if it won't reduce
2128     // to Identity which can cause premature removal of the shuffle mask.
2129     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps &&
2130         isShuffleMaskLegal(NewMask, VT))
2131       return TLO.CombineTo(Op,
2132                            TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0),
2133                                                     Op.getOperand(1), NewMask));
2134 
2135     // Propagate undef/zero elements from LHS/RHS.
2136     for (unsigned i = 0; i != NumElts; ++i) {
2137       int M = ShuffleMask[i];
2138       if (M < 0) {
2139         KnownUndef.setBit(i);
2140       } else if (M < (int)NumElts) {
2141         if (UndefLHS[M])
2142           KnownUndef.setBit(i);
2143         if (ZeroLHS[M])
2144           KnownZero.setBit(i);
2145       } else {
2146         if (UndefRHS[M - NumElts])
2147           KnownUndef.setBit(i);
2148         if (ZeroRHS[M - NumElts])
2149           KnownZero.setBit(i);
2150       }
2151     }
2152     break;
2153   }
2154   case ISD::SIGN_EXTEND_VECTOR_INREG:
2155   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2156     APInt SrcUndef, SrcZero;
2157     SDValue Src = Op.getOperand(0);
2158     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2159     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2160     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2161                                    Depth + 1))
2162       return true;
2163     KnownZero = SrcZero.zextOrTrunc(NumElts);
2164     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2165 
2166     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2167       // zext(undef) upper bits are guaranteed to be zero.
2168       if (DemandedElts.isSubsetOf(KnownUndef))
2169         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2170       KnownUndef.clearAllBits();
2171     }
2172     break;
2173   }
2174 
2175   // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
2176   // MAX, saturated math, etc.
2177   case ISD::OR:
2178   case ISD::XOR:
2179   case ISD::ADD:
2180   case ISD::SUB:
2181   case ISD::FADD:
2182   case ISD::FSUB:
2183   case ISD::FMUL:
2184   case ISD::FDIV:
2185   case ISD::FREM: {
2186     APInt UndefRHS, ZeroRHS;
2187     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2188                                    ZeroRHS, TLO, Depth + 1))
2189       return true;
2190     APInt UndefLHS, ZeroLHS;
2191     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2192                                    ZeroLHS, TLO, Depth + 1))
2193       return true;
2194 
2195     KnownZero = ZeroLHS & ZeroRHS;
2196     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2197     break;
2198   }
2199   case ISD::AND: {
2200     APInt SrcUndef, SrcZero;
2201     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
2202                                    SrcZero, TLO, Depth + 1))
2203       return true;
2204     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2205                                    KnownZero, TLO, Depth + 1))
2206       return true;
2207 
2208     // If either side has a zero element, then the result element is zero, even
2209     // if the other is an UNDEF.
2210     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2211     // and then handle 'and' nodes with the rest of the binop opcodes.
2212     KnownZero |= SrcZero;
2213     KnownUndef &= SrcUndef;
2214     KnownUndef &= ~KnownZero;
2215     break;
2216   }
2217   case ISD::TRUNCATE:
2218   case ISD::SIGN_EXTEND:
2219   case ISD::ZERO_EXTEND:
2220     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2221                                    KnownZero, TLO, Depth + 1))
2222       return true;
2223 
2224     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2225       // zext(undef) upper bits are guaranteed to be zero.
2226       if (DemandedElts.isSubsetOf(KnownUndef))
2227         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2228       KnownUndef.clearAllBits();
2229     }
2230     break;
2231   default: {
2232     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2233       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2234                                                   KnownZero, TLO, Depth))
2235         return true;
2236     } else {
2237       KnownBits Known;
2238       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2239       if (SimplifyDemandedBits(Op, DemandedBits, DemandedEltMask, Known, TLO,
2240                                Depth, AssumeSingleUse))
2241         return true;
2242     }
2243     break;
2244   }
2245   }
2246   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2247 
2248   // Constant fold all undef cases.
2249   // TODO: Handle zero cases as well.
2250   if (DemandedElts.isSubsetOf(KnownUndef))
2251     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2252 
2253   return false;
2254 }
2255 
2256 /// Determine which of the bits specified in Mask are known to be either zero or
2257 /// one and return them in the Known.
2258 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2259                                                    KnownBits &Known,
2260                                                    const APInt &DemandedElts,
2261                                                    const SelectionDAG &DAG,
2262                                                    unsigned Depth) const {
2263   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2264           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2265           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2266           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2267          "Should use MaskedValueIsZero if you don't know whether Op"
2268          " is a target node!");
2269   Known.resetAll();
2270 }
2271 
2272 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
2273                                                    KnownBits &Known,
2274                                                    const APInt &DemandedElts,
2275                                                    const SelectionDAG &DAG,
2276                                                    unsigned Depth) const {
2277   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
2278 
2279   if (unsigned Align = DAG.InferPtrAlignment(Op)) {
2280     // The low bits are known zero if the pointer is aligned.
2281     Known.Zero.setLowBits(Log2_32(Align));
2282   }
2283 }
2284 
2285 /// This method can be implemented by targets that want to expose additional
2286 /// information about sign bits to the DAG Combiner.
2287 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2288                                                          const APInt &,
2289                                                          const SelectionDAG &,
2290                                                          unsigned Depth) const {
2291   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2292           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2293           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2294           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2295          "Should use ComputeNumSignBits if you don't know whether Op"
2296          " is a target node!");
2297   return 1;
2298 }
2299 
2300 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2301     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2302     TargetLoweringOpt &TLO, unsigned Depth) const {
2303   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2304           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2305           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2306           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2307          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2308          " is a target node!");
2309   return false;
2310 }
2311 
2312 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2313     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2314     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2315   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2316           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2317           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2318           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2319          "Should use SimplifyDemandedBits if you don't know whether Op"
2320          " is a target node!");
2321   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2322   return false;
2323 }
2324 
2325 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
2326   return nullptr;
2327 }
2328 
2329 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2330                                                   const SelectionDAG &DAG,
2331                                                   bool SNaN,
2332                                                   unsigned Depth) const {
2333   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2334           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2335           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2336           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2337          "Should use isKnownNeverNaN if you don't know whether Op"
2338          " is a target node!");
2339   return false;
2340 }
2341 
2342 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2343 // work with truncating build vectors and vectors with elements of less than
2344 // 8 bits.
2345 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2346   if (!N)
2347     return false;
2348 
2349   APInt CVal;
2350   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2351     CVal = CN->getAPIntValue();
2352   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2353     auto *CN = BV->getConstantSplatNode();
2354     if (!CN)
2355       return false;
2356 
2357     // If this is a truncating build vector, truncate the splat value.
2358     // Otherwise, we may fail to match the expected values below.
2359     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2360     CVal = CN->getAPIntValue();
2361     if (BVEltWidth < CVal.getBitWidth())
2362       CVal = CVal.trunc(BVEltWidth);
2363   } else {
2364     return false;
2365   }
2366 
2367   switch (getBooleanContents(N->getValueType(0))) {
2368   case UndefinedBooleanContent:
2369     return CVal[0];
2370   case ZeroOrOneBooleanContent:
2371     return CVal.isOneValue();
2372   case ZeroOrNegativeOneBooleanContent:
2373     return CVal.isAllOnesValue();
2374   }
2375 
2376   llvm_unreachable("Invalid boolean contents");
2377 }
2378 
2379 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2380   if (!N)
2381     return false;
2382 
2383   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2384   if (!CN) {
2385     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2386     if (!BV)
2387       return false;
2388 
2389     // Only interested in constant splats, we don't care about undef
2390     // elements in identifying boolean constants and getConstantSplatNode
2391     // returns NULL if all ops are undef;
2392     CN = BV->getConstantSplatNode();
2393     if (!CN)
2394       return false;
2395   }
2396 
2397   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2398     return !CN->getAPIntValue()[0];
2399 
2400   return CN->isNullValue();
2401 }
2402 
2403 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2404                                        bool SExt) const {
2405   if (VT == MVT::i1)
2406     return N->isOne();
2407 
2408   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2409   switch (Cnt) {
2410   case TargetLowering::ZeroOrOneBooleanContent:
2411     // An extended value of 1 is always true, unless its original type is i1,
2412     // in which case it will be sign extended to -1.
2413     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
2414   case TargetLowering::UndefinedBooleanContent:
2415   case TargetLowering::ZeroOrNegativeOneBooleanContent:
2416     return N->isAllOnesValue() && SExt;
2417   }
2418   llvm_unreachable("Unexpected enumeration.");
2419 }
2420 
2421 /// This helper function of SimplifySetCC tries to optimize the comparison when
2422 /// either operand of the SetCC node is a bitwise-and instruction.
2423 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
2424                                          ISD::CondCode Cond, const SDLoc &DL,
2425                                          DAGCombinerInfo &DCI) const {
2426   // Match these patterns in any of their permutations:
2427   // (X & Y) == Y
2428   // (X & Y) != Y
2429   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
2430     std::swap(N0, N1);
2431 
2432   EVT OpVT = N0.getValueType();
2433   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
2434       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
2435     return SDValue();
2436 
2437   SDValue X, Y;
2438   if (N0.getOperand(0) == N1) {
2439     X = N0.getOperand(1);
2440     Y = N0.getOperand(0);
2441   } else if (N0.getOperand(1) == N1) {
2442     X = N0.getOperand(0);
2443     Y = N0.getOperand(1);
2444   } else {
2445     return SDValue();
2446   }
2447 
2448   SelectionDAG &DAG = DCI.DAG;
2449   SDValue Zero = DAG.getConstant(0, DL, OpVT);
2450   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
2451     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2452     // Note that where Y is variable and is known to have at most one bit set
2453     // (for example, if it is Z & 1) we cannot do this; the expressions are not
2454     // equivalent when Y == 0.
2455     Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2456     if (DCI.isBeforeLegalizeOps() ||
2457         isCondCodeLegal(Cond, N0.getSimpleValueType()))
2458       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
2459   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
2460     // If the target supports an 'and-not' or 'and-complement' logic operation,
2461     // try to use that to make a comparison operation more efficient.
2462     // But don't do this transform if the mask is a single bit because there are
2463     // more efficient ways to deal with that case (for example, 'bt' on x86 or
2464     // 'rlwinm' on PPC).
2465 
2466     // Bail out if the compare operand that we want to turn into a zero is
2467     // already a zero (otherwise, infinite loop).
2468     auto *YConst = dyn_cast<ConstantSDNode>(Y);
2469     if (YConst && YConst->isNullValue())
2470       return SDValue();
2471 
2472     // Transform this into: ~X & Y == 0.
2473     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
2474     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
2475     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
2476   }
2477 
2478   return SDValue();
2479 }
2480 
2481 /// There are multiple IR patterns that could be checking whether certain
2482 /// truncation of a signed number would be lossy or not. The pattern which is
2483 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
2484 /// We are looking for the following pattern: (KeptBits is a constant)
2485 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
2486 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
2487 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
2488 /// We will unfold it into the natural trunc+sext pattern:
2489 ///   ((%x << C) a>> C) dstcond %x
2490 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
2491 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
2492     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
2493     const SDLoc &DL) const {
2494   // We must be comparing with a constant.
2495   ConstantSDNode *C1;
2496   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
2497     return SDValue();
2498 
2499   // N0 should be:  add %x, (1 << (KeptBits-1))
2500   if (N0->getOpcode() != ISD::ADD)
2501     return SDValue();
2502 
2503   // And we must be 'add'ing a constant.
2504   ConstantSDNode *C01;
2505   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
2506     return SDValue();
2507 
2508   SDValue X = N0->getOperand(0);
2509   EVT XVT = X.getValueType();
2510 
2511   // Validate constants ...
2512 
2513   APInt I1 = C1->getAPIntValue();
2514 
2515   ISD::CondCode NewCond;
2516   if (Cond == ISD::CondCode::SETULT) {
2517     NewCond = ISD::CondCode::SETEQ;
2518   } else if (Cond == ISD::CondCode::SETULE) {
2519     NewCond = ISD::CondCode::SETEQ;
2520     // But need to 'canonicalize' the constant.
2521     I1 += 1;
2522   } else if (Cond == ISD::CondCode::SETUGT) {
2523     NewCond = ISD::CondCode::SETNE;
2524     // But need to 'canonicalize' the constant.
2525     I1 += 1;
2526   } else if (Cond == ISD::CondCode::SETUGE) {
2527     NewCond = ISD::CondCode::SETNE;
2528   } else
2529     return SDValue();
2530 
2531   APInt I01 = C01->getAPIntValue();
2532 
2533   auto checkConstants = [&I1, &I01]() -> bool {
2534     // Both of them must be power-of-two, and the constant from setcc is bigger.
2535     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
2536   };
2537 
2538   if (checkConstants()) {
2539     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
2540   } else {
2541     // What if we invert constants? (and the target predicate)
2542     I1.negate();
2543     I01.negate();
2544     NewCond = getSetCCInverse(NewCond, /*isInteger=*/true);
2545     if (!checkConstants())
2546       return SDValue();
2547     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
2548   }
2549 
2550   // They are power-of-two, so which bit is set?
2551   const unsigned KeptBits = I1.logBase2();
2552   const unsigned KeptBitsMinusOne = I01.logBase2();
2553 
2554   // Magic!
2555   if (KeptBits != (KeptBitsMinusOne + 1))
2556     return SDValue();
2557   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
2558 
2559   // We don't want to do this in every single case.
2560   SelectionDAG &DAG = DCI.DAG;
2561   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
2562           XVT, KeptBits))
2563     return SDValue();
2564 
2565   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
2566   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
2567 
2568   // Unfold into:  ((%x << C) a>> C) cond %x
2569   // Where 'cond' will be either 'eq' or 'ne'.
2570   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
2571   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
2572   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
2573   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
2574 
2575   return T2;
2576 }
2577 
2578 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
2579 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
2580 /// handle the commuted versions of these patterns.
2581 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
2582                                            ISD::CondCode Cond, const SDLoc &DL,
2583                                            DAGCombinerInfo &DCI) const {
2584   unsigned BOpcode = N0.getOpcode();
2585   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
2586          "Unexpected binop");
2587   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
2588 
2589   // (X + Y) == X --> Y == 0
2590   // (X - Y) == X --> Y == 0
2591   // (X ^ Y) == X --> Y == 0
2592   SelectionDAG &DAG = DCI.DAG;
2593   EVT OpVT = N0.getValueType();
2594   SDValue X = N0.getOperand(0);
2595   SDValue Y = N0.getOperand(1);
2596   if (X == N1)
2597     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
2598 
2599   if (Y != N1)
2600     return SDValue();
2601 
2602   // (X + Y) == Y --> X == 0
2603   // (X ^ Y) == Y --> X == 0
2604   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
2605     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
2606 
2607   // The shift would not be valid if the operands are boolean (i1).
2608   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
2609     return SDValue();
2610 
2611   // (X - Y) == Y --> X == Y << 1
2612   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
2613                                  !DCI.isBeforeLegalize());
2614   SDValue One = DAG.getConstant(1, DL, ShiftVT);
2615   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
2616   if (!DCI.isCalledByLegalizer())
2617     DCI.AddToWorklist(YShl1.getNode());
2618   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
2619 }
2620 
2621 /// Try to simplify a setcc built with the specified operands and cc. If it is
2622 /// unable to simplify it, return a null SDValue.
2623 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
2624                                       ISD::CondCode Cond, bool foldBooleans,
2625                                       DAGCombinerInfo &DCI,
2626                                       const SDLoc &dl) const {
2627   SelectionDAG &DAG = DCI.DAG;
2628   EVT OpVT = N0.getValueType();
2629 
2630   // Constant fold or commute setcc.
2631   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
2632     return Fold;
2633 
2634   // Ensure that the constant occurs on the RHS and fold constant comparisons.
2635   // TODO: Handle non-splat vector constants. All undef causes trouble.
2636   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
2637   if (isConstOrConstSplat(N0) &&
2638       (DCI.isBeforeLegalizeOps() ||
2639        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
2640     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
2641 
2642   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
2643     const APInt &C1 = N1C->getAPIntValue();
2644 
2645     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
2646     // equality comparison, then we're just comparing whether X itself is
2647     // zero.
2648     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
2649         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
2650         N0.getOperand(1).getOpcode() == ISD::Constant) {
2651       const APInt &ShAmt = N0.getConstantOperandAPInt(1);
2652       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2653           ShAmt == Log2_32(N0.getValueSizeInBits())) {
2654         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
2655           // (srl (ctlz x), 5) == 0  -> X != 0
2656           // (srl (ctlz x), 5) != 1  -> X != 0
2657           Cond = ISD::SETNE;
2658         } else {
2659           // (srl (ctlz x), 5) != 0  -> X == 0
2660           // (srl (ctlz x), 5) == 1  -> X == 0
2661           Cond = ISD::SETEQ;
2662         }
2663         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
2664         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
2665                             Zero, Cond);
2666       }
2667     }
2668 
2669     SDValue CTPOP = N0;
2670     // Look through truncs that don't change the value of a ctpop.
2671     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
2672       CTPOP = N0.getOperand(0);
2673 
2674     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
2675         (N0 == CTPOP ||
2676          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
2677       EVT CTVT = CTPOP.getValueType();
2678       SDValue CTOp = CTPOP.getOperand(0);
2679 
2680       // (ctpop x) u< 2 -> (x & x-1) == 0
2681       // (ctpop x) u> 1 -> (x & x-1) != 0
2682       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
2683         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
2684                                   DAG.getConstant(1, dl, CTVT));
2685         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
2686         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
2687         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
2688       }
2689 
2690       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
2691     }
2692 
2693     // (zext x) == C --> x == (trunc C)
2694     // (sext x) == C --> x == (trunc C)
2695     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2696         DCI.isBeforeLegalize() && N0->hasOneUse()) {
2697       unsigned MinBits = N0.getValueSizeInBits();
2698       SDValue PreExt;
2699       bool Signed = false;
2700       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
2701         // ZExt
2702         MinBits = N0->getOperand(0).getValueSizeInBits();
2703         PreExt = N0->getOperand(0);
2704       } else if (N0->getOpcode() == ISD::AND) {
2705         // DAGCombine turns costly ZExts into ANDs
2706         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
2707           if ((C->getAPIntValue()+1).isPowerOf2()) {
2708             MinBits = C->getAPIntValue().countTrailingOnes();
2709             PreExt = N0->getOperand(0);
2710           }
2711       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
2712         // SExt
2713         MinBits = N0->getOperand(0).getValueSizeInBits();
2714         PreExt = N0->getOperand(0);
2715         Signed = true;
2716       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
2717         // ZEXTLOAD / SEXTLOAD
2718         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
2719           MinBits = LN0->getMemoryVT().getSizeInBits();
2720           PreExt = N0;
2721         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
2722           Signed = true;
2723           MinBits = LN0->getMemoryVT().getSizeInBits();
2724           PreExt = N0;
2725         }
2726       }
2727 
2728       // Figure out how many bits we need to preserve this constant.
2729       unsigned ReqdBits = Signed ?
2730         C1.getBitWidth() - C1.getNumSignBits() + 1 :
2731         C1.getActiveBits();
2732 
2733       // Make sure we're not losing bits from the constant.
2734       if (MinBits > 0 &&
2735           MinBits < C1.getBitWidth() &&
2736           MinBits >= ReqdBits) {
2737         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
2738         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
2739           // Will get folded away.
2740           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
2741           if (MinBits == 1 && C1 == 1)
2742             // Invert the condition.
2743             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
2744                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2745           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
2746           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
2747         }
2748 
2749         // If truncating the setcc operands is not desirable, we can still
2750         // simplify the expression in some cases:
2751         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
2752         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
2753         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
2754         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
2755         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
2756         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
2757         SDValue TopSetCC = N0->getOperand(0);
2758         unsigned N0Opc = N0->getOpcode();
2759         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
2760         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
2761             TopSetCC.getOpcode() == ISD::SETCC &&
2762             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
2763             (isConstFalseVal(N1C) ||
2764              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
2765 
2766           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
2767                          (!N1C->isNullValue() && Cond == ISD::SETNE);
2768 
2769           if (!Inverse)
2770             return TopSetCC;
2771 
2772           ISD::CondCode InvCond = ISD::getSetCCInverse(
2773               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
2774               TopSetCC.getOperand(0).getValueType().isInteger());
2775           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
2776                                       TopSetCC.getOperand(1),
2777                                       InvCond);
2778         }
2779       }
2780     }
2781 
2782     // If the LHS is '(and load, const)', the RHS is 0, the test is for
2783     // equality or unsigned, and all 1 bits of the const are in the same
2784     // partial word, see if we can shorten the load.
2785     if (DCI.isBeforeLegalize() &&
2786         !ISD::isSignedIntSetCC(Cond) &&
2787         N0.getOpcode() == ISD::AND && C1 == 0 &&
2788         N0.getNode()->hasOneUse() &&
2789         isa<LoadSDNode>(N0.getOperand(0)) &&
2790         N0.getOperand(0).getNode()->hasOneUse() &&
2791         isa<ConstantSDNode>(N0.getOperand(1))) {
2792       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
2793       APInt bestMask;
2794       unsigned bestWidth = 0, bestOffset = 0;
2795       if (!Lod->isVolatile() && Lod->isUnindexed()) {
2796         unsigned origWidth = N0.getValueSizeInBits();
2797         unsigned maskWidth = origWidth;
2798         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
2799         // 8 bits, but have to be careful...
2800         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
2801           origWidth = Lod->getMemoryVT().getSizeInBits();
2802         const APInt &Mask = N0.getConstantOperandAPInt(1);
2803         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
2804           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
2805           for (unsigned offset=0; offset<origWidth/width; offset++) {
2806             if (Mask.isSubsetOf(newMask)) {
2807               if (DAG.getDataLayout().isLittleEndian())
2808                 bestOffset = (uint64_t)offset * (width/8);
2809               else
2810                 bestOffset = (origWidth/width - offset - 1) * (width/8);
2811               bestMask = Mask.lshr(offset * (width/8) * 8);
2812               bestWidth = width;
2813               break;
2814             }
2815             newMask <<= width;
2816           }
2817         }
2818       }
2819       if (bestWidth) {
2820         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
2821         if (newVT.isRound() &&
2822             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
2823           EVT PtrType = Lod->getOperand(1).getValueType();
2824           SDValue Ptr = Lod->getBasePtr();
2825           if (bestOffset != 0)
2826             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
2827                               DAG.getConstant(bestOffset, dl, PtrType));
2828           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
2829           SDValue NewLoad = DAG.getLoad(
2830               newVT, dl, Lod->getChain(), Ptr,
2831               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
2832           return DAG.getSetCC(dl, VT,
2833                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
2834                                       DAG.getConstant(bestMask.trunc(bestWidth),
2835                                                       dl, newVT)),
2836                               DAG.getConstant(0LL, dl, newVT), Cond);
2837         }
2838       }
2839     }
2840 
2841     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
2842     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
2843       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
2844 
2845       // If the comparison constant has bits in the upper part, the
2846       // zero-extended value could never match.
2847       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
2848                                               C1.getBitWidth() - InSize))) {
2849         switch (Cond) {
2850         case ISD::SETUGT:
2851         case ISD::SETUGE:
2852         case ISD::SETEQ:
2853           return DAG.getConstant(0, dl, VT);
2854         case ISD::SETULT:
2855         case ISD::SETULE:
2856         case ISD::SETNE:
2857           return DAG.getConstant(1, dl, VT);
2858         case ISD::SETGT:
2859         case ISD::SETGE:
2860           // True if the sign bit of C1 is set.
2861           return DAG.getConstant(C1.isNegative(), dl, VT);
2862         case ISD::SETLT:
2863         case ISD::SETLE:
2864           // True if the sign bit of C1 isn't set.
2865           return DAG.getConstant(C1.isNonNegative(), dl, VT);
2866         default:
2867           break;
2868         }
2869       }
2870 
2871       // Otherwise, we can perform the comparison with the low bits.
2872       switch (Cond) {
2873       case ISD::SETEQ:
2874       case ISD::SETNE:
2875       case ISD::SETUGT:
2876       case ISD::SETUGE:
2877       case ISD::SETULT:
2878       case ISD::SETULE: {
2879         EVT newVT = N0.getOperand(0).getValueType();
2880         if (DCI.isBeforeLegalizeOps() ||
2881             (isOperationLegal(ISD::SETCC, newVT) &&
2882              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
2883           EVT NewSetCCVT =
2884               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
2885           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
2886 
2887           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
2888                                           NewConst, Cond);
2889           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
2890         }
2891         break;
2892       }
2893       default:
2894         break; // todo, be more careful with signed comparisons
2895       }
2896     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2897                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2898       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
2899       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
2900       EVT ExtDstTy = N0.getValueType();
2901       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
2902 
2903       // If the constant doesn't fit into the number of bits for the source of
2904       // the sign extension, it is impossible for both sides to be equal.
2905       if (C1.getMinSignedBits() > ExtSrcTyBits)
2906         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
2907 
2908       SDValue ZextOp;
2909       EVT Op0Ty = N0.getOperand(0).getValueType();
2910       if (Op0Ty == ExtSrcTy) {
2911         ZextOp = N0.getOperand(0);
2912       } else {
2913         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
2914         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
2915                              DAG.getConstant(Imm, dl, Op0Ty));
2916       }
2917       if (!DCI.isCalledByLegalizer())
2918         DCI.AddToWorklist(ZextOp.getNode());
2919       // Otherwise, make this a use of a zext.
2920       return DAG.getSetCC(dl, VT, ZextOp,
2921                           DAG.getConstant(C1 & APInt::getLowBitsSet(
2922                                                               ExtDstTyBits,
2923                                                               ExtSrcTyBits),
2924                                           dl, ExtDstTy),
2925                           Cond);
2926     } else if ((N1C->isNullValue() || N1C->isOne()) &&
2927                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2928       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
2929       if (N0.getOpcode() == ISD::SETCC &&
2930           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
2931         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
2932         if (TrueWhenTrue)
2933           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
2934         // Invert the condition.
2935         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
2936         CC = ISD::getSetCCInverse(CC,
2937                                   N0.getOperand(0).getValueType().isInteger());
2938         if (DCI.isBeforeLegalizeOps() ||
2939             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
2940           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
2941       }
2942 
2943       if ((N0.getOpcode() == ISD::XOR ||
2944            (N0.getOpcode() == ISD::AND &&
2945             N0.getOperand(0).getOpcode() == ISD::XOR &&
2946             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
2947           isa<ConstantSDNode>(N0.getOperand(1)) &&
2948           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
2949         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
2950         // can only do this if the top bits are known zero.
2951         unsigned BitWidth = N0.getValueSizeInBits();
2952         if (DAG.MaskedValueIsZero(N0,
2953                                   APInt::getHighBitsSet(BitWidth,
2954                                                         BitWidth-1))) {
2955           // Okay, get the un-inverted input value.
2956           SDValue Val;
2957           if (N0.getOpcode() == ISD::XOR) {
2958             Val = N0.getOperand(0);
2959           } else {
2960             assert(N0.getOpcode() == ISD::AND &&
2961                     N0.getOperand(0).getOpcode() == ISD::XOR);
2962             // ((X^1)&1)^1 -> X & 1
2963             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
2964                               N0.getOperand(0).getOperand(0),
2965                               N0.getOperand(1));
2966           }
2967 
2968           return DAG.getSetCC(dl, VT, Val, N1,
2969                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2970         }
2971       } else if (N1C->isOne() &&
2972                  (VT == MVT::i1 ||
2973                   getBooleanContents(N0->getValueType(0)) ==
2974                       ZeroOrOneBooleanContent)) {
2975         SDValue Op0 = N0;
2976         if (Op0.getOpcode() == ISD::TRUNCATE)
2977           Op0 = Op0.getOperand(0);
2978 
2979         if ((Op0.getOpcode() == ISD::XOR) &&
2980             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
2981             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
2982           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
2983           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
2984           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
2985                               Cond);
2986         }
2987         if (Op0.getOpcode() == ISD::AND &&
2988             isa<ConstantSDNode>(Op0.getOperand(1)) &&
2989             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
2990           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
2991           if (Op0.getValueType().bitsGT(VT))
2992             Op0 = DAG.getNode(ISD::AND, dl, VT,
2993                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
2994                           DAG.getConstant(1, dl, VT));
2995           else if (Op0.getValueType().bitsLT(VT))
2996             Op0 = DAG.getNode(ISD::AND, dl, VT,
2997                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
2998                         DAG.getConstant(1, dl, VT));
2999 
3000           return DAG.getSetCC(dl, VT, Op0,
3001                               DAG.getConstant(0, dl, Op0.getValueType()),
3002                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3003         }
3004         if (Op0.getOpcode() == ISD::AssertZext &&
3005             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3006           return DAG.getSetCC(dl, VT, Op0,
3007                               DAG.getConstant(0, dl, Op0.getValueType()),
3008                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3009       }
3010     }
3011 
3012     if (SDValue V =
3013             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3014       return V;
3015   }
3016 
3017   // These simplifications apply to splat vectors as well.
3018   // TODO: Handle more splat vector cases.
3019   if (auto *N1C = isConstOrConstSplat(N1)) {
3020     const APInt &C1 = N1C->getAPIntValue();
3021 
3022     APInt MinVal, MaxVal;
3023     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3024     if (ISD::isSignedIntSetCC(Cond)) {
3025       MinVal = APInt::getSignedMinValue(OperandBitSize);
3026       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3027     } else {
3028       MinVal = APInt::getMinValue(OperandBitSize);
3029       MaxVal = APInt::getMaxValue(OperandBitSize);
3030     }
3031 
3032     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3033     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3034       // X >= MIN --> true
3035       if (C1 == MinVal)
3036         return DAG.getBoolConstant(true, dl, VT, OpVT);
3037 
3038       if (!VT.isVector()) { // TODO: Support this for vectors.
3039         // X >= C0 --> X > (C0 - 1)
3040         APInt C = C1 - 1;
3041         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3042         if ((DCI.isBeforeLegalizeOps() ||
3043              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3044             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3045                                   isLegalICmpImmediate(C.getSExtValue())))) {
3046           return DAG.getSetCC(dl, VT, N0,
3047                               DAG.getConstant(C, dl, N1.getValueType()),
3048                               NewCC);
3049         }
3050       }
3051     }
3052 
3053     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3054       // X <= MAX --> true
3055       if (C1 == MaxVal)
3056         return DAG.getBoolConstant(true, dl, VT, OpVT);
3057 
3058       // X <= C0 --> X < (C0 + 1)
3059       if (!VT.isVector()) { // TODO: Support this for vectors.
3060         APInt C = C1 + 1;
3061         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3062         if ((DCI.isBeforeLegalizeOps() ||
3063              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3064             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3065                                   isLegalICmpImmediate(C.getSExtValue())))) {
3066           return DAG.getSetCC(dl, VT, N0,
3067                               DAG.getConstant(C, dl, N1.getValueType()),
3068                               NewCC);
3069         }
3070       }
3071     }
3072 
3073     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3074       if (C1 == MinVal)
3075         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3076 
3077       // TODO: Support this for vectors after legalize ops.
3078       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3079         // Canonicalize setlt X, Max --> setne X, Max
3080         if (C1 == MaxVal)
3081           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3082 
3083         // If we have setult X, 1, turn it into seteq X, 0
3084         if (C1 == MinVal+1)
3085           return DAG.getSetCC(dl, VT, N0,
3086                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3087                               ISD::SETEQ);
3088       }
3089     }
3090 
3091     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3092       if (C1 == MaxVal)
3093         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3094 
3095       // TODO: Support this for vectors after legalize ops.
3096       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3097         // Canonicalize setgt X, Min --> setne X, Min
3098         if (C1 == MinVal)
3099           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3100 
3101         // If we have setugt X, Max-1, turn it into seteq X, Max
3102         if (C1 == MaxVal-1)
3103           return DAG.getSetCC(dl, VT, N0,
3104                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3105                               ISD::SETEQ);
3106       }
3107     }
3108 
3109     // If we have "setcc X, C0", check to see if we can shrink the immediate
3110     // by changing cc.
3111     // TODO: Support this for vectors after legalize ops.
3112     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3113       // SETUGT X, SINTMAX  -> SETLT X, 0
3114       if (Cond == ISD::SETUGT &&
3115           C1 == APInt::getSignedMaxValue(OperandBitSize))
3116         return DAG.getSetCC(dl, VT, N0,
3117                             DAG.getConstant(0, dl, N1.getValueType()),
3118                             ISD::SETLT);
3119 
3120       // SETULT X, SINTMIN  -> SETGT X, -1
3121       if (Cond == ISD::SETULT &&
3122           C1 == APInt::getSignedMinValue(OperandBitSize)) {
3123         SDValue ConstMinusOne =
3124             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
3125                             N1.getValueType());
3126         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
3127       }
3128     }
3129   }
3130 
3131   // Back to non-vector simplifications.
3132   // TODO: Can we do these for vector splats?
3133   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3134     const APInt &C1 = N1C->getAPIntValue();
3135 
3136     // Fold bit comparisons when we can.
3137     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3138         (VT == N0.getValueType() ||
3139          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
3140         N0.getOpcode() == ISD::AND) {
3141       auto &DL = DAG.getDataLayout();
3142       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3143         EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3144                                        !DCI.isBeforeLegalize());
3145         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
3146           // Perform the xform if the AND RHS is a single bit.
3147           if (AndRHS->getAPIntValue().isPowerOf2()) {
3148             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3149                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
3150                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
3151                                    ShiftTy)));
3152           }
3153         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
3154           // (X & 8) == 8  -->  (X & 8) >> 3
3155           // Perform the xform if C1 is a single bit.
3156           if (C1.isPowerOf2()) {
3157             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3158                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
3159                                       DAG.getConstant(C1.logBase2(), dl,
3160                                                       ShiftTy)));
3161           }
3162         }
3163       }
3164     }
3165 
3166     if (C1.getMinSignedBits() <= 64 &&
3167         !isLegalICmpImmediate(C1.getSExtValue())) {
3168       // (X & -256) == 256 -> (X >> 8) == 1
3169       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3170           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
3171         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3172           const APInt &AndRHSC = AndRHS->getAPIntValue();
3173           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
3174             unsigned ShiftBits = AndRHSC.countTrailingZeros();
3175             auto &DL = DAG.getDataLayout();
3176             EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3177                                            !DCI.isBeforeLegalize());
3178             EVT CmpTy = N0.getValueType();
3179             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
3180                                         DAG.getConstant(ShiftBits, dl,
3181                                                         ShiftTy));
3182             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
3183             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
3184           }
3185         }
3186       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
3187                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
3188         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
3189         // X <  0x100000000 -> (X >> 32) <  1
3190         // X >= 0x100000000 -> (X >> 32) >= 1
3191         // X <= 0x0ffffffff -> (X >> 32) <  1
3192         // X >  0x0ffffffff -> (X >> 32) >= 1
3193         unsigned ShiftBits;
3194         APInt NewC = C1;
3195         ISD::CondCode NewCond = Cond;
3196         if (AdjOne) {
3197           ShiftBits = C1.countTrailingOnes();
3198           NewC = NewC + 1;
3199           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3200         } else {
3201           ShiftBits = C1.countTrailingZeros();
3202         }
3203         NewC.lshrInPlace(ShiftBits);
3204         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
3205           isLegalICmpImmediate(NewC.getSExtValue())) {
3206           auto &DL = DAG.getDataLayout();
3207           EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3208                                          !DCI.isBeforeLegalize());
3209           EVT CmpTy = N0.getValueType();
3210           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
3211                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
3212           SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
3213           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
3214         }
3215       }
3216     }
3217   }
3218 
3219   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
3220     auto *CFP = cast<ConstantFPSDNode>(N1);
3221     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
3222 
3223     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
3224     // constant if knowing that the operand is non-nan is enough.  We prefer to
3225     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3226     // materialize 0.0.
3227     if (Cond == ISD::SETO || Cond == ISD::SETUO)
3228       return DAG.getSetCC(dl, VT, N0, N0, Cond);
3229 
3230     // setcc (fneg x), C -> setcc swap(pred) x, -C
3231     if (N0.getOpcode() == ISD::FNEG) {
3232       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
3233       if (DCI.isBeforeLegalizeOps() ||
3234           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
3235         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
3236         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
3237       }
3238     }
3239 
3240     // If the condition is not legal, see if we can find an equivalent one
3241     // which is legal.
3242     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
3243       // If the comparison was an awkward floating-point == or != and one of
3244       // the comparison operands is infinity or negative infinity, convert the
3245       // condition to a less-awkward <= or >=.
3246       if (CFP->getValueAPF().isInfinity()) {
3247         if (CFP->getValueAPF().isNegative()) {
3248           if (Cond == ISD::SETOEQ &&
3249               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3250             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
3251           if (Cond == ISD::SETUEQ &&
3252               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3253             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
3254           if (Cond == ISD::SETUNE &&
3255               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3256             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
3257           if (Cond == ISD::SETONE &&
3258               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3259             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
3260         } else {
3261           if (Cond == ISD::SETOEQ &&
3262               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3263             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
3264           if (Cond == ISD::SETUEQ &&
3265               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3266             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
3267           if (Cond == ISD::SETUNE &&
3268               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3269             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
3270           if (Cond == ISD::SETONE &&
3271               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3272             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
3273         }
3274       }
3275     }
3276   }
3277 
3278   if (N0 == N1) {
3279     // The sext(setcc()) => setcc() optimization relies on the appropriate
3280     // constant being emitted.
3281     assert(!N0.getValueType().isInteger() &&
3282            "Integer types should be handled by FoldSetCC");
3283 
3284     bool EqTrue = ISD::isTrueWhenEqual(Cond);
3285     unsigned UOF = ISD::getUnorderedFlavor(Cond);
3286     if (UOF == 2) // FP operators that are undefined on NaNs.
3287       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3288     if (UOF == unsigned(EqTrue))
3289       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3290     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
3291     // if it is not already.
3292     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3293     if (NewCond != Cond &&
3294         (DCI.isBeforeLegalizeOps() ||
3295                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
3296       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3297   }
3298 
3299   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3300       N0.getValueType().isInteger()) {
3301     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
3302         N0.getOpcode() == ISD::XOR) {
3303       // Simplify (X+Y) == (X+Z) -->  Y == Z
3304       if (N0.getOpcode() == N1.getOpcode()) {
3305         if (N0.getOperand(0) == N1.getOperand(0))
3306           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
3307         if (N0.getOperand(1) == N1.getOperand(1))
3308           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
3309         if (isCommutativeBinOp(N0.getOpcode())) {
3310           // If X op Y == Y op X, try other combinations.
3311           if (N0.getOperand(0) == N1.getOperand(1))
3312             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
3313                                 Cond);
3314           if (N0.getOperand(1) == N1.getOperand(0))
3315             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
3316                                 Cond);
3317         }
3318       }
3319 
3320       // If RHS is a legal immediate value for a compare instruction, we need
3321       // to be careful about increasing register pressure needlessly.
3322       bool LegalRHSImm = false;
3323 
3324       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
3325         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3326           // Turn (X+C1) == C2 --> X == C2-C1
3327           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
3328             return DAG.getSetCC(dl, VT, N0.getOperand(0),
3329                                 DAG.getConstant(RHSC->getAPIntValue()-
3330                                                 LHSR->getAPIntValue(),
3331                                 dl, N0.getValueType()), Cond);
3332           }
3333 
3334           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3335           if (N0.getOpcode() == ISD::XOR)
3336             // If we know that all of the inverted bits are zero, don't bother
3337             // performing the inversion.
3338             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
3339               return
3340                 DAG.getSetCC(dl, VT, N0.getOperand(0),
3341                              DAG.getConstant(LHSR->getAPIntValue() ^
3342                                                RHSC->getAPIntValue(),
3343                                              dl, N0.getValueType()),
3344                              Cond);
3345         }
3346 
3347         // Turn (C1-X) == C2 --> X == C1-C2
3348         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3349           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
3350             return
3351               DAG.getSetCC(dl, VT, N0.getOperand(1),
3352                            DAG.getConstant(SUBC->getAPIntValue() -
3353                                              RHSC->getAPIntValue(),
3354                                            dl, N0.getValueType()),
3355                            Cond);
3356           }
3357         }
3358 
3359         // Could RHSC fold directly into a compare?
3360         if (RHSC->getValueType(0).getSizeInBits() <= 64)
3361           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
3362       }
3363 
3364       // (X+Y) == X --> Y == 0 and similar folds.
3365       // Don't do this if X is an immediate that can fold into a cmp
3366       // instruction and X+Y has other uses. It could be an induction variable
3367       // chain, and the transform would increase register pressure.
3368       if (!LegalRHSImm || N0.hasOneUse())
3369         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
3370           return V;
3371     }
3372 
3373     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
3374         N1.getOpcode() == ISD::XOR)
3375       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
3376         return V;
3377 
3378     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
3379       return V;
3380   }
3381 
3382   // Fold away ALL boolean setcc's.
3383   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
3384     SDValue Temp;
3385     switch (Cond) {
3386     default: llvm_unreachable("Unknown integer setcc!");
3387     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
3388       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3389       N0 = DAG.getNOT(dl, Temp, OpVT);
3390       if (!DCI.isCalledByLegalizer())
3391         DCI.AddToWorklist(Temp.getNode());
3392       break;
3393     case ISD::SETNE:  // X != Y   -->  (X^Y)
3394       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3395       break;
3396     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
3397     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
3398       Temp = DAG.getNOT(dl, N0, OpVT);
3399       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
3400       if (!DCI.isCalledByLegalizer())
3401         DCI.AddToWorklist(Temp.getNode());
3402       break;
3403     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
3404     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
3405       Temp = DAG.getNOT(dl, N1, OpVT);
3406       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
3407       if (!DCI.isCalledByLegalizer())
3408         DCI.AddToWorklist(Temp.getNode());
3409       break;
3410     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
3411     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
3412       Temp = DAG.getNOT(dl, N0, OpVT);
3413       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
3414       if (!DCI.isCalledByLegalizer())
3415         DCI.AddToWorklist(Temp.getNode());
3416       break;
3417     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
3418     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
3419       Temp = DAG.getNOT(dl, N1, OpVT);
3420       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
3421       break;
3422     }
3423     if (VT.getScalarType() != MVT::i1) {
3424       if (!DCI.isCalledByLegalizer())
3425         DCI.AddToWorklist(N0.getNode());
3426       // FIXME: If running after legalize, we probably can't do this.
3427       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
3428       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
3429     }
3430     return N0;
3431   }
3432 
3433   // Could not fold it.
3434   return SDValue();
3435 }
3436 
3437 /// Returns true (and the GlobalValue and the offset) if the node is a
3438 /// GlobalAddress + offset.
3439 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
3440                                     int64_t &Offset) const {
3441 
3442   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
3443 
3444   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
3445     GA = GASD->getGlobal();
3446     Offset += GASD->getOffset();
3447     return true;
3448   }
3449 
3450   if (N->getOpcode() == ISD::ADD) {
3451     SDValue N1 = N->getOperand(0);
3452     SDValue N2 = N->getOperand(1);
3453     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
3454       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
3455         Offset += V->getSExtValue();
3456         return true;
3457       }
3458     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
3459       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
3460         Offset += V->getSExtValue();
3461         return true;
3462       }
3463     }
3464   }
3465 
3466   return false;
3467 }
3468 
3469 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
3470                                           DAGCombinerInfo &DCI) const {
3471   // Default implementation: no optimization.
3472   return SDValue();
3473 }
3474 
3475 //===----------------------------------------------------------------------===//
3476 //  Inline Assembler Implementation Methods
3477 //===----------------------------------------------------------------------===//
3478 
3479 TargetLowering::ConstraintType
3480 TargetLowering::getConstraintType(StringRef Constraint) const {
3481   unsigned S = Constraint.size();
3482 
3483   if (S == 1) {
3484     switch (Constraint[0]) {
3485     default: break;
3486     case 'r': return C_RegisterClass;
3487     case 'm': // memory
3488     case 'o': // offsetable
3489     case 'V': // not offsetable
3490       return C_Memory;
3491     case 'i': // Simple Integer or Relocatable Constant
3492     case 'n': // Simple Integer
3493     case 'E': // Floating Point Constant
3494     case 'F': // Floating Point Constant
3495     case 's': // Relocatable Constant
3496     case 'p': // Address.
3497     case 'X': // Allow ANY value.
3498     case 'I': // Target registers.
3499     case 'J':
3500     case 'K':
3501     case 'L':
3502     case 'M':
3503     case 'N':
3504     case 'O':
3505     case 'P':
3506     case '<':
3507     case '>':
3508       return C_Other;
3509     }
3510   }
3511 
3512   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
3513     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
3514       return C_Memory;
3515     return C_Register;
3516   }
3517   return C_Unknown;
3518 }
3519 
3520 /// Try to replace an X constraint, which matches anything, with another that
3521 /// has more specific requirements based on the type of the corresponding
3522 /// operand.
3523 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
3524   if (ConstraintVT.isInteger())
3525     return "r";
3526   if (ConstraintVT.isFloatingPoint())
3527     return "f"; // works for many targets
3528   return nullptr;
3529 }
3530 
3531 SDValue TargetLowering::LowerAsmOutputForConstraint(
3532     SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
3533     SelectionDAG &DAG) const {
3534   return SDValue();
3535 }
3536 
3537 /// Lower the specified operand into the Ops vector.
3538 /// If it is invalid, don't add anything to Ops.
3539 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3540                                                   std::string &Constraint,
3541                                                   std::vector<SDValue> &Ops,
3542                                                   SelectionDAG &DAG) const {
3543 
3544   if (Constraint.length() > 1) return;
3545 
3546   char ConstraintLetter = Constraint[0];
3547   switch (ConstraintLetter) {
3548   default: break;
3549   case 'X':     // Allows any operand; labels (basic block) use this.
3550     if (Op.getOpcode() == ISD::BasicBlock ||
3551         Op.getOpcode() == ISD::TargetBlockAddress) {
3552       Ops.push_back(Op);
3553       return;
3554     }
3555     LLVM_FALLTHROUGH;
3556   case 'i':    // Simple Integer or Relocatable Constant
3557   case 'n':    // Simple Integer
3558   case 's': {  // Relocatable Constant
3559 
3560     GlobalAddressSDNode *GA;
3561     ConstantSDNode *C;
3562     uint64_t Offset = 0;
3563 
3564     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
3565     // etc., since getelementpointer is variadic. We can't use
3566     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
3567     // while in this case the GA may be furthest from the root node which is
3568     // likely an ISD::ADD.
3569     while (1) {
3570       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
3571         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
3572                                                  GA->getValueType(0),
3573                                                  Offset + GA->getOffset()));
3574         return;
3575       } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
3576                  ConstraintLetter != 's') {
3577         // gcc prints these as sign extended.  Sign extend value to 64 bits
3578         // now; without this it would get ZExt'd later in
3579         // ScheduleDAGSDNodes::EmitNode, which is very generic.
3580         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
3581         BooleanContent BCont = getBooleanContents(MVT::i64);
3582         ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
3583                                       : ISD::SIGN_EXTEND;
3584         int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
3585                                                     : C->getSExtValue();
3586         Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
3587                                             SDLoc(C), MVT::i64));
3588         return;
3589       } else {
3590         const unsigned OpCode = Op.getOpcode();
3591         if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
3592           if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
3593             Op = Op.getOperand(1);
3594           // Subtraction is not commutative.
3595           else if (OpCode == ISD::ADD &&
3596                    (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
3597             Op = Op.getOperand(0);
3598           else
3599             return;
3600           Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
3601           continue;
3602         }
3603       }
3604       return;
3605     }
3606     break;
3607   }
3608   }
3609 }
3610 
3611 std::pair<unsigned, const TargetRegisterClass *>
3612 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
3613                                              StringRef Constraint,
3614                                              MVT VT) const {
3615   if (Constraint.empty() || Constraint[0] != '{')
3616     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
3617   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
3618 
3619   // Remove the braces from around the name.
3620   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
3621 
3622   std::pair<unsigned, const TargetRegisterClass *> R =
3623       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
3624 
3625   // Figure out which register class contains this reg.
3626   for (const TargetRegisterClass *RC : RI->regclasses()) {
3627     // If none of the value types for this register class are valid, we
3628     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3629     if (!isLegalRC(*RI, *RC))
3630       continue;
3631 
3632     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
3633          I != E; ++I) {
3634       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
3635         std::pair<unsigned, const TargetRegisterClass *> S =
3636             std::make_pair(*I, RC);
3637 
3638         // If this register class has the requested value type, return it,
3639         // otherwise keep searching and return the first class found
3640         // if no other is found which explicitly has the requested type.
3641         if (RI->isTypeLegalForClass(*RC, VT))
3642           return S;
3643         if (!R.second)
3644           R = S;
3645       }
3646     }
3647   }
3648 
3649   return R;
3650 }
3651 
3652 //===----------------------------------------------------------------------===//
3653 // Constraint Selection.
3654 
3655 /// Return true of this is an input operand that is a matching constraint like
3656 /// "4".
3657 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
3658   assert(!ConstraintCode.empty() && "No known constraint!");
3659   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
3660 }
3661 
3662 /// If this is an input matching constraint, this method returns the output
3663 /// operand it matches.
3664 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
3665   assert(!ConstraintCode.empty() && "No known constraint!");
3666   return atoi(ConstraintCode.c_str());
3667 }
3668 
3669 /// Split up the constraint string from the inline assembly value into the
3670 /// specific constraints and their prefixes, and also tie in the associated
3671 /// operand values.
3672 /// If this returns an empty vector, and if the constraint string itself
3673 /// isn't empty, there was an error parsing.
3674 TargetLowering::AsmOperandInfoVector
3675 TargetLowering::ParseConstraints(const DataLayout &DL,
3676                                  const TargetRegisterInfo *TRI,
3677                                  ImmutableCallSite CS) const {
3678   /// Information about all of the constraints.
3679   AsmOperandInfoVector ConstraintOperands;
3680   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
3681   unsigned maCount = 0; // Largest number of multiple alternative constraints.
3682 
3683   // Do a prepass over the constraints, canonicalizing them, and building up the
3684   // ConstraintOperands list.
3685   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
3686   unsigned ResNo = 0; // ResNo - The result number of the next output.
3687 
3688   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
3689     ConstraintOperands.emplace_back(std::move(CI));
3690     AsmOperandInfo &OpInfo = ConstraintOperands.back();
3691 
3692     // Update multiple alternative constraint count.
3693     if (OpInfo.multipleAlternatives.size() > maCount)
3694       maCount = OpInfo.multipleAlternatives.size();
3695 
3696     OpInfo.ConstraintVT = MVT::Other;
3697 
3698     // Compute the value type for each operand.
3699     switch (OpInfo.Type) {
3700     case InlineAsm::isOutput:
3701       // Indirect outputs just consume an argument.
3702       if (OpInfo.isIndirect) {
3703         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
3704         break;
3705       }
3706 
3707       // The return value of the call is this value.  As such, there is no
3708       // corresponding argument.
3709       assert(!CS.getType()->isVoidTy() &&
3710              "Bad inline asm!");
3711       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
3712         OpInfo.ConstraintVT =
3713             getSimpleValueType(DL, STy->getElementType(ResNo));
3714       } else {
3715         assert(ResNo == 0 && "Asm only has one result!");
3716         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
3717       }
3718       ++ResNo;
3719       break;
3720     case InlineAsm::isInput:
3721       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
3722       break;
3723     case InlineAsm::isClobber:
3724       // Nothing to do.
3725       break;
3726     }
3727 
3728     if (OpInfo.CallOperandVal) {
3729       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
3730       if (OpInfo.isIndirect) {
3731         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
3732         if (!PtrTy)
3733           report_fatal_error("Indirect operand for inline asm not a pointer!");
3734         OpTy = PtrTy->getElementType();
3735       }
3736 
3737       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
3738       if (StructType *STy = dyn_cast<StructType>(OpTy))
3739         if (STy->getNumElements() == 1)
3740           OpTy = STy->getElementType(0);
3741 
3742       // If OpTy is not a single value, it may be a struct/union that we
3743       // can tile with integers.
3744       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
3745         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
3746         switch (BitSize) {
3747         default: break;
3748         case 1:
3749         case 8:
3750         case 16:
3751         case 32:
3752         case 64:
3753         case 128:
3754           OpInfo.ConstraintVT =
3755               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
3756           break;
3757         }
3758       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
3759         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
3760         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
3761       } else {
3762         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
3763       }
3764     }
3765   }
3766 
3767   // If we have multiple alternative constraints, select the best alternative.
3768   if (!ConstraintOperands.empty()) {
3769     if (maCount) {
3770       unsigned bestMAIndex = 0;
3771       int bestWeight = -1;
3772       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
3773       int weight = -1;
3774       unsigned maIndex;
3775       // Compute the sums of the weights for each alternative, keeping track
3776       // of the best (highest weight) one so far.
3777       for (maIndex = 0; maIndex < maCount; ++maIndex) {
3778         int weightSum = 0;
3779         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3780              cIndex != eIndex; ++cIndex) {
3781           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
3782           if (OpInfo.Type == InlineAsm::isClobber)
3783             continue;
3784 
3785           // If this is an output operand with a matching input operand,
3786           // look up the matching input. If their types mismatch, e.g. one
3787           // is an integer, the other is floating point, or their sizes are
3788           // different, flag it as an maCantMatch.
3789           if (OpInfo.hasMatchingInput()) {
3790             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
3791             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
3792               if ((OpInfo.ConstraintVT.isInteger() !=
3793                    Input.ConstraintVT.isInteger()) ||
3794                   (OpInfo.ConstraintVT.getSizeInBits() !=
3795                    Input.ConstraintVT.getSizeInBits())) {
3796                 weightSum = -1; // Can't match.
3797                 break;
3798               }
3799             }
3800           }
3801           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
3802           if (weight == -1) {
3803             weightSum = -1;
3804             break;
3805           }
3806           weightSum += weight;
3807         }
3808         // Update best.
3809         if (weightSum > bestWeight) {
3810           bestWeight = weightSum;
3811           bestMAIndex = maIndex;
3812         }
3813       }
3814 
3815       // Now select chosen alternative in each constraint.
3816       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3817            cIndex != eIndex; ++cIndex) {
3818         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
3819         if (cInfo.Type == InlineAsm::isClobber)
3820           continue;
3821         cInfo.selectAlternative(bestMAIndex);
3822       }
3823     }
3824   }
3825 
3826   // Check and hook up tied operands, choose constraint code to use.
3827   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3828        cIndex != eIndex; ++cIndex) {
3829     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
3830 
3831     // If this is an output operand with a matching input operand, look up the
3832     // matching input. If their types mismatch, e.g. one is an integer, the
3833     // other is floating point, or their sizes are different, flag it as an
3834     // error.
3835     if (OpInfo.hasMatchingInput()) {
3836       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
3837 
3838       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
3839         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
3840             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
3841                                          OpInfo.ConstraintVT);
3842         std::pair<unsigned, const TargetRegisterClass *> InputRC =
3843             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
3844                                          Input.ConstraintVT);
3845         if ((OpInfo.ConstraintVT.isInteger() !=
3846              Input.ConstraintVT.isInteger()) ||
3847             (MatchRC.second != InputRC.second)) {
3848           report_fatal_error("Unsupported asm: input constraint"
3849                              " with a matching output constraint of"
3850                              " incompatible type!");
3851         }
3852       }
3853     }
3854   }
3855 
3856   return ConstraintOperands;
3857 }
3858 
3859 /// Return an integer indicating how general CT is.
3860 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3861   switch (CT) {
3862   case TargetLowering::C_Other:
3863   case TargetLowering::C_Unknown:
3864     return 0;
3865   case TargetLowering::C_Register:
3866     return 1;
3867   case TargetLowering::C_RegisterClass:
3868     return 2;
3869   case TargetLowering::C_Memory:
3870     return 3;
3871   }
3872   llvm_unreachable("Invalid constraint type");
3873 }
3874 
3875 /// Examine constraint type and operand type and determine a weight value.
3876 /// This object must already have been set up with the operand type
3877 /// and the current alternative constraint selected.
3878 TargetLowering::ConstraintWeight
3879   TargetLowering::getMultipleConstraintMatchWeight(
3880     AsmOperandInfo &info, int maIndex) const {
3881   InlineAsm::ConstraintCodeVector *rCodes;
3882   if (maIndex >= (int)info.multipleAlternatives.size())
3883     rCodes = &info.Codes;
3884   else
3885     rCodes = &info.multipleAlternatives[maIndex].Codes;
3886   ConstraintWeight BestWeight = CW_Invalid;
3887 
3888   // Loop over the options, keeping track of the most general one.
3889   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
3890     ConstraintWeight weight =
3891       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
3892     if (weight > BestWeight)
3893       BestWeight = weight;
3894   }
3895 
3896   return BestWeight;
3897 }
3898 
3899 /// Examine constraint type and operand type and determine a weight value.
3900 /// This object must already have been set up with the operand type
3901 /// and the current alternative constraint selected.
3902 TargetLowering::ConstraintWeight
3903   TargetLowering::getSingleConstraintMatchWeight(
3904     AsmOperandInfo &info, const char *constraint) const {
3905   ConstraintWeight weight = CW_Invalid;
3906   Value *CallOperandVal = info.CallOperandVal;
3907     // If we don't have a value, we can't do a match,
3908     // but allow it at the lowest weight.
3909   if (!CallOperandVal)
3910     return CW_Default;
3911   // Look at the constraint type.
3912   switch (*constraint) {
3913     case 'i': // immediate integer.
3914     case 'n': // immediate integer with a known value.
3915       if (isa<ConstantInt>(CallOperandVal))
3916         weight = CW_Constant;
3917       break;
3918     case 's': // non-explicit intregal immediate.
3919       if (isa<GlobalValue>(CallOperandVal))
3920         weight = CW_Constant;
3921       break;
3922     case 'E': // immediate float if host format.
3923     case 'F': // immediate float.
3924       if (isa<ConstantFP>(CallOperandVal))
3925         weight = CW_Constant;
3926       break;
3927     case '<': // memory operand with autodecrement.
3928     case '>': // memory operand with autoincrement.
3929     case 'm': // memory operand.
3930     case 'o': // offsettable memory operand
3931     case 'V': // non-offsettable memory operand
3932       weight = CW_Memory;
3933       break;
3934     case 'r': // general register.
3935     case 'g': // general register, memory operand or immediate integer.
3936               // note: Clang converts "g" to "imr".
3937       if (CallOperandVal->getType()->isIntegerTy())
3938         weight = CW_Register;
3939       break;
3940     case 'X': // any operand.
3941   default:
3942     weight = CW_Default;
3943     break;
3944   }
3945   return weight;
3946 }
3947 
3948 /// If there are multiple different constraints that we could pick for this
3949 /// operand (e.g. "imr") try to pick the 'best' one.
3950 /// This is somewhat tricky: constraints fall into four classes:
3951 ///    Other         -> immediates and magic values
3952 ///    Register      -> one specific register
3953 ///    RegisterClass -> a group of regs
3954 ///    Memory        -> memory
3955 /// Ideally, we would pick the most specific constraint possible: if we have
3956 /// something that fits into a register, we would pick it.  The problem here
3957 /// is that if we have something that could either be in a register or in
3958 /// memory that use of the register could cause selection of *other*
3959 /// operands to fail: they might only succeed if we pick memory.  Because of
3960 /// this the heuristic we use is:
3961 ///
3962 ///  1) If there is an 'other' constraint, and if the operand is valid for
3963 ///     that constraint, use it.  This makes us take advantage of 'i'
3964 ///     constraints when available.
3965 ///  2) Otherwise, pick the most general constraint present.  This prefers
3966 ///     'm' over 'r', for example.
3967 ///
3968 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
3969                              const TargetLowering &TLI,
3970                              SDValue Op, SelectionDAG *DAG) {
3971   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
3972   unsigned BestIdx = 0;
3973   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
3974   int BestGenerality = -1;
3975 
3976   // Loop over the options, keeping track of the most general one.
3977   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
3978     TargetLowering::ConstraintType CType =
3979       TLI.getConstraintType(OpInfo.Codes[i]);
3980 
3981     // If this is an 'other' constraint, see if the operand is valid for it.
3982     // For example, on X86 we might have an 'rI' constraint.  If the operand
3983     // is an integer in the range [0..31] we want to use I (saving a load
3984     // of a register), otherwise we must use 'r'.
3985     if (CType == TargetLowering::C_Other && Op.getNode()) {
3986       assert(OpInfo.Codes[i].size() == 1 &&
3987              "Unhandled multi-letter 'other' constraint");
3988       std::vector<SDValue> ResultOps;
3989       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
3990                                        ResultOps, *DAG);
3991       if (!ResultOps.empty()) {
3992         BestType = CType;
3993         BestIdx = i;
3994         break;
3995       }
3996     }
3997 
3998     // Things with matching constraints can only be registers, per gcc
3999     // documentation.  This mainly affects "g" constraints.
4000     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4001       continue;
4002 
4003     // This constraint letter is more general than the previous one, use it.
4004     int Generality = getConstraintGenerality(CType);
4005     if (Generality > BestGenerality) {
4006       BestType = CType;
4007       BestIdx = i;
4008       BestGenerality = Generality;
4009     }
4010   }
4011 
4012   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4013   OpInfo.ConstraintType = BestType;
4014 }
4015 
4016 /// Determines the constraint code and constraint type to use for the specific
4017 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4018 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4019                                             SDValue Op,
4020                                             SelectionDAG *DAG) const {
4021   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4022 
4023   // Single-letter constraints ('r') are very common.
4024   if (OpInfo.Codes.size() == 1) {
4025     OpInfo.ConstraintCode = OpInfo.Codes[0];
4026     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4027   } else {
4028     ChooseConstraint(OpInfo, *this, Op, DAG);
4029   }
4030 
4031   // 'X' matches anything.
4032   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4033     // Labels and constants are handled elsewhere ('X' is the only thing
4034     // that matches labels).  For Functions, the type here is the type of
4035     // the result, which is not what we want to look at; leave them alone.
4036     Value *v = OpInfo.CallOperandVal;
4037     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4038       OpInfo.CallOperandVal = v;
4039       return;
4040     }
4041 
4042     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4043       return;
4044 
4045     // Otherwise, try to resolve it to something we know about by looking at
4046     // the actual operand type.
4047     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4048       OpInfo.ConstraintCode = Repl;
4049       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4050     }
4051   }
4052 }
4053 
4054 /// Given an exact SDIV by a constant, create a multiplication
4055 /// with the multiplicative inverse of the constant.
4056 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4057                               const SDLoc &dl, SelectionDAG &DAG,
4058                               SmallVectorImpl<SDNode *> &Created) {
4059   SDValue Op0 = N->getOperand(0);
4060   SDValue Op1 = N->getOperand(1);
4061   EVT VT = N->getValueType(0);
4062   EVT SVT = VT.getScalarType();
4063   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
4064   EVT ShSVT = ShVT.getScalarType();
4065 
4066   bool UseSRA = false;
4067   SmallVector<SDValue, 16> Shifts, Factors;
4068 
4069   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4070     if (C->isNullValue())
4071       return false;
4072     APInt Divisor = C->getAPIntValue();
4073     unsigned Shift = Divisor.countTrailingZeros();
4074     if (Shift) {
4075       Divisor.ashrInPlace(Shift);
4076       UseSRA = true;
4077     }
4078     // Calculate the multiplicative inverse, using Newton's method.
4079     APInt t;
4080     APInt Factor = Divisor;
4081     while ((t = Divisor * Factor) != 1)
4082       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
4083     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
4084     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
4085     return true;
4086   };
4087 
4088   // Collect all magic values from the build vector.
4089   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
4090     return SDValue();
4091 
4092   SDValue Shift, Factor;
4093   if (VT.isVector()) {
4094     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4095     Factor = DAG.getBuildVector(VT, dl, Factors);
4096   } else {
4097     Shift = Shifts[0];
4098     Factor = Factors[0];
4099   }
4100 
4101   SDValue Res = Op0;
4102 
4103   // Shift the value upfront if it is even, so the LSB is one.
4104   if (UseSRA) {
4105     // TODO: For UDIV use SRL instead of SRA.
4106     SDNodeFlags Flags;
4107     Flags.setExact(true);
4108     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
4109     Created.push_back(Res.getNode());
4110   }
4111 
4112   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
4113 }
4114 
4115 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4116                               SelectionDAG &DAG,
4117                               SmallVectorImpl<SDNode *> &Created) const {
4118   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4119   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4120   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
4121     return SDValue(N, 0); // Lower SDIV as SDIV
4122   return SDValue();
4123 }
4124 
4125 /// Given an ISD::SDIV node expressing a divide by constant,
4126 /// return a DAG expression to select that will generate the same value by
4127 /// multiplying by a magic number.
4128 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4129 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
4130                                   bool IsAfterLegalization,
4131                                   SmallVectorImpl<SDNode *> &Created) const {
4132   SDLoc dl(N);
4133   EVT VT = N->getValueType(0);
4134   EVT SVT = VT.getScalarType();
4135   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4136   EVT ShSVT = ShVT.getScalarType();
4137   unsigned EltBits = VT.getScalarSizeInBits();
4138 
4139   // Check to see if we can do this.
4140   // FIXME: We should be more aggressive here.
4141   if (!isTypeLegal(VT))
4142     return SDValue();
4143 
4144   // If the sdiv has an 'exact' bit we can use a simpler lowering.
4145   if (N->getFlags().hasExact())
4146     return BuildExactSDIV(*this, N, dl, DAG, Created);
4147 
4148   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
4149 
4150   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4151     if (C->isNullValue())
4152       return false;
4153 
4154     const APInt &Divisor = C->getAPIntValue();
4155     APInt::ms magics = Divisor.magic();
4156     int NumeratorFactor = 0;
4157     int ShiftMask = -1;
4158 
4159     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
4160       // If d is +1/-1, we just multiply the numerator by +1/-1.
4161       NumeratorFactor = Divisor.getSExtValue();
4162       magics.m = 0;
4163       magics.s = 0;
4164       ShiftMask = 0;
4165     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
4166       // If d > 0 and m < 0, add the numerator.
4167       NumeratorFactor = 1;
4168     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
4169       // If d < 0 and m > 0, subtract the numerator.
4170       NumeratorFactor = -1;
4171     }
4172 
4173     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
4174     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
4175     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
4176     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
4177     return true;
4178   };
4179 
4180   SDValue N0 = N->getOperand(0);
4181   SDValue N1 = N->getOperand(1);
4182 
4183   // Collect the shifts / magic values from each element.
4184   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
4185     return SDValue();
4186 
4187   SDValue MagicFactor, Factor, Shift, ShiftMask;
4188   if (VT.isVector()) {
4189     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4190     Factor = DAG.getBuildVector(VT, dl, Factors);
4191     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4192     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
4193   } else {
4194     MagicFactor = MagicFactors[0];
4195     Factor = Factors[0];
4196     Shift = Shifts[0];
4197     ShiftMask = ShiftMasks[0];
4198   }
4199 
4200   // Multiply the numerator (operand 0) by the magic value.
4201   // FIXME: We should support doing a MUL in a wider type.
4202   SDValue Q;
4203   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
4204                           : isOperationLegalOrCustom(ISD::MULHS, VT))
4205     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
4206   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
4207                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
4208     SDValue LoHi =
4209         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
4210     Q = SDValue(LoHi.getNode(), 1);
4211   } else
4212     return SDValue(); // No mulhs or equivalent.
4213   Created.push_back(Q.getNode());
4214 
4215   // (Optionally) Add/subtract the numerator using Factor.
4216   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
4217   Created.push_back(Factor.getNode());
4218   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
4219   Created.push_back(Q.getNode());
4220 
4221   // Shift right algebraic by shift value.
4222   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
4223   Created.push_back(Q.getNode());
4224 
4225   // Extract the sign bit, mask it and add it to the quotient.
4226   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
4227   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
4228   Created.push_back(T.getNode());
4229   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
4230   Created.push_back(T.getNode());
4231   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
4232 }
4233 
4234 /// Given an ISD::UDIV node expressing a divide by constant,
4235 /// return a DAG expression to select that will generate the same value by
4236 /// multiplying by a magic number.
4237 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4238 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
4239                                   bool IsAfterLegalization,
4240                                   SmallVectorImpl<SDNode *> &Created) const {
4241   SDLoc dl(N);
4242   EVT VT = N->getValueType(0);
4243   EVT SVT = VT.getScalarType();
4244   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4245   EVT ShSVT = ShVT.getScalarType();
4246   unsigned EltBits = VT.getScalarSizeInBits();
4247 
4248   // Check to see if we can do this.
4249   // FIXME: We should be more aggressive here.
4250   if (!isTypeLegal(VT))
4251     return SDValue();
4252 
4253   bool UseNPQ = false;
4254   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4255 
4256   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
4257     if (C->isNullValue())
4258       return false;
4259     // FIXME: We should use a narrower constant when the upper
4260     // bits are known to be zero.
4261     APInt Divisor = C->getAPIntValue();
4262     APInt::mu magics = Divisor.magicu();
4263     unsigned PreShift = 0, PostShift = 0;
4264 
4265     // If the divisor is even, we can avoid using the expensive fixup by
4266     // shifting the divided value upfront.
4267     if (magics.a != 0 && !Divisor[0]) {
4268       PreShift = Divisor.countTrailingZeros();
4269       // Get magic number for the shifted divisor.
4270       magics = Divisor.lshr(PreShift).magicu(PreShift);
4271       assert(magics.a == 0 && "Should use cheap fixup now");
4272     }
4273 
4274     APInt Magic = magics.m;
4275 
4276     unsigned SelNPQ;
4277     if (magics.a == 0 || Divisor.isOneValue()) {
4278       assert(magics.s < Divisor.getBitWidth() &&
4279              "We shouldn't generate an undefined shift!");
4280       PostShift = magics.s;
4281       SelNPQ = false;
4282     } else {
4283       PostShift = magics.s - 1;
4284       SelNPQ = true;
4285     }
4286 
4287     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
4288     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
4289     NPQFactors.push_back(
4290         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
4291                                : APInt::getNullValue(EltBits),
4292                         dl, SVT));
4293     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
4294     UseNPQ |= SelNPQ;
4295     return true;
4296   };
4297 
4298   SDValue N0 = N->getOperand(0);
4299   SDValue N1 = N->getOperand(1);
4300 
4301   // Collect the shifts/magic values from each element.
4302   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
4303     return SDValue();
4304 
4305   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
4306   if (VT.isVector()) {
4307     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
4308     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4309     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
4310     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
4311   } else {
4312     PreShift = PreShifts[0];
4313     MagicFactor = MagicFactors[0];
4314     PostShift = PostShifts[0];
4315   }
4316 
4317   SDValue Q = N0;
4318   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
4319   Created.push_back(Q.getNode());
4320 
4321   // FIXME: We should support doing a MUL in a wider type.
4322   auto GetMULHU = [&](SDValue X, SDValue Y) {
4323     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
4324                             : isOperationLegalOrCustom(ISD::MULHU, VT))
4325       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
4326     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
4327                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
4328       SDValue LoHi =
4329           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
4330       return SDValue(LoHi.getNode(), 1);
4331     }
4332     return SDValue(); // No mulhu or equivalent
4333   };
4334 
4335   // Multiply the numerator (operand 0) by the magic value.
4336   Q = GetMULHU(Q, MagicFactor);
4337   if (!Q)
4338     return SDValue();
4339 
4340   Created.push_back(Q.getNode());
4341 
4342   if (UseNPQ) {
4343     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
4344     Created.push_back(NPQ.getNode());
4345 
4346     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
4347     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
4348     if (VT.isVector())
4349       NPQ = GetMULHU(NPQ, NPQFactor);
4350     else
4351       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
4352 
4353     Created.push_back(NPQ.getNode());
4354 
4355     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
4356     Created.push_back(Q.getNode());
4357   }
4358 
4359   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
4360   Created.push_back(Q.getNode());
4361 
4362   SDValue One = DAG.getConstant(1, dl, VT);
4363   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
4364   return DAG.getSelect(dl, VT, IsOne, N0, Q);
4365 }
4366 
4367 bool TargetLowering::
4368 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
4369   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
4370     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
4371                                 "be a constant integer");
4372     return true;
4373   }
4374 
4375   return false;
4376 }
4377 
4378 //===----------------------------------------------------------------------===//
4379 // Legalization Utilities
4380 //===----------------------------------------------------------------------===//
4381 
4382 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
4383                                     SDValue LHS, SDValue RHS,
4384                                     SmallVectorImpl<SDValue> &Result,
4385                                     EVT HiLoVT, SelectionDAG &DAG,
4386                                     MulExpansionKind Kind, SDValue LL,
4387                                     SDValue LH, SDValue RL, SDValue RH) const {
4388   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
4389          Opcode == ISD::SMUL_LOHI);
4390 
4391   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
4392                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
4393   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
4394                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
4395   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
4396                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
4397   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
4398                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
4399 
4400   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
4401     return false;
4402 
4403   unsigned OuterBitSize = VT.getScalarSizeInBits();
4404   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
4405   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
4406   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
4407 
4408   // LL, LH, RL, and RH must be either all NULL or all set to a value.
4409   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
4410          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
4411 
4412   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
4413   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
4414                           bool Signed) -> bool {
4415     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
4416       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
4417       Hi = SDValue(Lo.getNode(), 1);
4418       return true;
4419     }
4420     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
4421       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
4422       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
4423       return true;
4424     }
4425     return false;
4426   };
4427 
4428   SDValue Lo, Hi;
4429 
4430   if (!LL.getNode() && !RL.getNode() &&
4431       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
4432     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
4433     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
4434   }
4435 
4436   if (!LL.getNode())
4437     return false;
4438 
4439   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
4440   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
4441       DAG.MaskedValueIsZero(RHS, HighMask)) {
4442     // The inputs are both zero-extended.
4443     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
4444       Result.push_back(Lo);
4445       Result.push_back(Hi);
4446       if (Opcode != ISD::MUL) {
4447         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
4448         Result.push_back(Zero);
4449         Result.push_back(Zero);
4450       }
4451       return true;
4452     }
4453   }
4454 
4455   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
4456       RHSSB > InnerBitSize) {
4457     // The input values are both sign-extended.
4458     // TODO non-MUL case?
4459     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
4460       Result.push_back(Lo);
4461       Result.push_back(Hi);
4462       return true;
4463     }
4464   }
4465 
4466   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
4467   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
4468   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
4469     // FIXME getShiftAmountTy does not always return a sensible result when VT
4470     // is an illegal type, and so the type may be too small to fit the shift
4471     // amount. Override it with i32. The shift will have to be legalized.
4472     ShiftAmountTy = MVT::i32;
4473   }
4474   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
4475 
4476   if (!LH.getNode() && !RH.getNode() &&
4477       isOperationLegalOrCustom(ISD::SRL, VT) &&
4478       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
4479     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
4480     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
4481     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
4482     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
4483   }
4484 
4485   if (!LH.getNode())
4486     return false;
4487 
4488   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
4489     return false;
4490 
4491   Result.push_back(Lo);
4492 
4493   if (Opcode == ISD::MUL) {
4494     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
4495     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
4496     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
4497     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
4498     Result.push_back(Hi);
4499     return true;
4500   }
4501 
4502   // Compute the full width result.
4503   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
4504     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
4505     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
4506     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
4507     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
4508   };
4509 
4510   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
4511   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
4512     return false;
4513 
4514   // This is effectively the add part of a multiply-add of half-sized operands,
4515   // so it cannot overflow.
4516   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
4517 
4518   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
4519     return false;
4520 
4521   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
4522   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
4523 
4524   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
4525                   isOperationLegalOrCustom(ISD::ADDE, VT));
4526   if (UseGlue)
4527     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
4528                        Merge(Lo, Hi));
4529   else
4530     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
4531                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
4532 
4533   SDValue Carry = Next.getValue(1);
4534   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
4535   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
4536 
4537   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
4538     return false;
4539 
4540   if (UseGlue)
4541     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
4542                      Carry);
4543   else
4544     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
4545                      Zero, Carry);
4546 
4547   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
4548 
4549   if (Opcode == ISD::SMUL_LOHI) {
4550     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
4551                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
4552     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
4553 
4554     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
4555                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
4556     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
4557   }
4558 
4559   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
4560   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
4561   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
4562   return true;
4563 }
4564 
4565 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
4566                                SelectionDAG &DAG, MulExpansionKind Kind,
4567                                SDValue LL, SDValue LH, SDValue RL,
4568                                SDValue RH) const {
4569   SmallVector<SDValue, 2> Result;
4570   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
4571                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
4572                            DAG, Kind, LL, LH, RL, RH);
4573   if (Ok) {
4574     assert(Result.size() == 2);
4575     Lo = Result[0];
4576     Hi = Result[1];
4577   }
4578   return Ok;
4579 }
4580 
4581 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
4582                                        SelectionDAG &DAG) const {
4583   EVT VT = Node->getValueType(0);
4584 
4585   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
4586                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
4587                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
4588                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
4589     return false;
4590 
4591   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
4592   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
4593   SDValue X = Node->getOperand(0);
4594   SDValue Y = Node->getOperand(1);
4595   SDValue Z = Node->getOperand(2);
4596 
4597   unsigned EltSizeInBits = VT.getScalarSizeInBits();
4598   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
4599   SDLoc DL(SDValue(Node, 0));
4600 
4601   EVT ShVT = Z.getValueType();
4602   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
4603   SDValue Zero = DAG.getConstant(0, DL, ShVT);
4604 
4605   SDValue ShAmt;
4606   if (isPowerOf2_32(EltSizeInBits)) {
4607     SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
4608     ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
4609   } else {
4610     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
4611   }
4612 
4613   SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
4614   SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
4615   SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
4616   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
4617 
4618   // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
4619   // and that is undefined. We must compare and select to avoid UB.
4620   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
4621 
4622   // For fshl, 0-shift returns the 1st arg (X).
4623   // For fshr, 0-shift returns the 2nd arg (Y).
4624   SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
4625   Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
4626   return true;
4627 }
4628 
4629 // TODO: Merge with expandFunnelShift.
4630 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
4631                                SelectionDAG &DAG) const {
4632   EVT VT = Node->getValueType(0);
4633   unsigned EltSizeInBits = VT.getScalarSizeInBits();
4634   bool IsLeft = Node->getOpcode() == ISD::ROTL;
4635   SDValue Op0 = Node->getOperand(0);
4636   SDValue Op1 = Node->getOperand(1);
4637   SDLoc DL(SDValue(Node, 0));
4638 
4639   EVT ShVT = Op1.getValueType();
4640   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
4641 
4642   // If a rotate in the other direction is legal, use it.
4643   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
4644   if (isOperationLegal(RevRot, VT)) {
4645     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
4646     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
4647     return true;
4648   }
4649 
4650   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
4651                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
4652                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
4653                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
4654                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
4655     return false;
4656 
4657   // Otherwise,
4658   //   (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
4659   //   (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
4660   //
4661   assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
4662          "Expecting the type bitwidth to be a power of 2");
4663   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
4664   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
4665   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
4666   SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
4667   SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
4668   SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
4669   Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
4670                        DAG.getNode(HsOpc, DL, VT, Op0, And1));
4671   return true;
4672 }
4673 
4674 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
4675                                       SelectionDAG &DAG) const {
4676   SDValue Src = Node->getOperand(0);
4677   EVT SrcVT = Src.getValueType();
4678   EVT DstVT = Node->getValueType(0);
4679   SDLoc dl(SDValue(Node, 0));
4680 
4681   // FIXME: Only f32 to i64 conversions are supported.
4682   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
4683     return false;
4684 
4685   // Expand f32 -> i64 conversion
4686   // This algorithm comes from compiler-rt's implementation of fixsfdi:
4687   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
4688   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
4689   EVT IntVT = SrcVT.changeTypeToInteger();
4690   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
4691 
4692   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
4693   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
4694   SDValue Bias = DAG.getConstant(127, dl, IntVT);
4695   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
4696   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
4697   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
4698 
4699   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
4700 
4701   SDValue ExponentBits = DAG.getNode(
4702       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
4703       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
4704   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
4705 
4706   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
4707                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
4708                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
4709   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
4710 
4711   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
4712                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
4713                           DAG.getConstant(0x00800000, dl, IntVT));
4714 
4715   R = DAG.getZExtOrTrunc(R, dl, DstVT);
4716 
4717   R = DAG.getSelectCC(
4718       dl, Exponent, ExponentLoBit,
4719       DAG.getNode(ISD::SHL, dl, DstVT, R,
4720                   DAG.getZExtOrTrunc(
4721                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
4722                       dl, IntShVT)),
4723       DAG.getNode(ISD::SRL, dl, DstVT, R,
4724                   DAG.getZExtOrTrunc(
4725                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
4726                       dl, IntShVT)),
4727       ISD::SETGT);
4728 
4729   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
4730                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
4731 
4732   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
4733                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
4734   return true;
4735 }
4736 
4737 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
4738                                       SelectionDAG &DAG) const {
4739   SDLoc dl(SDValue(Node, 0));
4740   SDValue Src = Node->getOperand(0);
4741 
4742   EVT SrcVT = Src.getValueType();
4743   EVT DstVT = Node->getValueType(0);
4744   EVT SetCCVT =
4745       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
4746 
4747   // Only expand vector types if we have the appropriate vector bit operations.
4748   if (DstVT.isVector() && (!isOperationLegalOrCustom(ISD::FP_TO_SINT, DstVT) ||
4749                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
4750     return false;
4751 
4752   // If the maximum float value is smaller then the signed integer range,
4753   // the destination signmask can't be represented by the float, so we can
4754   // just use FP_TO_SINT directly.
4755   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
4756   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
4757   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
4758   if (APFloat::opOverflow &
4759       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
4760     Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
4761     return true;
4762   }
4763 
4764   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
4765   SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
4766 
4767   bool Strict = shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
4768   if (Strict) {
4769     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
4770     // signmask then offset (the result of which should be fully representable).
4771     // Sel = Src < 0x8000000000000000
4772     // Val = select Sel, Src, Src - 0x8000000000000000
4773     // Ofs = select Sel, 0, 0x8000000000000000
4774     // Result = fp_to_sint(Val) ^ Ofs
4775 
4776     // TODO: Should any fast-math-flags be set for the FSUB?
4777     SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src,
4778                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
4779     SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT),
4780                                 DAG.getConstant(SignMask, dl, DstVT));
4781     Result = DAG.getNode(ISD::XOR, dl, DstVT,
4782                          DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val), Ofs);
4783   } else {
4784     // Expand based on maximum range of FP_TO_SINT:
4785     // True = fp_to_sint(Src)
4786     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
4787     // Result = select (Src < 0x8000000000000000), True, False
4788 
4789     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
4790     // TODO: Should any fast-math-flags be set for the FSUB?
4791     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
4792                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
4793     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
4794                         DAG.getConstant(SignMask, dl, DstVT));
4795     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
4796   }
4797   return true;
4798 }
4799 
4800 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
4801                                       SelectionDAG &DAG) const {
4802   SDValue Src = Node->getOperand(0);
4803   EVT SrcVT = Src.getValueType();
4804   EVT DstVT = Node->getValueType(0);
4805 
4806   if (SrcVT.getScalarType() != MVT::i64)
4807     return false;
4808 
4809   SDLoc dl(SDValue(Node, 0));
4810   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
4811 
4812   if (DstVT.getScalarType() == MVT::f32) {
4813     // Only expand vector types if we have the appropriate vector bit
4814     // operations.
4815     if (SrcVT.isVector() &&
4816         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
4817          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
4818          !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) ||
4819          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
4820          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
4821       return false;
4822 
4823     // For unsigned conversions, convert them to signed conversions using the
4824     // algorithm from the x86_64 __floatundidf in compiler_rt.
4825     SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src);
4826 
4827     SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
4828     SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst);
4829     SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
4830     SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst);
4831     SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
4832 
4833     SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or);
4834     SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt);
4835 
4836     // TODO: This really should be implemented using a branch rather than a
4837     // select.  We happen to get lucky and machinesink does the right
4838     // thing most of the time.  This would be a good candidate for a
4839     // pseudo-op, or, even better, for whole-function isel.
4840     EVT SetCCVT =
4841         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
4842 
4843     SDValue SignBitTest = DAG.getSetCC(
4844         dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
4845     Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast);
4846     return true;
4847   }
4848 
4849   if (DstVT.getScalarType() == MVT::f64) {
4850     // Only expand vector types if we have the appropriate vector bit
4851     // operations.
4852     if (SrcVT.isVector() &&
4853         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
4854          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
4855          !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
4856          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
4857          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
4858       return false;
4859 
4860     // Implementation of unsigned i64 to f64 following the algorithm in
4861     // __floatundidf in compiler_rt. This implementation has the advantage
4862     // of performing rounding correctly, both in the default rounding mode
4863     // and in all alternate rounding modes.
4864     SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
4865     SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
4866         BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
4867     SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
4868     SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
4869     SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
4870 
4871     SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
4872     SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
4873     SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
4874     SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
4875     SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
4876     SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
4877     SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
4878     Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
4879     return true;
4880   }
4881 
4882   return false;
4883 }
4884 
4885 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
4886                                               SelectionDAG &DAG) const {
4887   SDLoc dl(Node);
4888   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
4889     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
4890   EVT VT = Node->getValueType(0);
4891   if (isOperationLegalOrCustom(NewOp, VT)) {
4892     SDValue Quiet0 = Node->getOperand(0);
4893     SDValue Quiet1 = Node->getOperand(1);
4894 
4895     if (!Node->getFlags().hasNoNaNs()) {
4896       // Insert canonicalizes if it's possible we need to quiet to get correct
4897       // sNaN behavior.
4898       if (!DAG.isKnownNeverSNaN(Quiet0)) {
4899         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
4900                              Node->getFlags());
4901       }
4902       if (!DAG.isKnownNeverSNaN(Quiet1)) {
4903         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
4904                              Node->getFlags());
4905       }
4906     }
4907 
4908     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
4909   }
4910 
4911   return SDValue();
4912 }
4913 
4914 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
4915                                  SelectionDAG &DAG) const {
4916   SDLoc dl(Node);
4917   EVT VT = Node->getValueType(0);
4918   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4919   SDValue Op = Node->getOperand(0);
4920   unsigned Len = VT.getScalarSizeInBits();
4921   assert(VT.isInteger() && "CTPOP not implemented for this type.");
4922 
4923   // TODO: Add support for irregular type lengths.
4924   if (!(Len <= 128 && Len % 8 == 0))
4925     return false;
4926 
4927   // Only expand vector types if we have the appropriate vector bit operations.
4928   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
4929                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
4930                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
4931                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
4932                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
4933     return false;
4934 
4935   // This is the "best" algorithm from
4936   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
4937   SDValue Mask55 =
4938       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
4939   SDValue Mask33 =
4940       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
4941   SDValue Mask0F =
4942       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
4943   SDValue Mask01 =
4944       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
4945 
4946   // v = v - ((v >> 1) & 0x55555555...)
4947   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
4948                    DAG.getNode(ISD::AND, dl, VT,
4949                                DAG.getNode(ISD::SRL, dl, VT, Op,
4950                                            DAG.getConstant(1, dl, ShVT)),
4951                                Mask55));
4952   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
4953   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
4954                    DAG.getNode(ISD::AND, dl, VT,
4955                                DAG.getNode(ISD::SRL, dl, VT, Op,
4956                                            DAG.getConstant(2, dl, ShVT)),
4957                                Mask33));
4958   // v = (v + (v >> 4)) & 0x0F0F0F0F...
4959   Op = DAG.getNode(ISD::AND, dl, VT,
4960                    DAG.getNode(ISD::ADD, dl, VT, Op,
4961                                DAG.getNode(ISD::SRL, dl, VT, Op,
4962                                            DAG.getConstant(4, dl, ShVT))),
4963                    Mask0F);
4964   // v = (v * 0x01010101...) >> (Len - 8)
4965   if (Len > 8)
4966     Op =
4967         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
4968                     DAG.getConstant(Len - 8, dl, ShVT));
4969 
4970   Result = Op;
4971   return true;
4972 }
4973 
4974 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
4975                                 SelectionDAG &DAG) const {
4976   SDLoc dl(Node);
4977   EVT VT = Node->getValueType(0);
4978   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4979   SDValue Op = Node->getOperand(0);
4980   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
4981 
4982   // If the non-ZERO_UNDEF version is supported we can use that instead.
4983   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
4984       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
4985     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
4986     return true;
4987   }
4988 
4989   // If the ZERO_UNDEF version is supported use that and handle the zero case.
4990   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
4991     EVT SetCCVT =
4992         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
4993     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
4994     SDValue Zero = DAG.getConstant(0, dl, VT);
4995     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
4996     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
4997                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
4998     return true;
4999   }
5000 
5001   // Only expand vector types if we have the appropriate vector bit operations.
5002   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
5003                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
5004                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
5005                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
5006     return false;
5007 
5008   // for now, we do this:
5009   // x = x | (x >> 1);
5010   // x = x | (x >> 2);
5011   // ...
5012   // x = x | (x >>16);
5013   // x = x | (x >>32); // for 64-bit input
5014   // return popcount(~x);
5015   //
5016   // Ref: "Hacker's Delight" by Henry Warren
5017   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
5018     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
5019     Op = DAG.getNode(ISD::OR, dl, VT, Op,
5020                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
5021   }
5022   Op = DAG.getNOT(dl, Op, VT);
5023   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
5024   return true;
5025 }
5026 
5027 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
5028                                 SelectionDAG &DAG) const {
5029   SDLoc dl(Node);
5030   EVT VT = Node->getValueType(0);
5031   SDValue Op = Node->getOperand(0);
5032   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
5033 
5034   // If the non-ZERO_UNDEF version is supported we can use that instead.
5035   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
5036       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
5037     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
5038     return true;
5039   }
5040 
5041   // If the ZERO_UNDEF version is supported use that and handle the zero case.
5042   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
5043     EVT SetCCVT =
5044         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5045     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
5046     SDValue Zero = DAG.getConstant(0, dl, VT);
5047     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
5048     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
5049                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
5050     return true;
5051   }
5052 
5053   // Only expand vector types if we have the appropriate vector bit operations.
5054   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
5055                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
5056                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
5057                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
5058                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
5059                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
5060     return false;
5061 
5062   // for now, we use: { return popcount(~x & (x - 1)); }
5063   // unless the target has ctlz but not ctpop, in which case we use:
5064   // { return 32 - nlz(~x & (x-1)); }
5065   // Ref: "Hacker's Delight" by Henry Warren
5066   SDValue Tmp = DAG.getNode(
5067       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
5068       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
5069 
5070   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
5071   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
5072     Result =
5073         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
5074                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
5075     return true;
5076   }
5077 
5078   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
5079   return true;
5080 }
5081 
5082 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
5083                                SelectionDAG &DAG) const {
5084   SDLoc dl(N);
5085   EVT VT = N->getValueType(0);
5086   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5087   SDValue Op = N->getOperand(0);
5088 
5089   // Only expand vector types if we have the appropriate vector operations.
5090   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
5091                         !isOperationLegalOrCustom(ISD::ADD, VT) ||
5092                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
5093     return false;
5094 
5095   SDValue Shift =
5096       DAG.getNode(ISD::SRA, dl, VT, Op,
5097                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
5098   SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
5099   Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
5100   return true;
5101 }
5102 
5103 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
5104                                             SelectionDAG &DAG) const {
5105   SDLoc SL(LD);
5106   SDValue Chain = LD->getChain();
5107   SDValue BasePTR = LD->getBasePtr();
5108   EVT SrcVT = LD->getMemoryVT();
5109   ISD::LoadExtType ExtType = LD->getExtensionType();
5110 
5111   unsigned NumElem = SrcVT.getVectorNumElements();
5112 
5113   EVT SrcEltVT = SrcVT.getScalarType();
5114   EVT DstEltVT = LD->getValueType(0).getScalarType();
5115 
5116   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
5117   assert(SrcEltVT.isByteSized());
5118 
5119   SmallVector<SDValue, 8> Vals;
5120   SmallVector<SDValue, 8> LoadChains;
5121 
5122   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
5123     SDValue ScalarLoad =
5124         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
5125                        LD->getPointerInfo().getWithOffset(Idx * Stride),
5126                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
5127                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
5128 
5129     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
5130 
5131     Vals.push_back(ScalarLoad.getValue(0));
5132     LoadChains.push_back(ScalarLoad.getValue(1));
5133   }
5134 
5135   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
5136   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
5137 
5138   return DAG.getMergeValues({Value, NewChain}, SL);
5139 }
5140 
5141 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
5142                                              SelectionDAG &DAG) const {
5143   SDLoc SL(ST);
5144 
5145   SDValue Chain = ST->getChain();
5146   SDValue BasePtr = ST->getBasePtr();
5147   SDValue Value = ST->getValue();
5148   EVT StVT = ST->getMemoryVT();
5149 
5150   // The type of the data we want to save
5151   EVT RegVT = Value.getValueType();
5152   EVT RegSclVT = RegVT.getScalarType();
5153 
5154   // The type of data as saved in memory.
5155   EVT MemSclVT = StVT.getScalarType();
5156 
5157   EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
5158   unsigned NumElem = StVT.getVectorNumElements();
5159 
5160   // A vector must always be stored in memory as-is, i.e. without any padding
5161   // between the elements, since various code depend on it, e.g. in the
5162   // handling of a bitcast of a vector type to int, which may be done with a
5163   // vector store followed by an integer load. A vector that does not have
5164   // elements that are byte-sized must therefore be stored as an integer
5165   // built out of the extracted vector elements.
5166   if (!MemSclVT.isByteSized()) {
5167     unsigned NumBits = StVT.getSizeInBits();
5168     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
5169 
5170     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
5171 
5172     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
5173       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
5174                                 DAG.getConstant(Idx, SL, IdxVT));
5175       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
5176       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
5177       unsigned ShiftIntoIdx =
5178           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
5179       SDValue ShiftAmount =
5180           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
5181       SDValue ShiftedElt =
5182           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
5183       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
5184     }
5185 
5186     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
5187                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
5188                         ST->getAAInfo());
5189   }
5190 
5191   // Store Stride in bytes
5192   unsigned Stride = MemSclVT.getSizeInBits() / 8;
5193   assert(Stride && "Zero stride!");
5194   // Extract each of the elements from the original vector and save them into
5195   // memory individually.
5196   SmallVector<SDValue, 8> Stores;
5197   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
5198     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
5199                               DAG.getConstant(Idx, SL, IdxVT));
5200 
5201     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
5202 
5203     // This scalar TruncStore may be illegal, but we legalize it later.
5204     SDValue Store = DAG.getTruncStore(
5205         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
5206         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
5207         ST->getMemOperand()->getFlags(), ST->getAAInfo());
5208 
5209     Stores.push_back(Store);
5210   }
5211 
5212   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
5213 }
5214 
5215 std::pair<SDValue, SDValue>
5216 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
5217   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
5218          "unaligned indexed loads not implemented!");
5219   SDValue Chain = LD->getChain();
5220   SDValue Ptr = LD->getBasePtr();
5221   EVT VT = LD->getValueType(0);
5222   EVT LoadedVT = LD->getMemoryVT();
5223   SDLoc dl(LD);
5224   auto &MF = DAG.getMachineFunction();
5225 
5226   if (VT.isFloatingPoint() || VT.isVector()) {
5227     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
5228     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
5229       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
5230           LoadedVT.isVector()) {
5231         // Scalarize the load and let the individual components be handled.
5232         SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
5233         if (Scalarized->getOpcode() == ISD::MERGE_VALUES)
5234           return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1));
5235         return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
5236       }
5237 
5238       // Expand to a (misaligned) integer load of the same size,
5239       // then bitconvert to floating point or vector.
5240       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
5241                                     LD->getMemOperand());
5242       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
5243       if (LoadedVT != VT)
5244         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
5245                              ISD::ANY_EXTEND, dl, VT, Result);
5246 
5247       return std::make_pair(Result, newLoad.getValue(1));
5248     }
5249 
5250     // Copy the value to a (aligned) stack slot using (unaligned) integer
5251     // loads and stores, then do a (aligned) load from the stack slot.
5252     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
5253     unsigned LoadedBytes = LoadedVT.getStoreSize();
5254     unsigned RegBytes = RegVT.getSizeInBits() / 8;
5255     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
5256 
5257     // Make sure the stack slot is also aligned for the register type.
5258     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
5259     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
5260     SmallVector<SDValue, 8> Stores;
5261     SDValue StackPtr = StackBase;
5262     unsigned Offset = 0;
5263 
5264     EVT PtrVT = Ptr.getValueType();
5265     EVT StackPtrVT = StackPtr.getValueType();
5266 
5267     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
5268     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
5269 
5270     // Do all but one copies using the full register width.
5271     for (unsigned i = 1; i < NumRegs; i++) {
5272       // Load one integer register's worth from the original location.
5273       SDValue Load = DAG.getLoad(
5274           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
5275           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
5276           LD->getAAInfo());
5277       // Follow the load with a store to the stack slot.  Remember the store.
5278       Stores.push_back(DAG.getStore(
5279           Load.getValue(1), dl, Load, StackPtr,
5280           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
5281       // Increment the pointers.
5282       Offset += RegBytes;
5283 
5284       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
5285       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
5286     }
5287 
5288     // The last copy may be partial.  Do an extending load.
5289     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
5290                                   8 * (LoadedBytes - Offset));
5291     SDValue Load =
5292         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
5293                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
5294                        MinAlign(LD->getAlignment(), Offset),
5295                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
5296     // Follow the load with a store to the stack slot.  Remember the store.
5297     // On big-endian machines this requires a truncating store to ensure
5298     // that the bits end up in the right place.
5299     Stores.push_back(DAG.getTruncStore(
5300         Load.getValue(1), dl, Load, StackPtr,
5301         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
5302 
5303     // The order of the stores doesn't matter - say it with a TokenFactor.
5304     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
5305 
5306     // Finally, perform the original load only redirected to the stack slot.
5307     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
5308                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
5309                           LoadedVT);
5310 
5311     // Callers expect a MERGE_VALUES node.
5312     return std::make_pair(Load, TF);
5313   }
5314 
5315   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
5316          "Unaligned load of unsupported type.");
5317 
5318   // Compute the new VT that is half the size of the old one.  This is an
5319   // integer MVT.
5320   unsigned NumBits = LoadedVT.getSizeInBits();
5321   EVT NewLoadedVT;
5322   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
5323   NumBits >>= 1;
5324 
5325   unsigned Alignment = LD->getAlignment();
5326   unsigned IncrementSize = NumBits / 8;
5327   ISD::LoadExtType HiExtType = LD->getExtensionType();
5328 
5329   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
5330   if (HiExtType == ISD::NON_EXTLOAD)
5331     HiExtType = ISD::ZEXTLOAD;
5332 
5333   // Load the value in two parts
5334   SDValue Lo, Hi;
5335   if (DAG.getDataLayout().isLittleEndian()) {
5336     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
5337                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
5338                         LD->getAAInfo());
5339 
5340     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
5341     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
5342                         LD->getPointerInfo().getWithOffset(IncrementSize),
5343                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
5344                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
5345   } else {
5346     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
5347                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
5348                         LD->getAAInfo());
5349 
5350     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
5351     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
5352                         LD->getPointerInfo().getWithOffset(IncrementSize),
5353                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
5354                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
5355   }
5356 
5357   // aggregate the two parts
5358   SDValue ShiftAmount =
5359       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
5360                                                     DAG.getDataLayout()));
5361   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
5362   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
5363 
5364   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
5365                              Hi.getValue(1));
5366 
5367   return std::make_pair(Result, TF);
5368 }
5369 
5370 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
5371                                              SelectionDAG &DAG) const {
5372   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
5373          "unaligned indexed stores not implemented!");
5374   SDValue Chain = ST->getChain();
5375   SDValue Ptr = ST->getBasePtr();
5376   SDValue Val = ST->getValue();
5377   EVT VT = Val.getValueType();
5378   int Alignment = ST->getAlignment();
5379   auto &MF = DAG.getMachineFunction();
5380   EVT StoreMemVT = ST->getMemoryVT();
5381 
5382   SDLoc dl(ST);
5383   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
5384     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
5385     if (isTypeLegal(intVT)) {
5386       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
5387           StoreMemVT.isVector()) {
5388         // Scalarize the store and let the individual components be handled.
5389         SDValue Result = scalarizeVectorStore(ST, DAG);
5390         return Result;
5391       }
5392       // Expand to a bitconvert of the value to the integer type of the
5393       // same size, then a (misaligned) int store.
5394       // FIXME: Does not handle truncating floating point stores!
5395       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
5396       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
5397                             Alignment, ST->getMemOperand()->getFlags());
5398       return Result;
5399     }
5400     // Do a (aligned) store to a stack slot, then copy from the stack slot
5401     // to the final destination using (unaligned) integer loads and stores.
5402     MVT RegVT = getRegisterType(
5403         *DAG.getContext(),
5404         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
5405     EVT PtrVT = Ptr.getValueType();
5406     unsigned StoredBytes = StoreMemVT.getStoreSize();
5407     unsigned RegBytes = RegVT.getSizeInBits() / 8;
5408     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
5409 
5410     // Make sure the stack slot is also aligned for the register type.
5411     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
5412     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
5413 
5414     // Perform the original store, only redirected to the stack slot.
5415     SDValue Store = DAG.getTruncStore(
5416         Chain, dl, Val, StackPtr,
5417         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
5418 
5419     EVT StackPtrVT = StackPtr.getValueType();
5420 
5421     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
5422     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
5423     SmallVector<SDValue, 8> Stores;
5424     unsigned Offset = 0;
5425 
5426     // Do all but one copies using the full register width.
5427     for (unsigned i = 1; i < NumRegs; i++) {
5428       // Load one integer register's worth from the stack slot.
5429       SDValue Load = DAG.getLoad(
5430           RegVT, dl, Store, StackPtr,
5431           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
5432       // Store it to the final location.  Remember the store.
5433       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
5434                                     ST->getPointerInfo().getWithOffset(Offset),
5435                                     MinAlign(ST->getAlignment(), Offset),
5436                                     ST->getMemOperand()->getFlags()));
5437       // Increment the pointers.
5438       Offset += RegBytes;
5439       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
5440       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
5441     }
5442 
5443     // The last store may be partial.  Do a truncating store.  On big-endian
5444     // machines this requires an extending load from the stack slot to ensure
5445     // that the bits are in the right place.
5446     EVT LoadMemVT =
5447         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
5448 
5449     // Load from the stack slot.
5450     SDValue Load = DAG.getExtLoad(
5451         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
5452         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
5453 
5454     Stores.push_back(
5455         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
5456                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
5457                           MinAlign(ST->getAlignment(), Offset),
5458                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
5459     // The order of the stores doesn't matter - say it with a TokenFactor.
5460     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
5461     return Result;
5462   }
5463 
5464   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
5465          "Unaligned store of unknown type.");
5466   // Get the half-size VT
5467   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
5468   int NumBits = NewStoredVT.getSizeInBits();
5469   int IncrementSize = NumBits / 8;
5470 
5471   // Divide the stored value in two parts.
5472   SDValue ShiftAmount = DAG.getConstant(
5473       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
5474   SDValue Lo = Val;
5475   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
5476 
5477   // Store the two parts
5478   SDValue Store1, Store2;
5479   Store1 = DAG.getTruncStore(Chain, dl,
5480                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
5481                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
5482                              ST->getMemOperand()->getFlags());
5483 
5484   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
5485   Alignment = MinAlign(Alignment, IncrementSize);
5486   Store2 = DAG.getTruncStore(
5487       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
5488       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
5489       ST->getMemOperand()->getFlags(), ST->getAAInfo());
5490 
5491   SDValue Result =
5492       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
5493   return Result;
5494 }
5495 
5496 SDValue
5497 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
5498                                        const SDLoc &DL, EVT DataVT,
5499                                        SelectionDAG &DAG,
5500                                        bool IsCompressedMemory) const {
5501   SDValue Increment;
5502   EVT AddrVT = Addr.getValueType();
5503   EVT MaskVT = Mask.getValueType();
5504   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
5505          "Incompatible types of Data and Mask");
5506   if (IsCompressedMemory) {
5507     // Incrementing the pointer according to number of '1's in the mask.
5508     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
5509     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
5510     if (MaskIntVT.getSizeInBits() < 32) {
5511       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
5512       MaskIntVT = MVT::i32;
5513     }
5514 
5515     // Count '1's with POPCNT.
5516     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
5517     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
5518     // Scale is an element size in bytes.
5519     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
5520                                     AddrVT);
5521     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
5522   } else
5523     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
5524 
5525   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
5526 }
5527 
5528 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
5529                                        SDValue Idx,
5530                                        EVT VecVT,
5531                                        const SDLoc &dl) {
5532   if (isa<ConstantSDNode>(Idx))
5533     return Idx;
5534 
5535   EVT IdxVT = Idx.getValueType();
5536   unsigned NElts = VecVT.getVectorNumElements();
5537   if (isPowerOf2_32(NElts)) {
5538     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
5539                                      Log2_32(NElts));
5540     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
5541                        DAG.getConstant(Imm, dl, IdxVT));
5542   }
5543 
5544   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
5545                      DAG.getConstant(NElts - 1, dl, IdxVT));
5546 }
5547 
5548 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
5549                                                 SDValue VecPtr, EVT VecVT,
5550                                                 SDValue Index) const {
5551   SDLoc dl(Index);
5552   // Make sure the index type is big enough to compute in.
5553   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
5554 
5555   EVT EltVT = VecVT.getVectorElementType();
5556 
5557   // Calculate the element offset and add it to the pointer.
5558   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
5559   assert(EltSize * 8 == EltVT.getSizeInBits() &&
5560          "Converting bits to bytes lost precision");
5561 
5562   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
5563 
5564   EVT IdxVT = Index.getValueType();
5565 
5566   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
5567                       DAG.getConstant(EltSize, dl, IdxVT));
5568   return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index);
5569 }
5570 
5571 //===----------------------------------------------------------------------===//
5572 // Implementation of Emulated TLS Model
5573 //===----------------------------------------------------------------------===//
5574 
5575 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
5576                                                 SelectionDAG &DAG) const {
5577   // Access to address of TLS varialbe xyz is lowered to a function call:
5578   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
5579   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5580   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
5581   SDLoc dl(GA);
5582 
5583   ArgListTy Args;
5584   ArgListEntry Entry;
5585   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
5586   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
5587   StringRef EmuTlsVarName(NameString);
5588   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
5589   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
5590   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
5591   Entry.Ty = VoidPtrType;
5592   Args.push_back(Entry);
5593 
5594   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
5595 
5596   TargetLowering::CallLoweringInfo CLI(DAG);
5597   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
5598   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
5599   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
5600 
5601   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
5602   // At last for X86 targets, maybe good for other targets too?
5603   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5604   MFI.setAdjustsStack(true); // Is this only for X86 target?
5605   MFI.setHasCalls(true);
5606 
5607   assert((GA->getOffset() == 0) &&
5608          "Emulated TLS must have zero offset in GlobalAddressSDNode");
5609   return CallResult.first;
5610 }
5611 
5612 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
5613                                                 SelectionDAG &DAG) const {
5614   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
5615   if (!isCtlzFast())
5616     return SDValue();
5617   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5618   SDLoc dl(Op);
5619   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5620     if (C->isNullValue() && CC == ISD::SETEQ) {
5621       EVT VT = Op.getOperand(0).getValueType();
5622       SDValue Zext = Op.getOperand(0);
5623       if (VT.bitsLT(MVT::i32)) {
5624         VT = MVT::i32;
5625         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
5626       }
5627       unsigned Log2b = Log2_32(VT.getSizeInBits());
5628       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
5629       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
5630                                 DAG.getConstant(Log2b, dl, MVT::i32));
5631       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
5632     }
5633   }
5634   return SDValue();
5635 }
5636 
5637 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
5638   unsigned Opcode = Node->getOpcode();
5639   SDValue LHS = Node->getOperand(0);
5640   SDValue RHS = Node->getOperand(1);
5641   EVT VT = LHS.getValueType();
5642   SDLoc dl(Node);
5643 
5644   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
5645   assert(VT.isInteger() && "Expected operands to be integers");
5646 
5647   // usub.sat(a, b) -> umax(a, b) - b
5648   if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
5649     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
5650     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
5651   }
5652 
5653   if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
5654     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
5655     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
5656     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
5657   }
5658 
5659   unsigned OverflowOp;
5660   switch (Opcode) {
5661   case ISD::SADDSAT:
5662     OverflowOp = ISD::SADDO;
5663     break;
5664   case ISD::UADDSAT:
5665     OverflowOp = ISD::UADDO;
5666     break;
5667   case ISD::SSUBSAT:
5668     OverflowOp = ISD::SSUBO;
5669     break;
5670   case ISD::USUBSAT:
5671     OverflowOp = ISD::USUBO;
5672     break;
5673   default:
5674     llvm_unreachable("Expected method to receive signed or unsigned saturation "
5675                      "addition or subtraction node.");
5676   }
5677 
5678   unsigned BitWidth = LHS.getScalarValueSizeInBits();
5679   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5680   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
5681                                LHS, RHS);
5682   SDValue SumDiff = Result.getValue(0);
5683   SDValue Overflow = Result.getValue(1);
5684   SDValue Zero = DAG.getConstant(0, dl, VT);
5685   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
5686 
5687   if (Opcode == ISD::UADDSAT) {
5688     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
5689       // (LHS + RHS) | OverflowMask
5690       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
5691       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
5692     }
5693     // Overflow ? 0xffff.... : (LHS + RHS)
5694     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
5695   } else if (Opcode == ISD::USUBSAT) {
5696     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
5697       // (LHS - RHS) & ~OverflowMask
5698       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
5699       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
5700       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
5701     }
5702     // Overflow ? 0 : (LHS - RHS)
5703     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
5704   } else {
5705     // SatMax -> Overflow && SumDiff < 0
5706     // SatMin -> Overflow && SumDiff >= 0
5707     APInt MinVal = APInt::getSignedMinValue(BitWidth);
5708     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
5709     SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
5710     SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
5711     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
5712     Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
5713     return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
5714   }
5715 }
5716 
5717 SDValue
5718 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
5719   assert((Node->getOpcode() == ISD::SMULFIX ||
5720           Node->getOpcode() == ISD::UMULFIX ||
5721           Node->getOpcode() == ISD::SMULFIXSAT) &&
5722          "Expected a fixed point multiplication opcode");
5723 
5724   SDLoc dl(Node);
5725   SDValue LHS = Node->getOperand(0);
5726   SDValue RHS = Node->getOperand(1);
5727   EVT VT = LHS.getValueType();
5728   unsigned Scale = Node->getConstantOperandVal(2);
5729   bool Saturating = Node->getOpcode() == ISD::SMULFIXSAT;
5730   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5731   unsigned VTSize = VT.getScalarSizeInBits();
5732 
5733   if (!Scale) {
5734     // [us]mul.fix(a, b, 0) -> mul(a, b)
5735     if (!Saturating && isOperationLegalOrCustom(ISD::MUL, VT)) {
5736       return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
5737     } else if (Saturating && isOperationLegalOrCustom(ISD::SMULO, VT)) {
5738       SDValue Result =
5739           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
5740       SDValue Product = Result.getValue(0);
5741       SDValue Overflow = Result.getValue(1);
5742       SDValue Zero = DAG.getConstant(0, dl, VT);
5743 
5744       APInt MinVal = APInt::getSignedMinValue(VTSize);
5745       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
5746       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
5747       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
5748       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
5749       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
5750       return DAG.getSelect(dl, VT, Overflow, Result, Product);
5751     }
5752   }
5753 
5754   bool Signed =
5755       Node->getOpcode() == ISD::SMULFIX || Node->getOpcode() == ISD::SMULFIXSAT;
5756   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
5757          "Expected scale to be less than the number of bits if signed or at "
5758          "most the number of bits if unsigned.");
5759   assert(LHS.getValueType() == RHS.getValueType() &&
5760          "Expected both operands to be the same type");
5761 
5762   // Get the upper and lower bits of the result.
5763   SDValue Lo, Hi;
5764   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
5765   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
5766   if (isOperationLegalOrCustom(LoHiOp, VT)) {
5767     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
5768     Lo = Result.getValue(0);
5769     Hi = Result.getValue(1);
5770   } else if (isOperationLegalOrCustom(HiOp, VT)) {
5771     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
5772     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
5773   } else if (VT.isVector()) {
5774     return SDValue();
5775   } else {
5776     report_fatal_error("Unable to expand fixed point multiplication.");
5777   }
5778 
5779   if (Scale == VTSize)
5780     // Result is just the top half since we'd be shifting by the width of the
5781     // operand.
5782     return Hi;
5783 
5784   // The result will need to be shifted right by the scale since both operands
5785   // are scaled. The result is given to us in 2 halves, so we only want part of
5786   // both in the result.
5787   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
5788   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
5789                                DAG.getConstant(Scale, dl, ShiftTy));
5790   if (!Saturating)
5791     return Result;
5792 
5793   unsigned OverflowBits = VTSize - Scale + 1; // +1 for the sign
5794   SDValue HiMask =
5795       DAG.getConstant(APInt::getHighBitsSet(VTSize, OverflowBits), dl, VT);
5796   SDValue LoMask = DAG.getConstant(
5797       APInt::getLowBitsSet(VTSize, VTSize - OverflowBits), dl, VT);
5798   APInt MaxVal = APInt::getSignedMaxValue(VTSize);
5799   APInt MinVal = APInt::getSignedMinValue(VTSize);
5800 
5801   Result = DAG.getSelectCC(dl, Hi, LoMask,
5802                            DAG.getConstant(MaxVal, dl, VT), Result,
5803                            ISD::SETGT);
5804   return DAG.getSelectCC(dl, Hi, HiMask,
5805                          DAG.getConstant(MinVal, dl, VT), Result,
5806                          ISD::SETLT);
5807 }
5808 
5809 void TargetLowering::expandUADDSUBO(
5810     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
5811   SDLoc dl(Node);
5812   SDValue LHS = Node->getOperand(0);
5813   SDValue RHS = Node->getOperand(1);
5814   bool IsAdd = Node->getOpcode() == ISD::UADDO;
5815 
5816   // If ADD/SUBCARRY is legal, use that instead.
5817   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
5818   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
5819     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
5820     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
5821                                     { LHS, RHS, CarryIn });
5822     Result = SDValue(NodeCarry.getNode(), 0);
5823     Overflow = SDValue(NodeCarry.getNode(), 1);
5824     return;
5825   }
5826 
5827   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
5828                             LHS.getValueType(), LHS, RHS);
5829 
5830   EVT ResultType = Node->getValueType(1);
5831   EVT SetCCType = getSetCCResultType(
5832       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
5833   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
5834   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
5835   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
5836 }
5837 
5838 void TargetLowering::expandSADDSUBO(
5839     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
5840   SDLoc dl(Node);
5841   SDValue LHS = Node->getOperand(0);
5842   SDValue RHS = Node->getOperand(1);
5843   bool IsAdd = Node->getOpcode() == ISD::SADDO;
5844 
5845   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
5846                             LHS.getValueType(), LHS, RHS);
5847 
5848   EVT ResultType = Node->getValueType(1);
5849   EVT OType = getSetCCResultType(
5850       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
5851 
5852   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
5853   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
5854   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
5855     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
5856     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
5857     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
5858     return;
5859   }
5860 
5861   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
5862 
5863   //   LHSSign -> LHS >= 0
5864   //   RHSSign -> RHS >= 0
5865   //   SumSign -> Result >= 0
5866   //
5867   //   Add:
5868   //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
5869   //   Sub:
5870   //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
5871   SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
5872   SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
5873   SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
5874                                     IsAdd ? ISD::SETEQ : ISD::SETNE);
5875 
5876   SDValue SumSign = DAG.getSetCC(dl, OType, Result, Zero, ISD::SETGE);
5877   SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
5878 
5879   SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
5880   Overflow = DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType);
5881 }
5882 
5883 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
5884                                 SDValue &Overflow, SelectionDAG &DAG) const {
5885   SDLoc dl(Node);
5886   EVT VT = Node->getValueType(0);
5887   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5888   SDValue LHS = Node->getOperand(0);
5889   SDValue RHS = Node->getOperand(1);
5890   bool isSigned = Node->getOpcode() == ISD::SMULO;
5891 
5892   // For power-of-two multiplications we can use a simpler shift expansion.
5893   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
5894     const APInt &C = RHSC->getAPIntValue();
5895     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
5896     if (C.isPowerOf2()) {
5897       // smulo(x, signed_min) is same as umulo(x, signed_min).
5898       bool UseArithShift = isSigned && !C.isMinSignedValue();
5899       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
5900       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
5901       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
5902       Overflow = DAG.getSetCC(dl, SetCCVT,
5903           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
5904                       dl, VT, Result, ShiftAmt),
5905           LHS, ISD::SETNE);
5906       return true;
5907     }
5908   }
5909 
5910   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
5911   if (VT.isVector())
5912     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
5913                               VT.getVectorNumElements());
5914 
5915   SDValue BottomHalf;
5916   SDValue TopHalf;
5917   static const unsigned Ops[2][3] =
5918       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
5919         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
5920   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
5921     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
5922     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
5923   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
5924     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
5925                              RHS);
5926     TopHalf = BottomHalf.getValue(1);
5927   } else if (isTypeLegal(WideVT)) {
5928     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
5929     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
5930     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
5931     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
5932     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
5933         getShiftAmountTy(WideVT, DAG.getDataLayout()));
5934     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
5935                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
5936   } else {
5937     if (VT.isVector())
5938       return false;
5939 
5940     // We can fall back to a libcall with an illegal type for the MUL if we
5941     // have a libcall big enough.
5942     // Also, we can fall back to a division in some cases, but that's a big
5943     // performance hit in the general case.
5944     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
5945     if (WideVT == MVT::i16)
5946       LC = RTLIB::MUL_I16;
5947     else if (WideVT == MVT::i32)
5948       LC = RTLIB::MUL_I32;
5949     else if (WideVT == MVT::i64)
5950       LC = RTLIB::MUL_I64;
5951     else if (WideVT == MVT::i128)
5952       LC = RTLIB::MUL_I128;
5953     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
5954 
5955     SDValue HiLHS;
5956     SDValue HiRHS;
5957     if (isSigned) {
5958       // The high part is obtained by SRA'ing all but one of the bits of low
5959       // part.
5960       unsigned LoSize = VT.getSizeInBits();
5961       HiLHS =
5962           DAG.getNode(ISD::SRA, dl, VT, LHS,
5963                       DAG.getConstant(LoSize - 1, dl,
5964                                       getPointerTy(DAG.getDataLayout())));
5965       HiRHS =
5966           DAG.getNode(ISD::SRA, dl, VT, RHS,
5967                       DAG.getConstant(LoSize - 1, dl,
5968                                       getPointerTy(DAG.getDataLayout())));
5969     } else {
5970         HiLHS = DAG.getConstant(0, dl, VT);
5971         HiRHS = DAG.getConstant(0, dl, VT);
5972     }
5973 
5974     // Here we're passing the 2 arguments explicitly as 4 arguments that are
5975     // pre-lowered to the correct types. This all depends upon WideVT not
5976     // being a legal type for the architecture and thus has to be split to
5977     // two arguments.
5978     SDValue Ret;
5979     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
5980       // Halves of WideVT are packed into registers in different order
5981       // depending on platform endianness. This is usually handled by
5982       // the C calling convention, but we can't defer to it in
5983       // the legalizer.
5984       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
5985       Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl,
5986           /* doesNotReturn */ false, /* isReturnValueUsed */ true,
5987           /* isPostTypeLegalization */ true).first;
5988     } else {
5989       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
5990       Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl,
5991           /* doesNotReturn */ false, /* isReturnValueUsed */ true,
5992           /* isPostTypeLegalization */ true).first;
5993     }
5994     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
5995            "Ret value is a collection of constituent nodes holding result.");
5996     if (DAG.getDataLayout().isLittleEndian()) {
5997       // Same as above.
5998       BottomHalf = Ret.getOperand(0);
5999       TopHalf = Ret.getOperand(1);
6000     } else {
6001       BottomHalf = Ret.getOperand(1);
6002       TopHalf = Ret.getOperand(0);
6003     }
6004   }
6005 
6006   Result = BottomHalf;
6007   if (isSigned) {
6008     SDValue ShiftAmt = DAG.getConstant(
6009         VT.getScalarSizeInBits() - 1, dl,
6010         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
6011     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
6012     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
6013   } else {
6014     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
6015                             DAG.getConstant(0, dl, VT), ISD::SETNE);
6016   }
6017 
6018   // Truncate the result if SetCC returns a larger type than needed.
6019   EVT RType = Node->getValueType(1);
6020   if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
6021     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
6022 
6023   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
6024          "Unexpected result type for S/UMULO legalization");
6025   return true;
6026 }
6027 
6028 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
6029   SDLoc dl(Node);
6030   bool NoNaN = Node->getFlags().hasNoNaNs();
6031   unsigned BaseOpcode = 0;
6032   switch (Node->getOpcode()) {
6033   default: llvm_unreachable("Expected VECREDUCE opcode");
6034   case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
6035   case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
6036   case ISD::VECREDUCE_ADD:  BaseOpcode = ISD::ADD; break;
6037   case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break;
6038   case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break;
6039   case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break;
6040   case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break;
6041   case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
6042   case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
6043   case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
6044   case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
6045   case ISD::VECREDUCE_FMAX:
6046     BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
6047     break;
6048   case ISD::VECREDUCE_FMIN:
6049     BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
6050     break;
6051   }
6052 
6053   SDValue Op = Node->getOperand(0);
6054   EVT VT = Op.getValueType();
6055 
6056   // Try to use a shuffle reduction for power of two vectors.
6057   if (VT.isPow2VectorType()) {
6058     while (VT.getVectorNumElements() > 1) {
6059       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
6060       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
6061         break;
6062 
6063       SDValue Lo, Hi;
6064       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
6065       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
6066       VT = HalfVT;
6067     }
6068   }
6069 
6070   EVT EltVT = VT.getVectorElementType();
6071   unsigned NumElts = VT.getVectorNumElements();
6072 
6073   SmallVector<SDValue, 8> Ops;
6074   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
6075 
6076   SDValue Res = Ops[0];
6077   for (unsigned i = 1; i < NumElts; i++)
6078     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
6079 
6080   // Result type may be wider than element type.
6081   if (EltVT != Node->getValueType(0))
6082     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
6083   return Res;
6084 }
6085