1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore NoAlias and NonNull because they don't affect the
61   // call sequence.
62   AttributeList CallerAttrs = F.getAttributes();
63   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
64           .removeAttribute(Attribute::NoAlias)
65           .removeAttribute(Attribute::NonNull)
66           .hasAttributes())
67     return false;
68 
69   // It's not safe to eliminate the sign / zero extension of the return value.
70   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
71       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
72     return false;
73 
74   // Check if the only use is a function return node.
75   return isUsedByReturnOnly(Node, Chain);
76 }
77 
78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
79     const uint32_t *CallerPreservedMask,
80     const SmallVectorImpl<CCValAssign> &ArgLocs,
81     const SmallVectorImpl<SDValue> &OutVals) const {
82   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
83     const CCValAssign &ArgLoc = ArgLocs[I];
84     if (!ArgLoc.isRegLoc())
85       continue;
86     Register Reg = ArgLoc.getLocReg();
87     // Only look at callee saved registers.
88     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
89       continue;
90     // Check that we pass the value used for the caller.
91     // (We look for a CopyFromReg reading a virtual register that is used
92     //  for the function live-in value of register Reg)
93     SDValue Value = OutVals[I];
94     if (Value->getOpcode() != ISD::CopyFromReg)
95       return false;
96     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
97     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
98       return false;
99   }
100   return true;
101 }
102 
103 /// Set CallLoweringInfo attribute flags based on a call instruction
104 /// and called function attributes.
105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
106                                                      unsigned ArgIdx) {
107   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
108   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
109   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
110   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
111   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
112   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
113   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
114   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
115   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
116   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
117   Alignment = Call->getParamAlignment(ArgIdx);
118   ByValType = nullptr;
119   if (Call->paramHasAttr(ArgIdx, Attribute::ByVal))
120     ByValType = Call->getParamByValType(ArgIdx);
121 }
122 
123 /// Generate a libcall taking the given operands as arguments and returning a
124 /// result of type RetVT.
125 std::pair<SDValue, SDValue>
126 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
127                             ArrayRef<SDValue> Ops,
128                             MakeLibCallOptions CallOptions,
129                             const SDLoc &dl,
130                             SDValue InChain) const {
131   if (!InChain)
132     InChain = DAG.getEntryNode();
133 
134   TargetLowering::ArgListTy Args;
135   Args.reserve(Ops.size());
136 
137   TargetLowering::ArgListEntry Entry;
138   for (unsigned i = 0; i < Ops.size(); ++i) {
139     SDValue NewOp = Ops[i];
140     Entry.Node = NewOp;
141     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
142     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
143                                                  CallOptions.IsSExt);
144     Entry.IsZExt = !Entry.IsSExt;
145 
146     if (CallOptions.IsSoften &&
147         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
148       Entry.IsSExt = Entry.IsZExt = false;
149     }
150     Args.push_back(Entry);
151   }
152 
153   if (LC == RTLIB::UNKNOWN_LIBCALL)
154     report_fatal_error("Unsupported library call operation!");
155   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
156                                          getPointerTy(DAG.getDataLayout()));
157 
158   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
159   TargetLowering::CallLoweringInfo CLI(DAG);
160   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
161   bool zeroExtend = !signExtend;
162 
163   if (CallOptions.IsSoften &&
164       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
165     signExtend = zeroExtend = false;
166   }
167 
168   CLI.setDebugLoc(dl)
169       .setChain(InChain)
170       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
171       .setNoReturn(CallOptions.DoesNotReturn)
172       .setDiscardResult(!CallOptions.IsReturnValueUsed)
173       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
174       .setSExtResult(signExtend)
175       .setZExtResult(zeroExtend);
176   return LowerCallTo(CLI);
177 }
178 
179 bool
180 TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps,
181                                          unsigned Limit, uint64_t Size,
182                                          unsigned DstAlign, unsigned SrcAlign,
183                                          bool IsMemset,
184                                          bool ZeroMemset,
185                                          bool MemcpyStrSrc,
186                                          bool AllowOverlap,
187                                          unsigned DstAS, unsigned SrcAS,
188                                          const AttributeList &FuncAttributes) const {
189   // If 'SrcAlign' is zero, that means the memory operation does not need to
190   // load the value, i.e. memset or memcpy from constant string. Otherwise,
191   // it's the inferred alignment of the source. 'DstAlign', on the other hand,
192   // is the specified alignment of the memory operation. If it is zero, that
193   // means it's possible to change the alignment of the destination.
194   // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
195   // not need to be loaded.
196   if (!(SrcAlign == 0 || SrcAlign >= DstAlign))
197     return false;
198 
199   EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign,
200                                IsMemset, ZeroMemset, MemcpyStrSrc,
201                                FuncAttributes);
202 
203   if (VT == MVT::Other) {
204     // Use the largest integer type whose alignment constraints are satisfied.
205     // We only need to check DstAlign here as SrcAlign is always greater or
206     // equal to DstAlign (or zero).
207     VT = MVT::i64;
208     while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
209            !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
210       VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
211     assert(VT.isInteger());
212 
213     // Find the largest legal integer type.
214     MVT LVT = MVT::i64;
215     while (!isTypeLegal(LVT))
216       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
217     assert(LVT.isInteger());
218 
219     // If the type we've chosen is larger than the largest legal integer type
220     // then use that instead.
221     if (VT.bitsGT(LVT))
222       VT = LVT;
223   }
224 
225   unsigned NumMemOps = 0;
226   while (Size != 0) {
227     unsigned VTSize = VT.getSizeInBits() / 8;
228     while (VTSize > Size) {
229       // For now, only use non-vector load / store's for the left-over pieces.
230       EVT NewVT = VT;
231       unsigned NewVTSize;
232 
233       bool Found = false;
234       if (VT.isVector() || VT.isFloatingPoint()) {
235         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
236         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
237             isSafeMemOpType(NewVT.getSimpleVT()))
238           Found = true;
239         else if (NewVT == MVT::i64 &&
240                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
241                  isSafeMemOpType(MVT::f64)) {
242           // i64 is usually not legal on 32-bit targets, but f64 may be.
243           NewVT = MVT::f64;
244           Found = true;
245         }
246       }
247 
248       if (!Found) {
249         do {
250           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
251           if (NewVT == MVT::i8)
252             break;
253         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
254       }
255       NewVTSize = NewVT.getSizeInBits() / 8;
256 
257       // If the new VT cannot cover all of the remaining bits, then consider
258       // issuing a (or a pair of) unaligned and overlapping load / store.
259       bool Fast;
260       if (NumMemOps && AllowOverlap && NewVTSize < Size &&
261           allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign,
262                                          MachineMemOperand::MONone, &Fast) &&
263           Fast)
264         VTSize = Size;
265       else {
266         VT = NewVT;
267         VTSize = NewVTSize;
268       }
269     }
270 
271     if (++NumMemOps > Limit)
272       return false;
273 
274     MemOps.push_back(VT);
275     Size -= VTSize;
276   }
277 
278   return true;
279 }
280 
281 /// Soften the operands of a comparison. This code is shared among BR_CC,
282 /// SELECT_CC, and SETCC handlers.
283 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
284                                          SDValue &NewLHS, SDValue &NewRHS,
285                                          ISD::CondCode &CCCode,
286                                          const SDLoc &dl, const SDValue OldLHS,
287                                          const SDValue OldRHS) const {
288   SDValue Chain;
289   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
290                              OldRHS, Chain);
291 }
292 
293 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
294                                          SDValue &NewLHS, SDValue &NewRHS,
295                                          ISD::CondCode &CCCode,
296                                          const SDLoc &dl, const SDValue OldLHS,
297                                          const SDValue OldRHS,
298                                          SDValue &Chain,
299                                          bool IsSignaling) const {
300   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
301   // not supporting it. We can update this code when libgcc provides such
302   // functions.
303 
304   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
305          && "Unsupported setcc type!");
306 
307   // Expand into one or more soft-fp libcall(s).
308   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
309   bool ShouldInvertCC = false;
310   switch (CCCode) {
311   case ISD::SETEQ:
312   case ISD::SETOEQ:
313     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
314           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
315           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
316     break;
317   case ISD::SETNE:
318   case ISD::SETUNE:
319     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
320           (VT == MVT::f64) ? RTLIB::UNE_F64 :
321           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
322     break;
323   case ISD::SETGE:
324   case ISD::SETOGE:
325     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
326           (VT == MVT::f64) ? RTLIB::OGE_F64 :
327           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
328     break;
329   case ISD::SETLT:
330   case ISD::SETOLT:
331     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
332           (VT == MVT::f64) ? RTLIB::OLT_F64 :
333           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
334     break;
335   case ISD::SETLE:
336   case ISD::SETOLE:
337     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
338           (VT == MVT::f64) ? RTLIB::OLE_F64 :
339           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
340     break;
341   case ISD::SETGT:
342   case ISD::SETOGT:
343     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
344           (VT == MVT::f64) ? RTLIB::OGT_F64 :
345           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
346     break;
347   case ISD::SETO:
348     ShouldInvertCC = true;
349     LLVM_FALLTHROUGH;
350   case ISD::SETUO:
351     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
352           (VT == MVT::f64) ? RTLIB::UO_F64 :
353           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
354     break;
355   case ISD::SETONE:
356     // SETONE = O && UNE
357     ShouldInvertCC = true;
358     LLVM_FALLTHROUGH;
359   case ISD::SETUEQ:
360     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
361           (VT == MVT::f64) ? RTLIB::UO_F64 :
362           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
363     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
364           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
365           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
366     break;
367   default:
368     // Invert CC for unordered comparisons
369     ShouldInvertCC = true;
370     switch (CCCode) {
371     case ISD::SETULT:
372       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
373             (VT == MVT::f64) ? RTLIB::OGE_F64 :
374             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
375       break;
376     case ISD::SETULE:
377       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
378             (VT == MVT::f64) ? RTLIB::OGT_F64 :
379             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
380       break;
381     case ISD::SETUGT:
382       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
383             (VT == MVT::f64) ? RTLIB::OLE_F64 :
384             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
385       break;
386     case ISD::SETUGE:
387       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
388             (VT == MVT::f64) ? RTLIB::OLT_F64 :
389             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
390       break;
391     default: llvm_unreachable("Do not know how to soften this setcc!");
392     }
393   }
394 
395   // Use the target specific return value for comparions lib calls.
396   EVT RetVT = getCmpLibcallReturnType();
397   SDValue Ops[2] = {NewLHS, NewRHS};
398   TargetLowering::MakeLibCallOptions CallOptions;
399   EVT OpsVT[2] = { OldLHS.getValueType(),
400                    OldRHS.getValueType() };
401   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
402   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
403   NewLHS = Call.first;
404   NewRHS = DAG.getConstant(0, dl, RetVT);
405 
406   CCCode = getCmpLibcallCC(LC1);
407   if (ShouldInvertCC) {
408     assert(RetVT.isInteger());
409     CCCode = getSetCCInverse(CCCode, RetVT);
410   }
411 
412   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
413     // Update Chain.
414     Chain = Call.second;
415   } else {
416     EVT SetCCVT =
417         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
418     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
419     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
420     CCCode = getCmpLibcallCC(LC2);
421     if (ShouldInvertCC)
422       CCCode = getSetCCInverse(CCCode, RetVT);
423     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
424     if (Chain)
425       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
426                           Call2.second);
427     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
428                          Tmp.getValueType(), Tmp, NewLHS);
429     NewRHS = SDValue();
430   }
431 }
432 
433 /// Return the entry encoding for a jump table in the current function. The
434 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
435 unsigned TargetLowering::getJumpTableEncoding() const {
436   // In non-pic modes, just use the address of a block.
437   if (!isPositionIndependent())
438     return MachineJumpTableInfo::EK_BlockAddress;
439 
440   // In PIC mode, if the target supports a GPRel32 directive, use it.
441   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
442     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
443 
444   // Otherwise, use a label difference.
445   return MachineJumpTableInfo::EK_LabelDifference32;
446 }
447 
448 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
449                                                  SelectionDAG &DAG) const {
450   // If our PIC model is GP relative, use the global offset table as the base.
451   unsigned JTEncoding = getJumpTableEncoding();
452 
453   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
454       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
455     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
456 
457   return Table;
458 }
459 
460 /// This returns the relocation base for the given PIC jumptable, the same as
461 /// getPICJumpTableRelocBase, but as an MCExpr.
462 const MCExpr *
463 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
464                                              unsigned JTI,MCContext &Ctx) const{
465   // The normal PIC reloc base is the label at the start of the jump table.
466   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
467 }
468 
469 bool
470 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
471   const TargetMachine &TM = getTargetMachine();
472   const GlobalValue *GV = GA->getGlobal();
473 
474   // If the address is not even local to this DSO we will have to load it from
475   // a got and then add the offset.
476   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
477     return false;
478 
479   // If the code is position independent we will have to add a base register.
480   if (isPositionIndependent())
481     return false;
482 
483   // Otherwise we can do it.
484   return true;
485 }
486 
487 //===----------------------------------------------------------------------===//
488 //  Optimization Methods
489 //===----------------------------------------------------------------------===//
490 
491 /// If the specified instruction has a constant integer operand and there are
492 /// bits set in that constant that are not demanded, then clear those bits and
493 /// return true.
494 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
495                                             TargetLoweringOpt &TLO) const {
496   SDLoc DL(Op);
497   unsigned Opcode = Op.getOpcode();
498 
499   // Do target-specific constant optimization.
500   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
501     return TLO.New.getNode();
502 
503   // FIXME: ISD::SELECT, ISD::SELECT_CC
504   switch (Opcode) {
505   default:
506     break;
507   case ISD::XOR:
508   case ISD::AND:
509   case ISD::OR: {
510     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
511     if (!Op1C)
512       return false;
513 
514     // If this is a 'not' op, don't touch it because that's a canonical form.
515     const APInt &C = Op1C->getAPIntValue();
516     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
517       return false;
518 
519     if (!C.isSubsetOf(Demanded)) {
520       EVT VT = Op.getValueType();
521       SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT);
522       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
523       return TLO.CombineTo(Op, NewOp);
524     }
525 
526     break;
527   }
528   }
529 
530   return false;
531 }
532 
533 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
534 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
535 /// generalized for targets with other types of implicit widening casts.
536 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
537                                       const APInt &Demanded,
538                                       TargetLoweringOpt &TLO) const {
539   assert(Op.getNumOperands() == 2 &&
540          "ShrinkDemandedOp only supports binary operators!");
541   assert(Op.getNode()->getNumValues() == 1 &&
542          "ShrinkDemandedOp only supports nodes with one result!");
543 
544   SelectionDAG &DAG = TLO.DAG;
545   SDLoc dl(Op);
546 
547   // Early return, as this function cannot handle vector types.
548   if (Op.getValueType().isVector())
549     return false;
550 
551   // Don't do this if the node has another user, which may require the
552   // full value.
553   if (!Op.getNode()->hasOneUse())
554     return false;
555 
556   // Search for the smallest integer type with free casts to and from
557   // Op's type. For expedience, just check power-of-2 integer types.
558   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
559   unsigned DemandedSize = Demanded.getActiveBits();
560   unsigned SmallVTBits = DemandedSize;
561   if (!isPowerOf2_32(SmallVTBits))
562     SmallVTBits = NextPowerOf2(SmallVTBits);
563   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
564     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
565     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
566         TLI.isZExtFree(SmallVT, Op.getValueType())) {
567       // We found a type with free casts.
568       SDValue X = DAG.getNode(
569           Op.getOpcode(), dl, SmallVT,
570           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
571           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
572       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
573       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
574       return TLO.CombineTo(Op, Z);
575     }
576   }
577   return false;
578 }
579 
580 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
581                                           DAGCombinerInfo &DCI) const {
582   SelectionDAG &DAG = DCI.DAG;
583   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
584                         !DCI.isBeforeLegalizeOps());
585   KnownBits Known;
586 
587   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
588   if (Simplified) {
589     DCI.AddToWorklist(Op.getNode());
590     DCI.CommitTargetLoweringOpt(TLO);
591   }
592   return Simplified;
593 }
594 
595 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
596                                           KnownBits &Known,
597                                           TargetLoweringOpt &TLO,
598                                           unsigned Depth,
599                                           bool AssumeSingleUse) const {
600   EVT VT = Op.getValueType();
601   APInt DemandedElts = VT.isVector()
602                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
603                            : APInt(1, 1);
604   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
605                               AssumeSingleUse);
606 }
607 
608 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
609 // TODO: Under what circumstances can we create nodes? Constant folding?
610 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
611     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
612     SelectionDAG &DAG, unsigned Depth) const {
613   // Limit search depth.
614   if (Depth >= SelectionDAG::MaxRecursionDepth)
615     return SDValue();
616 
617   // Ignore UNDEFs.
618   if (Op.isUndef())
619     return SDValue();
620 
621   // Not demanding any bits/elts from Op.
622   if (DemandedBits == 0 || DemandedElts == 0)
623     return DAG.getUNDEF(Op.getValueType());
624 
625   unsigned NumElts = DemandedElts.getBitWidth();
626   KnownBits LHSKnown, RHSKnown;
627   switch (Op.getOpcode()) {
628   case ISD::BITCAST: {
629     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
630     EVT SrcVT = Src.getValueType();
631     EVT DstVT = Op.getValueType();
632     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
633     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
634 
635     if (NumSrcEltBits == NumDstEltBits)
636       if (SDValue V = SimplifyMultipleUseDemandedBits(
637               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
638         return DAG.getBitcast(DstVT, V);
639 
640     // TODO - bigendian once we have test coverage.
641     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
642         DAG.getDataLayout().isLittleEndian()) {
643       unsigned Scale = NumDstEltBits / NumSrcEltBits;
644       unsigned NumSrcElts = SrcVT.getVectorNumElements();
645       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
646       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
647       for (unsigned i = 0; i != Scale; ++i) {
648         unsigned Offset = i * NumSrcEltBits;
649         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
650         if (!Sub.isNullValue()) {
651           DemandedSrcBits |= Sub;
652           for (unsigned j = 0; j != NumElts; ++j)
653             if (DemandedElts[j])
654               DemandedSrcElts.setBit((j * Scale) + i);
655         }
656       }
657 
658       if (SDValue V = SimplifyMultipleUseDemandedBits(
659               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
660         return DAG.getBitcast(DstVT, V);
661     }
662 
663     // TODO - bigendian once we have test coverage.
664     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
665         DAG.getDataLayout().isLittleEndian()) {
666       unsigned Scale = NumSrcEltBits / NumDstEltBits;
667       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
668       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
669       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
670       for (unsigned i = 0; i != NumElts; ++i)
671         if (DemandedElts[i]) {
672           unsigned Offset = (i % Scale) * NumDstEltBits;
673           DemandedSrcBits.insertBits(DemandedBits, Offset);
674           DemandedSrcElts.setBit(i / Scale);
675         }
676 
677       if (SDValue V = SimplifyMultipleUseDemandedBits(
678               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
679         return DAG.getBitcast(DstVT, V);
680     }
681 
682     break;
683   }
684   case ISD::AND: {
685     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
686     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
687 
688     // If all of the demanded bits are known 1 on one side, return the other.
689     // These bits cannot contribute to the result of the 'and' in this
690     // context.
691     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
692       return Op.getOperand(0);
693     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
694       return Op.getOperand(1);
695     break;
696   }
697   case ISD::OR: {
698     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
699     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
700 
701     // If all of the demanded bits are known zero on one side, return the
702     // other.  These bits cannot contribute to the result of the 'or' in this
703     // context.
704     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
705       return Op.getOperand(0);
706     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
707       return Op.getOperand(1);
708     break;
709   }
710   case ISD::XOR: {
711     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
712     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
713 
714     // If all of the demanded bits are known zero on one side, return the
715     // other.
716     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
717       return Op.getOperand(0);
718     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
719       return Op.getOperand(1);
720     break;
721   }
722   case ISD::SETCC: {
723     SDValue Op0 = Op.getOperand(0);
724     SDValue Op1 = Op.getOperand(1);
725     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
726     // If (1) we only need the sign-bit, (2) the setcc operands are the same
727     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
728     // -1, we may be able to bypass the setcc.
729     if (DemandedBits.isSignMask() &&
730         Op0.getScalarValueSizeInBits() == DemandedBits.getBitWidth() &&
731         getBooleanContents(Op0.getValueType()) ==
732             BooleanContent::ZeroOrNegativeOneBooleanContent) {
733       // If we're testing X < 0, then this compare isn't needed - just use X!
734       // FIXME: We're limiting to integer types here, but this should also work
735       // if we don't care about FP signed-zero. The use of SETLT with FP means
736       // that we don't care about NaNs.
737       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
738           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
739         return Op0;
740     }
741     break;
742   }
743   case ISD::SIGN_EXTEND_INREG: {
744     // If none of the extended bits are demanded, eliminate the sextinreg.
745     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
746     if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits())
747       return Op.getOperand(0);
748     break;
749   }
750   case ISD::INSERT_VECTOR_ELT: {
751     // If we don't demand the inserted element, return the base vector.
752     SDValue Vec = Op.getOperand(0);
753     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
754     EVT VecVT = Vec.getValueType();
755     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
756         !DemandedElts[CIdx->getZExtValue()])
757       return Vec;
758     break;
759   }
760   case ISD::VECTOR_SHUFFLE: {
761     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
762 
763     // If all the demanded elts are from one operand and are inline,
764     // then we can use the operand directly.
765     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
766     for (unsigned i = 0; i != NumElts; ++i) {
767       int M = ShuffleMask[i];
768       if (M < 0 || !DemandedElts[i])
769         continue;
770       AllUndef = false;
771       IdentityLHS &= (M == (int)i);
772       IdentityRHS &= ((M - NumElts) == i);
773     }
774 
775     if (AllUndef)
776       return DAG.getUNDEF(Op.getValueType());
777     if (IdentityLHS)
778       return Op.getOperand(0);
779     if (IdentityRHS)
780       return Op.getOperand(1);
781     break;
782   }
783   default:
784     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
785       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
786               Op, DemandedBits, DemandedElts, DAG, Depth))
787         return V;
788     break;
789   }
790   return SDValue();
791 }
792 
793 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
794 /// result of Op are ever used downstream. If we can use this information to
795 /// simplify Op, create a new simplified DAG node and return true, returning the
796 /// original and new nodes in Old and New. Otherwise, analyze the expression and
797 /// return a mask of Known bits for the expression (used to simplify the
798 /// caller).  The Known bits may only be accurate for those bits in the
799 /// OriginalDemandedBits and OriginalDemandedElts.
800 bool TargetLowering::SimplifyDemandedBits(
801     SDValue Op, const APInt &OriginalDemandedBits,
802     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
803     unsigned Depth, bool AssumeSingleUse) const {
804   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
805   assert(Op.getScalarValueSizeInBits() == BitWidth &&
806          "Mask size mismatches value type size!");
807 
808   unsigned NumElts = OriginalDemandedElts.getBitWidth();
809   assert((!Op.getValueType().isVector() ||
810           NumElts == Op.getValueType().getVectorNumElements()) &&
811          "Unexpected vector size");
812 
813   APInt DemandedBits = OriginalDemandedBits;
814   APInt DemandedElts = OriginalDemandedElts;
815   SDLoc dl(Op);
816   auto &DL = TLO.DAG.getDataLayout();
817 
818   // Don't know anything.
819   Known = KnownBits(BitWidth);
820 
821   // Undef operand.
822   if (Op.isUndef())
823     return false;
824 
825   if (Op.getOpcode() == ISD::Constant) {
826     // We know all of the bits for a constant!
827     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
828     Known.Zero = ~Known.One;
829     return false;
830   }
831 
832   // Other users may use these bits.
833   EVT VT = Op.getValueType();
834   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
835     if (Depth != 0) {
836       // If not at the root, Just compute the Known bits to
837       // simplify things downstream.
838       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
839       return false;
840     }
841     // If this is the root being simplified, allow it to have multiple uses,
842     // just set the DemandedBits/Elts to all bits.
843     DemandedBits = APInt::getAllOnesValue(BitWidth);
844     DemandedElts = APInt::getAllOnesValue(NumElts);
845   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
846     // Not demanding any bits/elts from Op.
847     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
848   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
849     // Limit search depth.
850     return false;
851   }
852 
853   KnownBits Known2, KnownOut;
854   switch (Op.getOpcode()) {
855   case ISD::TargetConstant:
856     llvm_unreachable("Can't simplify this node");
857   case ISD::SCALAR_TO_VECTOR: {
858     if (!DemandedElts[0])
859       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
860 
861     KnownBits SrcKnown;
862     SDValue Src = Op.getOperand(0);
863     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
864     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
865     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
866       return true;
867     Known = SrcKnown.zextOrTrunc(BitWidth, false);
868     break;
869   }
870   case ISD::BUILD_VECTOR:
871     // Collect the known bits that are shared by every demanded element.
872     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
873     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
874     return false; // Don't fall through, will infinitely loop.
875   case ISD::LOAD: {
876     LoadSDNode *LD = cast<LoadSDNode>(Op);
877     if (getTargetConstantFromLoad(LD)) {
878       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
879       return false; // Don't fall through, will infinitely loop.
880     }
881     break;
882   }
883   case ISD::INSERT_VECTOR_ELT: {
884     SDValue Vec = Op.getOperand(0);
885     SDValue Scl = Op.getOperand(1);
886     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
887     EVT VecVT = Vec.getValueType();
888 
889     // If index isn't constant, assume we need all vector elements AND the
890     // inserted element.
891     APInt DemandedVecElts(DemandedElts);
892     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
893       unsigned Idx = CIdx->getZExtValue();
894       DemandedVecElts.clearBit(Idx);
895 
896       // Inserted element is not required.
897       if (!DemandedElts[Idx])
898         return TLO.CombineTo(Op, Vec);
899     }
900 
901     KnownBits KnownScl;
902     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
903     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
904     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
905       return true;
906 
907     Known = KnownScl.zextOrTrunc(BitWidth, false);
908 
909     KnownBits KnownVec;
910     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
911                              Depth + 1))
912       return true;
913 
914     if (!!DemandedVecElts) {
915       Known.One &= KnownVec.One;
916       Known.Zero &= KnownVec.Zero;
917     }
918 
919     return false;
920   }
921   case ISD::INSERT_SUBVECTOR: {
922     SDValue Base = Op.getOperand(0);
923     SDValue Sub = Op.getOperand(1);
924     EVT SubVT = Sub.getValueType();
925     unsigned NumSubElts = SubVT.getVectorNumElements();
926 
927     // If index isn't constant, assume we need the original demanded base
928     // elements and ALL the inserted subvector elements.
929     APInt BaseElts = DemandedElts;
930     APInt SubElts = APInt::getAllOnesValue(NumSubElts);
931     if (isa<ConstantSDNode>(Op.getOperand(2))) {
932       const APInt &Idx = Op.getConstantOperandAPInt(2);
933       if (Idx.ule(NumElts - NumSubElts)) {
934         unsigned SubIdx = Idx.getZExtValue();
935         SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
936         BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
937       }
938     }
939 
940     KnownBits KnownSub, KnownBase;
941     if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO,
942                              Depth + 1))
943       return true;
944     if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO,
945                              Depth + 1))
946       return true;
947 
948     Known.Zero.setAllBits();
949     Known.One.setAllBits();
950     if (!!SubElts) {
951         Known.One &= KnownSub.One;
952         Known.Zero &= KnownSub.Zero;
953     }
954     if (!!BaseElts) {
955         Known.One &= KnownBase.One;
956         Known.Zero &= KnownBase.Zero;
957     }
958     break;
959   }
960   case ISD::EXTRACT_SUBVECTOR: {
961     // If index isn't constant, assume we need all the source vector elements.
962     SDValue Src = Op.getOperand(0);
963     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
964     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
965     APInt SrcElts = APInt::getAllOnesValue(NumSrcElts);
966     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
967       // Offset the demanded elts by the subvector index.
968       uint64_t Idx = SubIdx->getZExtValue();
969       SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
970     }
971     if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1))
972       return true;
973     break;
974   }
975   case ISD::CONCAT_VECTORS: {
976     Known.Zero.setAllBits();
977     Known.One.setAllBits();
978     EVT SubVT = Op.getOperand(0).getValueType();
979     unsigned NumSubVecs = Op.getNumOperands();
980     unsigned NumSubElts = SubVT.getVectorNumElements();
981     for (unsigned i = 0; i != NumSubVecs; ++i) {
982       APInt DemandedSubElts =
983           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
984       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
985                                Known2, TLO, Depth + 1))
986         return true;
987       // Known bits are shared by every demanded subvector element.
988       if (!!DemandedSubElts) {
989         Known.One &= Known2.One;
990         Known.Zero &= Known2.Zero;
991       }
992     }
993     break;
994   }
995   case ISD::VECTOR_SHUFFLE: {
996     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
997 
998     // Collect demanded elements from shuffle operands..
999     APInt DemandedLHS(NumElts, 0);
1000     APInt DemandedRHS(NumElts, 0);
1001     for (unsigned i = 0; i != NumElts; ++i) {
1002       if (!DemandedElts[i])
1003         continue;
1004       int M = ShuffleMask[i];
1005       if (M < 0) {
1006         // For UNDEF elements, we don't know anything about the common state of
1007         // the shuffle result.
1008         DemandedLHS.clearAllBits();
1009         DemandedRHS.clearAllBits();
1010         break;
1011       }
1012       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1013       if (M < (int)NumElts)
1014         DemandedLHS.setBit(M);
1015       else
1016         DemandedRHS.setBit(M - NumElts);
1017     }
1018 
1019     if (!!DemandedLHS || !!DemandedRHS) {
1020       SDValue Op0 = Op.getOperand(0);
1021       SDValue Op1 = Op.getOperand(1);
1022 
1023       Known.Zero.setAllBits();
1024       Known.One.setAllBits();
1025       if (!!DemandedLHS) {
1026         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1027                                  Depth + 1))
1028           return true;
1029         Known.One &= Known2.One;
1030         Known.Zero &= Known2.Zero;
1031       }
1032       if (!!DemandedRHS) {
1033         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1034                                  Depth + 1))
1035           return true;
1036         Known.One &= Known2.One;
1037         Known.Zero &= Known2.Zero;
1038       }
1039 
1040       // Attempt to avoid multi-use ops if we don't need anything from them.
1041       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1042           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1043       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1044           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1045       if (DemandedOp0 || DemandedOp1) {
1046         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1047         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1048         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1049         return TLO.CombineTo(Op, NewOp);
1050       }
1051     }
1052     break;
1053   }
1054   case ISD::AND: {
1055     SDValue Op0 = Op.getOperand(0);
1056     SDValue Op1 = Op.getOperand(1);
1057 
1058     // If the RHS is a constant, check to see if the LHS would be zero without
1059     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1060     // simplify the LHS, here we're using information from the LHS to simplify
1061     // the RHS.
1062     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1063       // Do not increment Depth here; that can cause an infinite loop.
1064       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1065       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1066       if ((LHSKnown.Zero & DemandedBits) ==
1067           (~RHSC->getAPIntValue() & DemandedBits))
1068         return TLO.CombineTo(Op, Op0);
1069 
1070       // If any of the set bits in the RHS are known zero on the LHS, shrink
1071       // the constant.
1072       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
1073         return true;
1074 
1075       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1076       // constant, but if this 'and' is only clearing bits that were just set by
1077       // the xor, then this 'and' can be eliminated by shrinking the mask of
1078       // the xor. For example, for a 32-bit X:
1079       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1080       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1081           LHSKnown.One == ~RHSC->getAPIntValue()) {
1082         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1083         return TLO.CombineTo(Op, Xor);
1084       }
1085     }
1086 
1087     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1088                              Depth + 1))
1089       return true;
1090     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1091     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1092                              Known2, TLO, Depth + 1))
1093       return true;
1094     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1095 
1096     // Attempt to avoid multi-use ops if we don't need anything from them.
1097     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1098       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1099           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1100       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1101           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1102       if (DemandedOp0 || DemandedOp1) {
1103         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1104         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1105         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1106         return TLO.CombineTo(Op, NewOp);
1107       }
1108     }
1109 
1110     // If all of the demanded bits are known one on one side, return the other.
1111     // These bits cannot contribute to the result of the 'and'.
1112     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1113       return TLO.CombineTo(Op, Op0);
1114     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1115       return TLO.CombineTo(Op, Op1);
1116     // If all of the demanded bits in the inputs are known zeros, return zero.
1117     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1118       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1119     // If the RHS is a constant, see if we can simplify it.
1120     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
1121       return true;
1122     // If the operation can be done in a smaller type, do so.
1123     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1124       return true;
1125 
1126     // Output known-1 bits are only known if set in both the LHS & RHS.
1127     Known.One &= Known2.One;
1128     // Output known-0 are known to be clear if zero in either the LHS | RHS.
1129     Known.Zero |= Known2.Zero;
1130     break;
1131   }
1132   case ISD::OR: {
1133     SDValue Op0 = Op.getOperand(0);
1134     SDValue Op1 = Op.getOperand(1);
1135 
1136     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1137                              Depth + 1))
1138       return true;
1139     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1140     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1141                              Known2, TLO, Depth + 1))
1142       return true;
1143     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1144 
1145     // Attempt to avoid multi-use ops if we don't need anything from them.
1146     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1147       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1148           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1149       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1150           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1151       if (DemandedOp0 || DemandedOp1) {
1152         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1153         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1154         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1155         return TLO.CombineTo(Op, NewOp);
1156       }
1157     }
1158 
1159     // If all of the demanded bits are known zero on one side, return the other.
1160     // These bits cannot contribute to the result of the 'or'.
1161     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1162       return TLO.CombineTo(Op, Op0);
1163     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1164       return TLO.CombineTo(Op, Op1);
1165     // If the RHS is a constant, see if we can simplify it.
1166     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1167       return true;
1168     // If the operation can be done in a smaller type, do so.
1169     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1170       return true;
1171 
1172     // Output known-0 bits are only known if clear in both the LHS & RHS.
1173     Known.Zero &= Known2.Zero;
1174     // Output known-1 are known to be set if set in either the LHS | RHS.
1175     Known.One |= Known2.One;
1176     break;
1177   }
1178   case ISD::XOR: {
1179     SDValue Op0 = Op.getOperand(0);
1180     SDValue Op1 = Op.getOperand(1);
1181 
1182     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1183                              Depth + 1))
1184       return true;
1185     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1186     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1187                              Depth + 1))
1188       return true;
1189     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1190 
1191     // Attempt to avoid multi-use ops if we don't need anything from them.
1192     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1193       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1194           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1195       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1196           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1197       if (DemandedOp0 || DemandedOp1) {
1198         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1199         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1200         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1201         return TLO.CombineTo(Op, NewOp);
1202       }
1203     }
1204 
1205     // If all of the demanded bits are known zero on one side, return the other.
1206     // These bits cannot contribute to the result of the 'xor'.
1207     if (DemandedBits.isSubsetOf(Known.Zero))
1208       return TLO.CombineTo(Op, Op0);
1209     if (DemandedBits.isSubsetOf(Known2.Zero))
1210       return TLO.CombineTo(Op, Op1);
1211     // If the operation can be done in a smaller type, do so.
1212     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1213       return true;
1214 
1215     // If all of the unknown bits are known to be zero on one side or the other
1216     // (but not both) turn this into an *inclusive* or.
1217     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1218     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1219       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1220 
1221     // Output known-0 bits are known if clear or set in both the LHS & RHS.
1222     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
1223     // Output known-1 are known to be set if set in only one of the LHS, RHS.
1224     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1225 
1226     if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
1227       // If one side is a constant, and all of the known set bits on the other
1228       // side are also set in the constant, turn this into an AND, as we know
1229       // the bits will be cleared.
1230       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1231       // NB: it is okay if more bits are known than are requested
1232       if (C->getAPIntValue() == Known2.One) {
1233         SDValue ANDC =
1234             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1235         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1236       }
1237 
1238       // If the RHS is a constant, see if we can change it. Don't alter a -1
1239       // constant because that's a 'not' op, and that is better for combining
1240       // and codegen.
1241       if (!C->isAllOnesValue()) {
1242         if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
1243           // We're flipping all demanded bits. Flip the undemanded bits too.
1244           SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1245           return TLO.CombineTo(Op, New);
1246         }
1247         // If we can't turn this into a 'not', try to shrink the constant.
1248         if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1249           return true;
1250       }
1251     }
1252 
1253     Known = std::move(KnownOut);
1254     break;
1255   }
1256   case ISD::SELECT:
1257     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1258                              Depth + 1))
1259       return true;
1260     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1261                              Depth + 1))
1262       return true;
1263     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1264     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1265 
1266     // If the operands are constants, see if we can simplify them.
1267     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1268       return true;
1269 
1270     // Only known if known in both the LHS and RHS.
1271     Known.One &= Known2.One;
1272     Known.Zero &= Known2.Zero;
1273     break;
1274   case ISD::SELECT_CC:
1275     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1276                              Depth + 1))
1277       return true;
1278     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1279                              Depth + 1))
1280       return true;
1281     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1282     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1283 
1284     // If the operands are constants, see if we can simplify them.
1285     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1286       return true;
1287 
1288     // Only known if known in both the LHS and RHS.
1289     Known.One &= Known2.One;
1290     Known.Zero &= Known2.Zero;
1291     break;
1292   case ISD::SETCC: {
1293     SDValue Op0 = Op.getOperand(0);
1294     SDValue Op1 = Op.getOperand(1);
1295     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1296     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1297     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1298     // -1, we may be able to bypass the setcc.
1299     if (DemandedBits.isSignMask() &&
1300         Op0.getScalarValueSizeInBits() == BitWidth &&
1301         getBooleanContents(Op0.getValueType()) ==
1302             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1303       // If we're testing X < 0, then this compare isn't needed - just use X!
1304       // FIXME: We're limiting to integer types here, but this should also work
1305       // if we don't care about FP signed-zero. The use of SETLT with FP means
1306       // that we don't care about NaNs.
1307       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1308           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1309         return TLO.CombineTo(Op, Op0);
1310 
1311       // TODO: Should we check for other forms of sign-bit comparisons?
1312       // Examples: X <= -1, X >= 0
1313     }
1314     if (getBooleanContents(Op0.getValueType()) ==
1315             TargetLowering::ZeroOrOneBooleanContent &&
1316         BitWidth > 1)
1317       Known.Zero.setBitsFrom(1);
1318     break;
1319   }
1320   case ISD::SHL: {
1321     SDValue Op0 = Op.getOperand(0);
1322     SDValue Op1 = Op.getOperand(1);
1323 
1324     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1325       // If the shift count is an invalid immediate, don't do anything.
1326       if (SA->getAPIntValue().uge(BitWidth))
1327         break;
1328 
1329       unsigned ShAmt = SA->getZExtValue();
1330       if (ShAmt == 0)
1331         return TLO.CombineTo(Op, Op0);
1332 
1333       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1334       // single shift.  We can do this if the bottom bits (which are shifted
1335       // out) are never demanded.
1336       // TODO - support non-uniform vector amounts.
1337       if (Op0.getOpcode() == ISD::SRL) {
1338         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1339           if (ConstantSDNode *SA2 =
1340                   isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1341             if (SA2->getAPIntValue().ult(BitWidth)) {
1342               unsigned C1 = SA2->getZExtValue();
1343               unsigned Opc = ISD::SHL;
1344               int Diff = ShAmt - C1;
1345               if (Diff < 0) {
1346                 Diff = -Diff;
1347                 Opc = ISD::SRL;
1348               }
1349 
1350               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
1351               return TLO.CombineTo(
1352                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1353             }
1354           }
1355         }
1356       }
1357 
1358       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1359       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1360                                Depth + 1))
1361         return true;
1362 
1363       // Try shrinking the operation as long as the shift amount will still be
1364       // in range.
1365       if ((ShAmt < DemandedBits.getActiveBits()) &&
1366           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1367         return true;
1368 
1369       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1370       // are not demanded. This will likely allow the anyext to be folded away.
1371       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1372         SDValue InnerOp = Op0.getOperand(0);
1373         EVT InnerVT = InnerOp.getValueType();
1374         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1375         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1376             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1377           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1378           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1379             ShTy = InnerVT;
1380           SDValue NarrowShl =
1381               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1382                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1383           return TLO.CombineTo(
1384               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1385         }
1386         // Repeat the SHL optimization above in cases where an extension
1387         // intervenes: (shl (anyext (shr x, c1)), c2) to
1388         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1389         // aren't demanded (as above) and that the shifted upper c1 bits of
1390         // x aren't demanded.
1391         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1392             InnerOp.hasOneUse()) {
1393           if (ConstantSDNode *SA2 =
1394                   isConstOrConstSplat(InnerOp.getOperand(1))) {
1395             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
1396             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1397                 DemandedBits.getActiveBits() <=
1398                     (InnerBits - InnerShAmt + ShAmt) &&
1399                 DemandedBits.countTrailingZeros() >= ShAmt) {
1400               SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
1401                                                   Op1.getValueType());
1402               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1403                                                InnerOp.getOperand(0));
1404               return TLO.CombineTo(
1405                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1406             }
1407           }
1408         }
1409       }
1410 
1411       Known.Zero <<= ShAmt;
1412       Known.One <<= ShAmt;
1413       // low bits known zero.
1414       Known.Zero.setLowBits(ShAmt);
1415     }
1416     break;
1417   }
1418   case ISD::SRL: {
1419     SDValue Op0 = Op.getOperand(0);
1420     SDValue Op1 = Op.getOperand(1);
1421 
1422     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1423       // If the shift count is an invalid immediate, don't do anything.
1424       if (SA->getAPIntValue().uge(BitWidth))
1425         break;
1426 
1427       unsigned ShAmt = SA->getZExtValue();
1428       if (ShAmt == 0)
1429         return TLO.CombineTo(Op, Op0);
1430 
1431       EVT ShiftVT = Op1.getValueType();
1432       APInt InDemandedMask = (DemandedBits << ShAmt);
1433 
1434       // If the shift is exact, then it does demand the low bits (and knows that
1435       // they are zero).
1436       if (Op->getFlags().hasExact())
1437         InDemandedMask.setLowBits(ShAmt);
1438 
1439       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1440       // single shift.  We can do this if the top bits (which are shifted out)
1441       // are never demanded.
1442       // TODO - support non-uniform vector amounts.
1443       if (Op0.getOpcode() == ISD::SHL) {
1444         if (ConstantSDNode *SA2 =
1445                 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1446           if (!DemandedBits.intersects(
1447                   APInt::getHighBitsSet(BitWidth, ShAmt))) {
1448             if (SA2->getAPIntValue().ult(BitWidth)) {
1449               unsigned C1 = SA2->getZExtValue();
1450               unsigned Opc = ISD::SRL;
1451               int Diff = ShAmt - C1;
1452               if (Diff < 0) {
1453                 Diff = -Diff;
1454                 Opc = ISD::SHL;
1455               }
1456 
1457               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1458               return TLO.CombineTo(
1459                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1460             }
1461           }
1462         }
1463       }
1464 
1465       // Compute the new bits that are at the top now.
1466       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1467                                Depth + 1))
1468         return true;
1469       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1470       Known.Zero.lshrInPlace(ShAmt);
1471       Known.One.lshrInPlace(ShAmt);
1472 
1473       Known.Zero.setHighBits(ShAmt); // High bits known zero.
1474     }
1475     break;
1476   }
1477   case ISD::SRA: {
1478     SDValue Op0 = Op.getOperand(0);
1479     SDValue Op1 = Op.getOperand(1);
1480 
1481     // If this is an arithmetic shift right and only the low-bit is set, we can
1482     // always convert this into a logical shr, even if the shift amount is
1483     // variable.  The low bit of the shift cannot be an input sign bit unless
1484     // the shift amount is >= the size of the datatype, which is undefined.
1485     if (DemandedBits.isOneValue())
1486       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1487 
1488     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1489       // If the shift count is an invalid immediate, don't do anything.
1490       if (SA->getAPIntValue().uge(BitWidth))
1491         break;
1492 
1493       unsigned ShAmt = SA->getZExtValue();
1494       if (ShAmt == 0)
1495         return TLO.CombineTo(Op, Op0);
1496 
1497       APInt InDemandedMask = (DemandedBits << ShAmt);
1498 
1499       // If the shift is exact, then it does demand the low bits (and knows that
1500       // they are zero).
1501       if (Op->getFlags().hasExact())
1502         InDemandedMask.setLowBits(ShAmt);
1503 
1504       // If any of the demanded bits are produced by the sign extension, we also
1505       // demand the input sign bit.
1506       if (DemandedBits.countLeadingZeros() < ShAmt)
1507         InDemandedMask.setSignBit();
1508 
1509       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1510                                Depth + 1))
1511         return true;
1512       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1513       Known.Zero.lshrInPlace(ShAmt);
1514       Known.One.lshrInPlace(ShAmt);
1515 
1516       // If the input sign bit is known to be zero, or if none of the top bits
1517       // are demanded, turn this into an unsigned shift right.
1518       if (Known.Zero[BitWidth - ShAmt - 1] ||
1519           DemandedBits.countLeadingZeros() >= ShAmt) {
1520         SDNodeFlags Flags;
1521         Flags.setExact(Op->getFlags().hasExact());
1522         return TLO.CombineTo(
1523             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1524       }
1525 
1526       int Log2 = DemandedBits.exactLogBase2();
1527       if (Log2 >= 0) {
1528         // The bit must come from the sign.
1529         SDValue NewSA =
1530             TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType());
1531         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1532       }
1533 
1534       if (Known.One[BitWidth - ShAmt - 1])
1535         // New bits are known one.
1536         Known.One.setHighBits(ShAmt);
1537 
1538       // Attempt to avoid multi-use ops if we don't need anything from them.
1539       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1540         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1541             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1542         if (DemandedOp0) {
1543           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1544           return TLO.CombineTo(Op, NewOp);
1545         }
1546       }
1547     }
1548     break;
1549   }
1550   case ISD::FSHL:
1551   case ISD::FSHR: {
1552     SDValue Op0 = Op.getOperand(0);
1553     SDValue Op1 = Op.getOperand(1);
1554     SDValue Op2 = Op.getOperand(2);
1555     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1556 
1557     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1558       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1559 
1560       // For fshl, 0-shift returns the 1st arg.
1561       // For fshr, 0-shift returns the 2nd arg.
1562       if (Amt == 0) {
1563         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1564                                  Known, TLO, Depth + 1))
1565           return true;
1566         break;
1567       }
1568 
1569       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1570       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1571       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1572       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1573       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1574                                Depth + 1))
1575         return true;
1576       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1577                                Depth + 1))
1578         return true;
1579 
1580       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1581       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1582       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1583       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1584       Known.One |= Known2.One;
1585       Known.Zero |= Known2.Zero;
1586     }
1587     break;
1588   }
1589   case ISD::BITREVERSE: {
1590     SDValue Src = Op.getOperand(0);
1591     APInt DemandedSrcBits = DemandedBits.reverseBits();
1592     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1593                              Depth + 1))
1594       return true;
1595     Known.One = Known2.One.reverseBits();
1596     Known.Zero = Known2.Zero.reverseBits();
1597     break;
1598   }
1599   case ISD::BSWAP: {
1600     SDValue Src = Op.getOperand(0);
1601     APInt DemandedSrcBits = DemandedBits.byteSwap();
1602     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1603                              Depth + 1))
1604       return true;
1605     Known.One = Known2.One.byteSwap();
1606     Known.Zero = Known2.Zero.byteSwap();
1607     break;
1608   }
1609   case ISD::SIGN_EXTEND_INREG: {
1610     SDValue Op0 = Op.getOperand(0);
1611     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1612     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1613 
1614     // If we only care about the highest bit, don't bother shifting right.
1615     if (DemandedBits.isSignMask()) {
1616       unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0);
1617       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1618       // However if the input is already sign extended we expect the sign
1619       // extension to be dropped altogether later and do not simplify.
1620       if (!AlreadySignExtended) {
1621         // Compute the correct shift amount type, which must be getShiftAmountTy
1622         // for scalar types after legalization.
1623         EVT ShiftAmtTy = VT;
1624         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1625           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1626 
1627         SDValue ShiftAmt =
1628             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1629         return TLO.CombineTo(Op,
1630                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1631       }
1632     }
1633 
1634     // If none of the extended bits are demanded, eliminate the sextinreg.
1635     if (DemandedBits.getActiveBits() <= ExVTBits)
1636       return TLO.CombineTo(Op, Op0);
1637 
1638     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1639 
1640     // Since the sign extended bits are demanded, we know that the sign
1641     // bit is demanded.
1642     InputDemandedBits.setBit(ExVTBits - 1);
1643 
1644     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1645       return true;
1646     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1647 
1648     // If the sign bit of the input is known set or clear, then we know the
1649     // top bits of the result.
1650 
1651     // If the input sign bit is known zero, convert this into a zero extension.
1652     if (Known.Zero[ExVTBits - 1])
1653       return TLO.CombineTo(
1654           Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
1655 
1656     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1657     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1658       Known.One.setBitsFrom(ExVTBits);
1659       Known.Zero &= Mask;
1660     } else { // Input sign bit unknown
1661       Known.Zero &= Mask;
1662       Known.One &= Mask;
1663     }
1664     break;
1665   }
1666   case ISD::BUILD_PAIR: {
1667     EVT HalfVT = Op.getOperand(0).getValueType();
1668     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1669 
1670     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1671     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1672 
1673     KnownBits KnownLo, KnownHi;
1674 
1675     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1676       return true;
1677 
1678     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1679       return true;
1680 
1681     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1682                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1683 
1684     Known.One = KnownLo.One.zext(BitWidth) |
1685                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1686     break;
1687   }
1688   case ISD::ZERO_EXTEND:
1689   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1690     SDValue Src = Op.getOperand(0);
1691     EVT SrcVT = Src.getValueType();
1692     unsigned InBits = SrcVT.getScalarSizeInBits();
1693     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1694     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1695 
1696     // If none of the top bits are demanded, convert this into an any_extend.
1697     if (DemandedBits.getActiveBits() <= InBits) {
1698       // If we only need the non-extended bits of the bottom element
1699       // then we can just bitcast to the result.
1700       if (IsVecInReg && DemandedElts == 1 &&
1701           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1702           TLO.DAG.getDataLayout().isLittleEndian())
1703         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1704 
1705       unsigned Opc =
1706           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1707       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1708         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1709     }
1710 
1711     APInt InDemandedBits = DemandedBits.trunc(InBits);
1712     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1713     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1714                              Depth + 1))
1715       return true;
1716     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1717     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1718     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
1719     break;
1720   }
1721   case ISD::SIGN_EXTEND:
1722   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1723     SDValue Src = Op.getOperand(0);
1724     EVT SrcVT = Src.getValueType();
1725     unsigned InBits = SrcVT.getScalarSizeInBits();
1726     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1727     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1728 
1729     // If none of the top bits are demanded, convert this into an any_extend.
1730     if (DemandedBits.getActiveBits() <= InBits) {
1731       // If we only need the non-extended bits of the bottom element
1732       // then we can just bitcast to the result.
1733       if (IsVecInReg && DemandedElts == 1 &&
1734           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1735           TLO.DAG.getDataLayout().isLittleEndian())
1736         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1737 
1738       unsigned Opc =
1739           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1740       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1741         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1742     }
1743 
1744     APInt InDemandedBits = DemandedBits.trunc(InBits);
1745     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1746 
1747     // Since some of the sign extended bits are demanded, we know that the sign
1748     // bit is demanded.
1749     InDemandedBits.setBit(InBits - 1);
1750 
1751     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1752                              Depth + 1))
1753       return true;
1754     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1755     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1756 
1757     // If the sign bit is known one, the top bits match.
1758     Known = Known.sext(BitWidth);
1759 
1760     // If the sign bit is known zero, convert this to a zero extend.
1761     if (Known.isNonNegative()) {
1762       unsigned Opc =
1763           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1764       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1765         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1766     }
1767     break;
1768   }
1769   case ISD::ANY_EXTEND:
1770   case ISD::ANY_EXTEND_VECTOR_INREG: {
1771     SDValue Src = Op.getOperand(0);
1772     EVT SrcVT = Src.getValueType();
1773     unsigned InBits = SrcVT.getScalarSizeInBits();
1774     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1775     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1776 
1777     // If we only need the bottom element then we can just bitcast.
1778     // TODO: Handle ANY_EXTEND?
1779     if (IsVecInReg && DemandedElts == 1 &&
1780         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1781         TLO.DAG.getDataLayout().isLittleEndian())
1782       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1783 
1784     APInt InDemandedBits = DemandedBits.trunc(InBits);
1785     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1786     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1787                              Depth + 1))
1788       return true;
1789     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1790     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1791     Known = Known.zext(BitWidth, false /* => any extend */);
1792 
1793     // Attempt to avoid multi-use ops if we don't need anything from them.
1794     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1795             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1796       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1797     break;
1798   }
1799   case ISD::TRUNCATE: {
1800     SDValue Src = Op.getOperand(0);
1801 
1802     // Simplify the input, using demanded bit information, and compute the known
1803     // zero/one bits live out.
1804     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1805     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1806     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1807       return true;
1808     Known = Known.trunc(BitWidth);
1809 
1810     // Attempt to avoid multi-use ops if we don't need anything from them.
1811     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1812             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
1813       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
1814 
1815     // If the input is only used by this truncate, see if we can shrink it based
1816     // on the known demanded bits.
1817     if (Src.getNode()->hasOneUse()) {
1818       switch (Src.getOpcode()) {
1819       default:
1820         break;
1821       case ISD::SRL:
1822         // Shrink SRL by a constant if none of the high bits shifted in are
1823         // demanded.
1824         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1825           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1826           // undesirable.
1827           break;
1828 
1829         SDValue ShAmt = Src.getOperand(1);
1830         auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt);
1831         if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
1832           break;
1833         uint64_t ShVal = ShAmtC->getZExtValue();
1834 
1835         APInt HighBits =
1836             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
1837         HighBits.lshrInPlace(ShVal);
1838         HighBits = HighBits.trunc(BitWidth);
1839 
1840         if (!(HighBits & DemandedBits)) {
1841           // None of the shifted in bits are needed.  Add a truncate of the
1842           // shift input, then shift it.
1843           if (TLO.LegalTypes())
1844             ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1845           SDValue NewTrunc =
1846               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1847           return TLO.CombineTo(
1848               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt));
1849         }
1850         break;
1851       }
1852     }
1853 
1854     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1855     break;
1856   }
1857   case ISD::AssertZext: {
1858     // AssertZext demands all of the high bits, plus any of the low bits
1859     // demanded by its users.
1860     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1861     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1862     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
1863                              TLO, Depth + 1))
1864       return true;
1865     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1866 
1867     Known.Zero |= ~InMask;
1868     break;
1869   }
1870   case ISD::EXTRACT_VECTOR_ELT: {
1871     SDValue Src = Op.getOperand(0);
1872     SDValue Idx = Op.getOperand(1);
1873     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1874     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1875 
1876     // Demand the bits from every vector element without a constant index.
1877     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1878     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1879       if (CIdx->getAPIntValue().ult(NumSrcElts))
1880         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1881 
1882     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1883     // anything about the extended bits.
1884     APInt DemandedSrcBits = DemandedBits;
1885     if (BitWidth > EltBitWidth)
1886       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1887 
1888     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1889                              Depth + 1))
1890       return true;
1891 
1892     // Attempt to avoid multi-use ops if we don't need anything from them.
1893     if (!DemandedSrcBits.isAllOnesValue() ||
1894         !DemandedSrcElts.isAllOnesValue()) {
1895       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1896               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
1897         SDValue NewOp =
1898             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
1899         return TLO.CombineTo(Op, NewOp);
1900       }
1901     }
1902 
1903     Known = Known2;
1904     if (BitWidth > EltBitWidth)
1905       Known = Known.zext(BitWidth, false /* => any extend */);
1906     break;
1907   }
1908   case ISD::BITCAST: {
1909     SDValue Src = Op.getOperand(0);
1910     EVT SrcVT = Src.getValueType();
1911     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1912 
1913     // If this is an FP->Int bitcast and if the sign bit is the only
1914     // thing demanded, turn this into a FGETSIGN.
1915     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1916         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1917         SrcVT.isFloatingPoint()) {
1918       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1919       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1920       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1921           SrcVT != MVT::f128) {
1922         // Cannot eliminate/lower SHL for f128 yet.
1923         EVT Ty = OpVTLegal ? VT : MVT::i32;
1924         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1925         // place.  We expect the SHL to be eliminated by other optimizations.
1926         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
1927         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1928         if (!OpVTLegal && OpVTSizeInBits > 32)
1929           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1930         unsigned ShVal = Op.getValueSizeInBits() - 1;
1931         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1932         return TLO.CombineTo(Op,
1933                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1934       }
1935     }
1936 
1937     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
1938     // Demand the elt/bit if any of the original elts/bits are demanded.
1939     // TODO - bigendian once we have test coverage.
1940     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
1941         TLO.DAG.getDataLayout().isLittleEndian()) {
1942       unsigned Scale = BitWidth / NumSrcEltBits;
1943       unsigned NumSrcElts = SrcVT.getVectorNumElements();
1944       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1945       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1946       for (unsigned i = 0; i != Scale; ++i) {
1947         unsigned Offset = i * NumSrcEltBits;
1948         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
1949         if (!Sub.isNullValue()) {
1950           DemandedSrcBits |= Sub;
1951           for (unsigned j = 0; j != NumElts; ++j)
1952             if (DemandedElts[j])
1953               DemandedSrcElts.setBit((j * Scale) + i);
1954         }
1955       }
1956 
1957       APInt KnownSrcUndef, KnownSrcZero;
1958       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1959                                      KnownSrcZero, TLO, Depth + 1))
1960         return true;
1961 
1962       KnownBits KnownSrcBits;
1963       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1964                                KnownSrcBits, TLO, Depth + 1))
1965         return true;
1966     } else if ((NumSrcEltBits % BitWidth) == 0 &&
1967                TLO.DAG.getDataLayout().isLittleEndian()) {
1968       unsigned Scale = NumSrcEltBits / BitWidth;
1969       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1970       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1971       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1972       for (unsigned i = 0; i != NumElts; ++i)
1973         if (DemandedElts[i]) {
1974           unsigned Offset = (i % Scale) * BitWidth;
1975           DemandedSrcBits.insertBits(DemandedBits, Offset);
1976           DemandedSrcElts.setBit(i / Scale);
1977         }
1978 
1979       if (SrcVT.isVector()) {
1980         APInt KnownSrcUndef, KnownSrcZero;
1981         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1982                                        KnownSrcZero, TLO, Depth + 1))
1983           return true;
1984       }
1985 
1986       KnownBits KnownSrcBits;
1987       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1988                                KnownSrcBits, TLO, Depth + 1))
1989         return true;
1990     }
1991 
1992     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
1993     // recursive call where Known may be useful to the caller.
1994     if (Depth > 0) {
1995       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1996       return false;
1997     }
1998     break;
1999   }
2000   case ISD::ADD:
2001   case ISD::MUL:
2002   case ISD::SUB: {
2003     // Add, Sub, and Mul don't demand any bits in positions beyond that
2004     // of the highest bit demanded of them.
2005     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2006     SDNodeFlags Flags = Op.getNode()->getFlags();
2007     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2008     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2009     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2010                              Depth + 1) ||
2011         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2012                              Depth + 1) ||
2013         // See if the operation should be performed at a smaller bit width.
2014         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2015       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2016         // Disable the nsw and nuw flags. We can no longer guarantee that we
2017         // won't wrap after simplification.
2018         Flags.setNoSignedWrap(false);
2019         Flags.setNoUnsignedWrap(false);
2020         SDValue NewOp =
2021             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2022         return TLO.CombineTo(Op, NewOp);
2023       }
2024       return true;
2025     }
2026 
2027     // Attempt to avoid multi-use ops if we don't need anything from them.
2028     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
2029       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2030           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2031       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2032           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2033       if (DemandedOp0 || DemandedOp1) {
2034         Flags.setNoSignedWrap(false);
2035         Flags.setNoUnsignedWrap(false);
2036         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2037         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2038         SDValue NewOp =
2039             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2040         return TLO.CombineTo(Op, NewOp);
2041       }
2042     }
2043 
2044     // If we have a constant operand, we may be able to turn it into -1 if we
2045     // do not demand the high bits. This can make the constant smaller to
2046     // encode, allow more general folding, or match specialized instruction
2047     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2048     // is probably not useful (and could be detrimental).
2049     ConstantSDNode *C = isConstOrConstSplat(Op1);
2050     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2051     if (C && !C->isAllOnesValue() && !C->isOne() &&
2052         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
2053       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2054       // Disable the nsw and nuw flags. We can no longer guarantee that we
2055       // won't wrap after simplification.
2056       Flags.setNoSignedWrap(false);
2057       Flags.setNoUnsignedWrap(false);
2058       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2059       return TLO.CombineTo(Op, NewOp);
2060     }
2061 
2062     LLVM_FALLTHROUGH;
2063   }
2064   default:
2065     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2066       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2067                                             Known, TLO, Depth))
2068         return true;
2069       break;
2070     }
2071 
2072     // Just use computeKnownBits to compute output bits.
2073     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2074     break;
2075   }
2076 
2077   // If we know the value of all of the demanded bits, return this as a
2078   // constant.
2079   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2080     // Avoid folding to a constant if any OpaqueConstant is involved.
2081     const SDNode *N = Op.getNode();
2082     for (SDNodeIterator I = SDNodeIterator::begin(N),
2083                         E = SDNodeIterator::end(N);
2084          I != E; ++I) {
2085       SDNode *Op = *I;
2086       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2087         if (C->isOpaque())
2088           return false;
2089     }
2090     // TODO: Handle float bits as well.
2091     if (VT.isInteger())
2092       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2093   }
2094 
2095   return false;
2096 }
2097 
2098 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2099                                                 const APInt &DemandedElts,
2100                                                 APInt &KnownUndef,
2101                                                 APInt &KnownZero,
2102                                                 DAGCombinerInfo &DCI) const {
2103   SelectionDAG &DAG = DCI.DAG;
2104   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2105                         !DCI.isBeforeLegalizeOps());
2106 
2107   bool Simplified =
2108       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2109   if (Simplified) {
2110     DCI.AddToWorklist(Op.getNode());
2111     DCI.CommitTargetLoweringOpt(TLO);
2112   }
2113 
2114   return Simplified;
2115 }
2116 
2117 /// Given a vector binary operation and known undefined elements for each input
2118 /// operand, compute whether each element of the output is undefined.
2119 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2120                                          const APInt &UndefOp0,
2121                                          const APInt &UndefOp1) {
2122   EVT VT = BO.getValueType();
2123   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2124          "Vector binop only");
2125 
2126   EVT EltVT = VT.getVectorElementType();
2127   unsigned NumElts = VT.getVectorNumElements();
2128   assert(UndefOp0.getBitWidth() == NumElts &&
2129          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2130 
2131   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2132                                    const APInt &UndefVals) {
2133     if (UndefVals[Index])
2134       return DAG.getUNDEF(EltVT);
2135 
2136     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2137       // Try hard to make sure that the getNode() call is not creating temporary
2138       // nodes. Ignore opaque integers because they do not constant fold.
2139       SDValue Elt = BV->getOperand(Index);
2140       auto *C = dyn_cast<ConstantSDNode>(Elt);
2141       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2142         return Elt;
2143     }
2144 
2145     return SDValue();
2146   };
2147 
2148   APInt KnownUndef = APInt::getNullValue(NumElts);
2149   for (unsigned i = 0; i != NumElts; ++i) {
2150     // If both inputs for this element are either constant or undef and match
2151     // the element type, compute the constant/undef result for this element of
2152     // the vector.
2153     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2154     // not handle FP constants. The code within getNode() should be refactored
2155     // to avoid the danger of creating a bogus temporary node here.
2156     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2157     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2158     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2159       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2160         KnownUndef.setBit(i);
2161   }
2162   return KnownUndef;
2163 }
2164 
2165 bool TargetLowering::SimplifyDemandedVectorElts(
2166     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2167     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2168     bool AssumeSingleUse) const {
2169   EVT VT = Op.getValueType();
2170   APInt DemandedElts = OriginalDemandedElts;
2171   unsigned NumElts = DemandedElts.getBitWidth();
2172   assert(VT.isVector() && "Expected vector op");
2173   assert(VT.getVectorNumElements() == NumElts &&
2174          "Mask size mismatches value type element count!");
2175 
2176   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2177 
2178   // Undef operand.
2179   if (Op.isUndef()) {
2180     KnownUndef.setAllBits();
2181     return false;
2182   }
2183 
2184   // If Op has other users, assume that all elements are needed.
2185   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2186     DemandedElts.setAllBits();
2187 
2188   // Not demanding any elements from Op.
2189   if (DemandedElts == 0) {
2190     KnownUndef.setAllBits();
2191     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2192   }
2193 
2194   // Limit search depth.
2195   if (Depth >= SelectionDAG::MaxRecursionDepth)
2196     return false;
2197 
2198   SDLoc DL(Op);
2199   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2200 
2201   switch (Op.getOpcode()) {
2202   case ISD::SCALAR_TO_VECTOR: {
2203     if (!DemandedElts[0]) {
2204       KnownUndef.setAllBits();
2205       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2206     }
2207     KnownUndef.setHighBits(NumElts - 1);
2208     break;
2209   }
2210   case ISD::BITCAST: {
2211     SDValue Src = Op.getOperand(0);
2212     EVT SrcVT = Src.getValueType();
2213 
2214     // We only handle vectors here.
2215     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2216     if (!SrcVT.isVector())
2217       break;
2218 
2219     // Fast handling of 'identity' bitcasts.
2220     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2221     if (NumSrcElts == NumElts)
2222       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2223                                         KnownZero, TLO, Depth + 1);
2224 
2225     APInt SrcZero, SrcUndef;
2226     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2227 
2228     // Bitcast from 'large element' src vector to 'small element' vector, we
2229     // must demand a source element if any DemandedElt maps to it.
2230     if ((NumElts % NumSrcElts) == 0) {
2231       unsigned Scale = NumElts / NumSrcElts;
2232       for (unsigned i = 0; i != NumElts; ++i)
2233         if (DemandedElts[i])
2234           SrcDemandedElts.setBit(i / Scale);
2235 
2236       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2237                                      TLO, Depth + 1))
2238         return true;
2239 
2240       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2241       // of the large element.
2242       // TODO - bigendian once we have test coverage.
2243       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2244         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2245         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2246         for (unsigned i = 0; i != NumElts; ++i)
2247           if (DemandedElts[i]) {
2248             unsigned Ofs = (i % Scale) * EltSizeInBits;
2249             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2250           }
2251 
2252         KnownBits Known;
2253         if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1))
2254           return true;
2255       }
2256 
2257       // If the src element is zero/undef then all the output elements will be -
2258       // only demanded elements are guaranteed to be correct.
2259       for (unsigned i = 0; i != NumSrcElts; ++i) {
2260         if (SrcDemandedElts[i]) {
2261           if (SrcZero[i])
2262             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2263           if (SrcUndef[i])
2264             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2265         }
2266       }
2267     }
2268 
2269     // Bitcast from 'small element' src vector to 'large element' vector, we
2270     // demand all smaller source elements covered by the larger demanded element
2271     // of this vector.
2272     if ((NumSrcElts % NumElts) == 0) {
2273       unsigned Scale = NumSrcElts / NumElts;
2274       for (unsigned i = 0; i != NumElts; ++i)
2275         if (DemandedElts[i])
2276           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2277 
2278       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2279                                      TLO, Depth + 1))
2280         return true;
2281 
2282       // If all the src elements covering an output element are zero/undef, then
2283       // the output element will be as well, assuming it was demanded.
2284       for (unsigned i = 0; i != NumElts; ++i) {
2285         if (DemandedElts[i]) {
2286           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2287             KnownZero.setBit(i);
2288           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2289             KnownUndef.setBit(i);
2290         }
2291       }
2292     }
2293     break;
2294   }
2295   case ISD::BUILD_VECTOR: {
2296     // Check all elements and simplify any unused elements with UNDEF.
2297     if (!DemandedElts.isAllOnesValue()) {
2298       // Don't simplify BROADCASTS.
2299       if (llvm::any_of(Op->op_values(),
2300                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2301         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2302         bool Updated = false;
2303         for (unsigned i = 0; i != NumElts; ++i) {
2304           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2305             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2306             KnownUndef.setBit(i);
2307             Updated = true;
2308           }
2309         }
2310         if (Updated)
2311           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2312       }
2313     }
2314     for (unsigned i = 0; i != NumElts; ++i) {
2315       SDValue SrcOp = Op.getOperand(i);
2316       if (SrcOp.isUndef()) {
2317         KnownUndef.setBit(i);
2318       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2319                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2320         KnownZero.setBit(i);
2321       }
2322     }
2323     break;
2324   }
2325   case ISD::CONCAT_VECTORS: {
2326     EVT SubVT = Op.getOperand(0).getValueType();
2327     unsigned NumSubVecs = Op.getNumOperands();
2328     unsigned NumSubElts = SubVT.getVectorNumElements();
2329     for (unsigned i = 0; i != NumSubVecs; ++i) {
2330       SDValue SubOp = Op.getOperand(i);
2331       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2332       APInt SubUndef, SubZero;
2333       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2334                                      Depth + 1))
2335         return true;
2336       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2337       KnownZero.insertBits(SubZero, i * NumSubElts);
2338     }
2339     break;
2340   }
2341   case ISD::INSERT_SUBVECTOR: {
2342     if (!isa<ConstantSDNode>(Op.getOperand(2)))
2343       break;
2344     SDValue Base = Op.getOperand(0);
2345     SDValue Sub = Op.getOperand(1);
2346     EVT SubVT = Sub.getValueType();
2347     unsigned NumSubElts = SubVT.getVectorNumElements();
2348     const APInt &Idx = Op.getConstantOperandAPInt(2);
2349     if (Idx.ugt(NumElts - NumSubElts))
2350       break;
2351     unsigned SubIdx = Idx.getZExtValue();
2352     APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
2353     APInt SubUndef, SubZero;
2354     if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
2355                                    Depth + 1))
2356       return true;
2357     APInt BaseElts = DemandedElts;
2358     BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
2359 
2360     // If none of the base operand elements are demanded, replace it with undef.
2361     if (!BaseElts && !Base.isUndef())
2362       return TLO.CombineTo(Op,
2363                            TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2364                                            TLO.DAG.getUNDEF(VT),
2365                                            Op.getOperand(1),
2366                                            Op.getOperand(2)));
2367 
2368     if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
2369                                    Depth + 1))
2370       return true;
2371     KnownUndef.insertBits(SubUndef, SubIdx);
2372     KnownZero.insertBits(SubZero, SubIdx);
2373     break;
2374   }
2375   case ISD::EXTRACT_SUBVECTOR: {
2376     SDValue Src = Op.getOperand(0);
2377     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2378     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2379     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2380       // Offset the demanded elts by the subvector index.
2381       uint64_t Idx = SubIdx->getZExtValue();
2382       APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2383       APInt SrcUndef, SrcZero;
2384       if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
2385                                      Depth + 1))
2386         return true;
2387       KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2388       KnownZero = SrcZero.extractBits(NumElts, Idx);
2389     }
2390     break;
2391   }
2392   case ISD::INSERT_VECTOR_ELT: {
2393     SDValue Vec = Op.getOperand(0);
2394     SDValue Scl = Op.getOperand(1);
2395     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2396 
2397     // For a legal, constant insertion index, if we don't need this insertion
2398     // then strip it, else remove it from the demanded elts.
2399     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2400       unsigned Idx = CIdx->getZExtValue();
2401       if (!DemandedElts[Idx])
2402         return TLO.CombineTo(Op, Vec);
2403 
2404       APInt DemandedVecElts(DemandedElts);
2405       DemandedVecElts.clearBit(Idx);
2406       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2407                                      KnownZero, TLO, Depth + 1))
2408         return true;
2409 
2410       KnownUndef.clearBit(Idx);
2411       if (Scl.isUndef())
2412         KnownUndef.setBit(Idx);
2413 
2414       KnownZero.clearBit(Idx);
2415       if (isNullConstant(Scl) || isNullFPConstant(Scl))
2416         KnownZero.setBit(Idx);
2417       break;
2418     }
2419 
2420     APInt VecUndef, VecZero;
2421     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2422                                    Depth + 1))
2423       return true;
2424     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2425     break;
2426   }
2427   case ISD::VSELECT: {
2428     // Try to transform the select condition based on the current demanded
2429     // elements.
2430     // TODO: If a condition element is undef, we can choose from one arm of the
2431     //       select (and if one arm is undef, then we can propagate that to the
2432     //       result).
2433     // TODO - add support for constant vselect masks (see IR version of this).
2434     APInt UnusedUndef, UnusedZero;
2435     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2436                                    UnusedZero, TLO, Depth + 1))
2437       return true;
2438 
2439     // See if we can simplify either vselect operand.
2440     APInt DemandedLHS(DemandedElts);
2441     APInt DemandedRHS(DemandedElts);
2442     APInt UndefLHS, ZeroLHS;
2443     APInt UndefRHS, ZeroRHS;
2444     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2445                                    ZeroLHS, TLO, Depth + 1))
2446       return true;
2447     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2448                                    ZeroRHS, TLO, Depth + 1))
2449       return true;
2450 
2451     KnownUndef = UndefLHS & UndefRHS;
2452     KnownZero = ZeroLHS & ZeroRHS;
2453     break;
2454   }
2455   case ISD::VECTOR_SHUFFLE: {
2456     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2457 
2458     // Collect demanded elements from shuffle operands..
2459     APInt DemandedLHS(NumElts, 0);
2460     APInt DemandedRHS(NumElts, 0);
2461     for (unsigned i = 0; i != NumElts; ++i) {
2462       int M = ShuffleMask[i];
2463       if (M < 0 || !DemandedElts[i])
2464         continue;
2465       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2466       if (M < (int)NumElts)
2467         DemandedLHS.setBit(M);
2468       else
2469         DemandedRHS.setBit(M - NumElts);
2470     }
2471 
2472     // See if we can simplify either shuffle operand.
2473     APInt UndefLHS, ZeroLHS;
2474     APInt UndefRHS, ZeroRHS;
2475     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2476                                    ZeroLHS, TLO, Depth + 1))
2477       return true;
2478     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2479                                    ZeroRHS, TLO, Depth + 1))
2480       return true;
2481 
2482     // Simplify mask using undef elements from LHS/RHS.
2483     bool Updated = false;
2484     bool IdentityLHS = true, IdentityRHS = true;
2485     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2486     for (unsigned i = 0; i != NumElts; ++i) {
2487       int &M = NewMask[i];
2488       if (M < 0)
2489         continue;
2490       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2491           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2492         Updated = true;
2493         M = -1;
2494       }
2495       IdentityLHS &= (M < 0) || (M == (int)i);
2496       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2497     }
2498 
2499     // Update legal shuffle masks based on demanded elements if it won't reduce
2500     // to Identity which can cause premature removal of the shuffle mask.
2501     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2502       SDValue LegalShuffle =
2503           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2504                                   NewMask, TLO.DAG);
2505       if (LegalShuffle)
2506         return TLO.CombineTo(Op, LegalShuffle);
2507     }
2508 
2509     // Propagate undef/zero elements from LHS/RHS.
2510     for (unsigned i = 0; i != NumElts; ++i) {
2511       int M = ShuffleMask[i];
2512       if (M < 0) {
2513         KnownUndef.setBit(i);
2514       } else if (M < (int)NumElts) {
2515         if (UndefLHS[M])
2516           KnownUndef.setBit(i);
2517         if (ZeroLHS[M])
2518           KnownZero.setBit(i);
2519       } else {
2520         if (UndefRHS[M - NumElts])
2521           KnownUndef.setBit(i);
2522         if (ZeroRHS[M - NumElts])
2523           KnownZero.setBit(i);
2524       }
2525     }
2526     break;
2527   }
2528   case ISD::ANY_EXTEND_VECTOR_INREG:
2529   case ISD::SIGN_EXTEND_VECTOR_INREG:
2530   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2531     APInt SrcUndef, SrcZero;
2532     SDValue Src = Op.getOperand(0);
2533     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2534     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2535     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2536                                    Depth + 1))
2537       return true;
2538     KnownZero = SrcZero.zextOrTrunc(NumElts);
2539     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2540 
2541     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2542         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2543         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2544       // aext - if we just need the bottom element then we can bitcast.
2545       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2546     }
2547 
2548     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2549       // zext(undef) upper bits are guaranteed to be zero.
2550       if (DemandedElts.isSubsetOf(KnownUndef))
2551         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2552       KnownUndef.clearAllBits();
2553     }
2554     break;
2555   }
2556 
2557   // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
2558   // MAX, saturated math, etc.
2559   case ISD::OR:
2560   case ISD::XOR:
2561   case ISD::ADD:
2562   case ISD::SUB:
2563   case ISD::FADD:
2564   case ISD::FSUB:
2565   case ISD::FMUL:
2566   case ISD::FDIV:
2567   case ISD::FREM: {
2568     APInt UndefRHS, ZeroRHS;
2569     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2570                                    ZeroRHS, TLO, Depth + 1))
2571       return true;
2572     APInt UndefLHS, ZeroLHS;
2573     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2574                                    ZeroLHS, TLO, Depth + 1))
2575       return true;
2576 
2577     KnownZero = ZeroLHS & ZeroRHS;
2578     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2579     break;
2580   }
2581   case ISD::SHL:
2582   case ISD::SRL:
2583   case ISD::SRA:
2584   case ISD::ROTL:
2585   case ISD::ROTR: {
2586     APInt UndefRHS, ZeroRHS;
2587     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2588                                    ZeroRHS, TLO, Depth + 1))
2589       return true;
2590     APInt UndefLHS, ZeroLHS;
2591     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2592                                    ZeroLHS, TLO, Depth + 1))
2593       return true;
2594 
2595     KnownZero = ZeroLHS;
2596     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2597     break;
2598   }
2599   case ISD::MUL:
2600   case ISD::AND: {
2601     APInt SrcUndef, SrcZero;
2602     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
2603                                    SrcZero, TLO, Depth + 1))
2604       return true;
2605     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2606                                    KnownZero, TLO, Depth + 1))
2607       return true;
2608 
2609     // If either side has a zero element, then the result element is zero, even
2610     // if the other is an UNDEF.
2611     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2612     // and then handle 'and' nodes with the rest of the binop opcodes.
2613     KnownZero |= SrcZero;
2614     KnownUndef &= SrcUndef;
2615     KnownUndef &= ~KnownZero;
2616     break;
2617   }
2618   case ISD::TRUNCATE:
2619   case ISD::SIGN_EXTEND:
2620   case ISD::ZERO_EXTEND:
2621     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2622                                    KnownZero, TLO, Depth + 1))
2623       return true;
2624 
2625     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2626       // zext(undef) upper bits are guaranteed to be zero.
2627       if (DemandedElts.isSubsetOf(KnownUndef))
2628         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2629       KnownUndef.clearAllBits();
2630     }
2631     break;
2632   default: {
2633     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2634       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2635                                                   KnownZero, TLO, Depth))
2636         return true;
2637     } else {
2638       KnownBits Known;
2639       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2640       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2641                                TLO, Depth, AssumeSingleUse))
2642         return true;
2643     }
2644     break;
2645   }
2646   }
2647   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2648 
2649   // Constant fold all undef cases.
2650   // TODO: Handle zero cases as well.
2651   if (DemandedElts.isSubsetOf(KnownUndef))
2652     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2653 
2654   return false;
2655 }
2656 
2657 /// Determine which of the bits specified in Mask are known to be either zero or
2658 /// one and return them in the Known.
2659 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2660                                                    KnownBits &Known,
2661                                                    const APInt &DemandedElts,
2662                                                    const SelectionDAG &DAG,
2663                                                    unsigned Depth) const {
2664   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2665           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2666           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2667           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2668          "Should use MaskedValueIsZero if you don't know whether Op"
2669          " is a target node!");
2670   Known.resetAll();
2671 }
2672 
2673 void TargetLowering::computeKnownBitsForTargetInstr(
2674     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2675     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2676     unsigned Depth) const {
2677   Known.resetAll();
2678 }
2679 
2680 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
2681                                                    KnownBits &Known,
2682                                                    const APInt &DemandedElts,
2683                                                    const SelectionDAG &DAG,
2684                                                    unsigned Depth) const {
2685   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
2686 
2687   if (unsigned Align = DAG.InferPtrAlignment(Op)) {
2688     // The low bits are known zero if the pointer is aligned.
2689     Known.Zero.setLowBits(Log2_32(Align));
2690   }
2691 }
2692 
2693 /// This method can be implemented by targets that want to expose additional
2694 /// information about sign bits to the DAG Combiner.
2695 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2696                                                          const APInt &,
2697                                                          const SelectionDAG &,
2698                                                          unsigned Depth) const {
2699   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2700           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2701           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2702           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2703          "Should use ComputeNumSignBits if you don't know whether Op"
2704          " is a target node!");
2705   return 1;
2706 }
2707 
2708 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2709     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2710     TargetLoweringOpt &TLO, unsigned Depth) const {
2711   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2712           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2713           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2714           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2715          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2716          " is a target node!");
2717   return false;
2718 }
2719 
2720 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2721     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2722     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2723   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2724           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2725           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2726           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2727          "Should use SimplifyDemandedBits if you don't know whether Op"
2728          " is a target node!");
2729   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2730   return false;
2731 }
2732 
2733 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2734     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2735     SelectionDAG &DAG, unsigned Depth) const {
2736   assert(
2737       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2738        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2739        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2740        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2741       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
2742       " is a target node!");
2743   return SDValue();
2744 }
2745 
2746 SDValue
2747 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
2748                                         SDValue N1, MutableArrayRef<int> Mask,
2749                                         SelectionDAG &DAG) const {
2750   bool LegalMask = isShuffleMaskLegal(Mask, VT);
2751   if (!LegalMask) {
2752     std::swap(N0, N1);
2753     ShuffleVectorSDNode::commuteMask(Mask);
2754     LegalMask = isShuffleMaskLegal(Mask, VT);
2755   }
2756 
2757   if (!LegalMask)
2758     return SDValue();
2759 
2760   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
2761 }
2762 
2763 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
2764   return nullptr;
2765 }
2766 
2767 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2768                                                   const SelectionDAG &DAG,
2769                                                   bool SNaN,
2770                                                   unsigned Depth) const {
2771   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2772           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2773           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2774           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2775          "Should use isKnownNeverNaN if you don't know whether Op"
2776          " is a target node!");
2777   return false;
2778 }
2779 
2780 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2781 // work with truncating build vectors and vectors with elements of less than
2782 // 8 bits.
2783 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2784   if (!N)
2785     return false;
2786 
2787   APInt CVal;
2788   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2789     CVal = CN->getAPIntValue();
2790   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2791     auto *CN = BV->getConstantSplatNode();
2792     if (!CN)
2793       return false;
2794 
2795     // If this is a truncating build vector, truncate the splat value.
2796     // Otherwise, we may fail to match the expected values below.
2797     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2798     CVal = CN->getAPIntValue();
2799     if (BVEltWidth < CVal.getBitWidth())
2800       CVal = CVal.trunc(BVEltWidth);
2801   } else {
2802     return false;
2803   }
2804 
2805   switch (getBooleanContents(N->getValueType(0))) {
2806   case UndefinedBooleanContent:
2807     return CVal[0];
2808   case ZeroOrOneBooleanContent:
2809     return CVal.isOneValue();
2810   case ZeroOrNegativeOneBooleanContent:
2811     return CVal.isAllOnesValue();
2812   }
2813 
2814   llvm_unreachable("Invalid boolean contents");
2815 }
2816 
2817 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2818   if (!N)
2819     return false;
2820 
2821   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2822   if (!CN) {
2823     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2824     if (!BV)
2825       return false;
2826 
2827     // Only interested in constant splats, we don't care about undef
2828     // elements in identifying boolean constants and getConstantSplatNode
2829     // returns NULL if all ops are undef;
2830     CN = BV->getConstantSplatNode();
2831     if (!CN)
2832       return false;
2833   }
2834 
2835   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2836     return !CN->getAPIntValue()[0];
2837 
2838   return CN->isNullValue();
2839 }
2840 
2841 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2842                                        bool SExt) const {
2843   if (VT == MVT::i1)
2844     return N->isOne();
2845 
2846   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2847   switch (Cnt) {
2848   case TargetLowering::ZeroOrOneBooleanContent:
2849     // An extended value of 1 is always true, unless its original type is i1,
2850     // in which case it will be sign extended to -1.
2851     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
2852   case TargetLowering::UndefinedBooleanContent:
2853   case TargetLowering::ZeroOrNegativeOneBooleanContent:
2854     return N->isAllOnesValue() && SExt;
2855   }
2856   llvm_unreachable("Unexpected enumeration.");
2857 }
2858 
2859 /// This helper function of SimplifySetCC tries to optimize the comparison when
2860 /// either operand of the SetCC node is a bitwise-and instruction.
2861 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
2862                                          ISD::CondCode Cond, const SDLoc &DL,
2863                                          DAGCombinerInfo &DCI) const {
2864   // Match these patterns in any of their permutations:
2865   // (X & Y) == Y
2866   // (X & Y) != Y
2867   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
2868     std::swap(N0, N1);
2869 
2870   EVT OpVT = N0.getValueType();
2871   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
2872       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
2873     return SDValue();
2874 
2875   SDValue X, Y;
2876   if (N0.getOperand(0) == N1) {
2877     X = N0.getOperand(1);
2878     Y = N0.getOperand(0);
2879   } else if (N0.getOperand(1) == N1) {
2880     X = N0.getOperand(0);
2881     Y = N0.getOperand(1);
2882   } else {
2883     return SDValue();
2884   }
2885 
2886   SelectionDAG &DAG = DCI.DAG;
2887   SDValue Zero = DAG.getConstant(0, DL, OpVT);
2888   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
2889     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2890     // Note that where Y is variable and is known to have at most one bit set
2891     // (for example, if it is Z & 1) we cannot do this; the expressions are not
2892     // equivalent when Y == 0.
2893     assert(OpVT.isInteger());
2894     Cond = ISD::getSetCCInverse(Cond, OpVT);
2895     if (DCI.isBeforeLegalizeOps() ||
2896         isCondCodeLegal(Cond, N0.getSimpleValueType()))
2897       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
2898   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
2899     // If the target supports an 'and-not' or 'and-complement' logic operation,
2900     // try to use that to make a comparison operation more efficient.
2901     // But don't do this transform if the mask is a single bit because there are
2902     // more efficient ways to deal with that case (for example, 'bt' on x86 or
2903     // 'rlwinm' on PPC).
2904 
2905     // Bail out if the compare operand that we want to turn into a zero is
2906     // already a zero (otherwise, infinite loop).
2907     auto *YConst = dyn_cast<ConstantSDNode>(Y);
2908     if (YConst && YConst->isNullValue())
2909       return SDValue();
2910 
2911     // Transform this into: ~X & Y == 0.
2912     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
2913     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
2914     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
2915   }
2916 
2917   return SDValue();
2918 }
2919 
2920 /// There are multiple IR patterns that could be checking whether certain
2921 /// truncation of a signed number would be lossy or not. The pattern which is
2922 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
2923 /// We are looking for the following pattern: (KeptBits is a constant)
2924 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
2925 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
2926 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
2927 /// We will unfold it into the natural trunc+sext pattern:
2928 ///   ((%x << C) a>> C) dstcond %x
2929 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
2930 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
2931     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
2932     const SDLoc &DL) const {
2933   // We must be comparing with a constant.
2934   ConstantSDNode *C1;
2935   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
2936     return SDValue();
2937 
2938   // N0 should be:  add %x, (1 << (KeptBits-1))
2939   if (N0->getOpcode() != ISD::ADD)
2940     return SDValue();
2941 
2942   // And we must be 'add'ing a constant.
2943   ConstantSDNode *C01;
2944   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
2945     return SDValue();
2946 
2947   SDValue X = N0->getOperand(0);
2948   EVT XVT = X.getValueType();
2949 
2950   // Validate constants ...
2951 
2952   APInt I1 = C1->getAPIntValue();
2953 
2954   ISD::CondCode NewCond;
2955   if (Cond == ISD::CondCode::SETULT) {
2956     NewCond = ISD::CondCode::SETEQ;
2957   } else if (Cond == ISD::CondCode::SETULE) {
2958     NewCond = ISD::CondCode::SETEQ;
2959     // But need to 'canonicalize' the constant.
2960     I1 += 1;
2961   } else if (Cond == ISD::CondCode::SETUGT) {
2962     NewCond = ISD::CondCode::SETNE;
2963     // But need to 'canonicalize' the constant.
2964     I1 += 1;
2965   } else if (Cond == ISD::CondCode::SETUGE) {
2966     NewCond = ISD::CondCode::SETNE;
2967   } else
2968     return SDValue();
2969 
2970   APInt I01 = C01->getAPIntValue();
2971 
2972   auto checkConstants = [&I1, &I01]() -> bool {
2973     // Both of them must be power-of-two, and the constant from setcc is bigger.
2974     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
2975   };
2976 
2977   if (checkConstants()) {
2978     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
2979   } else {
2980     // What if we invert constants? (and the target predicate)
2981     I1.negate();
2982     I01.negate();
2983     assert(XVT.isInteger());
2984     NewCond = getSetCCInverse(NewCond, XVT);
2985     if (!checkConstants())
2986       return SDValue();
2987     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
2988   }
2989 
2990   // They are power-of-two, so which bit is set?
2991   const unsigned KeptBits = I1.logBase2();
2992   const unsigned KeptBitsMinusOne = I01.logBase2();
2993 
2994   // Magic!
2995   if (KeptBits != (KeptBitsMinusOne + 1))
2996     return SDValue();
2997   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
2998 
2999   // We don't want to do this in every single case.
3000   SelectionDAG &DAG = DCI.DAG;
3001   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3002           XVT, KeptBits))
3003     return SDValue();
3004 
3005   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3006   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3007 
3008   // Unfold into:  ((%x << C) a>> C) cond %x
3009   // Where 'cond' will be either 'eq' or 'ne'.
3010   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3011   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3012   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3013   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3014 
3015   return T2;
3016 }
3017 
3018 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3019 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3020     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3021     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3022   assert(isConstOrConstSplat(N1C) &&
3023          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
3024          "Should be a comparison with 0.");
3025   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3026          "Valid only for [in]equality comparisons.");
3027 
3028   unsigned NewShiftOpcode;
3029   SDValue X, C, Y;
3030 
3031   SelectionDAG &DAG = DCI.DAG;
3032   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3033 
3034   // Look for '(C l>>/<< Y)'.
3035   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3036     // The shift should be one-use.
3037     if (!V.hasOneUse())
3038       return false;
3039     unsigned OldShiftOpcode = V.getOpcode();
3040     switch (OldShiftOpcode) {
3041     case ISD::SHL:
3042       NewShiftOpcode = ISD::SRL;
3043       break;
3044     case ISD::SRL:
3045       NewShiftOpcode = ISD::SHL;
3046       break;
3047     default:
3048       return false; // must be a logical shift.
3049     }
3050     // We should be shifting a constant.
3051     // FIXME: best to use isConstantOrConstantVector().
3052     C = V.getOperand(0);
3053     ConstantSDNode *CC =
3054         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3055     if (!CC)
3056       return false;
3057     Y = V.getOperand(1);
3058 
3059     ConstantSDNode *XC =
3060         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3061     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3062         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3063   };
3064 
3065   // LHS of comparison should be an one-use 'and'.
3066   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3067     return SDValue();
3068 
3069   X = N0.getOperand(0);
3070   SDValue Mask = N0.getOperand(1);
3071 
3072   // 'and' is commutative!
3073   if (!Match(Mask)) {
3074     std::swap(X, Mask);
3075     if (!Match(Mask))
3076       return SDValue();
3077   }
3078 
3079   EVT VT = X.getValueType();
3080 
3081   // Produce:
3082   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3083   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3084   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3085   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3086   return T2;
3087 }
3088 
3089 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3090 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3091 /// handle the commuted versions of these patterns.
3092 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3093                                            ISD::CondCode Cond, const SDLoc &DL,
3094                                            DAGCombinerInfo &DCI) const {
3095   unsigned BOpcode = N0.getOpcode();
3096   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3097          "Unexpected binop");
3098   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3099 
3100   // (X + Y) == X --> Y == 0
3101   // (X - Y) == X --> Y == 0
3102   // (X ^ Y) == X --> Y == 0
3103   SelectionDAG &DAG = DCI.DAG;
3104   EVT OpVT = N0.getValueType();
3105   SDValue X = N0.getOperand(0);
3106   SDValue Y = N0.getOperand(1);
3107   if (X == N1)
3108     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3109 
3110   if (Y != N1)
3111     return SDValue();
3112 
3113   // (X + Y) == Y --> X == 0
3114   // (X ^ Y) == Y --> X == 0
3115   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3116     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3117 
3118   // The shift would not be valid if the operands are boolean (i1).
3119   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3120     return SDValue();
3121 
3122   // (X - Y) == Y --> X == Y << 1
3123   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3124                                  !DCI.isBeforeLegalize());
3125   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3126   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3127   if (!DCI.isCalledByLegalizer())
3128     DCI.AddToWorklist(YShl1.getNode());
3129   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3130 }
3131 
3132 /// Try to simplify a setcc built with the specified operands and cc. If it is
3133 /// unable to simplify it, return a null SDValue.
3134 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3135                                       ISD::CondCode Cond, bool foldBooleans,
3136                                       DAGCombinerInfo &DCI,
3137                                       const SDLoc &dl) const {
3138   SelectionDAG &DAG = DCI.DAG;
3139   const DataLayout &Layout = DAG.getDataLayout();
3140   EVT OpVT = N0.getValueType();
3141 
3142   // Constant fold or commute setcc.
3143   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3144     return Fold;
3145 
3146   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3147   // TODO: Handle non-splat vector constants. All undef causes trouble.
3148   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3149   if (isConstOrConstSplat(N0) &&
3150       (DCI.isBeforeLegalizeOps() ||
3151        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3152     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3153 
3154   // If we have a subtract with the same 2 non-constant operands as this setcc
3155   // -- but in reverse order -- then try to commute the operands of this setcc
3156   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3157   // instruction on some targets.
3158   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3159       (DCI.isBeforeLegalizeOps() ||
3160        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3161       DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) &&
3162       !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } ))
3163     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3164 
3165   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3166     const APInt &C1 = N1C->getAPIntValue();
3167 
3168     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3169     // equality comparison, then we're just comparing whether X itself is
3170     // zero.
3171     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3172         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3173         N0.getOperand(1).getOpcode() == ISD::Constant) {
3174       const APInt &ShAmt = N0.getConstantOperandAPInt(1);
3175       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3176           ShAmt == Log2_32(N0.getValueSizeInBits())) {
3177         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3178           // (srl (ctlz x), 5) == 0  -> X != 0
3179           // (srl (ctlz x), 5) != 1  -> X != 0
3180           Cond = ISD::SETNE;
3181         } else {
3182           // (srl (ctlz x), 5) != 0  -> X == 0
3183           // (srl (ctlz x), 5) == 1  -> X == 0
3184           Cond = ISD::SETEQ;
3185         }
3186         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3187         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
3188                             Zero, Cond);
3189       }
3190     }
3191 
3192     SDValue CTPOP = N0;
3193     // Look through truncs that don't change the value of a ctpop.
3194     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
3195       CTPOP = N0.getOperand(0);
3196 
3197     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
3198         (N0 == CTPOP ||
3199          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
3200       EVT CTVT = CTPOP.getValueType();
3201       SDValue CTOp = CTPOP.getOperand(0);
3202 
3203       // (ctpop x) u< 2 -> (x & x-1) == 0
3204       // (ctpop x) u> 1 -> (x & x-1) != 0
3205       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
3206         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3207         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3208         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3209         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3210         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
3211       }
3212 
3213       // If ctpop is not supported, expand a power-of-2 comparison based on it.
3214       if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) &&
3215           (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3216         // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3217         // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3218         SDValue Zero = DAG.getConstant(0, dl, CTVT);
3219         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3220         assert(CTVT.isInteger());
3221         ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3222         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3223         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3224         SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3225         SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3226         unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3227         return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3228       }
3229     }
3230 
3231     // (zext x) == C --> x == (trunc C)
3232     // (sext x) == C --> x == (trunc C)
3233     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3234         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3235       unsigned MinBits = N0.getValueSizeInBits();
3236       SDValue PreExt;
3237       bool Signed = false;
3238       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3239         // ZExt
3240         MinBits = N0->getOperand(0).getValueSizeInBits();
3241         PreExt = N0->getOperand(0);
3242       } else if (N0->getOpcode() == ISD::AND) {
3243         // DAGCombine turns costly ZExts into ANDs
3244         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3245           if ((C->getAPIntValue()+1).isPowerOf2()) {
3246             MinBits = C->getAPIntValue().countTrailingOnes();
3247             PreExt = N0->getOperand(0);
3248           }
3249       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3250         // SExt
3251         MinBits = N0->getOperand(0).getValueSizeInBits();
3252         PreExt = N0->getOperand(0);
3253         Signed = true;
3254       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3255         // ZEXTLOAD / SEXTLOAD
3256         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3257           MinBits = LN0->getMemoryVT().getSizeInBits();
3258           PreExt = N0;
3259         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3260           Signed = true;
3261           MinBits = LN0->getMemoryVT().getSizeInBits();
3262           PreExt = N0;
3263         }
3264       }
3265 
3266       // Figure out how many bits we need to preserve this constant.
3267       unsigned ReqdBits = Signed ?
3268         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3269         C1.getActiveBits();
3270 
3271       // Make sure we're not losing bits from the constant.
3272       if (MinBits > 0 &&
3273           MinBits < C1.getBitWidth() &&
3274           MinBits >= ReqdBits) {
3275         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3276         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3277           // Will get folded away.
3278           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3279           if (MinBits == 1 && C1 == 1)
3280             // Invert the condition.
3281             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3282                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3283           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3284           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3285         }
3286 
3287         // If truncating the setcc operands is not desirable, we can still
3288         // simplify the expression in some cases:
3289         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3290         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3291         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3292         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3293         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3294         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3295         SDValue TopSetCC = N0->getOperand(0);
3296         unsigned N0Opc = N0->getOpcode();
3297         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3298         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3299             TopSetCC.getOpcode() == ISD::SETCC &&
3300             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3301             (isConstFalseVal(N1C) ||
3302              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3303 
3304           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3305                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3306 
3307           if (!Inverse)
3308             return TopSetCC;
3309 
3310           ISD::CondCode InvCond = ISD::getSetCCInverse(
3311               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3312               TopSetCC.getOperand(0).getValueType());
3313           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3314                                       TopSetCC.getOperand(1),
3315                                       InvCond);
3316         }
3317       }
3318     }
3319 
3320     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3321     // equality or unsigned, and all 1 bits of the const are in the same
3322     // partial word, see if we can shorten the load.
3323     if (DCI.isBeforeLegalize() &&
3324         !ISD::isSignedIntSetCC(Cond) &&
3325         N0.getOpcode() == ISD::AND && C1 == 0 &&
3326         N0.getNode()->hasOneUse() &&
3327         isa<LoadSDNode>(N0.getOperand(0)) &&
3328         N0.getOperand(0).getNode()->hasOneUse() &&
3329         isa<ConstantSDNode>(N0.getOperand(1))) {
3330       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3331       APInt bestMask;
3332       unsigned bestWidth = 0, bestOffset = 0;
3333       if (Lod->isSimple() && Lod->isUnindexed()) {
3334         unsigned origWidth = N0.getValueSizeInBits();
3335         unsigned maskWidth = origWidth;
3336         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3337         // 8 bits, but have to be careful...
3338         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3339           origWidth = Lod->getMemoryVT().getSizeInBits();
3340         const APInt &Mask = N0.getConstantOperandAPInt(1);
3341         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3342           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3343           for (unsigned offset=0; offset<origWidth/width; offset++) {
3344             if (Mask.isSubsetOf(newMask)) {
3345               if (Layout.isLittleEndian())
3346                 bestOffset = (uint64_t)offset * (width/8);
3347               else
3348                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3349               bestMask = Mask.lshr(offset * (width/8) * 8);
3350               bestWidth = width;
3351               break;
3352             }
3353             newMask <<= width;
3354           }
3355         }
3356       }
3357       if (bestWidth) {
3358         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3359         if (newVT.isRound() &&
3360             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3361           SDValue Ptr = Lod->getBasePtr();
3362           if (bestOffset != 0)
3363             Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl);
3364           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
3365           SDValue NewLoad = DAG.getLoad(
3366               newVT, dl, Lod->getChain(), Ptr,
3367               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
3368           return DAG.getSetCC(dl, VT,
3369                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3370                                       DAG.getConstant(bestMask.trunc(bestWidth),
3371                                                       dl, newVT)),
3372                               DAG.getConstant(0LL, dl, newVT), Cond);
3373         }
3374       }
3375     }
3376 
3377     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3378     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3379       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3380 
3381       // If the comparison constant has bits in the upper part, the
3382       // zero-extended value could never match.
3383       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3384                                               C1.getBitWidth() - InSize))) {
3385         switch (Cond) {
3386         case ISD::SETUGT:
3387         case ISD::SETUGE:
3388         case ISD::SETEQ:
3389           return DAG.getConstant(0, dl, VT);
3390         case ISD::SETULT:
3391         case ISD::SETULE:
3392         case ISD::SETNE:
3393           return DAG.getConstant(1, dl, VT);
3394         case ISD::SETGT:
3395         case ISD::SETGE:
3396           // True if the sign bit of C1 is set.
3397           return DAG.getConstant(C1.isNegative(), dl, VT);
3398         case ISD::SETLT:
3399         case ISD::SETLE:
3400           // True if the sign bit of C1 isn't set.
3401           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3402         default:
3403           break;
3404         }
3405       }
3406 
3407       // Otherwise, we can perform the comparison with the low bits.
3408       switch (Cond) {
3409       case ISD::SETEQ:
3410       case ISD::SETNE:
3411       case ISD::SETUGT:
3412       case ISD::SETUGE:
3413       case ISD::SETULT:
3414       case ISD::SETULE: {
3415         EVT newVT = N0.getOperand(0).getValueType();
3416         if (DCI.isBeforeLegalizeOps() ||
3417             (isOperationLegal(ISD::SETCC, newVT) &&
3418              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3419           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3420           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3421 
3422           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3423                                           NewConst, Cond);
3424           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3425         }
3426         break;
3427       }
3428       default:
3429         break; // todo, be more careful with signed comparisons
3430       }
3431     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3432                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3433       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3434       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3435       EVT ExtDstTy = N0.getValueType();
3436       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3437 
3438       // If the constant doesn't fit into the number of bits for the source of
3439       // the sign extension, it is impossible for both sides to be equal.
3440       if (C1.getMinSignedBits() > ExtSrcTyBits)
3441         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
3442 
3443       SDValue ZextOp;
3444       EVT Op0Ty = N0.getOperand(0).getValueType();
3445       if (Op0Ty == ExtSrcTy) {
3446         ZextOp = N0.getOperand(0);
3447       } else {
3448         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3449         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
3450                              DAG.getConstant(Imm, dl, Op0Ty));
3451       }
3452       if (!DCI.isCalledByLegalizer())
3453         DCI.AddToWorklist(ZextOp.getNode());
3454       // Otherwise, make this a use of a zext.
3455       return DAG.getSetCC(dl, VT, ZextOp,
3456                           DAG.getConstant(C1 & APInt::getLowBitsSet(
3457                                                               ExtDstTyBits,
3458                                                               ExtSrcTyBits),
3459                                           dl, ExtDstTy),
3460                           Cond);
3461     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3462                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3463       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3464       if (N0.getOpcode() == ISD::SETCC &&
3465           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3466           (N0.getValueType() == MVT::i1 ||
3467            getBooleanContents(N0.getOperand(0).getValueType()) ==
3468                        ZeroOrOneBooleanContent)) {
3469         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3470         if (TrueWhenTrue)
3471           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3472         // Invert the condition.
3473         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3474         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3475         if (DCI.isBeforeLegalizeOps() ||
3476             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3477           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3478       }
3479 
3480       if ((N0.getOpcode() == ISD::XOR ||
3481            (N0.getOpcode() == ISD::AND &&
3482             N0.getOperand(0).getOpcode() == ISD::XOR &&
3483             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3484           isa<ConstantSDNode>(N0.getOperand(1)) &&
3485           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
3486         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3487         // can only do this if the top bits are known zero.
3488         unsigned BitWidth = N0.getValueSizeInBits();
3489         if (DAG.MaskedValueIsZero(N0,
3490                                   APInt::getHighBitsSet(BitWidth,
3491                                                         BitWidth-1))) {
3492           // Okay, get the un-inverted input value.
3493           SDValue Val;
3494           if (N0.getOpcode() == ISD::XOR) {
3495             Val = N0.getOperand(0);
3496           } else {
3497             assert(N0.getOpcode() == ISD::AND &&
3498                     N0.getOperand(0).getOpcode() == ISD::XOR);
3499             // ((X^1)&1)^1 -> X & 1
3500             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3501                               N0.getOperand(0).getOperand(0),
3502                               N0.getOperand(1));
3503           }
3504 
3505           return DAG.getSetCC(dl, VT, Val, N1,
3506                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3507         }
3508       } else if (N1C->isOne()) {
3509         SDValue Op0 = N0;
3510         if (Op0.getOpcode() == ISD::TRUNCATE)
3511           Op0 = Op0.getOperand(0);
3512 
3513         if ((Op0.getOpcode() == ISD::XOR) &&
3514             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3515             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3516           SDValue XorLHS = Op0.getOperand(0);
3517           SDValue XorRHS = Op0.getOperand(1);
3518           // Ensure that the input setccs return an i1 type or 0/1 value.
3519           if (Op0.getValueType() == MVT::i1 ||
3520               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3521                       ZeroOrOneBooleanContent &&
3522                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3523                         ZeroOrOneBooleanContent)) {
3524             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3525             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3526             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3527           }
3528         }
3529         if (Op0.getOpcode() == ISD::AND &&
3530             isa<ConstantSDNode>(Op0.getOperand(1)) &&
3531             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
3532           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3533           if (Op0.getValueType().bitsGT(VT))
3534             Op0 = DAG.getNode(ISD::AND, dl, VT,
3535                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3536                           DAG.getConstant(1, dl, VT));
3537           else if (Op0.getValueType().bitsLT(VT))
3538             Op0 = DAG.getNode(ISD::AND, dl, VT,
3539                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3540                         DAG.getConstant(1, dl, VT));
3541 
3542           return DAG.getSetCC(dl, VT, Op0,
3543                               DAG.getConstant(0, dl, Op0.getValueType()),
3544                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3545         }
3546         if (Op0.getOpcode() == ISD::AssertZext &&
3547             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3548           return DAG.getSetCC(dl, VT, Op0,
3549                               DAG.getConstant(0, dl, Op0.getValueType()),
3550                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3551       }
3552     }
3553 
3554     // Given:
3555     //   icmp eq/ne (urem %x, %y), 0
3556     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3557     //   icmp eq/ne %x, 0
3558     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3559         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3560       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3561       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3562       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3563         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3564     }
3565 
3566     if (SDValue V =
3567             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3568       return V;
3569   }
3570 
3571   // These simplifications apply to splat vectors as well.
3572   // TODO: Handle more splat vector cases.
3573   if (auto *N1C = isConstOrConstSplat(N1)) {
3574     const APInt &C1 = N1C->getAPIntValue();
3575 
3576     APInt MinVal, MaxVal;
3577     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3578     if (ISD::isSignedIntSetCC(Cond)) {
3579       MinVal = APInt::getSignedMinValue(OperandBitSize);
3580       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3581     } else {
3582       MinVal = APInt::getMinValue(OperandBitSize);
3583       MaxVal = APInt::getMaxValue(OperandBitSize);
3584     }
3585 
3586     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3587     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3588       // X >= MIN --> true
3589       if (C1 == MinVal)
3590         return DAG.getBoolConstant(true, dl, VT, OpVT);
3591 
3592       if (!VT.isVector()) { // TODO: Support this for vectors.
3593         // X >= C0 --> X > (C0 - 1)
3594         APInt C = C1 - 1;
3595         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3596         if ((DCI.isBeforeLegalizeOps() ||
3597              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3598             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3599                                   isLegalICmpImmediate(C.getSExtValue())))) {
3600           return DAG.getSetCC(dl, VT, N0,
3601                               DAG.getConstant(C, dl, N1.getValueType()),
3602                               NewCC);
3603         }
3604       }
3605     }
3606 
3607     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3608       // X <= MAX --> true
3609       if (C1 == MaxVal)
3610         return DAG.getBoolConstant(true, dl, VT, OpVT);
3611 
3612       // X <= C0 --> X < (C0 + 1)
3613       if (!VT.isVector()) { // TODO: Support this for vectors.
3614         APInt C = C1 + 1;
3615         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3616         if ((DCI.isBeforeLegalizeOps() ||
3617              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3618             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3619                                   isLegalICmpImmediate(C.getSExtValue())))) {
3620           return DAG.getSetCC(dl, VT, N0,
3621                               DAG.getConstant(C, dl, N1.getValueType()),
3622                               NewCC);
3623         }
3624       }
3625     }
3626 
3627     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3628       if (C1 == MinVal)
3629         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3630 
3631       // TODO: Support this for vectors after legalize ops.
3632       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3633         // Canonicalize setlt X, Max --> setne X, Max
3634         if (C1 == MaxVal)
3635           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3636 
3637         // If we have setult X, 1, turn it into seteq X, 0
3638         if (C1 == MinVal+1)
3639           return DAG.getSetCC(dl, VT, N0,
3640                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3641                               ISD::SETEQ);
3642       }
3643     }
3644 
3645     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3646       if (C1 == MaxVal)
3647         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3648 
3649       // TODO: Support this for vectors after legalize ops.
3650       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3651         // Canonicalize setgt X, Min --> setne X, Min
3652         if (C1 == MinVal)
3653           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3654 
3655         // If we have setugt X, Max-1, turn it into seteq X, Max
3656         if (C1 == MaxVal-1)
3657           return DAG.getSetCC(dl, VT, N0,
3658                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3659                               ISD::SETEQ);
3660       }
3661     }
3662 
3663     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3664       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3665       if (C1.isNullValue())
3666         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3667                 VT, N0, N1, Cond, DCI, dl))
3668           return CC;
3669     }
3670 
3671     // If we have "setcc X, C0", check to see if we can shrink the immediate
3672     // by changing cc.
3673     // TODO: Support this for vectors after legalize ops.
3674     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3675       // SETUGT X, SINTMAX  -> SETLT X, 0
3676       if (Cond == ISD::SETUGT &&
3677           C1 == APInt::getSignedMaxValue(OperandBitSize))
3678         return DAG.getSetCC(dl, VT, N0,
3679                             DAG.getConstant(0, dl, N1.getValueType()),
3680                             ISD::SETLT);
3681 
3682       // SETULT X, SINTMIN  -> SETGT X, -1
3683       if (Cond == ISD::SETULT &&
3684           C1 == APInt::getSignedMinValue(OperandBitSize)) {
3685         SDValue ConstMinusOne =
3686             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
3687                             N1.getValueType());
3688         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
3689       }
3690     }
3691   }
3692 
3693   // Back to non-vector simplifications.
3694   // TODO: Can we do these for vector splats?
3695   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3696     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3697     const APInt &C1 = N1C->getAPIntValue();
3698     EVT ShValTy = N0.getValueType();
3699 
3700     // Fold bit comparisons when we can.
3701     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3702         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
3703         N0.getOpcode() == ISD::AND) {
3704       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3705         EVT ShiftTy =
3706             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3707         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
3708           // Perform the xform if the AND RHS is a single bit.
3709           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
3710           if (AndRHS->getAPIntValue().isPowerOf2() &&
3711               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3712             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3713                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3714                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3715           }
3716         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
3717           // (X & 8) == 8  -->  (X & 8) >> 3
3718           // Perform the xform if C1 is a single bit.
3719           unsigned ShCt = C1.logBase2();
3720           if (C1.isPowerOf2() &&
3721               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3722             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3723                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3724                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3725           }
3726         }
3727       }
3728     }
3729 
3730     if (C1.getMinSignedBits() <= 64 &&
3731         !isLegalICmpImmediate(C1.getSExtValue())) {
3732       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3733       // (X & -256) == 256 -> (X >> 8) == 1
3734       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3735           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
3736         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3737           const APInt &AndRHSC = AndRHS->getAPIntValue();
3738           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
3739             unsigned ShiftBits = AndRHSC.countTrailingZeros();
3740             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3741               SDValue Shift =
3742                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
3743                             DAG.getConstant(ShiftBits, dl, ShiftTy));
3744               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
3745               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
3746             }
3747           }
3748         }
3749       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
3750                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
3751         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
3752         // X <  0x100000000 -> (X >> 32) <  1
3753         // X >= 0x100000000 -> (X >> 32) >= 1
3754         // X <= 0x0ffffffff -> (X >> 32) <  1
3755         // X >  0x0ffffffff -> (X >> 32) >= 1
3756         unsigned ShiftBits;
3757         APInt NewC = C1;
3758         ISD::CondCode NewCond = Cond;
3759         if (AdjOne) {
3760           ShiftBits = C1.countTrailingOnes();
3761           NewC = NewC + 1;
3762           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3763         } else {
3764           ShiftBits = C1.countTrailingZeros();
3765         }
3766         NewC.lshrInPlace(ShiftBits);
3767         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
3768             isLegalICmpImmediate(NewC.getSExtValue()) &&
3769             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3770           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3771                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
3772           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
3773           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
3774         }
3775       }
3776     }
3777   }
3778 
3779   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
3780     auto *CFP = cast<ConstantFPSDNode>(N1);
3781     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
3782 
3783     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
3784     // constant if knowing that the operand is non-nan is enough.  We prefer to
3785     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3786     // materialize 0.0.
3787     if (Cond == ISD::SETO || Cond == ISD::SETUO)
3788       return DAG.getSetCC(dl, VT, N0, N0, Cond);
3789 
3790     // setcc (fneg x), C -> setcc swap(pred) x, -C
3791     if (N0.getOpcode() == ISD::FNEG) {
3792       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
3793       if (DCI.isBeforeLegalizeOps() ||
3794           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
3795         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
3796         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
3797       }
3798     }
3799 
3800     // If the condition is not legal, see if we can find an equivalent one
3801     // which is legal.
3802     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
3803       // If the comparison was an awkward floating-point == or != and one of
3804       // the comparison operands is infinity or negative infinity, convert the
3805       // condition to a less-awkward <= or >=.
3806       if (CFP->getValueAPF().isInfinity()) {
3807         if (CFP->getValueAPF().isNegative()) {
3808           if (Cond == ISD::SETOEQ &&
3809               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3810             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
3811           if (Cond == ISD::SETUEQ &&
3812               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3813             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
3814           if (Cond == ISD::SETUNE &&
3815               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3816             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
3817           if (Cond == ISD::SETONE &&
3818               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3819             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
3820         } else {
3821           if (Cond == ISD::SETOEQ &&
3822               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3823             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
3824           if (Cond == ISD::SETUEQ &&
3825               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3826             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
3827           if (Cond == ISD::SETUNE &&
3828               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3829             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
3830           if (Cond == ISD::SETONE &&
3831               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3832             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
3833         }
3834       }
3835     }
3836   }
3837 
3838   if (N0 == N1) {
3839     // The sext(setcc()) => setcc() optimization relies on the appropriate
3840     // constant being emitted.
3841     assert(!N0.getValueType().isInteger() &&
3842            "Integer types should be handled by FoldSetCC");
3843 
3844     bool EqTrue = ISD::isTrueWhenEqual(Cond);
3845     unsigned UOF = ISD::getUnorderedFlavor(Cond);
3846     if (UOF == 2) // FP operators that are undefined on NaNs.
3847       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3848     if (UOF == unsigned(EqTrue))
3849       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3850     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
3851     // if it is not already.
3852     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3853     if (NewCond != Cond &&
3854         (DCI.isBeforeLegalizeOps() ||
3855                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
3856       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3857   }
3858 
3859   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3860       N0.getValueType().isInteger()) {
3861     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
3862         N0.getOpcode() == ISD::XOR) {
3863       // Simplify (X+Y) == (X+Z) -->  Y == Z
3864       if (N0.getOpcode() == N1.getOpcode()) {
3865         if (N0.getOperand(0) == N1.getOperand(0))
3866           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
3867         if (N0.getOperand(1) == N1.getOperand(1))
3868           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
3869         if (isCommutativeBinOp(N0.getOpcode())) {
3870           // If X op Y == Y op X, try other combinations.
3871           if (N0.getOperand(0) == N1.getOperand(1))
3872             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
3873                                 Cond);
3874           if (N0.getOperand(1) == N1.getOperand(0))
3875             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
3876                                 Cond);
3877         }
3878       }
3879 
3880       // If RHS is a legal immediate value for a compare instruction, we need
3881       // to be careful about increasing register pressure needlessly.
3882       bool LegalRHSImm = false;
3883 
3884       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
3885         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3886           // Turn (X+C1) == C2 --> X == C2-C1
3887           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
3888             return DAG.getSetCC(dl, VT, N0.getOperand(0),
3889                                 DAG.getConstant(RHSC->getAPIntValue()-
3890                                                 LHSR->getAPIntValue(),
3891                                 dl, N0.getValueType()), Cond);
3892           }
3893 
3894           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3895           if (N0.getOpcode() == ISD::XOR)
3896             // If we know that all of the inverted bits are zero, don't bother
3897             // performing the inversion.
3898             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
3899               return
3900                 DAG.getSetCC(dl, VT, N0.getOperand(0),
3901                              DAG.getConstant(LHSR->getAPIntValue() ^
3902                                                RHSC->getAPIntValue(),
3903                                              dl, N0.getValueType()),
3904                              Cond);
3905         }
3906 
3907         // Turn (C1-X) == C2 --> X == C1-C2
3908         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3909           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
3910             return
3911               DAG.getSetCC(dl, VT, N0.getOperand(1),
3912                            DAG.getConstant(SUBC->getAPIntValue() -
3913                                              RHSC->getAPIntValue(),
3914                                            dl, N0.getValueType()),
3915                            Cond);
3916           }
3917         }
3918 
3919         // Could RHSC fold directly into a compare?
3920         if (RHSC->getValueType(0).getSizeInBits() <= 64)
3921           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
3922       }
3923 
3924       // (X+Y) == X --> Y == 0 and similar folds.
3925       // Don't do this if X is an immediate that can fold into a cmp
3926       // instruction and X+Y has other uses. It could be an induction variable
3927       // chain, and the transform would increase register pressure.
3928       if (!LegalRHSImm || N0.hasOneUse())
3929         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
3930           return V;
3931     }
3932 
3933     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
3934         N1.getOpcode() == ISD::XOR)
3935       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
3936         return V;
3937 
3938     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
3939       return V;
3940   }
3941 
3942   // Fold remainder of division by a constant.
3943   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
3944       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3945     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3946 
3947     // When division is cheap or optimizing for minimum size,
3948     // fall through to DIVREM creation by skipping this fold.
3949     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
3950       if (N0.getOpcode() == ISD::UREM) {
3951         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
3952           return Folded;
3953       } else if (N0.getOpcode() == ISD::SREM) {
3954         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
3955           return Folded;
3956       }
3957     }
3958   }
3959 
3960   // Fold away ALL boolean setcc's.
3961   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
3962     SDValue Temp;
3963     switch (Cond) {
3964     default: llvm_unreachable("Unknown integer setcc!");
3965     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
3966       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3967       N0 = DAG.getNOT(dl, Temp, OpVT);
3968       if (!DCI.isCalledByLegalizer())
3969         DCI.AddToWorklist(Temp.getNode());
3970       break;
3971     case ISD::SETNE:  // X != Y   -->  (X^Y)
3972       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3973       break;
3974     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
3975     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
3976       Temp = DAG.getNOT(dl, N0, OpVT);
3977       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
3978       if (!DCI.isCalledByLegalizer())
3979         DCI.AddToWorklist(Temp.getNode());
3980       break;
3981     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
3982     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
3983       Temp = DAG.getNOT(dl, N1, OpVT);
3984       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
3985       if (!DCI.isCalledByLegalizer())
3986         DCI.AddToWorklist(Temp.getNode());
3987       break;
3988     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
3989     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
3990       Temp = DAG.getNOT(dl, N0, OpVT);
3991       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
3992       if (!DCI.isCalledByLegalizer())
3993         DCI.AddToWorklist(Temp.getNode());
3994       break;
3995     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
3996     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
3997       Temp = DAG.getNOT(dl, N1, OpVT);
3998       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
3999       break;
4000     }
4001     if (VT.getScalarType() != MVT::i1) {
4002       if (!DCI.isCalledByLegalizer())
4003         DCI.AddToWorklist(N0.getNode());
4004       // FIXME: If running after legalize, we probably can't do this.
4005       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4006       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4007     }
4008     return N0;
4009   }
4010 
4011   // Could not fold it.
4012   return SDValue();
4013 }
4014 
4015 /// Returns true (and the GlobalValue and the offset) if the node is a
4016 /// GlobalAddress + offset.
4017 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4018                                     int64_t &Offset) const {
4019 
4020   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4021 
4022   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4023     GA = GASD->getGlobal();
4024     Offset += GASD->getOffset();
4025     return true;
4026   }
4027 
4028   if (N->getOpcode() == ISD::ADD) {
4029     SDValue N1 = N->getOperand(0);
4030     SDValue N2 = N->getOperand(1);
4031     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4032       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4033         Offset += V->getSExtValue();
4034         return true;
4035       }
4036     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4037       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4038         Offset += V->getSExtValue();
4039         return true;
4040       }
4041     }
4042   }
4043 
4044   return false;
4045 }
4046 
4047 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4048                                           DAGCombinerInfo &DCI) const {
4049   // Default implementation: no optimization.
4050   return SDValue();
4051 }
4052 
4053 //===----------------------------------------------------------------------===//
4054 //  Inline Assembler Implementation Methods
4055 //===----------------------------------------------------------------------===//
4056 
4057 TargetLowering::ConstraintType
4058 TargetLowering::getConstraintType(StringRef Constraint) const {
4059   unsigned S = Constraint.size();
4060 
4061   if (S == 1) {
4062     switch (Constraint[0]) {
4063     default: break;
4064     case 'r':
4065       return C_RegisterClass;
4066     case 'm': // memory
4067     case 'o': // offsetable
4068     case 'V': // not offsetable
4069       return C_Memory;
4070     case 'n': // Simple Integer
4071     case 'E': // Floating Point Constant
4072     case 'F': // Floating Point Constant
4073       return C_Immediate;
4074     case 'i': // Simple Integer or Relocatable Constant
4075     case 's': // Relocatable Constant
4076     case 'p': // Address.
4077     case 'X': // Allow ANY value.
4078     case 'I': // Target registers.
4079     case 'J':
4080     case 'K':
4081     case 'L':
4082     case 'M':
4083     case 'N':
4084     case 'O':
4085     case 'P':
4086     case '<':
4087     case '>':
4088       return C_Other;
4089     }
4090   }
4091 
4092   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4093     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4094       return C_Memory;
4095     return C_Register;
4096   }
4097   return C_Unknown;
4098 }
4099 
4100 /// Try to replace an X constraint, which matches anything, with another that
4101 /// has more specific requirements based on the type of the corresponding
4102 /// operand.
4103 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4104   if (ConstraintVT.isInteger())
4105     return "r";
4106   if (ConstraintVT.isFloatingPoint())
4107     return "f"; // works for many targets
4108   return nullptr;
4109 }
4110 
4111 SDValue TargetLowering::LowerAsmOutputForConstraint(
4112     SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
4113     SelectionDAG &DAG) const {
4114   return SDValue();
4115 }
4116 
4117 /// Lower the specified operand into the Ops vector.
4118 /// If it is invalid, don't add anything to Ops.
4119 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4120                                                   std::string &Constraint,
4121                                                   std::vector<SDValue> &Ops,
4122                                                   SelectionDAG &DAG) const {
4123 
4124   if (Constraint.length() > 1) return;
4125 
4126   char ConstraintLetter = Constraint[0];
4127   switch (ConstraintLetter) {
4128   default: break;
4129   case 'X':     // Allows any operand; labels (basic block) use this.
4130     if (Op.getOpcode() == ISD::BasicBlock ||
4131         Op.getOpcode() == ISD::TargetBlockAddress) {
4132       Ops.push_back(Op);
4133       return;
4134     }
4135     LLVM_FALLTHROUGH;
4136   case 'i':    // Simple Integer or Relocatable Constant
4137   case 'n':    // Simple Integer
4138   case 's': {  // Relocatable Constant
4139 
4140     GlobalAddressSDNode *GA;
4141     ConstantSDNode *C;
4142     BlockAddressSDNode *BA;
4143     uint64_t Offset = 0;
4144 
4145     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4146     // etc., since getelementpointer is variadic. We can't use
4147     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4148     // while in this case the GA may be furthest from the root node which is
4149     // likely an ISD::ADD.
4150     while (1) {
4151       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4152         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4153                                                  GA->getValueType(0),
4154                                                  Offset + GA->getOffset()));
4155         return;
4156       } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
4157                  ConstraintLetter != 's') {
4158         // gcc prints these as sign extended.  Sign extend value to 64 bits
4159         // now; without this it would get ZExt'd later in
4160         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4161         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4162         BooleanContent BCont = getBooleanContents(MVT::i64);
4163         ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
4164                                       : ISD::SIGN_EXTEND;
4165         int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
4166                                                     : C->getSExtValue();
4167         Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
4168                                             SDLoc(C), MVT::i64));
4169         return;
4170       } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
4171                  ConstraintLetter != 'n') {
4172         Ops.push_back(DAG.getTargetBlockAddress(
4173             BA->getBlockAddress(), BA->getValueType(0),
4174             Offset + BA->getOffset(), BA->getTargetFlags()));
4175         return;
4176       } else {
4177         const unsigned OpCode = Op.getOpcode();
4178         if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4179           if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4180             Op = Op.getOperand(1);
4181           // Subtraction is not commutative.
4182           else if (OpCode == ISD::ADD &&
4183                    (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4184             Op = Op.getOperand(0);
4185           else
4186             return;
4187           Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4188           continue;
4189         }
4190       }
4191       return;
4192     }
4193     break;
4194   }
4195   }
4196 }
4197 
4198 std::pair<unsigned, const TargetRegisterClass *>
4199 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4200                                              StringRef Constraint,
4201                                              MVT VT) const {
4202   if (Constraint.empty() || Constraint[0] != '{')
4203     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4204   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4205 
4206   // Remove the braces from around the name.
4207   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4208 
4209   std::pair<unsigned, const TargetRegisterClass *> R =
4210       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4211 
4212   // Figure out which register class contains this reg.
4213   for (const TargetRegisterClass *RC : RI->regclasses()) {
4214     // If none of the value types for this register class are valid, we
4215     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4216     if (!isLegalRC(*RI, *RC))
4217       continue;
4218 
4219     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4220          I != E; ++I) {
4221       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4222         std::pair<unsigned, const TargetRegisterClass *> S =
4223             std::make_pair(*I, RC);
4224 
4225         // If this register class has the requested value type, return it,
4226         // otherwise keep searching and return the first class found
4227         // if no other is found which explicitly has the requested type.
4228         if (RI->isTypeLegalForClass(*RC, VT))
4229           return S;
4230         if (!R.second)
4231           R = S;
4232       }
4233     }
4234   }
4235 
4236   return R;
4237 }
4238 
4239 //===----------------------------------------------------------------------===//
4240 // Constraint Selection.
4241 
4242 /// Return true of this is an input operand that is a matching constraint like
4243 /// "4".
4244 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4245   assert(!ConstraintCode.empty() && "No known constraint!");
4246   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4247 }
4248 
4249 /// If this is an input matching constraint, this method returns the output
4250 /// operand it matches.
4251 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4252   assert(!ConstraintCode.empty() && "No known constraint!");
4253   return atoi(ConstraintCode.c_str());
4254 }
4255 
4256 /// Split up the constraint string from the inline assembly value into the
4257 /// specific constraints and their prefixes, and also tie in the associated
4258 /// operand values.
4259 /// If this returns an empty vector, and if the constraint string itself
4260 /// isn't empty, there was an error parsing.
4261 TargetLowering::AsmOperandInfoVector
4262 TargetLowering::ParseConstraints(const DataLayout &DL,
4263                                  const TargetRegisterInfo *TRI,
4264                                  ImmutableCallSite CS) const {
4265   /// Information about all of the constraints.
4266   AsmOperandInfoVector ConstraintOperands;
4267   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4268   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4269 
4270   // Do a prepass over the constraints, canonicalizing them, and building up the
4271   // ConstraintOperands list.
4272   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4273   unsigned ResNo = 0; // ResNo - The result number of the next output.
4274 
4275   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4276     ConstraintOperands.emplace_back(std::move(CI));
4277     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4278 
4279     // Update multiple alternative constraint count.
4280     if (OpInfo.multipleAlternatives.size() > maCount)
4281       maCount = OpInfo.multipleAlternatives.size();
4282 
4283     OpInfo.ConstraintVT = MVT::Other;
4284 
4285     // Compute the value type for each operand.
4286     switch (OpInfo.Type) {
4287     case InlineAsm::isOutput:
4288       // Indirect outputs just consume an argument.
4289       if (OpInfo.isIndirect) {
4290         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4291         break;
4292       }
4293 
4294       // The return value of the call is this value.  As such, there is no
4295       // corresponding argument.
4296       assert(!CS.getType()->isVoidTy() &&
4297              "Bad inline asm!");
4298       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
4299         OpInfo.ConstraintVT =
4300             getSimpleValueType(DL, STy->getElementType(ResNo));
4301       } else {
4302         assert(ResNo == 0 && "Asm only has one result!");
4303         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
4304       }
4305       ++ResNo;
4306       break;
4307     case InlineAsm::isInput:
4308       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4309       break;
4310     case InlineAsm::isClobber:
4311       // Nothing to do.
4312       break;
4313     }
4314 
4315     if (OpInfo.CallOperandVal) {
4316       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4317       if (OpInfo.isIndirect) {
4318         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4319         if (!PtrTy)
4320           report_fatal_error("Indirect operand for inline asm not a pointer!");
4321         OpTy = PtrTy->getElementType();
4322       }
4323 
4324       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4325       if (StructType *STy = dyn_cast<StructType>(OpTy))
4326         if (STy->getNumElements() == 1)
4327           OpTy = STy->getElementType(0);
4328 
4329       // If OpTy is not a single value, it may be a struct/union that we
4330       // can tile with integers.
4331       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4332         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4333         switch (BitSize) {
4334         default: break;
4335         case 1:
4336         case 8:
4337         case 16:
4338         case 32:
4339         case 64:
4340         case 128:
4341           OpInfo.ConstraintVT =
4342               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4343           break;
4344         }
4345       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4346         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4347         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4348       } else {
4349         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4350       }
4351     }
4352   }
4353 
4354   // If we have multiple alternative constraints, select the best alternative.
4355   if (!ConstraintOperands.empty()) {
4356     if (maCount) {
4357       unsigned bestMAIndex = 0;
4358       int bestWeight = -1;
4359       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4360       int weight = -1;
4361       unsigned maIndex;
4362       // Compute the sums of the weights for each alternative, keeping track
4363       // of the best (highest weight) one so far.
4364       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4365         int weightSum = 0;
4366         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4367              cIndex != eIndex; ++cIndex) {
4368           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4369           if (OpInfo.Type == InlineAsm::isClobber)
4370             continue;
4371 
4372           // If this is an output operand with a matching input operand,
4373           // look up the matching input. If their types mismatch, e.g. one
4374           // is an integer, the other is floating point, or their sizes are
4375           // different, flag it as an maCantMatch.
4376           if (OpInfo.hasMatchingInput()) {
4377             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4378             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4379               if ((OpInfo.ConstraintVT.isInteger() !=
4380                    Input.ConstraintVT.isInteger()) ||
4381                   (OpInfo.ConstraintVT.getSizeInBits() !=
4382                    Input.ConstraintVT.getSizeInBits())) {
4383                 weightSum = -1; // Can't match.
4384                 break;
4385               }
4386             }
4387           }
4388           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4389           if (weight == -1) {
4390             weightSum = -1;
4391             break;
4392           }
4393           weightSum += weight;
4394         }
4395         // Update best.
4396         if (weightSum > bestWeight) {
4397           bestWeight = weightSum;
4398           bestMAIndex = maIndex;
4399         }
4400       }
4401 
4402       // Now select chosen alternative in each constraint.
4403       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4404            cIndex != eIndex; ++cIndex) {
4405         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4406         if (cInfo.Type == InlineAsm::isClobber)
4407           continue;
4408         cInfo.selectAlternative(bestMAIndex);
4409       }
4410     }
4411   }
4412 
4413   // Check and hook up tied operands, choose constraint code to use.
4414   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4415        cIndex != eIndex; ++cIndex) {
4416     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4417 
4418     // If this is an output operand with a matching input operand, look up the
4419     // matching input. If their types mismatch, e.g. one is an integer, the
4420     // other is floating point, or their sizes are different, flag it as an
4421     // error.
4422     if (OpInfo.hasMatchingInput()) {
4423       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4424 
4425       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4426         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4427             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4428                                          OpInfo.ConstraintVT);
4429         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4430             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4431                                          Input.ConstraintVT);
4432         if ((OpInfo.ConstraintVT.isInteger() !=
4433              Input.ConstraintVT.isInteger()) ||
4434             (MatchRC.second != InputRC.second)) {
4435           report_fatal_error("Unsupported asm: input constraint"
4436                              " with a matching output constraint of"
4437                              " incompatible type!");
4438         }
4439       }
4440     }
4441   }
4442 
4443   return ConstraintOperands;
4444 }
4445 
4446 /// Return an integer indicating how general CT is.
4447 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4448   switch (CT) {
4449   case TargetLowering::C_Immediate:
4450   case TargetLowering::C_Other:
4451   case TargetLowering::C_Unknown:
4452     return 0;
4453   case TargetLowering::C_Register:
4454     return 1;
4455   case TargetLowering::C_RegisterClass:
4456     return 2;
4457   case TargetLowering::C_Memory:
4458     return 3;
4459   }
4460   llvm_unreachable("Invalid constraint type");
4461 }
4462 
4463 /// Examine constraint type and operand type and determine a weight value.
4464 /// This object must already have been set up with the operand type
4465 /// and the current alternative constraint selected.
4466 TargetLowering::ConstraintWeight
4467   TargetLowering::getMultipleConstraintMatchWeight(
4468     AsmOperandInfo &info, int maIndex) const {
4469   InlineAsm::ConstraintCodeVector *rCodes;
4470   if (maIndex >= (int)info.multipleAlternatives.size())
4471     rCodes = &info.Codes;
4472   else
4473     rCodes = &info.multipleAlternatives[maIndex].Codes;
4474   ConstraintWeight BestWeight = CW_Invalid;
4475 
4476   // Loop over the options, keeping track of the most general one.
4477   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4478     ConstraintWeight weight =
4479       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4480     if (weight > BestWeight)
4481       BestWeight = weight;
4482   }
4483 
4484   return BestWeight;
4485 }
4486 
4487 /// Examine constraint type and operand type and determine a weight value.
4488 /// This object must already have been set up with the operand type
4489 /// and the current alternative constraint selected.
4490 TargetLowering::ConstraintWeight
4491   TargetLowering::getSingleConstraintMatchWeight(
4492     AsmOperandInfo &info, const char *constraint) const {
4493   ConstraintWeight weight = CW_Invalid;
4494   Value *CallOperandVal = info.CallOperandVal;
4495     // If we don't have a value, we can't do a match,
4496     // but allow it at the lowest weight.
4497   if (!CallOperandVal)
4498     return CW_Default;
4499   // Look at the constraint type.
4500   switch (*constraint) {
4501     case 'i': // immediate integer.
4502     case 'n': // immediate integer with a known value.
4503       if (isa<ConstantInt>(CallOperandVal))
4504         weight = CW_Constant;
4505       break;
4506     case 's': // non-explicit intregal immediate.
4507       if (isa<GlobalValue>(CallOperandVal))
4508         weight = CW_Constant;
4509       break;
4510     case 'E': // immediate float if host format.
4511     case 'F': // immediate float.
4512       if (isa<ConstantFP>(CallOperandVal))
4513         weight = CW_Constant;
4514       break;
4515     case '<': // memory operand with autodecrement.
4516     case '>': // memory operand with autoincrement.
4517     case 'm': // memory operand.
4518     case 'o': // offsettable memory operand
4519     case 'V': // non-offsettable memory operand
4520       weight = CW_Memory;
4521       break;
4522     case 'r': // general register.
4523     case 'g': // general register, memory operand or immediate integer.
4524               // note: Clang converts "g" to "imr".
4525       if (CallOperandVal->getType()->isIntegerTy())
4526         weight = CW_Register;
4527       break;
4528     case 'X': // any operand.
4529   default:
4530     weight = CW_Default;
4531     break;
4532   }
4533   return weight;
4534 }
4535 
4536 /// If there are multiple different constraints that we could pick for this
4537 /// operand (e.g. "imr") try to pick the 'best' one.
4538 /// This is somewhat tricky: constraints fall into four classes:
4539 ///    Other         -> immediates and magic values
4540 ///    Register      -> one specific register
4541 ///    RegisterClass -> a group of regs
4542 ///    Memory        -> memory
4543 /// Ideally, we would pick the most specific constraint possible: if we have
4544 /// something that fits into a register, we would pick it.  The problem here
4545 /// is that if we have something that could either be in a register or in
4546 /// memory that use of the register could cause selection of *other*
4547 /// operands to fail: they might only succeed if we pick memory.  Because of
4548 /// this the heuristic we use is:
4549 ///
4550 ///  1) If there is an 'other' constraint, and if the operand is valid for
4551 ///     that constraint, use it.  This makes us take advantage of 'i'
4552 ///     constraints when available.
4553 ///  2) Otherwise, pick the most general constraint present.  This prefers
4554 ///     'm' over 'r', for example.
4555 ///
4556 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4557                              const TargetLowering &TLI,
4558                              SDValue Op, SelectionDAG *DAG) {
4559   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4560   unsigned BestIdx = 0;
4561   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4562   int BestGenerality = -1;
4563 
4564   // Loop over the options, keeping track of the most general one.
4565   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4566     TargetLowering::ConstraintType CType =
4567       TLI.getConstraintType(OpInfo.Codes[i]);
4568 
4569     // Indirect 'other' or 'immediate' constraints are not allowed.
4570     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4571                                CType == TargetLowering::C_Register ||
4572                                CType == TargetLowering::C_RegisterClass))
4573       continue;
4574 
4575     // If this is an 'other' or 'immediate' constraint, see if the operand is
4576     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4577     // the operand is an integer in the range [0..31] we want to use I (saving a
4578     // load of a register), otherwise we must use 'r'.
4579     if ((CType == TargetLowering::C_Other ||
4580          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4581       assert(OpInfo.Codes[i].size() == 1 &&
4582              "Unhandled multi-letter 'other' constraint");
4583       std::vector<SDValue> ResultOps;
4584       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4585                                        ResultOps, *DAG);
4586       if (!ResultOps.empty()) {
4587         BestType = CType;
4588         BestIdx = i;
4589         break;
4590       }
4591     }
4592 
4593     // Things with matching constraints can only be registers, per gcc
4594     // documentation.  This mainly affects "g" constraints.
4595     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4596       continue;
4597 
4598     // This constraint letter is more general than the previous one, use it.
4599     int Generality = getConstraintGenerality(CType);
4600     if (Generality > BestGenerality) {
4601       BestType = CType;
4602       BestIdx = i;
4603       BestGenerality = Generality;
4604     }
4605   }
4606 
4607   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4608   OpInfo.ConstraintType = BestType;
4609 }
4610 
4611 /// Determines the constraint code and constraint type to use for the specific
4612 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4613 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4614                                             SDValue Op,
4615                                             SelectionDAG *DAG) const {
4616   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4617 
4618   // Single-letter constraints ('r') are very common.
4619   if (OpInfo.Codes.size() == 1) {
4620     OpInfo.ConstraintCode = OpInfo.Codes[0];
4621     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4622   } else {
4623     ChooseConstraint(OpInfo, *this, Op, DAG);
4624   }
4625 
4626   // 'X' matches anything.
4627   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4628     // Labels and constants are handled elsewhere ('X' is the only thing
4629     // that matches labels).  For Functions, the type here is the type of
4630     // the result, which is not what we want to look at; leave them alone.
4631     Value *v = OpInfo.CallOperandVal;
4632     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4633       OpInfo.CallOperandVal = v;
4634       return;
4635     }
4636 
4637     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4638       return;
4639 
4640     // Otherwise, try to resolve it to something we know about by looking at
4641     // the actual operand type.
4642     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4643       OpInfo.ConstraintCode = Repl;
4644       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4645     }
4646   }
4647 }
4648 
4649 /// Given an exact SDIV by a constant, create a multiplication
4650 /// with the multiplicative inverse of the constant.
4651 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4652                               const SDLoc &dl, SelectionDAG &DAG,
4653                               SmallVectorImpl<SDNode *> &Created) {
4654   SDValue Op0 = N->getOperand(0);
4655   SDValue Op1 = N->getOperand(1);
4656   EVT VT = N->getValueType(0);
4657   EVT SVT = VT.getScalarType();
4658   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
4659   EVT ShSVT = ShVT.getScalarType();
4660 
4661   bool UseSRA = false;
4662   SmallVector<SDValue, 16> Shifts, Factors;
4663 
4664   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4665     if (C->isNullValue())
4666       return false;
4667     APInt Divisor = C->getAPIntValue();
4668     unsigned Shift = Divisor.countTrailingZeros();
4669     if (Shift) {
4670       Divisor.ashrInPlace(Shift);
4671       UseSRA = true;
4672     }
4673     // Calculate the multiplicative inverse, using Newton's method.
4674     APInt t;
4675     APInt Factor = Divisor;
4676     while ((t = Divisor * Factor) != 1)
4677       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
4678     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
4679     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
4680     return true;
4681   };
4682 
4683   // Collect all magic values from the build vector.
4684   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
4685     return SDValue();
4686 
4687   SDValue Shift, Factor;
4688   if (VT.isVector()) {
4689     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4690     Factor = DAG.getBuildVector(VT, dl, Factors);
4691   } else {
4692     Shift = Shifts[0];
4693     Factor = Factors[0];
4694   }
4695 
4696   SDValue Res = Op0;
4697 
4698   // Shift the value upfront if it is even, so the LSB is one.
4699   if (UseSRA) {
4700     // TODO: For UDIV use SRL instead of SRA.
4701     SDNodeFlags Flags;
4702     Flags.setExact(true);
4703     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
4704     Created.push_back(Res.getNode());
4705   }
4706 
4707   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
4708 }
4709 
4710 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4711                               SelectionDAG &DAG,
4712                               SmallVectorImpl<SDNode *> &Created) const {
4713   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4714   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4715   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
4716     return SDValue(N, 0); // Lower SDIV as SDIV
4717   return SDValue();
4718 }
4719 
4720 /// Given an ISD::SDIV node expressing a divide by constant,
4721 /// return a DAG expression to select that will generate the same value by
4722 /// multiplying by a magic number.
4723 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4724 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
4725                                   bool IsAfterLegalization,
4726                                   SmallVectorImpl<SDNode *> &Created) const {
4727   SDLoc dl(N);
4728   EVT VT = N->getValueType(0);
4729   EVT SVT = VT.getScalarType();
4730   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4731   EVT ShSVT = ShVT.getScalarType();
4732   unsigned EltBits = VT.getScalarSizeInBits();
4733 
4734   // Check to see if we can do this.
4735   // FIXME: We should be more aggressive here.
4736   if (!isTypeLegal(VT))
4737     return SDValue();
4738 
4739   // If the sdiv has an 'exact' bit we can use a simpler lowering.
4740   if (N->getFlags().hasExact())
4741     return BuildExactSDIV(*this, N, dl, DAG, Created);
4742 
4743   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
4744 
4745   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4746     if (C->isNullValue())
4747       return false;
4748 
4749     const APInt &Divisor = C->getAPIntValue();
4750     APInt::ms magics = Divisor.magic();
4751     int NumeratorFactor = 0;
4752     int ShiftMask = -1;
4753 
4754     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
4755       // If d is +1/-1, we just multiply the numerator by +1/-1.
4756       NumeratorFactor = Divisor.getSExtValue();
4757       magics.m = 0;
4758       magics.s = 0;
4759       ShiftMask = 0;
4760     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
4761       // If d > 0 and m < 0, add the numerator.
4762       NumeratorFactor = 1;
4763     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
4764       // If d < 0 and m > 0, subtract the numerator.
4765       NumeratorFactor = -1;
4766     }
4767 
4768     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
4769     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
4770     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
4771     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
4772     return true;
4773   };
4774 
4775   SDValue N0 = N->getOperand(0);
4776   SDValue N1 = N->getOperand(1);
4777 
4778   // Collect the shifts / magic values from each element.
4779   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
4780     return SDValue();
4781 
4782   SDValue MagicFactor, Factor, Shift, ShiftMask;
4783   if (VT.isVector()) {
4784     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4785     Factor = DAG.getBuildVector(VT, dl, Factors);
4786     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4787     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
4788   } else {
4789     MagicFactor = MagicFactors[0];
4790     Factor = Factors[0];
4791     Shift = Shifts[0];
4792     ShiftMask = ShiftMasks[0];
4793   }
4794 
4795   // Multiply the numerator (operand 0) by the magic value.
4796   // FIXME: We should support doing a MUL in a wider type.
4797   SDValue Q;
4798   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
4799                           : isOperationLegalOrCustom(ISD::MULHS, VT))
4800     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
4801   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
4802                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
4803     SDValue LoHi =
4804         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
4805     Q = SDValue(LoHi.getNode(), 1);
4806   } else
4807     return SDValue(); // No mulhs or equivalent.
4808   Created.push_back(Q.getNode());
4809 
4810   // (Optionally) Add/subtract the numerator using Factor.
4811   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
4812   Created.push_back(Factor.getNode());
4813   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
4814   Created.push_back(Q.getNode());
4815 
4816   // Shift right algebraic by shift value.
4817   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
4818   Created.push_back(Q.getNode());
4819 
4820   // Extract the sign bit, mask it and add it to the quotient.
4821   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
4822   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
4823   Created.push_back(T.getNode());
4824   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
4825   Created.push_back(T.getNode());
4826   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
4827 }
4828 
4829 /// Given an ISD::UDIV node expressing a divide by constant,
4830 /// return a DAG expression to select that will generate the same value by
4831 /// multiplying by a magic number.
4832 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4833 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
4834                                   bool IsAfterLegalization,
4835                                   SmallVectorImpl<SDNode *> &Created) const {
4836   SDLoc dl(N);
4837   EVT VT = N->getValueType(0);
4838   EVT SVT = VT.getScalarType();
4839   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4840   EVT ShSVT = ShVT.getScalarType();
4841   unsigned EltBits = VT.getScalarSizeInBits();
4842 
4843   // Check to see if we can do this.
4844   // FIXME: We should be more aggressive here.
4845   if (!isTypeLegal(VT))
4846     return SDValue();
4847 
4848   bool UseNPQ = false;
4849   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4850 
4851   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
4852     if (C->isNullValue())
4853       return false;
4854     // FIXME: We should use a narrower constant when the upper
4855     // bits are known to be zero.
4856     APInt Divisor = C->getAPIntValue();
4857     APInt::mu magics = Divisor.magicu();
4858     unsigned PreShift = 0, PostShift = 0;
4859 
4860     // If the divisor is even, we can avoid using the expensive fixup by
4861     // shifting the divided value upfront.
4862     if (magics.a != 0 && !Divisor[0]) {
4863       PreShift = Divisor.countTrailingZeros();
4864       // Get magic number for the shifted divisor.
4865       magics = Divisor.lshr(PreShift).magicu(PreShift);
4866       assert(magics.a == 0 && "Should use cheap fixup now");
4867     }
4868 
4869     APInt Magic = magics.m;
4870 
4871     unsigned SelNPQ;
4872     if (magics.a == 0 || Divisor.isOneValue()) {
4873       assert(magics.s < Divisor.getBitWidth() &&
4874              "We shouldn't generate an undefined shift!");
4875       PostShift = magics.s;
4876       SelNPQ = false;
4877     } else {
4878       PostShift = magics.s - 1;
4879       SelNPQ = true;
4880     }
4881 
4882     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
4883     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
4884     NPQFactors.push_back(
4885         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
4886                                : APInt::getNullValue(EltBits),
4887                         dl, SVT));
4888     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
4889     UseNPQ |= SelNPQ;
4890     return true;
4891   };
4892 
4893   SDValue N0 = N->getOperand(0);
4894   SDValue N1 = N->getOperand(1);
4895 
4896   // Collect the shifts/magic values from each element.
4897   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
4898     return SDValue();
4899 
4900   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
4901   if (VT.isVector()) {
4902     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
4903     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4904     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
4905     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
4906   } else {
4907     PreShift = PreShifts[0];
4908     MagicFactor = MagicFactors[0];
4909     PostShift = PostShifts[0];
4910   }
4911 
4912   SDValue Q = N0;
4913   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
4914   Created.push_back(Q.getNode());
4915 
4916   // FIXME: We should support doing a MUL in a wider type.
4917   auto GetMULHU = [&](SDValue X, SDValue Y) {
4918     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
4919                             : isOperationLegalOrCustom(ISD::MULHU, VT))
4920       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
4921     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
4922                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
4923       SDValue LoHi =
4924           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
4925       return SDValue(LoHi.getNode(), 1);
4926     }
4927     return SDValue(); // No mulhu or equivalent
4928   };
4929 
4930   // Multiply the numerator (operand 0) by the magic value.
4931   Q = GetMULHU(Q, MagicFactor);
4932   if (!Q)
4933     return SDValue();
4934 
4935   Created.push_back(Q.getNode());
4936 
4937   if (UseNPQ) {
4938     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
4939     Created.push_back(NPQ.getNode());
4940 
4941     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
4942     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
4943     if (VT.isVector())
4944       NPQ = GetMULHU(NPQ, NPQFactor);
4945     else
4946       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
4947 
4948     Created.push_back(NPQ.getNode());
4949 
4950     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
4951     Created.push_back(Q.getNode());
4952   }
4953 
4954   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
4955   Created.push_back(Q.getNode());
4956 
4957   SDValue One = DAG.getConstant(1, dl, VT);
4958   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
4959   return DAG.getSelect(dl, VT, IsOne, N0, Q);
4960 }
4961 
4962 /// If all values in Values that *don't* match the predicate are same 'splat'
4963 /// value, then replace all values with that splat value.
4964 /// Else, if AlternativeReplacement was provided, then replace all values that
4965 /// do match predicate with AlternativeReplacement value.
4966 static void
4967 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
4968                           std::function<bool(SDValue)> Predicate,
4969                           SDValue AlternativeReplacement = SDValue()) {
4970   SDValue Replacement;
4971   // Is there a value for which the Predicate does *NOT* match? What is it?
4972   auto SplatValue = llvm::find_if_not(Values, Predicate);
4973   if (SplatValue != Values.end()) {
4974     // Does Values consist only of SplatValue's and values matching Predicate?
4975     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
4976           return Value == *SplatValue || Predicate(Value);
4977         })) // Then we shall replace values matching predicate with SplatValue.
4978       Replacement = *SplatValue;
4979   }
4980   if (!Replacement) {
4981     // Oops, we did not find the "baseline" splat value.
4982     if (!AlternativeReplacement)
4983       return; // Nothing to do.
4984     // Let's replace with provided value then.
4985     Replacement = AlternativeReplacement;
4986   }
4987   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
4988 }
4989 
4990 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
4991 /// where the divisor is constant and the comparison target is zero,
4992 /// return a DAG expression that will generate the same comparison result
4993 /// using only multiplications, additions and shifts/rotations.
4994 /// Ref: "Hacker's Delight" 10-17.
4995 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
4996                                         SDValue CompTargetNode,
4997                                         ISD::CondCode Cond,
4998                                         DAGCombinerInfo &DCI,
4999                                         const SDLoc &DL) const {
5000   SmallVector<SDNode *, 5> Built;
5001   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5002                                          DCI, DL, Built)) {
5003     for (SDNode *N : Built)
5004       DCI.AddToWorklist(N);
5005     return Folded;
5006   }
5007 
5008   return SDValue();
5009 }
5010 
5011 SDValue
5012 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5013                                   SDValue CompTargetNode, ISD::CondCode Cond,
5014                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5015                                   SmallVectorImpl<SDNode *> &Created) const {
5016   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5017   // - D must be constant, with D = D0 * 2^K where D0 is odd
5018   // - P is the multiplicative inverse of D0 modulo 2^W
5019   // - Q = floor(((2^W) - 1) / D)
5020   // where W is the width of the common type of N and D.
5021   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5022          "Only applicable for (in)equality comparisons.");
5023 
5024   SelectionDAG &DAG = DCI.DAG;
5025 
5026   EVT VT = REMNode.getValueType();
5027   EVT SVT = VT.getScalarType();
5028   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5029   EVT ShSVT = ShVT.getScalarType();
5030 
5031   // If MUL is unavailable, we cannot proceed in any case.
5032   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5033     return SDValue();
5034 
5035   bool ComparingWithAllZeros = true;
5036   bool AllComparisonsWithNonZerosAreTautological = true;
5037   bool HadTautologicalLanes = false;
5038   bool AllLanesAreTautological = true;
5039   bool HadEvenDivisor = false;
5040   bool AllDivisorsArePowerOfTwo = true;
5041   bool HadTautologicalInvertedLanes = false;
5042   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5043 
5044   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5045     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5046     if (CDiv->isNullValue())
5047       return false;
5048 
5049     const APInt &D = CDiv->getAPIntValue();
5050     const APInt &Cmp = CCmp->getAPIntValue();
5051 
5052     ComparingWithAllZeros &= Cmp.isNullValue();
5053 
5054     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5055     // if C2 is not less than C1, the comparison is always false.
5056     // But we will only be able to produce the comparison that will give the
5057     // opposive tautological answer. So this lane would need to be fixed up.
5058     bool TautologicalInvertedLane = D.ule(Cmp);
5059     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5060 
5061     // If all lanes are tautological (either all divisors are ones, or divisor
5062     // is not greater than the constant we are comparing with),
5063     // we will prefer to avoid the fold.
5064     bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane;
5065     HadTautologicalLanes |= TautologicalLane;
5066     AllLanesAreTautological &= TautologicalLane;
5067 
5068     // If we are comparing with non-zero, we need'll need  to subtract said
5069     // comparison value from the LHS. But there is no point in doing that if
5070     // every lane where we are comparing with non-zero is tautological..
5071     if (!Cmp.isNullValue())
5072       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5073 
5074     // Decompose D into D0 * 2^K
5075     unsigned K = D.countTrailingZeros();
5076     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5077     APInt D0 = D.lshr(K);
5078 
5079     // D is even if it has trailing zeros.
5080     HadEvenDivisor |= (K != 0);
5081     // D is a power-of-two if D0 is one.
5082     // If all divisors are power-of-two, we will prefer to avoid the fold.
5083     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5084 
5085     // P = inv(D0, 2^W)
5086     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5087     unsigned W = D.getBitWidth();
5088     APInt P = D0.zext(W + 1)
5089                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5090                   .trunc(W);
5091     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5092     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5093 
5094     // Q = floor((2^W - 1) u/ D)
5095     // R = ((2^W - 1) u% D)
5096     APInt Q, R;
5097     APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R);
5098 
5099     // If we are comparing with zero, then that comparison constant is okay,
5100     // else it may need to be one less than that.
5101     if (Cmp.ugt(R))
5102       Q -= 1;
5103 
5104     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5105            "We are expecting that K is always less than all-ones for ShSVT");
5106 
5107     // If the lane is tautological the result can be constant-folded.
5108     if (TautologicalLane) {
5109       // Set P and K amount to a bogus values so we can try to splat them.
5110       P = 0;
5111       K = -1;
5112       // And ensure that comparison constant is tautological,
5113       // it will always compare true/false.
5114       Q = -1;
5115     }
5116 
5117     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5118     KAmts.push_back(
5119         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5120     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5121     return true;
5122   };
5123 
5124   SDValue N = REMNode.getOperand(0);
5125   SDValue D = REMNode.getOperand(1);
5126 
5127   // Collect the values from each element.
5128   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5129     return SDValue();
5130 
5131   // If all lanes are tautological, the result can be constant-folded.
5132   if (AllLanesAreTautological)
5133     return SDValue();
5134 
5135   // If this is a urem by a powers-of-two, avoid the fold since it can be
5136   // best implemented as a bit test.
5137   if (AllDivisorsArePowerOfTwo)
5138     return SDValue();
5139 
5140   SDValue PVal, KVal, QVal;
5141   if (VT.isVector()) {
5142     if (HadTautologicalLanes) {
5143       // Try to turn PAmts into a splat, since we don't care about the values
5144       // that are currently '0'. If we can't, just keep '0'`s.
5145       turnVectorIntoSplatVector(PAmts, isNullConstant);
5146       // Try to turn KAmts into a splat, since we don't care about the values
5147       // that are currently '-1'. If we can't, change them to '0'`s.
5148       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5149                                 DAG.getConstant(0, DL, ShSVT));
5150     }
5151 
5152     PVal = DAG.getBuildVector(VT, DL, PAmts);
5153     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5154     QVal = DAG.getBuildVector(VT, DL, QAmts);
5155   } else {
5156     PVal = PAmts[0];
5157     KVal = KAmts[0];
5158     QVal = QAmts[0];
5159   }
5160 
5161   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5162     if (!isOperationLegalOrCustom(ISD::SUB, VT))
5163       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5164     assert(CompTargetNode.getValueType() == N.getValueType() &&
5165            "Expecting that the types on LHS and RHS of comparisons match.");
5166     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5167   }
5168 
5169   // (mul N, P)
5170   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5171   Created.push_back(Op0.getNode());
5172 
5173   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5174   // divisors as a performance improvement, since rotating by 0 is a no-op.
5175   if (HadEvenDivisor) {
5176     // We need ROTR to do this.
5177     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5178       return SDValue();
5179     SDNodeFlags Flags;
5180     Flags.setExact(true);
5181     // UREM: (rotr (mul N, P), K)
5182     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5183     Created.push_back(Op0.getNode());
5184   }
5185 
5186   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5187   SDValue NewCC =
5188       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5189                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5190   if (!HadTautologicalInvertedLanes)
5191     return NewCC;
5192 
5193   // If any lanes previously compared always-false, the NewCC will give
5194   // always-true result for them, so we need to fixup those lanes.
5195   // Or the other way around for inequality predicate.
5196   assert(VT.isVector() && "Can/should only get here for vectors.");
5197   Created.push_back(NewCC.getNode());
5198 
5199   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5200   // if C2 is not less than C1, the comparison is always false.
5201   // But we have produced the comparison that will give the
5202   // opposive tautological answer. So these lanes would need to be fixed up.
5203   SDValue TautologicalInvertedChannels =
5204       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5205   Created.push_back(TautologicalInvertedChannels.getNode());
5206 
5207   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5208     // If we have a vector select, let's replace the comparison results in the
5209     // affected lanes with the correct tautological result.
5210     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5211                                               DL, SETCCVT, SETCCVT);
5212     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5213                        Replacement, NewCC);
5214   }
5215 
5216   // Else, we can just invert the comparison result in the appropriate lanes.
5217   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5218     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5219                        TautologicalInvertedChannels);
5220 
5221   return SDValue(); // Don't know how to lower.
5222 }
5223 
5224 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5225 /// where the divisor is constant and the comparison target is zero,
5226 /// return a DAG expression that will generate the same comparison result
5227 /// using only multiplications, additions and shifts/rotations.
5228 /// Ref: "Hacker's Delight" 10-17.
5229 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5230                                         SDValue CompTargetNode,
5231                                         ISD::CondCode Cond,
5232                                         DAGCombinerInfo &DCI,
5233                                         const SDLoc &DL) const {
5234   SmallVector<SDNode *, 7> Built;
5235   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5236                                          DCI, DL, Built)) {
5237     assert(Built.size() <= 7 && "Max size prediction failed.");
5238     for (SDNode *N : Built)
5239       DCI.AddToWorklist(N);
5240     return Folded;
5241   }
5242 
5243   return SDValue();
5244 }
5245 
5246 SDValue
5247 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5248                                   SDValue CompTargetNode, ISD::CondCode Cond,
5249                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5250                                   SmallVectorImpl<SDNode *> &Created) const {
5251   // Fold:
5252   //   (seteq/ne (srem N, D), 0)
5253   // To:
5254   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5255   //
5256   // - D must be constant, with D = D0 * 2^K where D0 is odd
5257   // - P is the multiplicative inverse of D0 modulo 2^W
5258   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5259   // - Q = floor((2 * A) / (2^K))
5260   // where W is the width of the common type of N and D.
5261   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5262          "Only applicable for (in)equality comparisons.");
5263 
5264   SelectionDAG &DAG = DCI.DAG;
5265 
5266   EVT VT = REMNode.getValueType();
5267   EVT SVT = VT.getScalarType();
5268   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5269   EVT ShSVT = ShVT.getScalarType();
5270 
5271   // If MUL is unavailable, we cannot proceed in any case.
5272   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5273     return SDValue();
5274 
5275   // TODO: Could support comparing with non-zero too.
5276   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5277   if (!CompTarget || !CompTarget->isNullValue())
5278     return SDValue();
5279 
5280   bool HadIntMinDivisor = false;
5281   bool HadOneDivisor = false;
5282   bool AllDivisorsAreOnes = true;
5283   bool HadEvenDivisor = false;
5284   bool NeedToApplyOffset = false;
5285   bool AllDivisorsArePowerOfTwo = true;
5286   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5287 
5288   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5289     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5290     if (C->isNullValue())
5291       return false;
5292 
5293     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5294 
5295     // WARNING: this fold is only valid for positive divisors!
5296     APInt D = C->getAPIntValue();
5297     if (D.isNegative())
5298       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5299 
5300     HadIntMinDivisor |= D.isMinSignedValue();
5301 
5302     // If all divisors are ones, we will prefer to avoid the fold.
5303     HadOneDivisor |= D.isOneValue();
5304     AllDivisorsAreOnes &= D.isOneValue();
5305 
5306     // Decompose D into D0 * 2^K
5307     unsigned K = D.countTrailingZeros();
5308     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5309     APInt D0 = D.lshr(K);
5310 
5311     if (!D.isMinSignedValue()) {
5312       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5313       // we don't care about this lane in this fold, we'll special-handle it.
5314       HadEvenDivisor |= (K != 0);
5315     }
5316 
5317     // D is a power-of-two if D0 is one. This includes INT_MIN.
5318     // If all divisors are power-of-two, we will prefer to avoid the fold.
5319     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5320 
5321     // P = inv(D0, 2^W)
5322     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5323     unsigned W = D.getBitWidth();
5324     APInt P = D0.zext(W + 1)
5325                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5326                   .trunc(W);
5327     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5328     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5329 
5330     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5331     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5332     A.clearLowBits(K);
5333 
5334     if (!D.isMinSignedValue()) {
5335       // If divisor INT_MIN, then we don't care about this lane in this fold,
5336       // we'll special-handle it.
5337       NeedToApplyOffset |= A != 0;
5338     }
5339 
5340     // Q = floor((2 * A) / (2^K))
5341     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5342 
5343     assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5344            "We are expecting that A is always less than all-ones for SVT");
5345     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5346            "We are expecting that K is always less than all-ones for ShSVT");
5347 
5348     // If the divisor is 1 the result can be constant-folded. Likewise, we
5349     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5350     if (D.isOneValue()) {
5351       // Set P, A and K to a bogus values so we can try to splat them.
5352       P = 0;
5353       A = -1;
5354       K = -1;
5355 
5356       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5357       Q = -1;
5358     }
5359 
5360     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5361     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5362     KAmts.push_back(
5363         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5364     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5365     return true;
5366   };
5367 
5368   SDValue N = REMNode.getOperand(0);
5369   SDValue D = REMNode.getOperand(1);
5370 
5371   // Collect the values from each element.
5372   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5373     return SDValue();
5374 
5375   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5376   if (AllDivisorsAreOnes)
5377     return SDValue();
5378 
5379   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5380   // since it can be best implemented as a bit test.
5381   if (AllDivisorsArePowerOfTwo)
5382     return SDValue();
5383 
5384   SDValue PVal, AVal, KVal, QVal;
5385   if (VT.isVector()) {
5386     if (HadOneDivisor) {
5387       // Try to turn PAmts into a splat, since we don't care about the values
5388       // that are currently '0'. If we can't, just keep '0'`s.
5389       turnVectorIntoSplatVector(PAmts, isNullConstant);
5390       // Try to turn AAmts into a splat, since we don't care about the
5391       // values that are currently '-1'. If we can't, change them to '0'`s.
5392       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5393                                 DAG.getConstant(0, DL, SVT));
5394       // Try to turn KAmts into a splat, since we don't care about the values
5395       // that are currently '-1'. If we can't, change them to '0'`s.
5396       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5397                                 DAG.getConstant(0, DL, ShSVT));
5398     }
5399 
5400     PVal = DAG.getBuildVector(VT, DL, PAmts);
5401     AVal = DAG.getBuildVector(VT, DL, AAmts);
5402     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5403     QVal = DAG.getBuildVector(VT, DL, QAmts);
5404   } else {
5405     PVal = PAmts[0];
5406     AVal = AAmts[0];
5407     KVal = KAmts[0];
5408     QVal = QAmts[0];
5409   }
5410 
5411   // (mul N, P)
5412   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5413   Created.push_back(Op0.getNode());
5414 
5415   if (NeedToApplyOffset) {
5416     // We need ADD to do this.
5417     if (!isOperationLegalOrCustom(ISD::ADD, VT))
5418       return SDValue();
5419 
5420     // (add (mul N, P), A)
5421     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5422     Created.push_back(Op0.getNode());
5423   }
5424 
5425   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5426   // divisors as a performance improvement, since rotating by 0 is a no-op.
5427   if (HadEvenDivisor) {
5428     // We need ROTR to do this.
5429     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5430       return SDValue();
5431     SDNodeFlags Flags;
5432     Flags.setExact(true);
5433     // SREM: (rotr (add (mul N, P), A), K)
5434     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5435     Created.push_back(Op0.getNode());
5436   }
5437 
5438   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5439   SDValue Fold =
5440       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5441                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5442 
5443   // If we didn't have lanes with INT_MIN divisor, then we're done.
5444   if (!HadIntMinDivisor)
5445     return Fold;
5446 
5447   // That fold is only valid for positive divisors. Which effectively means,
5448   // it is invalid for INT_MIN divisors. So if we have such a lane,
5449   // we must fix-up results for said lanes.
5450   assert(VT.isVector() && "Can/should only get here for vectors.");
5451 
5452   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5453       !isOperationLegalOrCustom(ISD::AND, VT) ||
5454       !isOperationLegalOrCustom(Cond, VT) ||
5455       !isOperationLegalOrCustom(ISD::VSELECT, VT))
5456     return SDValue();
5457 
5458   Created.push_back(Fold.getNode());
5459 
5460   SDValue IntMin = DAG.getConstant(
5461       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5462   SDValue IntMax = DAG.getConstant(
5463       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5464   SDValue Zero =
5465       DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5466 
5467   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5468   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5469   Created.push_back(DivisorIsIntMin.getNode());
5470 
5471   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
5472   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5473   Created.push_back(Masked.getNode());
5474   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5475   Created.push_back(MaskedIsZero.getNode());
5476 
5477   // To produce final result we need to blend 2 vectors: 'SetCC' and
5478   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5479   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5480   // constant-folded, select can get lowered to a shuffle with constant mask.
5481   SDValue Blended =
5482       DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5483 
5484   return Blended;
5485 }
5486 
5487 bool TargetLowering::
5488 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5489   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5490     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5491                                 "be a constant integer");
5492     return true;
5493   }
5494 
5495   return false;
5496 }
5497 
5498 char TargetLowering::isNegatibleForFree(SDValue Op, SelectionDAG &DAG,
5499                                         bool LegalOperations, bool ForCodeSize,
5500                                         unsigned Depth) const {
5501   // fneg is removable even if it has multiple uses.
5502   if (Op.getOpcode() == ISD::FNEG)
5503     return 2;
5504 
5505   // Don't allow anything with multiple uses unless we know it is free.
5506   EVT VT = Op.getValueType();
5507   const SDNodeFlags Flags = Op->getFlags();
5508   const TargetOptions &Options = DAG.getTarget().Options;
5509   if (!Op.hasOneUse() && !(Op.getOpcode() == ISD::FP_EXTEND &&
5510                            isFPExtFree(VT, Op.getOperand(0).getValueType())))
5511     return 0;
5512 
5513   // Don't recurse exponentially.
5514   if (Depth > SelectionDAG::MaxRecursionDepth)
5515     return 0;
5516 
5517   switch (Op.getOpcode()) {
5518   case ISD::ConstantFP: {
5519     if (!LegalOperations)
5520       return 1;
5521 
5522     // Don't invert constant FP values after legalization unless the target says
5523     // the negated constant is legal.
5524     return isOperationLegal(ISD::ConstantFP, VT) ||
5525            isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
5526                         ForCodeSize);
5527   }
5528   case ISD::BUILD_VECTOR: {
5529     // Only permit BUILD_VECTOR of constants.
5530     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
5531           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
5532         }))
5533       return 0;
5534     if (!LegalOperations)
5535       return 1;
5536     if (isOperationLegal(ISD::ConstantFP, VT) &&
5537         isOperationLegal(ISD::BUILD_VECTOR, VT))
5538       return 1;
5539     return llvm::all_of(Op->op_values(), [&](SDValue N) {
5540       return N.isUndef() ||
5541              isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
5542                           ForCodeSize);
5543     });
5544   }
5545   case ISD::FADD:
5546     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5547       return 0;
5548 
5549     // After operation legalization, it might not be legal to create new FSUBs.
5550     if (LegalOperations && !isOperationLegalOrCustom(ISD::FSUB, VT))
5551       return 0;
5552 
5553     // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
5554     if (char V = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5555                                     ForCodeSize, Depth + 1))
5556       return V;
5557     // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
5558     return isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations,
5559                               ForCodeSize, Depth + 1);
5560   case ISD::FSUB:
5561     // We can't turn -(A-B) into B-A when we honor signed zeros.
5562     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5563       return 0;
5564 
5565     // fold (fneg (fsub A, B)) -> (fsub B, A)
5566     return 1;
5567 
5568   case ISD::FMUL:
5569   case ISD::FDIV:
5570     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
5571     if (char V = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5572                                     ForCodeSize, Depth + 1))
5573       return V;
5574 
5575     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
5576     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
5577       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
5578         return 0;
5579 
5580     return isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations,
5581                               ForCodeSize, Depth + 1);
5582 
5583   case ISD::FMA:
5584   case ISD::FMAD: {
5585     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5586       return 0;
5587 
5588     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5589     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5590     char V2 = isNegatibleForFree(Op.getOperand(2), DAG, LegalOperations,
5591                                  ForCodeSize, Depth + 1);
5592     if (!V2)
5593       return 0;
5594 
5595     // One of Op0/Op1 must be cheaply negatible, then select the cheapest.
5596     char V0 = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5597                                  ForCodeSize, Depth + 1);
5598     char V1 = isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations,
5599                                  ForCodeSize, Depth + 1);
5600     char V01 = std::max(V0, V1);
5601     return V01 ? std::max(V01, V2) : 0;
5602   }
5603 
5604   case ISD::FP_EXTEND:
5605   case ISD::FP_ROUND:
5606   case ISD::FSIN:
5607     return isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5608                               ForCodeSize, Depth + 1);
5609   }
5610 
5611   return 0;
5612 }
5613 
5614 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
5615                                              bool LegalOperations,
5616                                              bool ForCodeSize,
5617                                              unsigned Depth) const {
5618   // fneg is removable even if it has multiple uses.
5619   if (Op.getOpcode() == ISD::FNEG)
5620     return Op.getOperand(0);
5621 
5622   assert(Depth <= SelectionDAG::MaxRecursionDepth &&
5623          "getNegatedExpression doesn't match isNegatibleForFree");
5624   const SDNodeFlags Flags = Op->getFlags();
5625 
5626   switch (Op.getOpcode()) {
5627   case ISD::ConstantFP: {
5628     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
5629     V.changeSign();
5630     return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType());
5631   }
5632   case ISD::BUILD_VECTOR: {
5633     SmallVector<SDValue, 4> Ops;
5634     for (SDValue C : Op->op_values()) {
5635       if (C.isUndef()) {
5636         Ops.push_back(C);
5637         continue;
5638       }
5639       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
5640       V.changeSign();
5641       Ops.push_back(DAG.getConstantFP(V, SDLoc(Op), C.getValueType()));
5642     }
5643     return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Ops);
5644   }
5645   case ISD::FADD:
5646     assert((DAG.getTarget().Options.NoSignedZerosFPMath ||
5647             Flags.hasNoSignedZeros()) &&
5648            "Expected NSZ fp-flag");
5649 
5650     // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
5651     if (isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, ForCodeSize,
5652                            Depth + 1))
5653       return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5654                          getNegatedExpression(Op.getOperand(0), DAG,
5655                                               LegalOperations, ForCodeSize,
5656                                               Depth + 1),
5657                          Op.getOperand(1), Flags);
5658     // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
5659     return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5660                        getNegatedExpression(Op.getOperand(1), DAG,
5661                                             LegalOperations, ForCodeSize,
5662                                             Depth + 1),
5663                        Op.getOperand(0), Flags);
5664   case ISD::FSUB:
5665     // fold (fneg (fsub 0, B)) -> B
5666     if (ConstantFPSDNode *N0CFP =
5667             isConstOrConstSplatFP(Op.getOperand(0), /*AllowUndefs*/ true))
5668       if (N0CFP->isZero())
5669         return Op.getOperand(1);
5670 
5671     // fold (fneg (fsub A, B)) -> (fsub B, A)
5672     return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5673                        Op.getOperand(1), Op.getOperand(0), Flags);
5674 
5675   case ISD::FMUL:
5676   case ISD::FDIV:
5677     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
5678     if (isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, ForCodeSize,
5679                            Depth + 1))
5680       return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5681                          getNegatedExpression(Op.getOperand(0), DAG,
5682                                               LegalOperations, ForCodeSize,
5683                                               Depth + 1),
5684                          Op.getOperand(1), Flags);
5685 
5686     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
5687     return DAG.getNode(
5688         Op.getOpcode(), SDLoc(Op), Op.getValueType(), Op.getOperand(0),
5689         getNegatedExpression(Op.getOperand(1), DAG, LegalOperations,
5690                              ForCodeSize, Depth + 1),
5691         Flags);
5692 
5693   case ISD::FMA:
5694   case ISD::FMAD: {
5695     assert((DAG.getTarget().Options.NoSignedZerosFPMath ||
5696             Flags.hasNoSignedZeros()) &&
5697            "Expected NSZ fp-flag");
5698 
5699     SDValue Neg2 = getNegatedExpression(Op.getOperand(2), DAG, LegalOperations,
5700                                         ForCodeSize, Depth + 1);
5701 
5702     char V0 = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5703                                  ForCodeSize, Depth + 1);
5704     char V1 = isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations,
5705                                  ForCodeSize, Depth + 1);
5706     // TODO: This is a hack. It is possible that costs have changed between now
5707     //       and the initial calls to isNegatibleForFree(). That is because we
5708     //       are rewriting the expression, and that may change the number of
5709     //       uses (and therefore the cost) of values. If the negation costs are
5710     //       equal, only negate this value if it is a constant. Otherwise, try
5711     //       operand 1. A better fix would eliminate uses as a cost factor or
5712     //       track the change in uses as we rewrite the expression.
5713     if (V0 > V1 || (V0 == V1 && isa<ConstantFPSDNode>(Op.getOperand(0)))) {
5714       // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5715       SDValue Neg0 = getNegatedExpression(
5716           Op.getOperand(0), DAG, LegalOperations, ForCodeSize, Depth + 1);
5717       return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Neg0,
5718                          Op.getOperand(1), Neg2, Flags);
5719     }
5720 
5721     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5722     SDValue Neg1 = getNegatedExpression(Op.getOperand(1), DAG, LegalOperations,
5723                                         ForCodeSize, Depth + 1);
5724     return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5725                        Op.getOperand(0), Neg1, Neg2, Flags);
5726   }
5727 
5728   case ISD::FP_EXTEND:
5729   case ISD::FSIN:
5730     return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5731                        getNegatedExpression(Op.getOperand(0), DAG,
5732                                             LegalOperations, ForCodeSize,
5733                                             Depth + 1));
5734   case ISD::FP_ROUND:
5735     return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(),
5736                        getNegatedExpression(Op.getOperand(0), DAG,
5737                                             LegalOperations, ForCodeSize,
5738                                             Depth + 1),
5739                        Op.getOperand(1));
5740   }
5741 
5742   llvm_unreachable("Unknown code");
5743 }
5744 
5745 //===----------------------------------------------------------------------===//
5746 // Legalization Utilities
5747 //===----------------------------------------------------------------------===//
5748 
5749 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
5750                                     SDValue LHS, SDValue RHS,
5751                                     SmallVectorImpl<SDValue> &Result,
5752                                     EVT HiLoVT, SelectionDAG &DAG,
5753                                     MulExpansionKind Kind, SDValue LL,
5754                                     SDValue LH, SDValue RL, SDValue RH) const {
5755   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
5756          Opcode == ISD::SMUL_LOHI);
5757 
5758   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
5759                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
5760   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
5761                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
5762   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5763                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
5764   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5765                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
5766 
5767   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
5768     return false;
5769 
5770   unsigned OuterBitSize = VT.getScalarSizeInBits();
5771   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
5772   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
5773   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
5774 
5775   // LL, LH, RL, and RH must be either all NULL or all set to a value.
5776   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
5777          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
5778 
5779   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
5780   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
5781                           bool Signed) -> bool {
5782     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
5783       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
5784       Hi = SDValue(Lo.getNode(), 1);
5785       return true;
5786     }
5787     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
5788       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
5789       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
5790       return true;
5791     }
5792     return false;
5793   };
5794 
5795   SDValue Lo, Hi;
5796 
5797   if (!LL.getNode() && !RL.getNode() &&
5798       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5799     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
5800     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
5801   }
5802 
5803   if (!LL.getNode())
5804     return false;
5805 
5806   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
5807   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
5808       DAG.MaskedValueIsZero(RHS, HighMask)) {
5809     // The inputs are both zero-extended.
5810     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
5811       Result.push_back(Lo);
5812       Result.push_back(Hi);
5813       if (Opcode != ISD::MUL) {
5814         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5815         Result.push_back(Zero);
5816         Result.push_back(Zero);
5817       }
5818       return true;
5819     }
5820   }
5821 
5822   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
5823       RHSSB > InnerBitSize) {
5824     // The input values are both sign-extended.
5825     // TODO non-MUL case?
5826     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
5827       Result.push_back(Lo);
5828       Result.push_back(Hi);
5829       return true;
5830     }
5831   }
5832 
5833   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
5834   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
5835   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
5836     // FIXME getShiftAmountTy does not always return a sensible result when VT
5837     // is an illegal type, and so the type may be too small to fit the shift
5838     // amount. Override it with i32. The shift will have to be legalized.
5839     ShiftAmountTy = MVT::i32;
5840   }
5841   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
5842 
5843   if (!LH.getNode() && !RH.getNode() &&
5844       isOperationLegalOrCustom(ISD::SRL, VT) &&
5845       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5846     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
5847     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
5848     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
5849     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
5850   }
5851 
5852   if (!LH.getNode())
5853     return false;
5854 
5855   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
5856     return false;
5857 
5858   Result.push_back(Lo);
5859 
5860   if (Opcode == ISD::MUL) {
5861     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
5862     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
5863     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
5864     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
5865     Result.push_back(Hi);
5866     return true;
5867   }
5868 
5869   // Compute the full width result.
5870   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
5871     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
5872     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5873     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
5874     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
5875   };
5876 
5877   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5878   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
5879     return false;
5880 
5881   // This is effectively the add part of a multiply-add of half-sized operands,
5882   // so it cannot overflow.
5883   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5884 
5885   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
5886     return false;
5887 
5888   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5889   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5890 
5891   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
5892                   isOperationLegalOrCustom(ISD::ADDE, VT));
5893   if (UseGlue)
5894     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
5895                        Merge(Lo, Hi));
5896   else
5897     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
5898                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
5899 
5900   SDValue Carry = Next.getValue(1);
5901   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5902   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5903 
5904   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
5905     return false;
5906 
5907   if (UseGlue)
5908     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
5909                      Carry);
5910   else
5911     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
5912                      Zero, Carry);
5913 
5914   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5915 
5916   if (Opcode == ISD::SMUL_LOHI) {
5917     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5918                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
5919     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
5920 
5921     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5922                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
5923     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
5924   }
5925 
5926   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5927   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5928   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5929   return true;
5930 }
5931 
5932 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
5933                                SelectionDAG &DAG, MulExpansionKind Kind,
5934                                SDValue LL, SDValue LH, SDValue RL,
5935                                SDValue RH) const {
5936   SmallVector<SDValue, 2> Result;
5937   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
5938                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
5939                            DAG, Kind, LL, LH, RL, RH);
5940   if (Ok) {
5941     assert(Result.size() == 2);
5942     Lo = Result[0];
5943     Hi = Result[1];
5944   }
5945   return Ok;
5946 }
5947 
5948 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
5949                                        SelectionDAG &DAG) const {
5950   EVT VT = Node->getValueType(0);
5951 
5952   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
5953                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
5954                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
5955                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
5956     return false;
5957 
5958   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5959   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5960   SDValue X = Node->getOperand(0);
5961   SDValue Y = Node->getOperand(1);
5962   SDValue Z = Node->getOperand(2);
5963 
5964   unsigned EltSizeInBits = VT.getScalarSizeInBits();
5965   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
5966   SDLoc DL(SDValue(Node, 0));
5967 
5968   EVT ShVT = Z.getValueType();
5969   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
5970   SDValue Zero = DAG.getConstant(0, DL, ShVT);
5971 
5972   SDValue ShAmt;
5973   if (isPowerOf2_32(EltSizeInBits)) {
5974     SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
5975     ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
5976   } else {
5977     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
5978   }
5979 
5980   SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
5981   SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
5982   SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
5983   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
5984 
5985   // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
5986   // and that is undefined. We must compare and select to avoid UB.
5987   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
5988 
5989   // For fshl, 0-shift returns the 1st arg (X).
5990   // For fshr, 0-shift returns the 2nd arg (Y).
5991   SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
5992   Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
5993   return true;
5994 }
5995 
5996 // TODO: Merge with expandFunnelShift.
5997 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
5998                                SelectionDAG &DAG) const {
5999   EVT VT = Node->getValueType(0);
6000   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6001   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6002   SDValue Op0 = Node->getOperand(0);
6003   SDValue Op1 = Node->getOperand(1);
6004   SDLoc DL(SDValue(Node, 0));
6005 
6006   EVT ShVT = Op1.getValueType();
6007   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6008 
6009   // If a rotate in the other direction is legal, use it.
6010   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6011   if (isOperationLegal(RevRot, VT)) {
6012     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
6013     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6014     return true;
6015   }
6016 
6017   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6018                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6019                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6020                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6021                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6022     return false;
6023 
6024   // Otherwise,
6025   //   (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
6026   //   (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
6027   //
6028   assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
6029          "Expecting the type bitwidth to be a power of 2");
6030   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6031   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6032   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6033   SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
6034   SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6035   SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6036   Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
6037                        DAG.getNode(HsOpc, DL, VT, Op0, And1));
6038   return true;
6039 }
6040 
6041 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6042                                       SelectionDAG &DAG) const {
6043   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6044   SDValue Src = Node->getOperand(OpNo);
6045   EVT SrcVT = Src.getValueType();
6046   EVT DstVT = Node->getValueType(0);
6047   SDLoc dl(SDValue(Node, 0));
6048 
6049   // FIXME: Only f32 to i64 conversions are supported.
6050   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6051     return false;
6052 
6053   if (Node->isStrictFPOpcode())
6054     // When a NaN is converted to an integer a trap is allowed. We can't
6055     // use this expansion here because it would eliminate that trap. Other
6056     // traps are also allowed and cannot be eliminated. See
6057     // IEEE 754-2008 sec 5.8.
6058     return false;
6059 
6060   // Expand f32 -> i64 conversion
6061   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6062   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
6063   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6064   EVT IntVT = SrcVT.changeTypeToInteger();
6065   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6066 
6067   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6068   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6069   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6070   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6071   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6072   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6073 
6074   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6075 
6076   SDValue ExponentBits = DAG.getNode(
6077       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6078       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6079   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6080 
6081   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6082                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6083                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6084   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6085 
6086   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6087                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6088                           DAG.getConstant(0x00800000, dl, IntVT));
6089 
6090   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6091 
6092   R = DAG.getSelectCC(
6093       dl, Exponent, ExponentLoBit,
6094       DAG.getNode(ISD::SHL, dl, DstVT, R,
6095                   DAG.getZExtOrTrunc(
6096                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6097                       dl, IntShVT)),
6098       DAG.getNode(ISD::SRL, dl, DstVT, R,
6099                   DAG.getZExtOrTrunc(
6100                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6101                       dl, IntShVT)),
6102       ISD::SETGT);
6103 
6104   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6105                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6106 
6107   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6108                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6109   return true;
6110 }
6111 
6112 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6113                                       SDValue &Chain,
6114                                       SelectionDAG &DAG) const {
6115   SDLoc dl(SDValue(Node, 0));
6116   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6117   SDValue Src = Node->getOperand(OpNo);
6118 
6119   EVT SrcVT = Src.getValueType();
6120   EVT DstVT = Node->getValueType(0);
6121   EVT SetCCVT =
6122       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6123   EVT DstSetCCVT =
6124       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6125 
6126   // Only expand vector types if we have the appropriate vector bit operations.
6127   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6128                                                    ISD::FP_TO_SINT;
6129   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6130                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6131     return false;
6132 
6133   // If the maximum float value is smaller then the signed integer range,
6134   // the destination signmask can't be represented by the float, so we can
6135   // just use FP_TO_SINT directly.
6136   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6137   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
6138   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6139   if (APFloat::opOverflow &
6140       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6141     if (Node->isStrictFPOpcode()) {
6142       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6143                            { Node->getOperand(0), Src });
6144       Chain = Result.getValue(1);
6145     } else
6146       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6147     return true;
6148   }
6149 
6150   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6151   SDValue Sel;
6152 
6153   if (Node->isStrictFPOpcode()) {
6154     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6155                        Node->getOperand(0), /*IsSignaling*/ true);
6156     Chain = Sel.getValue(1);
6157   } else {
6158     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6159   }
6160 
6161   bool Strict = Node->isStrictFPOpcode() ||
6162                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6163 
6164   if (Strict) {
6165     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6166     // signmask then offset (the result of which should be fully representable).
6167     // Sel = Src < 0x8000000000000000
6168     // FltOfs = select Sel, 0, 0x8000000000000000
6169     // IntOfs = select Sel, 0, 0x8000000000000000
6170     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6171 
6172     // TODO: Should any fast-math-flags be set for the FSUB?
6173     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6174                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6175     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6176     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6177                                    DAG.getConstant(0, dl, DstVT),
6178                                    DAG.getConstant(SignMask, dl, DstVT));
6179     SDValue SInt;
6180     if (Node->isStrictFPOpcode()) {
6181       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6182                                 { Chain, Src, FltOfs });
6183       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6184                          { Val.getValue(1), Val });
6185       Chain = SInt.getValue(1);
6186     } else {
6187       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6188       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6189     }
6190     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6191   } else {
6192     // Expand based on maximum range of FP_TO_SINT:
6193     // True = fp_to_sint(Src)
6194     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6195     // Result = select (Src < 0x8000000000000000), True, False
6196 
6197     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6198     // TODO: Should any fast-math-flags be set for the FSUB?
6199     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6200                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6201     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6202                         DAG.getConstant(SignMask, dl, DstVT));
6203     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6204     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6205   }
6206   return true;
6207 }
6208 
6209 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6210                                       SDValue &Chain,
6211                                       SelectionDAG &DAG) const {
6212   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6213   SDValue Src = Node->getOperand(OpNo);
6214   EVT SrcVT = Src.getValueType();
6215   EVT DstVT = Node->getValueType(0);
6216 
6217   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6218     return false;
6219 
6220   // Only expand vector types if we have the appropriate vector bit operations.
6221   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6222                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6223                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6224                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6225                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6226     return false;
6227 
6228   SDLoc dl(SDValue(Node, 0));
6229   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6230 
6231   // Implementation of unsigned i64 to f64 following the algorithm in
6232   // __floatundidf in compiler_rt. This implementation has the advantage
6233   // of performing rounding correctly, both in the default rounding mode
6234   // and in all alternate rounding modes.
6235   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6236   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6237       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6238   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6239   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6240   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6241 
6242   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6243   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6244   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6245   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6246   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6247   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6248   if (Node->isStrictFPOpcode()) {
6249     SDValue HiSub =
6250         DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other},
6251                     {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52});
6252     Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other},
6253                          {HiSub.getValue(1), LoFlt, HiSub});
6254     Chain = Result.getValue(1);
6255   } else {
6256     SDValue HiSub =
6257         DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6258     Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6259   }
6260   return true;
6261 }
6262 
6263 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6264                                               SelectionDAG &DAG) const {
6265   SDLoc dl(Node);
6266   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6267     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6268   EVT VT = Node->getValueType(0);
6269   if (isOperationLegalOrCustom(NewOp, VT)) {
6270     SDValue Quiet0 = Node->getOperand(0);
6271     SDValue Quiet1 = Node->getOperand(1);
6272 
6273     if (!Node->getFlags().hasNoNaNs()) {
6274       // Insert canonicalizes if it's possible we need to quiet to get correct
6275       // sNaN behavior.
6276       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6277         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6278                              Node->getFlags());
6279       }
6280       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6281         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6282                              Node->getFlags());
6283       }
6284     }
6285 
6286     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6287   }
6288 
6289   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6290   // instead if there are no NaNs.
6291   if (Node->getFlags().hasNoNaNs()) {
6292     unsigned IEEE2018Op =
6293         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6294     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6295       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6296                          Node->getOperand(1), Node->getFlags());
6297     }
6298   }
6299 
6300   // If none of the above worked, but there are no NaNs, then expand to
6301   // a compare/select sequence.  This is required for correctness since
6302   // InstCombine might have canonicalized a fcmp+select sequence to a
6303   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
6304   // expansion to libcall, we might introduce a link-time dependency
6305   // on libm into a file that originally did not have one.
6306   if (Node->getFlags().hasNoNaNs()) {
6307     ISD::CondCode Pred =
6308         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
6309     SDValue Op1 = Node->getOperand(0);
6310     SDValue Op2 = Node->getOperand(1);
6311     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
6312     // Copy FMF flags, but always set the no-signed-zeros flag
6313     // as this is implied by the FMINNUM/FMAXNUM semantics.
6314     SDNodeFlags Flags = Node->getFlags();
6315     Flags.setNoSignedZeros(true);
6316     SelCC->setFlags(Flags);
6317     return SelCC;
6318   }
6319 
6320   return SDValue();
6321 }
6322 
6323 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
6324                                  SelectionDAG &DAG) const {
6325   SDLoc dl(Node);
6326   EVT VT = Node->getValueType(0);
6327   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6328   SDValue Op = Node->getOperand(0);
6329   unsigned Len = VT.getScalarSizeInBits();
6330   assert(VT.isInteger() && "CTPOP not implemented for this type.");
6331 
6332   // TODO: Add support for irregular type lengths.
6333   if (!(Len <= 128 && Len % 8 == 0))
6334     return false;
6335 
6336   // Only expand vector types if we have the appropriate vector bit operations.
6337   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
6338                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6339                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6340                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
6341                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6342     return false;
6343 
6344   // This is the "best" algorithm from
6345   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
6346   SDValue Mask55 =
6347       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
6348   SDValue Mask33 =
6349       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
6350   SDValue Mask0F =
6351       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
6352   SDValue Mask01 =
6353       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
6354 
6355   // v = v - ((v >> 1) & 0x55555555...)
6356   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
6357                    DAG.getNode(ISD::AND, dl, VT,
6358                                DAG.getNode(ISD::SRL, dl, VT, Op,
6359                                            DAG.getConstant(1, dl, ShVT)),
6360                                Mask55));
6361   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
6362   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
6363                    DAG.getNode(ISD::AND, dl, VT,
6364                                DAG.getNode(ISD::SRL, dl, VT, Op,
6365                                            DAG.getConstant(2, dl, ShVT)),
6366                                Mask33));
6367   // v = (v + (v >> 4)) & 0x0F0F0F0F...
6368   Op = DAG.getNode(ISD::AND, dl, VT,
6369                    DAG.getNode(ISD::ADD, dl, VT, Op,
6370                                DAG.getNode(ISD::SRL, dl, VT, Op,
6371                                            DAG.getConstant(4, dl, ShVT))),
6372                    Mask0F);
6373   // v = (v * 0x01010101...) >> (Len - 8)
6374   if (Len > 8)
6375     Op =
6376         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
6377                     DAG.getConstant(Len - 8, dl, ShVT));
6378 
6379   Result = Op;
6380   return true;
6381 }
6382 
6383 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
6384                                 SelectionDAG &DAG) const {
6385   SDLoc dl(Node);
6386   EVT VT = Node->getValueType(0);
6387   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6388   SDValue Op = Node->getOperand(0);
6389   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6390 
6391   // If the non-ZERO_UNDEF version is supported we can use that instead.
6392   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
6393       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
6394     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
6395     return true;
6396   }
6397 
6398   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6399   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
6400     EVT SetCCVT =
6401         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6402     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
6403     SDValue Zero = DAG.getConstant(0, dl, VT);
6404     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6405     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6406                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
6407     return true;
6408   }
6409 
6410   // Only expand vector types if we have the appropriate vector bit operations.
6411   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6412                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
6413                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6414                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6415     return false;
6416 
6417   // for now, we do this:
6418   // x = x | (x >> 1);
6419   // x = x | (x >> 2);
6420   // ...
6421   // x = x | (x >>16);
6422   // x = x | (x >>32); // for 64-bit input
6423   // return popcount(~x);
6424   //
6425   // Ref: "Hacker's Delight" by Henry Warren
6426   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
6427     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
6428     Op = DAG.getNode(ISD::OR, dl, VT, Op,
6429                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
6430   }
6431   Op = DAG.getNOT(dl, Op, VT);
6432   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
6433   return true;
6434 }
6435 
6436 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
6437                                 SelectionDAG &DAG) const {
6438   SDLoc dl(Node);
6439   EVT VT = Node->getValueType(0);
6440   SDValue Op = Node->getOperand(0);
6441   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6442 
6443   // If the non-ZERO_UNDEF version is supported we can use that instead.
6444   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
6445       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
6446     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
6447     return true;
6448   }
6449 
6450   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6451   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
6452     EVT SetCCVT =
6453         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6454     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
6455     SDValue Zero = DAG.getConstant(0, dl, VT);
6456     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6457     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6458                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
6459     return true;
6460   }
6461 
6462   // Only expand vector types if we have the appropriate vector bit operations.
6463   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6464                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
6465                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
6466                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6467                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
6468                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6469     return false;
6470 
6471   // for now, we use: { return popcount(~x & (x - 1)); }
6472   // unless the target has ctlz but not ctpop, in which case we use:
6473   // { return 32 - nlz(~x & (x-1)); }
6474   // Ref: "Hacker's Delight" by Henry Warren
6475   SDValue Tmp = DAG.getNode(
6476       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
6477       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
6478 
6479   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6480   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
6481     Result =
6482         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
6483                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
6484     return true;
6485   }
6486 
6487   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
6488   return true;
6489 }
6490 
6491 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
6492                                SelectionDAG &DAG) const {
6493   SDLoc dl(N);
6494   EVT VT = N->getValueType(0);
6495   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6496   SDValue Op = N->getOperand(0);
6497 
6498   // Only expand vector types if we have the appropriate vector operations.
6499   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
6500                         !isOperationLegalOrCustom(ISD::ADD, VT) ||
6501                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6502     return false;
6503 
6504   SDValue Shift =
6505       DAG.getNode(ISD::SRA, dl, VT, Op,
6506                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
6507   SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
6508   Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
6509   return true;
6510 }
6511 
6512 std::pair<SDValue, SDValue>
6513 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
6514                                     SelectionDAG &DAG) const {
6515   SDLoc SL(LD);
6516   SDValue Chain = LD->getChain();
6517   SDValue BasePTR = LD->getBasePtr();
6518   EVT SrcVT = LD->getMemoryVT();
6519   ISD::LoadExtType ExtType = LD->getExtensionType();
6520 
6521   unsigned NumElem = SrcVT.getVectorNumElements();
6522 
6523   EVT SrcEltVT = SrcVT.getScalarType();
6524   EVT DstEltVT = LD->getValueType(0).getScalarType();
6525 
6526   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
6527   assert(SrcEltVT.isByteSized());
6528 
6529   SmallVector<SDValue, 8> Vals;
6530   SmallVector<SDValue, 8> LoadChains;
6531 
6532   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6533     SDValue ScalarLoad =
6534         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
6535                        LD->getPointerInfo().getWithOffset(Idx * Stride),
6536                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
6537                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6538 
6539     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
6540 
6541     Vals.push_back(ScalarLoad.getValue(0));
6542     LoadChains.push_back(ScalarLoad.getValue(1));
6543   }
6544 
6545   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
6546   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
6547 
6548   return std::make_pair(Value, NewChain);
6549 }
6550 
6551 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
6552                                              SelectionDAG &DAG) const {
6553   SDLoc SL(ST);
6554 
6555   SDValue Chain = ST->getChain();
6556   SDValue BasePtr = ST->getBasePtr();
6557   SDValue Value = ST->getValue();
6558   EVT StVT = ST->getMemoryVT();
6559 
6560   // The type of the data we want to save
6561   EVT RegVT = Value.getValueType();
6562   EVT RegSclVT = RegVT.getScalarType();
6563 
6564   // The type of data as saved in memory.
6565   EVT MemSclVT = StVT.getScalarType();
6566 
6567   unsigned NumElem = StVT.getVectorNumElements();
6568 
6569   // A vector must always be stored in memory as-is, i.e. without any padding
6570   // between the elements, since various code depend on it, e.g. in the
6571   // handling of a bitcast of a vector type to int, which may be done with a
6572   // vector store followed by an integer load. A vector that does not have
6573   // elements that are byte-sized must therefore be stored as an integer
6574   // built out of the extracted vector elements.
6575   if (!MemSclVT.isByteSized()) {
6576     unsigned NumBits = StVT.getSizeInBits();
6577     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
6578 
6579     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
6580 
6581     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6582       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6583                                 DAG.getVectorIdxConstant(Idx, SL));
6584       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
6585       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
6586       unsigned ShiftIntoIdx =
6587           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6588       SDValue ShiftAmount =
6589           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
6590       SDValue ShiftedElt =
6591           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
6592       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
6593     }
6594 
6595     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
6596                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
6597                         ST->getAAInfo());
6598   }
6599 
6600   // Store Stride in bytes
6601   unsigned Stride = MemSclVT.getSizeInBits() / 8;
6602   assert(Stride && "Zero stride!");
6603   // Extract each of the elements from the original vector and save them into
6604   // memory individually.
6605   SmallVector<SDValue, 8> Stores;
6606   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6607     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6608                               DAG.getVectorIdxConstant(Idx, SL));
6609 
6610     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
6611 
6612     // This scalar TruncStore may be illegal, but we legalize it later.
6613     SDValue Store = DAG.getTruncStore(
6614         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
6615         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
6616         ST->getMemOperand()->getFlags(), ST->getAAInfo());
6617 
6618     Stores.push_back(Store);
6619   }
6620 
6621   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
6622 }
6623 
6624 std::pair<SDValue, SDValue>
6625 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
6626   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
6627          "unaligned indexed loads not implemented!");
6628   SDValue Chain = LD->getChain();
6629   SDValue Ptr = LD->getBasePtr();
6630   EVT VT = LD->getValueType(0);
6631   EVT LoadedVT = LD->getMemoryVT();
6632   SDLoc dl(LD);
6633   auto &MF = DAG.getMachineFunction();
6634 
6635   if (VT.isFloatingPoint() || VT.isVector()) {
6636     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
6637     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
6638       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
6639           LoadedVT.isVector()) {
6640         // Scalarize the load and let the individual components be handled.
6641         return scalarizeVectorLoad(LD, DAG);
6642       }
6643 
6644       // Expand to a (misaligned) integer load of the same size,
6645       // then bitconvert to floating point or vector.
6646       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
6647                                     LD->getMemOperand());
6648       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
6649       if (LoadedVT != VT)
6650         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
6651                              ISD::ANY_EXTEND, dl, VT, Result);
6652 
6653       return std::make_pair(Result, newLoad.getValue(1));
6654     }
6655 
6656     // Copy the value to a (aligned) stack slot using (unaligned) integer
6657     // loads and stores, then do a (aligned) load from the stack slot.
6658     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
6659     unsigned LoadedBytes = LoadedVT.getStoreSize();
6660     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6661     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
6662 
6663     // Make sure the stack slot is also aligned for the register type.
6664     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
6665     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
6666     SmallVector<SDValue, 8> Stores;
6667     SDValue StackPtr = StackBase;
6668     unsigned Offset = 0;
6669 
6670     EVT PtrVT = Ptr.getValueType();
6671     EVT StackPtrVT = StackPtr.getValueType();
6672 
6673     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6674     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6675 
6676     // Do all but one copies using the full register width.
6677     for (unsigned i = 1; i < NumRegs; i++) {
6678       // Load one integer register's worth from the original location.
6679       SDValue Load = DAG.getLoad(
6680           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
6681           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
6682           LD->getAAInfo());
6683       // Follow the load with a store to the stack slot.  Remember the store.
6684       Stores.push_back(DAG.getStore(
6685           Load.getValue(1), dl, Load, StackPtr,
6686           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
6687       // Increment the pointers.
6688       Offset += RegBytes;
6689 
6690       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6691       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6692     }
6693 
6694     // The last copy may be partial.  Do an extending load.
6695     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
6696                                   8 * (LoadedBytes - Offset));
6697     SDValue Load =
6698         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
6699                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
6700                        MinAlign(LD->getAlignment(), Offset),
6701                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6702     // Follow the load with a store to the stack slot.  Remember the store.
6703     // On big-endian machines this requires a truncating store to ensure
6704     // that the bits end up in the right place.
6705     Stores.push_back(DAG.getTruncStore(
6706         Load.getValue(1), dl, Load, StackPtr,
6707         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
6708 
6709     // The order of the stores doesn't matter - say it with a TokenFactor.
6710     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6711 
6712     // Finally, perform the original load only redirected to the stack slot.
6713     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
6714                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
6715                           LoadedVT);
6716 
6717     // Callers expect a MERGE_VALUES node.
6718     return std::make_pair(Load, TF);
6719   }
6720 
6721   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
6722          "Unaligned load of unsupported type.");
6723 
6724   // Compute the new VT that is half the size of the old one.  This is an
6725   // integer MVT.
6726   unsigned NumBits = LoadedVT.getSizeInBits();
6727   EVT NewLoadedVT;
6728   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
6729   NumBits >>= 1;
6730 
6731   unsigned Alignment = LD->getAlignment();
6732   unsigned IncrementSize = NumBits / 8;
6733   ISD::LoadExtType HiExtType = LD->getExtensionType();
6734 
6735   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
6736   if (HiExtType == ISD::NON_EXTLOAD)
6737     HiExtType = ISD::ZEXTLOAD;
6738 
6739   // Load the value in two parts
6740   SDValue Lo, Hi;
6741   if (DAG.getDataLayout().isLittleEndian()) {
6742     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6743                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6744                         LD->getAAInfo());
6745 
6746     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6747     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
6748                         LD->getPointerInfo().getWithOffset(IncrementSize),
6749                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6750                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6751   } else {
6752     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6753                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6754                         LD->getAAInfo());
6755 
6756     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6757     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
6758                         LD->getPointerInfo().getWithOffset(IncrementSize),
6759                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6760                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6761   }
6762 
6763   // aggregate the two parts
6764   SDValue ShiftAmount =
6765       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
6766                                                     DAG.getDataLayout()));
6767   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
6768   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
6769 
6770   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
6771                              Hi.getValue(1));
6772 
6773   return std::make_pair(Result, TF);
6774 }
6775 
6776 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
6777                                              SelectionDAG &DAG) const {
6778   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
6779          "unaligned indexed stores not implemented!");
6780   SDValue Chain = ST->getChain();
6781   SDValue Ptr = ST->getBasePtr();
6782   SDValue Val = ST->getValue();
6783   EVT VT = Val.getValueType();
6784   int Alignment = ST->getAlignment();
6785   auto &MF = DAG.getMachineFunction();
6786   EVT StoreMemVT = ST->getMemoryVT();
6787 
6788   SDLoc dl(ST);
6789   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
6790     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
6791     if (isTypeLegal(intVT)) {
6792       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
6793           StoreMemVT.isVector()) {
6794         // Scalarize the store and let the individual components be handled.
6795         SDValue Result = scalarizeVectorStore(ST, DAG);
6796         return Result;
6797       }
6798       // Expand to a bitconvert of the value to the integer type of the
6799       // same size, then a (misaligned) int store.
6800       // FIXME: Does not handle truncating floating point stores!
6801       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
6802       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
6803                             Alignment, ST->getMemOperand()->getFlags());
6804       return Result;
6805     }
6806     // Do a (aligned) store to a stack slot, then copy from the stack slot
6807     // to the final destination using (unaligned) integer loads and stores.
6808     MVT RegVT = getRegisterType(
6809         *DAG.getContext(),
6810         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
6811     EVT PtrVT = Ptr.getValueType();
6812     unsigned StoredBytes = StoreMemVT.getStoreSize();
6813     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6814     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
6815 
6816     // Make sure the stack slot is also aligned for the register type.
6817     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
6818     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
6819 
6820     // Perform the original store, only redirected to the stack slot.
6821     SDValue Store = DAG.getTruncStore(
6822         Chain, dl, Val, StackPtr,
6823         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
6824 
6825     EVT StackPtrVT = StackPtr.getValueType();
6826 
6827     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6828     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6829     SmallVector<SDValue, 8> Stores;
6830     unsigned Offset = 0;
6831 
6832     // Do all but one copies using the full register width.
6833     for (unsigned i = 1; i < NumRegs; i++) {
6834       // Load one integer register's worth from the stack slot.
6835       SDValue Load = DAG.getLoad(
6836           RegVT, dl, Store, StackPtr,
6837           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
6838       // Store it to the final location.  Remember the store.
6839       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
6840                                     ST->getPointerInfo().getWithOffset(Offset),
6841                                     MinAlign(ST->getAlignment(), Offset),
6842                                     ST->getMemOperand()->getFlags()));
6843       // Increment the pointers.
6844       Offset += RegBytes;
6845       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6846       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6847     }
6848 
6849     // The last store may be partial.  Do a truncating store.  On big-endian
6850     // machines this requires an extending load from the stack slot to ensure
6851     // that the bits are in the right place.
6852     EVT LoadMemVT =
6853         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
6854 
6855     // Load from the stack slot.
6856     SDValue Load = DAG.getExtLoad(
6857         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
6858         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
6859 
6860     Stores.push_back(
6861         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
6862                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
6863                           MinAlign(ST->getAlignment(), Offset),
6864                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
6865     // The order of the stores doesn't matter - say it with a TokenFactor.
6866     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6867     return Result;
6868   }
6869 
6870   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
6871          "Unaligned store of unknown type.");
6872   // Get the half-size VT
6873   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
6874   int NumBits = NewStoredVT.getSizeInBits();
6875   int IncrementSize = NumBits / 8;
6876 
6877   // Divide the stored value in two parts.
6878   SDValue ShiftAmount = DAG.getConstant(
6879       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
6880   SDValue Lo = Val;
6881   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
6882 
6883   // Store the two parts
6884   SDValue Store1, Store2;
6885   Store1 = DAG.getTruncStore(Chain, dl,
6886                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
6887                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
6888                              ST->getMemOperand()->getFlags());
6889 
6890   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6891   Alignment = MinAlign(Alignment, IncrementSize);
6892   Store2 = DAG.getTruncStore(
6893       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
6894       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
6895       ST->getMemOperand()->getFlags(), ST->getAAInfo());
6896 
6897   SDValue Result =
6898       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
6899   return Result;
6900 }
6901 
6902 SDValue
6903 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
6904                                        const SDLoc &DL, EVT DataVT,
6905                                        SelectionDAG &DAG,
6906                                        bool IsCompressedMemory) const {
6907   SDValue Increment;
6908   EVT AddrVT = Addr.getValueType();
6909   EVT MaskVT = Mask.getValueType();
6910   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
6911          "Incompatible types of Data and Mask");
6912   if (IsCompressedMemory) {
6913     // Incrementing the pointer according to number of '1's in the mask.
6914     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
6915     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
6916     if (MaskIntVT.getSizeInBits() < 32) {
6917       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
6918       MaskIntVT = MVT::i32;
6919     }
6920 
6921     // Count '1's with POPCNT.
6922     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
6923     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
6924     // Scale is an element size in bytes.
6925     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
6926                                     AddrVT);
6927     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
6928   } else
6929     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
6930 
6931   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
6932 }
6933 
6934 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
6935                                        SDValue Idx,
6936                                        EVT VecVT,
6937                                        const SDLoc &dl) {
6938   if (isa<ConstantSDNode>(Idx))
6939     return Idx;
6940 
6941   EVT IdxVT = Idx.getValueType();
6942   unsigned NElts = VecVT.getVectorNumElements();
6943   if (isPowerOf2_32(NElts)) {
6944     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
6945                                      Log2_32(NElts));
6946     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
6947                        DAG.getConstant(Imm, dl, IdxVT));
6948   }
6949 
6950   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
6951                      DAG.getConstant(NElts - 1, dl, IdxVT));
6952 }
6953 
6954 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
6955                                                 SDValue VecPtr, EVT VecVT,
6956                                                 SDValue Index) const {
6957   SDLoc dl(Index);
6958   // Make sure the index type is big enough to compute in.
6959   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
6960 
6961   EVT EltVT = VecVT.getVectorElementType();
6962 
6963   // Calculate the element offset and add it to the pointer.
6964   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
6965   assert(EltSize * 8 == EltVT.getSizeInBits() &&
6966          "Converting bits to bytes lost precision");
6967 
6968   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
6969 
6970   EVT IdxVT = Index.getValueType();
6971 
6972   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
6973                       DAG.getConstant(EltSize, dl, IdxVT));
6974   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
6975 }
6976 
6977 //===----------------------------------------------------------------------===//
6978 // Implementation of Emulated TLS Model
6979 //===----------------------------------------------------------------------===//
6980 
6981 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
6982                                                 SelectionDAG &DAG) const {
6983   // Access to address of TLS varialbe xyz is lowered to a function call:
6984   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
6985   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6986   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
6987   SDLoc dl(GA);
6988 
6989   ArgListTy Args;
6990   ArgListEntry Entry;
6991   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
6992   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
6993   StringRef EmuTlsVarName(NameString);
6994   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
6995   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
6996   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
6997   Entry.Ty = VoidPtrType;
6998   Args.push_back(Entry);
6999 
7000   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7001 
7002   TargetLowering::CallLoweringInfo CLI(DAG);
7003   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7004   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7005   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7006 
7007   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7008   // At last for X86 targets, maybe good for other targets too?
7009   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7010   MFI.setAdjustsStack(true); // Is this only for X86 target?
7011   MFI.setHasCalls(true);
7012 
7013   assert((GA->getOffset() == 0) &&
7014          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7015   return CallResult.first;
7016 }
7017 
7018 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7019                                                 SelectionDAG &DAG) const {
7020   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7021   if (!isCtlzFast())
7022     return SDValue();
7023   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7024   SDLoc dl(Op);
7025   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7026     if (C->isNullValue() && CC == ISD::SETEQ) {
7027       EVT VT = Op.getOperand(0).getValueType();
7028       SDValue Zext = Op.getOperand(0);
7029       if (VT.bitsLT(MVT::i32)) {
7030         VT = MVT::i32;
7031         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7032       }
7033       unsigned Log2b = Log2_32(VT.getSizeInBits());
7034       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7035       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7036                                 DAG.getConstant(Log2b, dl, MVT::i32));
7037       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7038     }
7039   }
7040   return SDValue();
7041 }
7042 
7043 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
7044   unsigned Opcode = Node->getOpcode();
7045   SDValue LHS = Node->getOperand(0);
7046   SDValue RHS = Node->getOperand(1);
7047   EVT VT = LHS.getValueType();
7048   SDLoc dl(Node);
7049 
7050   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7051   assert(VT.isInteger() && "Expected operands to be integers");
7052 
7053   // usub.sat(a, b) -> umax(a, b) - b
7054   if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
7055     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
7056     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
7057   }
7058 
7059   if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
7060     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
7061     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
7062     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
7063   }
7064 
7065   unsigned OverflowOp;
7066   switch (Opcode) {
7067   case ISD::SADDSAT:
7068     OverflowOp = ISD::SADDO;
7069     break;
7070   case ISD::UADDSAT:
7071     OverflowOp = ISD::UADDO;
7072     break;
7073   case ISD::SSUBSAT:
7074     OverflowOp = ISD::SSUBO;
7075     break;
7076   case ISD::USUBSAT:
7077     OverflowOp = ISD::USUBO;
7078     break;
7079   default:
7080     llvm_unreachable("Expected method to receive signed or unsigned saturation "
7081                      "addition or subtraction node.");
7082   }
7083 
7084   unsigned BitWidth = LHS.getScalarValueSizeInBits();
7085   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7086   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
7087                                LHS, RHS);
7088   SDValue SumDiff = Result.getValue(0);
7089   SDValue Overflow = Result.getValue(1);
7090   SDValue Zero = DAG.getConstant(0, dl, VT);
7091   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
7092 
7093   if (Opcode == ISD::UADDSAT) {
7094     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7095       // (LHS + RHS) | OverflowMask
7096       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7097       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
7098     }
7099     // Overflow ? 0xffff.... : (LHS + RHS)
7100     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
7101   } else if (Opcode == ISD::USUBSAT) {
7102     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7103       // (LHS - RHS) & ~OverflowMask
7104       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7105       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
7106       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
7107     }
7108     // Overflow ? 0 : (LHS - RHS)
7109     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
7110   } else {
7111     // SatMax -> Overflow && SumDiff < 0
7112     // SatMin -> Overflow && SumDiff >= 0
7113     APInt MinVal = APInt::getSignedMinValue(BitWidth);
7114     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
7115     SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7116     SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7117     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
7118     Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
7119     return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
7120   }
7121 }
7122 
7123 SDValue
7124 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
7125   assert((Node->getOpcode() == ISD::SMULFIX ||
7126           Node->getOpcode() == ISD::UMULFIX ||
7127           Node->getOpcode() == ISD::SMULFIXSAT ||
7128           Node->getOpcode() == ISD::UMULFIXSAT) &&
7129          "Expected a fixed point multiplication opcode");
7130 
7131   SDLoc dl(Node);
7132   SDValue LHS = Node->getOperand(0);
7133   SDValue RHS = Node->getOperand(1);
7134   EVT VT = LHS.getValueType();
7135   unsigned Scale = Node->getConstantOperandVal(2);
7136   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
7137                      Node->getOpcode() == ISD::UMULFIXSAT);
7138   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
7139                  Node->getOpcode() == ISD::SMULFIXSAT);
7140   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7141   unsigned VTSize = VT.getScalarSizeInBits();
7142 
7143   if (!Scale) {
7144     // [us]mul.fix(a, b, 0) -> mul(a, b)
7145     if (!Saturating) {
7146       if (isOperationLegalOrCustom(ISD::MUL, VT))
7147         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7148     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
7149       SDValue Result =
7150           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7151       SDValue Product = Result.getValue(0);
7152       SDValue Overflow = Result.getValue(1);
7153       SDValue Zero = DAG.getConstant(0, dl, VT);
7154 
7155       APInt MinVal = APInt::getSignedMinValue(VTSize);
7156       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
7157       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7158       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7159       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
7160       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
7161       return DAG.getSelect(dl, VT, Overflow, Result, Product);
7162     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
7163       SDValue Result =
7164           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7165       SDValue Product = Result.getValue(0);
7166       SDValue Overflow = Result.getValue(1);
7167 
7168       APInt MaxVal = APInt::getMaxValue(VTSize);
7169       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7170       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
7171     }
7172   }
7173 
7174   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
7175          "Expected scale to be less than the number of bits if signed or at "
7176          "most the number of bits if unsigned.");
7177   assert(LHS.getValueType() == RHS.getValueType() &&
7178          "Expected both operands to be the same type");
7179 
7180   // Get the upper and lower bits of the result.
7181   SDValue Lo, Hi;
7182   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
7183   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
7184   if (isOperationLegalOrCustom(LoHiOp, VT)) {
7185     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
7186     Lo = Result.getValue(0);
7187     Hi = Result.getValue(1);
7188   } else if (isOperationLegalOrCustom(HiOp, VT)) {
7189     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7190     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
7191   } else if (VT.isVector()) {
7192     return SDValue();
7193   } else {
7194     report_fatal_error("Unable to expand fixed point multiplication.");
7195   }
7196 
7197   if (Scale == VTSize)
7198     // Result is just the top half since we'd be shifting by the width of the
7199     // operand. Overflow impossible so this works for both UMULFIX and
7200     // UMULFIXSAT.
7201     return Hi;
7202 
7203   // The result will need to be shifted right by the scale since both operands
7204   // are scaled. The result is given to us in 2 halves, so we only want part of
7205   // both in the result.
7206   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7207   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
7208                                DAG.getConstant(Scale, dl, ShiftTy));
7209   if (!Saturating)
7210     return Result;
7211 
7212   if (!Signed) {
7213     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
7214     // widened multiplication) aren't all zeroes.
7215 
7216     // Saturate to max if ((Hi >> Scale) != 0),
7217     // which is the same as if (Hi > ((1 << Scale) - 1))
7218     APInt MaxVal = APInt::getMaxValue(VTSize);
7219     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
7220                                       dl, VT);
7221     Result = DAG.getSelectCC(dl, Hi, LowMask,
7222                              DAG.getConstant(MaxVal, dl, VT), Result,
7223                              ISD::SETUGT);
7224 
7225     return Result;
7226   }
7227 
7228   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
7229   // widened multiplication) aren't all ones or all zeroes.
7230 
7231   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
7232   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
7233 
7234   if (Scale == 0) {
7235     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
7236                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
7237     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
7238     // Saturated to SatMin if wide product is negative, and SatMax if wide
7239     // product is positive ...
7240     SDValue Zero = DAG.getConstant(0, dl, VT);
7241     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
7242                                                ISD::SETLT);
7243     // ... but only if we overflowed.
7244     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
7245   }
7246 
7247   //  We handled Scale==0 above so all the bits to examine is in Hi.
7248 
7249   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
7250   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
7251   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
7252                                     dl, VT);
7253   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
7254   // Saturate to min if (Hi >> (Scale - 1)) < -1),
7255   // which is the same as if (HI < (-1 << (Scale - 1))
7256   SDValue HighMask =
7257       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
7258                       dl, VT);
7259   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
7260   return Result;
7261 }
7262 
7263 SDValue
7264 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
7265                                     SDValue LHS, SDValue RHS,
7266                                     unsigned Scale, SelectionDAG &DAG) const {
7267   assert((Opcode == ISD::SDIVFIX ||
7268           Opcode == ISD::UDIVFIX) &&
7269          "Expected a fixed point division opcode");
7270 
7271   EVT VT = LHS.getValueType();
7272   bool Signed = Opcode == ISD::SDIVFIX;
7273   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7274 
7275   // If there is enough room in the type to upscale the LHS or downscale the
7276   // RHS before the division, we can perform it in this type without having to
7277   // resize. For signed operations, the LHS headroom is the number of
7278   // redundant sign bits, and for unsigned ones it is the number of zeroes.
7279   // The headroom for the RHS is the number of trailing zeroes.
7280   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
7281                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
7282   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
7283 
7284   if (LHSLead + RHSTrail < Scale)
7285     return SDValue();
7286 
7287   unsigned LHSShift = std::min(LHSLead, Scale);
7288   unsigned RHSShift = Scale - LHSShift;
7289 
7290   // At this point, we know that if we shift the LHS up by LHSShift and the
7291   // RHS down by RHSShift, we can emit a regular division with a final scaling
7292   // factor of Scale.
7293 
7294   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7295   if (LHSShift)
7296     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
7297                       DAG.getConstant(LHSShift, dl, ShiftTy));
7298   if (RHSShift)
7299     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
7300                       DAG.getConstant(RHSShift, dl, ShiftTy));
7301 
7302   SDValue Quot;
7303   if (Signed) {
7304     // For signed operations, if the resulting quotient is negative and the
7305     // remainder is nonzero, subtract 1 from the quotient to round towards
7306     // negative infinity.
7307     SDValue Rem;
7308     // FIXME: Ideally we would always produce an SDIVREM here, but if the
7309     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
7310     // we couldn't just form a libcall, but the type legalizer doesn't do it.
7311     if (isTypeLegal(VT) &&
7312         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
7313       Quot = DAG.getNode(ISD::SDIVREM, dl,
7314                          DAG.getVTList(VT, VT),
7315                          LHS, RHS);
7316       Rem = Quot.getValue(1);
7317       Quot = Quot.getValue(0);
7318     } else {
7319       Quot = DAG.getNode(ISD::SDIV, dl, VT,
7320                          LHS, RHS);
7321       Rem = DAG.getNode(ISD::SREM, dl, VT,
7322                         LHS, RHS);
7323     }
7324     SDValue Zero = DAG.getConstant(0, dl, VT);
7325     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
7326     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
7327     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
7328     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
7329     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
7330                                DAG.getConstant(1, dl, VT));
7331     Quot = DAG.getSelect(dl, VT,
7332                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
7333                          Sub1, Quot);
7334   } else
7335     Quot = DAG.getNode(ISD::UDIV, dl, VT,
7336                        LHS, RHS);
7337 
7338   // TODO: Saturation.
7339 
7340   return Quot;
7341 }
7342 
7343 void TargetLowering::expandUADDSUBO(
7344     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7345   SDLoc dl(Node);
7346   SDValue LHS = Node->getOperand(0);
7347   SDValue RHS = Node->getOperand(1);
7348   bool IsAdd = Node->getOpcode() == ISD::UADDO;
7349 
7350   // If ADD/SUBCARRY is legal, use that instead.
7351   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
7352   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
7353     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
7354     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
7355                                     { LHS, RHS, CarryIn });
7356     Result = SDValue(NodeCarry.getNode(), 0);
7357     Overflow = SDValue(NodeCarry.getNode(), 1);
7358     return;
7359   }
7360 
7361   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7362                             LHS.getValueType(), LHS, RHS);
7363 
7364   EVT ResultType = Node->getValueType(1);
7365   EVT SetCCType = getSetCCResultType(
7366       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7367   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
7368   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
7369   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7370 }
7371 
7372 void TargetLowering::expandSADDSUBO(
7373     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7374   SDLoc dl(Node);
7375   SDValue LHS = Node->getOperand(0);
7376   SDValue RHS = Node->getOperand(1);
7377   bool IsAdd = Node->getOpcode() == ISD::SADDO;
7378 
7379   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7380                             LHS.getValueType(), LHS, RHS);
7381 
7382   EVT ResultType = Node->getValueType(1);
7383   EVT OType = getSetCCResultType(
7384       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7385 
7386   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
7387   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
7388   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
7389     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
7390     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
7391     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7392     return;
7393   }
7394 
7395   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
7396 
7397   // For an addition, the result should be less than one of the operands (LHS)
7398   // if and only if the other operand (RHS) is negative, otherwise there will
7399   // be overflow.
7400   // For a subtraction, the result should be less than one of the operands
7401   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
7402   // otherwise there will be overflow.
7403   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
7404   SDValue ConditionRHS =
7405       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
7406 
7407   Overflow = DAG.getBoolExtOrTrunc(
7408       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
7409       ResultType, ResultType);
7410 }
7411 
7412 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
7413                                 SDValue &Overflow, SelectionDAG &DAG) const {
7414   SDLoc dl(Node);
7415   EVT VT = Node->getValueType(0);
7416   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7417   SDValue LHS = Node->getOperand(0);
7418   SDValue RHS = Node->getOperand(1);
7419   bool isSigned = Node->getOpcode() == ISD::SMULO;
7420 
7421   // For power-of-two multiplications we can use a simpler shift expansion.
7422   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
7423     const APInt &C = RHSC->getAPIntValue();
7424     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
7425     if (C.isPowerOf2()) {
7426       // smulo(x, signed_min) is same as umulo(x, signed_min).
7427       bool UseArithShift = isSigned && !C.isMinSignedValue();
7428       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
7429       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
7430       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
7431       Overflow = DAG.getSetCC(dl, SetCCVT,
7432           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
7433                       dl, VT, Result, ShiftAmt),
7434           LHS, ISD::SETNE);
7435       return true;
7436     }
7437   }
7438 
7439   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
7440   if (VT.isVector())
7441     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
7442                               VT.getVectorNumElements());
7443 
7444   SDValue BottomHalf;
7445   SDValue TopHalf;
7446   static const unsigned Ops[2][3] =
7447       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
7448         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
7449   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
7450     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7451     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
7452   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
7453     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
7454                              RHS);
7455     TopHalf = BottomHalf.getValue(1);
7456   } else if (isTypeLegal(WideVT)) {
7457     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
7458     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
7459     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
7460     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
7461     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
7462         getShiftAmountTy(WideVT, DAG.getDataLayout()));
7463     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
7464                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
7465   } else {
7466     if (VT.isVector())
7467       return false;
7468 
7469     // We can fall back to a libcall with an illegal type for the MUL if we
7470     // have a libcall big enough.
7471     // Also, we can fall back to a division in some cases, but that's a big
7472     // performance hit in the general case.
7473     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
7474     if (WideVT == MVT::i16)
7475       LC = RTLIB::MUL_I16;
7476     else if (WideVT == MVT::i32)
7477       LC = RTLIB::MUL_I32;
7478     else if (WideVT == MVT::i64)
7479       LC = RTLIB::MUL_I64;
7480     else if (WideVT == MVT::i128)
7481       LC = RTLIB::MUL_I128;
7482     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
7483 
7484     SDValue HiLHS;
7485     SDValue HiRHS;
7486     if (isSigned) {
7487       // The high part is obtained by SRA'ing all but one of the bits of low
7488       // part.
7489       unsigned LoSize = VT.getSizeInBits();
7490       HiLHS =
7491           DAG.getNode(ISD::SRA, dl, VT, LHS,
7492                       DAG.getConstant(LoSize - 1, dl,
7493                                       getPointerTy(DAG.getDataLayout())));
7494       HiRHS =
7495           DAG.getNode(ISD::SRA, dl, VT, RHS,
7496                       DAG.getConstant(LoSize - 1, dl,
7497                                       getPointerTy(DAG.getDataLayout())));
7498     } else {
7499         HiLHS = DAG.getConstant(0, dl, VT);
7500         HiRHS = DAG.getConstant(0, dl, VT);
7501     }
7502 
7503     // Here we're passing the 2 arguments explicitly as 4 arguments that are
7504     // pre-lowered to the correct types. This all depends upon WideVT not
7505     // being a legal type for the architecture and thus has to be split to
7506     // two arguments.
7507     SDValue Ret;
7508     TargetLowering::MakeLibCallOptions CallOptions;
7509     CallOptions.setSExt(isSigned);
7510     CallOptions.setIsPostTypeLegalization(true);
7511     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
7512       // Halves of WideVT are packed into registers in different order
7513       // depending on platform endianness. This is usually handled by
7514       // the C calling convention, but we can't defer to it in
7515       // the legalizer.
7516       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
7517       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7518     } else {
7519       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
7520       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7521     }
7522     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
7523            "Ret value is a collection of constituent nodes holding result.");
7524     if (DAG.getDataLayout().isLittleEndian()) {
7525       // Same as above.
7526       BottomHalf = Ret.getOperand(0);
7527       TopHalf = Ret.getOperand(1);
7528     } else {
7529       BottomHalf = Ret.getOperand(1);
7530       TopHalf = Ret.getOperand(0);
7531     }
7532   }
7533 
7534   Result = BottomHalf;
7535   if (isSigned) {
7536     SDValue ShiftAmt = DAG.getConstant(
7537         VT.getScalarSizeInBits() - 1, dl,
7538         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
7539     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
7540     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
7541   } else {
7542     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
7543                             DAG.getConstant(0, dl, VT), ISD::SETNE);
7544   }
7545 
7546   // Truncate the result if SetCC returns a larger type than needed.
7547   EVT RType = Node->getValueType(1);
7548   if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
7549     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
7550 
7551   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
7552          "Unexpected result type for S/UMULO legalization");
7553   return true;
7554 }
7555 
7556 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
7557   SDLoc dl(Node);
7558   bool NoNaN = Node->getFlags().hasNoNaNs();
7559   unsigned BaseOpcode = 0;
7560   switch (Node->getOpcode()) {
7561   default: llvm_unreachable("Expected VECREDUCE opcode");
7562   case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
7563   case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
7564   case ISD::VECREDUCE_ADD:  BaseOpcode = ISD::ADD; break;
7565   case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break;
7566   case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break;
7567   case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break;
7568   case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break;
7569   case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
7570   case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
7571   case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
7572   case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
7573   case ISD::VECREDUCE_FMAX:
7574     BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
7575     break;
7576   case ISD::VECREDUCE_FMIN:
7577     BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
7578     break;
7579   }
7580 
7581   SDValue Op = Node->getOperand(0);
7582   EVT VT = Op.getValueType();
7583 
7584   // Try to use a shuffle reduction for power of two vectors.
7585   if (VT.isPow2VectorType()) {
7586     while (VT.getVectorNumElements() > 1) {
7587       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
7588       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
7589         break;
7590 
7591       SDValue Lo, Hi;
7592       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
7593       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
7594       VT = HalfVT;
7595     }
7596   }
7597 
7598   EVT EltVT = VT.getVectorElementType();
7599   unsigned NumElts = VT.getVectorNumElements();
7600 
7601   SmallVector<SDValue, 8> Ops;
7602   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
7603 
7604   SDValue Res = Ops[0];
7605   for (unsigned i = 1; i < NumElts; i++)
7606     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
7607 
7608   // Result type may be wider than element type.
7609   if (EltVT != Node->getValueType(0))
7610     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
7611   return Res;
7612 }
7613