1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetLowering.h" 15 #include "llvm/MC/MCAsmInfo.h" 16 #include "llvm/MC/MCExpr.h" 17 #include "llvm/Target/TargetData.h" 18 #include "llvm/Target/TargetLoweringObjectFile.h" 19 #include "llvm/Target/TargetMachine.h" 20 #include "llvm/Target/TargetRegisterInfo.h" 21 #include "llvm/GlobalVariable.h" 22 #include "llvm/DerivedTypes.h" 23 #include "llvm/CodeGen/Analysis.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineJumpTableInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/SelectionDAG.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/MathExtras.h" 32 #include <cctype> 33 using namespace llvm; 34 35 /// We are in the process of implementing a new TypeLegalization action 36 /// - the promotion of vector elements. This feature is disabled by default 37 /// and only enabled using this flag. 38 static cl::opt<bool> 39 AllowPromoteIntElem("promote-elements", cl::Hidden, 40 cl::desc("Allow promotion of integer vector element types")); 41 42 namespace llvm { 43 TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) { 44 bool isLocal = GV->hasLocalLinkage(); 45 bool isDeclaration = GV->isDeclaration(); 46 // FIXME: what should we do for protected and internal visibility? 47 // For variables, is internal different from hidden? 48 bool isHidden = GV->hasHiddenVisibility(); 49 50 if (reloc == Reloc::PIC_) { 51 if (isLocal || isHidden) 52 return TLSModel::LocalDynamic; 53 else 54 return TLSModel::GeneralDynamic; 55 } else { 56 if (!isDeclaration || isHidden) 57 return TLSModel::LocalExec; 58 else 59 return TLSModel::InitialExec; 60 } 61 } 62 } 63 64 /// InitLibcallNames - Set default libcall names. 65 /// 66 static void InitLibcallNames(const char **Names) { 67 Names[RTLIB::SHL_I16] = "__ashlhi3"; 68 Names[RTLIB::SHL_I32] = "__ashlsi3"; 69 Names[RTLIB::SHL_I64] = "__ashldi3"; 70 Names[RTLIB::SHL_I128] = "__ashlti3"; 71 Names[RTLIB::SRL_I16] = "__lshrhi3"; 72 Names[RTLIB::SRL_I32] = "__lshrsi3"; 73 Names[RTLIB::SRL_I64] = "__lshrdi3"; 74 Names[RTLIB::SRL_I128] = "__lshrti3"; 75 Names[RTLIB::SRA_I16] = "__ashrhi3"; 76 Names[RTLIB::SRA_I32] = "__ashrsi3"; 77 Names[RTLIB::SRA_I64] = "__ashrdi3"; 78 Names[RTLIB::SRA_I128] = "__ashrti3"; 79 Names[RTLIB::MUL_I8] = "__mulqi3"; 80 Names[RTLIB::MUL_I16] = "__mulhi3"; 81 Names[RTLIB::MUL_I32] = "__mulsi3"; 82 Names[RTLIB::MUL_I64] = "__muldi3"; 83 Names[RTLIB::MUL_I128] = "__multi3"; 84 Names[RTLIB::MULO_I32] = "__mulosi4"; 85 Names[RTLIB::MULO_I64] = "__mulodi4"; 86 Names[RTLIB::MULO_I128] = "__muloti4"; 87 Names[RTLIB::SDIV_I8] = "__divqi3"; 88 Names[RTLIB::SDIV_I16] = "__divhi3"; 89 Names[RTLIB::SDIV_I32] = "__divsi3"; 90 Names[RTLIB::SDIV_I64] = "__divdi3"; 91 Names[RTLIB::SDIV_I128] = "__divti3"; 92 Names[RTLIB::UDIV_I8] = "__udivqi3"; 93 Names[RTLIB::UDIV_I16] = "__udivhi3"; 94 Names[RTLIB::UDIV_I32] = "__udivsi3"; 95 Names[RTLIB::UDIV_I64] = "__udivdi3"; 96 Names[RTLIB::UDIV_I128] = "__udivti3"; 97 Names[RTLIB::SREM_I8] = "__modqi3"; 98 Names[RTLIB::SREM_I16] = "__modhi3"; 99 Names[RTLIB::SREM_I32] = "__modsi3"; 100 Names[RTLIB::SREM_I64] = "__moddi3"; 101 Names[RTLIB::SREM_I128] = "__modti3"; 102 Names[RTLIB::UREM_I8] = "__umodqi3"; 103 Names[RTLIB::UREM_I16] = "__umodhi3"; 104 Names[RTLIB::UREM_I32] = "__umodsi3"; 105 Names[RTLIB::UREM_I64] = "__umoddi3"; 106 Names[RTLIB::UREM_I128] = "__umodti3"; 107 108 // These are generally not available. 109 Names[RTLIB::SDIVREM_I8] = 0; 110 Names[RTLIB::SDIVREM_I16] = 0; 111 Names[RTLIB::SDIVREM_I32] = 0; 112 Names[RTLIB::SDIVREM_I64] = 0; 113 Names[RTLIB::SDIVREM_I128] = 0; 114 Names[RTLIB::UDIVREM_I8] = 0; 115 Names[RTLIB::UDIVREM_I16] = 0; 116 Names[RTLIB::UDIVREM_I32] = 0; 117 Names[RTLIB::UDIVREM_I64] = 0; 118 Names[RTLIB::UDIVREM_I128] = 0; 119 120 Names[RTLIB::NEG_I32] = "__negsi2"; 121 Names[RTLIB::NEG_I64] = "__negdi2"; 122 Names[RTLIB::ADD_F32] = "__addsf3"; 123 Names[RTLIB::ADD_F64] = "__adddf3"; 124 Names[RTLIB::ADD_F80] = "__addxf3"; 125 Names[RTLIB::ADD_PPCF128] = "__gcc_qadd"; 126 Names[RTLIB::SUB_F32] = "__subsf3"; 127 Names[RTLIB::SUB_F64] = "__subdf3"; 128 Names[RTLIB::SUB_F80] = "__subxf3"; 129 Names[RTLIB::SUB_PPCF128] = "__gcc_qsub"; 130 Names[RTLIB::MUL_F32] = "__mulsf3"; 131 Names[RTLIB::MUL_F64] = "__muldf3"; 132 Names[RTLIB::MUL_F80] = "__mulxf3"; 133 Names[RTLIB::MUL_PPCF128] = "__gcc_qmul"; 134 Names[RTLIB::DIV_F32] = "__divsf3"; 135 Names[RTLIB::DIV_F64] = "__divdf3"; 136 Names[RTLIB::DIV_F80] = "__divxf3"; 137 Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv"; 138 Names[RTLIB::REM_F32] = "fmodf"; 139 Names[RTLIB::REM_F64] = "fmod"; 140 Names[RTLIB::REM_F80] = "fmodl"; 141 Names[RTLIB::REM_PPCF128] = "fmodl"; 142 Names[RTLIB::FMA_F32] = "fmaf"; 143 Names[RTLIB::FMA_F64] = "fma"; 144 Names[RTLIB::FMA_F80] = "fmal"; 145 Names[RTLIB::FMA_PPCF128] = "fmal"; 146 Names[RTLIB::POWI_F32] = "__powisf2"; 147 Names[RTLIB::POWI_F64] = "__powidf2"; 148 Names[RTLIB::POWI_F80] = "__powixf2"; 149 Names[RTLIB::POWI_PPCF128] = "__powitf2"; 150 Names[RTLIB::SQRT_F32] = "sqrtf"; 151 Names[RTLIB::SQRT_F64] = "sqrt"; 152 Names[RTLIB::SQRT_F80] = "sqrtl"; 153 Names[RTLIB::SQRT_PPCF128] = "sqrtl"; 154 Names[RTLIB::LOG_F32] = "logf"; 155 Names[RTLIB::LOG_F64] = "log"; 156 Names[RTLIB::LOG_F80] = "logl"; 157 Names[RTLIB::LOG_PPCF128] = "logl"; 158 Names[RTLIB::LOG2_F32] = "log2f"; 159 Names[RTLIB::LOG2_F64] = "log2"; 160 Names[RTLIB::LOG2_F80] = "log2l"; 161 Names[RTLIB::LOG2_PPCF128] = "log2l"; 162 Names[RTLIB::LOG10_F32] = "log10f"; 163 Names[RTLIB::LOG10_F64] = "log10"; 164 Names[RTLIB::LOG10_F80] = "log10l"; 165 Names[RTLIB::LOG10_PPCF128] = "log10l"; 166 Names[RTLIB::EXP_F32] = "expf"; 167 Names[RTLIB::EXP_F64] = "exp"; 168 Names[RTLIB::EXP_F80] = "expl"; 169 Names[RTLIB::EXP_PPCF128] = "expl"; 170 Names[RTLIB::EXP2_F32] = "exp2f"; 171 Names[RTLIB::EXP2_F64] = "exp2"; 172 Names[RTLIB::EXP2_F80] = "exp2l"; 173 Names[RTLIB::EXP2_PPCF128] = "exp2l"; 174 Names[RTLIB::SIN_F32] = "sinf"; 175 Names[RTLIB::SIN_F64] = "sin"; 176 Names[RTLIB::SIN_F80] = "sinl"; 177 Names[RTLIB::SIN_PPCF128] = "sinl"; 178 Names[RTLIB::COS_F32] = "cosf"; 179 Names[RTLIB::COS_F64] = "cos"; 180 Names[RTLIB::COS_F80] = "cosl"; 181 Names[RTLIB::COS_PPCF128] = "cosl"; 182 Names[RTLIB::POW_F32] = "powf"; 183 Names[RTLIB::POW_F64] = "pow"; 184 Names[RTLIB::POW_F80] = "powl"; 185 Names[RTLIB::POW_PPCF128] = "powl"; 186 Names[RTLIB::CEIL_F32] = "ceilf"; 187 Names[RTLIB::CEIL_F64] = "ceil"; 188 Names[RTLIB::CEIL_F80] = "ceill"; 189 Names[RTLIB::CEIL_PPCF128] = "ceill"; 190 Names[RTLIB::TRUNC_F32] = "truncf"; 191 Names[RTLIB::TRUNC_F64] = "trunc"; 192 Names[RTLIB::TRUNC_F80] = "truncl"; 193 Names[RTLIB::TRUNC_PPCF128] = "truncl"; 194 Names[RTLIB::RINT_F32] = "rintf"; 195 Names[RTLIB::RINT_F64] = "rint"; 196 Names[RTLIB::RINT_F80] = "rintl"; 197 Names[RTLIB::RINT_PPCF128] = "rintl"; 198 Names[RTLIB::NEARBYINT_F32] = "nearbyintf"; 199 Names[RTLIB::NEARBYINT_F64] = "nearbyint"; 200 Names[RTLIB::NEARBYINT_F80] = "nearbyintl"; 201 Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl"; 202 Names[RTLIB::FLOOR_F32] = "floorf"; 203 Names[RTLIB::FLOOR_F64] = "floor"; 204 Names[RTLIB::FLOOR_F80] = "floorl"; 205 Names[RTLIB::FLOOR_PPCF128] = "floorl"; 206 Names[RTLIB::COPYSIGN_F32] = "copysignf"; 207 Names[RTLIB::COPYSIGN_F64] = "copysign"; 208 Names[RTLIB::COPYSIGN_F80] = "copysignl"; 209 Names[RTLIB::COPYSIGN_PPCF128] = "copysignl"; 210 Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2"; 211 Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee"; 212 Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee"; 213 Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2"; 214 Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2"; 215 Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2"; 216 Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2"; 217 Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2"; 218 Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi"; 219 Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi"; 220 Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi"; 221 Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi"; 222 Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti"; 223 Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi"; 224 Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi"; 225 Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi"; 226 Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi"; 227 Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti"; 228 Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi"; 229 Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi"; 230 Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti"; 231 Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi"; 232 Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi"; 233 Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti"; 234 Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi"; 235 Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi"; 236 Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi"; 237 Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi"; 238 Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti"; 239 Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi"; 240 Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi"; 241 Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi"; 242 Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi"; 243 Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti"; 244 Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi"; 245 Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi"; 246 Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti"; 247 Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi"; 248 Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi"; 249 Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti"; 250 Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf"; 251 Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf"; 252 Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf"; 253 Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf"; 254 Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf"; 255 Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf"; 256 Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf"; 257 Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf"; 258 Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf"; 259 Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf"; 260 Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf"; 261 Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf"; 262 Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf"; 263 Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf"; 264 Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf"; 265 Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf"; 266 Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf"; 267 Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf"; 268 Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf"; 269 Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf"; 270 Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf"; 271 Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf"; 272 Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf"; 273 Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf"; 274 Names[RTLIB::OEQ_F32] = "__eqsf2"; 275 Names[RTLIB::OEQ_F64] = "__eqdf2"; 276 Names[RTLIB::UNE_F32] = "__nesf2"; 277 Names[RTLIB::UNE_F64] = "__nedf2"; 278 Names[RTLIB::OGE_F32] = "__gesf2"; 279 Names[RTLIB::OGE_F64] = "__gedf2"; 280 Names[RTLIB::OLT_F32] = "__ltsf2"; 281 Names[RTLIB::OLT_F64] = "__ltdf2"; 282 Names[RTLIB::OLE_F32] = "__lesf2"; 283 Names[RTLIB::OLE_F64] = "__ledf2"; 284 Names[RTLIB::OGT_F32] = "__gtsf2"; 285 Names[RTLIB::OGT_F64] = "__gtdf2"; 286 Names[RTLIB::UO_F32] = "__unordsf2"; 287 Names[RTLIB::UO_F64] = "__unorddf2"; 288 Names[RTLIB::O_F32] = "__unordsf2"; 289 Names[RTLIB::O_F64] = "__unorddf2"; 290 Names[RTLIB::MEMCPY] = "memcpy"; 291 Names[RTLIB::MEMMOVE] = "memmove"; 292 Names[RTLIB::MEMSET] = "memset"; 293 Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume"; 294 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1"; 295 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2"; 296 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4"; 297 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8"; 298 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1"; 299 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2"; 300 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4"; 301 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8"; 302 Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1"; 303 Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2"; 304 Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4"; 305 Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8"; 306 Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1"; 307 Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2"; 308 Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4"; 309 Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8"; 310 Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1"; 311 Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2"; 312 Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4"; 313 Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8"; 314 Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1"; 315 Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2"; 316 Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4"; 317 Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8"; 318 Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1"; 319 Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2"; 320 Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and-xor_4"; 321 Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8"; 322 Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1"; 323 Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2"; 324 Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4"; 325 Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8"; 326 } 327 328 /// InitLibcallCallingConvs - Set default libcall CallingConvs. 329 /// 330 static void InitLibcallCallingConvs(CallingConv::ID *CCs) { 331 for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) { 332 CCs[i] = CallingConv::C; 333 } 334 } 335 336 /// getFPEXT - Return the FPEXT_*_* value for the given types, or 337 /// UNKNOWN_LIBCALL if there is none. 338 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) { 339 if (OpVT == MVT::f32) { 340 if (RetVT == MVT::f64) 341 return FPEXT_F32_F64; 342 } 343 344 return UNKNOWN_LIBCALL; 345 } 346 347 /// getFPROUND - Return the FPROUND_*_* value for the given types, or 348 /// UNKNOWN_LIBCALL if there is none. 349 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) { 350 if (RetVT == MVT::f32) { 351 if (OpVT == MVT::f64) 352 return FPROUND_F64_F32; 353 if (OpVT == MVT::f80) 354 return FPROUND_F80_F32; 355 if (OpVT == MVT::ppcf128) 356 return FPROUND_PPCF128_F32; 357 } else if (RetVT == MVT::f64) { 358 if (OpVT == MVT::f80) 359 return FPROUND_F80_F64; 360 if (OpVT == MVT::ppcf128) 361 return FPROUND_PPCF128_F64; 362 } 363 364 return UNKNOWN_LIBCALL; 365 } 366 367 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or 368 /// UNKNOWN_LIBCALL if there is none. 369 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) { 370 if (OpVT == MVT::f32) { 371 if (RetVT == MVT::i8) 372 return FPTOSINT_F32_I8; 373 if (RetVT == MVT::i16) 374 return FPTOSINT_F32_I16; 375 if (RetVT == MVT::i32) 376 return FPTOSINT_F32_I32; 377 if (RetVT == MVT::i64) 378 return FPTOSINT_F32_I64; 379 if (RetVT == MVT::i128) 380 return FPTOSINT_F32_I128; 381 } else if (OpVT == MVT::f64) { 382 if (RetVT == MVT::i8) 383 return FPTOSINT_F64_I8; 384 if (RetVT == MVT::i16) 385 return FPTOSINT_F64_I16; 386 if (RetVT == MVT::i32) 387 return FPTOSINT_F64_I32; 388 if (RetVT == MVT::i64) 389 return FPTOSINT_F64_I64; 390 if (RetVT == MVT::i128) 391 return FPTOSINT_F64_I128; 392 } else if (OpVT == MVT::f80) { 393 if (RetVT == MVT::i32) 394 return FPTOSINT_F80_I32; 395 if (RetVT == MVT::i64) 396 return FPTOSINT_F80_I64; 397 if (RetVT == MVT::i128) 398 return FPTOSINT_F80_I128; 399 } else if (OpVT == MVT::ppcf128) { 400 if (RetVT == MVT::i32) 401 return FPTOSINT_PPCF128_I32; 402 if (RetVT == MVT::i64) 403 return FPTOSINT_PPCF128_I64; 404 if (RetVT == MVT::i128) 405 return FPTOSINT_PPCF128_I128; 406 } 407 return UNKNOWN_LIBCALL; 408 } 409 410 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or 411 /// UNKNOWN_LIBCALL if there is none. 412 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) { 413 if (OpVT == MVT::f32) { 414 if (RetVT == MVT::i8) 415 return FPTOUINT_F32_I8; 416 if (RetVT == MVT::i16) 417 return FPTOUINT_F32_I16; 418 if (RetVT == MVT::i32) 419 return FPTOUINT_F32_I32; 420 if (RetVT == MVT::i64) 421 return FPTOUINT_F32_I64; 422 if (RetVT == MVT::i128) 423 return FPTOUINT_F32_I128; 424 } else if (OpVT == MVT::f64) { 425 if (RetVT == MVT::i8) 426 return FPTOUINT_F64_I8; 427 if (RetVT == MVT::i16) 428 return FPTOUINT_F64_I16; 429 if (RetVT == MVT::i32) 430 return FPTOUINT_F64_I32; 431 if (RetVT == MVT::i64) 432 return FPTOUINT_F64_I64; 433 if (RetVT == MVT::i128) 434 return FPTOUINT_F64_I128; 435 } else if (OpVT == MVT::f80) { 436 if (RetVT == MVT::i32) 437 return FPTOUINT_F80_I32; 438 if (RetVT == MVT::i64) 439 return FPTOUINT_F80_I64; 440 if (RetVT == MVT::i128) 441 return FPTOUINT_F80_I128; 442 } else if (OpVT == MVT::ppcf128) { 443 if (RetVT == MVT::i32) 444 return FPTOUINT_PPCF128_I32; 445 if (RetVT == MVT::i64) 446 return FPTOUINT_PPCF128_I64; 447 if (RetVT == MVT::i128) 448 return FPTOUINT_PPCF128_I128; 449 } 450 return UNKNOWN_LIBCALL; 451 } 452 453 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or 454 /// UNKNOWN_LIBCALL if there is none. 455 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) { 456 if (OpVT == MVT::i32) { 457 if (RetVT == MVT::f32) 458 return SINTTOFP_I32_F32; 459 else if (RetVT == MVT::f64) 460 return SINTTOFP_I32_F64; 461 else if (RetVT == MVT::f80) 462 return SINTTOFP_I32_F80; 463 else if (RetVT == MVT::ppcf128) 464 return SINTTOFP_I32_PPCF128; 465 } else if (OpVT == MVT::i64) { 466 if (RetVT == MVT::f32) 467 return SINTTOFP_I64_F32; 468 else if (RetVT == MVT::f64) 469 return SINTTOFP_I64_F64; 470 else if (RetVT == MVT::f80) 471 return SINTTOFP_I64_F80; 472 else if (RetVT == MVT::ppcf128) 473 return SINTTOFP_I64_PPCF128; 474 } else if (OpVT == MVT::i128) { 475 if (RetVT == MVT::f32) 476 return SINTTOFP_I128_F32; 477 else if (RetVT == MVT::f64) 478 return SINTTOFP_I128_F64; 479 else if (RetVT == MVT::f80) 480 return SINTTOFP_I128_F80; 481 else if (RetVT == MVT::ppcf128) 482 return SINTTOFP_I128_PPCF128; 483 } 484 return UNKNOWN_LIBCALL; 485 } 486 487 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or 488 /// UNKNOWN_LIBCALL if there is none. 489 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) { 490 if (OpVT == MVT::i32) { 491 if (RetVT == MVT::f32) 492 return UINTTOFP_I32_F32; 493 else if (RetVT == MVT::f64) 494 return UINTTOFP_I32_F64; 495 else if (RetVT == MVT::f80) 496 return UINTTOFP_I32_F80; 497 else if (RetVT == MVT::ppcf128) 498 return UINTTOFP_I32_PPCF128; 499 } else if (OpVT == MVT::i64) { 500 if (RetVT == MVT::f32) 501 return UINTTOFP_I64_F32; 502 else if (RetVT == MVT::f64) 503 return UINTTOFP_I64_F64; 504 else if (RetVT == MVT::f80) 505 return UINTTOFP_I64_F80; 506 else if (RetVT == MVT::ppcf128) 507 return UINTTOFP_I64_PPCF128; 508 } else if (OpVT == MVT::i128) { 509 if (RetVT == MVT::f32) 510 return UINTTOFP_I128_F32; 511 else if (RetVT == MVT::f64) 512 return UINTTOFP_I128_F64; 513 else if (RetVT == MVT::f80) 514 return UINTTOFP_I128_F80; 515 else if (RetVT == MVT::ppcf128) 516 return UINTTOFP_I128_PPCF128; 517 } 518 return UNKNOWN_LIBCALL; 519 } 520 521 /// InitCmpLibcallCCs - Set default comparison libcall CC. 522 /// 523 static void InitCmpLibcallCCs(ISD::CondCode *CCs) { 524 memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL); 525 CCs[RTLIB::OEQ_F32] = ISD::SETEQ; 526 CCs[RTLIB::OEQ_F64] = ISD::SETEQ; 527 CCs[RTLIB::UNE_F32] = ISD::SETNE; 528 CCs[RTLIB::UNE_F64] = ISD::SETNE; 529 CCs[RTLIB::OGE_F32] = ISD::SETGE; 530 CCs[RTLIB::OGE_F64] = ISD::SETGE; 531 CCs[RTLIB::OLT_F32] = ISD::SETLT; 532 CCs[RTLIB::OLT_F64] = ISD::SETLT; 533 CCs[RTLIB::OLE_F32] = ISD::SETLE; 534 CCs[RTLIB::OLE_F64] = ISD::SETLE; 535 CCs[RTLIB::OGT_F32] = ISD::SETGT; 536 CCs[RTLIB::OGT_F64] = ISD::SETGT; 537 CCs[RTLIB::UO_F32] = ISD::SETNE; 538 CCs[RTLIB::UO_F64] = ISD::SETNE; 539 CCs[RTLIB::O_F32] = ISD::SETEQ; 540 CCs[RTLIB::O_F64] = ISD::SETEQ; 541 } 542 543 /// NOTE: The constructor takes ownership of TLOF. 544 TargetLowering::TargetLowering(const TargetMachine &tm, 545 const TargetLoweringObjectFile *tlof) 546 : TM(tm), TD(TM.getTargetData()), TLOF(*tlof), 547 mayPromoteElements(AllowPromoteIntElem) { 548 // All operations default to being supported. 549 memset(OpActions, 0, sizeof(OpActions)); 550 memset(LoadExtActions, 0, sizeof(LoadExtActions)); 551 memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); 552 memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); 553 memset(CondCodeActions, 0, sizeof(CondCodeActions)); 554 555 // Set default actions for various operations. 556 for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) { 557 // Default all indexed load / store to expand. 558 for (unsigned IM = (unsigned)ISD::PRE_INC; 559 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { 560 setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand); 561 setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand); 562 } 563 564 // These operations default to expand. 565 setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand); 566 setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand); 567 } 568 569 // Most targets ignore the @llvm.prefetch intrinsic. 570 setOperationAction(ISD::PREFETCH, MVT::Other, Expand); 571 572 // ConstantFP nodes default to expand. Targets can either change this to 573 // Legal, in which case all fp constants are legal, or use isFPImmLegal() 574 // to optimize expansions for certain constants. 575 setOperationAction(ISD::ConstantFP, MVT::f32, Expand); 576 setOperationAction(ISD::ConstantFP, MVT::f64, Expand); 577 setOperationAction(ISD::ConstantFP, MVT::f80, Expand); 578 579 // These library functions default to expand. 580 setOperationAction(ISD::FLOG , MVT::f64, Expand); 581 setOperationAction(ISD::FLOG2, MVT::f64, Expand); 582 setOperationAction(ISD::FLOG10,MVT::f64, Expand); 583 setOperationAction(ISD::FEXP , MVT::f64, Expand); 584 setOperationAction(ISD::FEXP2, MVT::f64, Expand); 585 setOperationAction(ISD::FLOG , MVT::f32, Expand); 586 setOperationAction(ISD::FLOG2, MVT::f32, Expand); 587 setOperationAction(ISD::FLOG10,MVT::f32, Expand); 588 setOperationAction(ISD::FEXP , MVT::f32, Expand); 589 setOperationAction(ISD::FEXP2, MVT::f32, Expand); 590 591 // Default ISD::TRAP to expand (which turns it into abort). 592 setOperationAction(ISD::TRAP, MVT::Other, Expand); 593 594 IsLittleEndian = TD->isLittleEndian(); 595 PointerTy = MVT::getIntegerVT(8*TD->getPointerSize()); 596 memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*)); 597 memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray)); 598 maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8; 599 maxStoresPerMemsetOptSize = maxStoresPerMemcpyOptSize 600 = maxStoresPerMemmoveOptSize = 4; 601 benefitFromCodePlacementOpt = false; 602 UseUnderscoreSetJmp = false; 603 UseUnderscoreLongJmp = false; 604 SelectIsExpensive = false; 605 IntDivIsCheap = false; 606 Pow2DivIsCheap = false; 607 JumpIsExpensive = false; 608 StackPointerRegisterToSaveRestore = 0; 609 ExceptionPointerRegister = 0; 610 ExceptionSelectorRegister = 0; 611 BooleanContents = UndefinedBooleanContent; 612 SchedPreferenceInfo = Sched::Latency; 613 JumpBufSize = 0; 614 JumpBufAlignment = 0; 615 MinFunctionAlignment = 0; 616 PrefFunctionAlignment = 0; 617 PrefLoopAlignment = 0; 618 MinStackArgumentAlignment = 1; 619 ShouldFoldAtomicFences = false; 620 InsertFencesForAtomic = false; 621 622 InitLibcallNames(LibcallRoutineNames); 623 InitCmpLibcallCCs(CmpLibcallCCs); 624 InitLibcallCallingConvs(LibcallCallingConvs); 625 } 626 627 TargetLowering::~TargetLowering() { 628 delete &TLOF; 629 } 630 631 MVT TargetLowering::getShiftAmountTy(EVT LHSTy) const { 632 return MVT::getIntegerVT(8*TD->getPointerSize()); 633 } 634 635 /// canOpTrap - Returns true if the operation can trap for the value type. 636 /// VT must be a legal type. 637 bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const { 638 assert(isTypeLegal(VT)); 639 switch (Op) { 640 default: 641 return false; 642 case ISD::FDIV: 643 case ISD::FREM: 644 case ISD::SDIV: 645 case ISD::UDIV: 646 case ISD::SREM: 647 case ISD::UREM: 648 return true; 649 } 650 } 651 652 653 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, 654 unsigned &NumIntermediates, 655 EVT &RegisterVT, 656 TargetLowering *TLI) { 657 // Figure out the right, legal destination reg to copy into. 658 unsigned NumElts = VT.getVectorNumElements(); 659 MVT EltTy = VT.getVectorElementType(); 660 661 unsigned NumVectorRegs = 1; 662 663 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we 664 // could break down into LHS/RHS like LegalizeDAG does. 665 if (!isPowerOf2_32(NumElts)) { 666 NumVectorRegs = NumElts; 667 NumElts = 1; 668 } 669 670 // Divide the input until we get to a supported size. This will always 671 // end with a scalar if the target doesn't support vectors. 672 while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) { 673 NumElts >>= 1; 674 NumVectorRegs <<= 1; 675 } 676 677 NumIntermediates = NumVectorRegs; 678 679 MVT NewVT = MVT::getVectorVT(EltTy, NumElts); 680 if (!TLI->isTypeLegal(NewVT)) 681 NewVT = EltTy; 682 IntermediateVT = NewVT; 683 684 unsigned NewVTSize = NewVT.getSizeInBits(); 685 686 // Convert sizes such as i33 to i64. 687 if (!isPowerOf2_32(NewVTSize)) 688 NewVTSize = NextPowerOf2(NewVTSize); 689 690 EVT DestVT = TLI->getRegisterType(NewVT); 691 RegisterVT = DestVT; 692 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. 693 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); 694 695 // Otherwise, promotion or legal types use the same number of registers as 696 // the vector decimated to the appropriate level. 697 return NumVectorRegs; 698 } 699 700 /// isLegalRC - Return true if the value types that can be represented by the 701 /// specified register class are all legal. 702 bool TargetLowering::isLegalRC(const TargetRegisterClass *RC) const { 703 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); 704 I != E; ++I) { 705 if (isTypeLegal(*I)) 706 return true; 707 } 708 return false; 709 } 710 711 /// hasLegalSuperRegRegClasses - Return true if the specified register class 712 /// has one or more super-reg register classes that are legal. 713 bool 714 TargetLowering::hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const{ 715 if (*RC->superregclasses_begin() == 0) 716 return false; 717 for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(), 718 E = RC->superregclasses_end(); I != E; ++I) { 719 const TargetRegisterClass *RRC = *I; 720 if (isLegalRC(RRC)) 721 return true; 722 } 723 return false; 724 } 725 726 /// findRepresentativeClass - Return the largest legal super-reg register class 727 /// of the register class for the specified type and its associated "cost". 728 std::pair<const TargetRegisterClass*, uint8_t> 729 TargetLowering::findRepresentativeClass(EVT VT) const { 730 const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy]; 731 if (!RC) 732 return std::make_pair(RC, 0); 733 const TargetRegisterClass *BestRC = RC; 734 for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(), 735 E = RC->superregclasses_end(); I != E; ++I) { 736 const TargetRegisterClass *RRC = *I; 737 if (RRC->isASubClass() || !isLegalRC(RRC)) 738 continue; 739 if (!hasLegalSuperRegRegClasses(RRC)) 740 return std::make_pair(RRC, 1); 741 BestRC = RRC; 742 } 743 return std::make_pair(BestRC, 1); 744 } 745 746 747 /// computeRegisterProperties - Once all of the register classes are added, 748 /// this allows us to compute derived properties we expose. 749 void TargetLowering::computeRegisterProperties() { 750 assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE && 751 "Too many value types for ValueTypeActions to hold!"); 752 753 // Everything defaults to needing one register. 754 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { 755 NumRegistersForVT[i] = 1; 756 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; 757 } 758 // ...except isVoid, which doesn't need any registers. 759 NumRegistersForVT[MVT::isVoid] = 0; 760 761 // Find the largest integer register class. 762 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; 763 for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg) 764 assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); 765 766 // Every integer value type larger than this largest register takes twice as 767 // many registers to represent as the previous ValueType. 768 for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) { 769 EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg; 770 if (!ExpandedVT.isInteger()) 771 break; 772 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; 773 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; 774 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); 775 ValueTypeActions.setTypeAction(ExpandedVT, TypeExpandInteger); 776 } 777 778 // Inspect all of the ValueType's smaller than the largest integer 779 // register to see which ones need promotion. 780 unsigned LegalIntReg = LargestIntReg; 781 for (unsigned IntReg = LargestIntReg - 1; 782 IntReg >= (unsigned)MVT::i1; --IntReg) { 783 EVT IVT = (MVT::SimpleValueType)IntReg; 784 if (isTypeLegal(IVT)) { 785 LegalIntReg = IntReg; 786 } else { 787 RegisterTypeForVT[IntReg] = TransformToType[IntReg] = 788 (MVT::SimpleValueType)LegalIntReg; 789 ValueTypeActions.setTypeAction(IVT, TypePromoteInteger); 790 } 791 } 792 793 // ppcf128 type is really two f64's. 794 if (!isTypeLegal(MVT::ppcf128)) { 795 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; 796 RegisterTypeForVT[MVT::ppcf128] = MVT::f64; 797 TransformToType[MVT::ppcf128] = MVT::f64; 798 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat); 799 } 800 801 // Decide how to handle f64. If the target does not have native f64 support, 802 // expand it to i64 and we will be generating soft float library calls. 803 if (!isTypeLegal(MVT::f64)) { 804 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; 805 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; 806 TransformToType[MVT::f64] = MVT::i64; 807 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat); 808 } 809 810 // Decide how to handle f32. If the target does not have native support for 811 // f32, promote it to f64 if it is legal. Otherwise, expand it to i32. 812 if (!isTypeLegal(MVT::f32)) { 813 if (isTypeLegal(MVT::f64)) { 814 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64]; 815 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64]; 816 TransformToType[MVT::f32] = MVT::f64; 817 ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger); 818 } else { 819 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; 820 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; 821 TransformToType[MVT::f32] = MVT::i32; 822 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat); 823 } 824 } 825 826 // Loop over all of the vector value types to see which need transformations. 827 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; 828 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { 829 MVT VT = (MVT::SimpleValueType)i; 830 if (isTypeLegal(VT)) continue; 831 832 // Determine if there is a legal wider type. If so, we should promote to 833 // that wider vector type. 834 EVT EltVT = VT.getVectorElementType(); 835 unsigned NElts = VT.getVectorNumElements(); 836 if (NElts != 1) { 837 bool IsLegalWiderType = false; 838 // If we allow the promotion of vector elements using a flag, 839 // then return TypePromoteInteger on vector elements. 840 // First try to promote the elements of integer vectors. If no legal 841 // promotion was found, fallback to the widen-vector method. 842 if (mayPromoteElements) 843 for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { 844 EVT SVT = (MVT::SimpleValueType)nVT; 845 // Promote vectors of integers to vectors with the same number 846 // of elements, with a wider element type. 847 if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits() 848 && SVT.getVectorNumElements() == NElts && 849 isTypeLegal(SVT) && SVT.getScalarType().isInteger()) { 850 TransformToType[i] = SVT; 851 RegisterTypeForVT[i] = SVT; 852 NumRegistersForVT[i] = 1; 853 ValueTypeActions.setTypeAction(VT, TypePromoteInteger); 854 IsLegalWiderType = true; 855 break; 856 } 857 } 858 859 if (IsLegalWiderType) continue; 860 861 // Try to widen the vector. 862 for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { 863 EVT SVT = (MVT::SimpleValueType)nVT; 864 if (SVT.getVectorElementType() == EltVT && 865 SVT.getVectorNumElements() > NElts && 866 isTypeLegal(SVT)) { 867 TransformToType[i] = SVT; 868 RegisterTypeForVT[i] = SVT; 869 NumRegistersForVT[i] = 1; 870 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 871 IsLegalWiderType = true; 872 break; 873 } 874 } 875 if (IsLegalWiderType) continue; 876 } 877 878 MVT IntermediateVT; 879 EVT RegisterVT; 880 unsigned NumIntermediates; 881 NumRegistersForVT[i] = 882 getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates, 883 RegisterVT, this); 884 RegisterTypeForVT[i] = RegisterVT; 885 886 EVT NVT = VT.getPow2VectorType(); 887 if (NVT == VT) { 888 // Type is already a power of 2. The default action is to split. 889 TransformToType[i] = MVT::Other; 890 unsigned NumElts = VT.getVectorNumElements(); 891 ValueTypeActions.setTypeAction(VT, 892 NumElts > 1 ? TypeSplitVector : TypeScalarizeVector); 893 } else { 894 TransformToType[i] = NVT; 895 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 896 } 897 } 898 899 // Determine the 'representative' register class for each value type. 900 // An representative register class is the largest (meaning one which is 901 // not a sub-register class / subreg register class) legal register class for 902 // a group of value types. For example, on i386, i8, i16, and i32 903 // representative would be GR32; while on x86_64 it's GR64. 904 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { 905 const TargetRegisterClass* RRC; 906 uint8_t Cost; 907 tie(RRC, Cost) = findRepresentativeClass((MVT::SimpleValueType)i); 908 RepRegClassForVT[i] = RRC; 909 RepRegClassCostForVT[i] = Cost; 910 } 911 } 912 913 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 914 return NULL; 915 } 916 917 918 MVT::SimpleValueType TargetLowering::getSetCCResultType(EVT VT) const { 919 return PointerTy.SimpleTy; 920 } 921 922 MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const { 923 return MVT::i32; // return the default value 924 } 925 926 /// getVectorTypeBreakdown - Vector types are broken down into some number of 927 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32 928 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. 929 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. 930 /// 931 /// This method returns the number of registers needed, and the VT for each 932 /// register. It also returns the VT and quantity of the intermediate values 933 /// before they are promoted/expanded. 934 /// 935 unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT, 936 EVT &IntermediateVT, 937 unsigned &NumIntermediates, 938 EVT &RegisterVT) const { 939 unsigned NumElts = VT.getVectorNumElements(); 940 941 // If there is a wider vector type with the same element type as this one, 942 // we should widen to that legal vector type. This handles things like 943 // <2 x float> -> <4 x float>. 944 if (NumElts != 1 && getTypeAction(Context, VT) == TypeWidenVector) { 945 RegisterVT = getTypeToTransformTo(Context, VT); 946 if (isTypeLegal(RegisterVT)) { 947 IntermediateVT = RegisterVT; 948 NumIntermediates = 1; 949 return 1; 950 } 951 } 952 953 // Figure out the right, legal destination reg to copy into. 954 EVT EltTy = VT.getVectorElementType(); 955 956 unsigned NumVectorRegs = 1; 957 958 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we 959 // could break down into LHS/RHS like LegalizeDAG does. 960 if (!isPowerOf2_32(NumElts)) { 961 NumVectorRegs = NumElts; 962 NumElts = 1; 963 } 964 965 // Divide the input until we get to a supported size. This will always 966 // end with a scalar if the target doesn't support vectors. 967 while (NumElts > 1 && !isTypeLegal( 968 EVT::getVectorVT(Context, EltTy, NumElts))) { 969 NumElts >>= 1; 970 NumVectorRegs <<= 1; 971 } 972 973 NumIntermediates = NumVectorRegs; 974 975 EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts); 976 if (!isTypeLegal(NewVT)) 977 NewVT = EltTy; 978 IntermediateVT = NewVT; 979 980 EVT DestVT = getRegisterType(Context, NewVT); 981 RegisterVT = DestVT; 982 unsigned NewVTSize = NewVT.getSizeInBits(); 983 984 // Convert sizes such as i33 to i64. 985 if (!isPowerOf2_32(NewVTSize)) 986 NewVTSize = NextPowerOf2(NewVTSize); 987 988 if (DestVT.bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. 989 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); 990 991 // Otherwise, promotion or legal types use the same number of registers as 992 // the vector decimated to the appropriate level. 993 return NumVectorRegs; 994 } 995 996 /// Get the EVTs and ArgFlags collections that represent the legalized return 997 /// type of the given function. This does not require a DAG or a return value, 998 /// and is suitable for use before any DAGs for the function are constructed. 999 /// TODO: Move this out of TargetLowering.cpp. 1000 void llvm::GetReturnInfo(Type* ReturnType, Attributes attr, 1001 SmallVectorImpl<ISD::OutputArg> &Outs, 1002 const TargetLowering &TLI, 1003 SmallVectorImpl<uint64_t> *Offsets) { 1004 SmallVector<EVT, 4> ValueVTs; 1005 ComputeValueVTs(TLI, ReturnType, ValueVTs); 1006 unsigned NumValues = ValueVTs.size(); 1007 if (NumValues == 0) return; 1008 unsigned Offset = 0; 1009 1010 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1011 EVT VT = ValueVTs[j]; 1012 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1013 1014 if (attr & Attribute::SExt) 1015 ExtendKind = ISD::SIGN_EXTEND; 1016 else if (attr & Attribute::ZExt) 1017 ExtendKind = ISD::ZERO_EXTEND; 1018 1019 // FIXME: C calling convention requires the return type to be promoted to 1020 // at least 32-bit. But this is not necessary for non-C calling 1021 // conventions. The frontend should mark functions whose return values 1022 // require promoting with signext or zeroext attributes. 1023 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 1024 EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); 1025 if (VT.bitsLT(MinVT)) 1026 VT = MinVT; 1027 } 1028 1029 unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT); 1030 EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT); 1031 unsigned PartSize = TLI.getTargetData()->getTypeAllocSize( 1032 PartVT.getTypeForEVT(ReturnType->getContext())); 1033 1034 // 'inreg' on function refers to return value 1035 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1036 if (attr & Attribute::InReg) 1037 Flags.setInReg(); 1038 1039 // Propagate extension type if any 1040 if (attr & Attribute::SExt) 1041 Flags.setSExt(); 1042 else if (attr & Attribute::ZExt) 1043 Flags.setZExt(); 1044 1045 for (unsigned i = 0; i < NumParts; ++i) { 1046 Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true)); 1047 if (Offsets) { 1048 Offsets->push_back(Offset); 1049 Offset += PartSize; 1050 } 1051 } 1052 } 1053 } 1054 1055 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1056 /// function arguments in the caller parameter area. This is the actual 1057 /// alignment, not its logarithm. 1058 unsigned TargetLowering::getByValTypeAlignment(Type *Ty) const { 1059 return TD->getCallFrameTypeAlignment(Ty); 1060 } 1061 1062 /// getJumpTableEncoding - Return the entry encoding for a jump table in the 1063 /// current function. The returned value is a member of the 1064 /// MachineJumpTableInfo::JTEntryKind enum. 1065 unsigned TargetLowering::getJumpTableEncoding() const { 1066 // In non-pic modes, just use the address of a block. 1067 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 1068 return MachineJumpTableInfo::EK_BlockAddress; 1069 1070 // In PIC mode, if the target supports a GPRel32 directive, use it. 1071 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0) 1072 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 1073 1074 // Otherwise, use a label difference. 1075 return MachineJumpTableInfo::EK_LabelDifference32; 1076 } 1077 1078 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 1079 SelectionDAG &DAG) const { 1080 // If our PIC model is GP relative, use the global offset table as the base. 1081 if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress) 1082 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy()); 1083 return Table; 1084 } 1085 1086 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the 1087 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an 1088 /// MCExpr. 1089 const MCExpr * 1090 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 1091 unsigned JTI,MCContext &Ctx) const{ 1092 // The normal PIC reloc base is the label at the start of the jump table. 1093 return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx); 1094 } 1095 1096 bool 1097 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 1098 // Assume that everything is safe in static mode. 1099 if (getTargetMachine().getRelocationModel() == Reloc::Static) 1100 return true; 1101 1102 // In dynamic-no-pic mode, assume that known defined values are safe. 1103 if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC && 1104 GA && 1105 !GA->getGlobal()->isDeclaration() && 1106 !GA->getGlobal()->isWeakForLinker()) 1107 return true; 1108 1109 // Otherwise assume nothing is safe. 1110 return false; 1111 } 1112 1113 //===----------------------------------------------------------------------===// 1114 // Optimization Methods 1115 //===----------------------------------------------------------------------===// 1116 1117 /// ShrinkDemandedConstant - Check to see if the specified operand of the 1118 /// specified instruction is a constant integer. If so, check to see if there 1119 /// are any bits set in the constant that are not demanded. If so, shrink the 1120 /// constant and return true. 1121 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op, 1122 const APInt &Demanded) { 1123 DebugLoc dl = Op.getDebugLoc(); 1124 1125 // FIXME: ISD::SELECT, ISD::SELECT_CC 1126 switch (Op.getOpcode()) { 1127 default: break; 1128 case ISD::XOR: 1129 case ISD::AND: 1130 case ISD::OR: { 1131 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 1132 if (!C) return false; 1133 1134 if (Op.getOpcode() == ISD::XOR && 1135 (C->getAPIntValue() | (~Demanded)).isAllOnesValue()) 1136 return false; 1137 1138 // if we can expand it to have all bits set, do it 1139 if (C->getAPIntValue().intersects(~Demanded)) { 1140 EVT VT = Op.getValueType(); 1141 SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0), 1142 DAG.getConstant(Demanded & 1143 C->getAPIntValue(), 1144 VT)); 1145 return CombineTo(Op, New); 1146 } 1147 1148 break; 1149 } 1150 } 1151 1152 return false; 1153 } 1154 1155 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the 1156 /// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening 1157 /// cast, but it could be generalized for targets with other types of 1158 /// implicit widening casts. 1159 bool 1160 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op, 1161 unsigned BitWidth, 1162 const APInt &Demanded, 1163 DebugLoc dl) { 1164 assert(Op.getNumOperands() == 2 && 1165 "ShrinkDemandedOp only supports binary operators!"); 1166 assert(Op.getNode()->getNumValues() == 1 && 1167 "ShrinkDemandedOp only supports nodes with one result!"); 1168 1169 // Don't do this if the node has another user, which may require the 1170 // full value. 1171 if (!Op.getNode()->hasOneUse()) 1172 return false; 1173 1174 // Search for the smallest integer type with free casts to and from 1175 // Op's type. For expedience, just check power-of-2 integer types. 1176 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1177 unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros(); 1178 if (!isPowerOf2_32(SmallVTBits)) 1179 SmallVTBits = NextPowerOf2(SmallVTBits); 1180 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 1181 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 1182 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 1183 TLI.isZExtFree(SmallVT, Op.getValueType())) { 1184 // We found a type with free casts. 1185 SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT, 1186 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 1187 Op.getNode()->getOperand(0)), 1188 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 1189 Op.getNode()->getOperand(1))); 1190 SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X); 1191 return CombineTo(Op, Z); 1192 } 1193 } 1194 return false; 1195 } 1196 1197 /// SimplifyDemandedBits - Look at Op. At this point, we know that only the 1198 /// DemandedMask bits of the result of Op are ever used downstream. If we can 1199 /// use this information to simplify Op, create a new simplified DAG node and 1200 /// return true, returning the original and new nodes in Old and New. Otherwise, 1201 /// analyze the expression and return a mask of KnownOne and KnownZero bits for 1202 /// the expression (used to simplify the caller). The KnownZero/One bits may 1203 /// only be accurate for those bits in the DemandedMask. 1204 bool TargetLowering::SimplifyDemandedBits(SDValue Op, 1205 const APInt &DemandedMask, 1206 APInt &KnownZero, 1207 APInt &KnownOne, 1208 TargetLoweringOpt &TLO, 1209 unsigned Depth) const { 1210 unsigned BitWidth = DemandedMask.getBitWidth(); 1211 assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth && 1212 "Mask size mismatches value type size!"); 1213 APInt NewMask = DemandedMask; 1214 DebugLoc dl = Op.getDebugLoc(); 1215 1216 // Don't know anything. 1217 KnownZero = KnownOne = APInt(BitWidth, 0); 1218 1219 // Other users may use these bits. 1220 if (!Op.getNode()->hasOneUse()) { 1221 if (Depth != 0) { 1222 // If not at the root, Just compute the KnownZero/KnownOne bits to 1223 // simplify things downstream. 1224 TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth); 1225 return false; 1226 } 1227 // If this is the root being simplified, allow it to have multiple uses, 1228 // just set the NewMask to all bits. 1229 NewMask = APInt::getAllOnesValue(BitWidth); 1230 } else if (DemandedMask == 0) { 1231 // Not demanding any bits from Op. 1232 if (Op.getOpcode() != ISD::UNDEF) 1233 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType())); 1234 return false; 1235 } else if (Depth == 6) { // Limit search depth. 1236 return false; 1237 } 1238 1239 APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; 1240 switch (Op.getOpcode()) { 1241 case ISD::Constant: 1242 // We know all of the bits for a constant! 1243 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask; 1244 KnownZero = ~KnownOne & NewMask; 1245 return false; // Don't fall through, will infinitely loop. 1246 case ISD::AND: 1247 // If the RHS is a constant, check to see if the LHS would be zero without 1248 // using the bits from the RHS. Below, we use knowledge about the RHS to 1249 // simplify the LHS, here we're using information from the LHS to simplify 1250 // the RHS. 1251 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 1252 APInt LHSZero, LHSOne; 1253 // Do not increment Depth here; that can cause an infinite loop. 1254 TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask, 1255 LHSZero, LHSOne, Depth); 1256 // If the LHS already has zeros where RHSC does, this and is dead. 1257 if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) 1258 return TLO.CombineTo(Op, Op.getOperand(0)); 1259 // If any of the set bits in the RHS are known zero on the LHS, shrink 1260 // the constant. 1261 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask)) 1262 return true; 1263 } 1264 1265 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 1266 KnownOne, TLO, Depth+1)) 1267 return true; 1268 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1269 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask, 1270 KnownZero2, KnownOne2, TLO, Depth+1)) 1271 return true; 1272 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 1273 1274 // If all of the demanded bits are known one on one side, return the other. 1275 // These bits cannot contribute to the result of the 'and'. 1276 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 1277 return TLO.CombineTo(Op, Op.getOperand(0)); 1278 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 1279 return TLO.CombineTo(Op, Op.getOperand(1)); 1280 // If all of the demanded bits in the inputs are known zeros, return zero. 1281 if ((NewMask & (KnownZero|KnownZero2)) == NewMask) 1282 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType())); 1283 // If the RHS is a constant, see if we can simplify it. 1284 if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask)) 1285 return true; 1286 // If the operation can be done in a smaller type, do so. 1287 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 1288 return true; 1289 1290 // Output known-1 bits are only known if set in both the LHS & RHS. 1291 KnownOne &= KnownOne2; 1292 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1293 KnownZero |= KnownZero2; 1294 break; 1295 case ISD::OR: 1296 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 1297 KnownOne, TLO, Depth+1)) 1298 return true; 1299 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1300 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask, 1301 KnownZero2, KnownOne2, TLO, Depth+1)) 1302 return true; 1303 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 1304 1305 // If all of the demanded bits are known zero on one side, return the other. 1306 // These bits cannot contribute to the result of the 'or'. 1307 if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask)) 1308 return TLO.CombineTo(Op, Op.getOperand(0)); 1309 if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask)) 1310 return TLO.CombineTo(Op, Op.getOperand(1)); 1311 // If all of the potentially set bits on one side are known to be set on 1312 // the other side, just use the 'other' side. 1313 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 1314 return TLO.CombineTo(Op, Op.getOperand(0)); 1315 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 1316 return TLO.CombineTo(Op, Op.getOperand(1)); 1317 // If the RHS is a constant, see if we can simplify it. 1318 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 1319 return true; 1320 // If the operation can be done in a smaller type, do so. 1321 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 1322 return true; 1323 1324 // Output known-0 bits are only known if clear in both the LHS & RHS. 1325 KnownZero &= KnownZero2; 1326 // Output known-1 are known to be set if set in either the LHS | RHS. 1327 KnownOne |= KnownOne2; 1328 break; 1329 case ISD::XOR: 1330 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 1331 KnownOne, TLO, Depth+1)) 1332 return true; 1333 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1334 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2, 1335 KnownOne2, TLO, Depth+1)) 1336 return true; 1337 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 1338 1339 // If all of the demanded bits are known zero on one side, return the other. 1340 // These bits cannot contribute to the result of the 'xor'. 1341 if ((KnownZero & NewMask) == NewMask) 1342 return TLO.CombineTo(Op, Op.getOperand(0)); 1343 if ((KnownZero2 & NewMask) == NewMask) 1344 return TLO.CombineTo(Op, Op.getOperand(1)); 1345 // If the operation can be done in a smaller type, do so. 1346 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 1347 return true; 1348 1349 // If all of the unknown bits are known to be zero on one side or the other 1350 // (but not both) turn this into an *inclusive* or. 1351 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1352 if ((NewMask & ~KnownZero & ~KnownZero2) == 0) 1353 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(), 1354 Op.getOperand(0), 1355 Op.getOperand(1))); 1356 1357 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1358 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 1359 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1360 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 1361 1362 // If all of the demanded bits on one side are known, and all of the set 1363 // bits on that side are also known to be set on the other side, turn this 1364 // into an AND, as we know the bits will be cleared. 1365 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1366 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known 1367 if ((KnownOne & KnownOne2) == KnownOne) { 1368 EVT VT = Op.getValueType(); 1369 SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT); 1370 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, 1371 Op.getOperand(0), ANDC)); 1372 } 1373 } 1374 1375 // If the RHS is a constant, see if we can simplify it. 1376 // for XOR, we prefer to force bits to 1 if they will make a -1. 1377 // if we can't force bits, try to shrink constant 1378 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 1379 APInt Expanded = C->getAPIntValue() | (~NewMask); 1380 // if we can expand it to have all bits set, do it 1381 if (Expanded.isAllOnesValue()) { 1382 if (Expanded != C->getAPIntValue()) { 1383 EVT VT = Op.getValueType(); 1384 SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0), 1385 TLO.DAG.getConstant(Expanded, VT)); 1386 return TLO.CombineTo(Op, New); 1387 } 1388 // if it already has all the bits set, nothing to change 1389 // but don't shrink either! 1390 } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) { 1391 return true; 1392 } 1393 } 1394 1395 KnownZero = KnownZeroOut; 1396 KnownOne = KnownOneOut; 1397 break; 1398 case ISD::SELECT: 1399 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero, 1400 KnownOne, TLO, Depth+1)) 1401 return true; 1402 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2, 1403 KnownOne2, TLO, Depth+1)) 1404 return true; 1405 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1406 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 1407 1408 // If the operands are constants, see if we can simplify them. 1409 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 1410 return true; 1411 1412 // Only known if known in both the LHS and RHS. 1413 KnownOne &= KnownOne2; 1414 KnownZero &= KnownZero2; 1415 break; 1416 case ISD::SELECT_CC: 1417 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero, 1418 KnownOne, TLO, Depth+1)) 1419 return true; 1420 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2, 1421 KnownOne2, TLO, Depth+1)) 1422 return true; 1423 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1424 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 1425 1426 // If the operands are constants, see if we can simplify them. 1427 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 1428 return true; 1429 1430 // Only known if known in both the LHS and RHS. 1431 KnownOne &= KnownOne2; 1432 KnownZero &= KnownZero2; 1433 break; 1434 case ISD::SHL: 1435 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 1436 unsigned ShAmt = SA->getZExtValue(); 1437 SDValue InOp = Op.getOperand(0); 1438 1439 // If the shift count is an invalid immediate, don't do anything. 1440 if (ShAmt >= BitWidth) 1441 break; 1442 1443 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1444 // single shift. We can do this if the bottom bits (which are shifted 1445 // out) are never demanded. 1446 if (InOp.getOpcode() == ISD::SRL && 1447 isa<ConstantSDNode>(InOp.getOperand(1))) { 1448 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 1449 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 1450 unsigned Opc = ISD::SHL; 1451 int Diff = ShAmt-C1; 1452 if (Diff < 0) { 1453 Diff = -Diff; 1454 Opc = ISD::SRL; 1455 } 1456 1457 SDValue NewSA = 1458 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType()); 1459 EVT VT = Op.getValueType(); 1460 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 1461 InOp.getOperand(0), NewSA)); 1462 } 1463 } 1464 1465 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), 1466 KnownZero, KnownOne, TLO, Depth+1)) 1467 return true; 1468 1469 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1470 // are not demanded. This will likely allow the anyext to be folded away. 1471 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { 1472 SDValue InnerOp = InOp.getNode()->getOperand(0); 1473 EVT InnerVT = InnerOp.getValueType(); 1474 if ((APInt::getHighBitsSet(BitWidth, 1475 BitWidth - InnerVT.getSizeInBits()) & 1476 DemandedMask) == 0 && 1477 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1478 EVT ShTy = getShiftAmountTy(InnerVT); 1479 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1480 ShTy = InnerVT; 1481 SDValue NarrowShl = 1482 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1483 TLO.DAG.getConstant(ShAmt, ShTy)); 1484 return 1485 TLO.CombineTo(Op, 1486 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), 1487 NarrowShl)); 1488 } 1489 } 1490 1491 KnownZero <<= SA->getZExtValue(); 1492 KnownOne <<= SA->getZExtValue(); 1493 // low bits known zero. 1494 KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue()); 1495 } 1496 break; 1497 case ISD::SRL: 1498 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 1499 EVT VT = Op.getValueType(); 1500 unsigned ShAmt = SA->getZExtValue(); 1501 unsigned VTSize = VT.getSizeInBits(); 1502 SDValue InOp = Op.getOperand(0); 1503 1504 // If the shift count is an invalid immediate, don't do anything. 1505 if (ShAmt >= BitWidth) 1506 break; 1507 1508 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1509 // single shift. We can do this if the top bits (which are shifted out) 1510 // are never demanded. 1511 if (InOp.getOpcode() == ISD::SHL && 1512 isa<ConstantSDNode>(InOp.getOperand(1))) { 1513 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) { 1514 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 1515 unsigned Opc = ISD::SRL; 1516 int Diff = ShAmt-C1; 1517 if (Diff < 0) { 1518 Diff = -Diff; 1519 Opc = ISD::SHL; 1520 } 1521 1522 SDValue NewSA = 1523 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType()); 1524 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 1525 InOp.getOperand(0), NewSA)); 1526 } 1527 } 1528 1529 // Compute the new bits that are at the top now. 1530 if (SimplifyDemandedBits(InOp, (NewMask << ShAmt), 1531 KnownZero, KnownOne, TLO, Depth+1)) 1532 return true; 1533 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1534 KnownZero = KnownZero.lshr(ShAmt); 1535 KnownOne = KnownOne.lshr(ShAmt); 1536 1537 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 1538 KnownZero |= HighBits; // High bits known zero. 1539 } 1540 break; 1541 case ISD::SRA: 1542 // If this is an arithmetic shift right and only the low-bit is set, we can 1543 // always convert this into a logical shr, even if the shift amount is 1544 // variable. The low bit of the shift cannot be an input sign bit unless 1545 // the shift amount is >= the size of the datatype, which is undefined. 1546 if (DemandedMask == 1) 1547 return TLO.CombineTo(Op, 1548 TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), 1549 Op.getOperand(0), Op.getOperand(1))); 1550 1551 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 1552 EVT VT = Op.getValueType(); 1553 unsigned ShAmt = SA->getZExtValue(); 1554 1555 // If the shift count is an invalid immediate, don't do anything. 1556 if (ShAmt >= BitWidth) 1557 break; 1558 1559 APInt InDemandedMask = (NewMask << ShAmt); 1560 1561 // If any of the demanded bits are produced by the sign extension, we also 1562 // demand the input sign bit. 1563 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 1564 if (HighBits.intersects(NewMask)) 1565 InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits()); 1566 1567 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, 1568 KnownZero, KnownOne, TLO, Depth+1)) 1569 return true; 1570 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1571 KnownZero = KnownZero.lshr(ShAmt); 1572 KnownOne = KnownOne.lshr(ShAmt); 1573 1574 // Handle the sign bit, adjusted to where it is now in the mask. 1575 APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt); 1576 1577 // If the input sign bit is known to be zero, or if none of the top bits 1578 // are demanded, turn this into an unsigned shift right. 1579 if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) { 1580 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 1581 Op.getOperand(0), 1582 Op.getOperand(1))); 1583 } else if (KnownOne.intersects(SignBit)) { // New bits are known one. 1584 KnownOne |= HighBits; 1585 } 1586 } 1587 break; 1588 case ISD::SIGN_EXTEND_INREG: { 1589 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1590 1591 // Sign extension. Compute the demanded bits in the result that are not 1592 // present in the input. 1593 APInt NewBits = 1594 APInt::getHighBitsSet(BitWidth, 1595 BitWidth - EVT.getScalarType().getSizeInBits()); 1596 1597 // If none of the extended bits are demanded, eliminate the sextinreg. 1598 if ((NewBits & NewMask) == 0) 1599 return TLO.CombineTo(Op, Op.getOperand(0)); 1600 1601 APInt InSignBit = 1602 APInt::getSignBit(EVT.getScalarType().getSizeInBits()).zext(BitWidth); 1603 APInt InputDemandedBits = 1604 APInt::getLowBitsSet(BitWidth, 1605 EVT.getScalarType().getSizeInBits()) & 1606 NewMask; 1607 1608 // Since the sign extended bits are demanded, we know that the sign 1609 // bit is demanded. 1610 InputDemandedBits |= InSignBit; 1611 1612 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, 1613 KnownZero, KnownOne, TLO, Depth+1)) 1614 return true; 1615 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1616 1617 // If the sign bit of the input is known set or clear, then we know the 1618 // top bits of the result. 1619 1620 // If the input sign bit is known zero, convert this into a zero extension. 1621 if (KnownZero.intersects(InSignBit)) 1622 return TLO.CombineTo(Op, 1623 TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT)); 1624 1625 if (KnownOne.intersects(InSignBit)) { // Input sign bit known set 1626 KnownOne |= NewBits; 1627 KnownZero &= ~NewBits; 1628 } else { // Input sign bit unknown 1629 KnownZero &= ~NewBits; 1630 KnownOne &= ~NewBits; 1631 } 1632 break; 1633 } 1634 case ISD::ZERO_EXTEND: { 1635 unsigned OperandBitWidth = 1636 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 1637 APInt InMask = NewMask.trunc(OperandBitWidth); 1638 1639 // If none of the top bits are demanded, convert this into an any_extend. 1640 APInt NewBits = 1641 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask; 1642 if (!NewBits.intersects(NewMask)) 1643 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 1644 Op.getValueType(), 1645 Op.getOperand(0))); 1646 1647 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 1648 KnownZero, KnownOne, TLO, Depth+1)) 1649 return true; 1650 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1651 KnownZero = KnownZero.zext(BitWidth); 1652 KnownOne = KnownOne.zext(BitWidth); 1653 KnownZero |= NewBits; 1654 break; 1655 } 1656 case ISD::SIGN_EXTEND: { 1657 EVT InVT = Op.getOperand(0).getValueType(); 1658 unsigned InBits = InVT.getScalarType().getSizeInBits(); 1659 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits); 1660 APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits); 1661 APInt NewBits = ~InMask & NewMask; 1662 1663 // If none of the top bits are demanded, convert this into an any_extend. 1664 if (NewBits == 0) 1665 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 1666 Op.getValueType(), 1667 Op.getOperand(0))); 1668 1669 // Since some of the sign extended bits are demanded, we know that the sign 1670 // bit is demanded. 1671 APInt InDemandedBits = InMask & NewMask; 1672 InDemandedBits |= InSignBit; 1673 InDemandedBits = InDemandedBits.trunc(InBits); 1674 1675 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, 1676 KnownOne, TLO, Depth+1)) 1677 return true; 1678 KnownZero = KnownZero.zext(BitWidth); 1679 KnownOne = KnownOne.zext(BitWidth); 1680 1681 // If the sign bit is known zero, convert this to a zero extend. 1682 if (KnownZero.intersects(InSignBit)) 1683 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, 1684 Op.getValueType(), 1685 Op.getOperand(0))); 1686 1687 // If the sign bit is known one, the top bits match. 1688 if (KnownOne.intersects(InSignBit)) { 1689 KnownOne |= NewBits; 1690 KnownZero &= ~NewBits; 1691 } else { // Otherwise, top bits aren't known. 1692 KnownOne &= ~NewBits; 1693 KnownZero &= ~NewBits; 1694 } 1695 break; 1696 } 1697 case ISD::ANY_EXTEND: { 1698 unsigned OperandBitWidth = 1699 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 1700 APInt InMask = NewMask.trunc(OperandBitWidth); 1701 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 1702 KnownZero, KnownOne, TLO, Depth+1)) 1703 return true; 1704 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1705 KnownZero = KnownZero.zext(BitWidth); 1706 KnownOne = KnownOne.zext(BitWidth); 1707 break; 1708 } 1709 case ISD::TRUNCATE: { 1710 // Simplify the input, using demanded bit information, and compute the known 1711 // zero/one bits live out. 1712 unsigned OperandBitWidth = 1713 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 1714 APInt TruncMask = NewMask.zext(OperandBitWidth); 1715 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, 1716 KnownZero, KnownOne, TLO, Depth+1)) 1717 return true; 1718 KnownZero = KnownZero.trunc(BitWidth); 1719 KnownOne = KnownOne.trunc(BitWidth); 1720 1721 // If the input is only used by this truncate, see if we can shrink it based 1722 // on the known demanded bits. 1723 if (Op.getOperand(0).getNode()->hasOneUse()) { 1724 SDValue In = Op.getOperand(0); 1725 switch (In.getOpcode()) { 1726 default: break; 1727 case ISD::SRL: 1728 // Shrink SRL by a constant if none of the high bits shifted in are 1729 // demanded. 1730 if (TLO.LegalTypes() && 1731 !isTypeDesirableForOp(ISD::SRL, Op.getValueType())) 1732 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1733 // undesirable. 1734 break; 1735 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); 1736 if (!ShAmt) 1737 break; 1738 SDValue Shift = In.getOperand(1); 1739 if (TLO.LegalTypes()) { 1740 uint64_t ShVal = ShAmt->getZExtValue(); 1741 Shift = 1742 TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType())); 1743 } 1744 1745 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 1746 OperandBitWidth - BitWidth); 1747 HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth); 1748 1749 if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) { 1750 // None of the shifted in bits are needed. Add a truncate of the 1751 // shift input, then shift it. 1752 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, 1753 Op.getValueType(), 1754 In.getOperand(0)); 1755 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, 1756 Op.getValueType(), 1757 NewTrunc, 1758 Shift)); 1759 } 1760 break; 1761 } 1762 } 1763 1764 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1765 break; 1766 } 1767 case ISD::AssertZext: { 1768 // Demand all the bits of the input that are demanded in the output. 1769 // The low bits are obvious; the high bits are demanded because we're 1770 // asserting that they're zero here. 1771 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, 1772 KnownZero, KnownOne, TLO, Depth+1)) 1773 return true; 1774 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1775 1776 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1777 APInt InMask = APInt::getLowBitsSet(BitWidth, 1778 VT.getSizeInBits()); 1779 KnownZero |= ~InMask & NewMask; 1780 break; 1781 } 1782 case ISD::BITCAST: 1783 // If this is an FP->Int bitcast and if the sign bit is the only 1784 // thing demanded, turn this into a FGETSIGN. 1785 if (!Op.getOperand(0).getValueType().isVector() && 1786 NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) && 1787 Op.getOperand(0).getValueType().isFloatingPoint()) { 1788 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType()); 1789 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1790 if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) { 1791 EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32; 1792 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1793 // place. We expect the SHL to be eliminated by other optimizations. 1794 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0)); 1795 unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits(); 1796 if (!OpVTLegal && OpVTSizeInBits > 32) 1797 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign); 1798 unsigned ShVal = Op.getValueType().getSizeInBits()-1; 1799 SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType()); 1800 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 1801 Op.getValueType(), 1802 Sign, ShAmt)); 1803 } 1804 } 1805 break; 1806 case ISD::ADD: 1807 case ISD::MUL: 1808 case ISD::SUB: { 1809 // Add, Sub, and Mul don't demand any bits in positions beyond that 1810 // of the highest bit demanded of them. 1811 APInt LoMask = APInt::getLowBitsSet(BitWidth, 1812 BitWidth - NewMask.countLeadingZeros()); 1813 if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2, 1814 KnownOne2, TLO, Depth+1)) 1815 return true; 1816 if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2, 1817 KnownOne2, TLO, Depth+1)) 1818 return true; 1819 // See if the operation should be performed at a smaller bit width. 1820 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 1821 return true; 1822 } 1823 // FALL THROUGH 1824 default: 1825 // Just use ComputeMaskedBits to compute output bits. 1826 TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth); 1827 break; 1828 } 1829 1830 // If we know the value of all of the demanded bits, return this as a 1831 // constant. 1832 if ((NewMask & (KnownZero|KnownOne)) == NewMask) 1833 return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType())); 1834 1835 return false; 1836 } 1837 1838 /// computeMaskedBitsForTargetNode - Determine which of the bits specified 1839 /// in Mask are known to be either zero or one and return them in the 1840 /// KnownZero/KnownOne bitsets. 1841 void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, 1842 const APInt &Mask, 1843 APInt &KnownZero, 1844 APInt &KnownOne, 1845 const SelectionDAG &DAG, 1846 unsigned Depth) const { 1847 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1848 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1849 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1850 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1851 "Should use MaskedValueIsZero if you don't know whether Op" 1852 " is a target node!"); 1853 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); 1854 } 1855 1856 /// ComputeNumSignBitsForTargetNode - This method can be implemented by 1857 /// targets that want to expose additional information about sign bits to the 1858 /// DAG Combiner. 1859 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 1860 unsigned Depth) const { 1861 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1862 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1863 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1864 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1865 "Should use ComputeNumSignBits if you don't know whether Op" 1866 " is a target node!"); 1867 return 1; 1868 } 1869 1870 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly 1871 /// one bit set. This differs from ComputeMaskedBits in that it doesn't need to 1872 /// determine which bit is set. 1873 /// 1874 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) { 1875 // A left-shift of a constant one will have exactly one bit set, because 1876 // shifting the bit off the end is undefined. 1877 if (Val.getOpcode() == ISD::SHL) 1878 if (ConstantSDNode *C = 1879 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) 1880 if (C->getAPIntValue() == 1) 1881 return true; 1882 1883 // Similarly, a right-shift of a constant sign-bit will have exactly 1884 // one bit set. 1885 if (Val.getOpcode() == ISD::SRL) 1886 if (ConstantSDNode *C = 1887 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) 1888 if (C->getAPIntValue().isSignBit()) 1889 return true; 1890 1891 // More could be done here, though the above checks are enough 1892 // to handle some common cases. 1893 1894 // Fall back to ComputeMaskedBits to catch other known cases. 1895 EVT OpVT = Val.getValueType(); 1896 unsigned BitWidth = OpVT.getScalarType().getSizeInBits(); 1897 APInt Mask = APInt::getAllOnesValue(BitWidth); 1898 APInt KnownZero, KnownOne; 1899 DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne); 1900 return (KnownZero.countPopulation() == BitWidth - 1) && 1901 (KnownOne.countPopulation() == 1); 1902 } 1903 1904 /// SimplifySetCC - Try to simplify a setcc built with the specified operands 1905 /// and cc. If it is unable to simplify it, return a null SDValue. 1906 SDValue 1907 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 1908 ISD::CondCode Cond, bool foldBooleans, 1909 DAGCombinerInfo &DCI, DebugLoc dl) const { 1910 SelectionDAG &DAG = DCI.DAG; 1911 1912 // These setcc operations always fold. 1913 switch (Cond) { 1914 default: break; 1915 case ISD::SETFALSE: 1916 case ISD::SETFALSE2: return DAG.getConstant(0, VT); 1917 case ISD::SETTRUE: 1918 case ISD::SETTRUE2: return DAG.getConstant(1, VT); 1919 } 1920 1921 // Ensure that the constant occurs on the RHS, and fold constant 1922 // comparisons. 1923 if (isa<ConstantSDNode>(N0.getNode())) 1924 return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond)); 1925 1926 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 1927 const APInt &C1 = N1C->getAPIntValue(); 1928 1929 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 1930 // equality comparison, then we're just comparing whether X itself is 1931 // zero. 1932 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) && 1933 N0.getOperand(0).getOpcode() == ISD::CTLZ && 1934 N0.getOperand(1).getOpcode() == ISD::Constant) { 1935 const APInt &ShAmt 1936 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1937 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1938 ShAmt == Log2_32(N0.getValueType().getSizeInBits())) { 1939 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 1940 // (srl (ctlz x), 5) == 0 -> X != 0 1941 // (srl (ctlz x), 5) != 1 -> X != 0 1942 Cond = ISD::SETNE; 1943 } else { 1944 // (srl (ctlz x), 5) != 0 -> X == 0 1945 // (srl (ctlz x), 5) == 1 -> X == 0 1946 Cond = ISD::SETEQ; 1947 } 1948 SDValue Zero = DAG.getConstant(0, N0.getValueType()); 1949 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 1950 Zero, Cond); 1951 } 1952 } 1953 1954 SDValue CTPOP = N0; 1955 // Look through truncs that don't change the value of a ctpop. 1956 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 1957 CTPOP = N0.getOperand(0); 1958 1959 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 1960 (N0 == CTPOP || N0.getValueType().getSizeInBits() > 1961 Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) { 1962 EVT CTVT = CTPOP.getValueType(); 1963 SDValue CTOp = CTPOP.getOperand(0); 1964 1965 // (ctpop x) u< 2 -> (x & x-1) == 0 1966 // (ctpop x) u> 1 -> (x & x-1) != 0 1967 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 1968 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 1969 DAG.getConstant(1, CTVT)); 1970 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 1971 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 1972 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC); 1973 } 1974 1975 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 1976 } 1977 1978 // (zext x) == C --> x == (trunc C) 1979 if (DCI.isBeforeLegalize() && N0->hasOneUse() && 1980 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1981 unsigned MinBits = N0.getValueSizeInBits(); 1982 SDValue PreZExt; 1983 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 1984 // ZExt 1985 MinBits = N0->getOperand(0).getValueSizeInBits(); 1986 PreZExt = N0->getOperand(0); 1987 } else if (N0->getOpcode() == ISD::AND) { 1988 // DAGCombine turns costly ZExts into ANDs 1989 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 1990 if ((C->getAPIntValue()+1).isPowerOf2()) { 1991 MinBits = C->getAPIntValue().countTrailingOnes(); 1992 PreZExt = N0->getOperand(0); 1993 } 1994 } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) { 1995 // ZEXTLOAD 1996 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 1997 MinBits = LN0->getMemoryVT().getSizeInBits(); 1998 PreZExt = N0; 1999 } 2000 } 2001 2002 // Make sure we're not loosing bits from the constant. 2003 if (MinBits < C1.getBitWidth() && MinBits > C1.getActiveBits()) { 2004 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 2005 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 2006 // Will get folded away. 2007 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt); 2008 SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT); 2009 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 2010 } 2011 } 2012 } 2013 2014 // If the LHS is '(and load, const)', the RHS is 0, 2015 // the test is for equality or unsigned, and all 1 bits of the const are 2016 // in the same partial word, see if we can shorten the load. 2017 if (DCI.isBeforeLegalize() && 2018 N0.getOpcode() == ISD::AND && C1 == 0 && 2019 N0.getNode()->hasOneUse() && 2020 isa<LoadSDNode>(N0.getOperand(0)) && 2021 N0.getOperand(0).getNode()->hasOneUse() && 2022 isa<ConstantSDNode>(N0.getOperand(1))) { 2023 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 2024 APInt bestMask; 2025 unsigned bestWidth = 0, bestOffset = 0; 2026 if (!Lod->isVolatile() && Lod->isUnindexed()) { 2027 unsigned origWidth = N0.getValueType().getSizeInBits(); 2028 unsigned maskWidth = origWidth; 2029 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 2030 // 8 bits, but have to be careful... 2031 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 2032 origWidth = Lod->getMemoryVT().getSizeInBits(); 2033 const APInt &Mask = 2034 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 2035 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 2036 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 2037 for (unsigned offset=0; offset<origWidth/width; offset++) { 2038 if ((newMask & Mask) == Mask) { 2039 if (!TD->isLittleEndian()) 2040 bestOffset = (origWidth/width - offset - 1) * (width/8); 2041 else 2042 bestOffset = (uint64_t)offset * (width/8); 2043 bestMask = Mask.lshr(offset * (width/8) * 8); 2044 bestWidth = width; 2045 break; 2046 } 2047 newMask = newMask << width; 2048 } 2049 } 2050 } 2051 if (bestWidth) { 2052 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 2053 if (newVT.isRound()) { 2054 EVT PtrType = Lod->getOperand(1).getValueType(); 2055 SDValue Ptr = Lod->getBasePtr(); 2056 if (bestOffset != 0) 2057 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 2058 DAG.getConstant(bestOffset, PtrType)); 2059 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 2060 SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 2061 Lod->getPointerInfo().getWithOffset(bestOffset), 2062 false, false, NewAlign); 2063 return DAG.getSetCC(dl, VT, 2064 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 2065 DAG.getConstant(bestMask.trunc(bestWidth), 2066 newVT)), 2067 DAG.getConstant(0LL, newVT), Cond); 2068 } 2069 } 2070 } 2071 2072 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 2073 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 2074 unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits(); 2075 2076 // If the comparison constant has bits in the upper part, the 2077 // zero-extended value could never match. 2078 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 2079 C1.getBitWidth() - InSize))) { 2080 switch (Cond) { 2081 case ISD::SETUGT: 2082 case ISD::SETUGE: 2083 case ISD::SETEQ: return DAG.getConstant(0, VT); 2084 case ISD::SETULT: 2085 case ISD::SETULE: 2086 case ISD::SETNE: return DAG.getConstant(1, VT); 2087 case ISD::SETGT: 2088 case ISD::SETGE: 2089 // True if the sign bit of C1 is set. 2090 return DAG.getConstant(C1.isNegative(), VT); 2091 case ISD::SETLT: 2092 case ISD::SETLE: 2093 // True if the sign bit of C1 isn't set. 2094 return DAG.getConstant(C1.isNonNegative(), VT); 2095 default: 2096 break; 2097 } 2098 } 2099 2100 // Otherwise, we can perform the comparison with the low bits. 2101 switch (Cond) { 2102 case ISD::SETEQ: 2103 case ISD::SETNE: 2104 case ISD::SETUGT: 2105 case ISD::SETUGE: 2106 case ISD::SETULT: 2107 case ISD::SETULE: { 2108 EVT newVT = N0.getOperand(0).getValueType(); 2109 if (DCI.isBeforeLegalizeOps() || 2110 (isOperationLegal(ISD::SETCC, newVT) && 2111 getCondCodeAction(Cond, newVT)==Legal)) 2112 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2113 DAG.getConstant(C1.trunc(InSize), newVT), 2114 Cond); 2115 break; 2116 } 2117 default: 2118 break; // todo, be more careful with signed comparisons 2119 } 2120 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 2121 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2122 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 2123 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 2124 EVT ExtDstTy = N0.getValueType(); 2125 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 2126 2127 // If the constant doesn't fit into the number of bits for the source of 2128 // the sign extension, it is impossible for both sides to be equal. 2129 if (C1.getMinSignedBits() > ExtSrcTyBits) 2130 return DAG.getConstant(Cond == ISD::SETNE, VT); 2131 2132 SDValue ZextOp; 2133 EVT Op0Ty = N0.getOperand(0).getValueType(); 2134 if (Op0Ty == ExtSrcTy) { 2135 ZextOp = N0.getOperand(0); 2136 } else { 2137 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 2138 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 2139 DAG.getConstant(Imm, Op0Ty)); 2140 } 2141 if (!DCI.isCalledByLegalizer()) 2142 DCI.AddToWorklist(ZextOp.getNode()); 2143 // Otherwise, make this a use of a zext. 2144 return DAG.getSetCC(dl, VT, ZextOp, 2145 DAG.getConstant(C1 & APInt::getLowBitsSet( 2146 ExtDstTyBits, 2147 ExtSrcTyBits), 2148 ExtDstTy), 2149 Cond); 2150 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) && 2151 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2152 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 2153 if (N0.getOpcode() == ISD::SETCC && 2154 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 2155 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1); 2156 if (TrueWhenTrue) 2157 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 2158 // Invert the condition. 2159 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 2160 CC = ISD::getSetCCInverse(CC, 2161 N0.getOperand(0).getValueType().isInteger()); 2162 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 2163 } 2164 2165 if ((N0.getOpcode() == ISD::XOR || 2166 (N0.getOpcode() == ISD::AND && 2167 N0.getOperand(0).getOpcode() == ISD::XOR && 2168 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 2169 isa<ConstantSDNode>(N0.getOperand(1)) && 2170 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) { 2171 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 2172 // can only do this if the top bits are known zero. 2173 unsigned BitWidth = N0.getValueSizeInBits(); 2174 if (DAG.MaskedValueIsZero(N0, 2175 APInt::getHighBitsSet(BitWidth, 2176 BitWidth-1))) { 2177 // Okay, get the un-inverted input value. 2178 SDValue Val; 2179 if (N0.getOpcode() == ISD::XOR) 2180 Val = N0.getOperand(0); 2181 else { 2182 assert(N0.getOpcode() == ISD::AND && 2183 N0.getOperand(0).getOpcode() == ISD::XOR); 2184 // ((X^1)&1)^1 -> X & 1 2185 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 2186 N0.getOperand(0).getOperand(0), 2187 N0.getOperand(1)); 2188 } 2189 2190 return DAG.getSetCC(dl, VT, Val, N1, 2191 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2192 } 2193 } else if (N1C->getAPIntValue() == 1 && 2194 (VT == MVT::i1 || 2195 getBooleanContents() == ZeroOrOneBooleanContent)) { 2196 SDValue Op0 = N0; 2197 if (Op0.getOpcode() == ISD::TRUNCATE) 2198 Op0 = Op0.getOperand(0); 2199 2200 if ((Op0.getOpcode() == ISD::XOR) && 2201 Op0.getOperand(0).getOpcode() == ISD::SETCC && 2202 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 2203 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 2204 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 2205 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 2206 Cond); 2207 } else if (Op0.getOpcode() == ISD::AND && 2208 isa<ConstantSDNode>(Op0.getOperand(1)) && 2209 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) { 2210 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 2211 if (Op0.getValueType().bitsGT(VT)) 2212 Op0 = DAG.getNode(ISD::AND, dl, VT, 2213 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 2214 DAG.getConstant(1, VT)); 2215 else if (Op0.getValueType().bitsLT(VT)) 2216 Op0 = DAG.getNode(ISD::AND, dl, VT, 2217 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 2218 DAG.getConstant(1, VT)); 2219 2220 return DAG.getSetCC(dl, VT, Op0, 2221 DAG.getConstant(0, Op0.getValueType()), 2222 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2223 } 2224 } 2225 } 2226 2227 APInt MinVal, MaxVal; 2228 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits(); 2229 if (ISD::isSignedIntSetCC(Cond)) { 2230 MinVal = APInt::getSignedMinValue(OperandBitSize); 2231 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 2232 } else { 2233 MinVal = APInt::getMinValue(OperandBitSize); 2234 MaxVal = APInt::getMaxValue(OperandBitSize); 2235 } 2236 2237 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 2238 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 2239 if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true 2240 // X >= C0 --> X > (C0-1) 2241 return DAG.getSetCC(dl, VT, N0, 2242 DAG.getConstant(C1-1, N1.getValueType()), 2243 (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT); 2244 } 2245 2246 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 2247 if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true 2248 // X <= C0 --> X < (C0+1) 2249 return DAG.getSetCC(dl, VT, N0, 2250 DAG.getConstant(C1+1, N1.getValueType()), 2251 (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT); 2252 } 2253 2254 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) 2255 return DAG.getConstant(0, VT); // X < MIN --> false 2256 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal) 2257 return DAG.getConstant(1, VT); // X >= MIN --> true 2258 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal) 2259 return DAG.getConstant(0, VT); // X > MAX --> false 2260 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal) 2261 return DAG.getConstant(1, VT); // X <= MAX --> true 2262 2263 // Canonicalize setgt X, Min --> setne X, Min 2264 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) 2265 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 2266 // Canonicalize setlt X, Max --> setne X, Max 2267 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) 2268 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 2269 2270 // If we have setult X, 1, turn it into seteq X, 0 2271 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) 2272 return DAG.getSetCC(dl, VT, N0, 2273 DAG.getConstant(MinVal, N0.getValueType()), 2274 ISD::SETEQ); 2275 // If we have setugt X, Max-1, turn it into seteq X, Max 2276 else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) 2277 return DAG.getSetCC(dl, VT, N0, 2278 DAG.getConstant(MaxVal, N0.getValueType()), 2279 ISD::SETEQ); 2280 2281 // If we have "setcc X, C0", check to see if we can shrink the immediate 2282 // by changing cc. 2283 2284 // SETUGT X, SINTMAX -> SETLT X, 0 2285 if (Cond == ISD::SETUGT && 2286 C1 == APInt::getSignedMaxValue(OperandBitSize)) 2287 return DAG.getSetCC(dl, VT, N0, 2288 DAG.getConstant(0, N1.getValueType()), 2289 ISD::SETLT); 2290 2291 // SETULT X, SINTMIN -> SETGT X, -1 2292 if (Cond == ISD::SETULT && 2293 C1 == APInt::getSignedMinValue(OperandBitSize)) { 2294 SDValue ConstMinusOne = 2295 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), 2296 N1.getValueType()); 2297 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 2298 } 2299 2300 // Fold bit comparisons when we can. 2301 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2302 (VT == N0.getValueType() || 2303 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 2304 N0.getOpcode() == ISD::AND) 2305 if (ConstantSDNode *AndRHS = 2306 dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2307 EVT ShiftTy = DCI.isBeforeLegalize() ? 2308 getPointerTy() : getShiftAmountTy(N0.getValueType()); 2309 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 2310 // Perform the xform if the AND RHS is a single bit. 2311 if (AndRHS->getAPIntValue().isPowerOf2()) { 2312 return DAG.getNode(ISD::TRUNCATE, dl, VT, 2313 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 2314 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy))); 2315 } 2316 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 2317 // (X & 8) == 8 --> (X & 8) >> 3 2318 // Perform the xform if C1 is a single bit. 2319 if (C1.isPowerOf2()) { 2320 return DAG.getNode(ISD::TRUNCATE, dl, VT, 2321 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 2322 DAG.getConstant(C1.logBase2(), ShiftTy))); 2323 } 2324 } 2325 } 2326 } 2327 2328 if (isa<ConstantFPSDNode>(N0.getNode())) { 2329 // Constant fold or commute setcc. 2330 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); 2331 if (O.getNode()) return O; 2332 } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { 2333 // If the RHS of an FP comparison is a constant, simplify it away in 2334 // some cases. 2335 if (CFP->getValueAPF().isNaN()) { 2336 // If an operand is known to be a nan, we can fold it. 2337 switch (ISD::getUnorderedFlavor(Cond)) { 2338 default: llvm_unreachable("Unknown flavor!"); 2339 case 0: // Known false. 2340 return DAG.getConstant(0, VT); 2341 case 1: // Known true. 2342 return DAG.getConstant(1, VT); 2343 case 2: // Undefined. 2344 return DAG.getUNDEF(VT); 2345 } 2346 } 2347 2348 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 2349 // constant if knowing that the operand is non-nan is enough. We prefer to 2350 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 2351 // materialize 0.0. 2352 if (Cond == ISD::SETO || Cond == ISD::SETUO) 2353 return DAG.getSetCC(dl, VT, N0, N0, Cond); 2354 2355 // If the condition is not legal, see if we can find an equivalent one 2356 // which is legal. 2357 if (!isCondCodeLegal(Cond, N0.getValueType())) { 2358 // If the comparison was an awkward floating-point == or != and one of 2359 // the comparison operands is infinity or negative infinity, convert the 2360 // condition to a less-awkward <= or >=. 2361 if (CFP->getValueAPF().isInfinity()) { 2362 if (CFP->getValueAPF().isNegative()) { 2363 if (Cond == ISD::SETOEQ && 2364 isCondCodeLegal(ISD::SETOLE, N0.getValueType())) 2365 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 2366 if (Cond == ISD::SETUEQ && 2367 isCondCodeLegal(ISD::SETOLE, N0.getValueType())) 2368 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 2369 if (Cond == ISD::SETUNE && 2370 isCondCodeLegal(ISD::SETUGT, N0.getValueType())) 2371 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 2372 if (Cond == ISD::SETONE && 2373 isCondCodeLegal(ISD::SETUGT, N0.getValueType())) 2374 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 2375 } else { 2376 if (Cond == ISD::SETOEQ && 2377 isCondCodeLegal(ISD::SETOGE, N0.getValueType())) 2378 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 2379 if (Cond == ISD::SETUEQ && 2380 isCondCodeLegal(ISD::SETOGE, N0.getValueType())) 2381 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 2382 if (Cond == ISD::SETUNE && 2383 isCondCodeLegal(ISD::SETULT, N0.getValueType())) 2384 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 2385 if (Cond == ISD::SETONE && 2386 isCondCodeLegal(ISD::SETULT, N0.getValueType())) 2387 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 2388 } 2389 } 2390 } 2391 } 2392 2393 if (N0 == N1) { 2394 // We can always fold X == X for integer setcc's. 2395 if (N0.getValueType().isInteger()) 2396 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT); 2397 unsigned UOF = ISD::getUnorderedFlavor(Cond); 2398 if (UOF == 2) // FP operators that are undefined on NaNs. 2399 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT); 2400 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) 2401 return DAG.getConstant(UOF, VT); 2402 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 2403 // if it is not already. 2404 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 2405 if (NewCond != Cond) 2406 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 2407 } 2408 2409 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2410 N0.getValueType().isInteger()) { 2411 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 2412 N0.getOpcode() == ISD::XOR) { 2413 // Simplify (X+Y) == (X+Z) --> Y == Z 2414 if (N0.getOpcode() == N1.getOpcode()) { 2415 if (N0.getOperand(0) == N1.getOperand(0)) 2416 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 2417 if (N0.getOperand(1) == N1.getOperand(1)) 2418 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 2419 if (DAG.isCommutativeBinOp(N0.getOpcode())) { 2420 // If X op Y == Y op X, try other combinations. 2421 if (N0.getOperand(0) == N1.getOperand(1)) 2422 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 2423 Cond); 2424 if (N0.getOperand(1) == N1.getOperand(0)) 2425 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 2426 Cond); 2427 } 2428 } 2429 2430 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) { 2431 if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2432 // Turn (X+C1) == C2 --> X == C2-C1 2433 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 2434 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2435 DAG.getConstant(RHSC->getAPIntValue()- 2436 LHSR->getAPIntValue(), 2437 N0.getValueType()), Cond); 2438 } 2439 2440 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 2441 if (N0.getOpcode() == ISD::XOR) 2442 // If we know that all of the inverted bits are zero, don't bother 2443 // performing the inversion. 2444 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 2445 return 2446 DAG.getSetCC(dl, VT, N0.getOperand(0), 2447 DAG.getConstant(LHSR->getAPIntValue() ^ 2448 RHSC->getAPIntValue(), 2449 N0.getValueType()), 2450 Cond); 2451 } 2452 2453 // Turn (C1-X) == C2 --> X == C1-C2 2454 if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 2455 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 2456 return 2457 DAG.getSetCC(dl, VT, N0.getOperand(1), 2458 DAG.getConstant(SUBC->getAPIntValue() - 2459 RHSC->getAPIntValue(), 2460 N0.getValueType()), 2461 Cond); 2462 } 2463 } 2464 } 2465 2466 // Simplify (X+Z) == X --> Z == 0 2467 if (N0.getOperand(0) == N1) 2468 return DAG.getSetCC(dl, VT, N0.getOperand(1), 2469 DAG.getConstant(0, N0.getValueType()), Cond); 2470 if (N0.getOperand(1) == N1) { 2471 if (DAG.isCommutativeBinOp(N0.getOpcode())) 2472 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2473 DAG.getConstant(0, N0.getValueType()), Cond); 2474 else if (N0.getNode()->hasOneUse()) { 2475 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); 2476 // (Z-X) == X --> Z == X<<1 2477 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), 2478 N1, 2479 DAG.getConstant(1, getShiftAmountTy(N1.getValueType()))); 2480 if (!DCI.isCalledByLegalizer()) 2481 DCI.AddToWorklist(SH.getNode()); 2482 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); 2483 } 2484 } 2485 } 2486 2487 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 2488 N1.getOpcode() == ISD::XOR) { 2489 // Simplify X == (X+Z) --> Z == 0 2490 if (N1.getOperand(0) == N0) { 2491 return DAG.getSetCC(dl, VT, N1.getOperand(1), 2492 DAG.getConstant(0, N1.getValueType()), Cond); 2493 } else if (N1.getOperand(1) == N0) { 2494 if (DAG.isCommutativeBinOp(N1.getOpcode())) { 2495 return DAG.getSetCC(dl, VT, N1.getOperand(0), 2496 DAG.getConstant(0, N1.getValueType()), Cond); 2497 } else if (N1.getNode()->hasOneUse()) { 2498 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); 2499 // X == (Z-X) --> X<<1 == Z 2500 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0, 2501 DAG.getConstant(1, getShiftAmountTy(N0.getValueType()))); 2502 if (!DCI.isCalledByLegalizer()) 2503 DCI.AddToWorklist(SH.getNode()); 2504 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); 2505 } 2506 } 2507 } 2508 2509 // Simplify x&y == y to x&y != 0 if y has exactly one bit set. 2510 // Note that where y is variable and is known to have at most 2511 // one bit set (for example, if it is z&1) we cannot do this; 2512 // the expressions are not equivalent when y==0. 2513 if (N0.getOpcode() == ISD::AND) 2514 if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) { 2515 if (ValueHasExactlyOneBitSet(N1, DAG)) { 2516 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 2517 SDValue Zero = DAG.getConstant(0, N1.getValueType()); 2518 return DAG.getSetCC(dl, VT, N0, Zero, Cond); 2519 } 2520 } 2521 if (N1.getOpcode() == ISD::AND) 2522 if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) { 2523 if (ValueHasExactlyOneBitSet(N0, DAG)) { 2524 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 2525 SDValue Zero = DAG.getConstant(0, N0.getValueType()); 2526 return DAG.getSetCC(dl, VT, N1, Zero, Cond); 2527 } 2528 } 2529 } 2530 2531 // Fold away ALL boolean setcc's. 2532 SDValue Temp; 2533 if (N0.getValueType() == MVT::i1 && foldBooleans) { 2534 switch (Cond) { 2535 default: llvm_unreachable("Unknown integer setcc!"); 2536 case ISD::SETEQ: // X == Y -> ~(X^Y) 2537 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2538 N0 = DAG.getNOT(dl, Temp, MVT::i1); 2539 if (!DCI.isCalledByLegalizer()) 2540 DCI.AddToWorklist(Temp.getNode()); 2541 break; 2542 case ISD::SETNE: // X != Y --> (X^Y) 2543 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2544 break; 2545 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 2546 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 2547 Temp = DAG.getNOT(dl, N0, MVT::i1); 2548 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp); 2549 if (!DCI.isCalledByLegalizer()) 2550 DCI.AddToWorklist(Temp.getNode()); 2551 break; 2552 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 2553 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 2554 Temp = DAG.getNOT(dl, N1, MVT::i1); 2555 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp); 2556 if (!DCI.isCalledByLegalizer()) 2557 DCI.AddToWorklist(Temp.getNode()); 2558 break; 2559 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 2560 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 2561 Temp = DAG.getNOT(dl, N0, MVT::i1); 2562 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp); 2563 if (!DCI.isCalledByLegalizer()) 2564 DCI.AddToWorklist(Temp.getNode()); 2565 break; 2566 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 2567 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 2568 Temp = DAG.getNOT(dl, N1, MVT::i1); 2569 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp); 2570 break; 2571 } 2572 if (VT != MVT::i1) { 2573 if (!DCI.isCalledByLegalizer()) 2574 DCI.AddToWorklist(N0.getNode()); 2575 // FIXME: If running after legalize, we probably can't do this. 2576 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0); 2577 } 2578 return N0; 2579 } 2580 2581 // Could not fold it. 2582 return SDValue(); 2583 } 2584 2585 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the 2586 /// node is a GlobalAddress + offset. 2587 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, 2588 int64_t &Offset) const { 2589 if (isa<GlobalAddressSDNode>(N)) { 2590 GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N); 2591 GA = GASD->getGlobal(); 2592 Offset += GASD->getOffset(); 2593 return true; 2594 } 2595 2596 if (N->getOpcode() == ISD::ADD) { 2597 SDValue N1 = N->getOperand(0); 2598 SDValue N2 = N->getOperand(1); 2599 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 2600 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2); 2601 if (V) { 2602 Offset += V->getSExtValue(); 2603 return true; 2604 } 2605 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 2606 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1); 2607 if (V) { 2608 Offset += V->getSExtValue(); 2609 return true; 2610 } 2611 } 2612 } 2613 2614 return false; 2615 } 2616 2617 2618 SDValue TargetLowering:: 2619 PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { 2620 // Default implementation: no optimization. 2621 return SDValue(); 2622 } 2623 2624 //===----------------------------------------------------------------------===// 2625 // Inline Assembler Implementation Methods 2626 //===----------------------------------------------------------------------===// 2627 2628 2629 TargetLowering::ConstraintType 2630 TargetLowering::getConstraintType(const std::string &Constraint) const { 2631 if (Constraint.size() == 1) { 2632 switch (Constraint[0]) { 2633 default: break; 2634 case 'r': return C_RegisterClass; 2635 case 'm': // memory 2636 case 'o': // offsetable 2637 case 'V': // not offsetable 2638 return C_Memory; 2639 case 'i': // Simple Integer or Relocatable Constant 2640 case 'n': // Simple Integer 2641 case 'E': // Floating Point Constant 2642 case 'F': // Floating Point Constant 2643 case 's': // Relocatable Constant 2644 case 'p': // Address. 2645 case 'X': // Allow ANY value. 2646 case 'I': // Target registers. 2647 case 'J': 2648 case 'K': 2649 case 'L': 2650 case 'M': 2651 case 'N': 2652 case 'O': 2653 case 'P': 2654 case '<': 2655 case '>': 2656 return C_Other; 2657 } 2658 } 2659 2660 if (Constraint.size() > 1 && Constraint[0] == '{' && 2661 Constraint[Constraint.size()-1] == '}') 2662 return C_Register; 2663 return C_Unknown; 2664 } 2665 2666 /// LowerXConstraint - try to replace an X constraint, which matches anything, 2667 /// with another that has more specific requirements based on the type of the 2668 /// corresponding operand. 2669 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ 2670 if (ConstraintVT.isInteger()) 2671 return "r"; 2672 if (ConstraintVT.isFloatingPoint()) 2673 return "f"; // works for many targets 2674 return 0; 2675 } 2676 2677 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 2678 /// vector. If it is invalid, don't add anything to Ops. 2679 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 2680 std::string &Constraint, 2681 std::vector<SDValue> &Ops, 2682 SelectionDAG &DAG) const { 2683 2684 if (Constraint.length() > 1) return; 2685 2686 char ConstraintLetter = Constraint[0]; 2687 switch (ConstraintLetter) { 2688 default: break; 2689 case 'X': // Allows any operand; labels (basic block) use this. 2690 if (Op.getOpcode() == ISD::BasicBlock) { 2691 Ops.push_back(Op); 2692 return; 2693 } 2694 // fall through 2695 case 'i': // Simple Integer or Relocatable Constant 2696 case 'n': // Simple Integer 2697 case 's': { // Relocatable Constant 2698 // These operands are interested in values of the form (GV+C), where C may 2699 // be folded in as an offset of GV, or it may be explicitly added. Also, it 2700 // is possible and fine if either GV or C are missing. 2701 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2702 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 2703 2704 // If we have "(add GV, C)", pull out GV/C 2705 if (Op.getOpcode() == ISD::ADD) { 2706 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2707 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 2708 if (C == 0 || GA == 0) { 2709 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 2710 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 2711 } 2712 if (C == 0 || GA == 0) 2713 C = 0, GA = 0; 2714 } 2715 2716 // If we find a valid operand, map to the TargetXXX version so that the 2717 // value itself doesn't get selected. 2718 if (GA) { // Either &GV or &GV+C 2719 if (ConstraintLetter != 'n') { 2720 int64_t Offs = GA->getOffset(); 2721 if (C) Offs += C->getZExtValue(); 2722 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 2723 C ? C->getDebugLoc() : DebugLoc(), 2724 Op.getValueType(), Offs)); 2725 return; 2726 } 2727 } 2728 if (C) { // just C, no GV. 2729 // Simple constants are not allowed for 's'. 2730 if (ConstraintLetter != 's') { 2731 // gcc prints these as sign extended. Sign extend value to 64 bits 2732 // now; without this it would get ZExt'd later in 2733 // ScheduleDAGSDNodes::EmitNode, which is very generic. 2734 Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(), 2735 MVT::i64)); 2736 return; 2737 } 2738 } 2739 break; 2740 } 2741 } 2742 } 2743 2744 std::pair<unsigned, const TargetRegisterClass*> TargetLowering:: 2745 getRegForInlineAsmConstraint(const std::string &Constraint, 2746 EVT VT) const { 2747 if (Constraint[0] != '{') 2748 return std::make_pair(0u, static_cast<TargetRegisterClass*>(0)); 2749 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); 2750 2751 // Remove the braces from around the name. 2752 StringRef RegName(Constraint.data()+1, Constraint.size()-2); 2753 2754 // Figure out which register class contains this reg. 2755 const TargetRegisterInfo *RI = TM.getRegisterInfo(); 2756 for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(), 2757 E = RI->regclass_end(); RCI != E; ++RCI) { 2758 const TargetRegisterClass *RC = *RCI; 2759 2760 // If none of the value types for this register class are valid, we 2761 // can't use it. For example, 64-bit reg classes on 32-bit targets. 2762 bool isLegal = false; 2763 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); 2764 I != E; ++I) { 2765 if (isTypeLegal(*I)) { 2766 isLegal = true; 2767 break; 2768 } 2769 } 2770 2771 if (!isLegal) continue; 2772 2773 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 2774 I != E; ++I) { 2775 if (RegName.equals_lower(RI->getName(*I))) 2776 return std::make_pair(*I, RC); 2777 } 2778 } 2779 2780 return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0)); 2781 } 2782 2783 //===----------------------------------------------------------------------===// 2784 // Constraint Selection. 2785 2786 /// isMatchingInputConstraint - Return true of this is an input operand that is 2787 /// a matching constraint like "4". 2788 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 2789 assert(!ConstraintCode.empty() && "No known constraint!"); 2790 return isdigit(ConstraintCode[0]); 2791 } 2792 2793 /// getMatchedOperand - If this is an input matching constraint, this method 2794 /// returns the output operand it matches. 2795 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 2796 assert(!ConstraintCode.empty() && "No known constraint!"); 2797 return atoi(ConstraintCode.c_str()); 2798 } 2799 2800 2801 /// ParseConstraints - Split up the constraint string from the inline 2802 /// assembly value into the specific constraints and their prefixes, 2803 /// and also tie in the associated operand values. 2804 /// If this returns an empty vector, and if the constraint string itself 2805 /// isn't empty, there was an error parsing. 2806 TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints( 2807 ImmutableCallSite CS) const { 2808 /// ConstraintOperands - Information about all of the constraints. 2809 AsmOperandInfoVector ConstraintOperands; 2810 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 2811 unsigned maCount = 0; // Largest number of multiple alternative constraints. 2812 2813 // Do a prepass over the constraints, canonicalizing them, and building up the 2814 // ConstraintOperands list. 2815 InlineAsm::ConstraintInfoVector 2816 ConstraintInfos = IA->ParseConstraints(); 2817 2818 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 2819 unsigned ResNo = 0; // ResNo - The result number of the next output. 2820 2821 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 2822 ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i])); 2823 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 2824 2825 // Update multiple alternative constraint count. 2826 if (OpInfo.multipleAlternatives.size() > maCount) 2827 maCount = OpInfo.multipleAlternatives.size(); 2828 2829 OpInfo.ConstraintVT = MVT::Other; 2830 2831 // Compute the value type for each operand. 2832 switch (OpInfo.Type) { 2833 case InlineAsm::isOutput: 2834 // Indirect outputs just consume an argument. 2835 if (OpInfo.isIndirect) { 2836 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2837 break; 2838 } 2839 2840 // The return value of the call is this value. As such, there is no 2841 // corresponding argument. 2842 assert(!CS.getType()->isVoidTy() && 2843 "Bad inline asm!"); 2844 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 2845 OpInfo.ConstraintVT = getValueType(STy->getElementType(ResNo)); 2846 } else { 2847 assert(ResNo == 0 && "Asm only has one result!"); 2848 OpInfo.ConstraintVT = getValueType(CS.getType()); 2849 } 2850 ++ResNo; 2851 break; 2852 case InlineAsm::isInput: 2853 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2854 break; 2855 case InlineAsm::isClobber: 2856 // Nothing to do. 2857 break; 2858 } 2859 2860 if (OpInfo.CallOperandVal) { 2861 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 2862 if (OpInfo.isIndirect) { 2863 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 2864 if (!PtrTy) 2865 report_fatal_error("Indirect operand for inline asm not a pointer!"); 2866 OpTy = PtrTy->getElementType(); 2867 } 2868 2869 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 2870 if (StructType *STy = dyn_cast<StructType>(OpTy)) 2871 if (STy->getNumElements() == 1) 2872 OpTy = STy->getElementType(0); 2873 2874 // If OpTy is not a single value, it may be a struct/union that we 2875 // can tile with integers. 2876 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 2877 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 2878 switch (BitSize) { 2879 default: break; 2880 case 1: 2881 case 8: 2882 case 16: 2883 case 32: 2884 case 64: 2885 case 128: 2886 OpInfo.ConstraintVT = 2887 EVT::getEVT(IntegerType::get(OpTy->getContext(), BitSize), true); 2888 break; 2889 } 2890 } else if (dyn_cast<PointerType>(OpTy)) { 2891 OpInfo.ConstraintVT = MVT::getIntegerVT(8*TD->getPointerSize()); 2892 } else { 2893 OpInfo.ConstraintVT = EVT::getEVT(OpTy, true); 2894 } 2895 } 2896 } 2897 2898 // If we have multiple alternative constraints, select the best alternative. 2899 if (ConstraintInfos.size()) { 2900 if (maCount) { 2901 unsigned bestMAIndex = 0; 2902 int bestWeight = -1; 2903 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 2904 int weight = -1; 2905 unsigned maIndex; 2906 // Compute the sums of the weights for each alternative, keeping track 2907 // of the best (highest weight) one so far. 2908 for (maIndex = 0; maIndex < maCount; ++maIndex) { 2909 int weightSum = 0; 2910 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2911 cIndex != eIndex; ++cIndex) { 2912 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2913 if (OpInfo.Type == InlineAsm::isClobber) 2914 continue; 2915 2916 // If this is an output operand with a matching input operand, 2917 // look up the matching input. If their types mismatch, e.g. one 2918 // is an integer, the other is floating point, or their sizes are 2919 // different, flag it as an maCantMatch. 2920 if (OpInfo.hasMatchingInput()) { 2921 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2922 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2923 if ((OpInfo.ConstraintVT.isInteger() != 2924 Input.ConstraintVT.isInteger()) || 2925 (OpInfo.ConstraintVT.getSizeInBits() != 2926 Input.ConstraintVT.getSizeInBits())) { 2927 weightSum = -1; // Can't match. 2928 break; 2929 } 2930 } 2931 } 2932 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 2933 if (weight == -1) { 2934 weightSum = -1; 2935 break; 2936 } 2937 weightSum += weight; 2938 } 2939 // Update best. 2940 if (weightSum > bestWeight) { 2941 bestWeight = weightSum; 2942 bestMAIndex = maIndex; 2943 } 2944 } 2945 2946 // Now select chosen alternative in each constraint. 2947 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2948 cIndex != eIndex; ++cIndex) { 2949 AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; 2950 if (cInfo.Type == InlineAsm::isClobber) 2951 continue; 2952 cInfo.selectAlternative(bestMAIndex); 2953 } 2954 } 2955 } 2956 2957 // Check and hook up tied operands, choose constraint code to use. 2958 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2959 cIndex != eIndex; ++cIndex) { 2960 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2961 2962 // If this is an output operand with a matching input operand, look up the 2963 // matching input. If their types mismatch, e.g. one is an integer, the 2964 // other is floating point, or their sizes are different, flag it as an 2965 // error. 2966 if (OpInfo.hasMatchingInput()) { 2967 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2968 2969 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2970 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 2971 getRegForInlineAsmConstraint(OpInfo.ConstraintCode, OpInfo.ConstraintVT); 2972 std::pair<unsigned, const TargetRegisterClass*> InputRC = 2973 getRegForInlineAsmConstraint(Input.ConstraintCode, Input.ConstraintVT); 2974 if ((OpInfo.ConstraintVT.isInteger() != 2975 Input.ConstraintVT.isInteger()) || 2976 (MatchRC.second != InputRC.second)) { 2977 report_fatal_error("Unsupported asm: input constraint" 2978 " with a matching output constraint of" 2979 " incompatible type!"); 2980 } 2981 } 2982 2983 } 2984 } 2985 2986 return ConstraintOperands; 2987 } 2988 2989 2990 /// getConstraintGenerality - Return an integer indicating how general CT 2991 /// is. 2992 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 2993 switch (CT) { 2994 default: llvm_unreachable("Unknown constraint type!"); 2995 case TargetLowering::C_Other: 2996 case TargetLowering::C_Unknown: 2997 return 0; 2998 case TargetLowering::C_Register: 2999 return 1; 3000 case TargetLowering::C_RegisterClass: 3001 return 2; 3002 case TargetLowering::C_Memory: 3003 return 3; 3004 } 3005 } 3006 3007 /// Examine constraint type and operand type and determine a weight value. 3008 /// This object must already have been set up with the operand type 3009 /// and the current alternative constraint selected. 3010 TargetLowering::ConstraintWeight 3011 TargetLowering::getMultipleConstraintMatchWeight( 3012 AsmOperandInfo &info, int maIndex) const { 3013 InlineAsm::ConstraintCodeVector *rCodes; 3014 if (maIndex >= (int)info.multipleAlternatives.size()) 3015 rCodes = &info.Codes; 3016 else 3017 rCodes = &info.multipleAlternatives[maIndex].Codes; 3018 ConstraintWeight BestWeight = CW_Invalid; 3019 3020 // Loop over the options, keeping track of the most general one. 3021 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 3022 ConstraintWeight weight = 3023 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 3024 if (weight > BestWeight) 3025 BestWeight = weight; 3026 } 3027 3028 return BestWeight; 3029 } 3030 3031 /// Examine constraint type and operand type and determine a weight value. 3032 /// This object must already have been set up with the operand type 3033 /// and the current alternative constraint selected. 3034 TargetLowering::ConstraintWeight 3035 TargetLowering::getSingleConstraintMatchWeight( 3036 AsmOperandInfo &info, const char *constraint) const { 3037 ConstraintWeight weight = CW_Invalid; 3038 Value *CallOperandVal = info.CallOperandVal; 3039 // If we don't have a value, we can't do a match, 3040 // but allow it at the lowest weight. 3041 if (CallOperandVal == NULL) 3042 return CW_Default; 3043 // Look at the constraint type. 3044 switch (*constraint) { 3045 case 'i': // immediate integer. 3046 case 'n': // immediate integer with a known value. 3047 if (isa<ConstantInt>(CallOperandVal)) 3048 weight = CW_Constant; 3049 break; 3050 case 's': // non-explicit intregal immediate. 3051 if (isa<GlobalValue>(CallOperandVal)) 3052 weight = CW_Constant; 3053 break; 3054 case 'E': // immediate float if host format. 3055 case 'F': // immediate float. 3056 if (isa<ConstantFP>(CallOperandVal)) 3057 weight = CW_Constant; 3058 break; 3059 case '<': // memory operand with autodecrement. 3060 case '>': // memory operand with autoincrement. 3061 case 'm': // memory operand. 3062 case 'o': // offsettable memory operand 3063 case 'V': // non-offsettable memory operand 3064 weight = CW_Memory; 3065 break; 3066 case 'r': // general register. 3067 case 'g': // general register, memory operand or immediate integer. 3068 // note: Clang converts "g" to "imr". 3069 if (CallOperandVal->getType()->isIntegerTy()) 3070 weight = CW_Register; 3071 break; 3072 case 'X': // any operand. 3073 default: 3074 weight = CW_Default; 3075 break; 3076 } 3077 return weight; 3078 } 3079 3080 /// ChooseConstraint - If there are multiple different constraints that we 3081 /// could pick for this operand (e.g. "imr") try to pick the 'best' one. 3082 /// This is somewhat tricky: constraints fall into four classes: 3083 /// Other -> immediates and magic values 3084 /// Register -> one specific register 3085 /// RegisterClass -> a group of regs 3086 /// Memory -> memory 3087 /// Ideally, we would pick the most specific constraint possible: if we have 3088 /// something that fits into a register, we would pick it. The problem here 3089 /// is that if we have something that could either be in a register or in 3090 /// memory that use of the register could cause selection of *other* 3091 /// operands to fail: they might only succeed if we pick memory. Because of 3092 /// this the heuristic we use is: 3093 /// 3094 /// 1) If there is an 'other' constraint, and if the operand is valid for 3095 /// that constraint, use it. This makes us take advantage of 'i' 3096 /// constraints when available. 3097 /// 2) Otherwise, pick the most general constraint present. This prefers 3098 /// 'm' over 'r', for example. 3099 /// 3100 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 3101 const TargetLowering &TLI, 3102 SDValue Op, SelectionDAG *DAG) { 3103 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 3104 unsigned BestIdx = 0; 3105 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 3106 int BestGenerality = -1; 3107 3108 // Loop over the options, keeping track of the most general one. 3109 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 3110 TargetLowering::ConstraintType CType = 3111 TLI.getConstraintType(OpInfo.Codes[i]); 3112 3113 // If this is an 'other' constraint, see if the operand is valid for it. 3114 // For example, on X86 we might have an 'rI' constraint. If the operand 3115 // is an integer in the range [0..31] we want to use I (saving a load 3116 // of a register), otherwise we must use 'r'. 3117 if (CType == TargetLowering::C_Other && Op.getNode()) { 3118 assert(OpInfo.Codes[i].size() == 1 && 3119 "Unhandled multi-letter 'other' constraint"); 3120 std::vector<SDValue> ResultOps; 3121 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 3122 ResultOps, *DAG); 3123 if (!ResultOps.empty()) { 3124 BestType = CType; 3125 BestIdx = i; 3126 break; 3127 } 3128 } 3129 3130 // Things with matching constraints can only be registers, per gcc 3131 // documentation. This mainly affects "g" constraints. 3132 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 3133 continue; 3134 3135 // This constraint letter is more general than the previous one, use it. 3136 int Generality = getConstraintGenerality(CType); 3137 if (Generality > BestGenerality) { 3138 BestType = CType; 3139 BestIdx = i; 3140 BestGenerality = Generality; 3141 } 3142 } 3143 3144 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 3145 OpInfo.ConstraintType = BestType; 3146 } 3147 3148 /// ComputeConstraintToUse - Determines the constraint code and constraint 3149 /// type to use for the specific AsmOperandInfo, setting 3150 /// OpInfo.ConstraintCode and OpInfo.ConstraintType. 3151 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 3152 SDValue Op, 3153 SelectionDAG *DAG) const { 3154 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 3155 3156 // Single-letter constraints ('r') are very common. 3157 if (OpInfo.Codes.size() == 1) { 3158 OpInfo.ConstraintCode = OpInfo.Codes[0]; 3159 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 3160 } else { 3161 ChooseConstraint(OpInfo, *this, Op, DAG); 3162 } 3163 3164 // 'X' matches anything. 3165 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 3166 // Labels and constants are handled elsewhere ('X' is the only thing 3167 // that matches labels). For Functions, the type here is the type of 3168 // the result, which is not what we want to look at; leave them alone. 3169 Value *v = OpInfo.CallOperandVal; 3170 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 3171 OpInfo.CallOperandVal = v; 3172 return; 3173 } 3174 3175 // Otherwise, try to resolve it to something we know about by looking at 3176 // the actual operand type. 3177 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 3178 OpInfo.ConstraintCode = Repl; 3179 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 3180 } 3181 } 3182 } 3183 3184 //===----------------------------------------------------------------------===// 3185 // Loop Strength Reduction hooks 3186 //===----------------------------------------------------------------------===// 3187 3188 /// isLegalAddressingMode - Return true if the addressing mode represented 3189 /// by AM is legal for this target, for a load/store of the specified type. 3190 bool TargetLowering::isLegalAddressingMode(const AddrMode &AM, 3191 Type *Ty) const { 3192 // The default implementation of this implements a conservative RISCy, r+r and 3193 // r+i addr mode. 3194 3195 // Allows a sign-extended 16-bit immediate field. 3196 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 3197 return false; 3198 3199 // No global is ever allowed as a base. 3200 if (AM.BaseGV) 3201 return false; 3202 3203 // Only support r+r, 3204 switch (AM.Scale) { 3205 case 0: // "r+i" or just "i", depending on HasBaseReg. 3206 break; 3207 case 1: 3208 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 3209 return false; 3210 // Otherwise we have r+r or r+i. 3211 break; 3212 case 2: 3213 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 3214 return false; 3215 // Allow 2*r as r+r. 3216 break; 3217 } 3218 3219 return true; 3220 } 3221 3222 /// BuildExactDiv - Given an exact SDIV by a constant, create a multiplication 3223 /// with the multiplicative inverse of the constant. 3224 SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl, 3225 SelectionDAG &DAG) const { 3226 ConstantSDNode *C = cast<ConstantSDNode>(Op2); 3227 APInt d = C->getAPIntValue(); 3228 assert(d != 0 && "Division by zero!"); 3229 3230 // Shift the value upfront if it is even, so the LSB is one. 3231 unsigned ShAmt = d.countTrailingZeros(); 3232 if (ShAmt) { 3233 // TODO: For UDIV use SRL instead of SRA. 3234 SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType())); 3235 Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt); 3236 d = d.ashr(ShAmt); 3237 } 3238 3239 // Calculate the multiplicative inverse, using Newton's method. 3240 APInt t, xn = d; 3241 while ((t = d*xn) != 1) 3242 xn *= APInt(d.getBitWidth(), 2) - t; 3243 3244 Op2 = DAG.getConstant(xn, Op1.getValueType()); 3245 return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2); 3246 } 3247 3248 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant, 3249 /// return a DAG expression to select that will generate the same value by 3250 /// multiplying by a magic number. See: 3251 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> 3252 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 3253 std::vector<SDNode*>* Created) const { 3254 EVT VT = N->getValueType(0); 3255 DebugLoc dl= N->getDebugLoc(); 3256 3257 // Check to see if we can do this. 3258 // FIXME: We should be more aggressive here. 3259 if (!isTypeLegal(VT)) 3260 return SDValue(); 3261 3262 APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue(); 3263 APInt::ms magics = d.magic(); 3264 3265 // Multiply the numerator (operand 0) by the magic value 3266 // FIXME: We should support doing a MUL in a wider type 3267 SDValue Q; 3268 if (isOperationLegalOrCustom(ISD::MULHS, VT)) 3269 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0), 3270 DAG.getConstant(magics.m, VT)); 3271 else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) 3272 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), 3273 N->getOperand(0), 3274 DAG.getConstant(magics.m, VT)).getNode(), 1); 3275 else 3276 return SDValue(); // No mulhs or equvialent 3277 // If d > 0 and m < 0, add the numerator 3278 if (d.isStrictlyPositive() && magics.m.isNegative()) { 3279 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); 3280 if (Created) 3281 Created->push_back(Q.getNode()); 3282 } 3283 // If d < 0 and m > 0, subtract the numerator. 3284 if (d.isNegative() && magics.m.isStrictlyPositive()) { 3285 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0)); 3286 if (Created) 3287 Created->push_back(Q.getNode()); 3288 } 3289 // Shift right algebraic if shift value is nonzero 3290 if (magics.s > 0) { 3291 Q = DAG.getNode(ISD::SRA, dl, VT, Q, 3292 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType()))); 3293 if (Created) 3294 Created->push_back(Q.getNode()); 3295 } 3296 // Extract the sign bit and add it to the quotient 3297 SDValue T = 3298 DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1, 3299 getShiftAmountTy(Q.getValueType()))); 3300 if (Created) 3301 Created->push_back(T.getNode()); 3302 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 3303 } 3304 3305 /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant, 3306 /// return a DAG expression to select that will generate the same value by 3307 /// multiplying by a magic number. See: 3308 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> 3309 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 3310 std::vector<SDNode*>* Created) const { 3311 EVT VT = N->getValueType(0); 3312 DebugLoc dl = N->getDebugLoc(); 3313 3314 // Check to see if we can do this. 3315 // FIXME: We should be more aggressive here. 3316 if (!isTypeLegal(VT)) 3317 return SDValue(); 3318 3319 // FIXME: We should use a narrower constant when the upper 3320 // bits are known to be zero. 3321 const APInt &N1C = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue(); 3322 APInt::mu magics = N1C.magicu(); 3323 3324 SDValue Q = N->getOperand(0); 3325 3326 // If the divisor is even, we can avoid using the expensive fixup by shifting 3327 // the divided value upfront. 3328 if (magics.a != 0 && !N1C[0]) { 3329 unsigned Shift = N1C.countTrailingZeros(); 3330 Q = DAG.getNode(ISD::SRL, dl, VT, Q, 3331 DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType()))); 3332 if (Created) 3333 Created->push_back(Q.getNode()); 3334 3335 // Get magic number for the shifted divisor. 3336 magics = N1C.lshr(Shift).magicu(Shift); 3337 assert(magics.a == 0 && "Should use cheap fixup now"); 3338 } 3339 3340 // Multiply the numerator (operand 0) by the magic value 3341 // FIXME: We should support doing a MUL in a wider type 3342 if (isOperationLegalOrCustom(ISD::MULHU, VT)) 3343 Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT)); 3344 else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) 3345 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q, 3346 DAG.getConstant(magics.m, VT)).getNode(), 1); 3347 else 3348 return SDValue(); // No mulhu or equvialent 3349 if (Created) 3350 Created->push_back(Q.getNode()); 3351 3352 if (magics.a == 0) { 3353 assert(magics.s < N1C.getBitWidth() && 3354 "We shouldn't generate an undefined shift!"); 3355 return DAG.getNode(ISD::SRL, dl, VT, Q, 3356 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType()))); 3357 } else { 3358 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); 3359 if (Created) 3360 Created->push_back(NPQ.getNode()); 3361 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, 3362 DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType()))); 3363 if (Created) 3364 Created->push_back(NPQ.getNode()); 3365 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 3366 if (Created) 3367 Created->push_back(NPQ.getNode()); 3368 return DAG.getNode(ISD::SRL, dl, VT, NPQ, 3369 DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType()))); 3370 } 3371 } 3372