1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/GlobalVariable.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/MC/MCAsmInfo.h" 27 #include "llvm/MC/MCExpr.h" 28 #include "llvm/Support/DivisionByConstantInfo.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include <cctype> 34 using namespace llvm; 35 36 /// NOTE: The TargetMachine owns TLOF. 37 TargetLowering::TargetLowering(const TargetMachine &tm) 38 : TargetLoweringBase(tm) {} 39 40 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 41 return nullptr; 42 } 43 44 bool TargetLowering::isPositionIndependent() const { 45 return getTargetMachine().isPositionIndependent(); 46 } 47 48 /// Check whether a given call node is in tail position within its function. If 49 /// so, it sets Chain to the input chain of the tail call. 50 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 51 SDValue &Chain) const { 52 const Function &F = DAG.getMachineFunction().getFunction(); 53 54 // First, check if tail calls have been disabled in this function. 55 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 56 return false; 57 58 // Conservatively require the attributes of the call to match those of 59 // the return. Ignore following attributes because they don't affect the 60 // call sequence. 61 AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs()); 62 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 63 Attribute::DereferenceableOrNull, Attribute::NoAlias, 64 Attribute::NonNull, Attribute::NoUndef}) 65 CallerAttrs.removeAttribute(Attr); 66 67 if (CallerAttrs.hasAttributes()) 68 return false; 69 70 // It's not safe to eliminate the sign / zero extension of the return value. 71 if (CallerAttrs.contains(Attribute::ZExt) || 72 CallerAttrs.contains(Attribute::SExt)) 73 return false; 74 75 // Check if the only use is a function return node. 76 return isUsedByReturnOnly(Node, Chain); 77 } 78 79 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 80 const uint32_t *CallerPreservedMask, 81 const SmallVectorImpl<CCValAssign> &ArgLocs, 82 const SmallVectorImpl<SDValue> &OutVals) const { 83 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 84 const CCValAssign &ArgLoc = ArgLocs[I]; 85 if (!ArgLoc.isRegLoc()) 86 continue; 87 MCRegister Reg = ArgLoc.getLocReg(); 88 // Only look at callee saved registers. 89 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 90 continue; 91 // Check that we pass the value used for the caller. 92 // (We look for a CopyFromReg reading a virtual register that is used 93 // for the function live-in value of register Reg) 94 SDValue Value = OutVals[I]; 95 if (Value->getOpcode() != ISD::CopyFromReg) 96 return false; 97 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 98 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 99 return false; 100 } 101 return true; 102 } 103 104 /// Set CallLoweringInfo attribute flags based on a call instruction 105 /// and called function attributes. 106 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 107 unsigned ArgIdx) { 108 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 109 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 110 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 111 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 112 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 113 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 114 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 115 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 116 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 117 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 118 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 119 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 120 Alignment = Call->getParamStackAlign(ArgIdx); 121 IndirectType = nullptr; 122 assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 && 123 "multiple ABI attributes?"); 124 if (IsByVal) { 125 IndirectType = Call->getParamByValType(ArgIdx); 126 if (!Alignment) 127 Alignment = Call->getParamAlign(ArgIdx); 128 } 129 if (IsPreallocated) 130 IndirectType = Call->getParamPreallocatedType(ArgIdx); 131 if (IsInAlloca) 132 IndirectType = Call->getParamInAllocaType(ArgIdx); 133 if (IsSRet) 134 IndirectType = Call->getParamStructRetType(ArgIdx); 135 } 136 137 /// Generate a libcall taking the given operands as arguments and returning a 138 /// result of type RetVT. 139 std::pair<SDValue, SDValue> 140 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 141 ArrayRef<SDValue> Ops, 142 MakeLibCallOptions CallOptions, 143 const SDLoc &dl, 144 SDValue InChain) const { 145 if (!InChain) 146 InChain = DAG.getEntryNode(); 147 148 TargetLowering::ArgListTy Args; 149 Args.reserve(Ops.size()); 150 151 TargetLowering::ArgListEntry Entry; 152 for (unsigned i = 0; i < Ops.size(); ++i) { 153 SDValue NewOp = Ops[i]; 154 Entry.Node = NewOp; 155 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 156 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 157 CallOptions.IsSExt); 158 Entry.IsZExt = !Entry.IsSExt; 159 160 if (CallOptions.IsSoften && 161 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 162 Entry.IsSExt = Entry.IsZExt = false; 163 } 164 Args.push_back(Entry); 165 } 166 167 if (LC == RTLIB::UNKNOWN_LIBCALL) 168 report_fatal_error("Unsupported library call operation!"); 169 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 170 getPointerTy(DAG.getDataLayout())); 171 172 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 173 TargetLowering::CallLoweringInfo CLI(DAG); 174 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 175 bool zeroExtend = !signExtend; 176 177 if (CallOptions.IsSoften && 178 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 179 signExtend = zeroExtend = false; 180 } 181 182 CLI.setDebugLoc(dl) 183 .setChain(InChain) 184 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 185 .setNoReturn(CallOptions.DoesNotReturn) 186 .setDiscardResult(!CallOptions.IsReturnValueUsed) 187 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 188 .setSExtResult(signExtend) 189 .setZExtResult(zeroExtend); 190 return LowerCallTo(CLI); 191 } 192 193 bool TargetLowering::findOptimalMemOpLowering( 194 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 195 unsigned SrcAS, const AttributeList &FuncAttributes) const { 196 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 197 return false; 198 199 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 200 201 if (VT == MVT::Other) { 202 // Use the largest integer type whose alignment constraints are satisfied. 203 // We only need to check DstAlign here as SrcAlign is always greater or 204 // equal to DstAlign (or zero). 205 VT = MVT::i64; 206 if (Op.isFixedDstAlign()) 207 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 208 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 209 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 210 assert(VT.isInteger()); 211 212 // Find the largest legal integer type. 213 MVT LVT = MVT::i64; 214 while (!isTypeLegal(LVT)) 215 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 216 assert(LVT.isInteger()); 217 218 // If the type we've chosen is larger than the largest legal integer type 219 // then use that instead. 220 if (VT.bitsGT(LVT)) 221 VT = LVT; 222 } 223 224 unsigned NumMemOps = 0; 225 uint64_t Size = Op.size(); 226 while (Size) { 227 unsigned VTSize = VT.getSizeInBits() / 8; 228 while (VTSize > Size) { 229 // For now, only use non-vector load / store's for the left-over pieces. 230 EVT NewVT = VT; 231 unsigned NewVTSize; 232 233 bool Found = false; 234 if (VT.isVector() || VT.isFloatingPoint()) { 235 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 236 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 237 isSafeMemOpType(NewVT.getSimpleVT())) 238 Found = true; 239 else if (NewVT == MVT::i64 && 240 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 241 isSafeMemOpType(MVT::f64)) { 242 // i64 is usually not legal on 32-bit targets, but f64 may be. 243 NewVT = MVT::f64; 244 Found = true; 245 } 246 } 247 248 if (!Found) { 249 do { 250 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 251 if (NewVT == MVT::i8) 252 break; 253 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 254 } 255 NewVTSize = NewVT.getSizeInBits() / 8; 256 257 // If the new VT cannot cover all of the remaining bits, then consider 258 // issuing a (or a pair of) unaligned and overlapping load / store. 259 bool Fast; 260 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 261 allowsMisalignedMemoryAccesses( 262 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 263 MachineMemOperand::MONone, &Fast) && 264 Fast) 265 VTSize = Size; 266 else { 267 VT = NewVT; 268 VTSize = NewVTSize; 269 } 270 } 271 272 if (++NumMemOps > Limit) 273 return false; 274 275 MemOps.push_back(VT); 276 Size -= VTSize; 277 } 278 279 return true; 280 } 281 282 /// Soften the operands of a comparison. This code is shared among BR_CC, 283 /// SELECT_CC, and SETCC handlers. 284 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 285 SDValue &NewLHS, SDValue &NewRHS, 286 ISD::CondCode &CCCode, 287 const SDLoc &dl, const SDValue OldLHS, 288 const SDValue OldRHS) const { 289 SDValue Chain; 290 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 291 OldRHS, Chain); 292 } 293 294 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 295 SDValue &NewLHS, SDValue &NewRHS, 296 ISD::CondCode &CCCode, 297 const SDLoc &dl, const SDValue OldLHS, 298 const SDValue OldRHS, 299 SDValue &Chain, 300 bool IsSignaling) const { 301 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 302 // not supporting it. We can update this code when libgcc provides such 303 // functions. 304 305 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 306 && "Unsupported setcc type!"); 307 308 // Expand into one or more soft-fp libcall(s). 309 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 310 bool ShouldInvertCC = false; 311 switch (CCCode) { 312 case ISD::SETEQ: 313 case ISD::SETOEQ: 314 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 315 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 316 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 317 break; 318 case ISD::SETNE: 319 case ISD::SETUNE: 320 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 321 (VT == MVT::f64) ? RTLIB::UNE_F64 : 322 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 323 break; 324 case ISD::SETGE: 325 case ISD::SETOGE: 326 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 327 (VT == MVT::f64) ? RTLIB::OGE_F64 : 328 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 329 break; 330 case ISD::SETLT: 331 case ISD::SETOLT: 332 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 333 (VT == MVT::f64) ? RTLIB::OLT_F64 : 334 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 335 break; 336 case ISD::SETLE: 337 case ISD::SETOLE: 338 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 339 (VT == MVT::f64) ? RTLIB::OLE_F64 : 340 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 341 break; 342 case ISD::SETGT: 343 case ISD::SETOGT: 344 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 345 (VT == MVT::f64) ? RTLIB::OGT_F64 : 346 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 347 break; 348 case ISD::SETO: 349 ShouldInvertCC = true; 350 LLVM_FALLTHROUGH; 351 case ISD::SETUO: 352 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 353 (VT == MVT::f64) ? RTLIB::UO_F64 : 354 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 355 break; 356 case ISD::SETONE: 357 // SETONE = O && UNE 358 ShouldInvertCC = true; 359 LLVM_FALLTHROUGH; 360 case ISD::SETUEQ: 361 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 362 (VT == MVT::f64) ? RTLIB::UO_F64 : 363 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 364 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 365 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 366 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 367 break; 368 default: 369 // Invert CC for unordered comparisons 370 ShouldInvertCC = true; 371 switch (CCCode) { 372 case ISD::SETULT: 373 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 374 (VT == MVT::f64) ? RTLIB::OGE_F64 : 375 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 376 break; 377 case ISD::SETULE: 378 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 379 (VT == MVT::f64) ? RTLIB::OGT_F64 : 380 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 381 break; 382 case ISD::SETUGT: 383 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 384 (VT == MVT::f64) ? RTLIB::OLE_F64 : 385 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 386 break; 387 case ISD::SETUGE: 388 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 389 (VT == MVT::f64) ? RTLIB::OLT_F64 : 390 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 391 break; 392 default: llvm_unreachable("Do not know how to soften this setcc!"); 393 } 394 } 395 396 // Use the target specific return value for comparions lib calls. 397 EVT RetVT = getCmpLibcallReturnType(); 398 SDValue Ops[2] = {NewLHS, NewRHS}; 399 TargetLowering::MakeLibCallOptions CallOptions; 400 EVT OpsVT[2] = { OldLHS.getValueType(), 401 OldRHS.getValueType() }; 402 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 403 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 404 NewLHS = Call.first; 405 NewRHS = DAG.getConstant(0, dl, RetVT); 406 407 CCCode = getCmpLibcallCC(LC1); 408 if (ShouldInvertCC) { 409 assert(RetVT.isInteger()); 410 CCCode = getSetCCInverse(CCCode, RetVT); 411 } 412 413 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 414 // Update Chain. 415 Chain = Call.second; 416 } else { 417 EVT SetCCVT = 418 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 419 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 420 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 421 CCCode = getCmpLibcallCC(LC2); 422 if (ShouldInvertCC) 423 CCCode = getSetCCInverse(CCCode, RetVT); 424 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 425 if (Chain) 426 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 427 Call2.second); 428 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 429 Tmp.getValueType(), Tmp, NewLHS); 430 NewRHS = SDValue(); 431 } 432 } 433 434 /// Return the entry encoding for a jump table in the current function. The 435 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 436 unsigned TargetLowering::getJumpTableEncoding() const { 437 // In non-pic modes, just use the address of a block. 438 if (!isPositionIndependent()) 439 return MachineJumpTableInfo::EK_BlockAddress; 440 441 // In PIC mode, if the target supports a GPRel32 directive, use it. 442 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 443 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 444 445 // Otherwise, use a label difference. 446 return MachineJumpTableInfo::EK_LabelDifference32; 447 } 448 449 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 450 SelectionDAG &DAG) const { 451 // If our PIC model is GP relative, use the global offset table as the base. 452 unsigned JTEncoding = getJumpTableEncoding(); 453 454 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 455 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 456 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 457 458 return Table; 459 } 460 461 /// This returns the relocation base for the given PIC jumptable, the same as 462 /// getPICJumpTableRelocBase, but as an MCExpr. 463 const MCExpr * 464 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 465 unsigned JTI,MCContext &Ctx) const{ 466 // The normal PIC reloc base is the label at the start of the jump table. 467 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 468 } 469 470 bool 471 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 472 const TargetMachine &TM = getTargetMachine(); 473 const GlobalValue *GV = GA->getGlobal(); 474 475 // If the address is not even local to this DSO we will have to load it from 476 // a got and then add the offset. 477 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 478 return false; 479 480 // If the code is position independent we will have to add a base register. 481 if (isPositionIndependent()) 482 return false; 483 484 // Otherwise we can do it. 485 return true; 486 } 487 488 //===----------------------------------------------------------------------===// 489 // Optimization Methods 490 //===----------------------------------------------------------------------===// 491 492 /// If the specified instruction has a constant integer operand and there are 493 /// bits set in that constant that are not demanded, then clear those bits and 494 /// return true. 495 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 496 const APInt &DemandedBits, 497 const APInt &DemandedElts, 498 TargetLoweringOpt &TLO) const { 499 SDLoc DL(Op); 500 unsigned Opcode = Op.getOpcode(); 501 502 // Do target-specific constant optimization. 503 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 504 return TLO.New.getNode(); 505 506 // FIXME: ISD::SELECT, ISD::SELECT_CC 507 switch (Opcode) { 508 default: 509 break; 510 case ISD::XOR: 511 case ISD::AND: 512 case ISD::OR: { 513 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 514 if (!Op1C || Op1C->isOpaque()) 515 return false; 516 517 // If this is a 'not' op, don't touch it because that's a canonical form. 518 const APInt &C = Op1C->getAPIntValue(); 519 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 520 return false; 521 522 if (!C.isSubsetOf(DemandedBits)) { 523 EVT VT = Op.getValueType(); 524 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 525 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 526 return TLO.CombineTo(Op, NewOp); 527 } 528 529 break; 530 } 531 } 532 533 return false; 534 } 535 536 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 537 const APInt &DemandedBits, 538 TargetLoweringOpt &TLO) const { 539 EVT VT = Op.getValueType(); 540 APInt DemandedElts = VT.isVector() 541 ? APInt::getAllOnes(VT.getVectorNumElements()) 542 : APInt(1, 1); 543 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 544 } 545 546 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 547 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 548 /// generalized for targets with other types of implicit widening casts. 549 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 550 const APInt &Demanded, 551 TargetLoweringOpt &TLO) const { 552 assert(Op.getNumOperands() == 2 && 553 "ShrinkDemandedOp only supports binary operators!"); 554 assert(Op.getNode()->getNumValues() == 1 && 555 "ShrinkDemandedOp only supports nodes with one result!"); 556 557 SelectionDAG &DAG = TLO.DAG; 558 SDLoc dl(Op); 559 560 // Early return, as this function cannot handle vector types. 561 if (Op.getValueType().isVector()) 562 return false; 563 564 // Don't do this if the node has another user, which may require the 565 // full value. 566 if (!Op.getNode()->hasOneUse()) 567 return false; 568 569 // Search for the smallest integer type with free casts to and from 570 // Op's type. For expedience, just check power-of-2 integer types. 571 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 572 unsigned DemandedSize = Demanded.getActiveBits(); 573 unsigned SmallVTBits = DemandedSize; 574 if (!isPowerOf2_32(SmallVTBits)) 575 SmallVTBits = NextPowerOf2(SmallVTBits); 576 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 577 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 578 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 579 TLI.isZExtFree(SmallVT, Op.getValueType())) { 580 // We found a type with free casts. 581 SDValue X = DAG.getNode( 582 Op.getOpcode(), dl, SmallVT, 583 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 584 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 585 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 586 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 587 return TLO.CombineTo(Op, Z); 588 } 589 } 590 return false; 591 } 592 593 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 594 DAGCombinerInfo &DCI) const { 595 SelectionDAG &DAG = DCI.DAG; 596 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 597 !DCI.isBeforeLegalizeOps()); 598 KnownBits Known; 599 600 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 601 if (Simplified) { 602 DCI.AddToWorklist(Op.getNode()); 603 DCI.CommitTargetLoweringOpt(TLO); 604 } 605 return Simplified; 606 } 607 608 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 609 const APInt &DemandedElts, 610 DAGCombinerInfo &DCI) const { 611 SelectionDAG &DAG = DCI.DAG; 612 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 613 !DCI.isBeforeLegalizeOps()); 614 KnownBits Known; 615 616 bool Simplified = 617 SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO); 618 if (Simplified) { 619 DCI.AddToWorklist(Op.getNode()); 620 DCI.CommitTargetLoweringOpt(TLO); 621 } 622 return Simplified; 623 } 624 625 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 626 KnownBits &Known, 627 TargetLoweringOpt &TLO, 628 unsigned Depth, 629 bool AssumeSingleUse) const { 630 EVT VT = Op.getValueType(); 631 632 // TODO: We can probably do more work on calculating the known bits and 633 // simplifying the operations for scalable vectors, but for now we just 634 // bail out. 635 if (VT.isScalableVector()) { 636 // Pretend we don't know anything for now. 637 Known = KnownBits(DemandedBits.getBitWidth()); 638 return false; 639 } 640 641 APInt DemandedElts = VT.isVector() 642 ? APInt::getAllOnes(VT.getVectorNumElements()) 643 : APInt(1, 1); 644 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 645 AssumeSingleUse); 646 } 647 648 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 649 // TODO: Under what circumstances can we create nodes? Constant folding? 650 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 651 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 652 SelectionDAG &DAG, unsigned Depth) const { 653 // Limit search depth. 654 if (Depth >= SelectionDAG::MaxRecursionDepth) 655 return SDValue(); 656 657 // Ignore UNDEFs. 658 if (Op.isUndef()) 659 return SDValue(); 660 661 // Not demanding any bits/elts from Op. 662 if (DemandedBits == 0 || DemandedElts == 0) 663 return DAG.getUNDEF(Op.getValueType()); 664 665 bool IsLE = DAG.getDataLayout().isLittleEndian(); 666 unsigned NumElts = DemandedElts.getBitWidth(); 667 unsigned BitWidth = DemandedBits.getBitWidth(); 668 KnownBits LHSKnown, RHSKnown; 669 switch (Op.getOpcode()) { 670 case ISD::BITCAST: { 671 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 672 EVT SrcVT = Src.getValueType(); 673 EVT DstVT = Op.getValueType(); 674 if (SrcVT == DstVT) 675 return Src; 676 677 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 678 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 679 if (NumSrcEltBits == NumDstEltBits) 680 if (SDValue V = SimplifyMultipleUseDemandedBits( 681 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 682 return DAG.getBitcast(DstVT, V); 683 684 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) { 685 unsigned Scale = NumDstEltBits / NumSrcEltBits; 686 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 687 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 688 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 689 for (unsigned i = 0; i != Scale; ++i) { 690 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 691 unsigned BitOffset = EltOffset * NumSrcEltBits; 692 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 693 if (!Sub.isZero()) { 694 DemandedSrcBits |= Sub; 695 for (unsigned j = 0; j != NumElts; ++j) 696 if (DemandedElts[j]) 697 DemandedSrcElts.setBit((j * Scale) + i); 698 } 699 } 700 701 if (SDValue V = SimplifyMultipleUseDemandedBits( 702 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 703 return DAG.getBitcast(DstVT, V); 704 } 705 706 // TODO - bigendian once we have test coverage. 707 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) { 708 unsigned Scale = NumSrcEltBits / NumDstEltBits; 709 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 710 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 711 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 712 for (unsigned i = 0; i != NumElts; ++i) 713 if (DemandedElts[i]) { 714 unsigned Offset = (i % Scale) * NumDstEltBits; 715 DemandedSrcBits.insertBits(DemandedBits, Offset); 716 DemandedSrcElts.setBit(i / Scale); 717 } 718 719 if (SDValue V = SimplifyMultipleUseDemandedBits( 720 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 721 return DAG.getBitcast(DstVT, V); 722 } 723 724 break; 725 } 726 case ISD::AND: { 727 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 728 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 729 730 // If all of the demanded bits are known 1 on one side, return the other. 731 // These bits cannot contribute to the result of the 'and' in this 732 // context. 733 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 734 return Op.getOperand(0); 735 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 736 return Op.getOperand(1); 737 break; 738 } 739 case ISD::OR: { 740 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 741 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 742 743 // If all of the demanded bits are known zero on one side, return the 744 // other. These bits cannot contribute to the result of the 'or' in this 745 // context. 746 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 747 return Op.getOperand(0); 748 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 749 return Op.getOperand(1); 750 break; 751 } 752 case ISD::XOR: { 753 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 754 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 755 756 // If all of the demanded bits are known zero on one side, return the 757 // other. 758 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 759 return Op.getOperand(0); 760 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 761 return Op.getOperand(1); 762 break; 763 } 764 case ISD::SHL: { 765 // If we are only demanding sign bits then we can use the shift source 766 // directly. 767 if (const APInt *MaxSA = 768 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 769 SDValue Op0 = Op.getOperand(0); 770 unsigned ShAmt = MaxSA->getZExtValue(); 771 unsigned NumSignBits = 772 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 773 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 774 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 775 return Op0; 776 } 777 break; 778 } 779 case ISD::SETCC: { 780 SDValue Op0 = Op.getOperand(0); 781 SDValue Op1 = Op.getOperand(1); 782 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 783 // If (1) we only need the sign-bit, (2) the setcc operands are the same 784 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 785 // -1, we may be able to bypass the setcc. 786 if (DemandedBits.isSignMask() && 787 Op0.getScalarValueSizeInBits() == BitWidth && 788 getBooleanContents(Op0.getValueType()) == 789 BooleanContent::ZeroOrNegativeOneBooleanContent) { 790 // If we're testing X < 0, then this compare isn't needed - just use X! 791 // FIXME: We're limiting to integer types here, but this should also work 792 // if we don't care about FP signed-zero. The use of SETLT with FP means 793 // that we don't care about NaNs. 794 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 795 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 796 return Op0; 797 } 798 break; 799 } 800 case ISD::SIGN_EXTEND_INREG: { 801 // If none of the extended bits are demanded, eliminate the sextinreg. 802 SDValue Op0 = Op.getOperand(0); 803 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 804 unsigned ExBits = ExVT.getScalarSizeInBits(); 805 if (DemandedBits.getActiveBits() <= ExBits) 806 return Op0; 807 // If the input is already sign extended, just drop the extension. 808 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 809 if (NumSignBits >= (BitWidth - ExBits + 1)) 810 return Op0; 811 break; 812 } 813 case ISD::ANY_EXTEND_VECTOR_INREG: 814 case ISD::SIGN_EXTEND_VECTOR_INREG: 815 case ISD::ZERO_EXTEND_VECTOR_INREG: { 816 // If we only want the lowest element and none of extended bits, then we can 817 // return the bitcasted source vector. 818 SDValue Src = Op.getOperand(0); 819 EVT SrcVT = Src.getValueType(); 820 EVT DstVT = Op.getValueType(); 821 if (IsLE && DemandedElts == 1 && 822 DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 823 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 824 return DAG.getBitcast(DstVT, Src); 825 } 826 break; 827 } 828 case ISD::INSERT_VECTOR_ELT: { 829 // If we don't demand the inserted element, return the base vector. 830 SDValue Vec = Op.getOperand(0); 831 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 832 EVT VecVT = Vec.getValueType(); 833 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 834 !DemandedElts[CIdx->getZExtValue()]) 835 return Vec; 836 break; 837 } 838 case ISD::INSERT_SUBVECTOR: { 839 SDValue Vec = Op.getOperand(0); 840 SDValue Sub = Op.getOperand(1); 841 uint64_t Idx = Op.getConstantOperandVal(2); 842 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 843 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 844 // If we don't demand the inserted subvector, return the base vector. 845 if (DemandedSubElts == 0) 846 return Vec; 847 // If this simply widens the lowest subvector, see if we can do it earlier. 848 if (Idx == 0 && Vec.isUndef()) { 849 if (SDValue NewSub = SimplifyMultipleUseDemandedBits( 850 Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1)) 851 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 852 Op.getOperand(0), NewSub, Op.getOperand(2)); 853 } 854 break; 855 } 856 case ISD::VECTOR_SHUFFLE: { 857 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 858 859 // If all the demanded elts are from one operand and are inline, 860 // then we can use the operand directly. 861 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 862 for (unsigned i = 0; i != NumElts; ++i) { 863 int M = ShuffleMask[i]; 864 if (M < 0 || !DemandedElts[i]) 865 continue; 866 AllUndef = false; 867 IdentityLHS &= (M == (int)i); 868 IdentityRHS &= ((M - NumElts) == i); 869 } 870 871 if (AllUndef) 872 return DAG.getUNDEF(Op.getValueType()); 873 if (IdentityLHS) 874 return Op.getOperand(0); 875 if (IdentityRHS) 876 return Op.getOperand(1); 877 break; 878 } 879 default: 880 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 881 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 882 Op, DemandedBits, DemandedElts, DAG, Depth)) 883 return V; 884 break; 885 } 886 return SDValue(); 887 } 888 889 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 890 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 891 unsigned Depth) const { 892 EVT VT = Op.getValueType(); 893 APInt DemandedElts = VT.isVector() 894 ? APInt::getAllOnes(VT.getVectorNumElements()) 895 : APInt(1, 1); 896 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 897 Depth); 898 } 899 900 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 901 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 902 unsigned Depth) const { 903 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits()); 904 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 905 Depth); 906 } 907 908 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1). 909 // or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1). 910 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG, 911 const TargetLowering &TLI, 912 const APInt &DemandedBits, 913 const APInt &DemandedElts, 914 unsigned Depth) { 915 assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) && 916 "SRL or SRA node is required here!"); 917 // Is the right shift using an immediate value of 1? 918 ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 919 if (!N1C || !N1C->isOne()) 920 return SDValue(); 921 922 // We are looking for an avgfloor 923 // add(ext, ext) 924 // or one of these as a avgceil 925 // add(add(ext, ext), 1) 926 // add(add(ext, 1), ext) 927 // add(ext, add(ext, 1)) 928 SDValue Add = Op.getOperand(0); 929 if (Add.getOpcode() != ISD::ADD) 930 return SDValue(); 931 932 SDValue ExtOpA = Add.getOperand(0); 933 SDValue ExtOpB = Add.getOperand(1); 934 auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) { 935 ConstantSDNode *ConstOp; 936 if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) && 937 ConstOp->isOne()) { 938 ExtOpA = Op2; 939 ExtOpB = Op3; 940 return true; 941 } 942 if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) && 943 ConstOp->isOne()) { 944 ExtOpA = Op1; 945 ExtOpB = Op3; 946 return true; 947 } 948 if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) && 949 ConstOp->isOne()) { 950 ExtOpA = Op1; 951 ExtOpB = Op2; 952 return true; 953 } 954 return false; 955 }; 956 bool IsCeil = 957 (ExtOpA.getOpcode() == ISD::ADD && 958 MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) || 959 (ExtOpB.getOpcode() == ISD::ADD && 960 MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA)); 961 962 // If the shift is signed (sra): 963 // - Needs >= 2 sign bit for both operands. 964 // - Needs >= 2 zero bits. 965 // If the shift is unsigned (srl): 966 // - Needs >= 1 zero bit for both operands. 967 // - Needs 1 demanded bit zero and >= 2 sign bits. 968 unsigned ShiftOpc = Op.getOpcode(); 969 bool IsSigned = false; 970 unsigned KnownBits; 971 unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth); 972 unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth); 973 unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1; 974 unsigned NumZeroA = 975 DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros(); 976 unsigned NumZeroB = 977 DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros(); 978 unsigned NumZero = std::min(NumZeroA, NumZeroB); 979 980 switch (ShiftOpc) { 981 default: 982 llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG"); 983 case ISD::SRA: { 984 if (NumZero >= 2 && NumSigned < NumZero) { 985 IsSigned = false; 986 KnownBits = NumZero; 987 break; 988 } 989 if (NumSigned >= 1) { 990 IsSigned = true; 991 KnownBits = NumSigned; 992 break; 993 } 994 return SDValue(); 995 } 996 case ISD::SRL: { 997 if (NumZero >= 1 && NumSigned < NumZero) { 998 IsSigned = false; 999 KnownBits = NumZero; 1000 break; 1001 } 1002 if (NumSigned >= 1 && DemandedBits.isSignBitClear()) { 1003 IsSigned = true; 1004 KnownBits = NumSigned; 1005 break; 1006 } 1007 return SDValue(); 1008 } 1009 } 1010 1011 unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU) 1012 : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU); 1013 1014 // Find the smallest power-2 type that is legal for this vector size and 1015 // operation, given the original type size and the number of known sign/zero 1016 // bits. 1017 EVT VT = Op.getValueType(); 1018 unsigned MinWidth = 1019 std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8); 1020 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth)); 1021 if (VT.isVector()) 1022 NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount()); 1023 if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT)) 1024 return SDValue(); 1025 1026 SDLoc DL(Op); 1027 SDValue ResultAVG = 1028 DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA), 1029 DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB)); 1030 return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT, 1031 ResultAVG); 1032 } 1033 1034 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 1035 /// result of Op are ever used downstream. If we can use this information to 1036 /// simplify Op, create a new simplified DAG node and return true, returning the 1037 /// original and new nodes in Old and New. Otherwise, analyze the expression and 1038 /// return a mask of Known bits for the expression (used to simplify the 1039 /// caller). The Known bits may only be accurate for those bits in the 1040 /// OriginalDemandedBits and OriginalDemandedElts. 1041 bool TargetLowering::SimplifyDemandedBits( 1042 SDValue Op, const APInt &OriginalDemandedBits, 1043 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 1044 unsigned Depth, bool AssumeSingleUse) const { 1045 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 1046 assert(Op.getScalarValueSizeInBits() == BitWidth && 1047 "Mask size mismatches value type size!"); 1048 1049 // Don't know anything. 1050 Known = KnownBits(BitWidth); 1051 1052 // TODO: We can probably do more work on calculating the known bits and 1053 // simplifying the operations for scalable vectors, but for now we just 1054 // bail out. 1055 if (Op.getValueType().isScalableVector()) 1056 return false; 1057 1058 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 1059 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 1060 assert((!Op.getValueType().isVector() || 1061 NumElts == Op.getValueType().getVectorNumElements()) && 1062 "Unexpected vector size"); 1063 1064 APInt DemandedBits = OriginalDemandedBits; 1065 APInt DemandedElts = OriginalDemandedElts; 1066 SDLoc dl(Op); 1067 auto &DL = TLO.DAG.getDataLayout(); 1068 1069 // Undef operand. 1070 if (Op.isUndef()) 1071 return false; 1072 1073 if (Op.getOpcode() == ISD::Constant) { 1074 // We know all of the bits for a constant! 1075 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 1076 return false; 1077 } 1078 1079 if (Op.getOpcode() == ISD::ConstantFP) { 1080 // We know all of the bits for a floating point constant! 1081 Known = KnownBits::makeConstant( 1082 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 1083 return false; 1084 } 1085 1086 // Other users may use these bits. 1087 EVT VT = Op.getValueType(); 1088 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 1089 if (Depth != 0) { 1090 // If not at the root, Just compute the Known bits to 1091 // simplify things downstream. 1092 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1093 return false; 1094 } 1095 // If this is the root being simplified, allow it to have multiple uses, 1096 // just set the DemandedBits/Elts to all bits. 1097 DemandedBits = APInt::getAllOnes(BitWidth); 1098 DemandedElts = APInt::getAllOnes(NumElts); 1099 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 1100 // Not demanding any bits/elts from Op. 1101 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1102 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 1103 // Limit search depth. 1104 return false; 1105 } 1106 1107 KnownBits Known2; 1108 switch (Op.getOpcode()) { 1109 case ISD::TargetConstant: 1110 llvm_unreachable("Can't simplify this node"); 1111 case ISD::SCALAR_TO_VECTOR: { 1112 if (!DemandedElts[0]) 1113 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1114 1115 KnownBits SrcKnown; 1116 SDValue Src = Op.getOperand(0); 1117 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 1118 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 1119 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 1120 return true; 1121 1122 // Upper elements are undef, so only get the knownbits if we just demand 1123 // the bottom element. 1124 if (DemandedElts == 1) 1125 Known = SrcKnown.anyextOrTrunc(BitWidth); 1126 break; 1127 } 1128 case ISD::BUILD_VECTOR: 1129 // Collect the known bits that are shared by every demanded element. 1130 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 1131 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1132 return false; // Don't fall through, will infinitely loop. 1133 case ISD::LOAD: { 1134 auto *LD = cast<LoadSDNode>(Op); 1135 if (getTargetConstantFromLoad(LD)) { 1136 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1137 return false; // Don't fall through, will infinitely loop. 1138 } 1139 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 1140 // If this is a ZEXTLoad and we are looking at the loaded value. 1141 EVT MemVT = LD->getMemoryVT(); 1142 unsigned MemBits = MemVT.getScalarSizeInBits(); 1143 Known.Zero.setBitsFrom(MemBits); 1144 return false; // Don't fall through, will infinitely loop. 1145 } 1146 break; 1147 } 1148 case ISD::INSERT_VECTOR_ELT: { 1149 SDValue Vec = Op.getOperand(0); 1150 SDValue Scl = Op.getOperand(1); 1151 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1152 EVT VecVT = Vec.getValueType(); 1153 1154 // If index isn't constant, assume we need all vector elements AND the 1155 // inserted element. 1156 APInt DemandedVecElts(DemandedElts); 1157 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1158 unsigned Idx = CIdx->getZExtValue(); 1159 DemandedVecElts.clearBit(Idx); 1160 1161 // Inserted element is not required. 1162 if (!DemandedElts[Idx]) 1163 return TLO.CombineTo(Op, Vec); 1164 } 1165 1166 KnownBits KnownScl; 1167 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1168 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1169 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1170 return true; 1171 1172 Known = KnownScl.anyextOrTrunc(BitWidth); 1173 1174 KnownBits KnownVec; 1175 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1176 Depth + 1)) 1177 return true; 1178 1179 if (!!DemandedVecElts) 1180 Known = KnownBits::commonBits(Known, KnownVec); 1181 1182 return false; 1183 } 1184 case ISD::INSERT_SUBVECTOR: { 1185 // Demand any elements from the subvector and the remainder from the src its 1186 // inserted into. 1187 SDValue Src = Op.getOperand(0); 1188 SDValue Sub = Op.getOperand(1); 1189 uint64_t Idx = Op.getConstantOperandVal(2); 1190 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1191 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1192 APInt DemandedSrcElts = DemandedElts; 1193 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 1194 1195 KnownBits KnownSub, KnownSrc; 1196 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1197 Depth + 1)) 1198 return true; 1199 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1200 Depth + 1)) 1201 return true; 1202 1203 Known.Zero.setAllBits(); 1204 Known.One.setAllBits(); 1205 if (!!DemandedSubElts) 1206 Known = KnownBits::commonBits(Known, KnownSub); 1207 if (!!DemandedSrcElts) 1208 Known = KnownBits::commonBits(Known, KnownSrc); 1209 1210 // Attempt to avoid multi-use src if we don't need anything from it. 1211 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || 1212 !DemandedSrcElts.isAllOnes()) { 1213 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1214 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1215 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1216 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1217 if (NewSub || NewSrc) { 1218 NewSub = NewSub ? NewSub : Sub; 1219 NewSrc = NewSrc ? NewSrc : Src; 1220 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1221 Op.getOperand(2)); 1222 return TLO.CombineTo(Op, NewOp); 1223 } 1224 } 1225 break; 1226 } 1227 case ISD::EXTRACT_SUBVECTOR: { 1228 // Offset the demanded elts by the subvector index. 1229 SDValue Src = Op.getOperand(0); 1230 if (Src.getValueType().isScalableVector()) 1231 break; 1232 uint64_t Idx = Op.getConstantOperandVal(1); 1233 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1234 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1235 1236 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1237 Depth + 1)) 1238 return true; 1239 1240 // Attempt to avoid multi-use src if we don't need anything from it. 1241 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 1242 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1243 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1244 if (DemandedSrc) { 1245 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1246 Op.getOperand(1)); 1247 return TLO.CombineTo(Op, NewOp); 1248 } 1249 } 1250 break; 1251 } 1252 case ISD::CONCAT_VECTORS: { 1253 Known.Zero.setAllBits(); 1254 Known.One.setAllBits(); 1255 EVT SubVT = Op.getOperand(0).getValueType(); 1256 unsigned NumSubVecs = Op.getNumOperands(); 1257 unsigned NumSubElts = SubVT.getVectorNumElements(); 1258 for (unsigned i = 0; i != NumSubVecs; ++i) { 1259 APInt DemandedSubElts = 1260 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1261 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1262 Known2, TLO, Depth + 1)) 1263 return true; 1264 // Known bits are shared by every demanded subvector element. 1265 if (!!DemandedSubElts) 1266 Known = KnownBits::commonBits(Known, Known2); 1267 } 1268 break; 1269 } 1270 case ISD::VECTOR_SHUFFLE: { 1271 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1272 1273 // Collect demanded elements from shuffle operands.. 1274 APInt DemandedLHS(NumElts, 0); 1275 APInt DemandedRHS(NumElts, 0); 1276 for (unsigned i = 0; i != NumElts; ++i) { 1277 if (!DemandedElts[i]) 1278 continue; 1279 int M = ShuffleMask[i]; 1280 if (M < 0) { 1281 // For UNDEF elements, we don't know anything about the common state of 1282 // the shuffle result. 1283 DemandedLHS.clearAllBits(); 1284 DemandedRHS.clearAllBits(); 1285 break; 1286 } 1287 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1288 if (M < (int)NumElts) 1289 DemandedLHS.setBit(M); 1290 else 1291 DemandedRHS.setBit(M - NumElts); 1292 } 1293 1294 if (!!DemandedLHS || !!DemandedRHS) { 1295 SDValue Op0 = Op.getOperand(0); 1296 SDValue Op1 = Op.getOperand(1); 1297 1298 Known.Zero.setAllBits(); 1299 Known.One.setAllBits(); 1300 if (!!DemandedLHS) { 1301 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1302 Depth + 1)) 1303 return true; 1304 Known = KnownBits::commonBits(Known, Known2); 1305 } 1306 if (!!DemandedRHS) { 1307 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1308 Depth + 1)) 1309 return true; 1310 Known = KnownBits::commonBits(Known, Known2); 1311 } 1312 1313 // Attempt to avoid multi-use ops if we don't need anything from them. 1314 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1315 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1316 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1317 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1318 if (DemandedOp0 || DemandedOp1) { 1319 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1320 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1321 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1322 return TLO.CombineTo(Op, NewOp); 1323 } 1324 } 1325 break; 1326 } 1327 case ISD::AND: { 1328 SDValue Op0 = Op.getOperand(0); 1329 SDValue Op1 = Op.getOperand(1); 1330 1331 // If the RHS is a constant, check to see if the LHS would be zero without 1332 // using the bits from the RHS. Below, we use knowledge about the RHS to 1333 // simplify the LHS, here we're using information from the LHS to simplify 1334 // the RHS. 1335 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1336 // Do not increment Depth here; that can cause an infinite loop. 1337 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1338 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1339 if ((LHSKnown.Zero & DemandedBits) == 1340 (~RHSC->getAPIntValue() & DemandedBits)) 1341 return TLO.CombineTo(Op, Op0); 1342 1343 // If any of the set bits in the RHS are known zero on the LHS, shrink 1344 // the constant. 1345 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1346 DemandedElts, TLO)) 1347 return true; 1348 1349 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1350 // constant, but if this 'and' is only clearing bits that were just set by 1351 // the xor, then this 'and' can be eliminated by shrinking the mask of 1352 // the xor. For example, for a 32-bit X: 1353 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1354 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1355 LHSKnown.One == ~RHSC->getAPIntValue()) { 1356 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1357 return TLO.CombineTo(Op, Xor); 1358 } 1359 } 1360 1361 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1362 Depth + 1)) 1363 return true; 1364 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1365 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1366 Known2, TLO, Depth + 1)) 1367 return true; 1368 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1369 1370 // Attempt to avoid multi-use ops if we don't need anything from them. 1371 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1372 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1373 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1374 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1375 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1376 if (DemandedOp0 || DemandedOp1) { 1377 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1378 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1379 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1380 return TLO.CombineTo(Op, NewOp); 1381 } 1382 } 1383 1384 // If all of the demanded bits are known one on one side, return the other. 1385 // These bits cannot contribute to the result of the 'and'. 1386 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1387 return TLO.CombineTo(Op, Op0); 1388 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1389 return TLO.CombineTo(Op, Op1); 1390 // If all of the demanded bits in the inputs are known zeros, return zero. 1391 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1392 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1393 // If the RHS is a constant, see if we can simplify it. 1394 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1395 TLO)) 1396 return true; 1397 // If the operation can be done in a smaller type, do so. 1398 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1399 return true; 1400 1401 Known &= Known2; 1402 break; 1403 } 1404 case ISD::OR: { 1405 SDValue Op0 = Op.getOperand(0); 1406 SDValue Op1 = Op.getOperand(1); 1407 1408 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1409 Depth + 1)) 1410 return true; 1411 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1412 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1413 Known2, TLO, Depth + 1)) 1414 return true; 1415 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1416 1417 // Attempt to avoid multi-use ops if we don't need anything from them. 1418 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1419 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1420 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1421 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1422 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1423 if (DemandedOp0 || DemandedOp1) { 1424 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1425 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1426 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1427 return TLO.CombineTo(Op, NewOp); 1428 } 1429 } 1430 1431 // If all of the demanded bits are known zero on one side, return the other. 1432 // These bits cannot contribute to the result of the 'or'. 1433 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1434 return TLO.CombineTo(Op, Op0); 1435 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1436 return TLO.CombineTo(Op, Op1); 1437 // If the RHS is a constant, see if we can simplify it. 1438 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1439 return true; 1440 // If the operation can be done in a smaller type, do so. 1441 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1442 return true; 1443 1444 Known |= Known2; 1445 break; 1446 } 1447 case ISD::XOR: { 1448 SDValue Op0 = Op.getOperand(0); 1449 SDValue Op1 = Op.getOperand(1); 1450 1451 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1452 Depth + 1)) 1453 return true; 1454 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1455 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1456 Depth + 1)) 1457 return true; 1458 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1459 1460 // Attempt to avoid multi-use ops if we don't need anything from them. 1461 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1462 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1463 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1464 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1465 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1466 if (DemandedOp0 || DemandedOp1) { 1467 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1468 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1469 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1470 return TLO.CombineTo(Op, NewOp); 1471 } 1472 } 1473 1474 // If all of the demanded bits are known zero on one side, return the other. 1475 // These bits cannot contribute to the result of the 'xor'. 1476 if (DemandedBits.isSubsetOf(Known.Zero)) 1477 return TLO.CombineTo(Op, Op0); 1478 if (DemandedBits.isSubsetOf(Known2.Zero)) 1479 return TLO.CombineTo(Op, Op1); 1480 // If the operation can be done in a smaller type, do so. 1481 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1482 return true; 1483 1484 // If all of the unknown bits are known to be zero on one side or the other 1485 // turn this into an *inclusive* or. 1486 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1487 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1488 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1489 1490 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1491 if (C) { 1492 // If one side is a constant, and all of the set bits in the constant are 1493 // also known set on the other side, turn this into an AND, as we know 1494 // the bits will be cleared. 1495 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1496 // NB: it is okay if more bits are known than are requested 1497 if (C->getAPIntValue() == Known2.One) { 1498 SDValue ANDC = 1499 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1500 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1501 } 1502 1503 // If the RHS is a constant, see if we can change it. Don't alter a -1 1504 // constant because that's a 'not' op, and that is better for combining 1505 // and codegen. 1506 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) { 1507 // We're flipping all demanded bits. Flip the undemanded bits too. 1508 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1509 return TLO.CombineTo(Op, New); 1510 } 1511 } 1512 1513 // If we can't turn this into a 'not', try to shrink the constant. 1514 if (!C || !C->isAllOnes()) 1515 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1516 return true; 1517 1518 Known ^= Known2; 1519 break; 1520 } 1521 case ISD::SELECT: 1522 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1523 Depth + 1)) 1524 return true; 1525 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1526 Depth + 1)) 1527 return true; 1528 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1529 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1530 1531 // If the operands are constants, see if we can simplify them. 1532 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1533 return true; 1534 1535 // Only known if known in both the LHS and RHS. 1536 Known = KnownBits::commonBits(Known, Known2); 1537 break; 1538 case ISD::SELECT_CC: 1539 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1540 Depth + 1)) 1541 return true; 1542 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1543 Depth + 1)) 1544 return true; 1545 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1546 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1547 1548 // If the operands are constants, see if we can simplify them. 1549 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1550 return true; 1551 1552 // Only known if known in both the LHS and RHS. 1553 Known = KnownBits::commonBits(Known, Known2); 1554 break; 1555 case ISD::SETCC: { 1556 SDValue Op0 = Op.getOperand(0); 1557 SDValue Op1 = Op.getOperand(1); 1558 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1559 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1560 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1561 // -1, we may be able to bypass the setcc. 1562 if (DemandedBits.isSignMask() && 1563 Op0.getScalarValueSizeInBits() == BitWidth && 1564 getBooleanContents(Op0.getValueType()) == 1565 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1566 // If we're testing X < 0, then this compare isn't needed - just use X! 1567 // FIXME: We're limiting to integer types here, but this should also work 1568 // if we don't care about FP signed-zero. The use of SETLT with FP means 1569 // that we don't care about NaNs. 1570 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1571 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1572 return TLO.CombineTo(Op, Op0); 1573 1574 // TODO: Should we check for other forms of sign-bit comparisons? 1575 // Examples: X <= -1, X >= 0 1576 } 1577 if (getBooleanContents(Op0.getValueType()) == 1578 TargetLowering::ZeroOrOneBooleanContent && 1579 BitWidth > 1) 1580 Known.Zero.setBitsFrom(1); 1581 break; 1582 } 1583 case ISD::SHL: { 1584 SDValue Op0 = Op.getOperand(0); 1585 SDValue Op1 = Op.getOperand(1); 1586 EVT ShiftVT = Op1.getValueType(); 1587 1588 if (const APInt *SA = 1589 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1590 unsigned ShAmt = SA->getZExtValue(); 1591 if (ShAmt == 0) 1592 return TLO.CombineTo(Op, Op0); 1593 1594 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1595 // single shift. We can do this if the bottom bits (which are shifted 1596 // out) are never demanded. 1597 // TODO - support non-uniform vector amounts. 1598 if (Op0.getOpcode() == ISD::SRL) { 1599 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1600 if (const APInt *SA2 = 1601 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1602 unsigned C1 = SA2->getZExtValue(); 1603 unsigned Opc = ISD::SHL; 1604 int Diff = ShAmt - C1; 1605 if (Diff < 0) { 1606 Diff = -Diff; 1607 Opc = ISD::SRL; 1608 } 1609 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1610 return TLO.CombineTo( 1611 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1612 } 1613 } 1614 } 1615 1616 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1617 // are not demanded. This will likely allow the anyext to be folded away. 1618 // TODO - support non-uniform vector amounts. 1619 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1620 SDValue InnerOp = Op0.getOperand(0); 1621 EVT InnerVT = InnerOp.getValueType(); 1622 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1623 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1624 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1625 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1626 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1627 ShTy = InnerVT; 1628 SDValue NarrowShl = 1629 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1630 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1631 return TLO.CombineTo( 1632 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1633 } 1634 1635 // Repeat the SHL optimization above in cases where an extension 1636 // intervenes: (shl (anyext (shr x, c1)), c2) to 1637 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1638 // aren't demanded (as above) and that the shifted upper c1 bits of 1639 // x aren't demanded. 1640 // TODO - support non-uniform vector amounts. 1641 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1642 InnerOp.hasOneUse()) { 1643 if (const APInt *SA2 = 1644 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1645 unsigned InnerShAmt = SA2->getZExtValue(); 1646 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1647 DemandedBits.getActiveBits() <= 1648 (InnerBits - InnerShAmt + ShAmt) && 1649 DemandedBits.countTrailingZeros() >= ShAmt) { 1650 SDValue NewSA = 1651 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1652 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1653 InnerOp.getOperand(0)); 1654 return TLO.CombineTo( 1655 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1656 } 1657 } 1658 } 1659 } 1660 1661 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1662 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1663 Depth + 1)) 1664 return true; 1665 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1666 Known.Zero <<= ShAmt; 1667 Known.One <<= ShAmt; 1668 // low bits known zero. 1669 Known.Zero.setLowBits(ShAmt); 1670 1671 // Try shrinking the operation as long as the shift amount will still be 1672 // in range. 1673 if ((ShAmt < DemandedBits.getActiveBits()) && 1674 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1675 return true; 1676 } 1677 1678 // If we are only demanding sign bits then we can use the shift source 1679 // directly. 1680 if (const APInt *MaxSA = 1681 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1682 unsigned ShAmt = MaxSA->getZExtValue(); 1683 unsigned NumSignBits = 1684 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1685 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1686 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1687 return TLO.CombineTo(Op, Op0); 1688 } 1689 break; 1690 } 1691 case ISD::SRL: { 1692 SDValue Op0 = Op.getOperand(0); 1693 SDValue Op1 = Op.getOperand(1); 1694 EVT ShiftVT = Op1.getValueType(); 1695 1696 // Try to match AVG patterns. 1697 if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits, 1698 DemandedElts, Depth + 1)) 1699 return TLO.CombineTo(Op, AVG); 1700 1701 if (const APInt *SA = 1702 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1703 unsigned ShAmt = SA->getZExtValue(); 1704 if (ShAmt == 0) 1705 return TLO.CombineTo(Op, Op0); 1706 1707 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1708 // single shift. We can do this if the top bits (which are shifted out) 1709 // are never demanded. 1710 // TODO - support non-uniform vector amounts. 1711 if (Op0.getOpcode() == ISD::SHL) { 1712 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1713 if (const APInt *SA2 = 1714 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1715 unsigned C1 = SA2->getZExtValue(); 1716 unsigned Opc = ISD::SRL; 1717 int Diff = ShAmt - C1; 1718 if (Diff < 0) { 1719 Diff = -Diff; 1720 Opc = ISD::SHL; 1721 } 1722 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1723 return TLO.CombineTo( 1724 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1725 } 1726 } 1727 } 1728 1729 APInt InDemandedMask = (DemandedBits << ShAmt); 1730 1731 // If the shift is exact, then it does demand the low bits (and knows that 1732 // they are zero). 1733 if (Op->getFlags().hasExact()) 1734 InDemandedMask.setLowBits(ShAmt); 1735 1736 // Compute the new bits that are at the top now. 1737 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1738 Depth + 1)) 1739 return true; 1740 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1741 Known.Zero.lshrInPlace(ShAmt); 1742 Known.One.lshrInPlace(ShAmt); 1743 // High bits known zero. 1744 Known.Zero.setHighBits(ShAmt); 1745 } 1746 break; 1747 } 1748 case ISD::SRA: { 1749 SDValue Op0 = Op.getOperand(0); 1750 SDValue Op1 = Op.getOperand(1); 1751 EVT ShiftVT = Op1.getValueType(); 1752 1753 // If we only want bits that already match the signbit then we don't need 1754 // to shift. 1755 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1756 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1757 NumHiDemandedBits) 1758 return TLO.CombineTo(Op, Op0); 1759 1760 // If this is an arithmetic shift right and only the low-bit is set, we can 1761 // always convert this into a logical shr, even if the shift amount is 1762 // variable. The low bit of the shift cannot be an input sign bit unless 1763 // the shift amount is >= the size of the datatype, which is undefined. 1764 if (DemandedBits.isOne()) 1765 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1766 1767 // Try to match AVG patterns. 1768 if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits, 1769 DemandedElts, Depth + 1)) 1770 return TLO.CombineTo(Op, AVG); 1771 1772 if (const APInt *SA = 1773 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1774 unsigned ShAmt = SA->getZExtValue(); 1775 if (ShAmt == 0) 1776 return TLO.CombineTo(Op, Op0); 1777 1778 APInt InDemandedMask = (DemandedBits << ShAmt); 1779 1780 // If the shift is exact, then it does demand the low bits (and knows that 1781 // they are zero). 1782 if (Op->getFlags().hasExact()) 1783 InDemandedMask.setLowBits(ShAmt); 1784 1785 // If any of the demanded bits are produced by the sign extension, we also 1786 // demand the input sign bit. 1787 if (DemandedBits.countLeadingZeros() < ShAmt) 1788 InDemandedMask.setSignBit(); 1789 1790 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1791 Depth + 1)) 1792 return true; 1793 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1794 Known.Zero.lshrInPlace(ShAmt); 1795 Known.One.lshrInPlace(ShAmt); 1796 1797 // If the input sign bit is known to be zero, or if none of the top bits 1798 // are demanded, turn this into an unsigned shift right. 1799 if (Known.Zero[BitWidth - ShAmt - 1] || 1800 DemandedBits.countLeadingZeros() >= ShAmt) { 1801 SDNodeFlags Flags; 1802 Flags.setExact(Op->getFlags().hasExact()); 1803 return TLO.CombineTo( 1804 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1805 } 1806 1807 int Log2 = DemandedBits.exactLogBase2(); 1808 if (Log2 >= 0) { 1809 // The bit must come from the sign. 1810 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1811 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1812 } 1813 1814 if (Known.One[BitWidth - ShAmt - 1]) 1815 // New bits are known one. 1816 Known.One.setHighBits(ShAmt); 1817 1818 // Attempt to avoid multi-use ops if we don't need anything from them. 1819 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1820 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1821 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1822 if (DemandedOp0) { 1823 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1824 return TLO.CombineTo(Op, NewOp); 1825 } 1826 } 1827 } 1828 break; 1829 } 1830 case ISD::FSHL: 1831 case ISD::FSHR: { 1832 SDValue Op0 = Op.getOperand(0); 1833 SDValue Op1 = Op.getOperand(1); 1834 SDValue Op2 = Op.getOperand(2); 1835 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1836 1837 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1838 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1839 1840 // For fshl, 0-shift returns the 1st arg. 1841 // For fshr, 0-shift returns the 2nd arg. 1842 if (Amt == 0) { 1843 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1844 Known, TLO, Depth + 1)) 1845 return true; 1846 break; 1847 } 1848 1849 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1850 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1851 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1852 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1853 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1854 Depth + 1)) 1855 return true; 1856 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1857 Depth + 1)) 1858 return true; 1859 1860 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1861 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1862 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1863 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1864 Known.One |= Known2.One; 1865 Known.Zero |= Known2.Zero; 1866 } 1867 1868 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1869 if (isPowerOf2_32(BitWidth)) { 1870 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1871 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1872 Known2, TLO, Depth + 1)) 1873 return true; 1874 } 1875 break; 1876 } 1877 case ISD::ROTL: 1878 case ISD::ROTR: { 1879 SDValue Op0 = Op.getOperand(0); 1880 SDValue Op1 = Op.getOperand(1); 1881 bool IsROTL = (Op.getOpcode() == ISD::ROTL); 1882 1883 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1884 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1885 return TLO.CombineTo(Op, Op0); 1886 1887 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1888 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1889 unsigned RevAmt = BitWidth - Amt; 1890 1891 // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt)) 1892 // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt) 1893 APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt); 1894 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1895 Depth + 1)) 1896 return true; 1897 1898 // rot*(x, 0) --> x 1899 if (Amt == 0) 1900 return TLO.CombineTo(Op, Op0); 1901 1902 // See if we don't demand either half of the rotated bits. 1903 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) && 1904 DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) { 1905 Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType()); 1906 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1)); 1907 } 1908 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) && 1909 DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) { 1910 Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType()); 1911 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1912 } 1913 } 1914 1915 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1916 if (isPowerOf2_32(BitWidth)) { 1917 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1918 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1919 Depth + 1)) 1920 return true; 1921 } 1922 break; 1923 } 1924 case ISD::UMIN: { 1925 // Check if one arg is always less than (or equal) to the other arg. 1926 SDValue Op0 = Op.getOperand(0); 1927 SDValue Op1 = Op.getOperand(1); 1928 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1929 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1930 Known = KnownBits::umin(Known0, Known1); 1931 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 1932 return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1); 1933 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 1934 return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1); 1935 break; 1936 } 1937 case ISD::UMAX: { 1938 // Check if one arg is always greater than (or equal) to the other arg. 1939 SDValue Op0 = Op.getOperand(0); 1940 SDValue Op1 = Op.getOperand(1); 1941 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1942 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1943 Known = KnownBits::umax(Known0, Known1); 1944 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 1945 return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1); 1946 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 1947 return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1); 1948 break; 1949 } 1950 case ISD::BITREVERSE: { 1951 SDValue Src = Op.getOperand(0); 1952 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1953 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1954 Depth + 1)) 1955 return true; 1956 Known.One = Known2.One.reverseBits(); 1957 Known.Zero = Known2.Zero.reverseBits(); 1958 break; 1959 } 1960 case ISD::BSWAP: { 1961 SDValue Src = Op.getOperand(0); 1962 1963 // If the only bits demanded come from one byte of the bswap result, 1964 // just shift the input byte into position to eliminate the bswap. 1965 unsigned NLZ = DemandedBits.countLeadingZeros(); 1966 unsigned NTZ = DemandedBits.countTrailingZeros(); 1967 1968 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 1969 // we need all the bits down to bit 8. Likewise, round NLZ. If we 1970 // have 14 leading zeros, round to 8. 1971 NLZ = alignDown(NLZ, 8); 1972 NTZ = alignDown(NTZ, 8); 1973 // If we need exactly one byte, we can do this transformation. 1974 if (BitWidth - NLZ - NTZ == 8) { 1975 // Replace this with either a left or right shift to get the byte into 1976 // the right place. 1977 unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL; 1978 if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) { 1979 EVT ShiftAmtTy = getShiftAmountTy(VT, DL); 1980 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ; 1981 SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy); 1982 SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt); 1983 return TLO.CombineTo(Op, NewOp); 1984 } 1985 } 1986 1987 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1988 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1989 Depth + 1)) 1990 return true; 1991 Known.One = Known2.One.byteSwap(); 1992 Known.Zero = Known2.Zero.byteSwap(); 1993 break; 1994 } 1995 case ISD::CTPOP: { 1996 // If only 1 bit is demanded, replace with PARITY as long as we're before 1997 // op legalization. 1998 // FIXME: Limit to scalars for now. 1999 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector()) 2000 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 2001 Op.getOperand(0))); 2002 2003 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2004 break; 2005 } 2006 case ISD::SIGN_EXTEND_INREG: { 2007 SDValue Op0 = Op.getOperand(0); 2008 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2009 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 2010 2011 // If we only care about the highest bit, don't bother shifting right. 2012 if (DemandedBits.isSignMask()) { 2013 unsigned MinSignedBits = 2014 TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1); 2015 bool AlreadySignExtended = ExVTBits >= MinSignedBits; 2016 // However if the input is already sign extended we expect the sign 2017 // extension to be dropped altogether later and do not simplify. 2018 if (!AlreadySignExtended) { 2019 // Compute the correct shift amount type, which must be getShiftAmountTy 2020 // for scalar types after legalization. 2021 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl, 2022 getShiftAmountTy(VT, DL)); 2023 return TLO.CombineTo(Op, 2024 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 2025 } 2026 } 2027 2028 // If none of the extended bits are demanded, eliminate the sextinreg. 2029 if (DemandedBits.getActiveBits() <= ExVTBits) 2030 return TLO.CombineTo(Op, Op0); 2031 2032 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 2033 2034 // Since the sign extended bits are demanded, we know that the sign 2035 // bit is demanded. 2036 InputDemandedBits.setBit(ExVTBits - 1); 2037 2038 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 2039 return true; 2040 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2041 2042 // If the sign bit of the input is known set or clear, then we know the 2043 // top bits of the result. 2044 2045 // If the input sign bit is known zero, convert this into a zero extension. 2046 if (Known.Zero[ExVTBits - 1]) 2047 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 2048 2049 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 2050 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 2051 Known.One.setBitsFrom(ExVTBits); 2052 Known.Zero &= Mask; 2053 } else { // Input sign bit unknown 2054 Known.Zero &= Mask; 2055 Known.One &= Mask; 2056 } 2057 break; 2058 } 2059 case ISD::BUILD_PAIR: { 2060 EVT HalfVT = Op.getOperand(0).getValueType(); 2061 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 2062 2063 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 2064 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 2065 2066 KnownBits KnownLo, KnownHi; 2067 2068 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 2069 return true; 2070 2071 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 2072 return true; 2073 2074 Known.Zero = KnownLo.Zero.zext(BitWidth) | 2075 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 2076 2077 Known.One = KnownLo.One.zext(BitWidth) | 2078 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 2079 break; 2080 } 2081 case ISD::ZERO_EXTEND: 2082 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2083 SDValue Src = Op.getOperand(0); 2084 EVT SrcVT = Src.getValueType(); 2085 unsigned InBits = SrcVT.getScalarSizeInBits(); 2086 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2087 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 2088 2089 // If none of the top bits are demanded, convert this into an any_extend. 2090 if (DemandedBits.getActiveBits() <= InBits) { 2091 // If we only need the non-extended bits of the bottom element 2092 // then we can just bitcast to the result. 2093 if (IsLE && IsVecInReg && DemandedElts == 1 && 2094 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2095 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2096 2097 unsigned Opc = 2098 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2099 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2100 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2101 } 2102 2103 APInt InDemandedBits = DemandedBits.trunc(InBits); 2104 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 2105 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2106 Depth + 1)) 2107 return true; 2108 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2109 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2110 Known = Known.zext(BitWidth); 2111 2112 // Attempt to avoid multi-use ops if we don't need anything from them. 2113 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2114 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2115 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2116 break; 2117 } 2118 case ISD::SIGN_EXTEND: 2119 case ISD::SIGN_EXTEND_VECTOR_INREG: { 2120 SDValue Src = Op.getOperand(0); 2121 EVT SrcVT = Src.getValueType(); 2122 unsigned InBits = SrcVT.getScalarSizeInBits(); 2123 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2124 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 2125 2126 // If none of the top bits are demanded, convert this into an any_extend. 2127 if (DemandedBits.getActiveBits() <= InBits) { 2128 // If we only need the non-extended bits of the bottom element 2129 // then we can just bitcast to the result. 2130 if (IsLE && IsVecInReg && DemandedElts == 1 && 2131 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2132 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2133 2134 unsigned Opc = 2135 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2136 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2137 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2138 } 2139 2140 APInt InDemandedBits = DemandedBits.trunc(InBits); 2141 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 2142 2143 // Since some of the sign extended bits are demanded, we know that the sign 2144 // bit is demanded. 2145 InDemandedBits.setBit(InBits - 1); 2146 2147 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2148 Depth + 1)) 2149 return true; 2150 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2151 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2152 2153 // If the sign bit is known one, the top bits match. 2154 Known = Known.sext(BitWidth); 2155 2156 // If the sign bit is known zero, convert this to a zero extend. 2157 if (Known.isNonNegative()) { 2158 unsigned Opc = 2159 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 2160 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2161 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2162 } 2163 2164 // Attempt to avoid multi-use ops if we don't need anything from them. 2165 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2166 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2167 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2168 break; 2169 } 2170 case ISD::ANY_EXTEND: 2171 case ISD::ANY_EXTEND_VECTOR_INREG: { 2172 SDValue Src = Op.getOperand(0); 2173 EVT SrcVT = Src.getValueType(); 2174 unsigned InBits = SrcVT.getScalarSizeInBits(); 2175 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2176 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 2177 2178 // If we only need the bottom element then we can just bitcast. 2179 // TODO: Handle ANY_EXTEND? 2180 if (IsLE && IsVecInReg && DemandedElts == 1 && 2181 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2182 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2183 2184 APInt InDemandedBits = DemandedBits.trunc(InBits); 2185 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 2186 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2187 Depth + 1)) 2188 return true; 2189 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2190 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2191 Known = Known.anyext(BitWidth); 2192 2193 // Attempt to avoid multi-use ops if we don't need anything from them. 2194 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2195 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2196 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2197 break; 2198 } 2199 case ISD::TRUNCATE: { 2200 SDValue Src = Op.getOperand(0); 2201 2202 // Simplify the input, using demanded bit information, and compute the known 2203 // zero/one bits live out. 2204 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2205 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2206 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2207 Depth + 1)) 2208 return true; 2209 Known = Known.trunc(BitWidth); 2210 2211 // Attempt to avoid multi-use ops if we don't need anything from them. 2212 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2213 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2214 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2215 2216 // If the input is only used by this truncate, see if we can shrink it based 2217 // on the known demanded bits. 2218 if (Src.getNode()->hasOneUse()) { 2219 switch (Src.getOpcode()) { 2220 default: 2221 break; 2222 case ISD::SRL: 2223 // Shrink SRL by a constant if none of the high bits shifted in are 2224 // demanded. 2225 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2226 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2227 // undesirable. 2228 break; 2229 2230 const APInt *ShAmtC = 2231 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2232 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2233 break; 2234 uint64_t ShVal = ShAmtC->getZExtValue(); 2235 2236 APInt HighBits = 2237 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2238 HighBits.lshrInPlace(ShVal); 2239 HighBits = HighBits.trunc(BitWidth); 2240 2241 if (!(HighBits & DemandedBits)) { 2242 // None of the shifted in bits are needed. Add a truncate of the 2243 // shift input, then shift it. 2244 SDValue NewShAmt = TLO.DAG.getConstant( 2245 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2246 SDValue NewTrunc = 2247 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2248 return TLO.CombineTo( 2249 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2250 } 2251 break; 2252 } 2253 } 2254 2255 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2256 break; 2257 } 2258 case ISD::AssertZext: { 2259 // AssertZext demands all of the high bits, plus any of the low bits 2260 // demanded by its users. 2261 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2262 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2263 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2264 TLO, Depth + 1)) 2265 return true; 2266 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2267 2268 Known.Zero |= ~InMask; 2269 break; 2270 } 2271 case ISD::EXTRACT_VECTOR_ELT: { 2272 SDValue Src = Op.getOperand(0); 2273 SDValue Idx = Op.getOperand(1); 2274 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2275 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2276 2277 if (SrcEltCnt.isScalable()) 2278 return false; 2279 2280 // Demand the bits from every vector element without a constant index. 2281 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2282 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 2283 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2284 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2285 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2286 2287 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2288 // anything about the extended bits. 2289 APInt DemandedSrcBits = DemandedBits; 2290 if (BitWidth > EltBitWidth) 2291 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2292 2293 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2294 Depth + 1)) 2295 return true; 2296 2297 // Attempt to avoid multi-use ops if we don't need anything from them. 2298 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2299 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2300 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2301 SDValue NewOp = 2302 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2303 return TLO.CombineTo(Op, NewOp); 2304 } 2305 } 2306 2307 Known = Known2; 2308 if (BitWidth > EltBitWidth) 2309 Known = Known.anyext(BitWidth); 2310 break; 2311 } 2312 case ISD::BITCAST: { 2313 SDValue Src = Op.getOperand(0); 2314 EVT SrcVT = Src.getValueType(); 2315 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2316 2317 // If this is an FP->Int bitcast and if the sign bit is the only 2318 // thing demanded, turn this into a FGETSIGN. 2319 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2320 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2321 SrcVT.isFloatingPoint()) { 2322 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2323 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2324 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2325 SrcVT != MVT::f128) { 2326 // Cannot eliminate/lower SHL for f128 yet. 2327 EVT Ty = OpVTLegal ? VT : MVT::i32; 2328 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2329 // place. We expect the SHL to be eliminated by other optimizations. 2330 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2331 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2332 if (!OpVTLegal && OpVTSizeInBits > 32) 2333 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2334 unsigned ShVal = Op.getValueSizeInBits() - 1; 2335 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2336 return TLO.CombineTo(Op, 2337 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2338 } 2339 } 2340 2341 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2342 // Demand the elt/bit if any of the original elts/bits are demanded. 2343 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) { 2344 unsigned Scale = BitWidth / NumSrcEltBits; 2345 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2346 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2347 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2348 for (unsigned i = 0; i != Scale; ++i) { 2349 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 2350 unsigned BitOffset = EltOffset * NumSrcEltBits; 2351 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 2352 if (!Sub.isZero()) { 2353 DemandedSrcBits |= Sub; 2354 for (unsigned j = 0; j != NumElts; ++j) 2355 if (DemandedElts[j]) 2356 DemandedSrcElts.setBit((j * Scale) + i); 2357 } 2358 } 2359 2360 APInt KnownSrcUndef, KnownSrcZero; 2361 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2362 KnownSrcZero, TLO, Depth + 1)) 2363 return true; 2364 2365 KnownBits KnownSrcBits; 2366 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2367 KnownSrcBits, TLO, Depth + 1)) 2368 return true; 2369 } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) { 2370 // TODO - bigendian once we have test coverage. 2371 unsigned Scale = NumSrcEltBits / BitWidth; 2372 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2373 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2374 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2375 for (unsigned i = 0; i != NumElts; ++i) 2376 if (DemandedElts[i]) { 2377 unsigned Offset = (i % Scale) * BitWidth; 2378 DemandedSrcBits.insertBits(DemandedBits, Offset); 2379 DemandedSrcElts.setBit(i / Scale); 2380 } 2381 2382 if (SrcVT.isVector()) { 2383 APInt KnownSrcUndef, KnownSrcZero; 2384 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2385 KnownSrcZero, TLO, Depth + 1)) 2386 return true; 2387 } 2388 2389 KnownBits KnownSrcBits; 2390 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2391 KnownSrcBits, TLO, Depth + 1)) 2392 return true; 2393 } 2394 2395 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2396 // recursive call where Known may be useful to the caller. 2397 if (Depth > 0) { 2398 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2399 return false; 2400 } 2401 break; 2402 } 2403 case ISD::MUL: 2404 if (DemandedBits.isPowerOf2()) { 2405 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. 2406 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is 2407 // odd (has LSB set), then the left-shifted low bit of X is the answer. 2408 unsigned CTZ = DemandedBits.countTrailingZeros(); 2409 ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 2410 if (C && C->getAPIntValue().countTrailingZeros() == CTZ) { 2411 EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout()); 2412 SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy); 2413 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC); 2414 return TLO.CombineTo(Op, Shl); 2415 } 2416 } 2417 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because: 2418 // X * X is odd iff X is odd. 2419 // 'Quadratic Reciprocity': X * X -> 0 for bit[1] 2420 if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) { 2421 SDValue One = TLO.DAG.getConstant(1, dl, VT); 2422 SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One); 2423 return TLO.CombineTo(Op, And1); 2424 } 2425 LLVM_FALLTHROUGH; 2426 case ISD::ADD: 2427 case ISD::SUB: { 2428 // Add, Sub, and Mul don't demand any bits in positions beyond that 2429 // of the highest bit demanded of them. 2430 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2431 SDNodeFlags Flags = Op.getNode()->getFlags(); 2432 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2433 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2434 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2435 Depth + 1) || 2436 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2437 Depth + 1) || 2438 // See if the operation should be performed at a smaller bit width. 2439 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2440 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2441 // Disable the nsw and nuw flags. We can no longer guarantee that we 2442 // won't wrap after simplification. 2443 Flags.setNoSignedWrap(false); 2444 Flags.setNoUnsignedWrap(false); 2445 SDValue NewOp = 2446 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2447 return TLO.CombineTo(Op, NewOp); 2448 } 2449 return true; 2450 } 2451 2452 // Attempt to avoid multi-use ops if we don't need anything from them. 2453 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2454 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2455 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2456 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2457 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2458 if (DemandedOp0 || DemandedOp1) { 2459 Flags.setNoSignedWrap(false); 2460 Flags.setNoUnsignedWrap(false); 2461 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2462 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2463 SDValue NewOp = 2464 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2465 return TLO.CombineTo(Op, NewOp); 2466 } 2467 } 2468 2469 // If we have a constant operand, we may be able to turn it into -1 if we 2470 // do not demand the high bits. This can make the constant smaller to 2471 // encode, allow more general folding, or match specialized instruction 2472 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2473 // is probably not useful (and could be detrimental). 2474 ConstantSDNode *C = isConstOrConstSplat(Op1); 2475 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2476 if (C && !C->isAllOnes() && !C->isOne() && 2477 (C->getAPIntValue() | HighMask).isAllOnes()) { 2478 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2479 // Disable the nsw and nuw flags. We can no longer guarantee that we 2480 // won't wrap after simplification. 2481 Flags.setNoSignedWrap(false); 2482 Flags.setNoUnsignedWrap(false); 2483 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2484 return TLO.CombineTo(Op, NewOp); 2485 } 2486 2487 // Match a multiply with a disguised negated-power-of-2 and convert to a 2488 // an equivalent shift-left amount. 2489 // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2490 auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned { 2491 if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse()) 2492 return 0; 2493 2494 // Don't touch opaque constants. Also, ignore zero and power-of-2 2495 // multiplies. Those will get folded later. 2496 ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1)); 2497 if (MulC && !MulC->isOpaque() && !MulC->isZero() && 2498 !MulC->getAPIntValue().isPowerOf2()) { 2499 APInt UnmaskedC = MulC->getAPIntValue() | HighMask; 2500 if (UnmaskedC.isNegatedPowerOf2()) 2501 return (-UnmaskedC).logBase2(); 2502 } 2503 return 0; 2504 }; 2505 2506 auto foldMul = [&](SDValue X, SDValue Y, unsigned ShlAmt) { 2507 EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout()); 2508 SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy); 2509 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC); 2510 SDValue Sub = TLO.DAG.getNode(ISD::SUB, dl, VT, Y, Shl); 2511 return TLO.CombineTo(Op, Sub); 2512 }; 2513 2514 if (isOperationLegalOrCustom(ISD::SHL, VT)) { 2515 if (Op.getOpcode() == ISD::ADD) { 2516 // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2517 if (unsigned ShAmt = getShiftLeftAmt(Op0)) 2518 return foldMul(Op0.getOperand(0), Op1, ShAmt); 2519 // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC)) 2520 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2521 return foldMul(Op1.getOperand(0), Op0, ShAmt); 2522 // TODO: 2523 // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC)) 2524 } 2525 } 2526 2527 LLVM_FALLTHROUGH; 2528 } 2529 default: 2530 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2531 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2532 Known, TLO, Depth)) 2533 return true; 2534 break; 2535 } 2536 2537 // Just use computeKnownBits to compute output bits. 2538 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2539 break; 2540 } 2541 2542 // If we know the value of all of the demanded bits, return this as a 2543 // constant. 2544 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2545 // Avoid folding to a constant if any OpaqueConstant is involved. 2546 const SDNode *N = Op.getNode(); 2547 for (SDNode *Op : 2548 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2549 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2550 if (C->isOpaque()) 2551 return false; 2552 } 2553 if (VT.isInteger()) 2554 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2555 if (VT.isFloatingPoint()) 2556 return TLO.CombineTo( 2557 Op, 2558 TLO.DAG.getConstantFP( 2559 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2560 } 2561 2562 return false; 2563 } 2564 2565 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2566 const APInt &DemandedElts, 2567 DAGCombinerInfo &DCI) const { 2568 SelectionDAG &DAG = DCI.DAG; 2569 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2570 !DCI.isBeforeLegalizeOps()); 2571 2572 APInt KnownUndef, KnownZero; 2573 bool Simplified = 2574 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2575 if (Simplified) { 2576 DCI.AddToWorklist(Op.getNode()); 2577 DCI.CommitTargetLoweringOpt(TLO); 2578 } 2579 2580 return Simplified; 2581 } 2582 2583 /// Given a vector binary operation and known undefined elements for each input 2584 /// operand, compute whether each element of the output is undefined. 2585 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2586 const APInt &UndefOp0, 2587 const APInt &UndefOp1) { 2588 EVT VT = BO.getValueType(); 2589 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2590 "Vector binop only"); 2591 2592 EVT EltVT = VT.getVectorElementType(); 2593 unsigned NumElts = VT.getVectorNumElements(); 2594 assert(UndefOp0.getBitWidth() == NumElts && 2595 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2596 2597 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2598 const APInt &UndefVals) { 2599 if (UndefVals[Index]) 2600 return DAG.getUNDEF(EltVT); 2601 2602 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2603 // Try hard to make sure that the getNode() call is not creating temporary 2604 // nodes. Ignore opaque integers because they do not constant fold. 2605 SDValue Elt = BV->getOperand(Index); 2606 auto *C = dyn_cast<ConstantSDNode>(Elt); 2607 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2608 return Elt; 2609 } 2610 2611 return SDValue(); 2612 }; 2613 2614 APInt KnownUndef = APInt::getZero(NumElts); 2615 for (unsigned i = 0; i != NumElts; ++i) { 2616 // If both inputs for this element are either constant or undef and match 2617 // the element type, compute the constant/undef result for this element of 2618 // the vector. 2619 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2620 // not handle FP constants. The code within getNode() should be refactored 2621 // to avoid the danger of creating a bogus temporary node here. 2622 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2623 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2624 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2625 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2626 KnownUndef.setBit(i); 2627 } 2628 return KnownUndef; 2629 } 2630 2631 bool TargetLowering::SimplifyDemandedVectorElts( 2632 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2633 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2634 bool AssumeSingleUse) const { 2635 EVT VT = Op.getValueType(); 2636 unsigned Opcode = Op.getOpcode(); 2637 APInt DemandedElts = OriginalDemandedElts; 2638 unsigned NumElts = DemandedElts.getBitWidth(); 2639 assert(VT.isVector() && "Expected vector op"); 2640 2641 KnownUndef = KnownZero = APInt::getZero(NumElts); 2642 2643 const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo(); 2644 if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO)) 2645 return false; 2646 2647 // TODO: For now we assume we know nothing about scalable vectors. 2648 if (VT.isScalableVector()) 2649 return false; 2650 2651 assert(VT.getVectorNumElements() == NumElts && 2652 "Mask size mismatches value type element count!"); 2653 2654 // Undef operand. 2655 if (Op.isUndef()) { 2656 KnownUndef.setAllBits(); 2657 return false; 2658 } 2659 2660 // If Op has other users, assume that all elements are needed. 2661 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2662 DemandedElts.setAllBits(); 2663 2664 // Not demanding any elements from Op. 2665 if (DemandedElts == 0) { 2666 KnownUndef.setAllBits(); 2667 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2668 } 2669 2670 // Limit search depth. 2671 if (Depth >= SelectionDAG::MaxRecursionDepth) 2672 return false; 2673 2674 SDLoc DL(Op); 2675 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2676 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 2677 2678 // Helper for demanding the specified elements and all the bits of both binary 2679 // operands. 2680 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2681 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2682 TLO.DAG, Depth + 1); 2683 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2684 TLO.DAG, Depth + 1); 2685 if (NewOp0 || NewOp1) { 2686 SDValue NewOp = TLO.DAG.getNode( 2687 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2688 return TLO.CombineTo(Op, NewOp); 2689 } 2690 return false; 2691 }; 2692 2693 switch (Opcode) { 2694 case ISD::SCALAR_TO_VECTOR: { 2695 if (!DemandedElts[0]) { 2696 KnownUndef.setAllBits(); 2697 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2698 } 2699 SDValue ScalarSrc = Op.getOperand(0); 2700 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 2701 SDValue Src = ScalarSrc.getOperand(0); 2702 SDValue Idx = ScalarSrc.getOperand(1); 2703 EVT SrcVT = Src.getValueType(); 2704 2705 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 2706 2707 if (SrcEltCnt.isScalable()) 2708 return false; 2709 2710 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2711 if (isNullConstant(Idx)) { 2712 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 2713 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 2714 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 2715 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2716 TLO, Depth + 1)) 2717 return true; 2718 } 2719 } 2720 KnownUndef.setHighBits(NumElts - 1); 2721 break; 2722 } 2723 case ISD::BITCAST: { 2724 SDValue Src = Op.getOperand(0); 2725 EVT SrcVT = Src.getValueType(); 2726 2727 // We only handle vectors here. 2728 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2729 if (!SrcVT.isVector()) 2730 break; 2731 2732 // Fast handling of 'identity' bitcasts. 2733 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2734 if (NumSrcElts == NumElts) 2735 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2736 KnownZero, TLO, Depth + 1); 2737 2738 APInt SrcDemandedElts, SrcZero, SrcUndef; 2739 2740 // Bitcast from 'large element' src vector to 'small element' vector, we 2741 // must demand a source element if any DemandedElt maps to it. 2742 if ((NumElts % NumSrcElts) == 0) { 2743 unsigned Scale = NumElts / NumSrcElts; 2744 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2745 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2746 TLO, Depth + 1)) 2747 return true; 2748 2749 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2750 // of the large element. 2751 // TODO - bigendian once we have test coverage. 2752 if (IsLE) { 2753 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2754 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits); 2755 for (unsigned i = 0; i != NumElts; ++i) 2756 if (DemandedElts[i]) { 2757 unsigned Ofs = (i % Scale) * EltSizeInBits; 2758 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2759 } 2760 2761 KnownBits Known; 2762 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2763 TLO, Depth + 1)) 2764 return true; 2765 2766 // The bitcast has split each wide element into a number of 2767 // narrow subelements. We have just computed the Known bits 2768 // for wide elements. See if element splitting results in 2769 // some subelements being zero. Only for demanded elements! 2770 for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) { 2771 if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits) 2772 .isAllOnes()) 2773 continue; 2774 for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) { 2775 unsigned Elt = Scale * SrcElt + SubElt; 2776 if (DemandedElts[Elt]) 2777 KnownZero.setBit(Elt); 2778 } 2779 } 2780 } 2781 2782 // If the src element is zero/undef then all the output elements will be - 2783 // only demanded elements are guaranteed to be correct. 2784 for (unsigned i = 0; i != NumSrcElts; ++i) { 2785 if (SrcDemandedElts[i]) { 2786 if (SrcZero[i]) 2787 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2788 if (SrcUndef[i]) 2789 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2790 } 2791 } 2792 } 2793 2794 // Bitcast from 'small element' src vector to 'large element' vector, we 2795 // demand all smaller source elements covered by the larger demanded element 2796 // of this vector. 2797 if ((NumSrcElts % NumElts) == 0) { 2798 unsigned Scale = NumSrcElts / NumElts; 2799 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2800 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2801 TLO, Depth + 1)) 2802 return true; 2803 2804 // If all the src elements covering an output element are zero/undef, then 2805 // the output element will be as well, assuming it was demanded. 2806 for (unsigned i = 0; i != NumElts; ++i) { 2807 if (DemandedElts[i]) { 2808 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes()) 2809 KnownZero.setBit(i); 2810 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes()) 2811 KnownUndef.setBit(i); 2812 } 2813 } 2814 } 2815 break; 2816 } 2817 case ISD::BUILD_VECTOR: { 2818 // Check all elements and simplify any unused elements with UNDEF. 2819 if (!DemandedElts.isAllOnes()) { 2820 // Don't simplify BROADCASTS. 2821 if (llvm::any_of(Op->op_values(), 2822 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2823 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2824 bool Updated = false; 2825 for (unsigned i = 0; i != NumElts; ++i) { 2826 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2827 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2828 KnownUndef.setBit(i); 2829 Updated = true; 2830 } 2831 } 2832 if (Updated) 2833 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2834 } 2835 } 2836 for (unsigned i = 0; i != NumElts; ++i) { 2837 SDValue SrcOp = Op.getOperand(i); 2838 if (SrcOp.isUndef()) { 2839 KnownUndef.setBit(i); 2840 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2841 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2842 KnownZero.setBit(i); 2843 } 2844 } 2845 break; 2846 } 2847 case ISD::CONCAT_VECTORS: { 2848 EVT SubVT = Op.getOperand(0).getValueType(); 2849 unsigned NumSubVecs = Op.getNumOperands(); 2850 unsigned NumSubElts = SubVT.getVectorNumElements(); 2851 for (unsigned i = 0; i != NumSubVecs; ++i) { 2852 SDValue SubOp = Op.getOperand(i); 2853 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2854 APInt SubUndef, SubZero; 2855 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2856 Depth + 1)) 2857 return true; 2858 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2859 KnownZero.insertBits(SubZero, i * NumSubElts); 2860 } 2861 break; 2862 } 2863 case ISD::INSERT_SUBVECTOR: { 2864 // Demand any elements from the subvector and the remainder from the src its 2865 // inserted into. 2866 SDValue Src = Op.getOperand(0); 2867 SDValue Sub = Op.getOperand(1); 2868 uint64_t Idx = Op.getConstantOperandVal(2); 2869 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2870 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2871 APInt DemandedSrcElts = DemandedElts; 2872 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2873 2874 APInt SubUndef, SubZero; 2875 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2876 Depth + 1)) 2877 return true; 2878 2879 // If none of the src operand elements are demanded, replace it with undef. 2880 if (!DemandedSrcElts && !Src.isUndef()) 2881 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2882 TLO.DAG.getUNDEF(VT), Sub, 2883 Op.getOperand(2))); 2884 2885 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2886 TLO, Depth + 1)) 2887 return true; 2888 KnownUndef.insertBits(SubUndef, Idx); 2889 KnownZero.insertBits(SubZero, Idx); 2890 2891 // Attempt to avoid multi-use ops if we don't need anything from them. 2892 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { 2893 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2894 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2895 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2896 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2897 if (NewSrc || NewSub) { 2898 NewSrc = NewSrc ? NewSrc : Src; 2899 NewSub = NewSub ? NewSub : Sub; 2900 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2901 NewSub, Op.getOperand(2)); 2902 return TLO.CombineTo(Op, NewOp); 2903 } 2904 } 2905 break; 2906 } 2907 case ISD::EXTRACT_SUBVECTOR: { 2908 // Offset the demanded elts by the subvector index. 2909 SDValue Src = Op.getOperand(0); 2910 if (Src.getValueType().isScalableVector()) 2911 break; 2912 uint64_t Idx = Op.getConstantOperandVal(1); 2913 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2914 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2915 2916 APInt SrcUndef, SrcZero; 2917 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2918 Depth + 1)) 2919 return true; 2920 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2921 KnownZero = SrcZero.extractBits(NumElts, Idx); 2922 2923 // Attempt to avoid multi-use ops if we don't need anything from them. 2924 if (!DemandedElts.isAllOnes()) { 2925 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2926 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2927 if (NewSrc) { 2928 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2929 Op.getOperand(1)); 2930 return TLO.CombineTo(Op, NewOp); 2931 } 2932 } 2933 break; 2934 } 2935 case ISD::INSERT_VECTOR_ELT: { 2936 SDValue Vec = Op.getOperand(0); 2937 SDValue Scl = Op.getOperand(1); 2938 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2939 2940 // For a legal, constant insertion index, if we don't need this insertion 2941 // then strip it, else remove it from the demanded elts. 2942 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2943 unsigned Idx = CIdx->getZExtValue(); 2944 if (!DemandedElts[Idx]) 2945 return TLO.CombineTo(Op, Vec); 2946 2947 APInt DemandedVecElts(DemandedElts); 2948 DemandedVecElts.clearBit(Idx); 2949 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2950 KnownZero, TLO, Depth + 1)) 2951 return true; 2952 2953 KnownUndef.setBitVal(Idx, Scl.isUndef()); 2954 2955 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 2956 break; 2957 } 2958 2959 APInt VecUndef, VecZero; 2960 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2961 Depth + 1)) 2962 return true; 2963 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2964 break; 2965 } 2966 case ISD::VSELECT: { 2967 // Try to transform the select condition based on the current demanded 2968 // elements. 2969 // TODO: If a condition element is undef, we can choose from one arm of the 2970 // select (and if one arm is undef, then we can propagate that to the 2971 // result). 2972 // TODO - add support for constant vselect masks (see IR version of this). 2973 APInt UnusedUndef, UnusedZero; 2974 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2975 UnusedZero, TLO, Depth + 1)) 2976 return true; 2977 2978 // See if we can simplify either vselect operand. 2979 APInt DemandedLHS(DemandedElts); 2980 APInt DemandedRHS(DemandedElts); 2981 APInt UndefLHS, ZeroLHS; 2982 APInt UndefRHS, ZeroRHS; 2983 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2984 ZeroLHS, TLO, Depth + 1)) 2985 return true; 2986 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2987 ZeroRHS, TLO, Depth + 1)) 2988 return true; 2989 2990 KnownUndef = UndefLHS & UndefRHS; 2991 KnownZero = ZeroLHS & ZeroRHS; 2992 break; 2993 } 2994 case ISD::VECTOR_SHUFFLE: { 2995 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2996 2997 // Collect demanded elements from shuffle operands.. 2998 APInt DemandedLHS(NumElts, 0); 2999 APInt DemandedRHS(NumElts, 0); 3000 for (unsigned i = 0; i != NumElts; ++i) { 3001 int M = ShuffleMask[i]; 3002 if (M < 0 || !DemandedElts[i]) 3003 continue; 3004 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 3005 if (M < (int)NumElts) 3006 DemandedLHS.setBit(M); 3007 else 3008 DemandedRHS.setBit(M - NumElts); 3009 } 3010 3011 // See if we can simplify either shuffle operand. 3012 APInt UndefLHS, ZeroLHS; 3013 APInt UndefRHS, ZeroRHS; 3014 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 3015 ZeroLHS, TLO, Depth + 1)) 3016 return true; 3017 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 3018 ZeroRHS, TLO, Depth + 1)) 3019 return true; 3020 3021 // Simplify mask using undef elements from LHS/RHS. 3022 bool Updated = false; 3023 bool IdentityLHS = true, IdentityRHS = true; 3024 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 3025 for (unsigned i = 0; i != NumElts; ++i) { 3026 int &M = NewMask[i]; 3027 if (M < 0) 3028 continue; 3029 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 3030 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 3031 Updated = true; 3032 M = -1; 3033 } 3034 IdentityLHS &= (M < 0) || (M == (int)i); 3035 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 3036 } 3037 3038 // Update legal shuffle masks based on demanded elements if it won't reduce 3039 // to Identity which can cause premature removal of the shuffle mask. 3040 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 3041 SDValue LegalShuffle = 3042 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 3043 NewMask, TLO.DAG); 3044 if (LegalShuffle) 3045 return TLO.CombineTo(Op, LegalShuffle); 3046 } 3047 3048 // Propagate undef/zero elements from LHS/RHS. 3049 for (unsigned i = 0; i != NumElts; ++i) { 3050 int M = ShuffleMask[i]; 3051 if (M < 0) { 3052 KnownUndef.setBit(i); 3053 } else if (M < (int)NumElts) { 3054 if (UndefLHS[M]) 3055 KnownUndef.setBit(i); 3056 if (ZeroLHS[M]) 3057 KnownZero.setBit(i); 3058 } else { 3059 if (UndefRHS[M - NumElts]) 3060 KnownUndef.setBit(i); 3061 if (ZeroRHS[M - NumElts]) 3062 KnownZero.setBit(i); 3063 } 3064 } 3065 break; 3066 } 3067 case ISD::ANY_EXTEND_VECTOR_INREG: 3068 case ISD::SIGN_EXTEND_VECTOR_INREG: 3069 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3070 APInt SrcUndef, SrcZero; 3071 SDValue Src = Op.getOperand(0); 3072 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3073 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 3074 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 3075 Depth + 1)) 3076 return true; 3077 KnownZero = SrcZero.zextOrTrunc(NumElts); 3078 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 3079 3080 if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 3081 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 3082 DemandedSrcElts == 1) { 3083 // aext - if we just need the bottom element then we can bitcast. 3084 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 3085 } 3086 3087 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 3088 // zext(undef) upper bits are guaranteed to be zero. 3089 if (DemandedElts.isSubsetOf(KnownUndef)) 3090 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3091 KnownUndef.clearAllBits(); 3092 3093 // zext - if we just need the bottom element then we can mask: 3094 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and. 3095 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND && 3096 Op->isOnlyUserOf(Src.getNode()) && 3097 Op.getValueSizeInBits() == Src.getValueSizeInBits()) { 3098 SDLoc DL(Op); 3099 EVT SrcVT = Src.getValueType(); 3100 EVT SrcSVT = SrcVT.getScalarType(); 3101 SmallVector<SDValue> MaskElts; 3102 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT)); 3103 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT)); 3104 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts); 3105 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic( 3106 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) { 3107 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold); 3108 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold)); 3109 } 3110 } 3111 } 3112 break; 3113 } 3114 3115 // TODO: There are more binop opcodes that could be handled here - MIN, 3116 // MAX, saturated math, etc. 3117 case ISD::ADD: { 3118 SDValue Op0 = Op.getOperand(0); 3119 SDValue Op1 = Op.getOperand(1); 3120 if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) { 3121 APInt UndefLHS, ZeroLHS; 3122 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3123 Depth + 1, /*AssumeSingleUse*/ true)) 3124 return true; 3125 } 3126 LLVM_FALLTHROUGH; 3127 } 3128 case ISD::OR: 3129 case ISD::XOR: 3130 case ISD::SUB: 3131 case ISD::FADD: 3132 case ISD::FSUB: 3133 case ISD::FMUL: 3134 case ISD::FDIV: 3135 case ISD::FREM: { 3136 SDValue Op0 = Op.getOperand(0); 3137 SDValue Op1 = Op.getOperand(1); 3138 3139 APInt UndefRHS, ZeroRHS; 3140 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3141 Depth + 1)) 3142 return true; 3143 APInt UndefLHS, ZeroLHS; 3144 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3145 Depth + 1)) 3146 return true; 3147 3148 KnownZero = ZeroLHS & ZeroRHS; 3149 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 3150 3151 // Attempt to avoid multi-use ops if we don't need anything from them. 3152 // TODO - use KnownUndef to relax the demandedelts? 3153 if (!DemandedElts.isAllOnes()) 3154 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3155 return true; 3156 break; 3157 } 3158 case ISD::SHL: 3159 case ISD::SRL: 3160 case ISD::SRA: 3161 case ISD::ROTL: 3162 case ISD::ROTR: { 3163 SDValue Op0 = Op.getOperand(0); 3164 SDValue Op1 = Op.getOperand(1); 3165 3166 APInt UndefRHS, ZeroRHS; 3167 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3168 Depth + 1)) 3169 return true; 3170 APInt UndefLHS, ZeroLHS; 3171 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3172 Depth + 1)) 3173 return true; 3174 3175 KnownZero = ZeroLHS; 3176 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 3177 3178 // Attempt to avoid multi-use ops if we don't need anything from them. 3179 // TODO - use KnownUndef to relax the demandedelts? 3180 if (!DemandedElts.isAllOnes()) 3181 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3182 return true; 3183 break; 3184 } 3185 case ISD::MUL: 3186 case ISD::AND: { 3187 SDValue Op0 = Op.getOperand(0); 3188 SDValue Op1 = Op.getOperand(1); 3189 3190 APInt SrcUndef, SrcZero; 3191 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 3192 Depth + 1)) 3193 return true; 3194 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 3195 TLO, Depth + 1)) 3196 return true; 3197 3198 // If either side has a zero element, then the result element is zero, even 3199 // if the other is an UNDEF. 3200 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 3201 // and then handle 'and' nodes with the rest of the binop opcodes. 3202 KnownZero |= SrcZero; 3203 KnownUndef &= SrcUndef; 3204 KnownUndef &= ~KnownZero; 3205 3206 // Attempt to avoid multi-use ops if we don't need anything from them. 3207 // TODO - use KnownUndef to relax the demandedelts? 3208 if (!DemandedElts.isAllOnes()) 3209 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3210 return true; 3211 break; 3212 } 3213 case ISD::TRUNCATE: 3214 case ISD::SIGN_EXTEND: 3215 case ISD::ZERO_EXTEND: 3216 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 3217 KnownZero, TLO, Depth + 1)) 3218 return true; 3219 3220 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 3221 // zext(undef) upper bits are guaranteed to be zero. 3222 if (DemandedElts.isSubsetOf(KnownUndef)) 3223 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3224 KnownUndef.clearAllBits(); 3225 } 3226 break; 3227 default: { 3228 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 3229 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 3230 KnownZero, TLO, Depth)) 3231 return true; 3232 } else { 3233 KnownBits Known; 3234 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits); 3235 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 3236 TLO, Depth, AssumeSingleUse)) 3237 return true; 3238 } 3239 break; 3240 } 3241 } 3242 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 3243 3244 // Constant fold all undef cases. 3245 // TODO: Handle zero cases as well. 3246 if (DemandedElts.isSubsetOf(KnownUndef)) 3247 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3248 3249 return false; 3250 } 3251 3252 /// Determine which of the bits specified in Mask are known to be either zero or 3253 /// one and return them in the Known. 3254 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 3255 KnownBits &Known, 3256 const APInt &DemandedElts, 3257 const SelectionDAG &DAG, 3258 unsigned Depth) const { 3259 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3260 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3261 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3262 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3263 "Should use MaskedValueIsZero if you don't know whether Op" 3264 " is a target node!"); 3265 Known.resetAll(); 3266 } 3267 3268 void TargetLowering::computeKnownBitsForTargetInstr( 3269 GISelKnownBits &Analysis, Register R, KnownBits &Known, 3270 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 3271 unsigned Depth) const { 3272 Known.resetAll(); 3273 } 3274 3275 void TargetLowering::computeKnownBitsForFrameIndex( 3276 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 3277 // The low bits are known zero if the pointer is aligned. 3278 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 3279 } 3280 3281 Align TargetLowering::computeKnownAlignForTargetInstr( 3282 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 3283 unsigned Depth) const { 3284 return Align(1); 3285 } 3286 3287 /// This method can be implemented by targets that want to expose additional 3288 /// information about sign bits to the DAG Combiner. 3289 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 3290 const APInt &, 3291 const SelectionDAG &, 3292 unsigned Depth) const { 3293 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3294 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3295 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3296 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3297 "Should use ComputeNumSignBits if you don't know whether Op" 3298 " is a target node!"); 3299 return 1; 3300 } 3301 3302 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 3303 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 3304 const MachineRegisterInfo &MRI, unsigned Depth) const { 3305 return 1; 3306 } 3307 3308 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3309 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3310 TargetLoweringOpt &TLO, unsigned Depth) const { 3311 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3312 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3313 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3314 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3315 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3316 " is a target node!"); 3317 return false; 3318 } 3319 3320 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3321 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3322 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3323 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3324 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3325 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3326 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3327 "Should use SimplifyDemandedBits if you don't know whether Op" 3328 " is a target node!"); 3329 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3330 return false; 3331 } 3332 3333 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3334 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3335 SelectionDAG &DAG, unsigned Depth) const { 3336 assert( 3337 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3338 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3339 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3340 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3341 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3342 " is a target node!"); 3343 return SDValue(); 3344 } 3345 3346 SDValue 3347 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3348 SDValue N1, MutableArrayRef<int> Mask, 3349 SelectionDAG &DAG) const { 3350 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3351 if (!LegalMask) { 3352 std::swap(N0, N1); 3353 ShuffleVectorSDNode::commuteMask(Mask); 3354 LegalMask = isShuffleMaskLegal(Mask, VT); 3355 } 3356 3357 if (!LegalMask) 3358 return SDValue(); 3359 3360 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3361 } 3362 3363 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3364 return nullptr; 3365 } 3366 3367 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3368 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3369 bool PoisonOnly, unsigned Depth) const { 3370 assert( 3371 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3372 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3373 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3374 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3375 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3376 " is a target node!"); 3377 return false; 3378 } 3379 3380 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3381 const SelectionDAG &DAG, 3382 bool SNaN, 3383 unsigned Depth) const { 3384 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3385 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3386 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3387 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3388 "Should use isKnownNeverNaN if you don't know whether Op" 3389 " is a target node!"); 3390 return false; 3391 } 3392 3393 bool TargetLowering::isSplatValueForTargetNode(SDValue Op, 3394 const APInt &DemandedElts, 3395 APInt &UndefElts, 3396 unsigned Depth) const { 3397 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3398 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3399 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3400 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3401 "Should use isSplatValue if you don't know whether Op" 3402 " is a target node!"); 3403 return false; 3404 } 3405 3406 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3407 // work with truncating build vectors and vectors with elements of less than 3408 // 8 bits. 3409 bool TargetLowering::isConstTrueVal(SDValue N) const { 3410 if (!N) 3411 return false; 3412 3413 unsigned EltWidth; 3414 APInt CVal; 3415 if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false, 3416 /*AllowTruncation=*/true)) { 3417 CVal = CN->getAPIntValue(); 3418 EltWidth = N.getValueType().getScalarSizeInBits(); 3419 } else 3420 return false; 3421 3422 // If this is a truncating splat, truncate the splat value. 3423 // Otherwise, we may fail to match the expected values below. 3424 if (EltWidth < CVal.getBitWidth()) 3425 CVal = CVal.trunc(EltWidth); 3426 3427 switch (getBooleanContents(N.getValueType())) { 3428 case UndefinedBooleanContent: 3429 return CVal[0]; 3430 case ZeroOrOneBooleanContent: 3431 return CVal.isOne(); 3432 case ZeroOrNegativeOneBooleanContent: 3433 return CVal.isAllOnes(); 3434 } 3435 3436 llvm_unreachable("Invalid boolean contents"); 3437 } 3438 3439 bool TargetLowering::isConstFalseVal(SDValue N) const { 3440 if (!N) 3441 return false; 3442 3443 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3444 if (!CN) { 3445 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3446 if (!BV) 3447 return false; 3448 3449 // Only interested in constant splats, we don't care about undef 3450 // elements in identifying boolean constants and getConstantSplatNode 3451 // returns NULL if all ops are undef; 3452 CN = BV->getConstantSplatNode(); 3453 if (!CN) 3454 return false; 3455 } 3456 3457 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3458 return !CN->getAPIntValue()[0]; 3459 3460 return CN->isZero(); 3461 } 3462 3463 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3464 bool SExt) const { 3465 if (VT == MVT::i1) 3466 return N->isOne(); 3467 3468 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3469 switch (Cnt) { 3470 case TargetLowering::ZeroOrOneBooleanContent: 3471 // An extended value of 1 is always true, unless its original type is i1, 3472 // in which case it will be sign extended to -1. 3473 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3474 case TargetLowering::UndefinedBooleanContent: 3475 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3476 return N->isAllOnes() && SExt; 3477 } 3478 llvm_unreachable("Unexpected enumeration."); 3479 } 3480 3481 /// This helper function of SimplifySetCC tries to optimize the comparison when 3482 /// either operand of the SetCC node is a bitwise-and instruction. 3483 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3484 ISD::CondCode Cond, const SDLoc &DL, 3485 DAGCombinerInfo &DCI) const { 3486 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3487 std::swap(N0, N1); 3488 3489 SelectionDAG &DAG = DCI.DAG; 3490 EVT OpVT = N0.getValueType(); 3491 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3492 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3493 return SDValue(); 3494 3495 // (X & Y) != 0 --> zextOrTrunc(X & Y) 3496 // iff everything but LSB is known zero: 3497 if (Cond == ISD::SETNE && isNullConstant(N1) && 3498 (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent || 3499 getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) { 3500 unsigned NumEltBits = OpVT.getScalarSizeInBits(); 3501 APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1); 3502 if (DAG.MaskedValueIsZero(N0, UpperBits)) 3503 return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT); 3504 } 3505 3506 // Match these patterns in any of their permutations: 3507 // (X & Y) == Y 3508 // (X & Y) != Y 3509 SDValue X, Y; 3510 if (N0.getOperand(0) == N1) { 3511 X = N0.getOperand(1); 3512 Y = N0.getOperand(0); 3513 } else if (N0.getOperand(1) == N1) { 3514 X = N0.getOperand(0); 3515 Y = N0.getOperand(1); 3516 } else { 3517 return SDValue(); 3518 } 3519 3520 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3521 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3522 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3523 // Note that where Y is variable and is known to have at most one bit set 3524 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3525 // equivalent when Y == 0. 3526 assert(OpVT.isInteger()); 3527 Cond = ISD::getSetCCInverse(Cond, OpVT); 3528 if (DCI.isBeforeLegalizeOps() || 3529 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3530 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3531 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3532 // If the target supports an 'and-not' or 'and-complement' logic operation, 3533 // try to use that to make a comparison operation more efficient. 3534 // But don't do this transform if the mask is a single bit because there are 3535 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3536 // 'rlwinm' on PPC). 3537 3538 // Bail out if the compare operand that we want to turn into a zero is 3539 // already a zero (otherwise, infinite loop). 3540 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3541 if (YConst && YConst->isZero()) 3542 return SDValue(); 3543 3544 // Transform this into: ~X & Y == 0. 3545 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3546 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3547 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3548 } 3549 3550 return SDValue(); 3551 } 3552 3553 /// There are multiple IR patterns that could be checking whether certain 3554 /// truncation of a signed number would be lossy or not. The pattern which is 3555 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3556 /// We are looking for the following pattern: (KeptBits is a constant) 3557 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3558 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3559 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3560 /// We will unfold it into the natural trunc+sext pattern: 3561 /// ((%x << C) a>> C) dstcond %x 3562 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3563 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3564 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3565 const SDLoc &DL) const { 3566 // We must be comparing with a constant. 3567 ConstantSDNode *C1; 3568 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3569 return SDValue(); 3570 3571 // N0 should be: add %x, (1 << (KeptBits-1)) 3572 if (N0->getOpcode() != ISD::ADD) 3573 return SDValue(); 3574 3575 // And we must be 'add'ing a constant. 3576 ConstantSDNode *C01; 3577 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3578 return SDValue(); 3579 3580 SDValue X = N0->getOperand(0); 3581 EVT XVT = X.getValueType(); 3582 3583 // Validate constants ... 3584 3585 APInt I1 = C1->getAPIntValue(); 3586 3587 ISD::CondCode NewCond; 3588 if (Cond == ISD::CondCode::SETULT) { 3589 NewCond = ISD::CondCode::SETEQ; 3590 } else if (Cond == ISD::CondCode::SETULE) { 3591 NewCond = ISD::CondCode::SETEQ; 3592 // But need to 'canonicalize' the constant. 3593 I1 += 1; 3594 } else if (Cond == ISD::CondCode::SETUGT) { 3595 NewCond = ISD::CondCode::SETNE; 3596 // But need to 'canonicalize' the constant. 3597 I1 += 1; 3598 } else if (Cond == ISD::CondCode::SETUGE) { 3599 NewCond = ISD::CondCode::SETNE; 3600 } else 3601 return SDValue(); 3602 3603 APInt I01 = C01->getAPIntValue(); 3604 3605 auto checkConstants = [&I1, &I01]() -> bool { 3606 // Both of them must be power-of-two, and the constant from setcc is bigger. 3607 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3608 }; 3609 3610 if (checkConstants()) { 3611 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3612 } else { 3613 // What if we invert constants? (and the target predicate) 3614 I1.negate(); 3615 I01.negate(); 3616 assert(XVT.isInteger()); 3617 NewCond = getSetCCInverse(NewCond, XVT); 3618 if (!checkConstants()) 3619 return SDValue(); 3620 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3621 } 3622 3623 // They are power-of-two, so which bit is set? 3624 const unsigned KeptBits = I1.logBase2(); 3625 const unsigned KeptBitsMinusOne = I01.logBase2(); 3626 3627 // Magic! 3628 if (KeptBits != (KeptBitsMinusOne + 1)) 3629 return SDValue(); 3630 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3631 3632 // We don't want to do this in every single case. 3633 SelectionDAG &DAG = DCI.DAG; 3634 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3635 XVT, KeptBits)) 3636 return SDValue(); 3637 3638 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3639 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3640 3641 // Unfold into: ((%x << C) a>> C) cond %x 3642 // Where 'cond' will be either 'eq' or 'ne'. 3643 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3644 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3645 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3646 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3647 3648 return T2; 3649 } 3650 3651 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3652 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3653 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3654 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3655 assert(isConstOrConstSplat(N1C) && 3656 isConstOrConstSplat(N1C)->getAPIntValue().isZero() && 3657 "Should be a comparison with 0."); 3658 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3659 "Valid only for [in]equality comparisons."); 3660 3661 unsigned NewShiftOpcode; 3662 SDValue X, C, Y; 3663 3664 SelectionDAG &DAG = DCI.DAG; 3665 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3666 3667 // Look for '(C l>>/<< Y)'. 3668 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3669 // The shift should be one-use. 3670 if (!V.hasOneUse()) 3671 return false; 3672 unsigned OldShiftOpcode = V.getOpcode(); 3673 switch (OldShiftOpcode) { 3674 case ISD::SHL: 3675 NewShiftOpcode = ISD::SRL; 3676 break; 3677 case ISD::SRL: 3678 NewShiftOpcode = ISD::SHL; 3679 break; 3680 default: 3681 return false; // must be a logical shift. 3682 } 3683 // We should be shifting a constant. 3684 // FIXME: best to use isConstantOrConstantVector(). 3685 C = V.getOperand(0); 3686 ConstantSDNode *CC = 3687 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3688 if (!CC) 3689 return false; 3690 Y = V.getOperand(1); 3691 3692 ConstantSDNode *XC = 3693 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3694 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3695 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3696 }; 3697 3698 // LHS of comparison should be an one-use 'and'. 3699 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3700 return SDValue(); 3701 3702 X = N0.getOperand(0); 3703 SDValue Mask = N0.getOperand(1); 3704 3705 // 'and' is commutative! 3706 if (!Match(Mask)) { 3707 std::swap(X, Mask); 3708 if (!Match(Mask)) 3709 return SDValue(); 3710 } 3711 3712 EVT VT = X.getValueType(); 3713 3714 // Produce: 3715 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3716 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3717 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3718 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3719 return T2; 3720 } 3721 3722 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3723 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3724 /// handle the commuted versions of these patterns. 3725 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3726 ISD::CondCode Cond, const SDLoc &DL, 3727 DAGCombinerInfo &DCI) const { 3728 unsigned BOpcode = N0.getOpcode(); 3729 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3730 "Unexpected binop"); 3731 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3732 3733 // (X + Y) == X --> Y == 0 3734 // (X - Y) == X --> Y == 0 3735 // (X ^ Y) == X --> Y == 0 3736 SelectionDAG &DAG = DCI.DAG; 3737 EVT OpVT = N0.getValueType(); 3738 SDValue X = N0.getOperand(0); 3739 SDValue Y = N0.getOperand(1); 3740 if (X == N1) 3741 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3742 3743 if (Y != N1) 3744 return SDValue(); 3745 3746 // (X + Y) == Y --> X == 0 3747 // (X ^ Y) == Y --> X == 0 3748 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3749 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3750 3751 // The shift would not be valid if the operands are boolean (i1). 3752 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3753 return SDValue(); 3754 3755 // (X - Y) == Y --> X == Y << 1 3756 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3757 !DCI.isBeforeLegalize()); 3758 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3759 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3760 if (!DCI.isCalledByLegalizer()) 3761 DCI.AddToWorklist(YShl1.getNode()); 3762 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3763 } 3764 3765 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 3766 SDValue N0, const APInt &C1, 3767 ISD::CondCode Cond, const SDLoc &dl, 3768 SelectionDAG &DAG) { 3769 // Look through truncs that don't change the value of a ctpop. 3770 // FIXME: Add vector support? Need to be careful with setcc result type below. 3771 SDValue CTPOP = N0; 3772 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 3773 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 3774 CTPOP = N0.getOperand(0); 3775 3776 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 3777 return SDValue(); 3778 3779 EVT CTVT = CTPOP.getValueType(); 3780 SDValue CTOp = CTPOP.getOperand(0); 3781 3782 // If this is a vector CTPOP, keep the CTPOP if it is legal. 3783 // TODO: Should we check if CTPOP is legal(or custom) for scalars? 3784 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 3785 return SDValue(); 3786 3787 // (ctpop x) u< 2 -> (x & x-1) == 0 3788 // (ctpop x) u> 1 -> (x & x-1) != 0 3789 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 3790 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 3791 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 3792 return SDValue(); 3793 if (C1 == 0 && (Cond == ISD::SETULT)) 3794 return SDValue(); // This is handled elsewhere. 3795 3796 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 3797 3798 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3799 SDValue Result = CTOp; 3800 for (unsigned i = 0; i < Passes; i++) { 3801 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 3802 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 3803 } 3804 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3805 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 3806 } 3807 3808 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3809 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 3810 // For scalars, keep CTPOP if it is legal or custom. 3811 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT)) 3812 return SDValue(); 3813 // This is based on X86's custom lowering for CTPOP which produces more 3814 // instructions than the expansion here. 3815 3816 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3817 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3818 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3819 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3820 assert(CTVT.isInteger()); 3821 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3822 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3823 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3824 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3825 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3826 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3827 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3828 } 3829 3830 return SDValue(); 3831 } 3832 3833 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1, 3834 ISD::CondCode Cond, const SDLoc &dl, 3835 SelectionDAG &DAG) { 3836 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 3837 return SDValue(); 3838 3839 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 3840 if (!C1 || !(C1->isZero() || C1->isAllOnes())) 3841 return SDValue(); 3842 3843 auto getRotateSource = [](SDValue X) { 3844 if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR) 3845 return X.getOperand(0); 3846 return SDValue(); 3847 }; 3848 3849 // Peek through a rotated value compared against 0 or -1: 3850 // (rot X, Y) == 0/-1 --> X == 0/-1 3851 // (rot X, Y) != 0/-1 --> X != 0/-1 3852 if (SDValue R = getRotateSource(N0)) 3853 return DAG.getSetCC(dl, VT, R, N1, Cond); 3854 3855 // Peek through an 'or' of a rotated value compared against 0: 3856 // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0 3857 // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0 3858 // 3859 // TODO: Add the 'and' with -1 sibling. 3860 // TODO: Recurse through a series of 'or' ops to find the rotate. 3861 EVT OpVT = N0.getValueType(); 3862 if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) { 3863 if (SDValue R = getRotateSource(N0.getOperand(0))) { 3864 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1)); 3865 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 3866 } 3867 if (SDValue R = getRotateSource(N0.getOperand(1))) { 3868 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0)); 3869 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 3870 } 3871 } 3872 3873 return SDValue(); 3874 } 3875 3876 /// Try to simplify a setcc built with the specified operands and cc. If it is 3877 /// unable to simplify it, return a null SDValue. 3878 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3879 ISD::CondCode Cond, bool foldBooleans, 3880 DAGCombinerInfo &DCI, 3881 const SDLoc &dl) const { 3882 SelectionDAG &DAG = DCI.DAG; 3883 const DataLayout &Layout = DAG.getDataLayout(); 3884 EVT OpVT = N0.getValueType(); 3885 3886 // Constant fold or commute setcc. 3887 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3888 return Fold; 3889 3890 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3891 // TODO: Handle non-splat vector constants. All undef causes trouble. 3892 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 3893 // infinite loop here when we encounter one. 3894 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3895 if (isConstOrConstSplat(N0) && 3896 (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) && 3897 (DCI.isBeforeLegalizeOps() || 3898 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3899 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3900 3901 // If we have a subtract with the same 2 non-constant operands as this setcc 3902 // -- but in reverse order -- then try to commute the operands of this setcc 3903 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3904 // instruction on some targets. 3905 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3906 (DCI.isBeforeLegalizeOps() || 3907 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3908 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 3909 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 3910 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3911 3912 if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG)) 3913 return V; 3914 3915 if (auto *N1C = isConstOrConstSplat(N1)) { 3916 const APInt &C1 = N1C->getAPIntValue(); 3917 3918 // Optimize some CTPOP cases. 3919 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 3920 return V; 3921 3922 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3923 // equality comparison, then we're just comparing whether X itself is 3924 // zero. 3925 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) && 3926 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3927 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 3928 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 3929 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3930 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 3931 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3932 // (srl (ctlz x), 5) == 0 -> X != 0 3933 // (srl (ctlz x), 5) != 1 -> X != 0 3934 Cond = ISD::SETNE; 3935 } else { 3936 // (srl (ctlz x), 5) != 0 -> X == 0 3937 // (srl (ctlz x), 5) == 1 -> X == 0 3938 Cond = ISD::SETEQ; 3939 } 3940 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3941 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 3942 Cond); 3943 } 3944 } 3945 } 3946 } 3947 3948 // FIXME: Support vectors. 3949 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3950 const APInt &C1 = N1C->getAPIntValue(); 3951 3952 // (zext x) == C --> x == (trunc C) 3953 // (sext x) == C --> x == (trunc C) 3954 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3955 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3956 unsigned MinBits = N0.getValueSizeInBits(); 3957 SDValue PreExt; 3958 bool Signed = false; 3959 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3960 // ZExt 3961 MinBits = N0->getOperand(0).getValueSizeInBits(); 3962 PreExt = N0->getOperand(0); 3963 } else if (N0->getOpcode() == ISD::AND) { 3964 // DAGCombine turns costly ZExts into ANDs 3965 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3966 if ((C->getAPIntValue()+1).isPowerOf2()) { 3967 MinBits = C->getAPIntValue().countTrailingOnes(); 3968 PreExt = N0->getOperand(0); 3969 } 3970 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3971 // SExt 3972 MinBits = N0->getOperand(0).getValueSizeInBits(); 3973 PreExt = N0->getOperand(0); 3974 Signed = true; 3975 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3976 // ZEXTLOAD / SEXTLOAD 3977 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3978 MinBits = LN0->getMemoryVT().getSizeInBits(); 3979 PreExt = N0; 3980 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3981 Signed = true; 3982 MinBits = LN0->getMemoryVT().getSizeInBits(); 3983 PreExt = N0; 3984 } 3985 } 3986 3987 // Figure out how many bits we need to preserve this constant. 3988 unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits(); 3989 3990 // Make sure we're not losing bits from the constant. 3991 if (MinBits > 0 && 3992 MinBits < C1.getBitWidth() && 3993 MinBits >= ReqdBits) { 3994 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3995 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3996 // Will get folded away. 3997 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3998 if (MinBits == 1 && C1 == 1) 3999 // Invert the condition. 4000 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 4001 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4002 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 4003 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 4004 } 4005 4006 // If truncating the setcc operands is not desirable, we can still 4007 // simplify the expression in some cases: 4008 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 4009 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 4010 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 4011 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 4012 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 4013 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 4014 SDValue TopSetCC = N0->getOperand(0); 4015 unsigned N0Opc = N0->getOpcode(); 4016 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 4017 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 4018 TopSetCC.getOpcode() == ISD::SETCC && 4019 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 4020 (isConstFalseVal(N1) || 4021 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 4022 4023 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || 4024 (!N1C->isZero() && Cond == ISD::SETNE); 4025 4026 if (!Inverse) 4027 return TopSetCC; 4028 4029 ISD::CondCode InvCond = ISD::getSetCCInverse( 4030 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 4031 TopSetCC.getOperand(0).getValueType()); 4032 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 4033 TopSetCC.getOperand(1), 4034 InvCond); 4035 } 4036 } 4037 } 4038 4039 // If the LHS is '(and load, const)', the RHS is 0, the test is for 4040 // equality or unsigned, and all 1 bits of the const are in the same 4041 // partial word, see if we can shorten the load. 4042 if (DCI.isBeforeLegalize() && 4043 !ISD::isSignedIntSetCC(Cond) && 4044 N0.getOpcode() == ISD::AND && C1 == 0 && 4045 N0.getNode()->hasOneUse() && 4046 isa<LoadSDNode>(N0.getOperand(0)) && 4047 N0.getOperand(0).getNode()->hasOneUse() && 4048 isa<ConstantSDNode>(N0.getOperand(1))) { 4049 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 4050 APInt bestMask; 4051 unsigned bestWidth = 0, bestOffset = 0; 4052 if (Lod->isSimple() && Lod->isUnindexed()) { 4053 unsigned origWidth = N0.getValueSizeInBits(); 4054 unsigned maskWidth = origWidth; 4055 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 4056 // 8 bits, but have to be careful... 4057 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 4058 origWidth = Lod->getMemoryVT().getSizeInBits(); 4059 const APInt &Mask = N0.getConstantOperandAPInt(1); 4060 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 4061 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 4062 for (unsigned offset=0; offset<origWidth/width; offset++) { 4063 if (Mask.isSubsetOf(newMask)) { 4064 if (Layout.isLittleEndian()) 4065 bestOffset = (uint64_t)offset * (width/8); 4066 else 4067 bestOffset = (origWidth/width - offset - 1) * (width/8); 4068 bestMask = Mask.lshr(offset * (width/8) * 8); 4069 bestWidth = width; 4070 break; 4071 } 4072 newMask <<= width; 4073 } 4074 } 4075 } 4076 if (bestWidth) { 4077 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 4078 if (newVT.isRound() && 4079 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 4080 SDValue Ptr = Lod->getBasePtr(); 4081 if (bestOffset != 0) 4082 Ptr = 4083 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 4084 SDValue NewLoad = 4085 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 4086 Lod->getPointerInfo().getWithOffset(bestOffset), 4087 Lod->getOriginalAlign()); 4088 return DAG.getSetCC(dl, VT, 4089 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 4090 DAG.getConstant(bestMask.trunc(bestWidth), 4091 dl, newVT)), 4092 DAG.getConstant(0LL, dl, newVT), Cond); 4093 } 4094 } 4095 } 4096 4097 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 4098 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 4099 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 4100 4101 // If the comparison constant has bits in the upper part, the 4102 // zero-extended value could never match. 4103 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 4104 C1.getBitWidth() - InSize))) { 4105 switch (Cond) { 4106 case ISD::SETUGT: 4107 case ISD::SETUGE: 4108 case ISD::SETEQ: 4109 return DAG.getConstant(0, dl, VT); 4110 case ISD::SETULT: 4111 case ISD::SETULE: 4112 case ISD::SETNE: 4113 return DAG.getConstant(1, dl, VT); 4114 case ISD::SETGT: 4115 case ISD::SETGE: 4116 // True if the sign bit of C1 is set. 4117 return DAG.getConstant(C1.isNegative(), dl, VT); 4118 case ISD::SETLT: 4119 case ISD::SETLE: 4120 // True if the sign bit of C1 isn't set. 4121 return DAG.getConstant(C1.isNonNegative(), dl, VT); 4122 default: 4123 break; 4124 } 4125 } 4126 4127 // Otherwise, we can perform the comparison with the low bits. 4128 switch (Cond) { 4129 case ISD::SETEQ: 4130 case ISD::SETNE: 4131 case ISD::SETUGT: 4132 case ISD::SETUGE: 4133 case ISD::SETULT: 4134 case ISD::SETULE: { 4135 EVT newVT = N0.getOperand(0).getValueType(); 4136 if (DCI.isBeforeLegalizeOps() || 4137 (isOperationLegal(ISD::SETCC, newVT) && 4138 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 4139 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 4140 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 4141 4142 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 4143 NewConst, Cond); 4144 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 4145 } 4146 break; 4147 } 4148 default: 4149 break; // todo, be more careful with signed comparisons 4150 } 4151 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 4152 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4153 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 4154 OpVT)) { 4155 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 4156 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 4157 EVT ExtDstTy = N0.getValueType(); 4158 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 4159 4160 // If the constant doesn't fit into the number of bits for the source of 4161 // the sign extension, it is impossible for both sides to be equal. 4162 if (C1.getMinSignedBits() > ExtSrcTyBits) 4163 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 4164 4165 assert(ExtDstTy == N0.getOperand(0).getValueType() && 4166 ExtDstTy != ExtSrcTy && "Unexpected types!"); 4167 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 4168 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 4169 DAG.getConstant(Imm, dl, ExtDstTy)); 4170 if (!DCI.isCalledByLegalizer()) 4171 DCI.AddToWorklist(ZextOp.getNode()); 4172 // Otherwise, make this a use of a zext. 4173 return DAG.getSetCC(dl, VT, ZextOp, 4174 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 4175 } else if ((N1C->isZero() || N1C->isOne()) && 4176 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4177 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 4178 if (N0.getOpcode() == ISD::SETCC && 4179 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 4180 (N0.getValueType() == MVT::i1 || 4181 getBooleanContents(N0.getOperand(0).getValueType()) == 4182 ZeroOrOneBooleanContent)) { 4183 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 4184 if (TrueWhenTrue) 4185 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 4186 // Invert the condition. 4187 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 4188 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 4189 if (DCI.isBeforeLegalizeOps() || 4190 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 4191 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 4192 } 4193 4194 if ((N0.getOpcode() == ISD::XOR || 4195 (N0.getOpcode() == ISD::AND && 4196 N0.getOperand(0).getOpcode() == ISD::XOR && 4197 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 4198 isOneConstant(N0.getOperand(1))) { 4199 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 4200 // can only do this if the top bits are known zero. 4201 unsigned BitWidth = N0.getValueSizeInBits(); 4202 if (DAG.MaskedValueIsZero(N0, 4203 APInt::getHighBitsSet(BitWidth, 4204 BitWidth-1))) { 4205 // Okay, get the un-inverted input value. 4206 SDValue Val; 4207 if (N0.getOpcode() == ISD::XOR) { 4208 Val = N0.getOperand(0); 4209 } else { 4210 assert(N0.getOpcode() == ISD::AND && 4211 N0.getOperand(0).getOpcode() == ISD::XOR); 4212 // ((X^1)&1)^1 -> X & 1 4213 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 4214 N0.getOperand(0).getOperand(0), 4215 N0.getOperand(1)); 4216 } 4217 4218 return DAG.getSetCC(dl, VT, Val, N1, 4219 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4220 } 4221 } else if (N1C->isOne()) { 4222 SDValue Op0 = N0; 4223 if (Op0.getOpcode() == ISD::TRUNCATE) 4224 Op0 = Op0.getOperand(0); 4225 4226 if ((Op0.getOpcode() == ISD::XOR) && 4227 Op0.getOperand(0).getOpcode() == ISD::SETCC && 4228 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 4229 SDValue XorLHS = Op0.getOperand(0); 4230 SDValue XorRHS = Op0.getOperand(1); 4231 // Ensure that the input setccs return an i1 type or 0/1 value. 4232 if (Op0.getValueType() == MVT::i1 || 4233 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 4234 ZeroOrOneBooleanContent && 4235 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 4236 ZeroOrOneBooleanContent)) { 4237 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 4238 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 4239 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 4240 } 4241 } 4242 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 4243 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 4244 if (Op0.getValueType().bitsGT(VT)) 4245 Op0 = DAG.getNode(ISD::AND, dl, VT, 4246 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 4247 DAG.getConstant(1, dl, VT)); 4248 else if (Op0.getValueType().bitsLT(VT)) 4249 Op0 = DAG.getNode(ISD::AND, dl, VT, 4250 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 4251 DAG.getConstant(1, dl, VT)); 4252 4253 return DAG.getSetCC(dl, VT, Op0, 4254 DAG.getConstant(0, dl, Op0.getValueType()), 4255 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4256 } 4257 if (Op0.getOpcode() == ISD::AssertZext && 4258 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 4259 return DAG.getSetCC(dl, VT, Op0, 4260 DAG.getConstant(0, dl, Op0.getValueType()), 4261 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4262 } 4263 } 4264 4265 // Given: 4266 // icmp eq/ne (urem %x, %y), 0 4267 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 4268 // icmp eq/ne %x, 0 4269 if (N0.getOpcode() == ISD::UREM && N1C->isZero() && 4270 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4271 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 4272 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 4273 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 4274 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 4275 } 4276 4277 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 4278 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 4279 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4280 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && 4281 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && 4282 N1C && N1C->isAllOnes()) { 4283 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4284 DAG.getConstant(0, dl, OpVT), 4285 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); 4286 } 4287 4288 if (SDValue V = 4289 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 4290 return V; 4291 } 4292 4293 // These simplifications apply to splat vectors as well. 4294 // TODO: Handle more splat vector cases. 4295 if (auto *N1C = isConstOrConstSplat(N1)) { 4296 const APInt &C1 = N1C->getAPIntValue(); 4297 4298 APInt MinVal, MaxVal; 4299 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 4300 if (ISD::isSignedIntSetCC(Cond)) { 4301 MinVal = APInt::getSignedMinValue(OperandBitSize); 4302 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 4303 } else { 4304 MinVal = APInt::getMinValue(OperandBitSize); 4305 MaxVal = APInt::getMaxValue(OperandBitSize); 4306 } 4307 4308 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 4309 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 4310 // X >= MIN --> true 4311 if (C1 == MinVal) 4312 return DAG.getBoolConstant(true, dl, VT, OpVT); 4313 4314 if (!VT.isVector()) { // TODO: Support this for vectors. 4315 // X >= C0 --> X > (C0 - 1) 4316 APInt C = C1 - 1; 4317 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 4318 if ((DCI.isBeforeLegalizeOps() || 4319 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4320 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4321 isLegalICmpImmediate(C.getSExtValue())))) { 4322 return DAG.getSetCC(dl, VT, N0, 4323 DAG.getConstant(C, dl, N1.getValueType()), 4324 NewCC); 4325 } 4326 } 4327 } 4328 4329 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 4330 // X <= MAX --> true 4331 if (C1 == MaxVal) 4332 return DAG.getBoolConstant(true, dl, VT, OpVT); 4333 4334 // X <= C0 --> X < (C0 + 1) 4335 if (!VT.isVector()) { // TODO: Support this for vectors. 4336 APInt C = C1 + 1; 4337 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 4338 if ((DCI.isBeforeLegalizeOps() || 4339 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4340 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4341 isLegalICmpImmediate(C.getSExtValue())))) { 4342 return DAG.getSetCC(dl, VT, N0, 4343 DAG.getConstant(C, dl, N1.getValueType()), 4344 NewCC); 4345 } 4346 } 4347 } 4348 4349 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 4350 if (C1 == MinVal) 4351 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 4352 4353 // TODO: Support this for vectors after legalize ops. 4354 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4355 // Canonicalize setlt X, Max --> setne X, Max 4356 if (C1 == MaxVal) 4357 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4358 4359 // If we have setult X, 1, turn it into seteq X, 0 4360 if (C1 == MinVal+1) 4361 return DAG.getSetCC(dl, VT, N0, 4362 DAG.getConstant(MinVal, dl, N0.getValueType()), 4363 ISD::SETEQ); 4364 } 4365 } 4366 4367 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 4368 if (C1 == MaxVal) 4369 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 4370 4371 // TODO: Support this for vectors after legalize ops. 4372 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4373 // Canonicalize setgt X, Min --> setne X, Min 4374 if (C1 == MinVal) 4375 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4376 4377 // If we have setugt X, Max-1, turn it into seteq X, Max 4378 if (C1 == MaxVal-1) 4379 return DAG.getSetCC(dl, VT, N0, 4380 DAG.getConstant(MaxVal, dl, N0.getValueType()), 4381 ISD::SETEQ); 4382 } 4383 } 4384 4385 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 4386 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4387 if (C1.isZero()) 4388 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 4389 VT, N0, N1, Cond, DCI, dl)) 4390 return CC; 4391 4392 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 4393 // For example, when high 32-bits of i64 X are known clear: 4394 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 4395 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 4396 bool CmpZero = N1C->getAPIntValue().isZero(); 4397 bool CmpNegOne = N1C->getAPIntValue().isAllOnes(); 4398 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 4399 // Match or(lo,shl(hi,bw/2)) pattern. 4400 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 4401 unsigned EltBits = V.getScalarValueSizeInBits(); 4402 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 4403 return false; 4404 SDValue LHS = V.getOperand(0); 4405 SDValue RHS = V.getOperand(1); 4406 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 4407 // Unshifted element must have zero upperbits. 4408 if (RHS.getOpcode() == ISD::SHL && 4409 isa<ConstantSDNode>(RHS.getOperand(1)) && 4410 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4411 DAG.MaskedValueIsZero(LHS, HiBits)) { 4412 Lo = LHS; 4413 Hi = RHS.getOperand(0); 4414 return true; 4415 } 4416 if (LHS.getOpcode() == ISD::SHL && 4417 isa<ConstantSDNode>(LHS.getOperand(1)) && 4418 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4419 DAG.MaskedValueIsZero(RHS, HiBits)) { 4420 Lo = RHS; 4421 Hi = LHS.getOperand(0); 4422 return true; 4423 } 4424 return false; 4425 }; 4426 4427 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4428 unsigned EltBits = N0.getScalarValueSizeInBits(); 4429 unsigned HalfBits = EltBits / 2; 4430 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4431 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4432 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4433 SDValue NewN0 = 4434 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4435 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4436 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4437 }; 4438 4439 SDValue Lo, Hi; 4440 if (IsConcat(N0, Lo, Hi)) 4441 return MergeConcat(Lo, Hi); 4442 4443 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4444 SDValue Lo0, Lo1, Hi0, Hi1; 4445 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4446 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4447 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4448 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4449 } 4450 } 4451 } 4452 } 4453 4454 // If we have "setcc X, C0", check to see if we can shrink the immediate 4455 // by changing cc. 4456 // TODO: Support this for vectors after legalize ops. 4457 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4458 // SETUGT X, SINTMAX -> SETLT X, 0 4459 // SETUGE X, SINTMIN -> SETLT X, 0 4460 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4461 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4462 return DAG.getSetCC(dl, VT, N0, 4463 DAG.getConstant(0, dl, N1.getValueType()), 4464 ISD::SETLT); 4465 4466 // SETULT X, SINTMIN -> SETGT X, -1 4467 // SETULE X, SINTMAX -> SETGT X, -1 4468 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4469 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4470 return DAG.getSetCC(dl, VT, N0, 4471 DAG.getAllOnesConstant(dl, N1.getValueType()), 4472 ISD::SETGT); 4473 } 4474 } 4475 4476 // Back to non-vector simplifications. 4477 // TODO: Can we do these for vector splats? 4478 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4479 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4480 const APInt &C1 = N1C->getAPIntValue(); 4481 EVT ShValTy = N0.getValueType(); 4482 4483 // Fold bit comparisons when we can. This will result in an 4484 // incorrect value when boolean false is negative one, unless 4485 // the bitsize is 1 in which case the false value is the same 4486 // in practice regardless of the representation. 4487 if ((VT.getSizeInBits() == 1 || 4488 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4489 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4490 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4491 N0.getOpcode() == ISD::AND) { 4492 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4493 EVT ShiftTy = 4494 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4495 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4496 // Perform the xform if the AND RHS is a single bit. 4497 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4498 if (AndRHS->getAPIntValue().isPowerOf2() && 4499 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4500 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4501 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4502 DAG.getConstant(ShCt, dl, ShiftTy))); 4503 } 4504 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4505 // (X & 8) == 8 --> (X & 8) >> 3 4506 // Perform the xform if C1 is a single bit. 4507 unsigned ShCt = C1.logBase2(); 4508 if (C1.isPowerOf2() && 4509 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4510 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4511 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4512 DAG.getConstant(ShCt, dl, ShiftTy))); 4513 } 4514 } 4515 } 4516 } 4517 4518 if (C1.getMinSignedBits() <= 64 && 4519 !isLegalICmpImmediate(C1.getSExtValue())) { 4520 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4521 // (X & -256) == 256 -> (X >> 8) == 1 4522 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4523 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4524 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4525 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4526 if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) { 4527 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4528 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4529 SDValue Shift = 4530 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4531 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4532 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4533 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4534 } 4535 } 4536 } 4537 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4538 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4539 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4540 // X < 0x100000000 -> (X >> 32) < 1 4541 // X >= 0x100000000 -> (X >> 32) >= 1 4542 // X <= 0x0ffffffff -> (X >> 32) < 1 4543 // X > 0x0ffffffff -> (X >> 32) >= 1 4544 unsigned ShiftBits; 4545 APInt NewC = C1; 4546 ISD::CondCode NewCond = Cond; 4547 if (AdjOne) { 4548 ShiftBits = C1.countTrailingOnes(); 4549 NewC = NewC + 1; 4550 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4551 } else { 4552 ShiftBits = C1.countTrailingZeros(); 4553 } 4554 NewC.lshrInPlace(ShiftBits); 4555 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4556 isLegalICmpImmediate(NewC.getSExtValue()) && 4557 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4558 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4559 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4560 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4561 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4562 } 4563 } 4564 } 4565 } 4566 4567 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4568 auto *CFP = cast<ConstantFPSDNode>(N1); 4569 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4570 4571 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4572 // constant if knowing that the operand is non-nan is enough. We prefer to 4573 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4574 // materialize 0.0. 4575 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4576 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4577 4578 // setcc (fneg x), C -> setcc swap(pred) x, -C 4579 if (N0.getOpcode() == ISD::FNEG) { 4580 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4581 if (DCI.isBeforeLegalizeOps() || 4582 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4583 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4584 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4585 } 4586 } 4587 4588 // If the condition is not legal, see if we can find an equivalent one 4589 // which is legal. 4590 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4591 // If the comparison was an awkward floating-point == or != and one of 4592 // the comparison operands is infinity or negative infinity, convert the 4593 // condition to a less-awkward <= or >=. 4594 if (CFP->getValueAPF().isInfinity()) { 4595 bool IsNegInf = CFP->getValueAPF().isNegative(); 4596 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4597 switch (Cond) { 4598 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4599 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4600 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4601 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4602 default: break; 4603 } 4604 if (NewCond != ISD::SETCC_INVALID && 4605 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4606 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4607 } 4608 } 4609 } 4610 4611 if (N0 == N1) { 4612 // The sext(setcc()) => setcc() optimization relies on the appropriate 4613 // constant being emitted. 4614 assert(!N0.getValueType().isInteger() && 4615 "Integer types should be handled by FoldSetCC"); 4616 4617 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4618 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4619 if (UOF == 2) // FP operators that are undefined on NaNs. 4620 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4621 if (UOF == unsigned(EqTrue)) 4622 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4623 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4624 // if it is not already. 4625 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4626 if (NewCond != Cond && 4627 (DCI.isBeforeLegalizeOps() || 4628 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4629 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4630 } 4631 4632 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4633 N0.getValueType().isInteger()) { 4634 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4635 N0.getOpcode() == ISD::XOR) { 4636 // Simplify (X+Y) == (X+Z) --> Y == Z 4637 if (N0.getOpcode() == N1.getOpcode()) { 4638 if (N0.getOperand(0) == N1.getOperand(0)) 4639 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4640 if (N0.getOperand(1) == N1.getOperand(1)) 4641 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4642 if (isCommutativeBinOp(N0.getOpcode())) { 4643 // If X op Y == Y op X, try other combinations. 4644 if (N0.getOperand(0) == N1.getOperand(1)) 4645 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4646 Cond); 4647 if (N0.getOperand(1) == N1.getOperand(0)) 4648 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4649 Cond); 4650 } 4651 } 4652 4653 // If RHS is a legal immediate value for a compare instruction, we need 4654 // to be careful about increasing register pressure needlessly. 4655 bool LegalRHSImm = false; 4656 4657 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4658 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4659 // Turn (X+C1) == C2 --> X == C2-C1 4660 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) 4661 return DAG.getSetCC( 4662 dl, VT, N0.getOperand(0), 4663 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(), 4664 dl, N0.getValueType()), 4665 Cond); 4666 4667 // Turn (X^C1) == C2 --> X == C1^C2 4668 if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse()) 4669 return DAG.getSetCC( 4670 dl, VT, N0.getOperand(0), 4671 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(), 4672 dl, N0.getValueType()), 4673 Cond); 4674 } 4675 4676 // Turn (C1-X) == C2 --> X == C1-C2 4677 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) 4678 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) 4679 return DAG.getSetCC( 4680 dl, VT, N0.getOperand(1), 4681 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(), 4682 dl, N0.getValueType()), 4683 Cond); 4684 4685 // Could RHSC fold directly into a compare? 4686 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4687 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4688 } 4689 4690 // (X+Y) == X --> Y == 0 and similar folds. 4691 // Don't do this if X is an immediate that can fold into a cmp 4692 // instruction and X+Y has other uses. It could be an induction variable 4693 // chain, and the transform would increase register pressure. 4694 if (!LegalRHSImm || N0.hasOneUse()) 4695 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4696 return V; 4697 } 4698 4699 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4700 N1.getOpcode() == ISD::XOR) 4701 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4702 return V; 4703 4704 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4705 return V; 4706 } 4707 4708 // Fold remainder of division by a constant. 4709 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4710 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4711 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4712 4713 // When division is cheap or optimizing for minimum size, 4714 // fall through to DIVREM creation by skipping this fold. 4715 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { 4716 if (N0.getOpcode() == ISD::UREM) { 4717 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4718 return Folded; 4719 } else if (N0.getOpcode() == ISD::SREM) { 4720 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4721 return Folded; 4722 } 4723 } 4724 } 4725 4726 // Fold away ALL boolean setcc's. 4727 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4728 SDValue Temp; 4729 switch (Cond) { 4730 default: llvm_unreachable("Unknown integer setcc!"); 4731 case ISD::SETEQ: // X == Y -> ~(X^Y) 4732 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4733 N0 = DAG.getNOT(dl, Temp, OpVT); 4734 if (!DCI.isCalledByLegalizer()) 4735 DCI.AddToWorklist(Temp.getNode()); 4736 break; 4737 case ISD::SETNE: // X != Y --> (X^Y) 4738 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4739 break; 4740 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4741 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4742 Temp = DAG.getNOT(dl, N0, OpVT); 4743 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4744 if (!DCI.isCalledByLegalizer()) 4745 DCI.AddToWorklist(Temp.getNode()); 4746 break; 4747 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4748 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4749 Temp = DAG.getNOT(dl, N1, OpVT); 4750 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4751 if (!DCI.isCalledByLegalizer()) 4752 DCI.AddToWorklist(Temp.getNode()); 4753 break; 4754 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4755 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4756 Temp = DAG.getNOT(dl, N0, OpVT); 4757 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4758 if (!DCI.isCalledByLegalizer()) 4759 DCI.AddToWorklist(Temp.getNode()); 4760 break; 4761 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4762 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4763 Temp = DAG.getNOT(dl, N1, OpVT); 4764 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4765 break; 4766 } 4767 if (VT.getScalarType() != MVT::i1) { 4768 if (!DCI.isCalledByLegalizer()) 4769 DCI.AddToWorklist(N0.getNode()); 4770 // FIXME: If running after legalize, we probably can't do this. 4771 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4772 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4773 } 4774 return N0; 4775 } 4776 4777 // Could not fold it. 4778 return SDValue(); 4779 } 4780 4781 /// Returns true (and the GlobalValue and the offset) if the node is a 4782 /// GlobalAddress + offset. 4783 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4784 int64_t &Offset) const { 4785 4786 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4787 4788 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4789 GA = GASD->getGlobal(); 4790 Offset += GASD->getOffset(); 4791 return true; 4792 } 4793 4794 if (N->getOpcode() == ISD::ADD) { 4795 SDValue N1 = N->getOperand(0); 4796 SDValue N2 = N->getOperand(1); 4797 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4798 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4799 Offset += V->getSExtValue(); 4800 return true; 4801 } 4802 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4803 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4804 Offset += V->getSExtValue(); 4805 return true; 4806 } 4807 } 4808 } 4809 4810 return false; 4811 } 4812 4813 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4814 DAGCombinerInfo &DCI) const { 4815 // Default implementation: no optimization. 4816 return SDValue(); 4817 } 4818 4819 //===----------------------------------------------------------------------===// 4820 // Inline Assembler Implementation Methods 4821 //===----------------------------------------------------------------------===// 4822 4823 TargetLowering::ConstraintType 4824 TargetLowering::getConstraintType(StringRef Constraint) const { 4825 unsigned S = Constraint.size(); 4826 4827 if (S == 1) { 4828 switch (Constraint[0]) { 4829 default: break; 4830 case 'r': 4831 return C_RegisterClass; 4832 case 'm': // memory 4833 case 'o': // offsetable 4834 case 'V': // not offsetable 4835 return C_Memory; 4836 case 'n': // Simple Integer 4837 case 'E': // Floating Point Constant 4838 case 'F': // Floating Point Constant 4839 return C_Immediate; 4840 case 'i': // Simple Integer or Relocatable Constant 4841 case 's': // Relocatable Constant 4842 case 'p': // Address. 4843 case 'X': // Allow ANY value. 4844 case 'I': // Target registers. 4845 case 'J': 4846 case 'K': 4847 case 'L': 4848 case 'M': 4849 case 'N': 4850 case 'O': 4851 case 'P': 4852 case '<': 4853 case '>': 4854 return C_Other; 4855 } 4856 } 4857 4858 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4859 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4860 return C_Memory; 4861 return C_Register; 4862 } 4863 return C_Unknown; 4864 } 4865 4866 /// Try to replace an X constraint, which matches anything, with another that 4867 /// has more specific requirements based on the type of the corresponding 4868 /// operand. 4869 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4870 if (ConstraintVT.isInteger()) 4871 return "r"; 4872 if (ConstraintVT.isFloatingPoint()) 4873 return "f"; // works for many targets 4874 return nullptr; 4875 } 4876 4877 SDValue TargetLowering::LowerAsmOutputForConstraint( 4878 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 4879 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 4880 return SDValue(); 4881 } 4882 4883 /// Lower the specified operand into the Ops vector. 4884 /// If it is invalid, don't add anything to Ops. 4885 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4886 std::string &Constraint, 4887 std::vector<SDValue> &Ops, 4888 SelectionDAG &DAG) const { 4889 4890 if (Constraint.length() > 1) return; 4891 4892 char ConstraintLetter = Constraint[0]; 4893 switch (ConstraintLetter) { 4894 default: break; 4895 case 'X': // Allows any operand 4896 case 'i': // Simple Integer or Relocatable Constant 4897 case 'n': // Simple Integer 4898 case 's': { // Relocatable Constant 4899 4900 ConstantSDNode *C; 4901 uint64_t Offset = 0; 4902 4903 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4904 // etc., since getelementpointer is variadic. We can't use 4905 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4906 // while in this case the GA may be furthest from the root node which is 4907 // likely an ISD::ADD. 4908 while (true) { 4909 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 4910 // gcc prints these as sign extended. Sign extend value to 64 bits 4911 // now; without this it would get ZExt'd later in 4912 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4913 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4914 BooleanContent BCont = getBooleanContents(MVT::i64); 4915 ISD::NodeType ExtOpc = 4916 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 4917 int64_t ExtVal = 4918 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 4919 Ops.push_back( 4920 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 4921 return; 4922 } 4923 if (ConstraintLetter != 'n') { 4924 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 4925 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4926 GA->getValueType(0), 4927 Offset + GA->getOffset())); 4928 return; 4929 } 4930 if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 4931 Ops.push_back(DAG.getTargetBlockAddress( 4932 BA->getBlockAddress(), BA->getValueType(0), 4933 Offset + BA->getOffset(), BA->getTargetFlags())); 4934 return; 4935 } 4936 if (isa<BasicBlockSDNode>(Op)) { 4937 Ops.push_back(Op); 4938 return; 4939 } 4940 } 4941 const unsigned OpCode = Op.getOpcode(); 4942 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4943 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4944 Op = Op.getOperand(1); 4945 // Subtraction is not commutative. 4946 else if (OpCode == ISD::ADD && 4947 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4948 Op = Op.getOperand(0); 4949 else 4950 return; 4951 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4952 continue; 4953 } 4954 return; 4955 } 4956 break; 4957 } 4958 } 4959 } 4960 4961 std::pair<unsigned, const TargetRegisterClass *> 4962 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4963 StringRef Constraint, 4964 MVT VT) const { 4965 if (Constraint.empty() || Constraint[0] != '{') 4966 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4967 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4968 4969 // Remove the braces from around the name. 4970 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4971 4972 std::pair<unsigned, const TargetRegisterClass *> R = 4973 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4974 4975 // Figure out which register class contains this reg. 4976 for (const TargetRegisterClass *RC : RI->regclasses()) { 4977 // If none of the value types for this register class are valid, we 4978 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4979 if (!isLegalRC(*RI, *RC)) 4980 continue; 4981 4982 for (const MCPhysReg &PR : *RC) { 4983 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 4984 std::pair<unsigned, const TargetRegisterClass *> S = 4985 std::make_pair(PR, RC); 4986 4987 // If this register class has the requested value type, return it, 4988 // otherwise keep searching and return the first class found 4989 // if no other is found which explicitly has the requested type. 4990 if (RI->isTypeLegalForClass(*RC, VT)) 4991 return S; 4992 if (!R.second) 4993 R = S; 4994 } 4995 } 4996 } 4997 4998 return R; 4999 } 5000 5001 //===----------------------------------------------------------------------===// 5002 // Constraint Selection. 5003 5004 /// Return true of this is an input operand that is a matching constraint like 5005 /// "4". 5006 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 5007 assert(!ConstraintCode.empty() && "No known constraint!"); 5008 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 5009 } 5010 5011 /// If this is an input matching constraint, this method returns the output 5012 /// operand it matches. 5013 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 5014 assert(!ConstraintCode.empty() && "No known constraint!"); 5015 return atoi(ConstraintCode.c_str()); 5016 } 5017 5018 /// Split up the constraint string from the inline assembly value into the 5019 /// specific constraints and their prefixes, and also tie in the associated 5020 /// operand values. 5021 /// If this returns an empty vector, and if the constraint string itself 5022 /// isn't empty, there was an error parsing. 5023 TargetLowering::AsmOperandInfoVector 5024 TargetLowering::ParseConstraints(const DataLayout &DL, 5025 const TargetRegisterInfo *TRI, 5026 const CallBase &Call) const { 5027 /// Information about all of the constraints. 5028 AsmOperandInfoVector ConstraintOperands; 5029 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 5030 unsigned maCount = 0; // Largest number of multiple alternative constraints. 5031 5032 // Do a prepass over the constraints, canonicalizing them, and building up the 5033 // ConstraintOperands list. 5034 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5035 unsigned ResNo = 0; // ResNo - The result number of the next output. 5036 5037 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 5038 ConstraintOperands.emplace_back(std::move(CI)); 5039 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 5040 5041 // Update multiple alternative constraint count. 5042 if (OpInfo.multipleAlternatives.size() > maCount) 5043 maCount = OpInfo.multipleAlternatives.size(); 5044 5045 OpInfo.ConstraintVT = MVT::Other; 5046 5047 // Compute the value type for each operand. 5048 switch (OpInfo.Type) { 5049 case InlineAsm::isOutput: 5050 // Indirect outputs just consume an argument. 5051 if (OpInfo.isIndirect) { 5052 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5053 break; 5054 } 5055 5056 // The return value of the call is this value. As such, there is no 5057 // corresponding argument. 5058 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 5059 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 5060 OpInfo.ConstraintVT = 5061 getSimpleValueType(DL, STy->getElementType(ResNo)); 5062 } else { 5063 assert(ResNo == 0 && "Asm only has one result!"); 5064 OpInfo.ConstraintVT = 5065 getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 5066 } 5067 ++ResNo; 5068 break; 5069 case InlineAsm::isInput: 5070 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5071 break; 5072 case InlineAsm::isClobber: 5073 // Nothing to do. 5074 break; 5075 } 5076 5077 if (OpInfo.CallOperandVal) { 5078 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 5079 if (OpInfo.isIndirect) { 5080 OpTy = Call.getParamElementType(ArgNo); 5081 assert(OpTy && "Indirect operand must have elementtype attribute"); 5082 } 5083 5084 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5085 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5086 if (STy->getNumElements() == 1) 5087 OpTy = STy->getElementType(0); 5088 5089 // If OpTy is not a single value, it may be a struct/union that we 5090 // can tile with integers. 5091 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5092 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5093 switch (BitSize) { 5094 default: break; 5095 case 1: 5096 case 8: 5097 case 16: 5098 case 32: 5099 case 64: 5100 case 128: 5101 OpInfo.ConstraintVT = 5102 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 5103 break; 5104 } 5105 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 5106 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 5107 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 5108 } else { 5109 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 5110 } 5111 5112 ArgNo++; 5113 } 5114 } 5115 5116 // If we have multiple alternative constraints, select the best alternative. 5117 if (!ConstraintOperands.empty()) { 5118 if (maCount) { 5119 unsigned bestMAIndex = 0; 5120 int bestWeight = -1; 5121 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 5122 int weight = -1; 5123 unsigned maIndex; 5124 // Compute the sums of the weights for each alternative, keeping track 5125 // of the best (highest weight) one so far. 5126 for (maIndex = 0; maIndex < maCount; ++maIndex) { 5127 int weightSum = 0; 5128 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5129 cIndex != eIndex; ++cIndex) { 5130 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5131 if (OpInfo.Type == InlineAsm::isClobber) 5132 continue; 5133 5134 // If this is an output operand with a matching input operand, 5135 // look up the matching input. If their types mismatch, e.g. one 5136 // is an integer, the other is floating point, or their sizes are 5137 // different, flag it as an maCantMatch. 5138 if (OpInfo.hasMatchingInput()) { 5139 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5140 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5141 if ((OpInfo.ConstraintVT.isInteger() != 5142 Input.ConstraintVT.isInteger()) || 5143 (OpInfo.ConstraintVT.getSizeInBits() != 5144 Input.ConstraintVT.getSizeInBits())) { 5145 weightSum = -1; // Can't match. 5146 break; 5147 } 5148 } 5149 } 5150 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 5151 if (weight == -1) { 5152 weightSum = -1; 5153 break; 5154 } 5155 weightSum += weight; 5156 } 5157 // Update best. 5158 if (weightSum > bestWeight) { 5159 bestWeight = weightSum; 5160 bestMAIndex = maIndex; 5161 } 5162 } 5163 5164 // Now select chosen alternative in each constraint. 5165 for (AsmOperandInfo &cInfo : ConstraintOperands) 5166 if (cInfo.Type != InlineAsm::isClobber) 5167 cInfo.selectAlternative(bestMAIndex); 5168 } 5169 } 5170 5171 // Check and hook up tied operands, choose constraint code to use. 5172 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5173 cIndex != eIndex; ++cIndex) { 5174 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5175 5176 // If this is an output operand with a matching input operand, look up the 5177 // matching input. If their types mismatch, e.g. one is an integer, the 5178 // other is floating point, or their sizes are different, flag it as an 5179 // error. 5180 if (OpInfo.hasMatchingInput()) { 5181 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5182 5183 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5184 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5185 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5186 OpInfo.ConstraintVT); 5187 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5188 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5189 Input.ConstraintVT); 5190 if ((OpInfo.ConstraintVT.isInteger() != 5191 Input.ConstraintVT.isInteger()) || 5192 (MatchRC.second != InputRC.second)) { 5193 report_fatal_error("Unsupported asm: input constraint" 5194 " with a matching output constraint of" 5195 " incompatible type!"); 5196 } 5197 } 5198 } 5199 } 5200 5201 return ConstraintOperands; 5202 } 5203 5204 /// Return an integer indicating how general CT is. 5205 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 5206 switch (CT) { 5207 case TargetLowering::C_Immediate: 5208 case TargetLowering::C_Other: 5209 case TargetLowering::C_Unknown: 5210 return 0; 5211 case TargetLowering::C_Register: 5212 return 1; 5213 case TargetLowering::C_RegisterClass: 5214 return 2; 5215 case TargetLowering::C_Memory: 5216 return 3; 5217 } 5218 llvm_unreachable("Invalid constraint type"); 5219 } 5220 5221 /// Examine constraint type and operand type and determine a weight value. 5222 /// This object must already have been set up with the operand type 5223 /// and the current alternative constraint selected. 5224 TargetLowering::ConstraintWeight 5225 TargetLowering::getMultipleConstraintMatchWeight( 5226 AsmOperandInfo &info, int maIndex) const { 5227 InlineAsm::ConstraintCodeVector *rCodes; 5228 if (maIndex >= (int)info.multipleAlternatives.size()) 5229 rCodes = &info.Codes; 5230 else 5231 rCodes = &info.multipleAlternatives[maIndex].Codes; 5232 ConstraintWeight BestWeight = CW_Invalid; 5233 5234 // Loop over the options, keeping track of the most general one. 5235 for (const std::string &rCode : *rCodes) { 5236 ConstraintWeight weight = 5237 getSingleConstraintMatchWeight(info, rCode.c_str()); 5238 if (weight > BestWeight) 5239 BestWeight = weight; 5240 } 5241 5242 return BestWeight; 5243 } 5244 5245 /// Examine constraint type and operand type and determine a weight value. 5246 /// This object must already have been set up with the operand type 5247 /// and the current alternative constraint selected. 5248 TargetLowering::ConstraintWeight 5249 TargetLowering::getSingleConstraintMatchWeight( 5250 AsmOperandInfo &info, const char *constraint) const { 5251 ConstraintWeight weight = CW_Invalid; 5252 Value *CallOperandVal = info.CallOperandVal; 5253 // If we don't have a value, we can't do a match, 5254 // but allow it at the lowest weight. 5255 if (!CallOperandVal) 5256 return CW_Default; 5257 // Look at the constraint type. 5258 switch (*constraint) { 5259 case 'i': // immediate integer. 5260 case 'n': // immediate integer with a known value. 5261 if (isa<ConstantInt>(CallOperandVal)) 5262 weight = CW_Constant; 5263 break; 5264 case 's': // non-explicit intregal immediate. 5265 if (isa<GlobalValue>(CallOperandVal)) 5266 weight = CW_Constant; 5267 break; 5268 case 'E': // immediate float if host format. 5269 case 'F': // immediate float. 5270 if (isa<ConstantFP>(CallOperandVal)) 5271 weight = CW_Constant; 5272 break; 5273 case '<': // memory operand with autodecrement. 5274 case '>': // memory operand with autoincrement. 5275 case 'm': // memory operand. 5276 case 'o': // offsettable memory operand 5277 case 'V': // non-offsettable memory operand 5278 weight = CW_Memory; 5279 break; 5280 case 'r': // general register. 5281 case 'g': // general register, memory operand or immediate integer. 5282 // note: Clang converts "g" to "imr". 5283 if (CallOperandVal->getType()->isIntegerTy()) 5284 weight = CW_Register; 5285 break; 5286 case 'X': // any operand. 5287 default: 5288 weight = CW_Default; 5289 break; 5290 } 5291 return weight; 5292 } 5293 5294 /// If there are multiple different constraints that we could pick for this 5295 /// operand (e.g. "imr") try to pick the 'best' one. 5296 /// This is somewhat tricky: constraints fall into four classes: 5297 /// Other -> immediates and magic values 5298 /// Register -> one specific register 5299 /// RegisterClass -> a group of regs 5300 /// Memory -> memory 5301 /// Ideally, we would pick the most specific constraint possible: if we have 5302 /// something that fits into a register, we would pick it. The problem here 5303 /// is that if we have something that could either be in a register or in 5304 /// memory that use of the register could cause selection of *other* 5305 /// operands to fail: they might only succeed if we pick memory. Because of 5306 /// this the heuristic we use is: 5307 /// 5308 /// 1) If there is an 'other' constraint, and if the operand is valid for 5309 /// that constraint, use it. This makes us take advantage of 'i' 5310 /// constraints when available. 5311 /// 2) Otherwise, pick the most general constraint present. This prefers 5312 /// 'm' over 'r', for example. 5313 /// 5314 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 5315 const TargetLowering &TLI, 5316 SDValue Op, SelectionDAG *DAG) { 5317 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 5318 unsigned BestIdx = 0; 5319 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 5320 int BestGenerality = -1; 5321 5322 // Loop over the options, keeping track of the most general one. 5323 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 5324 TargetLowering::ConstraintType CType = 5325 TLI.getConstraintType(OpInfo.Codes[i]); 5326 5327 // Indirect 'other' or 'immediate' constraints are not allowed. 5328 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 5329 CType == TargetLowering::C_Register || 5330 CType == TargetLowering::C_RegisterClass)) 5331 continue; 5332 5333 // If this is an 'other' or 'immediate' constraint, see if the operand is 5334 // valid for it. For example, on X86 we might have an 'rI' constraint. If 5335 // the operand is an integer in the range [0..31] we want to use I (saving a 5336 // load of a register), otherwise we must use 'r'. 5337 if ((CType == TargetLowering::C_Other || 5338 CType == TargetLowering::C_Immediate) && Op.getNode()) { 5339 assert(OpInfo.Codes[i].size() == 1 && 5340 "Unhandled multi-letter 'other' constraint"); 5341 std::vector<SDValue> ResultOps; 5342 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 5343 ResultOps, *DAG); 5344 if (!ResultOps.empty()) { 5345 BestType = CType; 5346 BestIdx = i; 5347 break; 5348 } 5349 } 5350 5351 // Things with matching constraints can only be registers, per gcc 5352 // documentation. This mainly affects "g" constraints. 5353 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 5354 continue; 5355 5356 // This constraint letter is more general than the previous one, use it. 5357 int Generality = getConstraintGenerality(CType); 5358 if (Generality > BestGenerality) { 5359 BestType = CType; 5360 BestIdx = i; 5361 BestGenerality = Generality; 5362 } 5363 } 5364 5365 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 5366 OpInfo.ConstraintType = BestType; 5367 } 5368 5369 /// Determines the constraint code and constraint type to use for the specific 5370 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 5371 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 5372 SDValue Op, 5373 SelectionDAG *DAG) const { 5374 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 5375 5376 // Single-letter constraints ('r') are very common. 5377 if (OpInfo.Codes.size() == 1) { 5378 OpInfo.ConstraintCode = OpInfo.Codes[0]; 5379 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5380 } else { 5381 ChooseConstraint(OpInfo, *this, Op, DAG); 5382 } 5383 5384 // 'X' matches anything. 5385 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 5386 // Constants are handled elsewhere. For Functions, the type here is the 5387 // type of the result, which is not what we want to look at; leave them 5388 // alone. 5389 Value *v = OpInfo.CallOperandVal; 5390 if (isa<ConstantInt>(v) || isa<Function>(v)) { 5391 return; 5392 } 5393 5394 if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) { 5395 OpInfo.ConstraintCode = "i"; 5396 return; 5397 } 5398 5399 // Otherwise, try to resolve it to something we know about by looking at 5400 // the actual operand type. 5401 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 5402 OpInfo.ConstraintCode = Repl; 5403 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5404 } 5405 } 5406 } 5407 5408 /// Given an exact SDIV by a constant, create a multiplication 5409 /// with the multiplicative inverse of the constant. 5410 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 5411 const SDLoc &dl, SelectionDAG &DAG, 5412 SmallVectorImpl<SDNode *> &Created) { 5413 SDValue Op0 = N->getOperand(0); 5414 SDValue Op1 = N->getOperand(1); 5415 EVT VT = N->getValueType(0); 5416 EVT SVT = VT.getScalarType(); 5417 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5418 EVT ShSVT = ShVT.getScalarType(); 5419 5420 bool UseSRA = false; 5421 SmallVector<SDValue, 16> Shifts, Factors; 5422 5423 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5424 if (C->isZero()) 5425 return false; 5426 APInt Divisor = C->getAPIntValue(); 5427 unsigned Shift = Divisor.countTrailingZeros(); 5428 if (Shift) { 5429 Divisor.ashrInPlace(Shift); 5430 UseSRA = true; 5431 } 5432 // Calculate the multiplicative inverse, using Newton's method. 5433 APInt t; 5434 APInt Factor = Divisor; 5435 while ((t = Divisor * Factor) != 1) 5436 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5437 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5438 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5439 return true; 5440 }; 5441 5442 // Collect all magic values from the build vector. 5443 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5444 return SDValue(); 5445 5446 SDValue Shift, Factor; 5447 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 5448 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5449 Factor = DAG.getBuildVector(VT, dl, Factors); 5450 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 5451 assert(Shifts.size() == 1 && Factors.size() == 1 && 5452 "Expected matchUnaryPredicate to return one element for scalable " 5453 "vectors"); 5454 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5455 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5456 } else { 5457 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 5458 Shift = Shifts[0]; 5459 Factor = Factors[0]; 5460 } 5461 5462 SDValue Res = Op0; 5463 5464 // Shift the value upfront if it is even, so the LSB is one. 5465 if (UseSRA) { 5466 // TODO: For UDIV use SRL instead of SRA. 5467 SDNodeFlags Flags; 5468 Flags.setExact(true); 5469 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5470 Created.push_back(Res.getNode()); 5471 } 5472 5473 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5474 } 5475 5476 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5477 SelectionDAG &DAG, 5478 SmallVectorImpl<SDNode *> &Created) const { 5479 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5480 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5481 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5482 return SDValue(N, 0); // Lower SDIV as SDIV 5483 return SDValue(); 5484 } 5485 5486 /// Given an ISD::SDIV node expressing a divide by constant, 5487 /// return a DAG expression to select that will generate the same value by 5488 /// multiplying by a magic number. 5489 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5490 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5491 bool IsAfterLegalization, 5492 SmallVectorImpl<SDNode *> &Created) const { 5493 SDLoc dl(N); 5494 EVT VT = N->getValueType(0); 5495 EVT SVT = VT.getScalarType(); 5496 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5497 EVT ShSVT = ShVT.getScalarType(); 5498 unsigned EltBits = VT.getScalarSizeInBits(); 5499 EVT MulVT; 5500 5501 // Check to see if we can do this. 5502 // FIXME: We should be more aggressive here. 5503 if (!isTypeLegal(VT)) { 5504 // Limit this to simple scalars for now. 5505 if (VT.isVector() || !VT.isSimple()) 5506 return SDValue(); 5507 5508 // If this type will be promoted to a large enough type with a legal 5509 // multiply operation, we can go ahead and do this transform. 5510 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5511 return SDValue(); 5512 5513 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5514 if (MulVT.getSizeInBits() < (2 * EltBits) || 5515 !isOperationLegal(ISD::MUL, MulVT)) 5516 return SDValue(); 5517 } 5518 5519 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5520 if (N->getFlags().hasExact()) 5521 return BuildExactSDIV(*this, N, dl, DAG, Created); 5522 5523 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5524 5525 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5526 if (C->isZero()) 5527 return false; 5528 5529 const APInt &Divisor = C->getAPIntValue(); 5530 SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor); 5531 int NumeratorFactor = 0; 5532 int ShiftMask = -1; 5533 5534 if (Divisor.isOne() || Divisor.isAllOnes()) { 5535 // If d is +1/-1, we just multiply the numerator by +1/-1. 5536 NumeratorFactor = Divisor.getSExtValue(); 5537 magics.Magic = 0; 5538 magics.ShiftAmount = 0; 5539 ShiftMask = 0; 5540 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) { 5541 // If d > 0 and m < 0, add the numerator. 5542 NumeratorFactor = 1; 5543 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) { 5544 // If d < 0 and m > 0, subtract the numerator. 5545 NumeratorFactor = -1; 5546 } 5547 5548 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT)); 5549 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5550 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT)); 5551 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5552 return true; 5553 }; 5554 5555 SDValue N0 = N->getOperand(0); 5556 SDValue N1 = N->getOperand(1); 5557 5558 // Collect the shifts / magic values from each element. 5559 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5560 return SDValue(); 5561 5562 SDValue MagicFactor, Factor, Shift, ShiftMask; 5563 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5564 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5565 Factor = DAG.getBuildVector(VT, dl, Factors); 5566 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5567 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5568 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5569 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 5570 Shifts.size() == 1 && ShiftMasks.size() == 1 && 5571 "Expected matchUnaryPredicate to return one element for scalable " 5572 "vectors"); 5573 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5574 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5575 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5576 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 5577 } else { 5578 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5579 MagicFactor = MagicFactors[0]; 5580 Factor = Factors[0]; 5581 Shift = Shifts[0]; 5582 ShiftMask = ShiftMasks[0]; 5583 } 5584 5585 // Multiply the numerator (operand 0) by the magic value. 5586 // FIXME: We should support doing a MUL in a wider type. 5587 auto GetMULHS = [&](SDValue X, SDValue Y) { 5588 // If the type isn't legal, use a wider mul of the the type calculated 5589 // earlier. 5590 if (!isTypeLegal(VT)) { 5591 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 5592 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 5593 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5594 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5595 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5596 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5597 } 5598 5599 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 5600 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 5601 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 5602 SDValue LoHi = 5603 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5604 return SDValue(LoHi.getNode(), 1); 5605 } 5606 return SDValue(); 5607 }; 5608 5609 SDValue Q = GetMULHS(N0, MagicFactor); 5610 if (!Q) 5611 return SDValue(); 5612 5613 Created.push_back(Q.getNode()); 5614 5615 // (Optionally) Add/subtract the numerator using Factor. 5616 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5617 Created.push_back(Factor.getNode()); 5618 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5619 Created.push_back(Q.getNode()); 5620 5621 // Shift right algebraic by shift value. 5622 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5623 Created.push_back(Q.getNode()); 5624 5625 // Extract the sign bit, mask it and add it to the quotient. 5626 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5627 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5628 Created.push_back(T.getNode()); 5629 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5630 Created.push_back(T.getNode()); 5631 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5632 } 5633 5634 /// Given an ISD::UDIV node expressing a divide by constant, 5635 /// return a DAG expression to select that will generate the same value by 5636 /// multiplying by a magic number. 5637 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5638 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5639 bool IsAfterLegalization, 5640 SmallVectorImpl<SDNode *> &Created) const { 5641 SDLoc dl(N); 5642 EVT VT = N->getValueType(0); 5643 EVT SVT = VT.getScalarType(); 5644 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5645 EVT ShSVT = ShVT.getScalarType(); 5646 unsigned EltBits = VT.getScalarSizeInBits(); 5647 EVT MulVT; 5648 5649 // Check to see if we can do this. 5650 // FIXME: We should be more aggressive here. 5651 if (!isTypeLegal(VT)) { 5652 // Limit this to simple scalars for now. 5653 if (VT.isVector() || !VT.isSimple()) 5654 return SDValue(); 5655 5656 // If this type will be promoted to a large enough type with a legal 5657 // multiply operation, we can go ahead and do this transform. 5658 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5659 return SDValue(); 5660 5661 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5662 if (MulVT.getSizeInBits() < (2 * EltBits) || 5663 !isOperationLegal(ISD::MUL, MulVT)) 5664 return SDValue(); 5665 } 5666 5667 bool UseNPQ = false; 5668 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5669 5670 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5671 if (C->isZero()) 5672 return false; 5673 // FIXME: We should use a narrower constant when the upper 5674 // bits are known to be zero. 5675 const APInt& Divisor = C->getAPIntValue(); 5676 UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor); 5677 unsigned PreShift = 0, PostShift = 0; 5678 5679 // If the divisor is even, we can avoid using the expensive fixup by 5680 // shifting the divided value upfront. 5681 if (magics.IsAdd != 0 && !Divisor[0]) { 5682 PreShift = Divisor.countTrailingZeros(); 5683 // Get magic number for the shifted divisor. 5684 magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift); 5685 assert(magics.IsAdd == 0 && "Should use cheap fixup now"); 5686 } 5687 5688 APInt Magic = magics.Magic; 5689 5690 unsigned SelNPQ; 5691 if (magics.IsAdd == 0 || Divisor.isOne()) { 5692 assert(magics.ShiftAmount < Divisor.getBitWidth() && 5693 "We shouldn't generate an undefined shift!"); 5694 PostShift = magics.ShiftAmount; 5695 SelNPQ = false; 5696 } else { 5697 PostShift = magics.ShiftAmount - 1; 5698 SelNPQ = true; 5699 } 5700 5701 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5702 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5703 NPQFactors.push_back( 5704 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5705 : APInt::getZero(EltBits), 5706 dl, SVT)); 5707 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5708 UseNPQ |= SelNPQ; 5709 return true; 5710 }; 5711 5712 SDValue N0 = N->getOperand(0); 5713 SDValue N1 = N->getOperand(1); 5714 5715 // Collect the shifts/magic values from each element. 5716 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5717 return SDValue(); 5718 5719 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5720 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5721 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5722 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5723 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5724 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5725 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5726 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 5727 NPQFactors.size() == 1 && PostShifts.size() == 1 && 5728 "Expected matchUnaryPredicate to return one for scalable vectors"); 5729 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 5730 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5731 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 5732 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 5733 } else { 5734 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5735 PreShift = PreShifts[0]; 5736 MagicFactor = MagicFactors[0]; 5737 PostShift = PostShifts[0]; 5738 } 5739 5740 SDValue Q = N0; 5741 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5742 Created.push_back(Q.getNode()); 5743 5744 // FIXME: We should support doing a MUL in a wider type. 5745 auto GetMULHU = [&](SDValue X, SDValue Y) { 5746 // If the type isn't legal, use a wider mul of the the type calculated 5747 // earlier. 5748 if (!isTypeLegal(VT)) { 5749 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 5750 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 5751 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5752 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5753 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5754 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5755 } 5756 5757 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 5758 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5759 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 5760 SDValue LoHi = 5761 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5762 return SDValue(LoHi.getNode(), 1); 5763 } 5764 return SDValue(); // No mulhu or equivalent 5765 }; 5766 5767 // Multiply the numerator (operand 0) by the magic value. 5768 Q = GetMULHU(Q, MagicFactor); 5769 if (!Q) 5770 return SDValue(); 5771 5772 Created.push_back(Q.getNode()); 5773 5774 if (UseNPQ) { 5775 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5776 Created.push_back(NPQ.getNode()); 5777 5778 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5779 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5780 if (VT.isVector()) 5781 NPQ = GetMULHU(NPQ, NPQFactor); 5782 else 5783 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5784 5785 Created.push_back(NPQ.getNode()); 5786 5787 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5788 Created.push_back(Q.getNode()); 5789 } 5790 5791 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5792 Created.push_back(Q.getNode()); 5793 5794 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5795 5796 SDValue One = DAG.getConstant(1, dl, VT); 5797 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 5798 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5799 } 5800 5801 /// If all values in Values that *don't* match the predicate are same 'splat' 5802 /// value, then replace all values with that splat value. 5803 /// Else, if AlternativeReplacement was provided, then replace all values that 5804 /// do match predicate with AlternativeReplacement value. 5805 static void 5806 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5807 std::function<bool(SDValue)> Predicate, 5808 SDValue AlternativeReplacement = SDValue()) { 5809 SDValue Replacement; 5810 // Is there a value for which the Predicate does *NOT* match? What is it? 5811 auto SplatValue = llvm::find_if_not(Values, Predicate); 5812 if (SplatValue != Values.end()) { 5813 // Does Values consist only of SplatValue's and values matching Predicate? 5814 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5815 return Value == *SplatValue || Predicate(Value); 5816 })) // Then we shall replace values matching predicate with SplatValue. 5817 Replacement = *SplatValue; 5818 } 5819 if (!Replacement) { 5820 // Oops, we did not find the "baseline" splat value. 5821 if (!AlternativeReplacement) 5822 return; // Nothing to do. 5823 // Let's replace with provided value then. 5824 Replacement = AlternativeReplacement; 5825 } 5826 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5827 } 5828 5829 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5830 /// where the divisor is constant and the comparison target is zero, 5831 /// return a DAG expression that will generate the same comparison result 5832 /// using only multiplications, additions and shifts/rotations. 5833 /// Ref: "Hacker's Delight" 10-17. 5834 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5835 SDValue CompTargetNode, 5836 ISD::CondCode Cond, 5837 DAGCombinerInfo &DCI, 5838 const SDLoc &DL) const { 5839 SmallVector<SDNode *, 5> Built; 5840 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5841 DCI, DL, Built)) { 5842 for (SDNode *N : Built) 5843 DCI.AddToWorklist(N); 5844 return Folded; 5845 } 5846 5847 return SDValue(); 5848 } 5849 5850 SDValue 5851 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5852 SDValue CompTargetNode, ISD::CondCode Cond, 5853 DAGCombinerInfo &DCI, const SDLoc &DL, 5854 SmallVectorImpl<SDNode *> &Created) const { 5855 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5856 // - D must be constant, with D = D0 * 2^K where D0 is odd 5857 // - P is the multiplicative inverse of D0 modulo 2^W 5858 // - Q = floor(((2^W) - 1) / D) 5859 // where W is the width of the common type of N and D. 5860 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5861 "Only applicable for (in)equality comparisons."); 5862 5863 SelectionDAG &DAG = DCI.DAG; 5864 5865 EVT VT = REMNode.getValueType(); 5866 EVT SVT = VT.getScalarType(); 5867 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5868 EVT ShSVT = ShVT.getScalarType(); 5869 5870 // If MUL is unavailable, we cannot proceed in any case. 5871 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5872 return SDValue(); 5873 5874 bool ComparingWithAllZeros = true; 5875 bool AllComparisonsWithNonZerosAreTautological = true; 5876 bool HadTautologicalLanes = false; 5877 bool AllLanesAreTautological = true; 5878 bool HadEvenDivisor = false; 5879 bool AllDivisorsArePowerOfTwo = true; 5880 bool HadTautologicalInvertedLanes = false; 5881 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5882 5883 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5884 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5885 if (CDiv->isZero()) 5886 return false; 5887 5888 const APInt &D = CDiv->getAPIntValue(); 5889 const APInt &Cmp = CCmp->getAPIntValue(); 5890 5891 ComparingWithAllZeros &= Cmp.isZero(); 5892 5893 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5894 // if C2 is not less than C1, the comparison is always false. 5895 // But we will only be able to produce the comparison that will give the 5896 // opposive tautological answer. So this lane would need to be fixed up. 5897 bool TautologicalInvertedLane = D.ule(Cmp); 5898 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5899 5900 // If all lanes are tautological (either all divisors are ones, or divisor 5901 // is not greater than the constant we are comparing with), 5902 // we will prefer to avoid the fold. 5903 bool TautologicalLane = D.isOne() || TautologicalInvertedLane; 5904 HadTautologicalLanes |= TautologicalLane; 5905 AllLanesAreTautological &= TautologicalLane; 5906 5907 // If we are comparing with non-zero, we need'll need to subtract said 5908 // comparison value from the LHS. But there is no point in doing that if 5909 // every lane where we are comparing with non-zero is tautological.. 5910 if (!Cmp.isZero()) 5911 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5912 5913 // Decompose D into D0 * 2^K 5914 unsigned K = D.countTrailingZeros(); 5915 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 5916 APInt D0 = D.lshr(K); 5917 5918 // D is even if it has trailing zeros. 5919 HadEvenDivisor |= (K != 0); 5920 // D is a power-of-two if D0 is one. 5921 // If all divisors are power-of-two, we will prefer to avoid the fold. 5922 AllDivisorsArePowerOfTwo &= D0.isOne(); 5923 5924 // P = inv(D0, 2^W) 5925 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5926 unsigned W = D.getBitWidth(); 5927 APInt P = D0.zext(W + 1) 5928 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5929 .trunc(W); 5930 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 5931 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 5932 5933 // Q = floor((2^W - 1) u/ D) 5934 // R = ((2^W - 1) u% D) 5935 APInt Q, R; 5936 APInt::udivrem(APInt::getAllOnes(W), D, Q, R); 5937 5938 // If we are comparing with zero, then that comparison constant is okay, 5939 // else it may need to be one less than that. 5940 if (Cmp.ugt(R)) 5941 Q -= 1; 5942 5943 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 5944 "We are expecting that K is always less than all-ones for ShSVT"); 5945 5946 // If the lane is tautological the result can be constant-folded. 5947 if (TautologicalLane) { 5948 // Set P and K amount to a bogus values so we can try to splat them. 5949 P = 0; 5950 K = -1; 5951 // And ensure that comparison constant is tautological, 5952 // it will always compare true/false. 5953 Q = -1; 5954 } 5955 5956 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5957 KAmts.push_back( 5958 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5959 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5960 return true; 5961 }; 5962 5963 SDValue N = REMNode.getOperand(0); 5964 SDValue D = REMNode.getOperand(1); 5965 5966 // Collect the values from each element. 5967 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5968 return SDValue(); 5969 5970 // If all lanes are tautological, the result can be constant-folded. 5971 if (AllLanesAreTautological) 5972 return SDValue(); 5973 5974 // If this is a urem by a powers-of-two, avoid the fold since it can be 5975 // best implemented as a bit test. 5976 if (AllDivisorsArePowerOfTwo) 5977 return SDValue(); 5978 5979 SDValue PVal, KVal, QVal; 5980 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5981 if (HadTautologicalLanes) { 5982 // Try to turn PAmts into a splat, since we don't care about the values 5983 // that are currently '0'. If we can't, just keep '0'`s. 5984 turnVectorIntoSplatVector(PAmts, isNullConstant); 5985 // Try to turn KAmts into a splat, since we don't care about the values 5986 // that are currently '-1'. If we can't, change them to '0'`s. 5987 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5988 DAG.getConstant(0, DL, ShSVT)); 5989 } 5990 5991 PVal = DAG.getBuildVector(VT, DL, PAmts); 5992 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5993 QVal = DAG.getBuildVector(VT, DL, QAmts); 5994 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 5995 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 5996 "Expected matchBinaryPredicate to return one element for " 5997 "SPLAT_VECTORs"); 5998 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 5999 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6000 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6001 } else { 6002 PVal = PAmts[0]; 6003 KVal = KAmts[0]; 6004 QVal = QAmts[0]; 6005 } 6006 6007 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 6008 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 6009 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 6010 assert(CompTargetNode.getValueType() == N.getValueType() && 6011 "Expecting that the types on LHS and RHS of comparisons match."); 6012 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 6013 } 6014 6015 // (mul N, P) 6016 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6017 Created.push_back(Op0.getNode()); 6018 6019 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6020 // divisors as a performance improvement, since rotating by 0 is a no-op. 6021 if (HadEvenDivisor) { 6022 // We need ROTR to do this. 6023 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6024 return SDValue(); 6025 // UREM: (rotr (mul N, P), K) 6026 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6027 Created.push_back(Op0.getNode()); 6028 } 6029 6030 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 6031 SDValue NewCC = 6032 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6033 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6034 if (!HadTautologicalInvertedLanes) 6035 return NewCC; 6036 6037 // If any lanes previously compared always-false, the NewCC will give 6038 // always-true result for them, so we need to fixup those lanes. 6039 // Or the other way around for inequality predicate. 6040 assert(VT.isVector() && "Can/should only get here for vectors."); 6041 Created.push_back(NewCC.getNode()); 6042 6043 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6044 // if C2 is not less than C1, the comparison is always false. 6045 // But we have produced the comparison that will give the 6046 // opposive tautological answer. So these lanes would need to be fixed up. 6047 SDValue TautologicalInvertedChannels = 6048 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 6049 Created.push_back(TautologicalInvertedChannels.getNode()); 6050 6051 // NOTE: we avoid letting illegal types through even if we're before legalize 6052 // ops – legalization has a hard time producing good code for this. 6053 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 6054 // If we have a vector select, let's replace the comparison results in the 6055 // affected lanes with the correct tautological result. 6056 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 6057 DL, SETCCVT, SETCCVT); 6058 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 6059 Replacement, NewCC); 6060 } 6061 6062 // Else, we can just invert the comparison result in the appropriate lanes. 6063 // 6064 // NOTE: see the note above VSELECT above. 6065 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 6066 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 6067 TautologicalInvertedChannels); 6068 6069 return SDValue(); // Don't know how to lower. 6070 } 6071 6072 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 6073 /// where the divisor is constant and the comparison target is zero, 6074 /// return a DAG expression that will generate the same comparison result 6075 /// using only multiplications, additions and shifts/rotations. 6076 /// Ref: "Hacker's Delight" 10-17. 6077 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 6078 SDValue CompTargetNode, 6079 ISD::CondCode Cond, 6080 DAGCombinerInfo &DCI, 6081 const SDLoc &DL) const { 6082 SmallVector<SDNode *, 7> Built; 6083 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 6084 DCI, DL, Built)) { 6085 assert(Built.size() <= 7 && "Max size prediction failed."); 6086 for (SDNode *N : Built) 6087 DCI.AddToWorklist(N); 6088 return Folded; 6089 } 6090 6091 return SDValue(); 6092 } 6093 6094 SDValue 6095 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 6096 SDValue CompTargetNode, ISD::CondCode Cond, 6097 DAGCombinerInfo &DCI, const SDLoc &DL, 6098 SmallVectorImpl<SDNode *> &Created) const { 6099 // Fold: 6100 // (seteq/ne (srem N, D), 0) 6101 // To: 6102 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 6103 // 6104 // - D must be constant, with D = D0 * 2^K where D0 is odd 6105 // - P is the multiplicative inverse of D0 modulo 2^W 6106 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 6107 // - Q = floor((2 * A) / (2^K)) 6108 // where W is the width of the common type of N and D. 6109 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 6110 "Only applicable for (in)equality comparisons."); 6111 6112 SelectionDAG &DAG = DCI.DAG; 6113 6114 EVT VT = REMNode.getValueType(); 6115 EVT SVT = VT.getScalarType(); 6116 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 6117 EVT ShSVT = ShVT.getScalarType(); 6118 6119 // If we are after ops legalization, and MUL is unavailable, we can not 6120 // proceed. 6121 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6122 return SDValue(); 6123 6124 // TODO: Could support comparing with non-zero too. 6125 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 6126 if (!CompTarget || !CompTarget->isZero()) 6127 return SDValue(); 6128 6129 bool HadIntMinDivisor = false; 6130 bool HadOneDivisor = false; 6131 bool AllDivisorsAreOnes = true; 6132 bool HadEvenDivisor = false; 6133 bool NeedToApplyOffset = false; 6134 bool AllDivisorsArePowerOfTwo = true; 6135 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 6136 6137 auto BuildSREMPattern = [&](ConstantSDNode *C) { 6138 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6139 if (C->isZero()) 6140 return false; 6141 6142 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 6143 6144 // WARNING: this fold is only valid for positive divisors! 6145 APInt D = C->getAPIntValue(); 6146 if (D.isNegative()) 6147 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 6148 6149 HadIntMinDivisor |= D.isMinSignedValue(); 6150 6151 // If all divisors are ones, we will prefer to avoid the fold. 6152 HadOneDivisor |= D.isOne(); 6153 AllDivisorsAreOnes &= D.isOne(); 6154 6155 // Decompose D into D0 * 2^K 6156 unsigned K = D.countTrailingZeros(); 6157 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 6158 APInt D0 = D.lshr(K); 6159 6160 if (!D.isMinSignedValue()) { 6161 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 6162 // we don't care about this lane in this fold, we'll special-handle it. 6163 HadEvenDivisor |= (K != 0); 6164 } 6165 6166 // D is a power-of-two if D0 is one. This includes INT_MIN. 6167 // If all divisors are power-of-two, we will prefer to avoid the fold. 6168 AllDivisorsArePowerOfTwo &= D0.isOne(); 6169 6170 // P = inv(D0, 2^W) 6171 // 2^W requires W + 1 bits, so we have to extend and then truncate. 6172 unsigned W = D.getBitWidth(); 6173 APInt P = D0.zext(W + 1) 6174 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 6175 .trunc(W); 6176 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 6177 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 6178 6179 // A = floor((2^(W - 1) - 1) / D0) & -2^K 6180 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 6181 A.clearLowBits(K); 6182 6183 if (!D.isMinSignedValue()) { 6184 // If divisor INT_MIN, then we don't care about this lane in this fold, 6185 // we'll special-handle it. 6186 NeedToApplyOffset |= A != 0; 6187 } 6188 6189 // Q = floor((2 * A) / (2^K)) 6190 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 6191 6192 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && 6193 "We are expecting that A is always less than all-ones for SVT"); 6194 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 6195 "We are expecting that K is always less than all-ones for ShSVT"); 6196 6197 // If the divisor is 1 the result can be constant-folded. Likewise, we 6198 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 6199 if (D.isOne()) { 6200 // Set P, A and K to a bogus values so we can try to splat them. 6201 P = 0; 6202 A = -1; 6203 K = -1; 6204 6205 // x ?% 1 == 0 <--> true <--> x u<= -1 6206 Q = -1; 6207 } 6208 6209 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 6210 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 6211 KAmts.push_back( 6212 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 6213 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 6214 return true; 6215 }; 6216 6217 SDValue N = REMNode.getOperand(0); 6218 SDValue D = REMNode.getOperand(1); 6219 6220 // Collect the values from each element. 6221 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 6222 return SDValue(); 6223 6224 // If this is a srem by a one, avoid the fold since it can be constant-folded. 6225 if (AllDivisorsAreOnes) 6226 return SDValue(); 6227 6228 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 6229 // since it can be best implemented as a bit test. 6230 if (AllDivisorsArePowerOfTwo) 6231 return SDValue(); 6232 6233 SDValue PVal, AVal, KVal, QVal; 6234 if (D.getOpcode() == ISD::BUILD_VECTOR) { 6235 if (HadOneDivisor) { 6236 // Try to turn PAmts into a splat, since we don't care about the values 6237 // that are currently '0'. If we can't, just keep '0'`s. 6238 turnVectorIntoSplatVector(PAmts, isNullConstant); 6239 // Try to turn AAmts into a splat, since we don't care about the 6240 // values that are currently '-1'. If we can't, change them to '0'`s. 6241 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 6242 DAG.getConstant(0, DL, SVT)); 6243 // Try to turn KAmts into a splat, since we don't care about the values 6244 // that are currently '-1'. If we can't, change them to '0'`s. 6245 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 6246 DAG.getConstant(0, DL, ShSVT)); 6247 } 6248 6249 PVal = DAG.getBuildVector(VT, DL, PAmts); 6250 AVal = DAG.getBuildVector(VT, DL, AAmts); 6251 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6252 QVal = DAG.getBuildVector(VT, DL, QAmts); 6253 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6254 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 6255 QAmts.size() == 1 && 6256 "Expected matchUnaryPredicate to return one element for scalable " 6257 "vectors"); 6258 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6259 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 6260 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6261 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6262 } else { 6263 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 6264 PVal = PAmts[0]; 6265 AVal = AAmts[0]; 6266 KVal = KAmts[0]; 6267 QVal = QAmts[0]; 6268 } 6269 6270 // (mul N, P) 6271 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6272 Created.push_back(Op0.getNode()); 6273 6274 if (NeedToApplyOffset) { 6275 // We need ADD to do this. 6276 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 6277 return SDValue(); 6278 6279 // (add (mul N, P), A) 6280 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 6281 Created.push_back(Op0.getNode()); 6282 } 6283 6284 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6285 // divisors as a performance improvement, since rotating by 0 is a no-op. 6286 if (HadEvenDivisor) { 6287 // We need ROTR to do this. 6288 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6289 return SDValue(); 6290 // SREM: (rotr (add (mul N, P), A), K) 6291 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6292 Created.push_back(Op0.getNode()); 6293 } 6294 6295 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 6296 SDValue Fold = 6297 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6298 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6299 6300 // If we didn't have lanes with INT_MIN divisor, then we're done. 6301 if (!HadIntMinDivisor) 6302 return Fold; 6303 6304 // That fold is only valid for positive divisors. Which effectively means, 6305 // it is invalid for INT_MIN divisors. So if we have such a lane, 6306 // we must fix-up results for said lanes. 6307 assert(VT.isVector() && "Can/should only get here for vectors."); 6308 6309 // NOTE: we avoid letting illegal types through even if we're before legalize 6310 // ops – legalization has a hard time producing good code for the code that 6311 // follows. 6312 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 6313 !isOperationLegalOrCustom(ISD::AND, VT) || 6314 !isOperationLegalOrCustom(Cond, VT) || 6315 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 6316 return SDValue(); 6317 6318 Created.push_back(Fold.getNode()); 6319 6320 SDValue IntMin = DAG.getConstant( 6321 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 6322 SDValue IntMax = DAG.getConstant( 6323 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 6324 SDValue Zero = 6325 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT); 6326 6327 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 6328 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 6329 Created.push_back(DivisorIsIntMin.getNode()); 6330 6331 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 6332 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 6333 Created.push_back(Masked.getNode()); 6334 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 6335 Created.push_back(MaskedIsZero.getNode()); 6336 6337 // To produce final result we need to blend 2 vectors: 'SetCC' and 6338 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 6339 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 6340 // constant-folded, select can get lowered to a shuffle with constant mask. 6341 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 6342 MaskedIsZero, Fold); 6343 6344 return Blended; 6345 } 6346 6347 bool TargetLowering:: 6348 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 6349 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 6350 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 6351 "be a constant integer"); 6352 return true; 6353 } 6354 6355 return false; 6356 } 6357 6358 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 6359 const DenormalMode &Mode) const { 6360 SDLoc DL(Op); 6361 EVT VT = Op.getValueType(); 6362 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6363 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 6364 // Testing it with denormal inputs to avoid wrong estimate. 6365 if (Mode.Input == DenormalMode::IEEE) { 6366 // This is specifically a check for the handling of denormal inputs, 6367 // not the result. 6368 6369 // Test = fabs(X) < SmallestNormal 6370 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 6371 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 6372 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 6373 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 6374 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 6375 } 6376 // Test = X == 0.0 6377 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 6378 } 6379 6380 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 6381 bool LegalOps, bool OptForSize, 6382 NegatibleCost &Cost, 6383 unsigned Depth) const { 6384 // fneg is removable even if it has multiple uses. 6385 if (Op.getOpcode() == ISD::FNEG) { 6386 Cost = NegatibleCost::Cheaper; 6387 return Op.getOperand(0); 6388 } 6389 6390 // Don't recurse exponentially. 6391 if (Depth > SelectionDAG::MaxRecursionDepth) 6392 return SDValue(); 6393 6394 // Pre-increment recursion depth for use in recursive calls. 6395 ++Depth; 6396 const SDNodeFlags Flags = Op->getFlags(); 6397 const TargetOptions &Options = DAG.getTarget().Options; 6398 EVT VT = Op.getValueType(); 6399 unsigned Opcode = Op.getOpcode(); 6400 6401 // Don't allow anything with multiple uses unless we know it is free. 6402 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 6403 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 6404 isFPExtFree(VT, Op.getOperand(0).getValueType()); 6405 if (!IsFreeExtend) 6406 return SDValue(); 6407 } 6408 6409 auto RemoveDeadNode = [&](SDValue N) { 6410 if (N && N.getNode()->use_empty()) 6411 DAG.RemoveDeadNode(N.getNode()); 6412 }; 6413 6414 SDLoc DL(Op); 6415 6416 // Because getNegatedExpression can delete nodes we need a handle to keep 6417 // temporary nodes alive in case the recursion manages to create an identical 6418 // node. 6419 std::list<HandleSDNode> Handles; 6420 6421 switch (Opcode) { 6422 case ISD::ConstantFP: { 6423 // Don't invert constant FP values after legalization unless the target says 6424 // the negated constant is legal. 6425 bool IsOpLegal = 6426 isOperationLegal(ISD::ConstantFP, VT) || 6427 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 6428 OptForSize); 6429 6430 if (LegalOps && !IsOpLegal) 6431 break; 6432 6433 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 6434 V.changeSign(); 6435 SDValue CFP = DAG.getConstantFP(V, DL, VT); 6436 6437 // If we already have the use of the negated floating constant, it is free 6438 // to negate it even it has multiple uses. 6439 if (!Op.hasOneUse() && CFP.use_empty()) 6440 break; 6441 Cost = NegatibleCost::Neutral; 6442 return CFP; 6443 } 6444 case ISD::BUILD_VECTOR: { 6445 // Only permit BUILD_VECTOR of constants. 6446 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 6447 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 6448 })) 6449 break; 6450 6451 bool IsOpLegal = 6452 (isOperationLegal(ISD::ConstantFP, VT) && 6453 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 6454 llvm::all_of(Op->op_values(), [&](SDValue N) { 6455 return N.isUndef() || 6456 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 6457 OptForSize); 6458 }); 6459 6460 if (LegalOps && !IsOpLegal) 6461 break; 6462 6463 SmallVector<SDValue, 4> Ops; 6464 for (SDValue C : Op->op_values()) { 6465 if (C.isUndef()) { 6466 Ops.push_back(C); 6467 continue; 6468 } 6469 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 6470 V.changeSign(); 6471 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 6472 } 6473 Cost = NegatibleCost::Neutral; 6474 return DAG.getBuildVector(VT, DL, Ops); 6475 } 6476 case ISD::FADD: { 6477 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6478 break; 6479 6480 // After operation legalization, it might not be legal to create new FSUBs. 6481 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 6482 break; 6483 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6484 6485 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 6486 NegatibleCost CostX = NegatibleCost::Expensive; 6487 SDValue NegX = 6488 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6489 // Prevent this node from being deleted by the next call. 6490 if (NegX) 6491 Handles.emplace_back(NegX); 6492 6493 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 6494 NegatibleCost CostY = NegatibleCost::Expensive; 6495 SDValue NegY = 6496 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6497 6498 // We're done with the handles. 6499 Handles.clear(); 6500 6501 // Negate the X if its cost is less or equal than Y. 6502 if (NegX && (CostX <= CostY)) { 6503 Cost = CostX; 6504 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 6505 if (NegY != N) 6506 RemoveDeadNode(NegY); 6507 return N; 6508 } 6509 6510 // Negate the Y if it is not expensive. 6511 if (NegY) { 6512 Cost = CostY; 6513 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 6514 if (NegX != N) 6515 RemoveDeadNode(NegX); 6516 return N; 6517 } 6518 break; 6519 } 6520 case ISD::FSUB: { 6521 // We can't turn -(A-B) into B-A when we honor signed zeros. 6522 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6523 break; 6524 6525 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6526 // fold (fneg (fsub 0, Y)) -> Y 6527 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 6528 if (C->isZero()) { 6529 Cost = NegatibleCost::Cheaper; 6530 return Y; 6531 } 6532 6533 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 6534 Cost = NegatibleCost::Neutral; 6535 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 6536 } 6537 case ISD::FMUL: 6538 case ISD::FDIV: { 6539 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6540 6541 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 6542 NegatibleCost CostX = NegatibleCost::Expensive; 6543 SDValue NegX = 6544 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6545 // Prevent this node from being deleted by the next call. 6546 if (NegX) 6547 Handles.emplace_back(NegX); 6548 6549 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 6550 NegatibleCost CostY = NegatibleCost::Expensive; 6551 SDValue NegY = 6552 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6553 6554 // We're done with the handles. 6555 Handles.clear(); 6556 6557 // Negate the X if its cost is less or equal than Y. 6558 if (NegX && (CostX <= CostY)) { 6559 Cost = CostX; 6560 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6561 if (NegY != N) 6562 RemoveDeadNode(NegY); 6563 return N; 6564 } 6565 6566 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6567 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6568 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6569 break; 6570 6571 // Negate the Y if it is not expensive. 6572 if (NegY) { 6573 Cost = CostY; 6574 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6575 if (NegX != N) 6576 RemoveDeadNode(NegX); 6577 return N; 6578 } 6579 break; 6580 } 6581 case ISD::FMA: 6582 case ISD::FMAD: { 6583 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6584 break; 6585 6586 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6587 NegatibleCost CostZ = NegatibleCost::Expensive; 6588 SDValue NegZ = 6589 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6590 // Give up if fail to negate the Z. 6591 if (!NegZ) 6592 break; 6593 6594 // Prevent this node from being deleted by the next two calls. 6595 Handles.emplace_back(NegZ); 6596 6597 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6598 NegatibleCost CostX = NegatibleCost::Expensive; 6599 SDValue NegX = 6600 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6601 // Prevent this node from being deleted by the next call. 6602 if (NegX) 6603 Handles.emplace_back(NegX); 6604 6605 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6606 NegatibleCost CostY = NegatibleCost::Expensive; 6607 SDValue NegY = 6608 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6609 6610 // We're done with the handles. 6611 Handles.clear(); 6612 6613 // Negate the X if its cost is less or equal than Y. 6614 if (NegX && (CostX <= CostY)) { 6615 Cost = std::min(CostX, CostZ); 6616 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 6617 if (NegY != N) 6618 RemoveDeadNode(NegY); 6619 return N; 6620 } 6621 6622 // Negate the Y if it is not expensive. 6623 if (NegY) { 6624 Cost = std::min(CostY, CostZ); 6625 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 6626 if (NegX != N) 6627 RemoveDeadNode(NegX); 6628 return N; 6629 } 6630 break; 6631 } 6632 6633 case ISD::FP_EXTEND: 6634 case ISD::FSIN: 6635 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6636 OptForSize, Cost, Depth)) 6637 return DAG.getNode(Opcode, DL, VT, NegV); 6638 break; 6639 case ISD::FP_ROUND: 6640 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6641 OptForSize, Cost, Depth)) 6642 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 6643 break; 6644 } 6645 6646 return SDValue(); 6647 } 6648 6649 //===----------------------------------------------------------------------===// 6650 // Legalization Utilities 6651 //===----------------------------------------------------------------------===// 6652 6653 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 6654 SDValue LHS, SDValue RHS, 6655 SmallVectorImpl<SDValue> &Result, 6656 EVT HiLoVT, SelectionDAG &DAG, 6657 MulExpansionKind Kind, SDValue LL, 6658 SDValue LH, SDValue RL, SDValue RH) const { 6659 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 6660 Opcode == ISD::SMUL_LOHI); 6661 6662 bool HasMULHS = (Kind == MulExpansionKind::Always) || 6663 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 6664 bool HasMULHU = (Kind == MulExpansionKind::Always) || 6665 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 6666 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 6667 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 6668 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 6669 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 6670 6671 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 6672 return false; 6673 6674 unsigned OuterBitSize = VT.getScalarSizeInBits(); 6675 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6676 6677 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6678 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6679 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6680 6681 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6682 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6683 bool Signed) -> bool { 6684 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6685 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6686 Hi = SDValue(Lo.getNode(), 1); 6687 return true; 6688 } 6689 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6690 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6691 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6692 return true; 6693 } 6694 return false; 6695 }; 6696 6697 SDValue Lo, Hi; 6698 6699 if (!LL.getNode() && !RL.getNode() && 6700 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6701 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6702 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6703 } 6704 6705 if (!LL.getNode()) 6706 return false; 6707 6708 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6709 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6710 DAG.MaskedValueIsZero(RHS, HighMask)) { 6711 // The inputs are both zero-extended. 6712 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6713 Result.push_back(Lo); 6714 Result.push_back(Hi); 6715 if (Opcode != ISD::MUL) { 6716 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6717 Result.push_back(Zero); 6718 Result.push_back(Zero); 6719 } 6720 return true; 6721 } 6722 } 6723 6724 if (!VT.isVector() && Opcode == ISD::MUL && 6725 DAG.ComputeNumSignBits(LHS) > InnerBitSize && 6726 DAG.ComputeNumSignBits(RHS) > InnerBitSize) { 6727 // The input values are both sign-extended. 6728 // TODO non-MUL case? 6729 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6730 Result.push_back(Lo); 6731 Result.push_back(Hi); 6732 return true; 6733 } 6734 } 6735 6736 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6737 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6738 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6739 6740 if (!LH.getNode() && !RH.getNode() && 6741 isOperationLegalOrCustom(ISD::SRL, VT) && 6742 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6743 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6744 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6745 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6746 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6747 } 6748 6749 if (!LH.getNode()) 6750 return false; 6751 6752 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6753 return false; 6754 6755 Result.push_back(Lo); 6756 6757 if (Opcode == ISD::MUL) { 6758 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6759 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6760 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6761 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6762 Result.push_back(Hi); 6763 return true; 6764 } 6765 6766 // Compute the full width result. 6767 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6768 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6769 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6770 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6771 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6772 }; 6773 6774 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6775 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6776 return false; 6777 6778 // This is effectively the add part of a multiply-add of half-sized operands, 6779 // so it cannot overflow. 6780 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6781 6782 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6783 return false; 6784 6785 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6786 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6787 6788 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6789 isOperationLegalOrCustom(ISD::ADDE, VT)); 6790 if (UseGlue) 6791 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6792 Merge(Lo, Hi)); 6793 else 6794 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6795 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6796 6797 SDValue Carry = Next.getValue(1); 6798 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6799 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6800 6801 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6802 return false; 6803 6804 if (UseGlue) 6805 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6806 Carry); 6807 else 6808 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6809 Zero, Carry); 6810 6811 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6812 6813 if (Opcode == ISD::SMUL_LOHI) { 6814 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6815 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6816 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6817 6818 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6819 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6820 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6821 } 6822 6823 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6824 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6825 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6826 return true; 6827 } 6828 6829 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6830 SelectionDAG &DAG, MulExpansionKind Kind, 6831 SDValue LL, SDValue LH, SDValue RL, 6832 SDValue RH) const { 6833 SmallVector<SDValue, 2> Result; 6834 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 6835 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6836 DAG, Kind, LL, LH, RL, RH); 6837 if (Ok) { 6838 assert(Result.size() == 2); 6839 Lo = Result[0]; 6840 Hi = Result[1]; 6841 } 6842 return Ok; 6843 } 6844 6845 // Check that (every element of) Z is undef or not an exact multiple of BW. 6846 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 6847 return ISD::matchUnaryPredicate( 6848 Z, 6849 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 6850 true); 6851 } 6852 6853 SDValue TargetLowering::expandFunnelShift(SDNode *Node, 6854 SelectionDAG &DAG) const { 6855 EVT VT = Node->getValueType(0); 6856 6857 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6858 !isOperationLegalOrCustom(ISD::SRL, VT) || 6859 !isOperationLegalOrCustom(ISD::SUB, VT) || 6860 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6861 return SDValue(); 6862 6863 SDValue X = Node->getOperand(0); 6864 SDValue Y = Node->getOperand(1); 6865 SDValue Z = Node->getOperand(2); 6866 6867 unsigned BW = VT.getScalarSizeInBits(); 6868 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6869 SDLoc DL(SDValue(Node, 0)); 6870 6871 EVT ShVT = Z.getValueType(); 6872 6873 // If a funnel shift in the other direction is more supported, use it. 6874 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 6875 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6876 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 6877 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6878 // fshl X, Y, Z -> fshr X, Y, -Z 6879 // fshr X, Y, Z -> fshl X, Y, -Z 6880 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6881 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 6882 } else { 6883 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 6884 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 6885 SDValue One = DAG.getConstant(1, DL, ShVT); 6886 if (IsFSHL) { 6887 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6888 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 6889 } else { 6890 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6891 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 6892 } 6893 Z = DAG.getNOT(DL, Z, ShVT); 6894 } 6895 return DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 6896 } 6897 6898 SDValue ShX, ShY; 6899 SDValue ShAmt, InvShAmt; 6900 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6901 // fshl: X << C | Y >> (BW - C) 6902 // fshr: X << (BW - C) | Y >> C 6903 // where C = Z % BW is not zero 6904 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6905 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6906 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6907 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6908 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6909 } else { 6910 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6911 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6912 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 6913 if (isPowerOf2_32(BW)) { 6914 // Z % BW -> Z & (BW - 1) 6915 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6916 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6917 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 6918 } else { 6919 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6920 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6921 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 6922 } 6923 6924 SDValue One = DAG.getConstant(1, DL, ShVT); 6925 if (IsFSHL) { 6926 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 6927 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 6928 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 6929 } else { 6930 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 6931 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 6932 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 6933 } 6934 } 6935 return DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6936 } 6937 6938 // TODO: Merge with expandFunnelShift. 6939 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 6940 SelectionDAG &DAG) const { 6941 EVT VT = Node->getValueType(0); 6942 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6943 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6944 SDValue Op0 = Node->getOperand(0); 6945 SDValue Op1 = Node->getOperand(1); 6946 SDLoc DL(SDValue(Node, 0)); 6947 6948 EVT ShVT = Op1.getValueType(); 6949 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6950 6951 // If a rotate in the other direction is more supported, use it. 6952 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6953 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6954 isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 6955 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6956 return DAG.getNode(RevRot, DL, VT, Op0, Sub); 6957 } 6958 6959 if (!AllowVectorOps && VT.isVector() && 6960 (!isOperationLegalOrCustom(ISD::SHL, VT) || 6961 !isOperationLegalOrCustom(ISD::SRL, VT) || 6962 !isOperationLegalOrCustom(ISD::SUB, VT) || 6963 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6964 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6965 return SDValue(); 6966 6967 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6968 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6969 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6970 SDValue ShVal; 6971 SDValue HsVal; 6972 if (isPowerOf2_32(EltSizeInBits)) { 6973 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 6974 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 6975 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6976 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6977 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6978 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6979 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 6980 } else { 6981 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 6982 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 6983 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6984 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 6985 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6986 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 6987 SDValue One = DAG.getConstant(1, DL, ShVT); 6988 HsVal = 6989 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 6990 } 6991 return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 6992 } 6993 6994 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 6995 SelectionDAG &DAG) const { 6996 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 6997 EVT VT = Node->getValueType(0); 6998 unsigned VTBits = VT.getScalarSizeInBits(); 6999 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 7000 7001 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 7002 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 7003 SDValue ShOpLo = Node->getOperand(0); 7004 SDValue ShOpHi = Node->getOperand(1); 7005 SDValue ShAmt = Node->getOperand(2); 7006 EVT ShAmtVT = ShAmt.getValueType(); 7007 EVT ShAmtCCVT = 7008 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 7009 SDLoc dl(Node); 7010 7011 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 7012 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 7013 // away during isel. 7014 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 7015 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 7016 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 7017 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 7018 : DAG.getConstant(0, dl, VT); 7019 7020 SDValue Tmp2, Tmp3; 7021 if (IsSHL) { 7022 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 7023 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 7024 } else { 7025 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 7026 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 7027 } 7028 7029 // If the shift amount is larger or equal than the width of a part we don't 7030 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 7031 // values for large shift amounts. 7032 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 7033 DAG.getConstant(VTBits, dl, ShAmtVT)); 7034 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 7035 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 7036 7037 if (IsSHL) { 7038 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 7039 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 7040 } else { 7041 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 7042 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 7043 } 7044 } 7045 7046 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 7047 SelectionDAG &DAG) const { 7048 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 7049 SDValue Src = Node->getOperand(OpNo); 7050 EVT SrcVT = Src.getValueType(); 7051 EVT DstVT = Node->getValueType(0); 7052 SDLoc dl(SDValue(Node, 0)); 7053 7054 // FIXME: Only f32 to i64 conversions are supported. 7055 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 7056 return false; 7057 7058 if (Node->isStrictFPOpcode()) 7059 // When a NaN is converted to an integer a trap is allowed. We can't 7060 // use this expansion here because it would eliminate that trap. Other 7061 // traps are also allowed and cannot be eliminated. See 7062 // IEEE 754-2008 sec 5.8. 7063 return false; 7064 7065 // Expand f32 -> i64 conversion 7066 // This algorithm comes from compiler-rt's implementation of fixsfdi: 7067 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 7068 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 7069 EVT IntVT = SrcVT.changeTypeToInteger(); 7070 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 7071 7072 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 7073 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 7074 SDValue Bias = DAG.getConstant(127, dl, IntVT); 7075 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 7076 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 7077 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 7078 7079 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 7080 7081 SDValue ExponentBits = DAG.getNode( 7082 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 7083 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 7084 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 7085 7086 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 7087 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 7088 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 7089 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 7090 7091 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 7092 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 7093 DAG.getConstant(0x00800000, dl, IntVT)); 7094 7095 R = DAG.getZExtOrTrunc(R, dl, DstVT); 7096 7097 R = DAG.getSelectCC( 7098 dl, Exponent, ExponentLoBit, 7099 DAG.getNode(ISD::SHL, dl, DstVT, R, 7100 DAG.getZExtOrTrunc( 7101 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 7102 dl, IntShVT)), 7103 DAG.getNode(ISD::SRL, dl, DstVT, R, 7104 DAG.getZExtOrTrunc( 7105 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 7106 dl, IntShVT)), 7107 ISD::SETGT); 7108 7109 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 7110 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 7111 7112 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 7113 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 7114 return true; 7115 } 7116 7117 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 7118 SDValue &Chain, 7119 SelectionDAG &DAG) const { 7120 SDLoc dl(SDValue(Node, 0)); 7121 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 7122 SDValue Src = Node->getOperand(OpNo); 7123 7124 EVT SrcVT = Src.getValueType(); 7125 EVT DstVT = Node->getValueType(0); 7126 EVT SetCCVT = 7127 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 7128 EVT DstSetCCVT = 7129 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 7130 7131 // Only expand vector types if we have the appropriate vector bit operations. 7132 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 7133 ISD::FP_TO_SINT; 7134 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 7135 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 7136 return false; 7137 7138 // If the maximum float value is smaller then the signed integer range, 7139 // the destination signmask can't be represented by the float, so we can 7140 // just use FP_TO_SINT directly. 7141 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 7142 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits())); 7143 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 7144 if (APFloat::opOverflow & 7145 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 7146 if (Node->isStrictFPOpcode()) { 7147 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 7148 { Node->getOperand(0), Src }); 7149 Chain = Result.getValue(1); 7150 } else 7151 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 7152 return true; 7153 } 7154 7155 // Don't expand it if there isn't cheap fsub instruction. 7156 if (!isOperationLegalOrCustom( 7157 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 7158 return false; 7159 7160 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 7161 SDValue Sel; 7162 7163 if (Node->isStrictFPOpcode()) { 7164 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 7165 Node->getOperand(0), /*IsSignaling*/ true); 7166 Chain = Sel.getValue(1); 7167 } else { 7168 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 7169 } 7170 7171 bool Strict = Node->isStrictFPOpcode() || 7172 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 7173 7174 if (Strict) { 7175 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 7176 // signmask then offset (the result of which should be fully representable). 7177 // Sel = Src < 0x8000000000000000 7178 // FltOfs = select Sel, 0, 0x8000000000000000 7179 // IntOfs = select Sel, 0, 0x8000000000000000 7180 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 7181 7182 // TODO: Should any fast-math-flags be set for the FSUB? 7183 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 7184 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 7185 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 7186 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 7187 DAG.getConstant(0, dl, DstVT), 7188 DAG.getConstant(SignMask, dl, DstVT)); 7189 SDValue SInt; 7190 if (Node->isStrictFPOpcode()) { 7191 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 7192 { Chain, Src, FltOfs }); 7193 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 7194 { Val.getValue(1), Val }); 7195 Chain = SInt.getValue(1); 7196 } else { 7197 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 7198 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 7199 } 7200 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 7201 } else { 7202 // Expand based on maximum range of FP_TO_SINT: 7203 // True = fp_to_sint(Src) 7204 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 7205 // Result = select (Src < 0x8000000000000000), True, False 7206 7207 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 7208 // TODO: Should any fast-math-flags be set for the FSUB? 7209 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 7210 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 7211 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 7212 DAG.getConstant(SignMask, dl, DstVT)); 7213 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 7214 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 7215 } 7216 return true; 7217 } 7218 7219 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 7220 SDValue &Chain, 7221 SelectionDAG &DAG) const { 7222 // This transform is not correct for converting 0 when rounding mode is set 7223 // to round toward negative infinity which will produce -0.0. So disable under 7224 // strictfp. 7225 if (Node->isStrictFPOpcode()) 7226 return false; 7227 7228 SDValue Src = Node->getOperand(0); 7229 EVT SrcVT = Src.getValueType(); 7230 EVT DstVT = Node->getValueType(0); 7231 7232 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 7233 return false; 7234 7235 // Only expand vector types if we have the appropriate vector bit operations. 7236 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 7237 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 7238 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 7239 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 7240 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 7241 return false; 7242 7243 SDLoc dl(SDValue(Node, 0)); 7244 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 7245 7246 // Implementation of unsigned i64 to f64 following the algorithm in 7247 // __floatundidf in compiler_rt. This implementation performs rounding 7248 // correctly in all rounding modes with the exception of converting 0 7249 // when rounding toward negative infinity. In that case the fsub will produce 7250 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 7251 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 7252 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 7253 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 7254 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 7255 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 7256 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 7257 7258 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 7259 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 7260 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 7261 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 7262 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 7263 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 7264 SDValue HiSub = 7265 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 7266 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 7267 return true; 7268 } 7269 7270 SDValue 7271 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node, 7272 SelectionDAG &DAG) const { 7273 unsigned Opcode = Node->getOpcode(); 7274 assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM || 7275 Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) && 7276 "Wrong opcode"); 7277 7278 if (Node->getFlags().hasNoNaNs()) { 7279 ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 7280 SDValue Op1 = Node->getOperand(0); 7281 SDValue Op2 = Node->getOperand(1); 7282 SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred); 7283 // Copy FMF flags, but always set the no-signed-zeros flag 7284 // as this is implied by the FMINNUM/FMAXNUM semantics. 7285 SDNodeFlags Flags = Node->getFlags(); 7286 Flags.setNoSignedZeros(true); 7287 SelCC->setFlags(Flags); 7288 return SelCC; 7289 } 7290 7291 return SDValue(); 7292 } 7293 7294 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 7295 SelectionDAG &DAG) const { 7296 SDLoc dl(Node); 7297 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 7298 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 7299 EVT VT = Node->getValueType(0); 7300 7301 if (VT.isScalableVector()) 7302 report_fatal_error( 7303 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 7304 7305 if (isOperationLegalOrCustom(NewOp, VT)) { 7306 SDValue Quiet0 = Node->getOperand(0); 7307 SDValue Quiet1 = Node->getOperand(1); 7308 7309 if (!Node->getFlags().hasNoNaNs()) { 7310 // Insert canonicalizes if it's possible we need to quiet to get correct 7311 // sNaN behavior. 7312 if (!DAG.isKnownNeverSNaN(Quiet0)) { 7313 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 7314 Node->getFlags()); 7315 } 7316 if (!DAG.isKnownNeverSNaN(Quiet1)) { 7317 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 7318 Node->getFlags()); 7319 } 7320 } 7321 7322 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 7323 } 7324 7325 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 7326 // instead if there are no NaNs. 7327 if (Node->getFlags().hasNoNaNs()) { 7328 unsigned IEEE2018Op = 7329 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 7330 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 7331 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 7332 Node->getOperand(1), Node->getFlags()); 7333 } 7334 } 7335 7336 if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG)) 7337 return SelCC; 7338 7339 return SDValue(); 7340 } 7341 7342 // Only expand vector types if we have the appropriate vector bit operations. 7343 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) { 7344 assert(VT.isVector() && "Expected vector type"); 7345 unsigned Len = VT.getScalarSizeInBits(); 7346 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 7347 TLI.isOperationLegalOrCustom(ISD::SUB, VT) && 7348 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 7349 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) && 7350 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT); 7351 } 7352 7353 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const { 7354 SDLoc dl(Node); 7355 EVT VT = Node->getValueType(0); 7356 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7357 SDValue Op = Node->getOperand(0); 7358 unsigned Len = VT.getScalarSizeInBits(); 7359 assert(VT.isInteger() && "CTPOP not implemented for this type."); 7360 7361 // TODO: Add support for irregular type lengths. 7362 if (!(Len <= 128 && Len % 8 == 0)) 7363 return SDValue(); 7364 7365 // Only expand vector types if we have the appropriate vector bit operations. 7366 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT)) 7367 return SDValue(); 7368 7369 // This is the "best" algorithm from 7370 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 7371 SDValue Mask55 = 7372 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 7373 SDValue Mask33 = 7374 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 7375 SDValue Mask0F = 7376 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 7377 SDValue Mask01 = 7378 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 7379 7380 // v = v - ((v >> 1) & 0x55555555...) 7381 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 7382 DAG.getNode(ISD::AND, dl, VT, 7383 DAG.getNode(ISD::SRL, dl, VT, Op, 7384 DAG.getConstant(1, dl, ShVT)), 7385 Mask55)); 7386 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 7387 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 7388 DAG.getNode(ISD::AND, dl, VT, 7389 DAG.getNode(ISD::SRL, dl, VT, Op, 7390 DAG.getConstant(2, dl, ShVT)), 7391 Mask33)); 7392 // v = (v + (v >> 4)) & 0x0F0F0F0F... 7393 Op = DAG.getNode(ISD::AND, dl, VT, 7394 DAG.getNode(ISD::ADD, dl, VT, Op, 7395 DAG.getNode(ISD::SRL, dl, VT, Op, 7396 DAG.getConstant(4, dl, ShVT))), 7397 Mask0F); 7398 // v = (v * 0x01010101...) >> (Len - 8) 7399 if (Len > 8) 7400 Op = 7401 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 7402 DAG.getConstant(Len - 8, dl, ShVT)); 7403 7404 return Op; 7405 } 7406 7407 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const { 7408 SDLoc dl(Node); 7409 EVT VT = Node->getValueType(0); 7410 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7411 SDValue Op = Node->getOperand(0); 7412 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7413 7414 // If the non-ZERO_UNDEF version is supported we can use that instead. 7415 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 7416 isOperationLegalOrCustom(ISD::CTLZ, VT)) 7417 return DAG.getNode(ISD::CTLZ, dl, VT, Op); 7418 7419 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7420 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 7421 EVT SetCCVT = 7422 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7423 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 7424 SDValue Zero = DAG.getConstant(0, dl, VT); 7425 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7426 return DAG.getSelect(dl, VT, SrcIsZero, 7427 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 7428 } 7429 7430 // Only expand vector types if we have the appropriate vector bit operations. 7431 // This includes the operations needed to expand CTPOP if it isn't supported. 7432 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7433 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7434 !canExpandVectorCTPOP(*this, VT)) || 7435 !isOperationLegalOrCustom(ISD::SRL, VT) || 7436 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7437 return SDValue(); 7438 7439 // for now, we do this: 7440 // x = x | (x >> 1); 7441 // x = x | (x >> 2); 7442 // ... 7443 // x = x | (x >>16); 7444 // x = x | (x >>32); // for 64-bit input 7445 // return popcount(~x); 7446 // 7447 // Ref: "Hacker's Delight" by Henry Warren 7448 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 7449 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 7450 Op = DAG.getNode(ISD::OR, dl, VT, Op, 7451 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 7452 } 7453 Op = DAG.getNOT(dl, Op, VT); 7454 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 7455 } 7456 7457 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const { 7458 SDLoc dl(Node); 7459 EVT VT = Node->getValueType(0); 7460 SDValue Op = Node->getOperand(0); 7461 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7462 7463 // If the non-ZERO_UNDEF version is supported we can use that instead. 7464 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 7465 isOperationLegalOrCustom(ISD::CTTZ, VT)) 7466 return DAG.getNode(ISD::CTTZ, dl, VT, Op); 7467 7468 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7469 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 7470 EVT SetCCVT = 7471 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7472 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 7473 SDValue Zero = DAG.getConstant(0, dl, VT); 7474 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7475 return DAG.getSelect(dl, VT, SrcIsZero, 7476 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 7477 } 7478 7479 // Only expand vector types if we have the appropriate vector bit operations. 7480 // This includes the operations needed to expand CTPOP if it isn't supported. 7481 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7482 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7483 !isOperationLegalOrCustom(ISD::CTLZ, VT) && 7484 !canExpandVectorCTPOP(*this, VT)) || 7485 !isOperationLegalOrCustom(ISD::SUB, VT) || 7486 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 7487 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7488 return SDValue(); 7489 7490 // for now, we use: { return popcount(~x & (x - 1)); } 7491 // unless the target has ctlz but not ctpop, in which case we use: 7492 // { return 32 - nlz(~x & (x-1)); } 7493 // Ref: "Hacker's Delight" by Henry Warren 7494 SDValue Tmp = DAG.getNode( 7495 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 7496 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 7497 7498 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 7499 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 7500 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 7501 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 7502 } 7503 7504 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 7505 } 7506 7507 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG, 7508 bool IsNegative) const { 7509 SDLoc dl(N); 7510 EVT VT = N->getValueType(0); 7511 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7512 SDValue Op = N->getOperand(0); 7513 7514 // abs(x) -> smax(x,sub(0,x)) 7515 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7516 isOperationLegal(ISD::SMAX, VT)) { 7517 SDValue Zero = DAG.getConstant(0, dl, VT); 7518 return DAG.getNode(ISD::SMAX, dl, VT, Op, 7519 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7520 } 7521 7522 // abs(x) -> umin(x,sub(0,x)) 7523 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7524 isOperationLegal(ISD::UMIN, VT)) { 7525 SDValue Zero = DAG.getConstant(0, dl, VT); 7526 return DAG.getNode(ISD::UMIN, dl, VT, Op, 7527 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7528 } 7529 7530 // 0 - abs(x) -> smin(x, sub(0,x)) 7531 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 7532 isOperationLegal(ISD::SMIN, VT)) { 7533 SDValue Zero = DAG.getConstant(0, dl, VT); 7534 return DAG.getNode(ISD::SMIN, dl, VT, Op, 7535 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7536 } 7537 7538 // Only expand vector types if we have the appropriate vector operations. 7539 if (VT.isVector() && 7540 (!isOperationLegalOrCustom(ISD::SRA, VT) || 7541 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 7542 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 7543 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7544 return SDValue(); 7545 7546 SDValue Shift = 7547 DAG.getNode(ISD::SRA, dl, VT, Op, 7548 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 7549 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 7550 7551 // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y) 7552 if (!IsNegative) 7553 return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift); 7554 7555 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 7556 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 7557 } 7558 7559 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 7560 SDLoc dl(N); 7561 EVT VT = N->getValueType(0); 7562 SDValue Op = N->getOperand(0); 7563 7564 if (!VT.isSimple()) 7565 return SDValue(); 7566 7567 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7568 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 7569 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 7570 default: 7571 return SDValue(); 7572 case MVT::i16: 7573 // Use a rotate by 8. This can be further expanded if necessary. 7574 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7575 case MVT::i32: 7576 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7577 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7578 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7579 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7580 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7581 DAG.getConstant(0xFF0000, dl, VT)); 7582 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 7583 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7584 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7585 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7586 case MVT::i64: 7587 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7588 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7589 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7590 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7591 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7592 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7593 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7594 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7595 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 7596 DAG.getConstant(255ULL<<48, dl, VT)); 7597 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 7598 DAG.getConstant(255ULL<<40, dl, VT)); 7599 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 7600 DAG.getConstant(255ULL<<32, dl, VT)); 7601 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 7602 DAG.getConstant(255ULL<<24, dl, VT)); 7603 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7604 DAG.getConstant(255ULL<<16, dl, VT)); 7605 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 7606 DAG.getConstant(255ULL<<8 , dl, VT)); 7607 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 7608 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 7609 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7610 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7611 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 7612 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7613 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 7614 } 7615 } 7616 7617 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 7618 SDLoc dl(N); 7619 EVT VT = N->getValueType(0); 7620 SDValue Op = N->getOperand(0); 7621 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7622 unsigned Sz = VT.getScalarSizeInBits(); 7623 7624 SDValue Tmp, Tmp2, Tmp3; 7625 7626 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 7627 // and finally the i1 pairs. 7628 // TODO: We can easily support i4/i2 legal types if any target ever does. 7629 if (Sz >= 8 && isPowerOf2_32(Sz)) { 7630 // Create the masks - repeating the pattern every byte. 7631 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 7632 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 7633 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 7634 7635 // BSWAP if the type is wider than a single byte. 7636 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 7637 7638 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 7639 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); 7640 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); 7641 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); 7642 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 7643 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7644 7645 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 7646 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); 7647 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); 7648 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); 7649 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 7650 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7651 7652 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 7653 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); 7654 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); 7655 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); 7656 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 7657 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7658 return Tmp; 7659 } 7660 7661 Tmp = DAG.getConstant(0, dl, VT); 7662 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 7663 if (I < J) 7664 Tmp2 = 7665 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 7666 else 7667 Tmp2 = 7668 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 7669 7670 APInt Shift(Sz, 1); 7671 Shift <<= J; 7672 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 7673 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 7674 } 7675 7676 return Tmp; 7677 } 7678 7679 std::pair<SDValue, SDValue> 7680 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 7681 SelectionDAG &DAG) const { 7682 SDLoc SL(LD); 7683 SDValue Chain = LD->getChain(); 7684 SDValue BasePTR = LD->getBasePtr(); 7685 EVT SrcVT = LD->getMemoryVT(); 7686 EVT DstVT = LD->getValueType(0); 7687 ISD::LoadExtType ExtType = LD->getExtensionType(); 7688 7689 if (SrcVT.isScalableVector()) 7690 report_fatal_error("Cannot scalarize scalable vector loads"); 7691 7692 unsigned NumElem = SrcVT.getVectorNumElements(); 7693 7694 EVT SrcEltVT = SrcVT.getScalarType(); 7695 EVT DstEltVT = DstVT.getScalarType(); 7696 7697 // A vector must always be stored in memory as-is, i.e. without any padding 7698 // between the elements, since various code depend on it, e.g. in the 7699 // handling of a bitcast of a vector type to int, which may be done with a 7700 // vector store followed by an integer load. A vector that does not have 7701 // elements that are byte-sized must therefore be stored as an integer 7702 // built out of the extracted vector elements. 7703 if (!SrcEltVT.isByteSized()) { 7704 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 7705 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 7706 7707 unsigned NumSrcBits = SrcVT.getSizeInBits(); 7708 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 7709 7710 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 7711 SDValue SrcEltBitMask = DAG.getConstant( 7712 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 7713 7714 // Load the whole vector and avoid masking off the top bits as it makes 7715 // the codegen worse. 7716 SDValue Load = 7717 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 7718 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 7719 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7720 7721 SmallVector<SDValue, 8> Vals; 7722 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7723 unsigned ShiftIntoIdx = 7724 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7725 SDValue ShiftAmount = 7726 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 7727 LoadVT, SL, /*LegalTypes=*/false); 7728 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 7729 SDValue Elt = 7730 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 7731 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 7732 7733 if (ExtType != ISD::NON_EXTLOAD) { 7734 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 7735 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 7736 } 7737 7738 Vals.push_back(Scalar); 7739 } 7740 7741 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7742 return std::make_pair(Value, Load.getValue(1)); 7743 } 7744 7745 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 7746 assert(SrcEltVT.isByteSized()); 7747 7748 SmallVector<SDValue, 8> Vals; 7749 SmallVector<SDValue, 8> LoadChains; 7750 7751 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7752 SDValue ScalarLoad = 7753 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 7754 LD->getPointerInfo().getWithOffset(Idx * Stride), 7755 SrcEltVT, LD->getOriginalAlign(), 7756 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7757 7758 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 7759 7760 Vals.push_back(ScalarLoad.getValue(0)); 7761 LoadChains.push_back(ScalarLoad.getValue(1)); 7762 } 7763 7764 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 7765 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7766 7767 return std::make_pair(Value, NewChain); 7768 } 7769 7770 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 7771 SelectionDAG &DAG) const { 7772 SDLoc SL(ST); 7773 7774 SDValue Chain = ST->getChain(); 7775 SDValue BasePtr = ST->getBasePtr(); 7776 SDValue Value = ST->getValue(); 7777 EVT StVT = ST->getMemoryVT(); 7778 7779 if (StVT.isScalableVector()) 7780 report_fatal_error("Cannot scalarize scalable vector stores"); 7781 7782 // The type of the data we want to save 7783 EVT RegVT = Value.getValueType(); 7784 EVT RegSclVT = RegVT.getScalarType(); 7785 7786 // The type of data as saved in memory. 7787 EVT MemSclVT = StVT.getScalarType(); 7788 7789 unsigned NumElem = StVT.getVectorNumElements(); 7790 7791 // A vector must always be stored in memory as-is, i.e. without any padding 7792 // between the elements, since various code depend on it, e.g. in the 7793 // handling of a bitcast of a vector type to int, which may be done with a 7794 // vector store followed by an integer load. A vector that does not have 7795 // elements that are byte-sized must therefore be stored as an integer 7796 // built out of the extracted vector elements. 7797 if (!MemSclVT.isByteSized()) { 7798 unsigned NumBits = StVT.getSizeInBits(); 7799 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 7800 7801 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 7802 7803 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7804 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7805 DAG.getVectorIdxConstant(Idx, SL)); 7806 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 7807 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 7808 unsigned ShiftIntoIdx = 7809 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7810 SDValue ShiftAmount = 7811 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 7812 SDValue ShiftedElt = 7813 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 7814 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 7815 } 7816 7817 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 7818 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7819 ST->getAAInfo()); 7820 } 7821 7822 // Store Stride in bytes 7823 unsigned Stride = MemSclVT.getSizeInBits() / 8; 7824 assert(Stride && "Zero stride!"); 7825 // Extract each of the elements from the original vector and save them into 7826 // memory individually. 7827 SmallVector<SDValue, 8> Stores; 7828 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7829 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7830 DAG.getVectorIdxConstant(Idx, SL)); 7831 7832 SDValue Ptr = 7833 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 7834 7835 // This scalar TruncStore may be illegal, but we legalize it later. 7836 SDValue Store = DAG.getTruncStore( 7837 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 7838 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7839 ST->getAAInfo()); 7840 7841 Stores.push_back(Store); 7842 } 7843 7844 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 7845 } 7846 7847 std::pair<SDValue, SDValue> 7848 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 7849 assert(LD->getAddressingMode() == ISD::UNINDEXED && 7850 "unaligned indexed loads not implemented!"); 7851 SDValue Chain = LD->getChain(); 7852 SDValue Ptr = LD->getBasePtr(); 7853 EVT VT = LD->getValueType(0); 7854 EVT LoadedVT = LD->getMemoryVT(); 7855 SDLoc dl(LD); 7856 auto &MF = DAG.getMachineFunction(); 7857 7858 if (VT.isFloatingPoint() || VT.isVector()) { 7859 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 7860 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 7861 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 7862 LoadedVT.isVector()) { 7863 // Scalarize the load and let the individual components be handled. 7864 return scalarizeVectorLoad(LD, DAG); 7865 } 7866 7867 // Expand to a (misaligned) integer load of the same size, 7868 // then bitconvert to floating point or vector. 7869 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 7870 LD->getMemOperand()); 7871 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 7872 if (LoadedVT != VT) 7873 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 7874 ISD::ANY_EXTEND, dl, VT, Result); 7875 7876 return std::make_pair(Result, newLoad.getValue(1)); 7877 } 7878 7879 // Copy the value to a (aligned) stack slot using (unaligned) integer 7880 // loads and stores, then do a (aligned) load from the stack slot. 7881 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 7882 unsigned LoadedBytes = LoadedVT.getStoreSize(); 7883 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7884 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 7885 7886 // Make sure the stack slot is also aligned for the register type. 7887 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 7888 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 7889 SmallVector<SDValue, 8> Stores; 7890 SDValue StackPtr = StackBase; 7891 unsigned Offset = 0; 7892 7893 EVT PtrVT = Ptr.getValueType(); 7894 EVT StackPtrVT = StackPtr.getValueType(); 7895 7896 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7897 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7898 7899 // Do all but one copies using the full register width. 7900 for (unsigned i = 1; i < NumRegs; i++) { 7901 // Load one integer register's worth from the original location. 7902 SDValue Load = DAG.getLoad( 7903 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 7904 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7905 LD->getAAInfo()); 7906 // Follow the load with a store to the stack slot. Remember the store. 7907 Stores.push_back(DAG.getStore( 7908 Load.getValue(1), dl, Load, StackPtr, 7909 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 7910 // Increment the pointers. 7911 Offset += RegBytes; 7912 7913 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7914 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7915 } 7916 7917 // The last copy may be partial. Do an extending load. 7918 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 7919 8 * (LoadedBytes - Offset)); 7920 SDValue Load = 7921 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 7922 LD->getPointerInfo().getWithOffset(Offset), MemVT, 7923 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7924 LD->getAAInfo()); 7925 // Follow the load with a store to the stack slot. Remember the store. 7926 // On big-endian machines this requires a truncating store to ensure 7927 // that the bits end up in the right place. 7928 Stores.push_back(DAG.getTruncStore( 7929 Load.getValue(1), dl, Load, StackPtr, 7930 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 7931 7932 // The order of the stores doesn't matter - say it with a TokenFactor. 7933 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7934 7935 // Finally, perform the original load only redirected to the stack slot. 7936 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 7937 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 7938 LoadedVT); 7939 7940 // Callers expect a MERGE_VALUES node. 7941 return std::make_pair(Load, TF); 7942 } 7943 7944 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 7945 "Unaligned load of unsupported type."); 7946 7947 // Compute the new VT that is half the size of the old one. This is an 7948 // integer MVT. 7949 unsigned NumBits = LoadedVT.getSizeInBits(); 7950 EVT NewLoadedVT; 7951 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 7952 NumBits >>= 1; 7953 7954 Align Alignment = LD->getOriginalAlign(); 7955 unsigned IncrementSize = NumBits / 8; 7956 ISD::LoadExtType HiExtType = LD->getExtensionType(); 7957 7958 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 7959 if (HiExtType == ISD::NON_EXTLOAD) 7960 HiExtType = ISD::ZEXTLOAD; 7961 7962 // Load the value in two parts 7963 SDValue Lo, Hi; 7964 if (DAG.getDataLayout().isLittleEndian()) { 7965 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7966 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7967 LD->getAAInfo()); 7968 7969 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7970 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 7971 LD->getPointerInfo().getWithOffset(IncrementSize), 7972 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7973 LD->getAAInfo()); 7974 } else { 7975 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7976 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7977 LD->getAAInfo()); 7978 7979 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7980 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 7981 LD->getPointerInfo().getWithOffset(IncrementSize), 7982 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7983 LD->getAAInfo()); 7984 } 7985 7986 // aggregate the two parts 7987 SDValue ShiftAmount = 7988 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 7989 DAG.getDataLayout())); 7990 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 7991 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 7992 7993 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 7994 Hi.getValue(1)); 7995 7996 return std::make_pair(Result, TF); 7997 } 7998 7999 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 8000 SelectionDAG &DAG) const { 8001 assert(ST->getAddressingMode() == ISD::UNINDEXED && 8002 "unaligned indexed stores not implemented!"); 8003 SDValue Chain = ST->getChain(); 8004 SDValue Ptr = ST->getBasePtr(); 8005 SDValue Val = ST->getValue(); 8006 EVT VT = Val.getValueType(); 8007 Align Alignment = ST->getOriginalAlign(); 8008 auto &MF = DAG.getMachineFunction(); 8009 EVT StoreMemVT = ST->getMemoryVT(); 8010 8011 SDLoc dl(ST); 8012 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 8013 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 8014 if (isTypeLegal(intVT)) { 8015 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 8016 StoreMemVT.isVector()) { 8017 // Scalarize the store and let the individual components be handled. 8018 SDValue Result = scalarizeVectorStore(ST, DAG); 8019 return Result; 8020 } 8021 // Expand to a bitconvert of the value to the integer type of the 8022 // same size, then a (misaligned) int store. 8023 // FIXME: Does not handle truncating floating point stores! 8024 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 8025 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 8026 Alignment, ST->getMemOperand()->getFlags()); 8027 return Result; 8028 } 8029 // Do a (aligned) store to a stack slot, then copy from the stack slot 8030 // to the final destination using (unaligned) integer loads and stores. 8031 MVT RegVT = getRegisterType( 8032 *DAG.getContext(), 8033 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 8034 EVT PtrVT = Ptr.getValueType(); 8035 unsigned StoredBytes = StoreMemVT.getStoreSize(); 8036 unsigned RegBytes = RegVT.getSizeInBits() / 8; 8037 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 8038 8039 // Make sure the stack slot is also aligned for the register type. 8040 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 8041 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 8042 8043 // Perform the original store, only redirected to the stack slot. 8044 SDValue Store = DAG.getTruncStore( 8045 Chain, dl, Val, StackPtr, 8046 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 8047 8048 EVT StackPtrVT = StackPtr.getValueType(); 8049 8050 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 8051 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 8052 SmallVector<SDValue, 8> Stores; 8053 unsigned Offset = 0; 8054 8055 // Do all but one copies using the full register width. 8056 for (unsigned i = 1; i < NumRegs; i++) { 8057 // Load one integer register's worth from the stack slot. 8058 SDValue Load = DAG.getLoad( 8059 RegVT, dl, Store, StackPtr, 8060 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 8061 // Store it to the final location. Remember the store. 8062 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 8063 ST->getPointerInfo().getWithOffset(Offset), 8064 ST->getOriginalAlign(), 8065 ST->getMemOperand()->getFlags())); 8066 // Increment the pointers. 8067 Offset += RegBytes; 8068 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 8069 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 8070 } 8071 8072 // The last store may be partial. Do a truncating store. On big-endian 8073 // machines this requires an extending load from the stack slot to ensure 8074 // that the bits are in the right place. 8075 EVT LoadMemVT = 8076 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 8077 8078 // Load from the stack slot. 8079 SDValue Load = DAG.getExtLoad( 8080 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 8081 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 8082 8083 Stores.push_back( 8084 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 8085 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 8086 ST->getOriginalAlign(), 8087 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 8088 // The order of the stores doesn't matter - say it with a TokenFactor. 8089 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8090 return Result; 8091 } 8092 8093 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 8094 "Unaligned store of unknown type."); 8095 // Get the half-size VT 8096 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 8097 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 8098 unsigned IncrementSize = NumBits / 8; 8099 8100 // Divide the stored value in two parts. 8101 SDValue ShiftAmount = DAG.getConstant( 8102 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 8103 SDValue Lo = Val; 8104 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 8105 8106 // Store the two parts 8107 SDValue Store1, Store2; 8108 Store1 = DAG.getTruncStore(Chain, dl, 8109 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 8110 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 8111 ST->getMemOperand()->getFlags()); 8112 8113 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 8114 Store2 = DAG.getTruncStore( 8115 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 8116 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 8117 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 8118 8119 SDValue Result = 8120 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 8121 return Result; 8122 } 8123 8124 SDValue 8125 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 8126 const SDLoc &DL, EVT DataVT, 8127 SelectionDAG &DAG, 8128 bool IsCompressedMemory) const { 8129 SDValue Increment; 8130 EVT AddrVT = Addr.getValueType(); 8131 EVT MaskVT = Mask.getValueType(); 8132 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 8133 "Incompatible types of Data and Mask"); 8134 if (IsCompressedMemory) { 8135 if (DataVT.isScalableVector()) 8136 report_fatal_error( 8137 "Cannot currently handle compressed memory with scalable vectors"); 8138 // Incrementing the pointer according to number of '1's in the mask. 8139 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 8140 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 8141 if (MaskIntVT.getSizeInBits() < 32) { 8142 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 8143 MaskIntVT = MVT::i32; 8144 } 8145 8146 // Count '1's with POPCNT. 8147 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 8148 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 8149 // Scale is an element size in bytes. 8150 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 8151 AddrVT); 8152 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 8153 } else if (DataVT.isScalableVector()) { 8154 Increment = DAG.getVScale(DL, AddrVT, 8155 APInt(AddrVT.getFixedSizeInBits(), 8156 DataVT.getStoreSize().getKnownMinSize())); 8157 } else 8158 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 8159 8160 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 8161 } 8162 8163 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 8164 EVT VecVT, const SDLoc &dl, 8165 ElementCount SubEC) { 8166 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) && 8167 "Cannot index a scalable vector within a fixed-width vector"); 8168 8169 unsigned NElts = VecVT.getVectorMinNumElements(); 8170 unsigned NumSubElts = SubEC.getKnownMinValue(); 8171 EVT IdxVT = Idx.getValueType(); 8172 8173 if (VecVT.isScalableVector() && !SubEC.isScalable()) { 8174 // If this is a constant index and we know the value plus the number of the 8175 // elements in the subvector minus one is less than the minimum number of 8176 // elements then it's safe to return Idx. 8177 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 8178 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 8179 return Idx; 8180 SDValue VS = 8181 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 8182 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 8183 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 8184 DAG.getConstant(NumSubElts, dl, IdxVT)); 8185 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 8186 } 8187 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 8188 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 8189 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 8190 DAG.getConstant(Imm, dl, IdxVT)); 8191 } 8192 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 8193 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 8194 DAG.getConstant(MaxIndex, dl, IdxVT)); 8195 } 8196 8197 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 8198 SDValue VecPtr, EVT VecVT, 8199 SDValue Index) const { 8200 return getVectorSubVecPointer( 8201 DAG, VecPtr, VecVT, 8202 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 8203 Index); 8204 } 8205 8206 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 8207 SDValue VecPtr, EVT VecVT, 8208 EVT SubVecVT, 8209 SDValue Index) const { 8210 SDLoc dl(Index); 8211 // Make sure the index type is big enough to compute in. 8212 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 8213 8214 EVT EltVT = VecVT.getVectorElementType(); 8215 8216 // Calculate the element offset and add it to the pointer. 8217 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 8218 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 8219 "Converting bits to bytes lost precision"); 8220 assert(SubVecVT.getVectorElementType() == EltVT && 8221 "Sub-vector must be a vector with matching element type"); 8222 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 8223 SubVecVT.getVectorElementCount()); 8224 8225 EVT IdxVT = Index.getValueType(); 8226 if (SubVecVT.isScalableVector()) 8227 Index = 8228 DAG.getNode(ISD::MUL, dl, IdxVT, Index, 8229 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1))); 8230 8231 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 8232 DAG.getConstant(EltSize, dl, IdxVT)); 8233 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 8234 } 8235 8236 //===----------------------------------------------------------------------===// 8237 // Implementation of Emulated TLS Model 8238 //===----------------------------------------------------------------------===// 8239 8240 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 8241 SelectionDAG &DAG) const { 8242 // Access to address of TLS varialbe xyz is lowered to a function call: 8243 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 8244 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8245 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 8246 SDLoc dl(GA); 8247 8248 ArgListTy Args; 8249 ArgListEntry Entry; 8250 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 8251 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 8252 StringRef EmuTlsVarName(NameString); 8253 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 8254 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 8255 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 8256 Entry.Ty = VoidPtrType; 8257 Args.push_back(Entry); 8258 8259 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 8260 8261 TargetLowering::CallLoweringInfo CLI(DAG); 8262 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 8263 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 8264 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 8265 8266 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 8267 // At last for X86 targets, maybe good for other targets too? 8268 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8269 MFI.setAdjustsStack(true); // Is this only for X86 target? 8270 MFI.setHasCalls(true); 8271 8272 assert((GA->getOffset() == 0) && 8273 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 8274 return CallResult.first; 8275 } 8276 8277 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 8278 SelectionDAG &DAG) const { 8279 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 8280 if (!isCtlzFast()) 8281 return SDValue(); 8282 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 8283 SDLoc dl(Op); 8284 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 8285 if (C->isZero() && CC == ISD::SETEQ) { 8286 EVT VT = Op.getOperand(0).getValueType(); 8287 SDValue Zext = Op.getOperand(0); 8288 if (VT.bitsLT(MVT::i32)) { 8289 VT = MVT::i32; 8290 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 8291 } 8292 unsigned Log2b = Log2_32(VT.getSizeInBits()); 8293 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 8294 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 8295 DAG.getConstant(Log2b, dl, MVT::i32)); 8296 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 8297 } 8298 } 8299 return SDValue(); 8300 } 8301 8302 // Convert redundant addressing modes (e.g. scaling is redundant 8303 // when accessing bytes). 8304 ISD::MemIndexType 8305 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT, 8306 SDValue Offsets) const { 8307 bool IsScaledIndex = 8308 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED); 8309 bool IsSignedIndex = 8310 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED); 8311 8312 // Scaling is unimportant for bytes, canonicalize to unscaled. 8313 if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) 8314 return IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED; 8315 8316 return IndexType; 8317 } 8318 8319 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 8320 SDValue Op0 = Node->getOperand(0); 8321 SDValue Op1 = Node->getOperand(1); 8322 EVT VT = Op0.getValueType(); 8323 unsigned Opcode = Node->getOpcode(); 8324 SDLoc DL(Node); 8325 8326 // umin(x,y) -> sub(x,usubsat(x,y)) 8327 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 8328 isOperationLegal(ISD::USUBSAT, VT)) { 8329 return DAG.getNode(ISD::SUB, DL, VT, Op0, 8330 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 8331 } 8332 8333 // umax(x,y) -> add(x,usubsat(y,x)) 8334 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 8335 isOperationLegal(ISD::USUBSAT, VT)) { 8336 return DAG.getNode(ISD::ADD, DL, VT, Op0, 8337 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 8338 } 8339 8340 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 8341 ISD::CondCode CC; 8342 switch (Opcode) { 8343 default: llvm_unreachable("How did we get here?"); 8344 case ISD::SMAX: CC = ISD::SETGT; break; 8345 case ISD::SMIN: CC = ISD::SETLT; break; 8346 case ISD::UMAX: CC = ISD::SETUGT; break; 8347 case ISD::UMIN: CC = ISD::SETULT; break; 8348 } 8349 8350 // FIXME: Should really try to split the vector in case it's legal on a 8351 // subvector. 8352 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8353 return DAG.UnrollVectorOp(Node); 8354 8355 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8356 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 8357 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 8358 } 8359 8360 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 8361 unsigned Opcode = Node->getOpcode(); 8362 SDValue LHS = Node->getOperand(0); 8363 SDValue RHS = Node->getOperand(1); 8364 EVT VT = LHS.getValueType(); 8365 SDLoc dl(Node); 8366 8367 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8368 assert(VT.isInteger() && "Expected operands to be integers"); 8369 8370 // usub.sat(a, b) -> umax(a, b) - b 8371 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 8372 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 8373 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 8374 } 8375 8376 // uadd.sat(a, b) -> umin(a, ~b) + b 8377 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 8378 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 8379 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 8380 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 8381 } 8382 8383 unsigned OverflowOp; 8384 switch (Opcode) { 8385 case ISD::SADDSAT: 8386 OverflowOp = ISD::SADDO; 8387 break; 8388 case ISD::UADDSAT: 8389 OverflowOp = ISD::UADDO; 8390 break; 8391 case ISD::SSUBSAT: 8392 OverflowOp = ISD::SSUBO; 8393 break; 8394 case ISD::USUBSAT: 8395 OverflowOp = ISD::USUBO; 8396 break; 8397 default: 8398 llvm_unreachable("Expected method to receive signed or unsigned saturation " 8399 "addition or subtraction node."); 8400 } 8401 8402 // FIXME: Should really try to split the vector in case it's legal on a 8403 // subvector. 8404 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8405 return DAG.UnrollVectorOp(Node); 8406 8407 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 8408 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8409 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8410 SDValue SumDiff = Result.getValue(0); 8411 SDValue Overflow = Result.getValue(1); 8412 SDValue Zero = DAG.getConstant(0, dl, VT); 8413 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 8414 8415 if (Opcode == ISD::UADDSAT) { 8416 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8417 // (LHS + RHS) | OverflowMask 8418 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8419 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 8420 } 8421 // Overflow ? 0xffff.... : (LHS + RHS) 8422 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 8423 } 8424 8425 if (Opcode == ISD::USUBSAT) { 8426 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8427 // (LHS - RHS) & ~OverflowMask 8428 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8429 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 8430 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 8431 } 8432 // Overflow ? 0 : (LHS - RHS) 8433 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 8434 } 8435 8436 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff 8437 APInt MinVal = APInt::getSignedMinValue(BitWidth); 8438 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8439 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, 8440 DAG.getConstant(BitWidth - 1, dl, VT)); 8441 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); 8442 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 8443 } 8444 8445 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 8446 unsigned Opcode = Node->getOpcode(); 8447 bool IsSigned = Opcode == ISD::SSHLSAT; 8448 SDValue LHS = Node->getOperand(0); 8449 SDValue RHS = Node->getOperand(1); 8450 EVT VT = LHS.getValueType(); 8451 SDLoc dl(Node); 8452 8453 assert((Node->getOpcode() == ISD::SSHLSAT || 8454 Node->getOpcode() == ISD::USHLSAT) && 8455 "Expected a SHLSAT opcode"); 8456 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8457 assert(VT.isInteger() && "Expected operands to be integers"); 8458 8459 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 8460 8461 unsigned BW = VT.getScalarSizeInBits(); 8462 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 8463 SDValue Orig = 8464 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 8465 8466 SDValue SatVal; 8467 if (IsSigned) { 8468 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 8469 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 8470 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 8471 SatMin, SatMax, ISD::SETLT); 8472 } else { 8473 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 8474 } 8475 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 8476 8477 return Result; 8478 } 8479 8480 SDValue 8481 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 8482 assert((Node->getOpcode() == ISD::SMULFIX || 8483 Node->getOpcode() == ISD::UMULFIX || 8484 Node->getOpcode() == ISD::SMULFIXSAT || 8485 Node->getOpcode() == ISD::UMULFIXSAT) && 8486 "Expected a fixed point multiplication opcode"); 8487 8488 SDLoc dl(Node); 8489 SDValue LHS = Node->getOperand(0); 8490 SDValue RHS = Node->getOperand(1); 8491 EVT VT = LHS.getValueType(); 8492 unsigned Scale = Node->getConstantOperandVal(2); 8493 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 8494 Node->getOpcode() == ISD::UMULFIXSAT); 8495 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 8496 Node->getOpcode() == ISD::SMULFIXSAT); 8497 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8498 unsigned VTSize = VT.getScalarSizeInBits(); 8499 8500 if (!Scale) { 8501 // [us]mul.fix(a, b, 0) -> mul(a, b) 8502 if (!Saturating) { 8503 if (isOperationLegalOrCustom(ISD::MUL, VT)) 8504 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8505 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 8506 SDValue Result = 8507 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8508 SDValue Product = Result.getValue(0); 8509 SDValue Overflow = Result.getValue(1); 8510 SDValue Zero = DAG.getConstant(0, dl, VT); 8511 8512 APInt MinVal = APInt::getSignedMinValue(VTSize); 8513 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 8514 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8515 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8516 // Xor the inputs, if resulting sign bit is 0 the product will be 8517 // positive, else negative. 8518 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 8519 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); 8520 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); 8521 return DAG.getSelect(dl, VT, Overflow, Result, Product); 8522 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 8523 SDValue Result = 8524 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8525 SDValue Product = Result.getValue(0); 8526 SDValue Overflow = Result.getValue(1); 8527 8528 APInt MaxVal = APInt::getMaxValue(VTSize); 8529 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8530 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 8531 } 8532 } 8533 8534 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 8535 "Expected scale to be less than the number of bits if signed or at " 8536 "most the number of bits if unsigned."); 8537 assert(LHS.getValueType() == RHS.getValueType() && 8538 "Expected both operands to be the same type"); 8539 8540 // Get the upper and lower bits of the result. 8541 SDValue Lo, Hi; 8542 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 8543 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 8544 if (isOperationLegalOrCustom(LoHiOp, VT)) { 8545 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 8546 Lo = Result.getValue(0); 8547 Hi = Result.getValue(1); 8548 } else if (isOperationLegalOrCustom(HiOp, VT)) { 8549 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8550 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 8551 } else if (VT.isVector()) { 8552 return SDValue(); 8553 } else { 8554 report_fatal_error("Unable to expand fixed point multiplication."); 8555 } 8556 8557 if (Scale == VTSize) 8558 // Result is just the top half since we'd be shifting by the width of the 8559 // operand. Overflow impossible so this works for both UMULFIX and 8560 // UMULFIXSAT. 8561 return Hi; 8562 8563 // The result will need to be shifted right by the scale since both operands 8564 // are scaled. The result is given to us in 2 halves, so we only want part of 8565 // both in the result. 8566 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8567 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 8568 DAG.getConstant(Scale, dl, ShiftTy)); 8569 if (!Saturating) 8570 return Result; 8571 8572 if (!Signed) { 8573 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 8574 // widened multiplication) aren't all zeroes. 8575 8576 // Saturate to max if ((Hi >> Scale) != 0), 8577 // which is the same as if (Hi > ((1 << Scale) - 1)) 8578 APInt MaxVal = APInt::getMaxValue(VTSize); 8579 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 8580 dl, VT); 8581 Result = DAG.getSelectCC(dl, Hi, LowMask, 8582 DAG.getConstant(MaxVal, dl, VT), Result, 8583 ISD::SETUGT); 8584 8585 return Result; 8586 } 8587 8588 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 8589 // widened multiplication) aren't all ones or all zeroes. 8590 8591 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 8592 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 8593 8594 if (Scale == 0) { 8595 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 8596 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 8597 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 8598 // Saturated to SatMin if wide product is negative, and SatMax if wide 8599 // product is positive ... 8600 SDValue Zero = DAG.getConstant(0, dl, VT); 8601 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 8602 ISD::SETLT); 8603 // ... but only if we overflowed. 8604 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 8605 } 8606 8607 // We handled Scale==0 above so all the bits to examine is in Hi. 8608 8609 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 8610 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 8611 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 8612 dl, VT); 8613 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 8614 // Saturate to min if (Hi >> (Scale - 1)) < -1), 8615 // which is the same as if (HI < (-1 << (Scale - 1)) 8616 SDValue HighMask = 8617 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 8618 dl, VT); 8619 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 8620 return Result; 8621 } 8622 8623 SDValue 8624 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 8625 SDValue LHS, SDValue RHS, 8626 unsigned Scale, SelectionDAG &DAG) const { 8627 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 8628 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 8629 "Expected a fixed point division opcode"); 8630 8631 EVT VT = LHS.getValueType(); 8632 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 8633 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 8634 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8635 8636 // If there is enough room in the type to upscale the LHS or downscale the 8637 // RHS before the division, we can perform it in this type without having to 8638 // resize. For signed operations, the LHS headroom is the number of 8639 // redundant sign bits, and for unsigned ones it is the number of zeroes. 8640 // The headroom for the RHS is the number of trailing zeroes. 8641 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 8642 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 8643 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 8644 8645 // For signed saturating operations, we need to be able to detect true integer 8646 // division overflow; that is, when you have MIN / -EPS. However, this 8647 // is undefined behavior and if we emit divisions that could take such 8648 // values it may cause undesired behavior (arithmetic exceptions on x86, for 8649 // example). 8650 // Avoid this by requiring an extra bit so that we never get this case. 8651 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 8652 // signed saturating division, we need to emit a whopping 32-bit division. 8653 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 8654 return SDValue(); 8655 8656 unsigned LHSShift = std::min(LHSLead, Scale); 8657 unsigned RHSShift = Scale - LHSShift; 8658 8659 // At this point, we know that if we shift the LHS up by LHSShift and the 8660 // RHS down by RHSShift, we can emit a regular division with a final scaling 8661 // factor of Scale. 8662 8663 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8664 if (LHSShift) 8665 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 8666 DAG.getConstant(LHSShift, dl, ShiftTy)); 8667 if (RHSShift) 8668 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 8669 DAG.getConstant(RHSShift, dl, ShiftTy)); 8670 8671 SDValue Quot; 8672 if (Signed) { 8673 // For signed operations, if the resulting quotient is negative and the 8674 // remainder is nonzero, subtract 1 from the quotient to round towards 8675 // negative infinity. 8676 SDValue Rem; 8677 // FIXME: Ideally we would always produce an SDIVREM here, but if the 8678 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 8679 // we couldn't just form a libcall, but the type legalizer doesn't do it. 8680 if (isTypeLegal(VT) && 8681 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 8682 Quot = DAG.getNode(ISD::SDIVREM, dl, 8683 DAG.getVTList(VT, VT), 8684 LHS, RHS); 8685 Rem = Quot.getValue(1); 8686 Quot = Quot.getValue(0); 8687 } else { 8688 Quot = DAG.getNode(ISD::SDIV, dl, VT, 8689 LHS, RHS); 8690 Rem = DAG.getNode(ISD::SREM, dl, VT, 8691 LHS, RHS); 8692 } 8693 SDValue Zero = DAG.getConstant(0, dl, VT); 8694 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 8695 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 8696 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 8697 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 8698 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 8699 DAG.getConstant(1, dl, VT)); 8700 Quot = DAG.getSelect(dl, VT, 8701 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 8702 Sub1, Quot); 8703 } else 8704 Quot = DAG.getNode(ISD::UDIV, dl, VT, 8705 LHS, RHS); 8706 8707 return Quot; 8708 } 8709 8710 void TargetLowering::expandUADDSUBO( 8711 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8712 SDLoc dl(Node); 8713 SDValue LHS = Node->getOperand(0); 8714 SDValue RHS = Node->getOperand(1); 8715 bool IsAdd = Node->getOpcode() == ISD::UADDO; 8716 8717 // If ADD/SUBCARRY is legal, use that instead. 8718 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 8719 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 8720 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 8721 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 8722 { LHS, RHS, CarryIn }); 8723 Result = SDValue(NodeCarry.getNode(), 0); 8724 Overflow = SDValue(NodeCarry.getNode(), 1); 8725 return; 8726 } 8727 8728 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8729 LHS.getValueType(), LHS, RHS); 8730 8731 EVT ResultType = Node->getValueType(1); 8732 EVT SetCCType = getSetCCResultType( 8733 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8734 SDValue SetCC; 8735 if (IsAdd && isOneConstant(RHS)) { 8736 // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces 8737 // the live range of X. We assume comparing with 0 is cheap. 8738 // TODO: This generalizes to (X + C) < C. 8739 SetCC = 8740 DAG.getSetCC(dl, SetCCType, Result, 8741 DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ); 8742 } else { 8743 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 8744 SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 8745 } 8746 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8747 } 8748 8749 void TargetLowering::expandSADDSUBO( 8750 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8751 SDLoc dl(Node); 8752 SDValue LHS = Node->getOperand(0); 8753 SDValue RHS = Node->getOperand(1); 8754 bool IsAdd = Node->getOpcode() == ISD::SADDO; 8755 8756 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8757 LHS.getValueType(), LHS, RHS); 8758 8759 EVT ResultType = Node->getValueType(1); 8760 EVT OType = getSetCCResultType( 8761 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8762 8763 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 8764 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 8765 if (isOperationLegal(OpcSat, LHS.getValueType())) { 8766 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 8767 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 8768 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8769 return; 8770 } 8771 8772 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 8773 8774 // For an addition, the result should be less than one of the operands (LHS) 8775 // if and only if the other operand (RHS) is negative, otherwise there will 8776 // be overflow. 8777 // For a subtraction, the result should be less than one of the operands 8778 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 8779 // otherwise there will be overflow. 8780 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 8781 SDValue ConditionRHS = 8782 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 8783 8784 Overflow = DAG.getBoolExtOrTrunc( 8785 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 8786 ResultType, ResultType); 8787 } 8788 8789 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 8790 SDValue &Overflow, SelectionDAG &DAG) const { 8791 SDLoc dl(Node); 8792 EVT VT = Node->getValueType(0); 8793 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8794 SDValue LHS = Node->getOperand(0); 8795 SDValue RHS = Node->getOperand(1); 8796 bool isSigned = Node->getOpcode() == ISD::SMULO; 8797 8798 // For power-of-two multiplications we can use a simpler shift expansion. 8799 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 8800 const APInt &C = RHSC->getAPIntValue(); 8801 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 8802 if (C.isPowerOf2()) { 8803 // smulo(x, signed_min) is same as umulo(x, signed_min). 8804 bool UseArithShift = isSigned && !C.isMinSignedValue(); 8805 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8806 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 8807 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 8808 Overflow = DAG.getSetCC(dl, SetCCVT, 8809 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 8810 dl, VT, Result, ShiftAmt), 8811 LHS, ISD::SETNE); 8812 return true; 8813 } 8814 } 8815 8816 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 8817 if (VT.isVector()) 8818 WideVT = 8819 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 8820 8821 SDValue BottomHalf; 8822 SDValue TopHalf; 8823 static const unsigned Ops[2][3] = 8824 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 8825 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 8826 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 8827 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8828 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 8829 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 8830 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 8831 RHS); 8832 TopHalf = BottomHalf.getValue(1); 8833 } else if (isTypeLegal(WideVT)) { 8834 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 8835 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 8836 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 8837 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 8838 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 8839 getShiftAmountTy(WideVT, DAG.getDataLayout())); 8840 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 8841 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 8842 } else { 8843 if (VT.isVector()) 8844 return false; 8845 8846 // We can fall back to a libcall with an illegal type for the MUL if we 8847 // have a libcall big enough. 8848 // Also, we can fall back to a division in some cases, but that's a big 8849 // performance hit in the general case. 8850 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 8851 if (WideVT == MVT::i16) 8852 LC = RTLIB::MUL_I16; 8853 else if (WideVT == MVT::i32) 8854 LC = RTLIB::MUL_I32; 8855 else if (WideVT == MVT::i64) 8856 LC = RTLIB::MUL_I64; 8857 else if (WideVT == MVT::i128) 8858 LC = RTLIB::MUL_I128; 8859 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 8860 8861 SDValue HiLHS; 8862 SDValue HiRHS; 8863 if (isSigned) { 8864 // The high part is obtained by SRA'ing all but one of the bits of low 8865 // part. 8866 unsigned LoSize = VT.getFixedSizeInBits(); 8867 HiLHS = 8868 DAG.getNode(ISD::SRA, dl, VT, LHS, 8869 DAG.getConstant(LoSize - 1, dl, 8870 getPointerTy(DAG.getDataLayout()))); 8871 HiRHS = 8872 DAG.getNode(ISD::SRA, dl, VT, RHS, 8873 DAG.getConstant(LoSize - 1, dl, 8874 getPointerTy(DAG.getDataLayout()))); 8875 } else { 8876 HiLHS = DAG.getConstant(0, dl, VT); 8877 HiRHS = DAG.getConstant(0, dl, VT); 8878 } 8879 8880 // Here we're passing the 2 arguments explicitly as 4 arguments that are 8881 // pre-lowered to the correct types. This all depends upon WideVT not 8882 // being a legal type for the architecture and thus has to be split to 8883 // two arguments. 8884 SDValue Ret; 8885 TargetLowering::MakeLibCallOptions CallOptions; 8886 CallOptions.setSExt(isSigned); 8887 CallOptions.setIsPostTypeLegalization(true); 8888 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 8889 // Halves of WideVT are packed into registers in different order 8890 // depending on platform endianness. This is usually handled by 8891 // the C calling convention, but we can't defer to it in 8892 // the legalizer. 8893 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 8894 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8895 } else { 8896 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 8897 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8898 } 8899 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 8900 "Ret value is a collection of constituent nodes holding result."); 8901 if (DAG.getDataLayout().isLittleEndian()) { 8902 // Same as above. 8903 BottomHalf = Ret.getOperand(0); 8904 TopHalf = Ret.getOperand(1); 8905 } else { 8906 BottomHalf = Ret.getOperand(1); 8907 TopHalf = Ret.getOperand(0); 8908 } 8909 } 8910 8911 Result = BottomHalf; 8912 if (isSigned) { 8913 SDValue ShiftAmt = DAG.getConstant( 8914 VT.getScalarSizeInBits() - 1, dl, 8915 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 8916 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 8917 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 8918 } else { 8919 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 8920 DAG.getConstant(0, dl, VT), ISD::SETNE); 8921 } 8922 8923 // Truncate the result if SetCC returns a larger type than needed. 8924 EVT RType = Node->getValueType(1); 8925 if (RType.bitsLT(Overflow.getValueType())) 8926 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 8927 8928 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 8929 "Unexpected result type for S/UMULO legalization"); 8930 return true; 8931 } 8932 8933 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 8934 SDLoc dl(Node); 8935 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8936 SDValue Op = Node->getOperand(0); 8937 EVT VT = Op.getValueType(); 8938 8939 if (VT.isScalableVector()) 8940 report_fatal_error( 8941 "Expanding reductions for scalable vectors is undefined."); 8942 8943 // Try to use a shuffle reduction for power of two vectors. 8944 if (VT.isPow2VectorType()) { 8945 while (VT.getVectorNumElements() > 1) { 8946 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 8947 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 8948 break; 8949 8950 SDValue Lo, Hi; 8951 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 8952 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 8953 VT = HalfVT; 8954 } 8955 } 8956 8957 EVT EltVT = VT.getVectorElementType(); 8958 unsigned NumElts = VT.getVectorNumElements(); 8959 8960 SmallVector<SDValue, 8> Ops; 8961 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 8962 8963 SDValue Res = Ops[0]; 8964 for (unsigned i = 1; i < NumElts; i++) 8965 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 8966 8967 // Result type may be wider than element type. 8968 if (EltVT != Node->getValueType(0)) 8969 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 8970 return Res; 8971 } 8972 8973 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 8974 SDLoc dl(Node); 8975 SDValue AccOp = Node->getOperand(0); 8976 SDValue VecOp = Node->getOperand(1); 8977 SDNodeFlags Flags = Node->getFlags(); 8978 8979 EVT VT = VecOp.getValueType(); 8980 EVT EltVT = VT.getVectorElementType(); 8981 8982 if (VT.isScalableVector()) 8983 report_fatal_error( 8984 "Expanding reductions for scalable vectors is undefined."); 8985 8986 unsigned NumElts = VT.getVectorNumElements(); 8987 8988 SmallVector<SDValue, 8> Ops; 8989 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 8990 8991 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8992 8993 SDValue Res = AccOp; 8994 for (unsigned i = 0; i < NumElts; i++) 8995 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 8996 8997 return Res; 8998 } 8999 9000 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 9001 SelectionDAG &DAG) const { 9002 EVT VT = Node->getValueType(0); 9003 SDLoc dl(Node); 9004 bool isSigned = Node->getOpcode() == ISD::SREM; 9005 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 9006 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 9007 SDValue Dividend = Node->getOperand(0); 9008 SDValue Divisor = Node->getOperand(1); 9009 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 9010 SDVTList VTs = DAG.getVTList(VT, VT); 9011 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 9012 return true; 9013 } 9014 if (isOperationLegalOrCustom(DivOpc, VT)) { 9015 // X % Y -> X-X/Y*Y 9016 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 9017 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 9018 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 9019 return true; 9020 } 9021 return false; 9022 } 9023 9024 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 9025 SelectionDAG &DAG) const { 9026 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 9027 SDLoc dl(SDValue(Node, 0)); 9028 SDValue Src = Node->getOperand(0); 9029 9030 // DstVT is the result type, while SatVT is the size to which we saturate 9031 EVT SrcVT = Src.getValueType(); 9032 EVT DstVT = Node->getValueType(0); 9033 9034 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 9035 unsigned SatWidth = SatVT.getScalarSizeInBits(); 9036 unsigned DstWidth = DstVT.getScalarSizeInBits(); 9037 assert(SatWidth <= DstWidth && 9038 "Expected saturation width smaller than result width"); 9039 9040 // Determine minimum and maximum integer values and their corresponding 9041 // floating-point values. 9042 APInt MinInt, MaxInt; 9043 if (IsSigned) { 9044 MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth); 9045 MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth); 9046 } else { 9047 MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth); 9048 MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth); 9049 } 9050 9051 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 9052 // libcall emission cannot handle this. Large result types will fail. 9053 if (SrcVT == MVT::f16) { 9054 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 9055 SrcVT = Src.getValueType(); 9056 } 9057 9058 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 9059 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 9060 9061 APFloat::opStatus MinStatus = 9062 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 9063 APFloat::opStatus MaxStatus = 9064 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 9065 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 9066 !(MaxStatus & APFloat::opStatus::opInexact); 9067 9068 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 9069 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 9070 9071 // If the integer bounds are exactly representable as floats and min/max are 9072 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 9073 // of comparisons and selects. 9074 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 9075 isOperationLegal(ISD::FMAXNUM, SrcVT); 9076 if (AreExactFloatBounds && MinMaxLegal) { 9077 SDValue Clamped = Src; 9078 9079 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 9080 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 9081 // Clamp by MaxFloat from above. NaN cannot occur. 9082 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 9083 // Convert clamped value to integer. 9084 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 9085 dl, DstVT, Clamped); 9086 9087 // In the unsigned case we're done, because we mapped NaN to MinFloat, 9088 // which will cast to zero. 9089 if (!IsSigned) 9090 return FpToInt; 9091 9092 // Otherwise, select 0 if Src is NaN. 9093 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 9094 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 9095 ISD::CondCode::SETUO); 9096 } 9097 9098 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 9099 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 9100 9101 // Result of direct conversion. The assumption here is that the operation is 9102 // non-trapping and it's fine to apply it to an out-of-range value if we 9103 // select it away later. 9104 SDValue FpToInt = 9105 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 9106 9107 SDValue Select = FpToInt; 9108 9109 // If Src ULT MinFloat, select MinInt. In particular, this also selects 9110 // MinInt if Src is NaN. 9111 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 9112 ISD::CondCode::SETULT); 9113 // If Src OGT MaxFloat, select MaxInt. 9114 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 9115 ISD::CondCode::SETOGT); 9116 9117 // In the unsigned case we are done, because we mapped NaN to MinInt, which 9118 // is already zero. 9119 if (!IsSigned) 9120 return Select; 9121 9122 // Otherwise, select 0 if Src is NaN. 9123 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 9124 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 9125 } 9126 9127 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 9128 SelectionDAG &DAG) const { 9129 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 9130 assert(Node->getValueType(0).isScalableVector() && 9131 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 9132 9133 EVT VT = Node->getValueType(0); 9134 SDValue V1 = Node->getOperand(0); 9135 SDValue V2 = Node->getOperand(1); 9136 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 9137 SDLoc DL(Node); 9138 9139 // Expand through memory thusly: 9140 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 9141 // Store V1, Ptr 9142 // Store V2, Ptr + sizeof(V1) 9143 // If (Imm < 0) 9144 // TrailingElts = -Imm 9145 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 9146 // else 9147 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 9148 // Res = Load Ptr 9149 9150 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 9151 9152 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 9153 VT.getVectorElementCount() * 2); 9154 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 9155 EVT PtrVT = StackPtr.getValueType(); 9156 auto &MF = DAG.getMachineFunction(); 9157 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 9158 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 9159 9160 // Store the lo part of CONCAT_VECTORS(V1, V2) 9161 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 9162 // Store the hi part of CONCAT_VECTORS(V1, V2) 9163 SDValue OffsetToV2 = DAG.getVScale( 9164 DL, PtrVT, 9165 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 9166 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 9167 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 9168 9169 if (Imm >= 0) { 9170 // Load back the required element. getVectorElementPointer takes care of 9171 // clamping the index if it's out-of-bounds. 9172 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 9173 // Load the spliced result 9174 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 9175 MachinePointerInfo::getUnknownStack(MF)); 9176 } 9177 9178 uint64_t TrailingElts = -Imm; 9179 9180 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 9181 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 9182 SDValue TrailingBytes = 9183 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 9184 9185 if (TrailingElts > VT.getVectorMinNumElements()) { 9186 SDValue VLBytes = DAG.getVScale( 9187 DL, PtrVT, 9188 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 9189 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 9190 } 9191 9192 // Calculate the start address of the spliced result. 9193 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 9194 9195 // Load the spliced result 9196 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 9197 MachinePointerInfo::getUnknownStack(MF)); 9198 } 9199 9200 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 9201 SDValue &LHS, SDValue &RHS, 9202 SDValue &CC, SDValue Mask, 9203 SDValue EVL, bool &NeedInvert, 9204 const SDLoc &dl, SDValue &Chain, 9205 bool IsSignaling) const { 9206 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9207 MVT OpVT = LHS.getSimpleValueType(); 9208 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 9209 NeedInvert = false; 9210 assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset"); 9211 bool IsNonVP = !EVL; 9212 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 9213 default: 9214 llvm_unreachable("Unknown condition code action!"); 9215 case TargetLowering::Legal: 9216 // Nothing to do. 9217 break; 9218 case TargetLowering::Expand: { 9219 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 9220 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9221 std::swap(LHS, RHS); 9222 CC = DAG.getCondCode(InvCC); 9223 return true; 9224 } 9225 // Swapping operands didn't work. Try inverting the condition. 9226 bool NeedSwap = false; 9227 InvCC = getSetCCInverse(CCCode, OpVT); 9228 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9229 // If inverting the condition is not enough, try swapping operands 9230 // on top of it. 9231 InvCC = ISD::getSetCCSwappedOperands(InvCC); 9232 NeedSwap = true; 9233 } 9234 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9235 CC = DAG.getCondCode(InvCC); 9236 NeedInvert = true; 9237 if (NeedSwap) 9238 std::swap(LHS, RHS); 9239 return true; 9240 } 9241 9242 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 9243 unsigned Opc = 0; 9244 switch (CCCode) { 9245 default: 9246 llvm_unreachable("Don't know how to expand this condition!"); 9247 case ISD::SETUO: 9248 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 9249 CC1 = ISD::SETUNE; 9250 CC2 = ISD::SETUNE; 9251 Opc = ISD::OR; 9252 break; 9253 } 9254 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 9255 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 9256 NeedInvert = true; 9257 LLVM_FALLTHROUGH; 9258 case ISD::SETO: 9259 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 9260 "If SETO is expanded, SETOEQ must be legal!"); 9261 CC1 = ISD::SETOEQ; 9262 CC2 = ISD::SETOEQ; 9263 Opc = ISD::AND; 9264 break; 9265 case ISD::SETONE: 9266 case ISD::SETUEQ: 9267 // If the SETUO or SETO CC isn't legal, we might be able to use 9268 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 9269 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 9270 // the operands. 9271 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9272 if (!TLI.isCondCodeLegal(CC2, OpVT) && 9273 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 9274 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 9275 CC1 = ISD::SETOGT; 9276 CC2 = ISD::SETOLT; 9277 Opc = ISD::OR; 9278 NeedInvert = ((unsigned)CCCode & 0x8U); 9279 break; 9280 } 9281 LLVM_FALLTHROUGH; 9282 case ISD::SETOEQ: 9283 case ISD::SETOGT: 9284 case ISD::SETOGE: 9285 case ISD::SETOLT: 9286 case ISD::SETOLE: 9287 case ISD::SETUNE: 9288 case ISD::SETUGT: 9289 case ISD::SETUGE: 9290 case ISD::SETULT: 9291 case ISD::SETULE: 9292 // If we are floating point, assign and break, otherwise fall through. 9293 if (!OpVT.isInteger()) { 9294 // We can use the 4th bit to tell if we are the unordered 9295 // or ordered version of the opcode. 9296 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9297 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 9298 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 9299 break; 9300 } 9301 // Fallthrough if we are unsigned integer. 9302 LLVM_FALLTHROUGH; 9303 case ISD::SETLE: 9304 case ISD::SETGT: 9305 case ISD::SETGE: 9306 case ISD::SETLT: 9307 case ISD::SETNE: 9308 case ISD::SETEQ: 9309 // If all combinations of inverting the condition and swapping operands 9310 // didn't work then we have no means to expand the condition. 9311 llvm_unreachable("Don't know how to expand this condition!"); 9312 } 9313 9314 SDValue SetCC1, SetCC2; 9315 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 9316 // If we aren't the ordered or unorder operation, 9317 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 9318 if (IsNonVP) { 9319 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 9320 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 9321 } else { 9322 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL); 9323 SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL); 9324 } 9325 } else { 9326 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 9327 if (IsNonVP) { 9328 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 9329 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 9330 } else { 9331 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL); 9332 SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL); 9333 } 9334 } 9335 if (Chain) 9336 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 9337 SetCC2.getValue(1)); 9338 if (IsNonVP) 9339 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 9340 else { 9341 // Transform the binary opcode to the VP equivalent. 9342 assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode"); 9343 Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND; 9344 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL); 9345 } 9346 RHS = SDValue(); 9347 CC = SDValue(); 9348 return true; 9349 } 9350 } 9351 return false; 9352 } 9353