1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/CodeGenCommonISel.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineJumpTableInfo.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/TargetRegisterInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/DivisionByConstantInfo.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore following attributes because they don't affect the
61   // call sequence.
62   AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
63   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
64                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
65                            Attribute::NonNull, Attribute::NoUndef})
66     CallerAttrs.removeAttribute(Attr);
67 
68   if (CallerAttrs.hasAttributes())
69     return false;
70 
71   // It's not safe to eliminate the sign / zero extension of the return value.
72   if (CallerAttrs.contains(Attribute::ZExt) ||
73       CallerAttrs.contains(Attribute::SExt))
74     return false;
75 
76   // Check if the only use is a function return node.
77   return isUsedByReturnOnly(Node, Chain);
78 }
79 
80 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
81     const uint32_t *CallerPreservedMask,
82     const SmallVectorImpl<CCValAssign> &ArgLocs,
83     const SmallVectorImpl<SDValue> &OutVals) const {
84   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
85     const CCValAssign &ArgLoc = ArgLocs[I];
86     if (!ArgLoc.isRegLoc())
87       continue;
88     MCRegister Reg = ArgLoc.getLocReg();
89     // Only look at callee saved registers.
90     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
91       continue;
92     // Check that we pass the value used for the caller.
93     // (We look for a CopyFromReg reading a virtual register that is used
94     //  for the function live-in value of register Reg)
95     SDValue Value = OutVals[I];
96     if (Value->getOpcode() == ISD::AssertZext)
97       Value = Value.getOperand(0);
98     if (Value->getOpcode() != ISD::CopyFromReg)
99       return false;
100     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
101     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
102       return false;
103   }
104   return true;
105 }
106 
107 /// Set CallLoweringInfo attribute flags based on a call instruction
108 /// and called function attributes.
109 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
110                                                      unsigned ArgIdx) {
111   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
112   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
113   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
114   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
115   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
116   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
117   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
118   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
119   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
120   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
121   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
122   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
123   Alignment = Call->getParamStackAlign(ArgIdx);
124   IndirectType = nullptr;
125   assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 &&
126          "multiple ABI attributes?");
127   if (IsByVal) {
128     IndirectType = Call->getParamByValType(ArgIdx);
129     if (!Alignment)
130       Alignment = Call->getParamAlign(ArgIdx);
131   }
132   if (IsPreallocated)
133     IndirectType = Call->getParamPreallocatedType(ArgIdx);
134   if (IsInAlloca)
135     IndirectType = Call->getParamInAllocaType(ArgIdx);
136   if (IsSRet)
137     IndirectType = Call->getParamStructRetType(ArgIdx);
138 }
139 
140 /// Generate a libcall taking the given operands as arguments and returning a
141 /// result of type RetVT.
142 std::pair<SDValue, SDValue>
143 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
144                             ArrayRef<SDValue> Ops,
145                             MakeLibCallOptions CallOptions,
146                             const SDLoc &dl,
147                             SDValue InChain) const {
148   if (!InChain)
149     InChain = DAG.getEntryNode();
150 
151   TargetLowering::ArgListTy Args;
152   Args.reserve(Ops.size());
153 
154   TargetLowering::ArgListEntry Entry;
155   for (unsigned i = 0; i < Ops.size(); ++i) {
156     SDValue NewOp = Ops[i];
157     Entry.Node = NewOp;
158     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
159     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
160                                                  CallOptions.IsSExt);
161     Entry.IsZExt = !Entry.IsSExt;
162 
163     if (CallOptions.IsSoften &&
164         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
165       Entry.IsSExt = Entry.IsZExt = false;
166     }
167     Args.push_back(Entry);
168   }
169 
170   if (LC == RTLIB::UNKNOWN_LIBCALL)
171     report_fatal_error("Unsupported library call operation!");
172   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
173                                          getPointerTy(DAG.getDataLayout()));
174 
175   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
176   TargetLowering::CallLoweringInfo CLI(DAG);
177   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
178   bool zeroExtend = !signExtend;
179 
180   if (CallOptions.IsSoften &&
181       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
182     signExtend = zeroExtend = false;
183   }
184 
185   CLI.setDebugLoc(dl)
186       .setChain(InChain)
187       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
188       .setNoReturn(CallOptions.DoesNotReturn)
189       .setDiscardResult(!CallOptions.IsReturnValueUsed)
190       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
191       .setSExtResult(signExtend)
192       .setZExtResult(zeroExtend);
193   return LowerCallTo(CLI);
194 }
195 
196 bool TargetLowering::findOptimalMemOpLowering(
197     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
198     unsigned SrcAS, const AttributeList &FuncAttributes) const {
199   if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() &&
200       Op.getSrcAlign() < Op.getDstAlign())
201     return false;
202 
203   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
204 
205   if (VT == MVT::Other) {
206     // Use the largest integer type whose alignment constraints are satisfied.
207     // We only need to check DstAlign here as SrcAlign is always greater or
208     // equal to DstAlign (or zero).
209     VT = MVT::i64;
210     if (Op.isFixedDstAlign())
211       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
212              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
213         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
214     assert(VT.isInteger());
215 
216     // Find the largest legal integer type.
217     MVT LVT = MVT::i64;
218     while (!isTypeLegal(LVT))
219       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
220     assert(LVT.isInteger());
221 
222     // If the type we've chosen is larger than the largest legal integer type
223     // then use that instead.
224     if (VT.bitsGT(LVT))
225       VT = LVT;
226   }
227 
228   unsigned NumMemOps = 0;
229   uint64_t Size = Op.size();
230   while (Size) {
231     unsigned VTSize = VT.getSizeInBits() / 8;
232     while (VTSize > Size) {
233       // For now, only use non-vector load / store's for the left-over pieces.
234       EVT NewVT = VT;
235       unsigned NewVTSize;
236 
237       bool Found = false;
238       if (VT.isVector() || VT.isFloatingPoint()) {
239         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
240         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
241             isSafeMemOpType(NewVT.getSimpleVT()))
242           Found = true;
243         else if (NewVT == MVT::i64 &&
244                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
245                  isSafeMemOpType(MVT::f64)) {
246           // i64 is usually not legal on 32-bit targets, but f64 may be.
247           NewVT = MVT::f64;
248           Found = true;
249         }
250       }
251 
252       if (!Found) {
253         do {
254           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
255           if (NewVT == MVT::i8)
256             break;
257         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
258       }
259       NewVTSize = NewVT.getSizeInBits() / 8;
260 
261       // If the new VT cannot cover all of the remaining bits, then consider
262       // issuing a (or a pair of) unaligned and overlapping load / store.
263       bool Fast;
264       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
265           allowsMisalignedMemoryAccesses(
266               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
267               MachineMemOperand::MONone, &Fast) &&
268           Fast)
269         VTSize = Size;
270       else {
271         VT = NewVT;
272         VTSize = NewVTSize;
273       }
274     }
275 
276     if (++NumMemOps > Limit)
277       return false;
278 
279     MemOps.push_back(VT);
280     Size -= VTSize;
281   }
282 
283   return true;
284 }
285 
286 /// Soften the operands of a comparison. This code is shared among BR_CC,
287 /// SELECT_CC, and SETCC handlers.
288 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
289                                          SDValue &NewLHS, SDValue &NewRHS,
290                                          ISD::CondCode &CCCode,
291                                          const SDLoc &dl, const SDValue OldLHS,
292                                          const SDValue OldRHS) const {
293   SDValue Chain;
294   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
295                              OldRHS, Chain);
296 }
297 
298 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
299                                          SDValue &NewLHS, SDValue &NewRHS,
300                                          ISD::CondCode &CCCode,
301                                          const SDLoc &dl, const SDValue OldLHS,
302                                          const SDValue OldRHS,
303                                          SDValue &Chain,
304                                          bool IsSignaling) const {
305   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
306   // not supporting it. We can update this code when libgcc provides such
307   // functions.
308 
309   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
310          && "Unsupported setcc type!");
311 
312   // Expand into one or more soft-fp libcall(s).
313   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
314   bool ShouldInvertCC = false;
315   switch (CCCode) {
316   case ISD::SETEQ:
317   case ISD::SETOEQ:
318     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
319           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
320           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
321     break;
322   case ISD::SETNE:
323   case ISD::SETUNE:
324     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
325           (VT == MVT::f64) ? RTLIB::UNE_F64 :
326           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
327     break;
328   case ISD::SETGE:
329   case ISD::SETOGE:
330     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
331           (VT == MVT::f64) ? RTLIB::OGE_F64 :
332           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
333     break;
334   case ISD::SETLT:
335   case ISD::SETOLT:
336     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
337           (VT == MVT::f64) ? RTLIB::OLT_F64 :
338           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
339     break;
340   case ISD::SETLE:
341   case ISD::SETOLE:
342     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
343           (VT == MVT::f64) ? RTLIB::OLE_F64 :
344           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
345     break;
346   case ISD::SETGT:
347   case ISD::SETOGT:
348     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
349           (VT == MVT::f64) ? RTLIB::OGT_F64 :
350           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
351     break;
352   case ISD::SETO:
353     ShouldInvertCC = true;
354     LLVM_FALLTHROUGH;
355   case ISD::SETUO:
356     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
357           (VT == MVT::f64) ? RTLIB::UO_F64 :
358           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
359     break;
360   case ISD::SETONE:
361     // SETONE = O && UNE
362     ShouldInvertCC = true;
363     LLVM_FALLTHROUGH;
364   case ISD::SETUEQ:
365     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
366           (VT == MVT::f64) ? RTLIB::UO_F64 :
367           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
368     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
369           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
370           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
371     break;
372   default:
373     // Invert CC for unordered comparisons
374     ShouldInvertCC = true;
375     switch (CCCode) {
376     case ISD::SETULT:
377       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
378             (VT == MVT::f64) ? RTLIB::OGE_F64 :
379             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
380       break;
381     case ISD::SETULE:
382       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
383             (VT == MVT::f64) ? RTLIB::OGT_F64 :
384             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
385       break;
386     case ISD::SETUGT:
387       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
388             (VT == MVT::f64) ? RTLIB::OLE_F64 :
389             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
390       break;
391     case ISD::SETUGE:
392       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
393             (VT == MVT::f64) ? RTLIB::OLT_F64 :
394             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
395       break;
396     default: llvm_unreachable("Do not know how to soften this setcc!");
397     }
398   }
399 
400   // Use the target specific return value for comparions lib calls.
401   EVT RetVT = getCmpLibcallReturnType();
402   SDValue Ops[2] = {NewLHS, NewRHS};
403   TargetLowering::MakeLibCallOptions CallOptions;
404   EVT OpsVT[2] = { OldLHS.getValueType(),
405                    OldRHS.getValueType() };
406   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
407   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
408   NewLHS = Call.first;
409   NewRHS = DAG.getConstant(0, dl, RetVT);
410 
411   CCCode = getCmpLibcallCC(LC1);
412   if (ShouldInvertCC) {
413     assert(RetVT.isInteger());
414     CCCode = getSetCCInverse(CCCode, RetVT);
415   }
416 
417   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
418     // Update Chain.
419     Chain = Call.second;
420   } else {
421     EVT SetCCVT =
422         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
423     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
424     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
425     CCCode = getCmpLibcallCC(LC2);
426     if (ShouldInvertCC)
427       CCCode = getSetCCInverse(CCCode, RetVT);
428     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
429     if (Chain)
430       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
431                           Call2.second);
432     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
433                          Tmp.getValueType(), Tmp, NewLHS);
434     NewRHS = SDValue();
435   }
436 }
437 
438 /// Return the entry encoding for a jump table in the current function. The
439 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
440 unsigned TargetLowering::getJumpTableEncoding() const {
441   // In non-pic modes, just use the address of a block.
442   if (!isPositionIndependent())
443     return MachineJumpTableInfo::EK_BlockAddress;
444 
445   // In PIC mode, if the target supports a GPRel32 directive, use it.
446   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
447     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
448 
449   // Otherwise, use a label difference.
450   return MachineJumpTableInfo::EK_LabelDifference32;
451 }
452 
453 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
454                                                  SelectionDAG &DAG) const {
455   // If our PIC model is GP relative, use the global offset table as the base.
456   unsigned JTEncoding = getJumpTableEncoding();
457 
458   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
459       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
460     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
461 
462   return Table;
463 }
464 
465 /// This returns the relocation base for the given PIC jumptable, the same as
466 /// getPICJumpTableRelocBase, but as an MCExpr.
467 const MCExpr *
468 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
469                                              unsigned JTI,MCContext &Ctx) const{
470   // The normal PIC reloc base is the label at the start of the jump table.
471   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
472 }
473 
474 bool
475 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
476   const TargetMachine &TM = getTargetMachine();
477   const GlobalValue *GV = GA->getGlobal();
478 
479   // If the address is not even local to this DSO we will have to load it from
480   // a got and then add the offset.
481   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
482     return false;
483 
484   // If the code is position independent we will have to add a base register.
485   if (isPositionIndependent())
486     return false;
487 
488   // Otherwise we can do it.
489   return true;
490 }
491 
492 //===----------------------------------------------------------------------===//
493 //  Optimization Methods
494 //===----------------------------------------------------------------------===//
495 
496 /// If the specified instruction has a constant integer operand and there are
497 /// bits set in that constant that are not demanded, then clear those bits and
498 /// return true.
499 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
500                                             const APInt &DemandedBits,
501                                             const APInt &DemandedElts,
502                                             TargetLoweringOpt &TLO) const {
503   SDLoc DL(Op);
504   unsigned Opcode = Op.getOpcode();
505 
506   // Do target-specific constant optimization.
507   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
508     return TLO.New.getNode();
509 
510   // FIXME: ISD::SELECT, ISD::SELECT_CC
511   switch (Opcode) {
512   default:
513     break;
514   case ISD::XOR:
515   case ISD::AND:
516   case ISD::OR: {
517     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
518     if (!Op1C || Op1C->isOpaque())
519       return false;
520 
521     // If this is a 'not' op, don't touch it because that's a canonical form.
522     const APInt &C = Op1C->getAPIntValue();
523     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
524       return false;
525 
526     if (!C.isSubsetOf(DemandedBits)) {
527       EVT VT = Op.getValueType();
528       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
529       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
530       return TLO.CombineTo(Op, NewOp);
531     }
532 
533     break;
534   }
535   }
536 
537   return false;
538 }
539 
540 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
541                                             const APInt &DemandedBits,
542                                             TargetLoweringOpt &TLO) const {
543   EVT VT = Op.getValueType();
544   APInt DemandedElts = VT.isVector()
545                            ? APInt::getAllOnes(VT.getVectorNumElements())
546                            : APInt(1, 1);
547   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
548 }
549 
550 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
551 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
552 /// generalized for targets with other types of implicit widening casts.
553 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
554                                       const APInt &Demanded,
555                                       TargetLoweringOpt &TLO) const {
556   assert(Op.getNumOperands() == 2 &&
557          "ShrinkDemandedOp only supports binary operators!");
558   assert(Op.getNode()->getNumValues() == 1 &&
559          "ShrinkDemandedOp only supports nodes with one result!");
560 
561   SelectionDAG &DAG = TLO.DAG;
562   SDLoc dl(Op);
563 
564   // Early return, as this function cannot handle vector types.
565   if (Op.getValueType().isVector())
566     return false;
567 
568   // Don't do this if the node has another user, which may require the
569   // full value.
570   if (!Op.getNode()->hasOneUse())
571     return false;
572 
573   // Search for the smallest integer type with free casts to and from
574   // Op's type. For expedience, just check power-of-2 integer types.
575   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
576   unsigned DemandedSize = Demanded.getActiveBits();
577   unsigned SmallVTBits = DemandedSize;
578   if (!isPowerOf2_32(SmallVTBits))
579     SmallVTBits = NextPowerOf2(SmallVTBits);
580   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
581     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
582     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
583         TLI.isZExtFree(SmallVT, Op.getValueType())) {
584       // We found a type with free casts.
585       SDValue X = DAG.getNode(
586           Op.getOpcode(), dl, SmallVT,
587           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
588           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
589       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
590       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
591       return TLO.CombineTo(Op, Z);
592     }
593   }
594   return false;
595 }
596 
597 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
598                                           DAGCombinerInfo &DCI) const {
599   SelectionDAG &DAG = DCI.DAG;
600   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
601                         !DCI.isBeforeLegalizeOps());
602   KnownBits Known;
603 
604   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
605   if (Simplified) {
606     DCI.AddToWorklist(Op.getNode());
607     DCI.CommitTargetLoweringOpt(TLO);
608   }
609   return Simplified;
610 }
611 
612 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
613                                           const APInt &DemandedElts,
614                                           DAGCombinerInfo &DCI) const {
615   SelectionDAG &DAG = DCI.DAG;
616   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
617                         !DCI.isBeforeLegalizeOps());
618   KnownBits Known;
619 
620   bool Simplified =
621       SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO);
622   if (Simplified) {
623     DCI.AddToWorklist(Op.getNode());
624     DCI.CommitTargetLoweringOpt(TLO);
625   }
626   return Simplified;
627 }
628 
629 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
630                                           KnownBits &Known,
631                                           TargetLoweringOpt &TLO,
632                                           unsigned Depth,
633                                           bool AssumeSingleUse) const {
634   EVT VT = Op.getValueType();
635 
636   // TODO: We can probably do more work on calculating the known bits and
637   // simplifying the operations for scalable vectors, but for now we just
638   // bail out.
639   if (VT.isScalableVector()) {
640     // Pretend we don't know anything for now.
641     Known = KnownBits(DemandedBits.getBitWidth());
642     return false;
643   }
644 
645   APInt DemandedElts = VT.isVector()
646                            ? APInt::getAllOnes(VT.getVectorNumElements())
647                            : APInt(1, 1);
648   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
649                               AssumeSingleUse);
650 }
651 
652 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
653 // TODO: Under what circumstances can we create nodes? Constant folding?
654 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
655     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
656     SelectionDAG &DAG, unsigned Depth) const {
657   // Limit search depth.
658   if (Depth >= SelectionDAG::MaxRecursionDepth)
659     return SDValue();
660 
661   // Ignore UNDEFs.
662   if (Op.isUndef())
663     return SDValue();
664 
665   // Not demanding any bits/elts from Op.
666   if (DemandedBits == 0 || DemandedElts == 0)
667     return DAG.getUNDEF(Op.getValueType());
668 
669   bool IsLE = DAG.getDataLayout().isLittleEndian();
670   unsigned NumElts = DemandedElts.getBitWidth();
671   unsigned BitWidth = DemandedBits.getBitWidth();
672   KnownBits LHSKnown, RHSKnown;
673   switch (Op.getOpcode()) {
674   case ISD::BITCAST: {
675     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
676     EVT SrcVT = Src.getValueType();
677     EVT DstVT = Op.getValueType();
678     if (SrcVT == DstVT)
679       return Src;
680 
681     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
682     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
683     if (NumSrcEltBits == NumDstEltBits)
684       if (SDValue V = SimplifyMultipleUseDemandedBits(
685               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
686         return DAG.getBitcast(DstVT, V);
687 
688     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
689       unsigned Scale = NumDstEltBits / NumSrcEltBits;
690       unsigned NumSrcElts = SrcVT.getVectorNumElements();
691       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
692       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
693       for (unsigned i = 0; i != Scale; ++i) {
694         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
695         unsigned BitOffset = EltOffset * NumSrcEltBits;
696         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
697         if (!Sub.isZero()) {
698           DemandedSrcBits |= Sub;
699           for (unsigned j = 0; j != NumElts; ++j)
700             if (DemandedElts[j])
701               DemandedSrcElts.setBit((j * Scale) + i);
702         }
703       }
704 
705       if (SDValue V = SimplifyMultipleUseDemandedBits(
706               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
707         return DAG.getBitcast(DstVT, V);
708     }
709 
710     // TODO - bigendian once we have test coverage.
711     if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
712       unsigned Scale = NumSrcEltBits / NumDstEltBits;
713       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
714       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
715       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
716       for (unsigned i = 0; i != NumElts; ++i)
717         if (DemandedElts[i]) {
718           unsigned Offset = (i % Scale) * NumDstEltBits;
719           DemandedSrcBits.insertBits(DemandedBits, Offset);
720           DemandedSrcElts.setBit(i / Scale);
721         }
722 
723       if (SDValue V = SimplifyMultipleUseDemandedBits(
724               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
725         return DAG.getBitcast(DstVT, V);
726     }
727 
728     break;
729   }
730   case ISD::AND: {
731     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
732     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
733 
734     // If all of the demanded bits are known 1 on one side, return the other.
735     // These bits cannot contribute to the result of the 'and' in this
736     // context.
737     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
738       return Op.getOperand(0);
739     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
740       return Op.getOperand(1);
741     break;
742   }
743   case ISD::OR: {
744     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
745     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
746 
747     // If all of the demanded bits are known zero on one side, return the
748     // other.  These bits cannot contribute to the result of the 'or' in this
749     // context.
750     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
751       return Op.getOperand(0);
752     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
753       return Op.getOperand(1);
754     break;
755   }
756   case ISD::XOR: {
757     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
758     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
759 
760     // If all of the demanded bits are known zero on one side, return the
761     // other.
762     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
763       return Op.getOperand(0);
764     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
765       return Op.getOperand(1);
766     break;
767   }
768   case ISD::SHL: {
769     // If we are only demanding sign bits then we can use the shift source
770     // directly.
771     if (const APInt *MaxSA =
772             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
773       SDValue Op0 = Op.getOperand(0);
774       unsigned ShAmt = MaxSA->getZExtValue();
775       unsigned NumSignBits =
776           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
777       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
778       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
779         return Op0;
780     }
781     break;
782   }
783   case ISD::SETCC: {
784     SDValue Op0 = Op.getOperand(0);
785     SDValue Op1 = Op.getOperand(1);
786     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
787     // If (1) we only need the sign-bit, (2) the setcc operands are the same
788     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
789     // -1, we may be able to bypass the setcc.
790     if (DemandedBits.isSignMask() &&
791         Op0.getScalarValueSizeInBits() == BitWidth &&
792         getBooleanContents(Op0.getValueType()) ==
793             BooleanContent::ZeroOrNegativeOneBooleanContent) {
794       // If we're testing X < 0, then this compare isn't needed - just use X!
795       // FIXME: We're limiting to integer types here, but this should also work
796       // if we don't care about FP signed-zero. The use of SETLT with FP means
797       // that we don't care about NaNs.
798       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
799           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
800         return Op0;
801     }
802     break;
803   }
804   case ISD::SIGN_EXTEND_INREG: {
805     // If none of the extended bits are demanded, eliminate the sextinreg.
806     SDValue Op0 = Op.getOperand(0);
807     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
808     unsigned ExBits = ExVT.getScalarSizeInBits();
809     if (DemandedBits.getActiveBits() <= ExBits)
810       return Op0;
811     // If the input is already sign extended, just drop the extension.
812     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
813     if (NumSignBits >= (BitWidth - ExBits + 1))
814       return Op0;
815     break;
816   }
817   case ISD::ANY_EXTEND_VECTOR_INREG:
818   case ISD::SIGN_EXTEND_VECTOR_INREG:
819   case ISD::ZERO_EXTEND_VECTOR_INREG: {
820     // If we only want the lowest element and none of extended bits, then we can
821     // return the bitcasted source vector.
822     SDValue Src = Op.getOperand(0);
823     EVT SrcVT = Src.getValueType();
824     EVT DstVT = Op.getValueType();
825     if (IsLE && DemandedElts == 1 &&
826         DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
827         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
828       return DAG.getBitcast(DstVT, Src);
829     }
830     break;
831   }
832   case ISD::INSERT_VECTOR_ELT: {
833     // If we don't demand the inserted element, return the base vector.
834     SDValue Vec = Op.getOperand(0);
835     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
836     EVT VecVT = Vec.getValueType();
837     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
838         !DemandedElts[CIdx->getZExtValue()])
839       return Vec;
840     break;
841   }
842   case ISD::INSERT_SUBVECTOR: {
843     SDValue Vec = Op.getOperand(0);
844     SDValue Sub = Op.getOperand(1);
845     uint64_t Idx = Op.getConstantOperandVal(2);
846     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
847     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
848     // If we don't demand the inserted subvector, return the base vector.
849     if (DemandedSubElts == 0)
850       return Vec;
851     // If this simply widens the lowest subvector, see if we can do it earlier.
852     if (Idx == 0 && Vec.isUndef()) {
853       if (SDValue NewSub = SimplifyMultipleUseDemandedBits(
854               Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1))
855         return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
856                            Op.getOperand(0), NewSub, Op.getOperand(2));
857     }
858     break;
859   }
860   case ISD::VECTOR_SHUFFLE: {
861     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
862 
863     // If all the demanded elts are from one operand and are inline,
864     // then we can use the operand directly.
865     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
866     for (unsigned i = 0; i != NumElts; ++i) {
867       int M = ShuffleMask[i];
868       if (M < 0 || !DemandedElts[i])
869         continue;
870       AllUndef = false;
871       IdentityLHS &= (M == (int)i);
872       IdentityRHS &= ((M - NumElts) == i);
873     }
874 
875     if (AllUndef)
876       return DAG.getUNDEF(Op.getValueType());
877     if (IdentityLHS)
878       return Op.getOperand(0);
879     if (IdentityRHS)
880       return Op.getOperand(1);
881     break;
882   }
883   default:
884     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
885       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
886               Op, DemandedBits, DemandedElts, DAG, Depth))
887         return V;
888     break;
889   }
890   return SDValue();
891 }
892 
893 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
894     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
895     unsigned Depth) const {
896   EVT VT = Op.getValueType();
897   APInt DemandedElts = VT.isVector()
898                            ? APInt::getAllOnes(VT.getVectorNumElements())
899                            : APInt(1, 1);
900   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
901                                          Depth);
902 }
903 
904 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
905     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
906     unsigned Depth) const {
907   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
908   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
909                                          Depth);
910 }
911 
912 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1).
913 //      or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1).
914 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG,
915                                  const TargetLowering &TLI,
916                                  const APInt &DemandedBits,
917                                  const APInt &DemandedElts,
918                                  unsigned Depth) {
919   assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) &&
920          "SRL or SRA node is required here!");
921   // Is the right shift using an immediate value of 1?
922   ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
923   if (!N1C || !N1C->isOne())
924     return SDValue();
925 
926   // We are looking for an avgfloor
927   // add(ext, ext)
928   // or one of these as a avgceil
929   // add(add(ext, ext), 1)
930   // add(add(ext, 1), ext)
931   // add(ext, add(ext, 1))
932   SDValue Add = Op.getOperand(0);
933   if (Add.getOpcode() != ISD::ADD)
934     return SDValue();
935 
936   SDValue ExtOpA = Add.getOperand(0);
937   SDValue ExtOpB = Add.getOperand(1);
938   auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) {
939     ConstantSDNode *ConstOp;
940     if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) &&
941         ConstOp->isOne()) {
942       ExtOpA = Op2;
943       ExtOpB = Op3;
944       return true;
945     }
946     if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) &&
947         ConstOp->isOne()) {
948       ExtOpA = Op1;
949       ExtOpB = Op3;
950       return true;
951     }
952     if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) &&
953         ConstOp->isOne()) {
954       ExtOpA = Op1;
955       ExtOpB = Op2;
956       return true;
957     }
958     return false;
959   };
960   bool IsCeil =
961       (ExtOpA.getOpcode() == ISD::ADD &&
962        MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) ||
963       (ExtOpB.getOpcode() == ISD::ADD &&
964        MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA));
965 
966   // If the shift is signed (sra):
967   //  - Needs >= 2 sign bit for both operands.
968   //  - Needs >= 2 zero bits.
969   // If the shift is unsigned (srl):
970   //  - Needs >= 1 zero bit for both operands.
971   //  - Needs 1 demanded bit zero and >= 2 sign bits.
972   unsigned ShiftOpc = Op.getOpcode();
973   bool IsSigned = false;
974   unsigned KnownBits;
975   unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth);
976   unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth);
977   unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
978   unsigned NumZeroA =
979       DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros();
980   unsigned NumZeroB =
981       DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros();
982   unsigned NumZero = std::min(NumZeroA, NumZeroB);
983 
984   switch (ShiftOpc) {
985   default:
986     llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG");
987   case ISD::SRA: {
988     if (NumZero >= 2 && NumSigned < NumZero) {
989       IsSigned = false;
990       KnownBits = NumZero;
991       break;
992     }
993     if (NumSigned >= 1) {
994       IsSigned = true;
995       KnownBits = NumSigned;
996       break;
997     }
998     return SDValue();
999   }
1000   case ISD::SRL: {
1001     if (NumZero >= 1 && NumSigned < NumZero) {
1002       IsSigned = false;
1003       KnownBits = NumZero;
1004       break;
1005     }
1006     if (NumSigned >= 1 && DemandedBits.isSignBitClear()) {
1007       IsSigned = true;
1008       KnownBits = NumSigned;
1009       break;
1010     }
1011     return SDValue();
1012   }
1013   }
1014 
1015   unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU)
1016                            : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU);
1017 
1018   // Find the smallest power-2 type that is legal for this vector size and
1019   // operation, given the original type size and the number of known sign/zero
1020   // bits.
1021   EVT VT = Op.getValueType();
1022   unsigned MinWidth =
1023       std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8);
1024   EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth));
1025   if (VT.isVector())
1026     NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
1027   if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT))
1028     return SDValue();
1029 
1030   SDLoc DL(Op);
1031   SDValue ResultAVG =
1032       DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA),
1033                   DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB));
1034   return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT,
1035                      ResultAVG);
1036 }
1037 
1038 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
1039 /// result of Op are ever used downstream. If we can use this information to
1040 /// simplify Op, create a new simplified DAG node and return true, returning the
1041 /// original and new nodes in Old and New. Otherwise, analyze the expression and
1042 /// return a mask of Known bits for the expression (used to simplify the
1043 /// caller).  The Known bits may only be accurate for those bits in the
1044 /// OriginalDemandedBits and OriginalDemandedElts.
1045 bool TargetLowering::SimplifyDemandedBits(
1046     SDValue Op, const APInt &OriginalDemandedBits,
1047     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
1048     unsigned Depth, bool AssumeSingleUse) const {
1049   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
1050   assert(Op.getScalarValueSizeInBits() == BitWidth &&
1051          "Mask size mismatches value type size!");
1052 
1053   // Don't know anything.
1054   Known = KnownBits(BitWidth);
1055 
1056   // TODO: We can probably do more work on calculating the known bits and
1057   // simplifying the operations for scalable vectors, but for now we just
1058   // bail out.
1059   if (Op.getValueType().isScalableVector())
1060     return false;
1061 
1062   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
1063   unsigned NumElts = OriginalDemandedElts.getBitWidth();
1064   assert((!Op.getValueType().isVector() ||
1065           NumElts == Op.getValueType().getVectorNumElements()) &&
1066          "Unexpected vector size");
1067 
1068   APInt DemandedBits = OriginalDemandedBits;
1069   APInt DemandedElts = OriginalDemandedElts;
1070   SDLoc dl(Op);
1071   auto &DL = TLO.DAG.getDataLayout();
1072 
1073   // Undef operand.
1074   if (Op.isUndef())
1075     return false;
1076 
1077   if (Op.getOpcode() == ISD::Constant) {
1078     // We know all of the bits for a constant!
1079     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
1080     return false;
1081   }
1082 
1083   if (Op.getOpcode() == ISD::ConstantFP) {
1084     // We know all of the bits for a floating point constant!
1085     Known = KnownBits::makeConstant(
1086         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
1087     return false;
1088   }
1089 
1090   // Other users may use these bits.
1091   EVT VT = Op.getValueType();
1092   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
1093     if (Depth != 0) {
1094       // If not at the root, Just compute the Known bits to
1095       // simplify things downstream.
1096       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1097       return false;
1098     }
1099     // If this is the root being simplified, allow it to have multiple uses,
1100     // just set the DemandedBits/Elts to all bits.
1101     DemandedBits = APInt::getAllOnes(BitWidth);
1102     DemandedElts = APInt::getAllOnes(NumElts);
1103   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
1104     // Not demanding any bits/elts from Op.
1105     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1106   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
1107     // Limit search depth.
1108     return false;
1109   }
1110 
1111   KnownBits Known2;
1112   switch (Op.getOpcode()) {
1113   case ISD::TargetConstant:
1114     llvm_unreachable("Can't simplify this node");
1115   case ISD::SCALAR_TO_VECTOR: {
1116     if (!DemandedElts[0])
1117       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1118 
1119     KnownBits SrcKnown;
1120     SDValue Src = Op.getOperand(0);
1121     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
1122     APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth);
1123     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
1124       return true;
1125 
1126     // Upper elements are undef, so only get the knownbits if we just demand
1127     // the bottom element.
1128     if (DemandedElts == 1)
1129       Known = SrcKnown.anyextOrTrunc(BitWidth);
1130     break;
1131   }
1132   case ISD::BUILD_VECTOR:
1133     // Collect the known bits that are shared by every demanded element.
1134     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
1135     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1136     return false; // Don't fall through, will infinitely loop.
1137   case ISD::LOAD: {
1138     auto *LD = cast<LoadSDNode>(Op);
1139     if (getTargetConstantFromLoad(LD)) {
1140       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1141       return false; // Don't fall through, will infinitely loop.
1142     }
1143     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
1144       // If this is a ZEXTLoad and we are looking at the loaded value.
1145       EVT MemVT = LD->getMemoryVT();
1146       unsigned MemBits = MemVT.getScalarSizeInBits();
1147       Known.Zero.setBitsFrom(MemBits);
1148       return false; // Don't fall through, will infinitely loop.
1149     }
1150     break;
1151   }
1152   case ISD::INSERT_VECTOR_ELT: {
1153     SDValue Vec = Op.getOperand(0);
1154     SDValue Scl = Op.getOperand(1);
1155     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1156     EVT VecVT = Vec.getValueType();
1157 
1158     // If index isn't constant, assume we need all vector elements AND the
1159     // inserted element.
1160     APInt DemandedVecElts(DemandedElts);
1161     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1162       unsigned Idx = CIdx->getZExtValue();
1163       DemandedVecElts.clearBit(Idx);
1164 
1165       // Inserted element is not required.
1166       if (!DemandedElts[Idx])
1167         return TLO.CombineTo(Op, Vec);
1168     }
1169 
1170     KnownBits KnownScl;
1171     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1172     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1173     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1174       return true;
1175 
1176     Known = KnownScl.anyextOrTrunc(BitWidth);
1177 
1178     KnownBits KnownVec;
1179     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1180                              Depth + 1))
1181       return true;
1182 
1183     if (!!DemandedVecElts)
1184       Known = KnownBits::commonBits(Known, KnownVec);
1185 
1186     return false;
1187   }
1188   case ISD::INSERT_SUBVECTOR: {
1189     // Demand any elements from the subvector and the remainder from the src its
1190     // inserted into.
1191     SDValue Src = Op.getOperand(0);
1192     SDValue Sub = Op.getOperand(1);
1193     uint64_t Idx = Op.getConstantOperandVal(2);
1194     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1195     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1196     APInt DemandedSrcElts = DemandedElts;
1197     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1198 
1199     KnownBits KnownSub, KnownSrc;
1200     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1201                              Depth + 1))
1202       return true;
1203     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1204                              Depth + 1))
1205       return true;
1206 
1207     Known.Zero.setAllBits();
1208     Known.One.setAllBits();
1209     if (!!DemandedSubElts)
1210       Known = KnownBits::commonBits(Known, KnownSub);
1211     if (!!DemandedSrcElts)
1212       Known = KnownBits::commonBits(Known, KnownSrc);
1213 
1214     // Attempt to avoid multi-use src if we don't need anything from it.
1215     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1216         !DemandedSrcElts.isAllOnes()) {
1217       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1218           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1219       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1220           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1221       if (NewSub || NewSrc) {
1222         NewSub = NewSub ? NewSub : Sub;
1223         NewSrc = NewSrc ? NewSrc : Src;
1224         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1225                                         Op.getOperand(2));
1226         return TLO.CombineTo(Op, NewOp);
1227       }
1228     }
1229     break;
1230   }
1231   case ISD::EXTRACT_SUBVECTOR: {
1232     // Offset the demanded elts by the subvector index.
1233     SDValue Src = Op.getOperand(0);
1234     if (Src.getValueType().isScalableVector())
1235       break;
1236     uint64_t Idx = Op.getConstantOperandVal(1);
1237     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1238     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
1239 
1240     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1241                              Depth + 1))
1242       return true;
1243 
1244     // Attempt to avoid multi-use src if we don't need anything from it.
1245     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1246       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1247           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1248       if (DemandedSrc) {
1249         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1250                                         Op.getOperand(1));
1251         return TLO.CombineTo(Op, NewOp);
1252       }
1253     }
1254     break;
1255   }
1256   case ISD::CONCAT_VECTORS: {
1257     Known.Zero.setAllBits();
1258     Known.One.setAllBits();
1259     EVT SubVT = Op.getOperand(0).getValueType();
1260     unsigned NumSubVecs = Op.getNumOperands();
1261     unsigned NumSubElts = SubVT.getVectorNumElements();
1262     for (unsigned i = 0; i != NumSubVecs; ++i) {
1263       APInt DemandedSubElts =
1264           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1265       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1266                                Known2, TLO, Depth + 1))
1267         return true;
1268       // Known bits are shared by every demanded subvector element.
1269       if (!!DemandedSubElts)
1270         Known = KnownBits::commonBits(Known, Known2);
1271     }
1272     break;
1273   }
1274   case ISD::VECTOR_SHUFFLE: {
1275     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1276 
1277     // Collect demanded elements from shuffle operands..
1278     APInt DemandedLHS(NumElts, 0);
1279     APInt DemandedRHS(NumElts, 0);
1280     for (unsigned i = 0; i != NumElts; ++i) {
1281       if (!DemandedElts[i])
1282         continue;
1283       int M = ShuffleMask[i];
1284       if (M < 0) {
1285         // For UNDEF elements, we don't know anything about the common state of
1286         // the shuffle result.
1287         DemandedLHS.clearAllBits();
1288         DemandedRHS.clearAllBits();
1289         break;
1290       }
1291       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1292       if (M < (int)NumElts)
1293         DemandedLHS.setBit(M);
1294       else
1295         DemandedRHS.setBit(M - NumElts);
1296     }
1297 
1298     if (!!DemandedLHS || !!DemandedRHS) {
1299       SDValue Op0 = Op.getOperand(0);
1300       SDValue Op1 = Op.getOperand(1);
1301 
1302       Known.Zero.setAllBits();
1303       Known.One.setAllBits();
1304       if (!!DemandedLHS) {
1305         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1306                                  Depth + 1))
1307           return true;
1308         Known = KnownBits::commonBits(Known, Known2);
1309       }
1310       if (!!DemandedRHS) {
1311         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1312                                  Depth + 1))
1313           return true;
1314         Known = KnownBits::commonBits(Known, Known2);
1315       }
1316 
1317       // Attempt to avoid multi-use ops if we don't need anything from them.
1318       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1319           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1320       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1321           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1322       if (DemandedOp0 || DemandedOp1) {
1323         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1324         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1325         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1326         return TLO.CombineTo(Op, NewOp);
1327       }
1328     }
1329     break;
1330   }
1331   case ISD::AND: {
1332     SDValue Op0 = Op.getOperand(0);
1333     SDValue Op1 = Op.getOperand(1);
1334 
1335     // If the RHS is a constant, check to see if the LHS would be zero without
1336     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1337     // simplify the LHS, here we're using information from the LHS to simplify
1338     // the RHS.
1339     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1340       // Do not increment Depth here; that can cause an infinite loop.
1341       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1342       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1343       if ((LHSKnown.Zero & DemandedBits) ==
1344           (~RHSC->getAPIntValue() & DemandedBits))
1345         return TLO.CombineTo(Op, Op0);
1346 
1347       // If any of the set bits in the RHS are known zero on the LHS, shrink
1348       // the constant.
1349       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1350                                  DemandedElts, TLO))
1351         return true;
1352 
1353       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1354       // constant, but if this 'and' is only clearing bits that were just set by
1355       // the xor, then this 'and' can be eliminated by shrinking the mask of
1356       // the xor. For example, for a 32-bit X:
1357       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1358       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1359           LHSKnown.One == ~RHSC->getAPIntValue()) {
1360         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1361         return TLO.CombineTo(Op, Xor);
1362       }
1363     }
1364 
1365     // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I)
1366     // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits).
1367     if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR &&
1368         (Op0.getOperand(0).isUndef() ||
1369          ISD::isBuildVectorOfConstantSDNodes(Op0.getOperand(0).getNode())) &&
1370         Op0->hasOneUse()) {
1371       unsigned NumSubElts =
1372           Op0.getOperand(1).getValueType().getVectorNumElements();
1373       unsigned SubIdx = Op0.getConstantOperandVal(2);
1374       APInt DemandedSub =
1375           APInt::getBitsSet(NumElts, SubIdx, SubIdx + NumSubElts);
1376       KnownBits KnownSubMask =
1377           TLO.DAG.computeKnownBits(Op1, DemandedSub & DemandedElts, Depth + 1);
1378       if (DemandedBits.isSubsetOf(KnownSubMask.One)) {
1379         SDValue NewAnd =
1380             TLO.DAG.getNode(ISD::AND, dl, VT, Op0.getOperand(0), Op1);
1381         SDValue NewInsert =
1382             TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, NewAnd,
1383                             Op0.getOperand(1), Op0.getOperand(2));
1384         return TLO.CombineTo(Op, NewInsert);
1385       }
1386     }
1387 
1388     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1389                              Depth + 1))
1390       return true;
1391     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1392     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1393                              Known2, TLO, Depth + 1))
1394       return true;
1395     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1396 
1397     // If all of the demanded bits are known one on one side, return the other.
1398     // These bits cannot contribute to the result of the 'and'.
1399     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1400       return TLO.CombineTo(Op, Op0);
1401     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1402       return TLO.CombineTo(Op, Op1);
1403     // If all of the demanded bits in the inputs are known zeros, return zero.
1404     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1405       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1406     // If the RHS is a constant, see if we can simplify it.
1407     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1408                                TLO))
1409       return true;
1410     // If the operation can be done in a smaller type, do so.
1411     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1412       return true;
1413 
1414     // Attempt to avoid multi-use ops if we don't need anything from them.
1415     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1416       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1417           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1418       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1419           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1420       if (DemandedOp0 || DemandedOp1) {
1421         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1422         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1423         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1424         return TLO.CombineTo(Op, NewOp);
1425       }
1426     }
1427 
1428     Known &= Known2;
1429     break;
1430   }
1431   case ISD::OR: {
1432     SDValue Op0 = Op.getOperand(0);
1433     SDValue Op1 = Op.getOperand(1);
1434 
1435     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1436                              Depth + 1))
1437       return true;
1438     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1439     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1440                              Known2, TLO, Depth + 1))
1441       return true;
1442     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1443 
1444     // If all of the demanded bits are known zero on one side, return the other.
1445     // These bits cannot contribute to the result of the 'or'.
1446     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1447       return TLO.CombineTo(Op, Op0);
1448     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1449       return TLO.CombineTo(Op, Op1);
1450     // If the RHS is a constant, see if we can simplify it.
1451     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1452       return true;
1453     // If the operation can be done in a smaller type, do so.
1454     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1455       return true;
1456 
1457     // Attempt to avoid multi-use ops if we don't need anything from them.
1458     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1459       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1460           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1461       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1462           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1463       if (DemandedOp0 || DemandedOp1) {
1464         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1465         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1466         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1467         return TLO.CombineTo(Op, NewOp);
1468       }
1469     }
1470 
1471     Known |= Known2;
1472     break;
1473   }
1474   case ISD::XOR: {
1475     SDValue Op0 = Op.getOperand(0);
1476     SDValue Op1 = Op.getOperand(1);
1477 
1478     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1479                              Depth + 1))
1480       return true;
1481     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1482     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1483                              Depth + 1))
1484       return true;
1485     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1486 
1487     // If all of the demanded bits are known zero on one side, return the other.
1488     // These bits cannot contribute to the result of the 'xor'.
1489     if (DemandedBits.isSubsetOf(Known.Zero))
1490       return TLO.CombineTo(Op, Op0);
1491     if (DemandedBits.isSubsetOf(Known2.Zero))
1492       return TLO.CombineTo(Op, Op1);
1493     // If the operation can be done in a smaller type, do so.
1494     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1495       return true;
1496 
1497     // If all of the unknown bits are known to be zero on one side or the other
1498     // turn this into an *inclusive* or.
1499     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1500     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1501       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1502 
1503     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1504     if (C) {
1505       // If one side is a constant, and all of the set bits in the constant are
1506       // also known set on the other side, turn this into an AND, as we know
1507       // the bits will be cleared.
1508       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1509       // NB: it is okay if more bits are known than are requested
1510       if (C->getAPIntValue() == Known2.One) {
1511         SDValue ANDC =
1512             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1513         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1514       }
1515 
1516       // If the RHS is a constant, see if we can change it. Don't alter a -1
1517       // constant because that's a 'not' op, and that is better for combining
1518       // and codegen.
1519       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1520         // We're flipping all demanded bits. Flip the undemanded bits too.
1521         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1522         return TLO.CombineTo(Op, New);
1523       }
1524     }
1525 
1526     // If we can't turn this into a 'not', try to shrink the constant.
1527     if (!C || !C->isAllOnes())
1528       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1529         return true;
1530 
1531     // Attempt to avoid multi-use ops if we don't need anything from them.
1532     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1533       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1534           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1535       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1536           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1537       if (DemandedOp0 || DemandedOp1) {
1538         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1539         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1540         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1541         return TLO.CombineTo(Op, NewOp);
1542       }
1543     }
1544 
1545     Known ^= Known2;
1546     break;
1547   }
1548   case ISD::SELECT:
1549     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1550                              Depth + 1))
1551       return true;
1552     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1553                              Depth + 1))
1554       return true;
1555     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1556     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1557 
1558     // If the operands are constants, see if we can simplify them.
1559     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1560       return true;
1561 
1562     // Only known if known in both the LHS and RHS.
1563     Known = KnownBits::commonBits(Known, Known2);
1564     break;
1565   case ISD::VSELECT:
1566     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1567                              Known, TLO, Depth + 1))
1568       return true;
1569     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts,
1570                              Known2, TLO, Depth + 1))
1571       return true;
1572     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1573     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1574 
1575     // Only known if known in both the LHS and RHS.
1576     Known = KnownBits::commonBits(Known, Known2);
1577     break;
1578   case ISD::SELECT_CC:
1579     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1580                              Depth + 1))
1581       return true;
1582     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1583                              Depth + 1))
1584       return true;
1585     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1586     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1587 
1588     // If the operands are constants, see if we can simplify them.
1589     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1590       return true;
1591 
1592     // Only known if known in both the LHS and RHS.
1593     Known = KnownBits::commonBits(Known, Known2);
1594     break;
1595   case ISD::SETCC: {
1596     SDValue Op0 = Op.getOperand(0);
1597     SDValue Op1 = Op.getOperand(1);
1598     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1599     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1600     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1601     // -1, we may be able to bypass the setcc.
1602     if (DemandedBits.isSignMask() &&
1603         Op0.getScalarValueSizeInBits() == BitWidth &&
1604         getBooleanContents(Op0.getValueType()) ==
1605             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1606       // If we're testing X < 0, then this compare isn't needed - just use X!
1607       // FIXME: We're limiting to integer types here, but this should also work
1608       // if we don't care about FP signed-zero. The use of SETLT with FP means
1609       // that we don't care about NaNs.
1610       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1611           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1612         return TLO.CombineTo(Op, Op0);
1613 
1614       // TODO: Should we check for other forms of sign-bit comparisons?
1615       // Examples: X <= -1, X >= 0
1616     }
1617     if (getBooleanContents(Op0.getValueType()) ==
1618             TargetLowering::ZeroOrOneBooleanContent &&
1619         BitWidth > 1)
1620       Known.Zero.setBitsFrom(1);
1621     break;
1622   }
1623   case ISD::SHL: {
1624     SDValue Op0 = Op.getOperand(0);
1625     SDValue Op1 = Op.getOperand(1);
1626     EVT ShiftVT = Op1.getValueType();
1627 
1628     if (const APInt *SA =
1629             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1630       unsigned ShAmt = SA->getZExtValue();
1631       if (ShAmt == 0)
1632         return TLO.CombineTo(Op, Op0);
1633 
1634       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1635       // single shift.  We can do this if the bottom bits (which are shifted
1636       // out) are never demanded.
1637       // TODO - support non-uniform vector amounts.
1638       if (Op0.getOpcode() == ISD::SRL) {
1639         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1640           if (const APInt *SA2 =
1641                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1642             unsigned C1 = SA2->getZExtValue();
1643             unsigned Opc = ISD::SHL;
1644             int Diff = ShAmt - C1;
1645             if (Diff < 0) {
1646               Diff = -Diff;
1647               Opc = ISD::SRL;
1648             }
1649             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1650             return TLO.CombineTo(
1651                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1652           }
1653         }
1654       }
1655 
1656       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1657       // are not demanded. This will likely allow the anyext to be folded away.
1658       // TODO - support non-uniform vector amounts.
1659       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1660         SDValue InnerOp = Op0.getOperand(0);
1661         EVT InnerVT = InnerOp.getValueType();
1662         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1663         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1664             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1665           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1666           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1667             ShTy = InnerVT;
1668           SDValue NarrowShl =
1669               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1670                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1671           return TLO.CombineTo(
1672               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1673         }
1674 
1675         // Repeat the SHL optimization above in cases where an extension
1676         // intervenes: (shl (anyext (shr x, c1)), c2) to
1677         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1678         // aren't demanded (as above) and that the shifted upper c1 bits of
1679         // x aren't demanded.
1680         // TODO - support non-uniform vector amounts.
1681         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1682             InnerOp.hasOneUse()) {
1683           if (const APInt *SA2 =
1684                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1685             unsigned InnerShAmt = SA2->getZExtValue();
1686             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1687                 DemandedBits.getActiveBits() <=
1688                     (InnerBits - InnerShAmt + ShAmt) &&
1689                 DemandedBits.countTrailingZeros() >= ShAmt) {
1690               SDValue NewSA =
1691                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1692               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1693                                                InnerOp.getOperand(0));
1694               return TLO.CombineTo(
1695                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1696             }
1697           }
1698         }
1699       }
1700 
1701       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1702       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1703                                Depth + 1))
1704         return true;
1705       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1706       Known.Zero <<= ShAmt;
1707       Known.One <<= ShAmt;
1708       // low bits known zero.
1709       Known.Zero.setLowBits(ShAmt);
1710 
1711       // Attempt to avoid multi-use ops if we don't need anything from them.
1712       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1713         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1714             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1715         if (DemandedOp0) {
1716           SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1);
1717           return TLO.CombineTo(Op, NewOp);
1718         }
1719       }
1720 
1721       // Try shrinking the operation as long as the shift amount will still be
1722       // in range.
1723       if ((ShAmt < DemandedBits.getActiveBits()) &&
1724           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1725         return true;
1726     } else {
1727       // This is a variable shift, so we can't shift the demand mask by a known
1728       // amount. But if we are not demanding high bits, then we are not
1729       // demanding those bits from the pre-shifted operand either.
1730       if (unsigned CTLZ = DemandedBits.countLeadingZeros()) {
1731         APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ));
1732         if (SimplifyDemandedBits(Op0, DemandedFromOp, DemandedElts, Known, TLO,
1733                                  Depth + 1)) {
1734           SDNodeFlags Flags = Op.getNode()->getFlags();
1735           if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1736             // Disable the nsw and nuw flags. We can no longer guarantee that we
1737             // won't wrap after simplification.
1738             Flags.setNoSignedWrap(false);
1739             Flags.setNoUnsignedWrap(false);
1740             Op->setFlags(Flags);
1741           }
1742           return true;
1743         }
1744         Known.resetAll();
1745       }
1746     }
1747 
1748     // If we are only demanding sign bits then we can use the shift source
1749     // directly.
1750     if (const APInt *MaxSA =
1751             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1752       unsigned ShAmt = MaxSA->getZExtValue();
1753       unsigned NumSignBits =
1754           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1755       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1756       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1757         return TLO.CombineTo(Op, Op0);
1758     }
1759     break;
1760   }
1761   case ISD::SRL: {
1762     SDValue Op0 = Op.getOperand(0);
1763     SDValue Op1 = Op.getOperand(1);
1764     EVT ShiftVT = Op1.getValueType();
1765 
1766     // Try to match AVG patterns.
1767     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1768                                         DemandedElts, Depth + 1))
1769       return TLO.CombineTo(Op, AVG);
1770 
1771     if (const APInt *SA =
1772             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1773       unsigned ShAmt = SA->getZExtValue();
1774       if (ShAmt == 0)
1775         return TLO.CombineTo(Op, Op0);
1776 
1777       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1778       // single shift.  We can do this if the top bits (which are shifted out)
1779       // are never demanded.
1780       // TODO - support non-uniform vector amounts.
1781       if (Op0.getOpcode() == ISD::SHL) {
1782         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1783           if (const APInt *SA2 =
1784                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1785             unsigned C1 = SA2->getZExtValue();
1786             unsigned Opc = ISD::SRL;
1787             int Diff = ShAmt - C1;
1788             if (Diff < 0) {
1789               Diff = -Diff;
1790               Opc = ISD::SHL;
1791             }
1792             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1793             return TLO.CombineTo(
1794                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1795           }
1796         }
1797       }
1798 
1799       APInt InDemandedMask = (DemandedBits << ShAmt);
1800 
1801       // If the shift is exact, then it does demand the low bits (and knows that
1802       // they are zero).
1803       if (Op->getFlags().hasExact())
1804         InDemandedMask.setLowBits(ShAmt);
1805 
1806       // Compute the new bits that are at the top now.
1807       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1808                                Depth + 1))
1809         return true;
1810       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1811       Known.Zero.lshrInPlace(ShAmt);
1812       Known.One.lshrInPlace(ShAmt);
1813       // High bits known zero.
1814       Known.Zero.setHighBits(ShAmt);
1815     }
1816     break;
1817   }
1818   case ISD::SRA: {
1819     SDValue Op0 = Op.getOperand(0);
1820     SDValue Op1 = Op.getOperand(1);
1821     EVT ShiftVT = Op1.getValueType();
1822 
1823     // If we only want bits that already match the signbit then we don't need
1824     // to shift.
1825     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1826     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1827         NumHiDemandedBits)
1828       return TLO.CombineTo(Op, Op0);
1829 
1830     // If this is an arithmetic shift right and only the low-bit is set, we can
1831     // always convert this into a logical shr, even if the shift amount is
1832     // variable.  The low bit of the shift cannot be an input sign bit unless
1833     // the shift amount is >= the size of the datatype, which is undefined.
1834     if (DemandedBits.isOne())
1835       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1836 
1837     // Try to match AVG patterns.
1838     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1839                                         DemandedElts, Depth + 1))
1840       return TLO.CombineTo(Op, AVG);
1841 
1842     if (const APInt *SA =
1843             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1844       unsigned ShAmt = SA->getZExtValue();
1845       if (ShAmt == 0)
1846         return TLO.CombineTo(Op, Op0);
1847 
1848       APInt InDemandedMask = (DemandedBits << ShAmt);
1849 
1850       // If the shift is exact, then it does demand the low bits (and knows that
1851       // they are zero).
1852       if (Op->getFlags().hasExact())
1853         InDemandedMask.setLowBits(ShAmt);
1854 
1855       // If any of the demanded bits are produced by the sign extension, we also
1856       // demand the input sign bit.
1857       if (DemandedBits.countLeadingZeros() < ShAmt)
1858         InDemandedMask.setSignBit();
1859 
1860       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1861                                Depth + 1))
1862         return true;
1863       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1864       Known.Zero.lshrInPlace(ShAmt);
1865       Known.One.lshrInPlace(ShAmt);
1866 
1867       // If the input sign bit is known to be zero, or if none of the top bits
1868       // are demanded, turn this into an unsigned shift right.
1869       if (Known.Zero[BitWidth - ShAmt - 1] ||
1870           DemandedBits.countLeadingZeros() >= ShAmt) {
1871         SDNodeFlags Flags;
1872         Flags.setExact(Op->getFlags().hasExact());
1873         return TLO.CombineTo(
1874             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1875       }
1876 
1877       int Log2 = DemandedBits.exactLogBase2();
1878       if (Log2 >= 0) {
1879         // The bit must come from the sign.
1880         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1881         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1882       }
1883 
1884       if (Known.One[BitWidth - ShAmt - 1])
1885         // New bits are known one.
1886         Known.One.setHighBits(ShAmt);
1887 
1888       // Attempt to avoid multi-use ops if we don't need anything from them.
1889       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1890         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1891             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1892         if (DemandedOp0) {
1893           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1894           return TLO.CombineTo(Op, NewOp);
1895         }
1896       }
1897     }
1898     break;
1899   }
1900   case ISD::FSHL:
1901   case ISD::FSHR: {
1902     SDValue Op0 = Op.getOperand(0);
1903     SDValue Op1 = Op.getOperand(1);
1904     SDValue Op2 = Op.getOperand(2);
1905     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1906 
1907     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1908       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1909 
1910       // For fshl, 0-shift returns the 1st arg.
1911       // For fshr, 0-shift returns the 2nd arg.
1912       if (Amt == 0) {
1913         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1914                                  Known, TLO, Depth + 1))
1915           return true;
1916         break;
1917       }
1918 
1919       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1920       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1921       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1922       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1923       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1924                                Depth + 1))
1925         return true;
1926       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1927                                Depth + 1))
1928         return true;
1929 
1930       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1931       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1932       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1933       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1934       Known.One |= Known2.One;
1935       Known.Zero |= Known2.Zero;
1936 
1937       // Attempt to avoid multi-use ops if we don't need anything from them.
1938       if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() ||
1939           !DemandedElts.isAllOnes()) {
1940         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1941             Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1);
1942         SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1943             Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1);
1944         if (DemandedOp0 || DemandedOp1) {
1945           DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0;
1946           DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1;
1947           SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0,
1948                                           DemandedOp1, Op2);
1949           return TLO.CombineTo(Op, NewOp);
1950         }
1951       }
1952     }
1953 
1954     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1955     if (isPowerOf2_32(BitWidth)) {
1956       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1957       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1958                                Known2, TLO, Depth + 1))
1959         return true;
1960     }
1961     break;
1962   }
1963   case ISD::ROTL:
1964   case ISD::ROTR: {
1965     SDValue Op0 = Op.getOperand(0);
1966     SDValue Op1 = Op.getOperand(1);
1967     bool IsROTL = (Op.getOpcode() == ISD::ROTL);
1968 
1969     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1970     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1971       return TLO.CombineTo(Op, Op0);
1972 
1973     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1974       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1975       unsigned RevAmt = BitWidth - Amt;
1976 
1977       // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
1978       // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
1979       APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
1980       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1981                                Depth + 1))
1982         return true;
1983 
1984       // rot*(x, 0) --> x
1985       if (Amt == 0)
1986         return TLO.CombineTo(Op, Op0);
1987 
1988       // See if we don't demand either half of the rotated bits.
1989       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
1990           DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) {
1991         Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
1992         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
1993       }
1994       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
1995           DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) {
1996         Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
1997         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1998       }
1999     }
2000 
2001     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
2002     if (isPowerOf2_32(BitWidth)) {
2003       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
2004       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
2005                                Depth + 1))
2006         return true;
2007     }
2008     break;
2009   }
2010   case ISD::UMIN: {
2011     // Check if one arg is always less than (or equal) to the other arg.
2012     SDValue Op0 = Op.getOperand(0);
2013     SDValue Op1 = Op.getOperand(1);
2014     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
2015     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
2016     Known = KnownBits::umin(Known0, Known1);
2017     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
2018       return TLO.CombineTo(Op, IsULE.value() ? Op0 : Op1);
2019     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
2020       return TLO.CombineTo(Op, IsULT.value() ? Op0 : Op1);
2021     break;
2022   }
2023   case ISD::UMAX: {
2024     // Check if one arg is always greater than (or equal) to the other arg.
2025     SDValue Op0 = Op.getOperand(0);
2026     SDValue Op1 = Op.getOperand(1);
2027     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
2028     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
2029     Known = KnownBits::umax(Known0, Known1);
2030     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
2031       return TLO.CombineTo(Op, IsUGE.value() ? Op0 : Op1);
2032     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
2033       return TLO.CombineTo(Op, IsUGT.value() ? Op0 : Op1);
2034     break;
2035   }
2036   case ISD::BITREVERSE: {
2037     SDValue Src = Op.getOperand(0);
2038     APInt DemandedSrcBits = DemandedBits.reverseBits();
2039     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2040                              Depth + 1))
2041       return true;
2042     Known.One = Known2.One.reverseBits();
2043     Known.Zero = Known2.Zero.reverseBits();
2044     break;
2045   }
2046   case ISD::BSWAP: {
2047     SDValue Src = Op.getOperand(0);
2048 
2049     // If the only bits demanded come from one byte of the bswap result,
2050     // just shift the input byte into position to eliminate the bswap.
2051     unsigned NLZ = DemandedBits.countLeadingZeros();
2052     unsigned NTZ = DemandedBits.countTrailingZeros();
2053 
2054     // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
2055     // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
2056     // have 14 leading zeros, round to 8.
2057     NLZ = alignDown(NLZ, 8);
2058     NTZ = alignDown(NTZ, 8);
2059     // If we need exactly one byte, we can do this transformation.
2060     if (BitWidth - NLZ - NTZ == 8) {
2061       // Replace this with either a left or right shift to get the byte into
2062       // the right place.
2063       unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL;
2064       if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
2065         EVT ShiftAmtTy = getShiftAmountTy(VT, DL);
2066         unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
2067         SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy);
2068         SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
2069         return TLO.CombineTo(Op, NewOp);
2070       }
2071     }
2072 
2073     APInt DemandedSrcBits = DemandedBits.byteSwap();
2074     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2075                              Depth + 1))
2076       return true;
2077     Known.One = Known2.One.byteSwap();
2078     Known.Zero = Known2.Zero.byteSwap();
2079     break;
2080   }
2081   case ISD::CTPOP: {
2082     // If only 1 bit is demanded, replace with PARITY as long as we're before
2083     // op legalization.
2084     // FIXME: Limit to scalars for now.
2085     if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
2086       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
2087                                                Op.getOperand(0)));
2088 
2089     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2090     break;
2091   }
2092   case ISD::SIGN_EXTEND_INREG: {
2093     SDValue Op0 = Op.getOperand(0);
2094     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2095     unsigned ExVTBits = ExVT.getScalarSizeInBits();
2096 
2097     // If we only care about the highest bit, don't bother shifting right.
2098     if (DemandedBits.isSignMask()) {
2099       unsigned MinSignedBits =
2100           TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
2101       bool AlreadySignExtended = ExVTBits >= MinSignedBits;
2102       // However if the input is already sign extended we expect the sign
2103       // extension to be dropped altogether later and do not simplify.
2104       if (!AlreadySignExtended) {
2105         // Compute the correct shift amount type, which must be getShiftAmountTy
2106         // for scalar types after legalization.
2107         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl,
2108                                                getShiftAmountTy(VT, DL));
2109         return TLO.CombineTo(Op,
2110                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
2111       }
2112     }
2113 
2114     // If none of the extended bits are demanded, eliminate the sextinreg.
2115     if (DemandedBits.getActiveBits() <= ExVTBits)
2116       return TLO.CombineTo(Op, Op0);
2117 
2118     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
2119 
2120     // Since the sign extended bits are demanded, we know that the sign
2121     // bit is demanded.
2122     InputDemandedBits.setBit(ExVTBits - 1);
2123 
2124     if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO,
2125                              Depth + 1))
2126       return true;
2127     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2128 
2129     // If the sign bit of the input is known set or clear, then we know the
2130     // top bits of the result.
2131 
2132     // If the input sign bit is known zero, convert this into a zero extension.
2133     if (Known.Zero[ExVTBits - 1])
2134       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
2135 
2136     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
2137     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
2138       Known.One.setBitsFrom(ExVTBits);
2139       Known.Zero &= Mask;
2140     } else { // Input sign bit unknown
2141       Known.Zero &= Mask;
2142       Known.One &= Mask;
2143     }
2144     break;
2145   }
2146   case ISD::BUILD_PAIR: {
2147     EVT HalfVT = Op.getOperand(0).getValueType();
2148     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
2149 
2150     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
2151     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
2152 
2153     KnownBits KnownLo, KnownHi;
2154 
2155     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
2156       return true;
2157 
2158     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
2159       return true;
2160 
2161     Known.Zero = KnownLo.Zero.zext(BitWidth) |
2162                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
2163 
2164     Known.One = KnownLo.One.zext(BitWidth) |
2165                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
2166     break;
2167   }
2168   case ISD::ZERO_EXTEND:
2169   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2170     SDValue Src = Op.getOperand(0);
2171     EVT SrcVT = Src.getValueType();
2172     unsigned InBits = SrcVT.getScalarSizeInBits();
2173     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2174     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
2175 
2176     // If none of the top bits are demanded, convert this into an any_extend.
2177     if (DemandedBits.getActiveBits() <= InBits) {
2178       // If we only need the non-extended bits of the bottom element
2179       // then we can just bitcast to the result.
2180       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2181           VT.getSizeInBits() == SrcVT.getSizeInBits())
2182         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2183 
2184       unsigned Opc =
2185           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2186       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2187         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2188     }
2189 
2190     APInt InDemandedBits = DemandedBits.trunc(InBits);
2191     APInt InDemandedElts = DemandedElts.zext(InElts);
2192     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2193                              Depth + 1))
2194       return true;
2195     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2196     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2197     Known = Known.zext(BitWidth);
2198 
2199     // Attempt to avoid multi-use ops if we don't need anything from them.
2200     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2201             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2202       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2203     break;
2204   }
2205   case ISD::SIGN_EXTEND:
2206   case ISD::SIGN_EXTEND_VECTOR_INREG: {
2207     SDValue Src = Op.getOperand(0);
2208     EVT SrcVT = Src.getValueType();
2209     unsigned InBits = SrcVT.getScalarSizeInBits();
2210     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2211     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
2212 
2213     // If none of the top bits are demanded, convert this into an any_extend.
2214     if (DemandedBits.getActiveBits() <= InBits) {
2215       // If we only need the non-extended bits of the bottom element
2216       // then we can just bitcast to the result.
2217       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2218           VT.getSizeInBits() == SrcVT.getSizeInBits())
2219         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2220 
2221       unsigned Opc =
2222           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2223       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2224         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2225     }
2226 
2227     APInt InDemandedBits = DemandedBits.trunc(InBits);
2228     APInt InDemandedElts = DemandedElts.zext(InElts);
2229 
2230     // Since some of the sign extended bits are demanded, we know that the sign
2231     // bit is demanded.
2232     InDemandedBits.setBit(InBits - 1);
2233 
2234     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2235                              Depth + 1))
2236       return true;
2237     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2238     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2239 
2240     // If the sign bit is known one, the top bits match.
2241     Known = Known.sext(BitWidth);
2242 
2243     // If the sign bit is known zero, convert this to a zero extend.
2244     if (Known.isNonNegative()) {
2245       unsigned Opc =
2246           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
2247       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2248         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2249     }
2250 
2251     // Attempt to avoid multi-use ops if we don't need anything from them.
2252     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2253             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2254       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2255     break;
2256   }
2257   case ISD::ANY_EXTEND:
2258   case ISD::ANY_EXTEND_VECTOR_INREG: {
2259     SDValue Src = Op.getOperand(0);
2260     EVT SrcVT = Src.getValueType();
2261     unsigned InBits = SrcVT.getScalarSizeInBits();
2262     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2263     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2264 
2265     // If we only need the bottom element then we can just bitcast.
2266     // TODO: Handle ANY_EXTEND?
2267     if (IsLE && IsVecInReg && DemandedElts == 1 &&
2268         VT.getSizeInBits() == SrcVT.getSizeInBits())
2269       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2270 
2271     APInt InDemandedBits = DemandedBits.trunc(InBits);
2272     APInt InDemandedElts = DemandedElts.zext(InElts);
2273     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2274                              Depth + 1))
2275       return true;
2276     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2277     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2278     Known = Known.anyext(BitWidth);
2279 
2280     // Attempt to avoid multi-use ops if we don't need anything from them.
2281     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2282             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2283       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2284     break;
2285   }
2286   case ISD::TRUNCATE: {
2287     SDValue Src = Op.getOperand(0);
2288 
2289     // Simplify the input, using demanded bit information, and compute the known
2290     // zero/one bits live out.
2291     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2292     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2293     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2294                              Depth + 1))
2295       return true;
2296     Known = Known.trunc(BitWidth);
2297 
2298     // Attempt to avoid multi-use ops if we don't need anything from them.
2299     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2300             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2301       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2302 
2303     // If the input is only used by this truncate, see if we can shrink it based
2304     // on the known demanded bits.
2305     if (Src.getNode()->hasOneUse()) {
2306       switch (Src.getOpcode()) {
2307       default:
2308         break;
2309       case ISD::SRL:
2310         // Shrink SRL by a constant if none of the high bits shifted in are
2311         // demanded.
2312         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2313           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2314           // undesirable.
2315           break;
2316 
2317         const APInt *ShAmtC =
2318             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2319         if (!ShAmtC || ShAmtC->uge(BitWidth))
2320           break;
2321         uint64_t ShVal = ShAmtC->getZExtValue();
2322 
2323         APInt HighBits =
2324             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2325         HighBits.lshrInPlace(ShVal);
2326         HighBits = HighBits.trunc(BitWidth);
2327 
2328         if (!(HighBits & DemandedBits)) {
2329           // None of the shifted in bits are needed.  Add a truncate of the
2330           // shift input, then shift it.
2331           SDValue NewShAmt = TLO.DAG.getConstant(
2332               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2333           SDValue NewTrunc =
2334               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2335           return TLO.CombineTo(
2336               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2337         }
2338         break;
2339       }
2340     }
2341 
2342     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2343     break;
2344   }
2345   case ISD::AssertZext: {
2346     // AssertZext demands all of the high bits, plus any of the low bits
2347     // demanded by its users.
2348     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2349     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2350     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2351                              TLO, Depth + 1))
2352       return true;
2353     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2354 
2355     Known.Zero |= ~InMask;
2356     break;
2357   }
2358   case ISD::EXTRACT_VECTOR_ELT: {
2359     SDValue Src = Op.getOperand(0);
2360     SDValue Idx = Op.getOperand(1);
2361     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2362     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2363 
2364     if (SrcEltCnt.isScalable())
2365       return false;
2366 
2367     // Demand the bits from every vector element without a constant index.
2368     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2369     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2370     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2371       if (CIdx->getAPIntValue().ult(NumSrcElts))
2372         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2373 
2374     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2375     // anything about the extended bits.
2376     APInt DemandedSrcBits = DemandedBits;
2377     if (BitWidth > EltBitWidth)
2378       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2379 
2380     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2381                              Depth + 1))
2382       return true;
2383 
2384     // Attempt to avoid multi-use ops if we don't need anything from them.
2385     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2386       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2387               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2388         SDValue NewOp =
2389             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2390         return TLO.CombineTo(Op, NewOp);
2391       }
2392     }
2393 
2394     Known = Known2;
2395     if (BitWidth > EltBitWidth)
2396       Known = Known.anyext(BitWidth);
2397     break;
2398   }
2399   case ISD::BITCAST: {
2400     SDValue Src = Op.getOperand(0);
2401     EVT SrcVT = Src.getValueType();
2402     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2403 
2404     // If this is an FP->Int bitcast and if the sign bit is the only
2405     // thing demanded, turn this into a FGETSIGN.
2406     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2407         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2408         SrcVT.isFloatingPoint()) {
2409       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2410       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2411       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2412           SrcVT != MVT::f128) {
2413         // Cannot eliminate/lower SHL for f128 yet.
2414         EVT Ty = OpVTLegal ? VT : MVT::i32;
2415         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2416         // place.  We expect the SHL to be eliminated by other optimizations.
2417         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2418         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2419         if (!OpVTLegal && OpVTSizeInBits > 32)
2420           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2421         unsigned ShVal = Op.getValueSizeInBits() - 1;
2422         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2423         return TLO.CombineTo(Op,
2424                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2425       }
2426     }
2427 
2428     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2429     // Demand the elt/bit if any of the original elts/bits are demanded.
2430     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2431       unsigned Scale = BitWidth / NumSrcEltBits;
2432       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2433       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2434       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2435       for (unsigned i = 0; i != Scale; ++i) {
2436         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2437         unsigned BitOffset = EltOffset * NumSrcEltBits;
2438         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2439         if (!Sub.isZero()) {
2440           DemandedSrcBits |= Sub;
2441           for (unsigned j = 0; j != NumElts; ++j)
2442             if (DemandedElts[j])
2443               DemandedSrcElts.setBit((j * Scale) + i);
2444         }
2445       }
2446 
2447       APInt KnownSrcUndef, KnownSrcZero;
2448       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2449                                      KnownSrcZero, TLO, Depth + 1))
2450         return true;
2451 
2452       KnownBits KnownSrcBits;
2453       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2454                                KnownSrcBits, TLO, Depth + 1))
2455         return true;
2456     } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2457       // TODO - bigendian once we have test coverage.
2458       unsigned Scale = NumSrcEltBits / BitWidth;
2459       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2460       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2461       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2462       for (unsigned i = 0; i != NumElts; ++i)
2463         if (DemandedElts[i]) {
2464           unsigned Offset = (i % Scale) * BitWidth;
2465           DemandedSrcBits.insertBits(DemandedBits, Offset);
2466           DemandedSrcElts.setBit(i / Scale);
2467         }
2468 
2469       if (SrcVT.isVector()) {
2470         APInt KnownSrcUndef, KnownSrcZero;
2471         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2472                                        KnownSrcZero, TLO, Depth + 1))
2473           return true;
2474       }
2475 
2476       KnownBits KnownSrcBits;
2477       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2478                                KnownSrcBits, TLO, Depth + 1))
2479         return true;
2480     }
2481 
2482     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2483     // recursive call where Known may be useful to the caller.
2484     if (Depth > 0) {
2485       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2486       return false;
2487     }
2488     break;
2489   }
2490   case ISD::MUL:
2491     if (DemandedBits.isPowerOf2()) {
2492       // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
2493       // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
2494       // odd (has LSB set), then the left-shifted low bit of X is the answer.
2495       unsigned CTZ = DemandedBits.countTrailingZeros();
2496       ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
2497       if (C && C->getAPIntValue().countTrailingZeros() == CTZ) {
2498         EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2499         SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy);
2500         SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC);
2501         return TLO.CombineTo(Op, Shl);
2502       }
2503     }
2504     // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
2505     // X * X is odd iff X is odd.
2506     // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
2507     if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) {
2508       SDValue One = TLO.DAG.getConstant(1, dl, VT);
2509       SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One);
2510       return TLO.CombineTo(Op, And1);
2511     }
2512     LLVM_FALLTHROUGH;
2513   case ISD::ADD:
2514   case ISD::SUB: {
2515     // Add, Sub, and Mul don't demand any bits in positions beyond that
2516     // of the highest bit demanded of them.
2517     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2518     SDNodeFlags Flags = Op.getNode()->getFlags();
2519     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2520     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2521     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2522                              Depth + 1) ||
2523         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2524                              Depth + 1) ||
2525         // See if the operation should be performed at a smaller bit width.
2526         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2527       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2528         // Disable the nsw and nuw flags. We can no longer guarantee that we
2529         // won't wrap after simplification.
2530         Flags.setNoSignedWrap(false);
2531         Flags.setNoUnsignedWrap(false);
2532         Op->setFlags(Flags);
2533       }
2534       return true;
2535     }
2536 
2537     // Attempt to avoid multi-use ops if we don't need anything from them.
2538     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2539       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2540           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2541       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2542           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2543       if (DemandedOp0 || DemandedOp1) {
2544         Flags.setNoSignedWrap(false);
2545         Flags.setNoUnsignedWrap(false);
2546         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2547         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2548         SDValue NewOp =
2549             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2550         return TLO.CombineTo(Op, NewOp);
2551       }
2552     }
2553 
2554     // If we have a constant operand, we may be able to turn it into -1 if we
2555     // do not demand the high bits. This can make the constant smaller to
2556     // encode, allow more general folding, or match specialized instruction
2557     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2558     // is probably not useful (and could be detrimental).
2559     ConstantSDNode *C = isConstOrConstSplat(Op1);
2560     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2561     if (C && !C->isAllOnes() && !C->isOne() &&
2562         (C->getAPIntValue() | HighMask).isAllOnes()) {
2563       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2564       // Disable the nsw and nuw flags. We can no longer guarantee that we
2565       // won't wrap after simplification.
2566       Flags.setNoSignedWrap(false);
2567       Flags.setNoUnsignedWrap(false);
2568       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2569       return TLO.CombineTo(Op, NewOp);
2570     }
2571 
2572     // Match a multiply with a disguised negated-power-of-2 and convert to a
2573     // an equivalent shift-left amount.
2574     // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2575     auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned {
2576       if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse())
2577         return 0;
2578 
2579       // Don't touch opaque constants. Also, ignore zero and power-of-2
2580       // multiplies. Those will get folded later.
2581       ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1));
2582       if (MulC && !MulC->isOpaque() && !MulC->isZero() &&
2583           !MulC->getAPIntValue().isPowerOf2()) {
2584         APInt UnmaskedC = MulC->getAPIntValue() | HighMask;
2585         if (UnmaskedC.isNegatedPowerOf2())
2586           return (-UnmaskedC).logBase2();
2587       }
2588       return 0;
2589     };
2590 
2591     auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y, unsigned ShlAmt) {
2592       EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2593       SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy);
2594       SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC);
2595       SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl);
2596       return TLO.CombineTo(Op, Res);
2597     };
2598 
2599     if (isOperationLegalOrCustom(ISD::SHL, VT)) {
2600       if (Op.getOpcode() == ISD::ADD) {
2601         // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2602         if (unsigned ShAmt = getShiftLeftAmt(Op0))
2603           return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt);
2604         // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC))
2605         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2606           return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt);
2607       }
2608       if (Op.getOpcode() == ISD::SUB) {
2609         // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC))
2610         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2611           return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt);
2612       }
2613     }
2614 
2615     LLVM_FALLTHROUGH;
2616   }
2617   default:
2618     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2619       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2620                                             Known, TLO, Depth))
2621         return true;
2622       break;
2623     }
2624 
2625     // Just use computeKnownBits to compute output bits.
2626     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2627     break;
2628   }
2629 
2630   // If we know the value of all of the demanded bits, return this as a
2631   // constant.
2632   if (!isTargetCanonicalConstantNode(Op) &&
2633       DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2634     // Avoid folding to a constant if any OpaqueConstant is involved.
2635     const SDNode *N = Op.getNode();
2636     for (SDNode *Op :
2637          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2638       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2639         if (C->isOpaque())
2640           return false;
2641     }
2642     if (VT.isInteger())
2643       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2644     if (VT.isFloatingPoint())
2645       return TLO.CombineTo(
2646           Op,
2647           TLO.DAG.getConstantFP(
2648               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2649   }
2650 
2651   return false;
2652 }
2653 
2654 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2655                                                 const APInt &DemandedElts,
2656                                                 DAGCombinerInfo &DCI) const {
2657   SelectionDAG &DAG = DCI.DAG;
2658   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2659                         !DCI.isBeforeLegalizeOps());
2660 
2661   APInt KnownUndef, KnownZero;
2662   bool Simplified =
2663       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2664   if (Simplified) {
2665     DCI.AddToWorklist(Op.getNode());
2666     DCI.CommitTargetLoweringOpt(TLO);
2667   }
2668 
2669   return Simplified;
2670 }
2671 
2672 /// Given a vector binary operation and known undefined elements for each input
2673 /// operand, compute whether each element of the output is undefined.
2674 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2675                                          const APInt &UndefOp0,
2676                                          const APInt &UndefOp1) {
2677   EVT VT = BO.getValueType();
2678   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2679          "Vector binop only");
2680 
2681   EVT EltVT = VT.getVectorElementType();
2682   unsigned NumElts = VT.getVectorNumElements();
2683   assert(UndefOp0.getBitWidth() == NumElts &&
2684          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2685 
2686   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2687                                    const APInt &UndefVals) {
2688     if (UndefVals[Index])
2689       return DAG.getUNDEF(EltVT);
2690 
2691     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2692       // Try hard to make sure that the getNode() call is not creating temporary
2693       // nodes. Ignore opaque integers because they do not constant fold.
2694       SDValue Elt = BV->getOperand(Index);
2695       auto *C = dyn_cast<ConstantSDNode>(Elt);
2696       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2697         return Elt;
2698     }
2699 
2700     return SDValue();
2701   };
2702 
2703   APInt KnownUndef = APInt::getZero(NumElts);
2704   for (unsigned i = 0; i != NumElts; ++i) {
2705     // If both inputs for this element are either constant or undef and match
2706     // the element type, compute the constant/undef result for this element of
2707     // the vector.
2708     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2709     // not handle FP constants. The code within getNode() should be refactored
2710     // to avoid the danger of creating a bogus temporary node here.
2711     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2712     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2713     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2714       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2715         KnownUndef.setBit(i);
2716   }
2717   return KnownUndef;
2718 }
2719 
2720 bool TargetLowering::SimplifyDemandedVectorElts(
2721     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2722     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2723     bool AssumeSingleUse) const {
2724   EVT VT = Op.getValueType();
2725   unsigned Opcode = Op.getOpcode();
2726   APInt DemandedElts = OriginalDemandedElts;
2727   unsigned NumElts = DemandedElts.getBitWidth();
2728   assert(VT.isVector() && "Expected vector op");
2729 
2730   KnownUndef = KnownZero = APInt::getZero(NumElts);
2731 
2732   const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo();
2733   if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO))
2734     return false;
2735 
2736   // TODO: For now we assume we know nothing about scalable vectors.
2737   if (VT.isScalableVector())
2738     return false;
2739 
2740   assert(VT.getVectorNumElements() == NumElts &&
2741          "Mask size mismatches value type element count!");
2742 
2743   // Undef operand.
2744   if (Op.isUndef()) {
2745     KnownUndef.setAllBits();
2746     return false;
2747   }
2748 
2749   // If Op has other users, assume that all elements are needed.
2750   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2751     DemandedElts.setAllBits();
2752 
2753   // Not demanding any elements from Op.
2754   if (DemandedElts == 0) {
2755     KnownUndef.setAllBits();
2756     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2757   }
2758 
2759   // Limit search depth.
2760   if (Depth >= SelectionDAG::MaxRecursionDepth)
2761     return false;
2762 
2763   SDLoc DL(Op);
2764   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2765   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
2766 
2767   // Helper for demanding the specified elements and all the bits of both binary
2768   // operands.
2769   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2770     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2771                                                            TLO.DAG, Depth + 1);
2772     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2773                                                            TLO.DAG, Depth + 1);
2774     if (NewOp0 || NewOp1) {
2775       SDValue NewOp = TLO.DAG.getNode(
2776           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2777       return TLO.CombineTo(Op, NewOp);
2778     }
2779     return false;
2780   };
2781 
2782   switch (Opcode) {
2783   case ISD::SCALAR_TO_VECTOR: {
2784     if (!DemandedElts[0]) {
2785       KnownUndef.setAllBits();
2786       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2787     }
2788     SDValue ScalarSrc = Op.getOperand(0);
2789     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2790       SDValue Src = ScalarSrc.getOperand(0);
2791       SDValue Idx = ScalarSrc.getOperand(1);
2792       EVT SrcVT = Src.getValueType();
2793 
2794       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
2795 
2796       if (SrcEltCnt.isScalable())
2797         return false;
2798 
2799       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2800       if (isNullConstant(Idx)) {
2801         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
2802         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
2803         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
2804         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2805                                        TLO, Depth + 1))
2806           return true;
2807       }
2808     }
2809     KnownUndef.setHighBits(NumElts - 1);
2810     break;
2811   }
2812   case ISD::BITCAST: {
2813     SDValue Src = Op.getOperand(0);
2814     EVT SrcVT = Src.getValueType();
2815 
2816     // We only handle vectors here.
2817     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2818     if (!SrcVT.isVector())
2819       break;
2820 
2821     // Fast handling of 'identity' bitcasts.
2822     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2823     if (NumSrcElts == NumElts)
2824       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2825                                         KnownZero, TLO, Depth + 1);
2826 
2827     APInt SrcDemandedElts, SrcZero, SrcUndef;
2828 
2829     // Bitcast from 'large element' src vector to 'small element' vector, we
2830     // must demand a source element if any DemandedElt maps to it.
2831     if ((NumElts % NumSrcElts) == 0) {
2832       unsigned Scale = NumElts / NumSrcElts;
2833       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2834       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2835                                      TLO, Depth + 1))
2836         return true;
2837 
2838       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2839       // of the large element.
2840       // TODO - bigendian once we have test coverage.
2841       if (IsLE) {
2842         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2843         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
2844         for (unsigned i = 0; i != NumElts; ++i)
2845           if (DemandedElts[i]) {
2846             unsigned Ofs = (i % Scale) * EltSizeInBits;
2847             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2848           }
2849 
2850         KnownBits Known;
2851         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2852                                  TLO, Depth + 1))
2853           return true;
2854 
2855         // The bitcast has split each wide element into a number of
2856         // narrow subelements. We have just computed the Known bits
2857         // for wide elements. See if element splitting results in
2858         // some subelements being zero. Only for demanded elements!
2859         for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) {
2860           if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits)
2861                    .isAllOnes())
2862             continue;
2863           for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) {
2864             unsigned Elt = Scale * SrcElt + SubElt;
2865             if (DemandedElts[Elt])
2866               KnownZero.setBit(Elt);
2867           }
2868         }
2869       }
2870 
2871       // If the src element is zero/undef then all the output elements will be -
2872       // only demanded elements are guaranteed to be correct.
2873       for (unsigned i = 0; i != NumSrcElts; ++i) {
2874         if (SrcDemandedElts[i]) {
2875           if (SrcZero[i])
2876             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2877           if (SrcUndef[i])
2878             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2879         }
2880       }
2881     }
2882 
2883     // Bitcast from 'small element' src vector to 'large element' vector, we
2884     // demand all smaller source elements covered by the larger demanded element
2885     // of this vector.
2886     if ((NumSrcElts % NumElts) == 0) {
2887       unsigned Scale = NumSrcElts / NumElts;
2888       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2889       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2890                                      TLO, Depth + 1))
2891         return true;
2892 
2893       // If all the src elements covering an output element are zero/undef, then
2894       // the output element will be as well, assuming it was demanded.
2895       for (unsigned i = 0; i != NumElts; ++i) {
2896         if (DemandedElts[i]) {
2897           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
2898             KnownZero.setBit(i);
2899           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
2900             KnownUndef.setBit(i);
2901         }
2902       }
2903     }
2904     break;
2905   }
2906   case ISD::BUILD_VECTOR: {
2907     // Check all elements and simplify any unused elements with UNDEF.
2908     if (!DemandedElts.isAllOnes()) {
2909       // Don't simplify BROADCASTS.
2910       if (llvm::any_of(Op->op_values(),
2911                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2912         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2913         bool Updated = false;
2914         for (unsigned i = 0; i != NumElts; ++i) {
2915           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2916             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2917             KnownUndef.setBit(i);
2918             Updated = true;
2919           }
2920         }
2921         if (Updated)
2922           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2923       }
2924     }
2925     for (unsigned i = 0; i != NumElts; ++i) {
2926       SDValue SrcOp = Op.getOperand(i);
2927       if (SrcOp.isUndef()) {
2928         KnownUndef.setBit(i);
2929       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2930                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2931         KnownZero.setBit(i);
2932       }
2933     }
2934     break;
2935   }
2936   case ISD::CONCAT_VECTORS: {
2937     EVT SubVT = Op.getOperand(0).getValueType();
2938     unsigned NumSubVecs = Op.getNumOperands();
2939     unsigned NumSubElts = SubVT.getVectorNumElements();
2940     for (unsigned i = 0; i != NumSubVecs; ++i) {
2941       SDValue SubOp = Op.getOperand(i);
2942       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2943       APInt SubUndef, SubZero;
2944       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2945                                      Depth + 1))
2946         return true;
2947       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2948       KnownZero.insertBits(SubZero, i * NumSubElts);
2949     }
2950 
2951     // Attempt to avoid multi-use ops if we don't need anything from them.
2952     if (!DemandedElts.isAllOnes()) {
2953       bool FoundNewSub = false;
2954       SmallVector<SDValue, 2> DemandedSubOps;
2955       for (unsigned i = 0; i != NumSubVecs; ++i) {
2956         SDValue SubOp = Op.getOperand(i);
2957         APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2958         SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts(
2959             SubOp, SubElts, TLO.DAG, Depth + 1);
2960         DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp);
2961         FoundNewSub = NewSubOp ? true : FoundNewSub;
2962       }
2963       if (FoundNewSub) {
2964         SDValue NewOp =
2965             TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps);
2966         return TLO.CombineTo(Op, NewOp);
2967       }
2968     }
2969     break;
2970   }
2971   case ISD::INSERT_SUBVECTOR: {
2972     // Demand any elements from the subvector and the remainder from the src its
2973     // inserted into.
2974     SDValue Src = Op.getOperand(0);
2975     SDValue Sub = Op.getOperand(1);
2976     uint64_t Idx = Op.getConstantOperandVal(2);
2977     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2978     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2979     APInt DemandedSrcElts = DemandedElts;
2980     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2981 
2982     APInt SubUndef, SubZero;
2983     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2984                                    Depth + 1))
2985       return true;
2986 
2987     // If none of the src operand elements are demanded, replace it with undef.
2988     if (!DemandedSrcElts && !Src.isUndef())
2989       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2990                                                TLO.DAG.getUNDEF(VT), Sub,
2991                                                Op.getOperand(2)));
2992 
2993     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2994                                    TLO, Depth + 1))
2995       return true;
2996     KnownUndef.insertBits(SubUndef, Idx);
2997     KnownZero.insertBits(SubZero, Idx);
2998 
2999     // Attempt to avoid multi-use ops if we don't need anything from them.
3000     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
3001       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
3002           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3003       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
3004           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
3005       if (NewSrc || NewSub) {
3006         NewSrc = NewSrc ? NewSrc : Src;
3007         NewSub = NewSub ? NewSub : Sub;
3008         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3009                                         NewSub, Op.getOperand(2));
3010         return TLO.CombineTo(Op, NewOp);
3011       }
3012     }
3013     break;
3014   }
3015   case ISD::EXTRACT_SUBVECTOR: {
3016     // Offset the demanded elts by the subvector index.
3017     SDValue Src = Op.getOperand(0);
3018     if (Src.getValueType().isScalableVector())
3019       break;
3020     uint64_t Idx = Op.getConstantOperandVal(1);
3021     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3022     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3023 
3024     APInt SrcUndef, SrcZero;
3025     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3026                                    Depth + 1))
3027       return true;
3028     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
3029     KnownZero = SrcZero.extractBits(NumElts, Idx);
3030 
3031     // Attempt to avoid multi-use ops if we don't need anything from them.
3032     if (!DemandedElts.isAllOnes()) {
3033       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
3034           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3035       if (NewSrc) {
3036         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3037                                         Op.getOperand(1));
3038         return TLO.CombineTo(Op, NewOp);
3039       }
3040     }
3041     break;
3042   }
3043   case ISD::INSERT_VECTOR_ELT: {
3044     SDValue Vec = Op.getOperand(0);
3045     SDValue Scl = Op.getOperand(1);
3046     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3047 
3048     // For a legal, constant insertion index, if we don't need this insertion
3049     // then strip it, else remove it from the demanded elts.
3050     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
3051       unsigned Idx = CIdx->getZExtValue();
3052       if (!DemandedElts[Idx])
3053         return TLO.CombineTo(Op, Vec);
3054 
3055       APInt DemandedVecElts(DemandedElts);
3056       DemandedVecElts.clearBit(Idx);
3057       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
3058                                      KnownZero, TLO, Depth + 1))
3059         return true;
3060 
3061       KnownUndef.setBitVal(Idx, Scl.isUndef());
3062 
3063       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
3064       break;
3065     }
3066 
3067     APInt VecUndef, VecZero;
3068     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
3069                                    Depth + 1))
3070       return true;
3071     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
3072     break;
3073   }
3074   case ISD::VSELECT: {
3075     SDValue Sel = Op.getOperand(0);
3076     SDValue LHS = Op.getOperand(1);
3077     SDValue RHS = Op.getOperand(2);
3078 
3079     // Try to transform the select condition based on the current demanded
3080     // elements.
3081     APInt UndefSel, UndefZero;
3082     if (SimplifyDemandedVectorElts(Sel, DemandedElts, UndefSel, UndefZero, TLO,
3083                                    Depth + 1))
3084       return true;
3085 
3086     // See if we can simplify either vselect operand.
3087     APInt DemandedLHS(DemandedElts);
3088     APInt DemandedRHS(DemandedElts);
3089     APInt UndefLHS, ZeroLHS;
3090     APInt UndefRHS, ZeroRHS;
3091     if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
3092                                    Depth + 1))
3093       return true;
3094     if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
3095                                    Depth + 1))
3096       return true;
3097 
3098     KnownUndef = UndefLHS & UndefRHS;
3099     KnownZero = ZeroLHS & ZeroRHS;
3100 
3101     // If we know that the selected element is always zero, we don't need the
3102     // select value element.
3103     APInt DemandedSel = DemandedElts & ~KnownZero;
3104     if (DemandedSel != DemandedElts)
3105       if (SimplifyDemandedVectorElts(Sel, DemandedSel, UndefSel, UndefZero, TLO,
3106                                      Depth + 1))
3107         return true;
3108 
3109     break;
3110   }
3111   case ISD::VECTOR_SHUFFLE: {
3112     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
3113 
3114     // Collect demanded elements from shuffle operands..
3115     APInt DemandedLHS(NumElts, 0);
3116     APInt DemandedRHS(NumElts, 0);
3117     for (unsigned i = 0; i != NumElts; ++i) {
3118       int M = ShuffleMask[i];
3119       if (M < 0 || !DemandedElts[i])
3120         continue;
3121       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
3122       if (M < (int)NumElts)
3123         DemandedLHS.setBit(M);
3124       else
3125         DemandedRHS.setBit(M - NumElts);
3126     }
3127 
3128     // See if we can simplify either shuffle operand.
3129     APInt UndefLHS, ZeroLHS;
3130     APInt UndefRHS, ZeroRHS;
3131     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
3132                                    ZeroLHS, TLO, Depth + 1))
3133       return true;
3134     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
3135                                    ZeroRHS, TLO, Depth + 1))
3136       return true;
3137 
3138     // Simplify mask using undef elements from LHS/RHS.
3139     bool Updated = false;
3140     bool IdentityLHS = true, IdentityRHS = true;
3141     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
3142     for (unsigned i = 0; i != NumElts; ++i) {
3143       int &M = NewMask[i];
3144       if (M < 0)
3145         continue;
3146       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
3147           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
3148         Updated = true;
3149         M = -1;
3150       }
3151       IdentityLHS &= (M < 0) || (M == (int)i);
3152       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
3153     }
3154 
3155     // Update legal shuffle masks based on demanded elements if it won't reduce
3156     // to Identity which can cause premature removal of the shuffle mask.
3157     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
3158       SDValue LegalShuffle =
3159           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
3160                                   NewMask, TLO.DAG);
3161       if (LegalShuffle)
3162         return TLO.CombineTo(Op, LegalShuffle);
3163     }
3164 
3165     // Propagate undef/zero elements from LHS/RHS.
3166     for (unsigned i = 0; i != NumElts; ++i) {
3167       int M = ShuffleMask[i];
3168       if (M < 0) {
3169         KnownUndef.setBit(i);
3170       } else if (M < (int)NumElts) {
3171         if (UndefLHS[M])
3172           KnownUndef.setBit(i);
3173         if (ZeroLHS[M])
3174           KnownZero.setBit(i);
3175       } else {
3176         if (UndefRHS[M - NumElts])
3177           KnownUndef.setBit(i);
3178         if (ZeroRHS[M - NumElts])
3179           KnownZero.setBit(i);
3180       }
3181     }
3182     break;
3183   }
3184   case ISD::ANY_EXTEND_VECTOR_INREG:
3185   case ISD::SIGN_EXTEND_VECTOR_INREG:
3186   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3187     APInt SrcUndef, SrcZero;
3188     SDValue Src = Op.getOperand(0);
3189     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3190     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
3191     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3192                                    Depth + 1))
3193       return true;
3194     KnownZero = SrcZero.zextOrTrunc(NumElts);
3195     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
3196 
3197     if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
3198         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
3199         DemandedSrcElts == 1) {
3200       // aext - if we just need the bottom element then we can bitcast.
3201       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
3202     }
3203 
3204     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
3205       // zext(undef) upper bits are guaranteed to be zero.
3206       if (DemandedElts.isSubsetOf(KnownUndef))
3207         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3208       KnownUndef.clearAllBits();
3209 
3210       // zext - if we just need the bottom element then we can mask:
3211       // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
3212       if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
3213           Op->isOnlyUserOf(Src.getNode()) &&
3214           Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
3215         SDLoc DL(Op);
3216         EVT SrcVT = Src.getValueType();
3217         EVT SrcSVT = SrcVT.getScalarType();
3218         SmallVector<SDValue> MaskElts;
3219         MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
3220         MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
3221         SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
3222         if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
3223                 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
3224           Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
3225           return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
3226         }
3227       }
3228     }
3229     break;
3230   }
3231 
3232   // TODO: There are more binop opcodes that could be handled here - MIN,
3233   // MAX, saturated math, etc.
3234   case ISD::ADD: {
3235     SDValue Op0 = Op.getOperand(0);
3236     SDValue Op1 = Op.getOperand(1);
3237     if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
3238       APInt UndefLHS, ZeroLHS;
3239       if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3240                                      Depth + 1, /*AssumeSingleUse*/ true))
3241         return true;
3242     }
3243     LLVM_FALLTHROUGH;
3244   }
3245   case ISD::OR:
3246   case ISD::XOR:
3247   case ISD::SUB:
3248   case ISD::FADD:
3249   case ISD::FSUB:
3250   case ISD::FMUL:
3251   case ISD::FDIV:
3252   case ISD::FREM: {
3253     SDValue Op0 = Op.getOperand(0);
3254     SDValue Op1 = Op.getOperand(1);
3255 
3256     APInt UndefRHS, ZeroRHS;
3257     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3258                                    Depth + 1))
3259       return true;
3260     APInt UndefLHS, ZeroLHS;
3261     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3262                                    Depth + 1))
3263       return true;
3264 
3265     KnownZero = ZeroLHS & ZeroRHS;
3266     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
3267 
3268     // Attempt to avoid multi-use ops if we don't need anything from them.
3269     // TODO - use KnownUndef to relax the demandedelts?
3270     if (!DemandedElts.isAllOnes())
3271       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3272         return true;
3273     break;
3274   }
3275   case ISD::SHL:
3276   case ISD::SRL:
3277   case ISD::SRA:
3278   case ISD::ROTL:
3279   case ISD::ROTR: {
3280     SDValue Op0 = Op.getOperand(0);
3281     SDValue Op1 = Op.getOperand(1);
3282 
3283     APInt UndefRHS, ZeroRHS;
3284     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3285                                    Depth + 1))
3286       return true;
3287     APInt UndefLHS, ZeroLHS;
3288     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3289                                    Depth + 1))
3290       return true;
3291 
3292     KnownZero = ZeroLHS;
3293     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
3294 
3295     // Attempt to avoid multi-use ops if we don't need anything from them.
3296     // TODO - use KnownUndef to relax the demandedelts?
3297     if (!DemandedElts.isAllOnes())
3298       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3299         return true;
3300     break;
3301   }
3302   case ISD::MUL:
3303   case ISD::AND: {
3304     SDValue Op0 = Op.getOperand(0);
3305     SDValue Op1 = Op.getOperand(1);
3306 
3307     APInt SrcUndef, SrcZero;
3308     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
3309                                    Depth + 1))
3310       return true;
3311     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
3312                                    TLO, Depth + 1))
3313       return true;
3314 
3315     // If either side has a zero element, then the result element is zero, even
3316     // if the other is an UNDEF.
3317     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
3318     // and then handle 'and' nodes with the rest of the binop opcodes.
3319     KnownZero |= SrcZero;
3320     KnownUndef &= SrcUndef;
3321     KnownUndef &= ~KnownZero;
3322 
3323     // Attempt to avoid multi-use ops if we don't need anything from them.
3324     // TODO - use KnownUndef to relax the demandedelts?
3325     if (!DemandedElts.isAllOnes())
3326       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3327         return true;
3328     break;
3329   }
3330   case ISD::TRUNCATE:
3331   case ISD::SIGN_EXTEND:
3332   case ISD::ZERO_EXTEND:
3333     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
3334                                    KnownZero, TLO, Depth + 1))
3335       return true;
3336 
3337     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
3338       // zext(undef) upper bits are guaranteed to be zero.
3339       if (DemandedElts.isSubsetOf(KnownUndef))
3340         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3341       KnownUndef.clearAllBits();
3342     }
3343     break;
3344   default: {
3345     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
3346       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
3347                                                   KnownZero, TLO, Depth))
3348         return true;
3349     } else {
3350       KnownBits Known;
3351       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
3352       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
3353                                TLO, Depth, AssumeSingleUse))
3354         return true;
3355     }
3356     break;
3357   }
3358   }
3359   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
3360 
3361   // Constant fold all undef cases.
3362   // TODO: Handle zero cases as well.
3363   if (DemandedElts.isSubsetOf(KnownUndef))
3364     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3365 
3366   return false;
3367 }
3368 
3369 /// Determine which of the bits specified in Mask are known to be either zero or
3370 /// one and return them in the Known.
3371 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
3372                                                    KnownBits &Known,
3373                                                    const APInt &DemandedElts,
3374                                                    const SelectionDAG &DAG,
3375                                                    unsigned Depth) const {
3376   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3377           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3378           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3379           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3380          "Should use MaskedValueIsZero if you don't know whether Op"
3381          " is a target node!");
3382   Known.resetAll();
3383 }
3384 
3385 void TargetLowering::computeKnownBitsForTargetInstr(
3386     GISelKnownBits &Analysis, Register R, KnownBits &Known,
3387     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3388     unsigned Depth) const {
3389   Known.resetAll();
3390 }
3391 
3392 void TargetLowering::computeKnownBitsForFrameIndex(
3393   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3394   // The low bits are known zero if the pointer is aligned.
3395   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3396 }
3397 
3398 Align TargetLowering::computeKnownAlignForTargetInstr(
3399   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
3400   unsigned Depth) const {
3401   return Align(1);
3402 }
3403 
3404 /// This method can be implemented by targets that want to expose additional
3405 /// information about sign bits to the DAG Combiner.
3406 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
3407                                                          const APInt &,
3408                                                          const SelectionDAG &,
3409                                                          unsigned Depth) const {
3410   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3411           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3412           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3413           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3414          "Should use ComputeNumSignBits if you don't know whether Op"
3415          " is a target node!");
3416   return 1;
3417 }
3418 
3419 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3420   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3421   const MachineRegisterInfo &MRI, unsigned Depth) const {
3422   return 1;
3423 }
3424 
3425 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3426     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3427     TargetLoweringOpt &TLO, unsigned Depth) const {
3428   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3429           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3430           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3431           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3432          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3433          " is a target node!");
3434   return false;
3435 }
3436 
3437 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3438     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3439     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3440   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3441           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3442           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3443           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3444          "Should use SimplifyDemandedBits if you don't know whether Op"
3445          " is a target node!");
3446   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3447   return false;
3448 }
3449 
3450 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3451     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3452     SelectionDAG &DAG, unsigned Depth) const {
3453   assert(
3454       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3455        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3456        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3457        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3458       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3459       " is a target node!");
3460   return SDValue();
3461 }
3462 
3463 SDValue
3464 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3465                                         SDValue N1, MutableArrayRef<int> Mask,
3466                                         SelectionDAG &DAG) const {
3467   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3468   if (!LegalMask) {
3469     std::swap(N0, N1);
3470     ShuffleVectorSDNode::commuteMask(Mask);
3471     LegalMask = isShuffleMaskLegal(Mask, VT);
3472   }
3473 
3474   if (!LegalMask)
3475     return SDValue();
3476 
3477   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3478 }
3479 
3480 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3481   return nullptr;
3482 }
3483 
3484 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3485     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3486     bool PoisonOnly, unsigned Depth) const {
3487   assert(
3488       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3489        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3490        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3491        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3492       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3493       " is a target node!");
3494   return false;
3495 }
3496 
3497 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3498                                                   const SelectionDAG &DAG,
3499                                                   bool SNaN,
3500                                                   unsigned Depth) const {
3501   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3502           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3503           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3504           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3505          "Should use isKnownNeverNaN if you don't know whether Op"
3506          " is a target node!");
3507   return false;
3508 }
3509 
3510 bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
3511                                                const APInt &DemandedElts,
3512                                                APInt &UndefElts,
3513                                                unsigned Depth) const {
3514   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3515           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3516           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3517           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3518          "Should use isSplatValue if you don't know whether Op"
3519          " is a target node!");
3520   return false;
3521 }
3522 
3523 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3524 // work with truncating build vectors and vectors with elements of less than
3525 // 8 bits.
3526 bool TargetLowering::isConstTrueVal(SDValue N) const {
3527   if (!N)
3528     return false;
3529 
3530   unsigned EltWidth;
3531   APInt CVal;
3532   if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false,
3533                                                /*AllowTruncation=*/true)) {
3534     CVal = CN->getAPIntValue();
3535     EltWidth = N.getValueType().getScalarSizeInBits();
3536   } else
3537     return false;
3538 
3539   // If this is a truncating splat, truncate the splat value.
3540   // Otherwise, we may fail to match the expected values below.
3541   if (EltWidth < CVal.getBitWidth())
3542     CVal = CVal.trunc(EltWidth);
3543 
3544   switch (getBooleanContents(N.getValueType())) {
3545   case UndefinedBooleanContent:
3546     return CVal[0];
3547   case ZeroOrOneBooleanContent:
3548     return CVal.isOne();
3549   case ZeroOrNegativeOneBooleanContent:
3550     return CVal.isAllOnes();
3551   }
3552 
3553   llvm_unreachable("Invalid boolean contents");
3554 }
3555 
3556 bool TargetLowering::isConstFalseVal(SDValue N) const {
3557   if (!N)
3558     return false;
3559 
3560   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3561   if (!CN) {
3562     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3563     if (!BV)
3564       return false;
3565 
3566     // Only interested in constant splats, we don't care about undef
3567     // elements in identifying boolean constants and getConstantSplatNode
3568     // returns NULL if all ops are undef;
3569     CN = BV->getConstantSplatNode();
3570     if (!CN)
3571       return false;
3572   }
3573 
3574   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3575     return !CN->getAPIntValue()[0];
3576 
3577   return CN->isZero();
3578 }
3579 
3580 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3581                                        bool SExt) const {
3582   if (VT == MVT::i1)
3583     return N->isOne();
3584 
3585   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3586   switch (Cnt) {
3587   case TargetLowering::ZeroOrOneBooleanContent:
3588     // An extended value of 1 is always true, unless its original type is i1,
3589     // in which case it will be sign extended to -1.
3590     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3591   case TargetLowering::UndefinedBooleanContent:
3592   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3593     return N->isAllOnes() && SExt;
3594   }
3595   llvm_unreachable("Unexpected enumeration.");
3596 }
3597 
3598 /// This helper function of SimplifySetCC tries to optimize the comparison when
3599 /// either operand of the SetCC node is a bitwise-and instruction.
3600 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3601                                          ISD::CondCode Cond, const SDLoc &DL,
3602                                          DAGCombinerInfo &DCI) const {
3603   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3604     std::swap(N0, N1);
3605 
3606   SelectionDAG &DAG = DCI.DAG;
3607   EVT OpVT = N0.getValueType();
3608   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3609       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3610     return SDValue();
3611 
3612   // (X & Y) != 0 --> zextOrTrunc(X & Y)
3613   // iff everything but LSB is known zero:
3614   if (Cond == ISD::SETNE && isNullConstant(N1) &&
3615       (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent ||
3616        getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) {
3617     unsigned NumEltBits = OpVT.getScalarSizeInBits();
3618     APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1);
3619     if (DAG.MaskedValueIsZero(N0, UpperBits))
3620       return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT);
3621   }
3622 
3623   // Match these patterns in any of their permutations:
3624   // (X & Y) == Y
3625   // (X & Y) != Y
3626   SDValue X, Y;
3627   if (N0.getOperand(0) == N1) {
3628     X = N0.getOperand(1);
3629     Y = N0.getOperand(0);
3630   } else if (N0.getOperand(1) == N1) {
3631     X = N0.getOperand(0);
3632     Y = N0.getOperand(1);
3633   } else {
3634     return SDValue();
3635   }
3636 
3637   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3638   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3639     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3640     // Note that where Y is variable and is known to have at most one bit set
3641     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3642     // equivalent when Y == 0.
3643     assert(OpVT.isInteger());
3644     Cond = ISD::getSetCCInverse(Cond, OpVT);
3645     if (DCI.isBeforeLegalizeOps() ||
3646         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3647       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3648   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3649     // If the target supports an 'and-not' or 'and-complement' logic operation,
3650     // try to use that to make a comparison operation more efficient.
3651     // But don't do this transform if the mask is a single bit because there are
3652     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3653     // 'rlwinm' on PPC).
3654 
3655     // Bail out if the compare operand that we want to turn into a zero is
3656     // already a zero (otherwise, infinite loop).
3657     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3658     if (YConst && YConst->isZero())
3659       return SDValue();
3660 
3661     // Transform this into: ~X & Y == 0.
3662     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3663     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3664     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3665   }
3666 
3667   return SDValue();
3668 }
3669 
3670 /// There are multiple IR patterns that could be checking whether certain
3671 /// truncation of a signed number would be lossy or not. The pattern which is
3672 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3673 /// We are looking for the following pattern: (KeptBits is a constant)
3674 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3675 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3676 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3677 /// We will unfold it into the natural trunc+sext pattern:
3678 ///   ((%x << C) a>> C) dstcond %x
3679 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3680 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3681     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3682     const SDLoc &DL) const {
3683   // We must be comparing with a constant.
3684   ConstantSDNode *C1;
3685   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3686     return SDValue();
3687 
3688   // N0 should be:  add %x, (1 << (KeptBits-1))
3689   if (N0->getOpcode() != ISD::ADD)
3690     return SDValue();
3691 
3692   // And we must be 'add'ing a constant.
3693   ConstantSDNode *C01;
3694   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3695     return SDValue();
3696 
3697   SDValue X = N0->getOperand(0);
3698   EVT XVT = X.getValueType();
3699 
3700   // Validate constants ...
3701 
3702   APInt I1 = C1->getAPIntValue();
3703 
3704   ISD::CondCode NewCond;
3705   if (Cond == ISD::CondCode::SETULT) {
3706     NewCond = ISD::CondCode::SETEQ;
3707   } else if (Cond == ISD::CondCode::SETULE) {
3708     NewCond = ISD::CondCode::SETEQ;
3709     // But need to 'canonicalize' the constant.
3710     I1 += 1;
3711   } else if (Cond == ISD::CondCode::SETUGT) {
3712     NewCond = ISD::CondCode::SETNE;
3713     // But need to 'canonicalize' the constant.
3714     I1 += 1;
3715   } else if (Cond == ISD::CondCode::SETUGE) {
3716     NewCond = ISD::CondCode::SETNE;
3717   } else
3718     return SDValue();
3719 
3720   APInt I01 = C01->getAPIntValue();
3721 
3722   auto checkConstants = [&I1, &I01]() -> bool {
3723     // Both of them must be power-of-two, and the constant from setcc is bigger.
3724     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3725   };
3726 
3727   if (checkConstants()) {
3728     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3729   } else {
3730     // What if we invert constants? (and the target predicate)
3731     I1.negate();
3732     I01.negate();
3733     assert(XVT.isInteger());
3734     NewCond = getSetCCInverse(NewCond, XVT);
3735     if (!checkConstants())
3736       return SDValue();
3737     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3738   }
3739 
3740   // They are power-of-two, so which bit is set?
3741   const unsigned KeptBits = I1.logBase2();
3742   const unsigned KeptBitsMinusOne = I01.logBase2();
3743 
3744   // Magic!
3745   if (KeptBits != (KeptBitsMinusOne + 1))
3746     return SDValue();
3747   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3748 
3749   // We don't want to do this in every single case.
3750   SelectionDAG &DAG = DCI.DAG;
3751   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3752           XVT, KeptBits))
3753     return SDValue();
3754 
3755   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3756   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3757 
3758   // Unfold into:  ((%x << C) a>> C) cond %x
3759   // Where 'cond' will be either 'eq' or 'ne'.
3760   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3761   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3762   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3763   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3764 
3765   return T2;
3766 }
3767 
3768 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3769 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3770     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3771     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3772   assert(isConstOrConstSplat(N1C) &&
3773          isConstOrConstSplat(N1C)->getAPIntValue().isZero() &&
3774          "Should be a comparison with 0.");
3775   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3776          "Valid only for [in]equality comparisons.");
3777 
3778   unsigned NewShiftOpcode;
3779   SDValue X, C, Y;
3780 
3781   SelectionDAG &DAG = DCI.DAG;
3782   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3783 
3784   // Look for '(C l>>/<< Y)'.
3785   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3786     // The shift should be one-use.
3787     if (!V.hasOneUse())
3788       return false;
3789     unsigned OldShiftOpcode = V.getOpcode();
3790     switch (OldShiftOpcode) {
3791     case ISD::SHL:
3792       NewShiftOpcode = ISD::SRL;
3793       break;
3794     case ISD::SRL:
3795       NewShiftOpcode = ISD::SHL;
3796       break;
3797     default:
3798       return false; // must be a logical shift.
3799     }
3800     // We should be shifting a constant.
3801     // FIXME: best to use isConstantOrConstantVector().
3802     C = V.getOperand(0);
3803     ConstantSDNode *CC =
3804         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3805     if (!CC)
3806       return false;
3807     Y = V.getOperand(1);
3808 
3809     ConstantSDNode *XC =
3810         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3811     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3812         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3813   };
3814 
3815   // LHS of comparison should be an one-use 'and'.
3816   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3817     return SDValue();
3818 
3819   X = N0.getOperand(0);
3820   SDValue Mask = N0.getOperand(1);
3821 
3822   // 'and' is commutative!
3823   if (!Match(Mask)) {
3824     std::swap(X, Mask);
3825     if (!Match(Mask))
3826       return SDValue();
3827   }
3828 
3829   EVT VT = X.getValueType();
3830 
3831   // Produce:
3832   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3833   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3834   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3835   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3836   return T2;
3837 }
3838 
3839 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3840 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3841 /// handle the commuted versions of these patterns.
3842 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3843                                            ISD::CondCode Cond, const SDLoc &DL,
3844                                            DAGCombinerInfo &DCI) const {
3845   unsigned BOpcode = N0.getOpcode();
3846   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3847          "Unexpected binop");
3848   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3849 
3850   // (X + Y) == X --> Y == 0
3851   // (X - Y) == X --> Y == 0
3852   // (X ^ Y) == X --> Y == 0
3853   SelectionDAG &DAG = DCI.DAG;
3854   EVT OpVT = N0.getValueType();
3855   SDValue X = N0.getOperand(0);
3856   SDValue Y = N0.getOperand(1);
3857   if (X == N1)
3858     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3859 
3860   if (Y != N1)
3861     return SDValue();
3862 
3863   // (X + Y) == Y --> X == 0
3864   // (X ^ Y) == Y --> X == 0
3865   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3866     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3867 
3868   // The shift would not be valid if the operands are boolean (i1).
3869   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3870     return SDValue();
3871 
3872   // (X - Y) == Y --> X == Y << 1
3873   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3874                                  !DCI.isBeforeLegalize());
3875   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3876   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3877   if (!DCI.isCalledByLegalizer())
3878     DCI.AddToWorklist(YShl1.getNode());
3879   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3880 }
3881 
3882 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3883                                       SDValue N0, const APInt &C1,
3884                                       ISD::CondCode Cond, const SDLoc &dl,
3885                                       SelectionDAG &DAG) {
3886   // Look through truncs that don't change the value of a ctpop.
3887   // FIXME: Add vector support? Need to be careful with setcc result type below.
3888   SDValue CTPOP = N0;
3889   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3890       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3891     CTPOP = N0.getOperand(0);
3892 
3893   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3894     return SDValue();
3895 
3896   EVT CTVT = CTPOP.getValueType();
3897   SDValue CTOp = CTPOP.getOperand(0);
3898 
3899   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3900   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3901   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3902     return SDValue();
3903 
3904   // (ctpop x) u< 2 -> (x & x-1) == 0
3905   // (ctpop x) u> 1 -> (x & x-1) != 0
3906   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3907     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3908     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3909       return SDValue();
3910     if (C1 == 0 && (Cond == ISD::SETULT))
3911       return SDValue(); // This is handled elsewhere.
3912 
3913     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3914 
3915     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3916     SDValue Result = CTOp;
3917     for (unsigned i = 0; i < Passes; i++) {
3918       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3919       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3920     }
3921     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3922     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3923   }
3924 
3925   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3926   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3927     // For scalars, keep CTPOP if it is legal or custom.
3928     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3929       return SDValue();
3930     // This is based on X86's custom lowering for CTPOP which produces more
3931     // instructions than the expansion here.
3932 
3933     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3934     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3935     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3936     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3937     assert(CTVT.isInteger());
3938     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3939     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3940     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3941     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3942     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3943     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3944     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3945   }
3946 
3947   return SDValue();
3948 }
3949 
3950 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1,
3951                                    ISD::CondCode Cond, const SDLoc &dl,
3952                                    SelectionDAG &DAG) {
3953   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
3954     return SDValue();
3955 
3956   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
3957   if (!C1 || !(C1->isZero() || C1->isAllOnes()))
3958     return SDValue();
3959 
3960   auto getRotateSource = [](SDValue X) {
3961     if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR)
3962       return X.getOperand(0);
3963     return SDValue();
3964   };
3965 
3966   // Peek through a rotated value compared against 0 or -1:
3967   // (rot X, Y) == 0/-1 --> X == 0/-1
3968   // (rot X, Y) != 0/-1 --> X != 0/-1
3969   if (SDValue R = getRotateSource(N0))
3970     return DAG.getSetCC(dl, VT, R, N1, Cond);
3971 
3972   // Peek through an 'or' of a rotated value compared against 0:
3973   // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0
3974   // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0
3975   //
3976   // TODO: Add the 'and' with -1 sibling.
3977   // TODO: Recurse through a series of 'or' ops to find the rotate.
3978   EVT OpVT = N0.getValueType();
3979   if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) {
3980     if (SDValue R = getRotateSource(N0.getOperand(0))) {
3981       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1));
3982       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
3983     }
3984     if (SDValue R = getRotateSource(N0.getOperand(1))) {
3985       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0));
3986       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
3987     }
3988   }
3989 
3990   return SDValue();
3991 }
3992 
3993 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1,
3994                                         ISD::CondCode Cond, const SDLoc &dl,
3995                                         SelectionDAG &DAG) {
3996   // If we are testing for all-bits-clear, we might be able to do that with
3997   // less shifting since bit-order does not matter.
3998   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
3999     return SDValue();
4000 
4001   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
4002   if (!C1 || !C1->isZero())
4003     return SDValue();
4004 
4005   if (!N0.hasOneUse() ||
4006       (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR))
4007     return SDValue();
4008 
4009   unsigned BitWidth = N0.getScalarValueSizeInBits();
4010   auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2));
4011   if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
4012     return SDValue();
4013 
4014   // Canonicalize fshr as fshl to reduce pattern-matching.
4015   unsigned ShAmt = ShAmtC->getZExtValue();
4016   if (N0.getOpcode() == ISD::FSHR)
4017     ShAmt = BitWidth - ShAmt;
4018 
4019   // Match an 'or' with a specific operand 'Other' in either commuted variant.
4020   SDValue X, Y;
4021   auto matchOr = [&X, &Y](SDValue Or, SDValue Other) {
4022     if (Or.getOpcode() != ISD::OR || !Or.hasOneUse())
4023       return false;
4024     if (Or.getOperand(0) == Other) {
4025       X = Or.getOperand(0);
4026       Y = Or.getOperand(1);
4027       return true;
4028     }
4029     if (Or.getOperand(1) == Other) {
4030       X = Or.getOperand(1);
4031       Y = Or.getOperand(0);
4032       return true;
4033     }
4034     return false;
4035   };
4036 
4037   EVT OpVT = N0.getValueType();
4038   EVT ShAmtVT = N0.getOperand(2).getValueType();
4039   SDValue F0 = N0.getOperand(0);
4040   SDValue F1 = N0.getOperand(1);
4041   if (matchOr(F0, F1)) {
4042     // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0
4043     SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT);
4044     SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt);
4045     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4046     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4047   }
4048   if (matchOr(F1, F0)) {
4049     // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0
4050     SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT);
4051     SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt);
4052     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4053     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4054   }
4055 
4056   return SDValue();
4057 }
4058 
4059 /// Try to simplify a setcc built with the specified operands and cc. If it is
4060 /// unable to simplify it, return a null SDValue.
4061 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
4062                                       ISD::CondCode Cond, bool foldBooleans,
4063                                       DAGCombinerInfo &DCI,
4064                                       const SDLoc &dl) const {
4065   SelectionDAG &DAG = DCI.DAG;
4066   const DataLayout &Layout = DAG.getDataLayout();
4067   EVT OpVT = N0.getValueType();
4068 
4069   // Constant fold or commute setcc.
4070   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
4071     return Fold;
4072 
4073   bool N0ConstOrSplat =
4074       isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4075   bool N1ConstOrSplat =
4076       isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4077 
4078   // Ensure that the constant occurs on the RHS and fold constant comparisons.
4079   // TODO: Handle non-splat vector constants. All undef causes trouble.
4080   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
4081   // infinite loop here when we encounter one.
4082   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
4083   if (N0ConstOrSplat && (!OpVT.isScalableVector() || !N1ConstOrSplat) &&
4084       (DCI.isBeforeLegalizeOps() ||
4085        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
4086     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4087 
4088   // If we have a subtract with the same 2 non-constant operands as this setcc
4089   // -- but in reverse order -- then try to commute the operands of this setcc
4090   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
4091   // instruction on some targets.
4092   if (!N0ConstOrSplat && !N1ConstOrSplat &&
4093       (DCI.isBeforeLegalizeOps() ||
4094        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
4095       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
4096       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
4097     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4098 
4099   if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG))
4100     return V;
4101 
4102   if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG))
4103     return V;
4104 
4105   if (auto *N1C = isConstOrConstSplat(N1)) {
4106     const APInt &C1 = N1C->getAPIntValue();
4107 
4108     // Optimize some CTPOP cases.
4109     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
4110       return V;
4111 
4112     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
4113     // equality comparison, then we're just comparing whether X itself is
4114     // zero.
4115     if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
4116         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
4117         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
4118       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
4119         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4120             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
4121           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
4122             // (srl (ctlz x), 5) == 0  -> X != 0
4123             // (srl (ctlz x), 5) != 1  -> X != 0
4124             Cond = ISD::SETNE;
4125           } else {
4126             // (srl (ctlz x), 5) != 0  -> X == 0
4127             // (srl (ctlz x), 5) == 1  -> X == 0
4128             Cond = ISD::SETEQ;
4129           }
4130           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
4131           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
4132                               Cond);
4133         }
4134       }
4135     }
4136   }
4137 
4138   // FIXME: Support vectors.
4139   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4140     const APInt &C1 = N1C->getAPIntValue();
4141 
4142     // (zext x) == C --> x == (trunc C)
4143     // (sext x) == C --> x == (trunc C)
4144     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4145         DCI.isBeforeLegalize() && N0->hasOneUse()) {
4146       unsigned MinBits = N0.getValueSizeInBits();
4147       SDValue PreExt;
4148       bool Signed = false;
4149       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
4150         // ZExt
4151         MinBits = N0->getOperand(0).getValueSizeInBits();
4152         PreExt = N0->getOperand(0);
4153       } else if (N0->getOpcode() == ISD::AND) {
4154         // DAGCombine turns costly ZExts into ANDs
4155         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
4156           if ((C->getAPIntValue()+1).isPowerOf2()) {
4157             MinBits = C->getAPIntValue().countTrailingOnes();
4158             PreExt = N0->getOperand(0);
4159           }
4160       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
4161         // SExt
4162         MinBits = N0->getOperand(0).getValueSizeInBits();
4163         PreExt = N0->getOperand(0);
4164         Signed = true;
4165       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
4166         // ZEXTLOAD / SEXTLOAD
4167         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
4168           MinBits = LN0->getMemoryVT().getSizeInBits();
4169           PreExt = N0;
4170         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
4171           Signed = true;
4172           MinBits = LN0->getMemoryVT().getSizeInBits();
4173           PreExt = N0;
4174         }
4175       }
4176 
4177       // Figure out how many bits we need to preserve this constant.
4178       unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits();
4179 
4180       // Make sure we're not losing bits from the constant.
4181       if (MinBits > 0 &&
4182           MinBits < C1.getBitWidth() &&
4183           MinBits >= ReqdBits) {
4184         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
4185         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
4186           // Will get folded away.
4187           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
4188           if (MinBits == 1 && C1 == 1)
4189             // Invert the condition.
4190             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
4191                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4192           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
4193           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
4194         }
4195 
4196         // If truncating the setcc operands is not desirable, we can still
4197         // simplify the expression in some cases:
4198         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
4199         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
4200         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
4201         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
4202         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
4203         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
4204         SDValue TopSetCC = N0->getOperand(0);
4205         unsigned N0Opc = N0->getOpcode();
4206         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
4207         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
4208             TopSetCC.getOpcode() == ISD::SETCC &&
4209             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
4210             (isConstFalseVal(N1) ||
4211              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
4212 
4213           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
4214                          (!N1C->isZero() && Cond == ISD::SETNE);
4215 
4216           if (!Inverse)
4217             return TopSetCC;
4218 
4219           ISD::CondCode InvCond = ISD::getSetCCInverse(
4220               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
4221               TopSetCC.getOperand(0).getValueType());
4222           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
4223                                       TopSetCC.getOperand(1),
4224                                       InvCond);
4225         }
4226       }
4227     }
4228 
4229     // If the LHS is '(and load, const)', the RHS is 0, the test is for
4230     // equality or unsigned, and all 1 bits of the const are in the same
4231     // partial word, see if we can shorten the load.
4232     if (DCI.isBeforeLegalize() &&
4233         !ISD::isSignedIntSetCC(Cond) &&
4234         N0.getOpcode() == ISD::AND && C1 == 0 &&
4235         N0.getNode()->hasOneUse() &&
4236         isa<LoadSDNode>(N0.getOperand(0)) &&
4237         N0.getOperand(0).getNode()->hasOneUse() &&
4238         isa<ConstantSDNode>(N0.getOperand(1))) {
4239       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
4240       APInt bestMask;
4241       unsigned bestWidth = 0, bestOffset = 0;
4242       if (Lod->isSimple() && Lod->isUnindexed()) {
4243         unsigned origWidth = N0.getValueSizeInBits();
4244         unsigned maskWidth = origWidth;
4245         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
4246         // 8 bits, but have to be careful...
4247         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
4248           origWidth = Lod->getMemoryVT().getSizeInBits();
4249         const APInt &Mask = N0.getConstantOperandAPInt(1);
4250         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
4251           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
4252           for (unsigned offset=0; offset<origWidth/width; offset++) {
4253             if (Mask.isSubsetOf(newMask)) {
4254               if (Layout.isLittleEndian())
4255                 bestOffset = (uint64_t)offset * (width/8);
4256               else
4257                 bestOffset = (origWidth/width - offset - 1) * (width/8);
4258               bestMask = Mask.lshr(offset * (width/8) * 8);
4259               bestWidth = width;
4260               break;
4261             }
4262             newMask <<= width;
4263           }
4264         }
4265       }
4266       if (bestWidth) {
4267         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
4268         if (newVT.isRound() &&
4269             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
4270           SDValue Ptr = Lod->getBasePtr();
4271           if (bestOffset != 0)
4272             Ptr =
4273                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
4274           SDValue NewLoad =
4275               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
4276                           Lod->getPointerInfo().getWithOffset(bestOffset),
4277                           Lod->getOriginalAlign());
4278           return DAG.getSetCC(dl, VT,
4279                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
4280                                       DAG.getConstant(bestMask.trunc(bestWidth),
4281                                                       dl, newVT)),
4282                               DAG.getConstant(0LL, dl, newVT), Cond);
4283         }
4284       }
4285     }
4286 
4287     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
4288     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
4289       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
4290 
4291       // If the comparison constant has bits in the upper part, the
4292       // zero-extended value could never match.
4293       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
4294                                               C1.getBitWidth() - InSize))) {
4295         switch (Cond) {
4296         case ISD::SETUGT:
4297         case ISD::SETUGE:
4298         case ISD::SETEQ:
4299           return DAG.getConstant(0, dl, VT);
4300         case ISD::SETULT:
4301         case ISD::SETULE:
4302         case ISD::SETNE:
4303           return DAG.getConstant(1, dl, VT);
4304         case ISD::SETGT:
4305         case ISD::SETGE:
4306           // True if the sign bit of C1 is set.
4307           return DAG.getConstant(C1.isNegative(), dl, VT);
4308         case ISD::SETLT:
4309         case ISD::SETLE:
4310           // True if the sign bit of C1 isn't set.
4311           return DAG.getConstant(C1.isNonNegative(), dl, VT);
4312         default:
4313           break;
4314         }
4315       }
4316 
4317       // Otherwise, we can perform the comparison with the low bits.
4318       switch (Cond) {
4319       case ISD::SETEQ:
4320       case ISD::SETNE:
4321       case ISD::SETUGT:
4322       case ISD::SETUGE:
4323       case ISD::SETULT:
4324       case ISD::SETULE: {
4325         EVT newVT = N0.getOperand(0).getValueType();
4326         if (DCI.isBeforeLegalizeOps() ||
4327             (isOperationLegal(ISD::SETCC, newVT) &&
4328              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
4329           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
4330           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
4331 
4332           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
4333                                           NewConst, Cond);
4334           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
4335         }
4336         break;
4337       }
4338       default:
4339         break; // todo, be more careful with signed comparisons
4340       }
4341     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4342                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4343                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
4344                                       OpVT)) {
4345       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
4346       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
4347       EVT ExtDstTy = N0.getValueType();
4348       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
4349 
4350       // If the constant doesn't fit into the number of bits for the source of
4351       // the sign extension, it is impossible for both sides to be equal.
4352       if (C1.getMinSignedBits() > ExtSrcTyBits)
4353         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
4354 
4355       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
4356              ExtDstTy != ExtSrcTy && "Unexpected types!");
4357       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
4358       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
4359                                    DAG.getConstant(Imm, dl, ExtDstTy));
4360       if (!DCI.isCalledByLegalizer())
4361         DCI.AddToWorklist(ZextOp.getNode());
4362       // Otherwise, make this a use of a zext.
4363       return DAG.getSetCC(dl, VT, ZextOp,
4364                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
4365     } else if ((N1C->isZero() || N1C->isOne()) &&
4366                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4367       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
4368       if (N0.getOpcode() == ISD::SETCC &&
4369           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
4370           (N0.getValueType() == MVT::i1 ||
4371            getBooleanContents(N0.getOperand(0).getValueType()) ==
4372                        ZeroOrOneBooleanContent)) {
4373         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
4374         if (TrueWhenTrue)
4375           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
4376         // Invert the condition.
4377         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4378         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
4379         if (DCI.isBeforeLegalizeOps() ||
4380             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
4381           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
4382       }
4383 
4384       if ((N0.getOpcode() == ISD::XOR ||
4385            (N0.getOpcode() == ISD::AND &&
4386             N0.getOperand(0).getOpcode() == ISD::XOR &&
4387             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
4388           isOneConstant(N0.getOperand(1))) {
4389         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
4390         // can only do this if the top bits are known zero.
4391         unsigned BitWidth = N0.getValueSizeInBits();
4392         if (DAG.MaskedValueIsZero(N0,
4393                                   APInt::getHighBitsSet(BitWidth,
4394                                                         BitWidth-1))) {
4395           // Okay, get the un-inverted input value.
4396           SDValue Val;
4397           if (N0.getOpcode() == ISD::XOR) {
4398             Val = N0.getOperand(0);
4399           } else {
4400             assert(N0.getOpcode() == ISD::AND &&
4401                     N0.getOperand(0).getOpcode() == ISD::XOR);
4402             // ((X^1)&1)^1 -> X & 1
4403             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
4404                               N0.getOperand(0).getOperand(0),
4405                               N0.getOperand(1));
4406           }
4407 
4408           return DAG.getSetCC(dl, VT, Val, N1,
4409                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4410         }
4411       } else if (N1C->isOne()) {
4412         SDValue Op0 = N0;
4413         if (Op0.getOpcode() == ISD::TRUNCATE)
4414           Op0 = Op0.getOperand(0);
4415 
4416         if ((Op0.getOpcode() == ISD::XOR) &&
4417             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
4418             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
4419           SDValue XorLHS = Op0.getOperand(0);
4420           SDValue XorRHS = Op0.getOperand(1);
4421           // Ensure that the input setccs return an i1 type or 0/1 value.
4422           if (Op0.getValueType() == MVT::i1 ||
4423               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
4424                       ZeroOrOneBooleanContent &&
4425                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
4426                         ZeroOrOneBooleanContent)) {
4427             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
4428             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
4429             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
4430           }
4431         }
4432         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
4433           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
4434           if (Op0.getValueType().bitsGT(VT))
4435             Op0 = DAG.getNode(ISD::AND, dl, VT,
4436                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
4437                           DAG.getConstant(1, dl, VT));
4438           else if (Op0.getValueType().bitsLT(VT))
4439             Op0 = DAG.getNode(ISD::AND, dl, VT,
4440                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
4441                         DAG.getConstant(1, dl, VT));
4442 
4443           return DAG.getSetCC(dl, VT, Op0,
4444                               DAG.getConstant(0, dl, Op0.getValueType()),
4445                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4446         }
4447         if (Op0.getOpcode() == ISD::AssertZext &&
4448             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
4449           return DAG.getSetCC(dl, VT, Op0,
4450                               DAG.getConstant(0, dl, Op0.getValueType()),
4451                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4452       }
4453     }
4454 
4455     // Given:
4456     //   icmp eq/ne (urem %x, %y), 0
4457     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
4458     //   icmp eq/ne %x, 0
4459     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
4460         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4461       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
4462       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
4463       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
4464         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4465     }
4466 
4467     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
4468     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
4469     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4470         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
4471         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
4472         N1C && N1C->isAllOnes()) {
4473       return DAG.getSetCC(dl, VT, N0.getOperand(0),
4474                           DAG.getConstant(0, dl, OpVT),
4475                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
4476     }
4477 
4478     if (SDValue V =
4479             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
4480       return V;
4481   }
4482 
4483   // These simplifications apply to splat vectors as well.
4484   // TODO: Handle more splat vector cases.
4485   if (auto *N1C = isConstOrConstSplat(N1)) {
4486     const APInt &C1 = N1C->getAPIntValue();
4487 
4488     APInt MinVal, MaxVal;
4489     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
4490     if (ISD::isSignedIntSetCC(Cond)) {
4491       MinVal = APInt::getSignedMinValue(OperandBitSize);
4492       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
4493     } else {
4494       MinVal = APInt::getMinValue(OperandBitSize);
4495       MaxVal = APInt::getMaxValue(OperandBitSize);
4496     }
4497 
4498     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
4499     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
4500       // X >= MIN --> true
4501       if (C1 == MinVal)
4502         return DAG.getBoolConstant(true, dl, VT, OpVT);
4503 
4504       if (!VT.isVector()) { // TODO: Support this for vectors.
4505         // X >= C0 --> X > (C0 - 1)
4506         APInt C = C1 - 1;
4507         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
4508         if ((DCI.isBeforeLegalizeOps() ||
4509              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4510             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4511                                   isLegalICmpImmediate(C.getSExtValue())))) {
4512           return DAG.getSetCC(dl, VT, N0,
4513                               DAG.getConstant(C, dl, N1.getValueType()),
4514                               NewCC);
4515         }
4516       }
4517     }
4518 
4519     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
4520       // X <= MAX --> true
4521       if (C1 == MaxVal)
4522         return DAG.getBoolConstant(true, dl, VT, OpVT);
4523 
4524       // X <= C0 --> X < (C0 + 1)
4525       if (!VT.isVector()) { // TODO: Support this for vectors.
4526         APInt C = C1 + 1;
4527         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
4528         if ((DCI.isBeforeLegalizeOps() ||
4529              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4530             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4531                                   isLegalICmpImmediate(C.getSExtValue())))) {
4532           return DAG.getSetCC(dl, VT, N0,
4533                               DAG.getConstant(C, dl, N1.getValueType()),
4534                               NewCC);
4535         }
4536       }
4537     }
4538 
4539     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
4540       if (C1 == MinVal)
4541         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
4542 
4543       // TODO: Support this for vectors after legalize ops.
4544       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4545         // Canonicalize setlt X, Max --> setne X, Max
4546         if (C1 == MaxVal)
4547           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4548 
4549         // If we have setult X, 1, turn it into seteq X, 0
4550         if (C1 == MinVal+1)
4551           return DAG.getSetCC(dl, VT, N0,
4552                               DAG.getConstant(MinVal, dl, N0.getValueType()),
4553                               ISD::SETEQ);
4554       }
4555     }
4556 
4557     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
4558       if (C1 == MaxVal)
4559         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
4560 
4561       // TODO: Support this for vectors after legalize ops.
4562       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4563         // Canonicalize setgt X, Min --> setne X, Min
4564         if (C1 == MinVal)
4565           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4566 
4567         // If we have setugt X, Max-1, turn it into seteq X, Max
4568         if (C1 == MaxVal-1)
4569           return DAG.getSetCC(dl, VT, N0,
4570                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
4571                               ISD::SETEQ);
4572       }
4573     }
4574 
4575     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
4576       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4577       if (C1.isZero())
4578         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
4579                 VT, N0, N1, Cond, DCI, dl))
4580           return CC;
4581 
4582       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
4583       // For example, when high 32-bits of i64 X are known clear:
4584       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
4585       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
4586       bool CmpZero = N1C->getAPIntValue().isZero();
4587       bool CmpNegOne = N1C->getAPIntValue().isAllOnes();
4588       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
4589         // Match or(lo,shl(hi,bw/2)) pattern.
4590         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
4591           unsigned EltBits = V.getScalarValueSizeInBits();
4592           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
4593             return false;
4594           SDValue LHS = V.getOperand(0);
4595           SDValue RHS = V.getOperand(1);
4596           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
4597           // Unshifted element must have zero upperbits.
4598           if (RHS.getOpcode() == ISD::SHL &&
4599               isa<ConstantSDNode>(RHS.getOperand(1)) &&
4600               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4601               DAG.MaskedValueIsZero(LHS, HiBits)) {
4602             Lo = LHS;
4603             Hi = RHS.getOperand(0);
4604             return true;
4605           }
4606           if (LHS.getOpcode() == ISD::SHL &&
4607               isa<ConstantSDNode>(LHS.getOperand(1)) &&
4608               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4609               DAG.MaskedValueIsZero(RHS, HiBits)) {
4610             Lo = RHS;
4611             Hi = LHS.getOperand(0);
4612             return true;
4613           }
4614           return false;
4615         };
4616 
4617         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4618           unsigned EltBits = N0.getScalarValueSizeInBits();
4619           unsigned HalfBits = EltBits / 2;
4620           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4621           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4622           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4623           SDValue NewN0 =
4624               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4625           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4626           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4627         };
4628 
4629         SDValue Lo, Hi;
4630         if (IsConcat(N0, Lo, Hi))
4631           return MergeConcat(Lo, Hi);
4632 
4633         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4634           SDValue Lo0, Lo1, Hi0, Hi1;
4635           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4636               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4637             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4638                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4639           }
4640         }
4641       }
4642     }
4643 
4644     // If we have "setcc X, C0", check to see if we can shrink the immediate
4645     // by changing cc.
4646     // TODO: Support this for vectors after legalize ops.
4647     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4648       // SETUGT X, SINTMAX  -> SETLT X, 0
4649       // SETUGE X, SINTMIN -> SETLT X, 0
4650       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4651           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4652         return DAG.getSetCC(dl, VT, N0,
4653                             DAG.getConstant(0, dl, N1.getValueType()),
4654                             ISD::SETLT);
4655 
4656       // SETULT X, SINTMIN  -> SETGT X, -1
4657       // SETULE X, SINTMAX  -> SETGT X, -1
4658       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4659           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4660         return DAG.getSetCC(dl, VT, N0,
4661                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4662                             ISD::SETGT);
4663     }
4664   }
4665 
4666   // Back to non-vector simplifications.
4667   // TODO: Can we do these for vector splats?
4668   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4669     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4670     const APInt &C1 = N1C->getAPIntValue();
4671     EVT ShValTy = N0.getValueType();
4672 
4673     // Fold bit comparisons when we can. This will result in an
4674     // incorrect value when boolean false is negative one, unless
4675     // the bitsize is 1 in which case the false value is the same
4676     // in practice regardless of the representation.
4677     if ((VT.getSizeInBits() == 1 ||
4678          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4679         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4680         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4681         N0.getOpcode() == ISD::AND) {
4682       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4683         EVT ShiftTy =
4684             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4685         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4686           // Perform the xform if the AND RHS is a single bit.
4687           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4688           if (AndRHS->getAPIntValue().isPowerOf2() &&
4689               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4690             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4691                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4692                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4693           }
4694         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4695           // (X & 8) == 8  -->  (X & 8) >> 3
4696           // Perform the xform if C1 is a single bit.
4697           unsigned ShCt = C1.logBase2();
4698           if (C1.isPowerOf2() &&
4699               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4700             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4701                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4702                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4703           }
4704         }
4705       }
4706     }
4707 
4708     if (C1.getMinSignedBits() <= 64 &&
4709         !isLegalICmpImmediate(C1.getSExtValue())) {
4710       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4711       // (X & -256) == 256 -> (X >> 8) == 1
4712       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4713           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4714         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4715           const APInt &AndRHSC = AndRHS->getAPIntValue();
4716           if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) {
4717             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4718             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4719               SDValue Shift =
4720                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4721                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4722               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4723               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4724             }
4725           }
4726         }
4727       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4728                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4729         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4730         // X <  0x100000000 -> (X >> 32) <  1
4731         // X >= 0x100000000 -> (X >> 32) >= 1
4732         // X <= 0x0ffffffff -> (X >> 32) <  1
4733         // X >  0x0ffffffff -> (X >> 32) >= 1
4734         unsigned ShiftBits;
4735         APInt NewC = C1;
4736         ISD::CondCode NewCond = Cond;
4737         if (AdjOne) {
4738           ShiftBits = C1.countTrailingOnes();
4739           NewC = NewC + 1;
4740           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4741         } else {
4742           ShiftBits = C1.countTrailingZeros();
4743         }
4744         NewC.lshrInPlace(ShiftBits);
4745         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4746             isLegalICmpImmediate(NewC.getSExtValue()) &&
4747             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4748           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4749                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4750           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4751           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4752         }
4753       }
4754     }
4755   }
4756 
4757   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4758     auto *CFP = cast<ConstantFPSDNode>(N1);
4759     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4760 
4761     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4762     // constant if knowing that the operand is non-nan is enough.  We prefer to
4763     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4764     // materialize 0.0.
4765     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4766       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4767 
4768     // setcc (fneg x), C -> setcc swap(pred) x, -C
4769     if (N0.getOpcode() == ISD::FNEG) {
4770       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4771       if (DCI.isBeforeLegalizeOps() ||
4772           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4773         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4774         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4775       }
4776     }
4777 
4778     // If the condition is not legal, see if we can find an equivalent one
4779     // which is legal.
4780     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4781       // If the comparison was an awkward floating-point == or != and one of
4782       // the comparison operands is infinity or negative infinity, convert the
4783       // condition to a less-awkward <= or >=.
4784       if (CFP->getValueAPF().isInfinity()) {
4785         bool IsNegInf = CFP->getValueAPF().isNegative();
4786         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4787         switch (Cond) {
4788         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4789         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4790         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4791         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4792         default: break;
4793         }
4794         if (NewCond != ISD::SETCC_INVALID &&
4795             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4796           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4797       }
4798     }
4799   }
4800 
4801   if (N0 == N1) {
4802     // The sext(setcc()) => setcc() optimization relies on the appropriate
4803     // constant being emitted.
4804     assert(!N0.getValueType().isInteger() &&
4805            "Integer types should be handled by FoldSetCC");
4806 
4807     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4808     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4809     if (UOF == 2) // FP operators that are undefined on NaNs.
4810       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4811     if (UOF == unsigned(EqTrue))
4812       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4813     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4814     // if it is not already.
4815     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4816     if (NewCond != Cond &&
4817         (DCI.isBeforeLegalizeOps() ||
4818                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4819       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4820   }
4821 
4822   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4823       N0.getValueType().isInteger()) {
4824     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4825         N0.getOpcode() == ISD::XOR) {
4826       // Simplify (X+Y) == (X+Z) -->  Y == Z
4827       if (N0.getOpcode() == N1.getOpcode()) {
4828         if (N0.getOperand(0) == N1.getOperand(0))
4829           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4830         if (N0.getOperand(1) == N1.getOperand(1))
4831           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4832         if (isCommutativeBinOp(N0.getOpcode())) {
4833           // If X op Y == Y op X, try other combinations.
4834           if (N0.getOperand(0) == N1.getOperand(1))
4835             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4836                                 Cond);
4837           if (N0.getOperand(1) == N1.getOperand(0))
4838             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4839                                 Cond);
4840         }
4841       }
4842 
4843       // If RHS is a legal immediate value for a compare instruction, we need
4844       // to be careful about increasing register pressure needlessly.
4845       bool LegalRHSImm = false;
4846 
4847       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4848         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4849           // Turn (X+C1) == C2 --> X == C2-C1
4850           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse())
4851             return DAG.getSetCC(
4852                 dl, VT, N0.getOperand(0),
4853                 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(),
4854                                 dl, N0.getValueType()),
4855                 Cond);
4856 
4857           // Turn (X^C1) == C2 --> X == C1^C2
4858           if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse())
4859             return DAG.getSetCC(
4860                 dl, VT, N0.getOperand(0),
4861                 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(),
4862                                 dl, N0.getValueType()),
4863                 Cond);
4864         }
4865 
4866         // Turn (C1-X) == C2 --> X == C1-C2
4867         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
4868           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse())
4869             return DAG.getSetCC(
4870                 dl, VT, N0.getOperand(1),
4871                 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(),
4872                                 dl, N0.getValueType()),
4873                 Cond);
4874 
4875         // Could RHSC fold directly into a compare?
4876         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4877           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4878       }
4879 
4880       // (X+Y) == X --> Y == 0 and similar folds.
4881       // Don't do this if X is an immediate that can fold into a cmp
4882       // instruction and X+Y has other uses. It could be an induction variable
4883       // chain, and the transform would increase register pressure.
4884       if (!LegalRHSImm || N0.hasOneUse())
4885         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4886           return V;
4887     }
4888 
4889     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4890         N1.getOpcode() == ISD::XOR)
4891       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4892         return V;
4893 
4894     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4895       return V;
4896   }
4897 
4898   // Fold remainder of division by a constant.
4899   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4900       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4901     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4902 
4903     // When division is cheap or optimizing for minimum size,
4904     // fall through to DIVREM creation by skipping this fold.
4905     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
4906       if (N0.getOpcode() == ISD::UREM) {
4907         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4908           return Folded;
4909       } else if (N0.getOpcode() == ISD::SREM) {
4910         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4911           return Folded;
4912       }
4913     }
4914   }
4915 
4916   // Fold away ALL boolean setcc's.
4917   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4918     SDValue Temp;
4919     switch (Cond) {
4920     default: llvm_unreachable("Unknown integer setcc!");
4921     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4922       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4923       N0 = DAG.getNOT(dl, Temp, OpVT);
4924       if (!DCI.isCalledByLegalizer())
4925         DCI.AddToWorklist(Temp.getNode());
4926       break;
4927     case ISD::SETNE:  // X != Y   -->  (X^Y)
4928       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4929       break;
4930     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4931     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4932       Temp = DAG.getNOT(dl, N0, OpVT);
4933       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4934       if (!DCI.isCalledByLegalizer())
4935         DCI.AddToWorklist(Temp.getNode());
4936       break;
4937     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4938     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4939       Temp = DAG.getNOT(dl, N1, OpVT);
4940       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4941       if (!DCI.isCalledByLegalizer())
4942         DCI.AddToWorklist(Temp.getNode());
4943       break;
4944     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4945     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4946       Temp = DAG.getNOT(dl, N0, OpVT);
4947       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4948       if (!DCI.isCalledByLegalizer())
4949         DCI.AddToWorklist(Temp.getNode());
4950       break;
4951     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4952     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4953       Temp = DAG.getNOT(dl, N1, OpVT);
4954       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4955       break;
4956     }
4957     if (VT.getScalarType() != MVT::i1) {
4958       if (!DCI.isCalledByLegalizer())
4959         DCI.AddToWorklist(N0.getNode());
4960       // FIXME: If running after legalize, we probably can't do this.
4961       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4962       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4963     }
4964     return N0;
4965   }
4966 
4967   // Could not fold it.
4968   return SDValue();
4969 }
4970 
4971 /// Returns true (and the GlobalValue and the offset) if the node is a
4972 /// GlobalAddress + offset.
4973 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4974                                     int64_t &Offset) const {
4975 
4976   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4977 
4978   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4979     GA = GASD->getGlobal();
4980     Offset += GASD->getOffset();
4981     return true;
4982   }
4983 
4984   if (N->getOpcode() == ISD::ADD) {
4985     SDValue N1 = N->getOperand(0);
4986     SDValue N2 = N->getOperand(1);
4987     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4988       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4989         Offset += V->getSExtValue();
4990         return true;
4991       }
4992     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4993       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4994         Offset += V->getSExtValue();
4995         return true;
4996       }
4997     }
4998   }
4999 
5000   return false;
5001 }
5002 
5003 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
5004                                           DAGCombinerInfo &DCI) const {
5005   // Default implementation: no optimization.
5006   return SDValue();
5007 }
5008 
5009 //===----------------------------------------------------------------------===//
5010 //  Inline Assembler Implementation Methods
5011 //===----------------------------------------------------------------------===//
5012 
5013 TargetLowering::ConstraintType
5014 TargetLowering::getConstraintType(StringRef Constraint) const {
5015   unsigned S = Constraint.size();
5016 
5017   if (S == 1) {
5018     switch (Constraint[0]) {
5019     default: break;
5020     case 'r':
5021       return C_RegisterClass;
5022     case 'm': // memory
5023     case 'o': // offsetable
5024     case 'V': // not offsetable
5025       return C_Memory;
5026     case 'p': // Address.
5027       return C_Address;
5028     case 'n': // Simple Integer
5029     case 'E': // Floating Point Constant
5030     case 'F': // Floating Point Constant
5031       return C_Immediate;
5032     case 'i': // Simple Integer or Relocatable Constant
5033     case 's': // Relocatable Constant
5034     case 'X': // Allow ANY value.
5035     case 'I': // Target registers.
5036     case 'J':
5037     case 'K':
5038     case 'L':
5039     case 'M':
5040     case 'N':
5041     case 'O':
5042     case 'P':
5043     case '<':
5044     case '>':
5045       return C_Other;
5046     }
5047   }
5048 
5049   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
5050     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
5051       return C_Memory;
5052     return C_Register;
5053   }
5054   return C_Unknown;
5055 }
5056 
5057 /// Try to replace an X constraint, which matches anything, with another that
5058 /// has more specific requirements based on the type of the corresponding
5059 /// operand.
5060 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
5061   if (ConstraintVT.isInteger())
5062     return "r";
5063   if (ConstraintVT.isFloatingPoint())
5064     return "f"; // works for many targets
5065   return nullptr;
5066 }
5067 
5068 SDValue TargetLowering::LowerAsmOutputForConstraint(
5069     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
5070     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
5071   return SDValue();
5072 }
5073 
5074 /// Lower the specified operand into the Ops vector.
5075 /// If it is invalid, don't add anything to Ops.
5076 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5077                                                   std::string &Constraint,
5078                                                   std::vector<SDValue> &Ops,
5079                                                   SelectionDAG &DAG) const {
5080 
5081   if (Constraint.length() > 1) return;
5082 
5083   char ConstraintLetter = Constraint[0];
5084   switch (ConstraintLetter) {
5085   default: break;
5086   case 'X':    // Allows any operand
5087   case 'i':    // Simple Integer or Relocatable Constant
5088   case 'n':    // Simple Integer
5089   case 's': {  // Relocatable Constant
5090 
5091     ConstantSDNode *C;
5092     uint64_t Offset = 0;
5093 
5094     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
5095     // etc., since getelementpointer is variadic. We can't use
5096     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
5097     // while in this case the GA may be furthest from the root node which is
5098     // likely an ISD::ADD.
5099     while (true) {
5100       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
5101         // gcc prints these as sign extended.  Sign extend value to 64 bits
5102         // now; without this it would get ZExt'd later in
5103         // ScheduleDAGSDNodes::EmitNode, which is very generic.
5104         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
5105         BooleanContent BCont = getBooleanContents(MVT::i64);
5106         ISD::NodeType ExtOpc =
5107             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
5108         int64_t ExtVal =
5109             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
5110         Ops.push_back(
5111             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
5112         return;
5113       }
5114       if (ConstraintLetter != 'n') {
5115         if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5116           Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
5117                                                    GA->getValueType(0),
5118                                                    Offset + GA->getOffset()));
5119           return;
5120         }
5121         if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
5122           Ops.push_back(DAG.getTargetBlockAddress(
5123               BA->getBlockAddress(), BA->getValueType(0),
5124               Offset + BA->getOffset(), BA->getTargetFlags()));
5125           return;
5126         }
5127         if (isa<BasicBlockSDNode>(Op)) {
5128           Ops.push_back(Op);
5129           return;
5130         }
5131       }
5132       const unsigned OpCode = Op.getOpcode();
5133       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
5134         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
5135           Op = Op.getOperand(1);
5136         // Subtraction is not commutative.
5137         else if (OpCode == ISD::ADD &&
5138                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
5139           Op = Op.getOperand(0);
5140         else
5141           return;
5142         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
5143         continue;
5144       }
5145       return;
5146     }
5147     break;
5148   }
5149   }
5150 }
5151 
5152 std::pair<unsigned, const TargetRegisterClass *>
5153 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
5154                                              StringRef Constraint,
5155                                              MVT VT) const {
5156   if (Constraint.empty() || Constraint[0] != '{')
5157     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
5158   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
5159 
5160   // Remove the braces from around the name.
5161   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
5162 
5163   std::pair<unsigned, const TargetRegisterClass *> R =
5164       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
5165 
5166   // Figure out which register class contains this reg.
5167   for (const TargetRegisterClass *RC : RI->regclasses()) {
5168     // If none of the value types for this register class are valid, we
5169     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5170     if (!isLegalRC(*RI, *RC))
5171       continue;
5172 
5173     for (const MCPhysReg &PR : *RC) {
5174       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
5175         std::pair<unsigned, const TargetRegisterClass *> S =
5176             std::make_pair(PR, RC);
5177 
5178         // If this register class has the requested value type, return it,
5179         // otherwise keep searching and return the first class found
5180         // if no other is found which explicitly has the requested type.
5181         if (RI->isTypeLegalForClass(*RC, VT))
5182           return S;
5183         if (!R.second)
5184           R = S;
5185       }
5186     }
5187   }
5188 
5189   return R;
5190 }
5191 
5192 //===----------------------------------------------------------------------===//
5193 // Constraint Selection.
5194 
5195 /// Return true of this is an input operand that is a matching constraint like
5196 /// "4".
5197 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
5198   assert(!ConstraintCode.empty() && "No known constraint!");
5199   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
5200 }
5201 
5202 /// If this is an input matching constraint, this method returns the output
5203 /// operand it matches.
5204 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
5205   assert(!ConstraintCode.empty() && "No known constraint!");
5206   return atoi(ConstraintCode.c_str());
5207 }
5208 
5209 /// Split up the constraint string from the inline assembly value into the
5210 /// specific constraints and their prefixes, and also tie in the associated
5211 /// operand values.
5212 /// If this returns an empty vector, and if the constraint string itself
5213 /// isn't empty, there was an error parsing.
5214 TargetLowering::AsmOperandInfoVector
5215 TargetLowering::ParseConstraints(const DataLayout &DL,
5216                                  const TargetRegisterInfo *TRI,
5217                                  const CallBase &Call) const {
5218   /// Information about all of the constraints.
5219   AsmOperandInfoVector ConstraintOperands;
5220   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
5221   unsigned maCount = 0; // Largest number of multiple alternative constraints.
5222 
5223   // Do a prepass over the constraints, canonicalizing them, and building up the
5224   // ConstraintOperands list.
5225   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
5226   unsigned ResNo = 0; // ResNo - The result number of the next output.
5227 
5228   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
5229     ConstraintOperands.emplace_back(std::move(CI));
5230     AsmOperandInfo &OpInfo = ConstraintOperands.back();
5231 
5232     // Update multiple alternative constraint count.
5233     if (OpInfo.multipleAlternatives.size() > maCount)
5234       maCount = OpInfo.multipleAlternatives.size();
5235 
5236     OpInfo.ConstraintVT = MVT::Other;
5237 
5238     // Compute the value type for each operand.
5239     switch (OpInfo.Type) {
5240     case InlineAsm::isOutput:
5241       // Indirect outputs just consume an argument.
5242       if (OpInfo.isIndirect) {
5243         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5244         break;
5245       }
5246 
5247       // The return value of the call is this value.  As such, there is no
5248       // corresponding argument.
5249       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
5250       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
5251         OpInfo.ConstraintVT =
5252             getSimpleValueType(DL, STy->getElementType(ResNo));
5253       } else {
5254         assert(ResNo == 0 && "Asm only has one result!");
5255         OpInfo.ConstraintVT =
5256             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
5257       }
5258       ++ResNo;
5259       break;
5260     case InlineAsm::isInput:
5261       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5262       break;
5263     case InlineAsm::isClobber:
5264       // Nothing to do.
5265       break;
5266     }
5267 
5268     if (OpInfo.CallOperandVal) {
5269       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
5270       if (OpInfo.isIndirect) {
5271         OpTy = Call.getParamElementType(ArgNo);
5272         assert(OpTy && "Indirect operand must have elementtype attribute");
5273       }
5274 
5275       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5276       if (StructType *STy = dyn_cast<StructType>(OpTy))
5277         if (STy->getNumElements() == 1)
5278           OpTy = STy->getElementType(0);
5279 
5280       // If OpTy is not a single value, it may be a struct/union that we
5281       // can tile with integers.
5282       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5283         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
5284         switch (BitSize) {
5285         default: break;
5286         case 1:
5287         case 8:
5288         case 16:
5289         case 32:
5290         case 64:
5291         case 128:
5292           OpTy = IntegerType::get(OpTy->getContext(), BitSize);
5293           break;
5294         }
5295       }
5296 
5297       EVT VT = getAsmOperandValueType(DL, OpTy, true);
5298       OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
5299       ArgNo++;
5300     }
5301   }
5302 
5303   // If we have multiple alternative constraints, select the best alternative.
5304   if (!ConstraintOperands.empty()) {
5305     if (maCount) {
5306       unsigned bestMAIndex = 0;
5307       int bestWeight = -1;
5308       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
5309       int weight = -1;
5310       unsigned maIndex;
5311       // Compute the sums of the weights for each alternative, keeping track
5312       // of the best (highest weight) one so far.
5313       for (maIndex = 0; maIndex < maCount; ++maIndex) {
5314         int weightSum = 0;
5315         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5316              cIndex != eIndex; ++cIndex) {
5317           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5318           if (OpInfo.Type == InlineAsm::isClobber)
5319             continue;
5320 
5321           // If this is an output operand with a matching input operand,
5322           // look up the matching input. If their types mismatch, e.g. one
5323           // is an integer, the other is floating point, or their sizes are
5324           // different, flag it as an maCantMatch.
5325           if (OpInfo.hasMatchingInput()) {
5326             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5327             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5328               if ((OpInfo.ConstraintVT.isInteger() !=
5329                    Input.ConstraintVT.isInteger()) ||
5330                   (OpInfo.ConstraintVT.getSizeInBits() !=
5331                    Input.ConstraintVT.getSizeInBits())) {
5332                 weightSum = -1; // Can't match.
5333                 break;
5334               }
5335             }
5336           }
5337           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
5338           if (weight == -1) {
5339             weightSum = -1;
5340             break;
5341           }
5342           weightSum += weight;
5343         }
5344         // Update best.
5345         if (weightSum > bestWeight) {
5346           bestWeight = weightSum;
5347           bestMAIndex = maIndex;
5348         }
5349       }
5350 
5351       // Now select chosen alternative in each constraint.
5352       for (AsmOperandInfo &cInfo : ConstraintOperands)
5353         if (cInfo.Type != InlineAsm::isClobber)
5354           cInfo.selectAlternative(bestMAIndex);
5355     }
5356   }
5357 
5358   // Check and hook up tied operands, choose constraint code to use.
5359   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5360        cIndex != eIndex; ++cIndex) {
5361     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5362 
5363     // If this is an output operand with a matching input operand, look up the
5364     // matching input. If their types mismatch, e.g. one is an integer, the
5365     // other is floating point, or their sizes are different, flag it as an
5366     // error.
5367     if (OpInfo.hasMatchingInput()) {
5368       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5369 
5370       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5371         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
5372             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
5373                                          OpInfo.ConstraintVT);
5374         std::pair<unsigned, const TargetRegisterClass *> InputRC =
5375             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
5376                                          Input.ConstraintVT);
5377         if ((OpInfo.ConstraintVT.isInteger() !=
5378              Input.ConstraintVT.isInteger()) ||
5379             (MatchRC.second != InputRC.second)) {
5380           report_fatal_error("Unsupported asm: input constraint"
5381                              " with a matching output constraint of"
5382                              " incompatible type!");
5383         }
5384       }
5385     }
5386   }
5387 
5388   return ConstraintOperands;
5389 }
5390 
5391 /// Return an integer indicating how general CT is.
5392 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
5393   switch (CT) {
5394   case TargetLowering::C_Immediate:
5395   case TargetLowering::C_Other:
5396   case TargetLowering::C_Unknown:
5397     return 0;
5398   case TargetLowering::C_Register:
5399     return 1;
5400   case TargetLowering::C_RegisterClass:
5401     return 2;
5402   case TargetLowering::C_Memory:
5403   case TargetLowering::C_Address:
5404     return 3;
5405   }
5406   llvm_unreachable("Invalid constraint type");
5407 }
5408 
5409 /// Examine constraint type and operand type and determine a weight value.
5410 /// This object must already have been set up with the operand type
5411 /// and the current alternative constraint selected.
5412 TargetLowering::ConstraintWeight
5413   TargetLowering::getMultipleConstraintMatchWeight(
5414     AsmOperandInfo &info, int maIndex) const {
5415   InlineAsm::ConstraintCodeVector *rCodes;
5416   if (maIndex >= (int)info.multipleAlternatives.size())
5417     rCodes = &info.Codes;
5418   else
5419     rCodes = &info.multipleAlternatives[maIndex].Codes;
5420   ConstraintWeight BestWeight = CW_Invalid;
5421 
5422   // Loop over the options, keeping track of the most general one.
5423   for (const std::string &rCode : *rCodes) {
5424     ConstraintWeight weight =
5425         getSingleConstraintMatchWeight(info, rCode.c_str());
5426     if (weight > BestWeight)
5427       BestWeight = weight;
5428   }
5429 
5430   return BestWeight;
5431 }
5432 
5433 /// Examine constraint type and operand type and determine a weight value.
5434 /// This object must already have been set up with the operand type
5435 /// and the current alternative constraint selected.
5436 TargetLowering::ConstraintWeight
5437   TargetLowering::getSingleConstraintMatchWeight(
5438     AsmOperandInfo &info, const char *constraint) const {
5439   ConstraintWeight weight = CW_Invalid;
5440   Value *CallOperandVal = info.CallOperandVal;
5441     // If we don't have a value, we can't do a match,
5442     // but allow it at the lowest weight.
5443   if (!CallOperandVal)
5444     return CW_Default;
5445   // Look at the constraint type.
5446   switch (*constraint) {
5447     case 'i': // immediate integer.
5448     case 'n': // immediate integer with a known value.
5449       if (isa<ConstantInt>(CallOperandVal))
5450         weight = CW_Constant;
5451       break;
5452     case 's': // non-explicit intregal immediate.
5453       if (isa<GlobalValue>(CallOperandVal))
5454         weight = CW_Constant;
5455       break;
5456     case 'E': // immediate float if host format.
5457     case 'F': // immediate float.
5458       if (isa<ConstantFP>(CallOperandVal))
5459         weight = CW_Constant;
5460       break;
5461     case '<': // memory operand with autodecrement.
5462     case '>': // memory operand with autoincrement.
5463     case 'm': // memory operand.
5464     case 'o': // offsettable memory operand
5465     case 'V': // non-offsettable memory operand
5466       weight = CW_Memory;
5467       break;
5468     case 'r': // general register.
5469     case 'g': // general register, memory operand or immediate integer.
5470               // note: Clang converts "g" to "imr".
5471       if (CallOperandVal->getType()->isIntegerTy())
5472         weight = CW_Register;
5473       break;
5474     case 'X': // any operand.
5475   default:
5476     weight = CW_Default;
5477     break;
5478   }
5479   return weight;
5480 }
5481 
5482 /// If there are multiple different constraints that we could pick for this
5483 /// operand (e.g. "imr") try to pick the 'best' one.
5484 /// This is somewhat tricky: constraints fall into four classes:
5485 ///    Other         -> immediates and magic values
5486 ///    Register      -> one specific register
5487 ///    RegisterClass -> a group of regs
5488 ///    Memory        -> memory
5489 /// Ideally, we would pick the most specific constraint possible: if we have
5490 /// something that fits into a register, we would pick it.  The problem here
5491 /// is that if we have something that could either be in a register or in
5492 /// memory that use of the register could cause selection of *other*
5493 /// operands to fail: they might only succeed if we pick memory.  Because of
5494 /// this the heuristic we use is:
5495 ///
5496 ///  1) If there is an 'other' constraint, and if the operand is valid for
5497 ///     that constraint, use it.  This makes us take advantage of 'i'
5498 ///     constraints when available.
5499 ///  2) Otherwise, pick the most general constraint present.  This prefers
5500 ///     'm' over 'r', for example.
5501 ///
5502 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
5503                              const TargetLowering &TLI,
5504                              SDValue Op, SelectionDAG *DAG) {
5505   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
5506   unsigned BestIdx = 0;
5507   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
5508   int BestGenerality = -1;
5509 
5510   // Loop over the options, keeping track of the most general one.
5511   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
5512     TargetLowering::ConstraintType CType =
5513       TLI.getConstraintType(OpInfo.Codes[i]);
5514 
5515     // Indirect 'other' or 'immediate' constraints are not allowed.
5516     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
5517                                CType == TargetLowering::C_Register ||
5518                                CType == TargetLowering::C_RegisterClass))
5519       continue;
5520 
5521     // If this is an 'other' or 'immediate' constraint, see if the operand is
5522     // valid for it. For example, on X86 we might have an 'rI' constraint. If
5523     // the operand is an integer in the range [0..31] we want to use I (saving a
5524     // load of a register), otherwise we must use 'r'.
5525     if ((CType == TargetLowering::C_Other ||
5526          CType == TargetLowering::C_Immediate) && Op.getNode()) {
5527       assert(OpInfo.Codes[i].size() == 1 &&
5528              "Unhandled multi-letter 'other' constraint");
5529       std::vector<SDValue> ResultOps;
5530       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
5531                                        ResultOps, *DAG);
5532       if (!ResultOps.empty()) {
5533         BestType = CType;
5534         BestIdx = i;
5535         break;
5536       }
5537     }
5538 
5539     // Things with matching constraints can only be registers, per gcc
5540     // documentation.  This mainly affects "g" constraints.
5541     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
5542       continue;
5543 
5544     // This constraint letter is more general than the previous one, use it.
5545     int Generality = getConstraintGenerality(CType);
5546     if (Generality > BestGenerality) {
5547       BestType = CType;
5548       BestIdx = i;
5549       BestGenerality = Generality;
5550     }
5551   }
5552 
5553   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
5554   OpInfo.ConstraintType = BestType;
5555 }
5556 
5557 /// Determines the constraint code and constraint type to use for the specific
5558 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5559 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5560                                             SDValue Op,
5561                                             SelectionDAG *DAG) const {
5562   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
5563 
5564   // Single-letter constraints ('r') are very common.
5565   if (OpInfo.Codes.size() == 1) {
5566     OpInfo.ConstraintCode = OpInfo.Codes[0];
5567     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5568   } else {
5569     ChooseConstraint(OpInfo, *this, Op, DAG);
5570   }
5571 
5572   // 'X' matches anything.
5573   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
5574     // Constants are handled elsewhere.  For Functions, the type here is the
5575     // type of the result, which is not what we want to look at; leave them
5576     // alone.
5577     Value *v = OpInfo.CallOperandVal;
5578     if (isa<ConstantInt>(v) || isa<Function>(v)) {
5579       return;
5580     }
5581 
5582     if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
5583       OpInfo.ConstraintCode = "i";
5584       return;
5585     }
5586 
5587     // Otherwise, try to resolve it to something we know about by looking at
5588     // the actual operand type.
5589     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5590       OpInfo.ConstraintCode = Repl;
5591       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5592     }
5593   }
5594 }
5595 
5596 /// Given an exact SDIV by a constant, create a multiplication
5597 /// with the multiplicative inverse of the constant.
5598 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5599                               const SDLoc &dl, SelectionDAG &DAG,
5600                               SmallVectorImpl<SDNode *> &Created) {
5601   SDValue Op0 = N->getOperand(0);
5602   SDValue Op1 = N->getOperand(1);
5603   EVT VT = N->getValueType(0);
5604   EVT SVT = VT.getScalarType();
5605   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5606   EVT ShSVT = ShVT.getScalarType();
5607 
5608   bool UseSRA = false;
5609   SmallVector<SDValue, 16> Shifts, Factors;
5610 
5611   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5612     if (C->isZero())
5613       return false;
5614     APInt Divisor = C->getAPIntValue();
5615     unsigned Shift = Divisor.countTrailingZeros();
5616     if (Shift) {
5617       Divisor.ashrInPlace(Shift);
5618       UseSRA = true;
5619     }
5620     // Calculate the multiplicative inverse, using Newton's method.
5621     APInt t;
5622     APInt Factor = Divisor;
5623     while ((t = Divisor * Factor) != 1)
5624       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5625     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5626     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5627     return true;
5628   };
5629 
5630   // Collect all magic values from the build vector.
5631   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5632     return SDValue();
5633 
5634   SDValue Shift, Factor;
5635   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5636     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5637     Factor = DAG.getBuildVector(VT, dl, Factors);
5638   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5639     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5640            "Expected matchUnaryPredicate to return one element for scalable "
5641            "vectors");
5642     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5643     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5644   } else {
5645     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5646     Shift = Shifts[0];
5647     Factor = Factors[0];
5648   }
5649 
5650   SDValue Res = Op0;
5651 
5652   // Shift the value upfront if it is even, so the LSB is one.
5653   if (UseSRA) {
5654     // TODO: For UDIV use SRL instead of SRA.
5655     SDNodeFlags Flags;
5656     Flags.setExact(true);
5657     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5658     Created.push_back(Res.getNode());
5659   }
5660 
5661   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5662 }
5663 
5664 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5665                               SelectionDAG &DAG,
5666                               SmallVectorImpl<SDNode *> &Created) const {
5667   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5668   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5669   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5670     return SDValue(N, 0); // Lower SDIV as SDIV
5671   return SDValue();
5672 }
5673 
5674 SDValue
5675 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor,
5676                               SelectionDAG &DAG,
5677                               SmallVectorImpl<SDNode *> &Created) const {
5678   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5679   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5680   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5681     return SDValue(N, 0); // Lower SREM as SREM
5682   return SDValue();
5683 }
5684 
5685 /// Given an ISD::SDIV node expressing a divide by constant,
5686 /// return a DAG expression to select that will generate the same value by
5687 /// multiplying by a magic number.
5688 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5689 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5690                                   bool IsAfterLegalization,
5691                                   SmallVectorImpl<SDNode *> &Created) const {
5692   SDLoc dl(N);
5693   EVT VT = N->getValueType(0);
5694   EVT SVT = VT.getScalarType();
5695   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5696   EVT ShSVT = ShVT.getScalarType();
5697   unsigned EltBits = VT.getScalarSizeInBits();
5698   EVT MulVT;
5699 
5700   // Check to see if we can do this.
5701   // FIXME: We should be more aggressive here.
5702   if (!isTypeLegal(VT)) {
5703     // Limit this to simple scalars for now.
5704     if (VT.isVector() || !VT.isSimple())
5705       return SDValue();
5706 
5707     // If this type will be promoted to a large enough type with a legal
5708     // multiply operation, we can go ahead and do this transform.
5709     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5710       return SDValue();
5711 
5712     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5713     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5714         !isOperationLegal(ISD::MUL, MulVT))
5715       return SDValue();
5716   }
5717 
5718   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5719   if (N->getFlags().hasExact())
5720     return BuildExactSDIV(*this, N, dl, DAG, Created);
5721 
5722   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5723 
5724   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5725     if (C->isZero())
5726       return false;
5727 
5728     const APInt &Divisor = C->getAPIntValue();
5729     SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
5730     int NumeratorFactor = 0;
5731     int ShiftMask = -1;
5732 
5733     if (Divisor.isOne() || Divisor.isAllOnes()) {
5734       // If d is +1/-1, we just multiply the numerator by +1/-1.
5735       NumeratorFactor = Divisor.getSExtValue();
5736       magics.Magic = 0;
5737       magics.ShiftAmount = 0;
5738       ShiftMask = 0;
5739     } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
5740       // If d > 0 and m < 0, add the numerator.
5741       NumeratorFactor = 1;
5742     } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
5743       // If d < 0 and m > 0, subtract the numerator.
5744       NumeratorFactor = -1;
5745     }
5746 
5747     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
5748     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5749     Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
5750     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5751     return true;
5752   };
5753 
5754   SDValue N0 = N->getOperand(0);
5755   SDValue N1 = N->getOperand(1);
5756 
5757   // Collect the shifts / magic values from each element.
5758   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5759     return SDValue();
5760 
5761   SDValue MagicFactor, Factor, Shift, ShiftMask;
5762   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5763     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5764     Factor = DAG.getBuildVector(VT, dl, Factors);
5765     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5766     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5767   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5768     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5769            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5770            "Expected matchUnaryPredicate to return one element for scalable "
5771            "vectors");
5772     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5773     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5774     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5775     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5776   } else {
5777     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5778     MagicFactor = MagicFactors[0];
5779     Factor = Factors[0];
5780     Shift = Shifts[0];
5781     ShiftMask = ShiftMasks[0];
5782   }
5783 
5784   // Multiply the numerator (operand 0) by the magic value.
5785   // FIXME: We should support doing a MUL in a wider type.
5786   auto GetMULHS = [&](SDValue X, SDValue Y) {
5787     // If the type isn't legal, use a wider mul of the the type calculated
5788     // earlier.
5789     if (!isTypeLegal(VT)) {
5790       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5791       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5792       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5793       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5794                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5795       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5796     }
5797 
5798     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5799       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5800     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5801       SDValue LoHi =
5802           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5803       return SDValue(LoHi.getNode(), 1);
5804     }
5805     return SDValue();
5806   };
5807 
5808   SDValue Q = GetMULHS(N0, MagicFactor);
5809   if (!Q)
5810     return SDValue();
5811 
5812   Created.push_back(Q.getNode());
5813 
5814   // (Optionally) Add/subtract the numerator using Factor.
5815   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5816   Created.push_back(Factor.getNode());
5817   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5818   Created.push_back(Q.getNode());
5819 
5820   // Shift right algebraic by shift value.
5821   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5822   Created.push_back(Q.getNode());
5823 
5824   // Extract the sign bit, mask it and add it to the quotient.
5825   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5826   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5827   Created.push_back(T.getNode());
5828   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5829   Created.push_back(T.getNode());
5830   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5831 }
5832 
5833 /// Given an ISD::UDIV node expressing a divide by constant,
5834 /// return a DAG expression to select that will generate the same value by
5835 /// multiplying by a magic number.
5836 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5837 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5838                                   bool IsAfterLegalization,
5839                                   SmallVectorImpl<SDNode *> &Created) const {
5840   SDLoc dl(N);
5841   EVT VT = N->getValueType(0);
5842   EVT SVT = VT.getScalarType();
5843   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5844   EVT ShSVT = ShVT.getScalarType();
5845   unsigned EltBits = VT.getScalarSizeInBits();
5846   EVT MulVT;
5847 
5848   // Check to see if we can do this.
5849   // FIXME: We should be more aggressive here.
5850   if (!isTypeLegal(VT)) {
5851     // Limit this to simple scalars for now.
5852     if (VT.isVector() || !VT.isSimple())
5853       return SDValue();
5854 
5855     // If this type will be promoted to a large enough type with a legal
5856     // multiply operation, we can go ahead and do this transform.
5857     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5858       return SDValue();
5859 
5860     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5861     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5862         !isOperationLegal(ISD::MUL, MulVT))
5863       return SDValue();
5864   }
5865 
5866   bool UseNPQ = false;
5867   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5868 
5869   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5870     if (C->isZero())
5871       return false;
5872     // FIXME: We should use a narrower constant when the upper
5873     // bits are known to be zero.
5874     const APInt& Divisor = C->getAPIntValue();
5875     UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor);
5876     unsigned PreShift = 0, PostShift = 0;
5877 
5878     // If the divisor is even, we can avoid using the expensive fixup by
5879     // shifting the divided value upfront.
5880     if (magics.IsAdd != 0 && !Divisor[0]) {
5881       PreShift = Divisor.countTrailingZeros();
5882       // Get magic number for the shifted divisor.
5883       magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift);
5884       assert(magics.IsAdd == 0 && "Should use cheap fixup now");
5885     }
5886 
5887     APInt Magic = magics.Magic;
5888 
5889     unsigned SelNPQ;
5890     if (magics.IsAdd == 0 || Divisor.isOne()) {
5891       assert(magics.ShiftAmount < Divisor.getBitWidth() &&
5892              "We shouldn't generate an undefined shift!");
5893       PostShift = magics.ShiftAmount;
5894       SelNPQ = false;
5895     } else {
5896       PostShift = magics.ShiftAmount - 1;
5897       SelNPQ = true;
5898     }
5899 
5900     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5901     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5902     NPQFactors.push_back(
5903         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5904                                : APInt::getZero(EltBits),
5905                         dl, SVT));
5906     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5907     UseNPQ |= SelNPQ;
5908     return true;
5909   };
5910 
5911   SDValue N0 = N->getOperand(0);
5912   SDValue N1 = N->getOperand(1);
5913 
5914   // Collect the shifts/magic values from each element.
5915   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5916     return SDValue();
5917 
5918   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5919   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5920     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5921     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5922     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5923     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5924   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5925     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
5926            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
5927            "Expected matchUnaryPredicate to return one for scalable vectors");
5928     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5929     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5930     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5931     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5932   } else {
5933     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5934     PreShift = PreShifts[0];
5935     MagicFactor = MagicFactors[0];
5936     PostShift = PostShifts[0];
5937   }
5938 
5939   SDValue Q = N0;
5940   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5941   Created.push_back(Q.getNode());
5942 
5943   // FIXME: We should support doing a MUL in a wider type.
5944   auto GetMULHU = [&](SDValue X, SDValue Y) {
5945     // If the type isn't legal, use a wider mul of the the type calculated
5946     // earlier.
5947     if (!isTypeLegal(VT)) {
5948       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
5949       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
5950       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5951       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5952                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5953       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5954     }
5955 
5956     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
5957       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5958     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
5959       SDValue LoHi =
5960           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5961       return SDValue(LoHi.getNode(), 1);
5962     }
5963     return SDValue(); // No mulhu or equivalent
5964   };
5965 
5966   // Multiply the numerator (operand 0) by the magic value.
5967   Q = GetMULHU(Q, MagicFactor);
5968   if (!Q)
5969     return SDValue();
5970 
5971   Created.push_back(Q.getNode());
5972 
5973   if (UseNPQ) {
5974     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5975     Created.push_back(NPQ.getNode());
5976 
5977     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5978     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5979     if (VT.isVector())
5980       NPQ = GetMULHU(NPQ, NPQFactor);
5981     else
5982       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5983 
5984     Created.push_back(NPQ.getNode());
5985 
5986     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5987     Created.push_back(Q.getNode());
5988   }
5989 
5990   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5991   Created.push_back(Q.getNode());
5992 
5993   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5994 
5995   SDValue One = DAG.getConstant(1, dl, VT);
5996   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
5997   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5998 }
5999 
6000 /// If all values in Values that *don't* match the predicate are same 'splat'
6001 /// value, then replace all values with that splat value.
6002 /// Else, if AlternativeReplacement was provided, then replace all values that
6003 /// do match predicate with AlternativeReplacement value.
6004 static void
6005 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
6006                           std::function<bool(SDValue)> Predicate,
6007                           SDValue AlternativeReplacement = SDValue()) {
6008   SDValue Replacement;
6009   // Is there a value for which the Predicate does *NOT* match? What is it?
6010   auto SplatValue = llvm::find_if_not(Values, Predicate);
6011   if (SplatValue != Values.end()) {
6012     // Does Values consist only of SplatValue's and values matching Predicate?
6013     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
6014           return Value == *SplatValue || Predicate(Value);
6015         })) // Then we shall replace values matching predicate with SplatValue.
6016       Replacement = *SplatValue;
6017   }
6018   if (!Replacement) {
6019     // Oops, we did not find the "baseline" splat value.
6020     if (!AlternativeReplacement)
6021       return; // Nothing to do.
6022     // Let's replace with provided value then.
6023     Replacement = AlternativeReplacement;
6024   }
6025   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
6026 }
6027 
6028 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
6029 /// where the divisor is constant and the comparison target is zero,
6030 /// return a DAG expression that will generate the same comparison result
6031 /// using only multiplications, additions and shifts/rotations.
6032 /// Ref: "Hacker's Delight" 10-17.
6033 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
6034                                         SDValue CompTargetNode,
6035                                         ISD::CondCode Cond,
6036                                         DAGCombinerInfo &DCI,
6037                                         const SDLoc &DL) const {
6038   SmallVector<SDNode *, 5> Built;
6039   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6040                                          DCI, DL, Built)) {
6041     for (SDNode *N : Built)
6042       DCI.AddToWorklist(N);
6043     return Folded;
6044   }
6045 
6046   return SDValue();
6047 }
6048 
6049 SDValue
6050 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
6051                                   SDValue CompTargetNode, ISD::CondCode Cond,
6052                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6053                                   SmallVectorImpl<SDNode *> &Created) const {
6054   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
6055   // - D must be constant, with D = D0 * 2^K where D0 is odd
6056   // - P is the multiplicative inverse of D0 modulo 2^W
6057   // - Q = floor(((2^W) - 1) / D)
6058   // where W is the width of the common type of N and D.
6059   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6060          "Only applicable for (in)equality comparisons.");
6061 
6062   SelectionDAG &DAG = DCI.DAG;
6063 
6064   EVT VT = REMNode.getValueType();
6065   EVT SVT = VT.getScalarType();
6066   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
6067   EVT ShSVT = ShVT.getScalarType();
6068 
6069   // If MUL is unavailable, we cannot proceed in any case.
6070   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6071     return SDValue();
6072 
6073   bool ComparingWithAllZeros = true;
6074   bool AllComparisonsWithNonZerosAreTautological = true;
6075   bool HadTautologicalLanes = false;
6076   bool AllLanesAreTautological = true;
6077   bool HadEvenDivisor = false;
6078   bool AllDivisorsArePowerOfTwo = true;
6079   bool HadTautologicalInvertedLanes = false;
6080   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
6081 
6082   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
6083     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6084     if (CDiv->isZero())
6085       return false;
6086 
6087     const APInt &D = CDiv->getAPIntValue();
6088     const APInt &Cmp = CCmp->getAPIntValue();
6089 
6090     ComparingWithAllZeros &= Cmp.isZero();
6091 
6092     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6093     // if C2 is not less than C1, the comparison is always false.
6094     // But we will only be able to produce the comparison that will give the
6095     // opposive tautological answer. So this lane would need to be fixed up.
6096     bool TautologicalInvertedLane = D.ule(Cmp);
6097     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
6098 
6099     // If all lanes are tautological (either all divisors are ones, or divisor
6100     // is not greater than the constant we are comparing with),
6101     // we will prefer to avoid the fold.
6102     bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
6103     HadTautologicalLanes |= TautologicalLane;
6104     AllLanesAreTautological &= TautologicalLane;
6105 
6106     // If we are comparing with non-zero, we need'll need  to subtract said
6107     // comparison value from the LHS. But there is no point in doing that if
6108     // every lane where we are comparing with non-zero is tautological..
6109     if (!Cmp.isZero())
6110       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
6111 
6112     // Decompose D into D0 * 2^K
6113     unsigned K = D.countTrailingZeros();
6114     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6115     APInt D0 = D.lshr(K);
6116 
6117     // D is even if it has trailing zeros.
6118     HadEvenDivisor |= (K != 0);
6119     // D is a power-of-two if D0 is one.
6120     // If all divisors are power-of-two, we will prefer to avoid the fold.
6121     AllDivisorsArePowerOfTwo &= D0.isOne();
6122 
6123     // P = inv(D0, 2^W)
6124     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6125     unsigned W = D.getBitWidth();
6126     APInt P = D0.zext(W + 1)
6127                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6128                   .trunc(W);
6129     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6130     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6131 
6132     // Q = floor((2^W - 1) u/ D)
6133     // R = ((2^W - 1) u% D)
6134     APInt Q, R;
6135     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
6136 
6137     // If we are comparing with zero, then that comparison constant is okay,
6138     // else it may need to be one less than that.
6139     if (Cmp.ugt(R))
6140       Q -= 1;
6141 
6142     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6143            "We are expecting that K is always less than all-ones for ShSVT");
6144 
6145     // If the lane is tautological the result can be constant-folded.
6146     if (TautologicalLane) {
6147       // Set P and K amount to a bogus values so we can try to splat them.
6148       P = 0;
6149       K = -1;
6150       // And ensure that comparison constant is tautological,
6151       // it will always compare true/false.
6152       Q = -1;
6153     }
6154 
6155     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6156     KAmts.push_back(
6157         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6158     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6159     return true;
6160   };
6161 
6162   SDValue N = REMNode.getOperand(0);
6163   SDValue D = REMNode.getOperand(1);
6164 
6165   // Collect the values from each element.
6166   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
6167     return SDValue();
6168 
6169   // If all lanes are tautological, the result can be constant-folded.
6170   if (AllLanesAreTautological)
6171     return SDValue();
6172 
6173   // If this is a urem by a powers-of-two, avoid the fold since it can be
6174   // best implemented as a bit test.
6175   if (AllDivisorsArePowerOfTwo)
6176     return SDValue();
6177 
6178   SDValue PVal, KVal, QVal;
6179   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6180     if (HadTautologicalLanes) {
6181       // Try to turn PAmts into a splat, since we don't care about the values
6182       // that are currently '0'. If we can't, just keep '0'`s.
6183       turnVectorIntoSplatVector(PAmts, isNullConstant);
6184       // Try to turn KAmts into a splat, since we don't care about the values
6185       // that are currently '-1'. If we can't, change them to '0'`s.
6186       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6187                                 DAG.getConstant(0, DL, ShSVT));
6188     }
6189 
6190     PVal = DAG.getBuildVector(VT, DL, PAmts);
6191     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6192     QVal = DAG.getBuildVector(VT, DL, QAmts);
6193   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6194     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
6195            "Expected matchBinaryPredicate to return one element for "
6196            "SPLAT_VECTORs");
6197     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6198     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6199     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6200   } else {
6201     PVal = PAmts[0];
6202     KVal = KAmts[0];
6203     QVal = QAmts[0];
6204   }
6205 
6206   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
6207     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
6208       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
6209     assert(CompTargetNode.getValueType() == N.getValueType() &&
6210            "Expecting that the types on LHS and RHS of comparisons match.");
6211     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
6212   }
6213 
6214   // (mul N, P)
6215   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6216   Created.push_back(Op0.getNode());
6217 
6218   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6219   // divisors as a performance improvement, since rotating by 0 is a no-op.
6220   if (HadEvenDivisor) {
6221     // We need ROTR to do this.
6222     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6223       return SDValue();
6224     // UREM: (rotr (mul N, P), K)
6225     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6226     Created.push_back(Op0.getNode());
6227   }
6228 
6229   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
6230   SDValue NewCC =
6231       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6232                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6233   if (!HadTautologicalInvertedLanes)
6234     return NewCC;
6235 
6236   // If any lanes previously compared always-false, the NewCC will give
6237   // always-true result for them, so we need to fixup those lanes.
6238   // Or the other way around for inequality predicate.
6239   assert(VT.isVector() && "Can/should only get here for vectors.");
6240   Created.push_back(NewCC.getNode());
6241 
6242   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6243   // if C2 is not less than C1, the comparison is always false.
6244   // But we have produced the comparison that will give the
6245   // opposive tautological answer. So these lanes would need to be fixed up.
6246   SDValue TautologicalInvertedChannels =
6247       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
6248   Created.push_back(TautologicalInvertedChannels.getNode());
6249 
6250   // NOTE: we avoid letting illegal types through even if we're before legalize
6251   // ops – legalization has a hard time producing good code for this.
6252   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
6253     // If we have a vector select, let's replace the comparison results in the
6254     // affected lanes with the correct tautological result.
6255     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
6256                                               DL, SETCCVT, SETCCVT);
6257     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
6258                        Replacement, NewCC);
6259   }
6260 
6261   // Else, we can just invert the comparison result in the appropriate lanes.
6262   //
6263   // NOTE: see the note above VSELECT above.
6264   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
6265     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
6266                        TautologicalInvertedChannels);
6267 
6268   return SDValue(); // Don't know how to lower.
6269 }
6270 
6271 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
6272 /// where the divisor is constant and the comparison target is zero,
6273 /// return a DAG expression that will generate the same comparison result
6274 /// using only multiplications, additions and shifts/rotations.
6275 /// Ref: "Hacker's Delight" 10-17.
6276 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
6277                                         SDValue CompTargetNode,
6278                                         ISD::CondCode Cond,
6279                                         DAGCombinerInfo &DCI,
6280                                         const SDLoc &DL) const {
6281   SmallVector<SDNode *, 7> Built;
6282   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6283                                          DCI, DL, Built)) {
6284     assert(Built.size() <= 7 && "Max size prediction failed.");
6285     for (SDNode *N : Built)
6286       DCI.AddToWorklist(N);
6287     return Folded;
6288   }
6289 
6290   return SDValue();
6291 }
6292 
6293 SDValue
6294 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
6295                                   SDValue CompTargetNode, ISD::CondCode Cond,
6296                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6297                                   SmallVectorImpl<SDNode *> &Created) const {
6298   // Fold:
6299   //   (seteq/ne (srem N, D), 0)
6300   // To:
6301   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
6302   //
6303   // - D must be constant, with D = D0 * 2^K where D0 is odd
6304   // - P is the multiplicative inverse of D0 modulo 2^W
6305   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
6306   // - Q = floor((2 * A) / (2^K))
6307   // where W is the width of the common type of N and D.
6308   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6309          "Only applicable for (in)equality comparisons.");
6310 
6311   SelectionDAG &DAG = DCI.DAG;
6312 
6313   EVT VT = REMNode.getValueType();
6314   EVT SVT = VT.getScalarType();
6315   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
6316   EVT ShSVT = ShVT.getScalarType();
6317 
6318   // If we are after ops legalization, and MUL is unavailable, we can not
6319   // proceed.
6320   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6321     return SDValue();
6322 
6323   // TODO: Could support comparing with non-zero too.
6324   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
6325   if (!CompTarget || !CompTarget->isZero())
6326     return SDValue();
6327 
6328   bool HadIntMinDivisor = false;
6329   bool HadOneDivisor = false;
6330   bool AllDivisorsAreOnes = true;
6331   bool HadEvenDivisor = false;
6332   bool NeedToApplyOffset = false;
6333   bool AllDivisorsArePowerOfTwo = true;
6334   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
6335 
6336   auto BuildSREMPattern = [&](ConstantSDNode *C) {
6337     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6338     if (C->isZero())
6339       return false;
6340 
6341     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
6342 
6343     // WARNING: this fold is only valid for positive divisors!
6344     APInt D = C->getAPIntValue();
6345     if (D.isNegative())
6346       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
6347 
6348     HadIntMinDivisor |= D.isMinSignedValue();
6349 
6350     // If all divisors are ones, we will prefer to avoid the fold.
6351     HadOneDivisor |= D.isOne();
6352     AllDivisorsAreOnes &= D.isOne();
6353 
6354     // Decompose D into D0 * 2^K
6355     unsigned K = D.countTrailingZeros();
6356     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6357     APInt D0 = D.lshr(K);
6358 
6359     if (!D.isMinSignedValue()) {
6360       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
6361       // we don't care about this lane in this fold, we'll special-handle it.
6362       HadEvenDivisor |= (K != 0);
6363     }
6364 
6365     // D is a power-of-two if D0 is one. This includes INT_MIN.
6366     // If all divisors are power-of-two, we will prefer to avoid the fold.
6367     AllDivisorsArePowerOfTwo &= D0.isOne();
6368 
6369     // P = inv(D0, 2^W)
6370     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6371     unsigned W = D.getBitWidth();
6372     APInt P = D0.zext(W + 1)
6373                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6374                   .trunc(W);
6375     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6376     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6377 
6378     // A = floor((2^(W - 1) - 1) / D0) & -2^K
6379     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
6380     A.clearLowBits(K);
6381 
6382     if (!D.isMinSignedValue()) {
6383       // If divisor INT_MIN, then we don't care about this lane in this fold,
6384       // we'll special-handle it.
6385       NeedToApplyOffset |= A != 0;
6386     }
6387 
6388     // Q = floor((2 * A) / (2^K))
6389     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
6390 
6391     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
6392            "We are expecting that A is always less than all-ones for SVT");
6393     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6394            "We are expecting that K is always less than all-ones for ShSVT");
6395 
6396     // If the divisor is 1 the result can be constant-folded. Likewise, we
6397     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
6398     if (D.isOne()) {
6399       // Set P, A and K to a bogus values so we can try to splat them.
6400       P = 0;
6401       A = -1;
6402       K = -1;
6403 
6404       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
6405       Q = -1;
6406     }
6407 
6408     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6409     AAmts.push_back(DAG.getConstant(A, DL, SVT));
6410     KAmts.push_back(
6411         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6412     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6413     return true;
6414   };
6415 
6416   SDValue N = REMNode.getOperand(0);
6417   SDValue D = REMNode.getOperand(1);
6418 
6419   // Collect the values from each element.
6420   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
6421     return SDValue();
6422 
6423   // If this is a srem by a one, avoid the fold since it can be constant-folded.
6424   if (AllDivisorsAreOnes)
6425     return SDValue();
6426 
6427   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
6428   // since it can be best implemented as a bit test.
6429   if (AllDivisorsArePowerOfTwo)
6430     return SDValue();
6431 
6432   SDValue PVal, AVal, KVal, QVal;
6433   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6434     if (HadOneDivisor) {
6435       // Try to turn PAmts into a splat, since we don't care about the values
6436       // that are currently '0'. If we can't, just keep '0'`s.
6437       turnVectorIntoSplatVector(PAmts, isNullConstant);
6438       // Try to turn AAmts into a splat, since we don't care about the
6439       // values that are currently '-1'. If we can't, change them to '0'`s.
6440       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
6441                                 DAG.getConstant(0, DL, SVT));
6442       // Try to turn KAmts into a splat, since we don't care about the values
6443       // that are currently '-1'. If we can't, change them to '0'`s.
6444       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6445                                 DAG.getConstant(0, DL, ShSVT));
6446     }
6447 
6448     PVal = DAG.getBuildVector(VT, DL, PAmts);
6449     AVal = DAG.getBuildVector(VT, DL, AAmts);
6450     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6451     QVal = DAG.getBuildVector(VT, DL, QAmts);
6452   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6453     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
6454            QAmts.size() == 1 &&
6455            "Expected matchUnaryPredicate to return one element for scalable "
6456            "vectors");
6457     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6458     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
6459     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6460     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6461   } else {
6462     assert(isa<ConstantSDNode>(D) && "Expected a constant");
6463     PVal = PAmts[0];
6464     AVal = AAmts[0];
6465     KVal = KAmts[0];
6466     QVal = QAmts[0];
6467   }
6468 
6469   // (mul N, P)
6470   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6471   Created.push_back(Op0.getNode());
6472 
6473   if (NeedToApplyOffset) {
6474     // We need ADD to do this.
6475     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
6476       return SDValue();
6477 
6478     // (add (mul N, P), A)
6479     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
6480     Created.push_back(Op0.getNode());
6481   }
6482 
6483   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6484   // divisors as a performance improvement, since rotating by 0 is a no-op.
6485   if (HadEvenDivisor) {
6486     // We need ROTR to do this.
6487     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6488       return SDValue();
6489     // SREM: (rotr (add (mul N, P), A), K)
6490     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6491     Created.push_back(Op0.getNode());
6492   }
6493 
6494   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
6495   SDValue Fold =
6496       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6497                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6498 
6499   // If we didn't have lanes with INT_MIN divisor, then we're done.
6500   if (!HadIntMinDivisor)
6501     return Fold;
6502 
6503   // That fold is only valid for positive divisors. Which effectively means,
6504   // it is invalid for INT_MIN divisors. So if we have such a lane,
6505   // we must fix-up results for said lanes.
6506   assert(VT.isVector() && "Can/should only get here for vectors.");
6507 
6508   // NOTE: we avoid letting illegal types through even if we're before legalize
6509   // ops – legalization has a hard time producing good code for the code that
6510   // follows.
6511   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
6512       !isOperationLegalOrCustom(ISD::AND, VT) ||
6513       !isOperationLegalOrCustom(Cond, VT) ||
6514       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
6515     return SDValue();
6516 
6517   Created.push_back(Fold.getNode());
6518 
6519   SDValue IntMin = DAG.getConstant(
6520       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
6521   SDValue IntMax = DAG.getConstant(
6522       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
6523   SDValue Zero =
6524       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
6525 
6526   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
6527   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
6528   Created.push_back(DivisorIsIntMin.getNode());
6529 
6530   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
6531   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
6532   Created.push_back(Masked.getNode());
6533   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
6534   Created.push_back(MaskedIsZero.getNode());
6535 
6536   // To produce final result we need to blend 2 vectors: 'SetCC' and
6537   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
6538   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
6539   // constant-folded, select can get lowered to a shuffle with constant mask.
6540   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
6541                                 MaskedIsZero, Fold);
6542 
6543   return Blended;
6544 }
6545 
6546 bool TargetLowering::
6547 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
6548   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
6549     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
6550                                 "be a constant integer");
6551     return true;
6552   }
6553 
6554   return false;
6555 }
6556 
6557 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
6558                                          const DenormalMode &Mode) const {
6559   SDLoc DL(Op);
6560   EVT VT = Op.getValueType();
6561   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6562   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
6563   // Testing it with denormal inputs to avoid wrong estimate.
6564   if (Mode.Input == DenormalMode::IEEE) {
6565     // This is specifically a check for the handling of denormal inputs,
6566     // not the result.
6567 
6568     // Test = fabs(X) < SmallestNormal
6569     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
6570     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
6571     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
6572     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
6573     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
6574   }
6575   // Test = X == 0.0
6576   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
6577 }
6578 
6579 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
6580                                              bool LegalOps, bool OptForSize,
6581                                              NegatibleCost &Cost,
6582                                              unsigned Depth) const {
6583   // fneg is removable even if it has multiple uses.
6584   if (Op.getOpcode() == ISD::FNEG) {
6585     Cost = NegatibleCost::Cheaper;
6586     return Op.getOperand(0);
6587   }
6588 
6589   // Don't recurse exponentially.
6590   if (Depth > SelectionDAG::MaxRecursionDepth)
6591     return SDValue();
6592 
6593   // Pre-increment recursion depth for use in recursive calls.
6594   ++Depth;
6595   const SDNodeFlags Flags = Op->getFlags();
6596   const TargetOptions &Options = DAG.getTarget().Options;
6597   EVT VT = Op.getValueType();
6598   unsigned Opcode = Op.getOpcode();
6599 
6600   // Don't allow anything with multiple uses unless we know it is free.
6601   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6602     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6603                         isFPExtFree(VT, Op.getOperand(0).getValueType());
6604     if (!IsFreeExtend)
6605       return SDValue();
6606   }
6607 
6608   auto RemoveDeadNode = [&](SDValue N) {
6609     if (N && N.getNode()->use_empty())
6610       DAG.RemoveDeadNode(N.getNode());
6611   };
6612 
6613   SDLoc DL(Op);
6614 
6615   // Because getNegatedExpression can delete nodes we need a handle to keep
6616   // temporary nodes alive in case the recursion manages to create an identical
6617   // node.
6618   std::list<HandleSDNode> Handles;
6619 
6620   switch (Opcode) {
6621   case ISD::ConstantFP: {
6622     // Don't invert constant FP values after legalization unless the target says
6623     // the negated constant is legal.
6624     bool IsOpLegal =
6625         isOperationLegal(ISD::ConstantFP, VT) ||
6626         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6627                      OptForSize);
6628 
6629     if (LegalOps && !IsOpLegal)
6630       break;
6631 
6632     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6633     V.changeSign();
6634     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6635 
6636     // If we already have the use of the negated floating constant, it is free
6637     // to negate it even it has multiple uses.
6638     if (!Op.hasOneUse() && CFP.use_empty())
6639       break;
6640     Cost = NegatibleCost::Neutral;
6641     return CFP;
6642   }
6643   case ISD::BUILD_VECTOR: {
6644     // Only permit BUILD_VECTOR of constants.
6645     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6646           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6647         }))
6648       break;
6649 
6650     bool IsOpLegal =
6651         (isOperationLegal(ISD::ConstantFP, VT) &&
6652          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6653         llvm::all_of(Op->op_values(), [&](SDValue N) {
6654           return N.isUndef() ||
6655                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6656                               OptForSize);
6657         });
6658 
6659     if (LegalOps && !IsOpLegal)
6660       break;
6661 
6662     SmallVector<SDValue, 4> Ops;
6663     for (SDValue C : Op->op_values()) {
6664       if (C.isUndef()) {
6665         Ops.push_back(C);
6666         continue;
6667       }
6668       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6669       V.changeSign();
6670       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6671     }
6672     Cost = NegatibleCost::Neutral;
6673     return DAG.getBuildVector(VT, DL, Ops);
6674   }
6675   case ISD::FADD: {
6676     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6677       break;
6678 
6679     // After operation legalization, it might not be legal to create new FSUBs.
6680     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6681       break;
6682     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6683 
6684     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6685     NegatibleCost CostX = NegatibleCost::Expensive;
6686     SDValue NegX =
6687         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6688     // Prevent this node from being deleted by the next call.
6689     if (NegX)
6690       Handles.emplace_back(NegX);
6691 
6692     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6693     NegatibleCost CostY = NegatibleCost::Expensive;
6694     SDValue NegY =
6695         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6696 
6697     // We're done with the handles.
6698     Handles.clear();
6699 
6700     // Negate the X if its cost is less or equal than Y.
6701     if (NegX && (CostX <= CostY)) {
6702       Cost = CostX;
6703       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6704       if (NegY != N)
6705         RemoveDeadNode(NegY);
6706       return N;
6707     }
6708 
6709     // Negate the Y if it is not expensive.
6710     if (NegY) {
6711       Cost = CostY;
6712       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6713       if (NegX != N)
6714         RemoveDeadNode(NegX);
6715       return N;
6716     }
6717     break;
6718   }
6719   case ISD::FSUB: {
6720     // We can't turn -(A-B) into B-A when we honor signed zeros.
6721     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6722       break;
6723 
6724     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6725     // fold (fneg (fsub 0, Y)) -> Y
6726     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6727       if (C->isZero()) {
6728         Cost = NegatibleCost::Cheaper;
6729         return Y;
6730       }
6731 
6732     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6733     Cost = NegatibleCost::Neutral;
6734     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6735   }
6736   case ISD::FMUL:
6737   case ISD::FDIV: {
6738     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6739 
6740     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6741     NegatibleCost CostX = NegatibleCost::Expensive;
6742     SDValue NegX =
6743         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6744     // Prevent this node from being deleted by the next call.
6745     if (NegX)
6746       Handles.emplace_back(NegX);
6747 
6748     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6749     NegatibleCost CostY = NegatibleCost::Expensive;
6750     SDValue NegY =
6751         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6752 
6753     // We're done with the handles.
6754     Handles.clear();
6755 
6756     // Negate the X if its cost is less or equal than Y.
6757     if (NegX && (CostX <= CostY)) {
6758       Cost = CostX;
6759       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6760       if (NegY != N)
6761         RemoveDeadNode(NegY);
6762       return N;
6763     }
6764 
6765     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6766     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6767       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6768         break;
6769 
6770     // Negate the Y if it is not expensive.
6771     if (NegY) {
6772       Cost = CostY;
6773       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6774       if (NegX != N)
6775         RemoveDeadNode(NegX);
6776       return N;
6777     }
6778     break;
6779   }
6780   case ISD::FMA:
6781   case ISD::FMAD: {
6782     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6783       break;
6784 
6785     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6786     NegatibleCost CostZ = NegatibleCost::Expensive;
6787     SDValue NegZ =
6788         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6789     // Give up if fail to negate the Z.
6790     if (!NegZ)
6791       break;
6792 
6793     // Prevent this node from being deleted by the next two calls.
6794     Handles.emplace_back(NegZ);
6795 
6796     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6797     NegatibleCost CostX = NegatibleCost::Expensive;
6798     SDValue NegX =
6799         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6800     // Prevent this node from being deleted by the next call.
6801     if (NegX)
6802       Handles.emplace_back(NegX);
6803 
6804     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6805     NegatibleCost CostY = NegatibleCost::Expensive;
6806     SDValue NegY =
6807         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6808 
6809     // We're done with the handles.
6810     Handles.clear();
6811 
6812     // Negate the X if its cost is less or equal than Y.
6813     if (NegX && (CostX <= CostY)) {
6814       Cost = std::min(CostX, CostZ);
6815       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6816       if (NegY != N)
6817         RemoveDeadNode(NegY);
6818       return N;
6819     }
6820 
6821     // Negate the Y if it is not expensive.
6822     if (NegY) {
6823       Cost = std::min(CostY, CostZ);
6824       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6825       if (NegX != N)
6826         RemoveDeadNode(NegX);
6827       return N;
6828     }
6829     break;
6830   }
6831 
6832   case ISD::FP_EXTEND:
6833   case ISD::FSIN:
6834     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6835                                             OptForSize, Cost, Depth))
6836       return DAG.getNode(Opcode, DL, VT, NegV);
6837     break;
6838   case ISD::FP_ROUND:
6839     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6840                                             OptForSize, Cost, Depth))
6841       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6842     break;
6843   }
6844 
6845   return SDValue();
6846 }
6847 
6848 //===----------------------------------------------------------------------===//
6849 // Legalization Utilities
6850 //===----------------------------------------------------------------------===//
6851 
6852 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6853                                     SDValue LHS, SDValue RHS,
6854                                     SmallVectorImpl<SDValue> &Result,
6855                                     EVT HiLoVT, SelectionDAG &DAG,
6856                                     MulExpansionKind Kind, SDValue LL,
6857                                     SDValue LH, SDValue RL, SDValue RH) const {
6858   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6859          Opcode == ISD::SMUL_LOHI);
6860 
6861   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6862                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6863   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6864                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6865   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6866                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6867   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6868                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6869 
6870   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6871     return false;
6872 
6873   unsigned OuterBitSize = VT.getScalarSizeInBits();
6874   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6875 
6876   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6877   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6878          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6879 
6880   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6881   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6882                           bool Signed) -> bool {
6883     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6884       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6885       Hi = SDValue(Lo.getNode(), 1);
6886       return true;
6887     }
6888     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6889       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6890       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6891       return true;
6892     }
6893     return false;
6894   };
6895 
6896   SDValue Lo, Hi;
6897 
6898   if (!LL.getNode() && !RL.getNode() &&
6899       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6900     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6901     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6902   }
6903 
6904   if (!LL.getNode())
6905     return false;
6906 
6907   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6908   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6909       DAG.MaskedValueIsZero(RHS, HighMask)) {
6910     // The inputs are both zero-extended.
6911     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6912       Result.push_back(Lo);
6913       Result.push_back(Hi);
6914       if (Opcode != ISD::MUL) {
6915         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6916         Result.push_back(Zero);
6917         Result.push_back(Zero);
6918       }
6919       return true;
6920     }
6921   }
6922 
6923   if (!VT.isVector() && Opcode == ISD::MUL &&
6924       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6925       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6926     // The input values are both sign-extended.
6927     // TODO non-MUL case?
6928     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6929       Result.push_back(Lo);
6930       Result.push_back(Hi);
6931       return true;
6932     }
6933   }
6934 
6935   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6936   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6937   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6938 
6939   if (!LH.getNode() && !RH.getNode() &&
6940       isOperationLegalOrCustom(ISD::SRL, VT) &&
6941       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6942     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6943     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6944     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6945     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6946   }
6947 
6948   if (!LH.getNode())
6949     return false;
6950 
6951   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6952     return false;
6953 
6954   Result.push_back(Lo);
6955 
6956   if (Opcode == ISD::MUL) {
6957     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6958     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6959     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6960     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6961     Result.push_back(Hi);
6962     return true;
6963   }
6964 
6965   // Compute the full width result.
6966   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6967     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6968     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6969     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6970     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6971   };
6972 
6973   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6974   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6975     return false;
6976 
6977   // This is effectively the add part of a multiply-add of half-sized operands,
6978   // so it cannot overflow.
6979   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6980 
6981   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6982     return false;
6983 
6984   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6985   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6986 
6987   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6988                   isOperationLegalOrCustom(ISD::ADDE, VT));
6989   if (UseGlue)
6990     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6991                        Merge(Lo, Hi));
6992   else
6993     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6994                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6995 
6996   SDValue Carry = Next.getValue(1);
6997   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6998   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6999 
7000   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
7001     return false;
7002 
7003   if (UseGlue)
7004     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
7005                      Carry);
7006   else
7007     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
7008                      Zero, Carry);
7009 
7010   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
7011 
7012   if (Opcode == ISD::SMUL_LOHI) {
7013     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
7014                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
7015     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
7016 
7017     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
7018                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
7019     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
7020   }
7021 
7022   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7023   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
7024   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7025   return true;
7026 }
7027 
7028 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
7029                                SelectionDAG &DAG, MulExpansionKind Kind,
7030                                SDValue LL, SDValue LH, SDValue RL,
7031                                SDValue RH) const {
7032   SmallVector<SDValue, 2> Result;
7033   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
7034                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
7035                            DAG, Kind, LL, LH, RL, RH);
7036   if (Ok) {
7037     assert(Result.size() == 2);
7038     Lo = Result[0];
7039     Hi = Result[1];
7040   }
7041   return Ok;
7042 }
7043 
7044 // Check that (every element of) Z is undef or not an exact multiple of BW.
7045 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
7046   return ISD::matchUnaryPredicate(
7047       Z,
7048       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
7049       true);
7050 }
7051 
7052 SDValue TargetLowering::expandFunnelShift(SDNode *Node,
7053                                           SelectionDAG &DAG) const {
7054   EVT VT = Node->getValueType(0);
7055 
7056   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
7057                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7058                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7059                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7060     return SDValue();
7061 
7062   SDValue X = Node->getOperand(0);
7063   SDValue Y = Node->getOperand(1);
7064   SDValue Z = Node->getOperand(2);
7065 
7066   unsigned BW = VT.getScalarSizeInBits();
7067   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
7068   SDLoc DL(SDValue(Node, 0));
7069 
7070   EVT ShVT = Z.getValueType();
7071 
7072   // If a funnel shift in the other direction is more supported, use it.
7073   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
7074   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
7075       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
7076     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7077       // fshl X, Y, Z -> fshr X, Y, -Z
7078       // fshr X, Y, Z -> fshl X, Y, -Z
7079       SDValue Zero = DAG.getConstant(0, DL, ShVT);
7080       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
7081     } else {
7082       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
7083       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
7084       SDValue One = DAG.getConstant(1, DL, ShVT);
7085       if (IsFSHL) {
7086         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
7087         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
7088       } else {
7089         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
7090         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
7091       }
7092       Z = DAG.getNOT(DL, Z, ShVT);
7093     }
7094     return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
7095   }
7096 
7097   SDValue ShX, ShY;
7098   SDValue ShAmt, InvShAmt;
7099   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7100     // fshl: X << C | Y >> (BW - C)
7101     // fshr: X << (BW - C) | Y >> C
7102     // where C = Z % BW is not zero
7103     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7104     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
7105     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
7106     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
7107     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
7108   } else {
7109     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
7110     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
7111     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
7112     if (isPowerOf2_32(BW)) {
7113       // Z % BW -> Z & (BW - 1)
7114       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
7115       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
7116       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
7117     } else {
7118       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7119       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
7120       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
7121     }
7122 
7123     SDValue One = DAG.getConstant(1, DL, ShVT);
7124     if (IsFSHL) {
7125       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
7126       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
7127       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
7128     } else {
7129       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
7130       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
7131       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
7132     }
7133   }
7134   return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
7135 }
7136 
7137 // TODO: Merge with expandFunnelShift.
7138 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
7139                                   SelectionDAG &DAG) const {
7140   EVT VT = Node->getValueType(0);
7141   unsigned EltSizeInBits = VT.getScalarSizeInBits();
7142   bool IsLeft = Node->getOpcode() == ISD::ROTL;
7143   SDValue Op0 = Node->getOperand(0);
7144   SDValue Op1 = Node->getOperand(1);
7145   SDLoc DL(SDValue(Node, 0));
7146 
7147   EVT ShVT = Op1.getValueType();
7148   SDValue Zero = DAG.getConstant(0, DL, ShVT);
7149 
7150   // If a rotate in the other direction is more supported, use it.
7151   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
7152   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
7153       isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
7154     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
7155     return DAG.getNode(RevRot, DL, VT, Op0, Sub);
7156   }
7157 
7158   if (!AllowVectorOps && VT.isVector() &&
7159       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
7160        !isOperationLegalOrCustom(ISD::SRL, VT) ||
7161        !isOperationLegalOrCustom(ISD::SUB, VT) ||
7162        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
7163        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
7164     return SDValue();
7165 
7166   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
7167   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
7168   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
7169   SDValue ShVal;
7170   SDValue HsVal;
7171   if (isPowerOf2_32(EltSizeInBits)) {
7172     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
7173     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
7174     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
7175     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
7176     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
7177     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
7178     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
7179   } else {
7180     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
7181     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
7182     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
7183     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
7184     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
7185     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
7186     SDValue One = DAG.getConstant(1, DL, ShVT);
7187     HsVal =
7188         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
7189   }
7190   return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
7191 }
7192 
7193 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
7194                                       SelectionDAG &DAG) const {
7195   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
7196   EVT VT = Node->getValueType(0);
7197   unsigned VTBits = VT.getScalarSizeInBits();
7198   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
7199 
7200   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
7201   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
7202   SDValue ShOpLo = Node->getOperand(0);
7203   SDValue ShOpHi = Node->getOperand(1);
7204   SDValue ShAmt = Node->getOperand(2);
7205   EVT ShAmtVT = ShAmt.getValueType();
7206   EVT ShAmtCCVT =
7207       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
7208   SDLoc dl(Node);
7209 
7210   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
7211   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
7212   // away during isel.
7213   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
7214                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
7215   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7216                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
7217                        : DAG.getConstant(0, dl, VT);
7218 
7219   SDValue Tmp2, Tmp3;
7220   if (IsSHL) {
7221     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
7222     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
7223   } else {
7224     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
7225     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
7226   }
7227 
7228   // If the shift amount is larger or equal than the width of a part we don't
7229   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
7230   // values for large shift amounts.
7231   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
7232                                 DAG.getConstant(VTBits, dl, ShAmtVT));
7233   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
7234                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
7235 
7236   if (IsSHL) {
7237     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7238     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7239   } else {
7240     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7241     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7242   }
7243 }
7244 
7245 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
7246                                       SelectionDAG &DAG) const {
7247   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7248   SDValue Src = Node->getOperand(OpNo);
7249   EVT SrcVT = Src.getValueType();
7250   EVT DstVT = Node->getValueType(0);
7251   SDLoc dl(SDValue(Node, 0));
7252 
7253   // FIXME: Only f32 to i64 conversions are supported.
7254   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
7255     return false;
7256 
7257   if (Node->isStrictFPOpcode())
7258     // When a NaN is converted to an integer a trap is allowed. We can't
7259     // use this expansion here because it would eliminate that trap. Other
7260     // traps are also allowed and cannot be eliminated. See
7261     // IEEE 754-2008 sec 5.8.
7262     return false;
7263 
7264   // Expand f32 -> i64 conversion
7265   // This algorithm comes from compiler-rt's implementation of fixsfdi:
7266   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
7267   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
7268   EVT IntVT = SrcVT.changeTypeToInteger();
7269   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
7270 
7271   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
7272   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
7273   SDValue Bias = DAG.getConstant(127, dl, IntVT);
7274   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
7275   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
7276   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
7277 
7278   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
7279 
7280   SDValue ExponentBits = DAG.getNode(
7281       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
7282       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
7283   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
7284 
7285   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
7286                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
7287                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
7288   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
7289 
7290   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
7291                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
7292                           DAG.getConstant(0x00800000, dl, IntVT));
7293 
7294   R = DAG.getZExtOrTrunc(R, dl, DstVT);
7295 
7296   R = DAG.getSelectCC(
7297       dl, Exponent, ExponentLoBit,
7298       DAG.getNode(ISD::SHL, dl, DstVT, R,
7299                   DAG.getZExtOrTrunc(
7300                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
7301                       dl, IntShVT)),
7302       DAG.getNode(ISD::SRL, dl, DstVT, R,
7303                   DAG.getZExtOrTrunc(
7304                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
7305                       dl, IntShVT)),
7306       ISD::SETGT);
7307 
7308   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
7309                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
7310 
7311   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
7312                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
7313   return true;
7314 }
7315 
7316 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
7317                                       SDValue &Chain,
7318                                       SelectionDAG &DAG) const {
7319   SDLoc dl(SDValue(Node, 0));
7320   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7321   SDValue Src = Node->getOperand(OpNo);
7322 
7323   EVT SrcVT = Src.getValueType();
7324   EVT DstVT = Node->getValueType(0);
7325   EVT SetCCVT =
7326       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
7327   EVT DstSetCCVT =
7328       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
7329 
7330   // Only expand vector types if we have the appropriate vector bit operations.
7331   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
7332                                                    ISD::FP_TO_SINT;
7333   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
7334                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
7335     return false;
7336 
7337   // If the maximum float value is smaller then the signed integer range,
7338   // the destination signmask can't be represented by the float, so we can
7339   // just use FP_TO_SINT directly.
7340   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
7341   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
7342   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
7343   if (APFloat::opOverflow &
7344       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
7345     if (Node->isStrictFPOpcode()) {
7346       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7347                            { Node->getOperand(0), Src });
7348       Chain = Result.getValue(1);
7349     } else
7350       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7351     return true;
7352   }
7353 
7354   // Don't expand it if there isn't cheap fsub instruction.
7355   if (!isOperationLegalOrCustom(
7356           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
7357     return false;
7358 
7359   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
7360   SDValue Sel;
7361 
7362   if (Node->isStrictFPOpcode()) {
7363     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
7364                        Node->getOperand(0), /*IsSignaling*/ true);
7365     Chain = Sel.getValue(1);
7366   } else {
7367     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
7368   }
7369 
7370   bool Strict = Node->isStrictFPOpcode() ||
7371                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
7372 
7373   if (Strict) {
7374     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
7375     // signmask then offset (the result of which should be fully representable).
7376     // Sel = Src < 0x8000000000000000
7377     // FltOfs = select Sel, 0, 0x8000000000000000
7378     // IntOfs = select Sel, 0, 0x8000000000000000
7379     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
7380 
7381     // TODO: Should any fast-math-flags be set for the FSUB?
7382     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
7383                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
7384     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7385     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
7386                                    DAG.getConstant(0, dl, DstVT),
7387                                    DAG.getConstant(SignMask, dl, DstVT));
7388     SDValue SInt;
7389     if (Node->isStrictFPOpcode()) {
7390       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
7391                                 { Chain, Src, FltOfs });
7392       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7393                          { Val.getValue(1), Val });
7394       Chain = SInt.getValue(1);
7395     } else {
7396       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
7397       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
7398     }
7399     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
7400   } else {
7401     // Expand based on maximum range of FP_TO_SINT:
7402     // True = fp_to_sint(Src)
7403     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
7404     // Result = select (Src < 0x8000000000000000), True, False
7405 
7406     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7407     // TODO: Should any fast-math-flags be set for the FSUB?
7408     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
7409                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
7410     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
7411                         DAG.getConstant(SignMask, dl, DstVT));
7412     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7413     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
7414   }
7415   return true;
7416 }
7417 
7418 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
7419                                       SDValue &Chain,
7420                                       SelectionDAG &DAG) const {
7421   // This transform is not correct for converting 0 when rounding mode is set
7422   // to round toward negative infinity which will produce -0.0. So disable under
7423   // strictfp.
7424   if (Node->isStrictFPOpcode())
7425     return false;
7426 
7427   SDValue Src = Node->getOperand(0);
7428   EVT SrcVT = Src.getValueType();
7429   EVT DstVT = Node->getValueType(0);
7430 
7431   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
7432     return false;
7433 
7434   // Only expand vector types if we have the appropriate vector bit operations.
7435   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
7436                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
7437                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
7438                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
7439                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
7440     return false;
7441 
7442   SDLoc dl(SDValue(Node, 0));
7443   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
7444 
7445   // Implementation of unsigned i64 to f64 following the algorithm in
7446   // __floatundidf in compiler_rt.  This implementation performs rounding
7447   // correctly in all rounding modes with the exception of converting 0
7448   // when rounding toward negative infinity. In that case the fsub will produce
7449   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
7450   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
7451   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
7452       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
7453   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
7454   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
7455   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
7456 
7457   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
7458   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
7459   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
7460   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
7461   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
7462   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
7463   SDValue HiSub =
7464       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
7465   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
7466   return true;
7467 }
7468 
7469 SDValue
7470 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node,
7471                                                SelectionDAG &DAG) const {
7472   unsigned Opcode = Node->getOpcode();
7473   assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM ||
7474           Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) &&
7475          "Wrong opcode");
7476 
7477   if (Node->getFlags().hasNoNaNs()) {
7478     ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
7479     SDValue Op1 = Node->getOperand(0);
7480     SDValue Op2 = Node->getOperand(1);
7481     SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred);
7482     // Copy FMF flags, but always set the no-signed-zeros flag
7483     // as this is implied by the FMINNUM/FMAXNUM semantics.
7484     SDNodeFlags Flags = Node->getFlags();
7485     Flags.setNoSignedZeros(true);
7486     SelCC->setFlags(Flags);
7487     return SelCC;
7488   }
7489 
7490   return SDValue();
7491 }
7492 
7493 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
7494                                               SelectionDAG &DAG) const {
7495   SDLoc dl(Node);
7496   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
7497     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
7498   EVT VT = Node->getValueType(0);
7499 
7500   if (VT.isScalableVector())
7501     report_fatal_error(
7502         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
7503 
7504   if (isOperationLegalOrCustom(NewOp, VT)) {
7505     SDValue Quiet0 = Node->getOperand(0);
7506     SDValue Quiet1 = Node->getOperand(1);
7507 
7508     if (!Node->getFlags().hasNoNaNs()) {
7509       // Insert canonicalizes if it's possible we need to quiet to get correct
7510       // sNaN behavior.
7511       if (!DAG.isKnownNeverSNaN(Quiet0)) {
7512         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
7513                              Node->getFlags());
7514       }
7515       if (!DAG.isKnownNeverSNaN(Quiet1)) {
7516         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
7517                              Node->getFlags());
7518       }
7519     }
7520 
7521     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
7522   }
7523 
7524   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
7525   // instead if there are no NaNs.
7526   if (Node->getFlags().hasNoNaNs()) {
7527     unsigned IEEE2018Op =
7528         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
7529     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
7530       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
7531                          Node->getOperand(1), Node->getFlags());
7532     }
7533   }
7534 
7535   if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG))
7536     return SelCC;
7537 
7538   return SDValue();
7539 }
7540 
7541 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op,
7542                                          unsigned Test, SDNodeFlags Flags,
7543                                          const SDLoc &DL,
7544                                          SelectionDAG &DAG) const {
7545   EVT OperandVT = Op.getValueType();
7546   assert(OperandVT.isFloatingPoint());
7547 
7548   // Degenerated cases.
7549   if (Test == 0)
7550     return DAG.getBoolConstant(false, DL, ResultVT, OperandVT);
7551   if ((Test & fcAllFlags) == fcAllFlags)
7552     return DAG.getBoolConstant(true, DL, ResultVT, OperandVT);
7553 
7554   // PPC double double is a pair of doubles, of which the higher part determines
7555   // the value class.
7556   if (OperandVT == MVT::ppcf128) {
7557     Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op,
7558                      DAG.getConstant(1, DL, MVT::i32));
7559     OperandVT = MVT::f64;
7560   }
7561 
7562   // Some checks may be represented as inversion of simpler check, for example
7563   // "inf|normal|subnormal|zero" => !"nan".
7564   bool IsInverted = false;
7565   if (unsigned InvertedCheck = getInvertedFPClassTest(Test)) {
7566     IsInverted = true;
7567     Test = InvertedCheck;
7568   }
7569 
7570   // Floating-point type properties.
7571   EVT ScalarFloatVT = OperandVT.getScalarType();
7572   const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext());
7573   const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics();
7574   bool IsF80 = (ScalarFloatVT == MVT::f80);
7575 
7576   // Some checks can be implemented using float comparisons, if floating point
7577   // exceptions are ignored.
7578   if (Flags.hasNoFPExcept() &&
7579       isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) {
7580     if (Test == fcZero)
7581       return DAG.getSetCC(DL, ResultVT, Op,
7582                           DAG.getConstantFP(0.0, DL, OperandVT),
7583                           IsInverted ? ISD::SETUNE : ISD::SETOEQ);
7584     if (Test == fcNan)
7585       return DAG.getSetCC(DL, ResultVT, Op, Op,
7586                           IsInverted ? ISD::SETO : ISD::SETUO);
7587   }
7588 
7589   // In the general case use integer operations.
7590   unsigned BitSize = OperandVT.getScalarSizeInBits();
7591   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize);
7592   if (OperandVT.isVector())
7593     IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT,
7594                              OperandVT.getVectorElementCount());
7595   SDValue OpAsInt = DAG.getBitcast(IntVT, Op);
7596 
7597   // Various masks.
7598   APInt SignBit = APInt::getSignMask(BitSize);
7599   APInt ValueMask = APInt::getSignedMaxValue(BitSize);     // All bits but sign.
7600   APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit.
7601   const unsigned ExplicitIntBitInF80 = 63;
7602   APInt ExpMask = Inf;
7603   if (IsF80)
7604     ExpMask.clearBit(ExplicitIntBitInF80);
7605   APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf;
7606   APInt QNaNBitMask =
7607       APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1);
7608   APInt InvertionMask = APInt::getAllOnesValue(ResultVT.getScalarSizeInBits());
7609 
7610   SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT);
7611   SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT);
7612   SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT);
7613   SDValue ZeroV = DAG.getConstant(0, DL, IntVT);
7614   SDValue InfV = DAG.getConstant(Inf, DL, IntVT);
7615   SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT);
7616 
7617   SDValue Res;
7618   const auto appendResult = [&](SDValue PartialRes) {
7619     if (PartialRes) {
7620       if (Res)
7621         Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes);
7622       else
7623         Res = PartialRes;
7624     }
7625   };
7626 
7627   SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set.
7628   const auto getIntBitIsSet = [&]() -> SDValue {
7629     if (!IntBitIsSetV) {
7630       APInt IntBitMask(BitSize, 0);
7631       IntBitMask.setBit(ExplicitIntBitInF80);
7632       SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT);
7633       SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV);
7634       IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE);
7635     }
7636     return IntBitIsSetV;
7637   };
7638 
7639   // Split the value into sign bit and absolute value.
7640   SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV);
7641   SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt,
7642                                DAG.getConstant(0.0, DL, IntVT), ISD::SETLT);
7643 
7644   // Tests that involve more than one class should be processed first.
7645   SDValue PartialRes;
7646 
7647   if (IsF80)
7648     ; // Detect finite numbers of f80 by checking individual classes because
7649       // they have different settings of the explicit integer bit.
7650   else if ((Test & fcFinite) == fcFinite) {
7651     // finite(V) ==> abs(V) < exp_mask
7652     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
7653     Test &= ~fcFinite;
7654   } else if ((Test & fcFinite) == fcPosFinite) {
7655     // finite(V) && V > 0 ==> V < exp_mask
7656     PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT);
7657     Test &= ~fcPosFinite;
7658   } else if ((Test & fcFinite) == fcNegFinite) {
7659     // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1
7660     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
7661     PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7662     Test &= ~fcNegFinite;
7663   }
7664   appendResult(PartialRes);
7665 
7666   // Check for individual classes.
7667 
7668   if (unsigned PartialCheck = Test & fcZero) {
7669     if (PartialCheck == fcPosZero)
7670       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ);
7671     else if (PartialCheck == fcZero)
7672       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ);
7673     else // ISD::fcNegZero
7674       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ);
7675     appendResult(PartialRes);
7676   }
7677 
7678   if (unsigned PartialCheck = Test & fcInf) {
7679     if (PartialCheck == fcPosInf)
7680       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ);
7681     else if (PartialCheck == fcInf)
7682       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ);
7683     else { // ISD::fcNegInf
7684       APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt();
7685       SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT);
7686       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ);
7687     }
7688     appendResult(PartialRes);
7689   }
7690 
7691   if (unsigned PartialCheck = Test & fcNan) {
7692     APInt InfWithQnanBit = Inf | QNaNBitMask;
7693     SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT);
7694     if (PartialCheck == fcNan) {
7695       // isnan(V) ==> abs(V) > int(inf)
7696       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
7697       if (IsF80) {
7698         // Recognize unsupported values as NaNs for compatibility with glibc.
7699         // In them (exp(V)==0) == int_bit.
7700         SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV);
7701         SDValue ExpIsZero =
7702             DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
7703         SDValue IsPseudo =
7704             DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ);
7705         PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo);
7706       }
7707     } else if (PartialCheck == fcQNan) {
7708       // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit)
7709       PartialRes =
7710           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE);
7711     } else { // ISD::fcSNan
7712       // issignaling(V) ==> abs(V) > unsigned(Inf) &&
7713       //                    abs(V) < (unsigned(Inf) | quiet_bit)
7714       SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
7715       SDValue IsNotQnan =
7716           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT);
7717       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan);
7718     }
7719     appendResult(PartialRes);
7720   }
7721 
7722   if (unsigned PartialCheck = Test & fcSubnormal) {
7723     // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set)
7724     // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set)
7725     SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV;
7726     SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT);
7727     SDValue VMinusOneV =
7728         DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT));
7729     PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT);
7730     if (PartialCheck == fcNegSubnormal)
7731       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7732     appendResult(PartialRes);
7733   }
7734 
7735   if (unsigned PartialCheck = Test & fcNormal) {
7736     // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1))
7737     APInt ExpLSB = ExpMask & ~(ExpMask.shl(1));
7738     SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT);
7739     SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV);
7740     APInt ExpLimit = ExpMask - ExpLSB;
7741     SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT);
7742     PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT);
7743     if (PartialCheck == fcNegNormal)
7744       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7745     else if (PartialCheck == fcPosNormal) {
7746       SDValue PosSignV =
7747           DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask);
7748       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV);
7749     }
7750     if (IsF80)
7751       PartialRes =
7752           DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet());
7753     appendResult(PartialRes);
7754   }
7755 
7756   if (!Res)
7757     return DAG.getConstant(IsInverted, DL, ResultVT);
7758   if (IsInverted)
7759     Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask);
7760   return Res;
7761 }
7762 
7763 // Only expand vector types if we have the appropriate vector bit operations.
7764 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
7765   assert(VT.isVector() && "Expected vector type");
7766   unsigned Len = VT.getScalarSizeInBits();
7767   return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
7768          TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
7769          TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
7770          (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
7771          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
7772 }
7773 
7774 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
7775   SDLoc dl(Node);
7776   EVT VT = Node->getValueType(0);
7777   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7778   SDValue Op = Node->getOperand(0);
7779   unsigned Len = VT.getScalarSizeInBits();
7780   assert(VT.isInteger() && "CTPOP not implemented for this type.");
7781 
7782   // TODO: Add support for irregular type lengths.
7783   if (!(Len <= 128 && Len % 8 == 0))
7784     return SDValue();
7785 
7786   // Only expand vector types if we have the appropriate vector bit operations.
7787   if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
7788     return SDValue();
7789 
7790   // This is the "best" algorithm from
7791   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
7792   SDValue Mask55 =
7793       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
7794   SDValue Mask33 =
7795       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
7796   SDValue Mask0F =
7797       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
7798 
7799   // v = v - ((v >> 1) & 0x55555555...)
7800   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
7801                    DAG.getNode(ISD::AND, dl, VT,
7802                                DAG.getNode(ISD::SRL, dl, VT, Op,
7803                                            DAG.getConstant(1, dl, ShVT)),
7804                                Mask55));
7805   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
7806   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
7807                    DAG.getNode(ISD::AND, dl, VT,
7808                                DAG.getNode(ISD::SRL, dl, VT, Op,
7809                                            DAG.getConstant(2, dl, ShVT)),
7810                                Mask33));
7811   // v = (v + (v >> 4)) & 0x0F0F0F0F...
7812   Op = DAG.getNode(ISD::AND, dl, VT,
7813                    DAG.getNode(ISD::ADD, dl, VT, Op,
7814                                DAG.getNode(ISD::SRL, dl, VT, Op,
7815                                            DAG.getConstant(4, dl, ShVT))),
7816                    Mask0F);
7817 
7818   if (Len <= 8)
7819     return Op;
7820 
7821   // Avoid the multiply if we only have 2 bytes to add.
7822   // TODO: Only doing this for scalars because vectors weren't as obviously
7823   // improved.
7824   if (Len == 16 && !VT.isVector()) {
7825     // v = (v + (v >> 8)) & 0x00FF;
7826     return DAG.getNode(ISD::AND, dl, VT,
7827                      DAG.getNode(ISD::ADD, dl, VT, Op,
7828                                  DAG.getNode(ISD::SRL, dl, VT, Op,
7829                                              DAG.getConstant(8, dl, ShVT))),
7830                      DAG.getConstant(0xFF, dl, VT));
7831   }
7832 
7833   // v = (v * 0x01010101...) >> (Len - 8)
7834   SDValue Mask01 =
7835       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
7836   return DAG.getNode(ISD::SRL, dl, VT,
7837                      DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
7838                      DAG.getConstant(Len - 8, dl, ShVT));
7839 }
7840 
7841 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
7842   SDLoc dl(Node);
7843   EVT VT = Node->getValueType(0);
7844   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7845   SDValue Op = Node->getOperand(0);
7846   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7847 
7848   // If the non-ZERO_UNDEF version is supported we can use that instead.
7849   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
7850       isOperationLegalOrCustom(ISD::CTLZ, VT))
7851     return DAG.getNode(ISD::CTLZ, dl, VT, Op);
7852 
7853   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7854   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
7855     EVT SetCCVT =
7856         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7857     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
7858     SDValue Zero = DAG.getConstant(0, dl, VT);
7859     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7860     return DAG.getSelect(dl, VT, SrcIsZero,
7861                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
7862   }
7863 
7864   // Only expand vector types if we have the appropriate vector bit operations.
7865   // This includes the operations needed to expand CTPOP if it isn't supported.
7866   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7867                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7868                          !canExpandVectorCTPOP(*this, VT)) ||
7869                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7870                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7871     return SDValue();
7872 
7873   // for now, we do this:
7874   // x = x | (x >> 1);
7875   // x = x | (x >> 2);
7876   // ...
7877   // x = x | (x >>16);
7878   // x = x | (x >>32); // for 64-bit input
7879   // return popcount(~x);
7880   //
7881   // Ref: "Hacker's Delight" by Henry Warren
7882   for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
7883     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
7884     Op = DAG.getNode(ISD::OR, dl, VT, Op,
7885                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
7886   }
7887   Op = DAG.getNOT(dl, Op, VT);
7888   return DAG.getNode(ISD::CTPOP, dl, VT, Op);
7889 }
7890 
7891 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
7892   SDLoc dl(Node);
7893   EVT VT = Node->getValueType(0);
7894   SDValue Op = Node->getOperand(0);
7895   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7896 
7897   // If the non-ZERO_UNDEF version is supported we can use that instead.
7898   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
7899       isOperationLegalOrCustom(ISD::CTTZ, VT))
7900     return DAG.getNode(ISD::CTTZ, dl, VT, Op);
7901 
7902   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7903   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7904     EVT SetCCVT =
7905         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7906     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7907     SDValue Zero = DAG.getConstant(0, dl, VT);
7908     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7909     return DAG.getSelect(dl, VT, SrcIsZero,
7910                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7911   }
7912 
7913   // Only expand vector types if we have the appropriate vector bit operations.
7914   // This includes the operations needed to expand CTPOP if it isn't supported.
7915   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7916                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7917                          !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
7918                          !canExpandVectorCTPOP(*this, VT)) ||
7919                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7920                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
7921                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7922     return SDValue();
7923 
7924   // for now, we use: { return popcount(~x & (x - 1)); }
7925   // unless the target has ctlz but not ctpop, in which case we use:
7926   // { return 32 - nlz(~x & (x-1)); }
7927   // Ref: "Hacker's Delight" by Henry Warren
7928   SDValue Tmp = DAG.getNode(
7929       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
7930       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
7931 
7932   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
7933   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
7934     return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
7935                        DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
7936   }
7937 
7938   return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
7939 }
7940 
7941 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
7942                                   bool IsNegative) const {
7943   SDLoc dl(N);
7944   EVT VT = N->getValueType(0);
7945   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7946   SDValue Op = N->getOperand(0);
7947 
7948   // abs(x) -> smax(x,sub(0,x))
7949   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7950       isOperationLegal(ISD::SMAX, VT)) {
7951     SDValue Zero = DAG.getConstant(0, dl, VT);
7952     return DAG.getNode(ISD::SMAX, dl, VT, Op,
7953                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7954   }
7955 
7956   // abs(x) -> umin(x,sub(0,x))
7957   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7958       isOperationLegal(ISD::UMIN, VT)) {
7959     SDValue Zero = DAG.getConstant(0, dl, VT);
7960     Op = DAG.getFreeze(Op);
7961     return DAG.getNode(ISD::UMIN, dl, VT, Op,
7962                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7963   }
7964 
7965   // 0 - abs(x) -> smin(x, sub(0,x))
7966   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
7967       isOperationLegal(ISD::SMIN, VT)) {
7968     Op = DAG.getFreeze(Op);
7969     SDValue Zero = DAG.getConstant(0, dl, VT);
7970     return DAG.getNode(ISD::SMIN, dl, VT, Op,
7971                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7972   }
7973 
7974   // Only expand vector types if we have the appropriate vector operations.
7975   if (VT.isVector() &&
7976       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
7977        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
7978        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
7979        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7980     return SDValue();
7981 
7982   Op = DAG.getFreeze(Op);
7983   SDValue Shift =
7984       DAG.getNode(ISD::SRA, dl, VT, Op,
7985                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
7986   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
7987 
7988   // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y)
7989   if (!IsNegative)
7990     return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift);
7991 
7992   // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
7993   return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
7994 }
7995 
7996 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
7997   SDLoc dl(N);
7998   EVT VT = N->getValueType(0);
7999   SDValue Op = N->getOperand(0);
8000 
8001   if (!VT.isSimple())
8002     return SDValue();
8003 
8004   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
8005   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
8006   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
8007   default:
8008     return SDValue();
8009   case MVT::i16:
8010     // Use a rotate by 8. This can be further expanded if necessary.
8011     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8012   case MVT::i32:
8013     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
8014     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8015     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8016     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
8017     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
8018                        DAG.getConstant(0xFF0000, dl, VT));
8019     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
8020     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
8021     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
8022     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
8023   case MVT::i64:
8024     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
8025     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
8026     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
8027     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8028     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8029     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
8030     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
8031     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
8032     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
8033                        DAG.getConstant(255ULL<<48, dl, VT));
8034     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
8035                        DAG.getConstant(255ULL<<40, dl, VT));
8036     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
8037                        DAG.getConstant(255ULL<<32, dl, VT));
8038     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
8039                        DAG.getConstant(255ULL<<24, dl, VT));
8040     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
8041                        DAG.getConstant(255ULL<<16, dl, VT));
8042     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
8043                        DAG.getConstant(255ULL<<8 , dl, VT));
8044     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
8045     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
8046     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
8047     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
8048     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
8049     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
8050     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
8051   }
8052 }
8053 
8054 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
8055   SDLoc dl(N);
8056   EVT VT = N->getValueType(0);
8057   SDValue Op = N->getOperand(0);
8058   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
8059   unsigned Sz = VT.getScalarSizeInBits();
8060 
8061   SDValue Tmp, Tmp2, Tmp3;
8062 
8063   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
8064   // and finally the i1 pairs.
8065   // TODO: We can easily support i4/i2 legal types if any target ever does.
8066   if (Sz >= 8 && isPowerOf2_32(Sz)) {
8067     // Create the masks - repeating the pattern every byte.
8068     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
8069     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
8070     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
8071 
8072     // BSWAP if the type is wider than a single byte.
8073     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
8074 
8075     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
8076     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
8077     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
8078     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
8079     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
8080     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8081 
8082     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
8083     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
8084     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
8085     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
8086     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
8087     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8088 
8089     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
8090     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
8091     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
8092     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
8093     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
8094     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8095     return Tmp;
8096   }
8097 
8098   Tmp = DAG.getConstant(0, dl, VT);
8099   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
8100     if (I < J)
8101       Tmp2 =
8102           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
8103     else
8104       Tmp2 =
8105           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
8106 
8107     APInt Shift(Sz, 1);
8108     Shift <<= J;
8109     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
8110     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
8111   }
8112 
8113   return Tmp;
8114 }
8115 
8116 std::pair<SDValue, SDValue>
8117 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
8118                                     SelectionDAG &DAG) const {
8119   SDLoc SL(LD);
8120   SDValue Chain = LD->getChain();
8121   SDValue BasePTR = LD->getBasePtr();
8122   EVT SrcVT = LD->getMemoryVT();
8123   EVT DstVT = LD->getValueType(0);
8124   ISD::LoadExtType ExtType = LD->getExtensionType();
8125 
8126   if (SrcVT.isScalableVector())
8127     report_fatal_error("Cannot scalarize scalable vector loads");
8128 
8129   unsigned NumElem = SrcVT.getVectorNumElements();
8130 
8131   EVT SrcEltVT = SrcVT.getScalarType();
8132   EVT DstEltVT = DstVT.getScalarType();
8133 
8134   // A vector must always be stored in memory as-is, i.e. without any padding
8135   // between the elements, since various code depend on it, e.g. in the
8136   // handling of a bitcast of a vector type to int, which may be done with a
8137   // vector store followed by an integer load. A vector that does not have
8138   // elements that are byte-sized must therefore be stored as an integer
8139   // built out of the extracted vector elements.
8140   if (!SrcEltVT.isByteSized()) {
8141     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
8142     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
8143 
8144     unsigned NumSrcBits = SrcVT.getSizeInBits();
8145     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
8146 
8147     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
8148     SDValue SrcEltBitMask = DAG.getConstant(
8149         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
8150 
8151     // Load the whole vector and avoid masking off the top bits as it makes
8152     // the codegen worse.
8153     SDValue Load =
8154         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
8155                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
8156                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
8157 
8158     SmallVector<SDValue, 8> Vals;
8159     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8160       unsigned ShiftIntoIdx =
8161           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
8162       SDValue ShiftAmount =
8163           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
8164                                      LoadVT, SL, /*LegalTypes=*/false);
8165       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
8166       SDValue Elt =
8167           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
8168       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
8169 
8170       if (ExtType != ISD::NON_EXTLOAD) {
8171         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
8172         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
8173       }
8174 
8175       Vals.push_back(Scalar);
8176     }
8177 
8178     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
8179     return std::make_pair(Value, Load.getValue(1));
8180   }
8181 
8182   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
8183   assert(SrcEltVT.isByteSized());
8184 
8185   SmallVector<SDValue, 8> Vals;
8186   SmallVector<SDValue, 8> LoadChains;
8187 
8188   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8189     SDValue ScalarLoad =
8190         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
8191                        LD->getPointerInfo().getWithOffset(Idx * Stride),
8192                        SrcEltVT, LD->getOriginalAlign(),
8193                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
8194 
8195     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
8196 
8197     Vals.push_back(ScalarLoad.getValue(0));
8198     LoadChains.push_back(ScalarLoad.getValue(1));
8199   }
8200 
8201   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
8202   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
8203 
8204   return std::make_pair(Value, NewChain);
8205 }
8206 
8207 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
8208                                              SelectionDAG &DAG) const {
8209   SDLoc SL(ST);
8210 
8211   SDValue Chain = ST->getChain();
8212   SDValue BasePtr = ST->getBasePtr();
8213   SDValue Value = ST->getValue();
8214   EVT StVT = ST->getMemoryVT();
8215 
8216   if (StVT.isScalableVector())
8217     report_fatal_error("Cannot scalarize scalable vector stores");
8218 
8219   // The type of the data we want to save
8220   EVT RegVT = Value.getValueType();
8221   EVT RegSclVT = RegVT.getScalarType();
8222 
8223   // The type of data as saved in memory.
8224   EVT MemSclVT = StVT.getScalarType();
8225 
8226   unsigned NumElem = StVT.getVectorNumElements();
8227 
8228   // A vector must always be stored in memory as-is, i.e. without any padding
8229   // between the elements, since various code depend on it, e.g. in the
8230   // handling of a bitcast of a vector type to int, which may be done with a
8231   // vector store followed by an integer load. A vector that does not have
8232   // elements that are byte-sized must therefore be stored as an integer
8233   // built out of the extracted vector elements.
8234   if (!MemSclVT.isByteSized()) {
8235     unsigned NumBits = StVT.getSizeInBits();
8236     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
8237 
8238     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
8239 
8240     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8241       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
8242                                 DAG.getVectorIdxConstant(Idx, SL));
8243       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
8244       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
8245       unsigned ShiftIntoIdx =
8246           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
8247       SDValue ShiftAmount =
8248           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
8249       SDValue ShiftedElt =
8250           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
8251       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
8252     }
8253 
8254     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
8255                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
8256                         ST->getAAInfo());
8257   }
8258 
8259   // Store Stride in bytes
8260   unsigned Stride = MemSclVT.getSizeInBits() / 8;
8261   assert(Stride && "Zero stride!");
8262   // Extract each of the elements from the original vector and save them into
8263   // memory individually.
8264   SmallVector<SDValue, 8> Stores;
8265   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8266     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
8267                               DAG.getVectorIdxConstant(Idx, SL));
8268 
8269     SDValue Ptr =
8270         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
8271 
8272     // This scalar TruncStore may be illegal, but we legalize it later.
8273     SDValue Store = DAG.getTruncStore(
8274         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
8275         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
8276         ST->getAAInfo());
8277 
8278     Stores.push_back(Store);
8279   }
8280 
8281   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
8282 }
8283 
8284 std::pair<SDValue, SDValue>
8285 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
8286   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
8287          "unaligned indexed loads not implemented!");
8288   SDValue Chain = LD->getChain();
8289   SDValue Ptr = LD->getBasePtr();
8290   EVT VT = LD->getValueType(0);
8291   EVT LoadedVT = LD->getMemoryVT();
8292   SDLoc dl(LD);
8293   auto &MF = DAG.getMachineFunction();
8294 
8295   if (VT.isFloatingPoint() || VT.isVector()) {
8296     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
8297     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
8298       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
8299           LoadedVT.isVector()) {
8300         // Scalarize the load and let the individual components be handled.
8301         return scalarizeVectorLoad(LD, DAG);
8302       }
8303 
8304       // Expand to a (misaligned) integer load of the same size,
8305       // then bitconvert to floating point or vector.
8306       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
8307                                     LD->getMemOperand());
8308       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
8309       if (LoadedVT != VT)
8310         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
8311                              ISD::ANY_EXTEND, dl, VT, Result);
8312 
8313       return std::make_pair(Result, newLoad.getValue(1));
8314     }
8315 
8316     // Copy the value to a (aligned) stack slot using (unaligned) integer
8317     // loads and stores, then do a (aligned) load from the stack slot.
8318     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
8319     unsigned LoadedBytes = LoadedVT.getStoreSize();
8320     unsigned RegBytes = RegVT.getSizeInBits() / 8;
8321     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
8322 
8323     // Make sure the stack slot is also aligned for the register type.
8324     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
8325     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
8326     SmallVector<SDValue, 8> Stores;
8327     SDValue StackPtr = StackBase;
8328     unsigned Offset = 0;
8329 
8330     EVT PtrVT = Ptr.getValueType();
8331     EVT StackPtrVT = StackPtr.getValueType();
8332 
8333     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
8334     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
8335 
8336     // Do all but one copies using the full register width.
8337     for (unsigned i = 1; i < NumRegs; i++) {
8338       // Load one integer register's worth from the original location.
8339       SDValue Load = DAG.getLoad(
8340           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
8341           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
8342           LD->getAAInfo());
8343       // Follow the load with a store to the stack slot.  Remember the store.
8344       Stores.push_back(DAG.getStore(
8345           Load.getValue(1), dl, Load, StackPtr,
8346           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
8347       // Increment the pointers.
8348       Offset += RegBytes;
8349 
8350       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
8351       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
8352     }
8353 
8354     // The last copy may be partial.  Do an extending load.
8355     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
8356                                   8 * (LoadedBytes - Offset));
8357     SDValue Load =
8358         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
8359                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
8360                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
8361                        LD->getAAInfo());
8362     // Follow the load with a store to the stack slot.  Remember the store.
8363     // On big-endian machines this requires a truncating store to ensure
8364     // that the bits end up in the right place.
8365     Stores.push_back(DAG.getTruncStore(
8366         Load.getValue(1), dl, Load, StackPtr,
8367         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
8368 
8369     // The order of the stores doesn't matter - say it with a TokenFactor.
8370     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8371 
8372     // Finally, perform the original load only redirected to the stack slot.
8373     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
8374                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
8375                           LoadedVT);
8376 
8377     // Callers expect a MERGE_VALUES node.
8378     return std::make_pair(Load, TF);
8379   }
8380 
8381   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
8382          "Unaligned load of unsupported type.");
8383 
8384   // Compute the new VT that is half the size of the old one.  This is an
8385   // integer MVT.
8386   unsigned NumBits = LoadedVT.getSizeInBits();
8387   EVT NewLoadedVT;
8388   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
8389   NumBits >>= 1;
8390 
8391   Align Alignment = LD->getOriginalAlign();
8392   unsigned IncrementSize = NumBits / 8;
8393   ISD::LoadExtType HiExtType = LD->getExtensionType();
8394 
8395   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
8396   if (HiExtType == ISD::NON_EXTLOAD)
8397     HiExtType = ISD::ZEXTLOAD;
8398 
8399   // Load the value in two parts
8400   SDValue Lo, Hi;
8401   if (DAG.getDataLayout().isLittleEndian()) {
8402     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
8403                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8404                         LD->getAAInfo());
8405 
8406     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8407     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
8408                         LD->getPointerInfo().getWithOffset(IncrementSize),
8409                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8410                         LD->getAAInfo());
8411   } else {
8412     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
8413                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8414                         LD->getAAInfo());
8415 
8416     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8417     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
8418                         LD->getPointerInfo().getWithOffset(IncrementSize),
8419                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8420                         LD->getAAInfo());
8421   }
8422 
8423   // aggregate the two parts
8424   SDValue ShiftAmount =
8425       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
8426                                                     DAG.getDataLayout()));
8427   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
8428   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
8429 
8430   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
8431                              Hi.getValue(1));
8432 
8433   return std::make_pair(Result, TF);
8434 }
8435 
8436 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
8437                                              SelectionDAG &DAG) const {
8438   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
8439          "unaligned indexed stores not implemented!");
8440   SDValue Chain = ST->getChain();
8441   SDValue Ptr = ST->getBasePtr();
8442   SDValue Val = ST->getValue();
8443   EVT VT = Val.getValueType();
8444   Align Alignment = ST->getOriginalAlign();
8445   auto &MF = DAG.getMachineFunction();
8446   EVT StoreMemVT = ST->getMemoryVT();
8447 
8448   SDLoc dl(ST);
8449   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
8450     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
8451     if (isTypeLegal(intVT)) {
8452       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
8453           StoreMemVT.isVector()) {
8454         // Scalarize the store and let the individual components be handled.
8455         SDValue Result = scalarizeVectorStore(ST, DAG);
8456         return Result;
8457       }
8458       // Expand to a bitconvert of the value to the integer type of the
8459       // same size, then a (misaligned) int store.
8460       // FIXME: Does not handle truncating floating point stores!
8461       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
8462       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
8463                             Alignment, ST->getMemOperand()->getFlags());
8464       return Result;
8465     }
8466     // Do a (aligned) store to a stack slot, then copy from the stack slot
8467     // to the final destination using (unaligned) integer loads and stores.
8468     MVT RegVT = getRegisterType(
8469         *DAG.getContext(),
8470         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
8471     EVT PtrVT = Ptr.getValueType();
8472     unsigned StoredBytes = StoreMemVT.getStoreSize();
8473     unsigned RegBytes = RegVT.getSizeInBits() / 8;
8474     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
8475 
8476     // Make sure the stack slot is also aligned for the register type.
8477     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
8478     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
8479 
8480     // Perform the original store, only redirected to the stack slot.
8481     SDValue Store = DAG.getTruncStore(
8482         Chain, dl, Val, StackPtr,
8483         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
8484 
8485     EVT StackPtrVT = StackPtr.getValueType();
8486 
8487     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
8488     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
8489     SmallVector<SDValue, 8> Stores;
8490     unsigned Offset = 0;
8491 
8492     // Do all but one copies using the full register width.
8493     for (unsigned i = 1; i < NumRegs; i++) {
8494       // Load one integer register's worth from the stack slot.
8495       SDValue Load = DAG.getLoad(
8496           RegVT, dl, Store, StackPtr,
8497           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
8498       // Store it to the final location.  Remember the store.
8499       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
8500                                     ST->getPointerInfo().getWithOffset(Offset),
8501                                     ST->getOriginalAlign(),
8502                                     ST->getMemOperand()->getFlags()));
8503       // Increment the pointers.
8504       Offset += RegBytes;
8505       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
8506       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
8507     }
8508 
8509     // The last store may be partial.  Do a truncating store.  On big-endian
8510     // machines this requires an extending load from the stack slot to ensure
8511     // that the bits are in the right place.
8512     EVT LoadMemVT =
8513         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
8514 
8515     // Load from the stack slot.
8516     SDValue Load = DAG.getExtLoad(
8517         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
8518         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
8519 
8520     Stores.push_back(
8521         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
8522                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
8523                           ST->getOriginalAlign(),
8524                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
8525     // The order of the stores doesn't matter - say it with a TokenFactor.
8526     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8527     return Result;
8528   }
8529 
8530   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
8531          "Unaligned store of unknown type.");
8532   // Get the half-size VT
8533   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
8534   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
8535   unsigned IncrementSize = NumBits / 8;
8536 
8537   // Divide the stored value in two parts.
8538   SDValue ShiftAmount = DAG.getConstant(
8539       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
8540   SDValue Lo = Val;
8541   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
8542 
8543   // Store the two parts
8544   SDValue Store1, Store2;
8545   Store1 = DAG.getTruncStore(Chain, dl,
8546                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
8547                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
8548                              ST->getMemOperand()->getFlags());
8549 
8550   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8551   Store2 = DAG.getTruncStore(
8552       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
8553       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
8554       ST->getMemOperand()->getFlags(), ST->getAAInfo());
8555 
8556   SDValue Result =
8557       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
8558   return Result;
8559 }
8560 
8561 SDValue
8562 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
8563                                        const SDLoc &DL, EVT DataVT,
8564                                        SelectionDAG &DAG,
8565                                        bool IsCompressedMemory) const {
8566   SDValue Increment;
8567   EVT AddrVT = Addr.getValueType();
8568   EVT MaskVT = Mask.getValueType();
8569   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
8570          "Incompatible types of Data and Mask");
8571   if (IsCompressedMemory) {
8572     if (DataVT.isScalableVector())
8573       report_fatal_error(
8574           "Cannot currently handle compressed memory with scalable vectors");
8575     // Incrementing the pointer according to number of '1's in the mask.
8576     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
8577     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
8578     if (MaskIntVT.getSizeInBits() < 32) {
8579       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
8580       MaskIntVT = MVT::i32;
8581     }
8582 
8583     // Count '1's with POPCNT.
8584     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
8585     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
8586     // Scale is an element size in bytes.
8587     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
8588                                     AddrVT);
8589     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
8590   } else if (DataVT.isScalableVector()) {
8591     Increment = DAG.getVScale(DL, AddrVT,
8592                               APInt(AddrVT.getFixedSizeInBits(),
8593                                     DataVT.getStoreSize().getKnownMinSize()));
8594   } else
8595     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
8596 
8597   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
8598 }
8599 
8600 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
8601                                        EVT VecVT, const SDLoc &dl,
8602                                        ElementCount SubEC) {
8603   assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
8604          "Cannot index a scalable vector within a fixed-width vector");
8605 
8606   unsigned NElts = VecVT.getVectorMinNumElements();
8607   unsigned NumSubElts = SubEC.getKnownMinValue();
8608   EVT IdxVT = Idx.getValueType();
8609 
8610   if (VecVT.isScalableVector() && !SubEC.isScalable()) {
8611     // If this is a constant index and we know the value plus the number of the
8612     // elements in the subvector minus one is less than the minimum number of
8613     // elements then it's safe to return Idx.
8614     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
8615       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
8616         return Idx;
8617     SDValue VS =
8618         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
8619     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
8620     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
8621                               DAG.getConstant(NumSubElts, dl, IdxVT));
8622     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
8623   }
8624   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
8625     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
8626     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
8627                        DAG.getConstant(Imm, dl, IdxVT));
8628   }
8629   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
8630   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
8631                      DAG.getConstant(MaxIndex, dl, IdxVT));
8632 }
8633 
8634 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
8635                                                 SDValue VecPtr, EVT VecVT,
8636                                                 SDValue Index) const {
8637   return getVectorSubVecPointer(
8638       DAG, VecPtr, VecVT,
8639       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
8640       Index);
8641 }
8642 
8643 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
8644                                                SDValue VecPtr, EVT VecVT,
8645                                                EVT SubVecVT,
8646                                                SDValue Index) const {
8647   SDLoc dl(Index);
8648   // Make sure the index type is big enough to compute in.
8649   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
8650 
8651   EVT EltVT = VecVT.getVectorElementType();
8652 
8653   // Calculate the element offset and add it to the pointer.
8654   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
8655   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
8656          "Converting bits to bytes lost precision");
8657   assert(SubVecVT.getVectorElementType() == EltVT &&
8658          "Sub-vector must be a vector with matching element type");
8659   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
8660                                   SubVecVT.getVectorElementCount());
8661 
8662   EVT IdxVT = Index.getValueType();
8663   if (SubVecVT.isScalableVector())
8664     Index =
8665         DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8666                     DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
8667 
8668   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8669                       DAG.getConstant(EltSize, dl, IdxVT));
8670   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
8671 }
8672 
8673 //===----------------------------------------------------------------------===//
8674 // Implementation of Emulated TLS Model
8675 //===----------------------------------------------------------------------===//
8676 
8677 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
8678                                                 SelectionDAG &DAG) const {
8679   // Access to address of TLS varialbe xyz is lowered to a function call:
8680   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
8681   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8682   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
8683   SDLoc dl(GA);
8684 
8685   ArgListTy Args;
8686   ArgListEntry Entry;
8687   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
8688   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
8689   StringRef EmuTlsVarName(NameString);
8690   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
8691   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
8692   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
8693   Entry.Ty = VoidPtrType;
8694   Args.push_back(Entry);
8695 
8696   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
8697 
8698   TargetLowering::CallLoweringInfo CLI(DAG);
8699   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
8700   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
8701   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
8702 
8703   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
8704   // At last for X86 targets, maybe good for other targets too?
8705   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8706   MFI.setAdjustsStack(true); // Is this only for X86 target?
8707   MFI.setHasCalls(true);
8708 
8709   assert((GA->getOffset() == 0) &&
8710          "Emulated TLS must have zero offset in GlobalAddressSDNode");
8711   return CallResult.first;
8712 }
8713 
8714 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
8715                                                 SelectionDAG &DAG) const {
8716   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
8717   if (!isCtlzFast())
8718     return SDValue();
8719   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8720   SDLoc dl(Op);
8721   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8722     if (C->isZero() && CC == ISD::SETEQ) {
8723       EVT VT = Op.getOperand(0).getValueType();
8724       SDValue Zext = Op.getOperand(0);
8725       if (VT.bitsLT(MVT::i32)) {
8726         VT = MVT::i32;
8727         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
8728       }
8729       unsigned Log2b = Log2_32(VT.getSizeInBits());
8730       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
8731       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
8732                                 DAG.getConstant(Log2b, dl, MVT::i32));
8733       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
8734     }
8735   }
8736   return SDValue();
8737 }
8738 
8739 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
8740   SDValue Op0 = Node->getOperand(0);
8741   SDValue Op1 = Node->getOperand(1);
8742   EVT VT = Op0.getValueType();
8743   unsigned Opcode = Node->getOpcode();
8744   SDLoc DL(Node);
8745 
8746   // umin(x,y) -> sub(x,usubsat(x,y))
8747   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
8748       isOperationLegal(ISD::USUBSAT, VT)) {
8749     return DAG.getNode(ISD::SUB, DL, VT, Op0,
8750                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
8751   }
8752 
8753   // umax(x,y) -> add(x,usubsat(y,x))
8754   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
8755       isOperationLegal(ISD::USUBSAT, VT)) {
8756     return DAG.getNode(ISD::ADD, DL, VT, Op0,
8757                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
8758   }
8759 
8760   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
8761   ISD::CondCode CC;
8762   switch (Opcode) {
8763   default: llvm_unreachable("How did we get here?");
8764   case ISD::SMAX: CC = ISD::SETGT; break;
8765   case ISD::SMIN: CC = ISD::SETLT; break;
8766   case ISD::UMAX: CC = ISD::SETUGT; break;
8767   case ISD::UMIN: CC = ISD::SETULT; break;
8768   }
8769 
8770   // FIXME: Should really try to split the vector in case it's legal on a
8771   // subvector.
8772   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8773     return DAG.UnrollVectorOp(Node);
8774 
8775   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8776   SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
8777   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
8778 }
8779 
8780 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
8781   unsigned Opcode = Node->getOpcode();
8782   SDValue LHS = Node->getOperand(0);
8783   SDValue RHS = Node->getOperand(1);
8784   EVT VT = LHS.getValueType();
8785   SDLoc dl(Node);
8786 
8787   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8788   assert(VT.isInteger() && "Expected operands to be integers");
8789 
8790   // usub.sat(a, b) -> umax(a, b) - b
8791   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
8792     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
8793     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
8794   }
8795 
8796   // uadd.sat(a, b) -> umin(a, ~b) + b
8797   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
8798     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
8799     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
8800     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
8801   }
8802 
8803   unsigned OverflowOp;
8804   switch (Opcode) {
8805   case ISD::SADDSAT:
8806     OverflowOp = ISD::SADDO;
8807     break;
8808   case ISD::UADDSAT:
8809     OverflowOp = ISD::UADDO;
8810     break;
8811   case ISD::SSUBSAT:
8812     OverflowOp = ISD::SSUBO;
8813     break;
8814   case ISD::USUBSAT:
8815     OverflowOp = ISD::USUBO;
8816     break;
8817   default:
8818     llvm_unreachable("Expected method to receive signed or unsigned saturation "
8819                      "addition or subtraction node.");
8820   }
8821 
8822   // FIXME: Should really try to split the vector in case it's legal on a
8823   // subvector.
8824   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8825     return DAG.UnrollVectorOp(Node);
8826 
8827   unsigned BitWidth = LHS.getScalarValueSizeInBits();
8828   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8829   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8830   SDValue SumDiff = Result.getValue(0);
8831   SDValue Overflow = Result.getValue(1);
8832   SDValue Zero = DAG.getConstant(0, dl, VT);
8833   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
8834 
8835   if (Opcode == ISD::UADDSAT) {
8836     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8837       // (LHS + RHS) | OverflowMask
8838       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8839       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
8840     }
8841     // Overflow ? 0xffff.... : (LHS + RHS)
8842     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
8843   }
8844 
8845   if (Opcode == ISD::USUBSAT) {
8846     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8847       // (LHS - RHS) & ~OverflowMask
8848       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8849       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
8850       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
8851     }
8852     // Overflow ? 0 : (LHS - RHS)
8853     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
8854   }
8855 
8856   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
8857   APInt MinVal = APInt::getSignedMinValue(BitWidth);
8858   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8859   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
8860                               DAG.getConstant(BitWidth - 1, dl, VT));
8861   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
8862   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
8863 }
8864 
8865 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
8866   unsigned Opcode = Node->getOpcode();
8867   bool IsSigned = Opcode == ISD::SSHLSAT;
8868   SDValue LHS = Node->getOperand(0);
8869   SDValue RHS = Node->getOperand(1);
8870   EVT VT = LHS.getValueType();
8871   SDLoc dl(Node);
8872 
8873   assert((Node->getOpcode() == ISD::SSHLSAT ||
8874           Node->getOpcode() == ISD::USHLSAT) &&
8875           "Expected a SHLSAT opcode");
8876   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8877   assert(VT.isInteger() && "Expected operands to be integers");
8878 
8879   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
8880 
8881   unsigned BW = VT.getScalarSizeInBits();
8882   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
8883   SDValue Orig =
8884       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
8885 
8886   SDValue SatVal;
8887   if (IsSigned) {
8888     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8889     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8890     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8891                              SatMin, SatMax, ISD::SETLT);
8892   } else {
8893     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8894   }
8895   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8896 
8897   return Result;
8898 }
8899 
8900 SDValue
8901 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8902   assert((Node->getOpcode() == ISD::SMULFIX ||
8903           Node->getOpcode() == ISD::UMULFIX ||
8904           Node->getOpcode() == ISD::SMULFIXSAT ||
8905           Node->getOpcode() == ISD::UMULFIXSAT) &&
8906          "Expected a fixed point multiplication opcode");
8907 
8908   SDLoc dl(Node);
8909   SDValue LHS = Node->getOperand(0);
8910   SDValue RHS = Node->getOperand(1);
8911   EVT VT = LHS.getValueType();
8912   unsigned Scale = Node->getConstantOperandVal(2);
8913   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8914                      Node->getOpcode() == ISD::UMULFIXSAT);
8915   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8916                  Node->getOpcode() == ISD::SMULFIXSAT);
8917   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8918   unsigned VTSize = VT.getScalarSizeInBits();
8919 
8920   if (!Scale) {
8921     // [us]mul.fix(a, b, 0) -> mul(a, b)
8922     if (!Saturating) {
8923       if (isOperationLegalOrCustom(ISD::MUL, VT))
8924         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8925     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
8926       SDValue Result =
8927           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8928       SDValue Product = Result.getValue(0);
8929       SDValue Overflow = Result.getValue(1);
8930       SDValue Zero = DAG.getConstant(0, dl, VT);
8931 
8932       APInt MinVal = APInt::getSignedMinValue(VTSize);
8933       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
8934       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8935       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8936       // Xor the inputs, if resulting sign bit is 0 the product will be
8937       // positive, else negative.
8938       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
8939       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
8940       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
8941       return DAG.getSelect(dl, VT, Overflow, Result, Product);
8942     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
8943       SDValue Result =
8944           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8945       SDValue Product = Result.getValue(0);
8946       SDValue Overflow = Result.getValue(1);
8947 
8948       APInt MaxVal = APInt::getMaxValue(VTSize);
8949       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8950       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
8951     }
8952   }
8953 
8954   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
8955          "Expected scale to be less than the number of bits if signed or at "
8956          "most the number of bits if unsigned.");
8957   assert(LHS.getValueType() == RHS.getValueType() &&
8958          "Expected both operands to be the same type");
8959 
8960   // Get the upper and lower bits of the result.
8961   SDValue Lo, Hi;
8962   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
8963   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
8964   if (isOperationLegalOrCustom(LoHiOp, VT)) {
8965     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
8966     Lo = Result.getValue(0);
8967     Hi = Result.getValue(1);
8968   } else if (isOperationLegalOrCustom(HiOp, VT)) {
8969     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8970     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
8971   } else if (VT.isVector()) {
8972     return SDValue();
8973   } else {
8974     report_fatal_error("Unable to expand fixed point multiplication.");
8975   }
8976 
8977   if (Scale == VTSize)
8978     // Result is just the top half since we'd be shifting by the width of the
8979     // operand. Overflow impossible so this works for both UMULFIX and
8980     // UMULFIXSAT.
8981     return Hi;
8982 
8983   // The result will need to be shifted right by the scale since both operands
8984   // are scaled. The result is given to us in 2 halves, so we only want part of
8985   // both in the result.
8986   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8987   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
8988                                DAG.getConstant(Scale, dl, ShiftTy));
8989   if (!Saturating)
8990     return Result;
8991 
8992   if (!Signed) {
8993     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
8994     // widened multiplication) aren't all zeroes.
8995 
8996     // Saturate to max if ((Hi >> Scale) != 0),
8997     // which is the same as if (Hi > ((1 << Scale) - 1))
8998     APInt MaxVal = APInt::getMaxValue(VTSize);
8999     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
9000                                       dl, VT);
9001     Result = DAG.getSelectCC(dl, Hi, LowMask,
9002                              DAG.getConstant(MaxVal, dl, VT), Result,
9003                              ISD::SETUGT);
9004 
9005     return Result;
9006   }
9007 
9008   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
9009   // widened multiplication) aren't all ones or all zeroes.
9010 
9011   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
9012   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
9013 
9014   if (Scale == 0) {
9015     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
9016                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
9017     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
9018     // Saturated to SatMin if wide product is negative, and SatMax if wide
9019     // product is positive ...
9020     SDValue Zero = DAG.getConstant(0, dl, VT);
9021     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
9022                                                ISD::SETLT);
9023     // ... but only if we overflowed.
9024     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
9025   }
9026 
9027   //  We handled Scale==0 above so all the bits to examine is in Hi.
9028 
9029   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
9030   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
9031   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
9032                                     dl, VT);
9033   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
9034   // Saturate to min if (Hi >> (Scale - 1)) < -1),
9035   // which is the same as if (HI < (-1 << (Scale - 1))
9036   SDValue HighMask =
9037       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
9038                       dl, VT);
9039   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
9040   return Result;
9041 }
9042 
9043 SDValue
9044 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
9045                                     SDValue LHS, SDValue RHS,
9046                                     unsigned Scale, SelectionDAG &DAG) const {
9047   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
9048           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
9049          "Expected a fixed point division opcode");
9050 
9051   EVT VT = LHS.getValueType();
9052   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
9053   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
9054   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9055 
9056   // If there is enough room in the type to upscale the LHS or downscale the
9057   // RHS before the division, we can perform it in this type without having to
9058   // resize. For signed operations, the LHS headroom is the number of
9059   // redundant sign bits, and for unsigned ones it is the number of zeroes.
9060   // The headroom for the RHS is the number of trailing zeroes.
9061   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
9062                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
9063   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
9064 
9065   // For signed saturating operations, we need to be able to detect true integer
9066   // division overflow; that is, when you have MIN / -EPS. However, this
9067   // is undefined behavior and if we emit divisions that could take such
9068   // values it may cause undesired behavior (arithmetic exceptions on x86, for
9069   // example).
9070   // Avoid this by requiring an extra bit so that we never get this case.
9071   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
9072   // signed saturating division, we need to emit a whopping 32-bit division.
9073   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
9074     return SDValue();
9075 
9076   unsigned LHSShift = std::min(LHSLead, Scale);
9077   unsigned RHSShift = Scale - LHSShift;
9078 
9079   // At this point, we know that if we shift the LHS up by LHSShift and the
9080   // RHS down by RHSShift, we can emit a regular division with a final scaling
9081   // factor of Scale.
9082 
9083   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
9084   if (LHSShift)
9085     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
9086                       DAG.getConstant(LHSShift, dl, ShiftTy));
9087   if (RHSShift)
9088     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
9089                       DAG.getConstant(RHSShift, dl, ShiftTy));
9090 
9091   SDValue Quot;
9092   if (Signed) {
9093     // For signed operations, if the resulting quotient is negative and the
9094     // remainder is nonzero, subtract 1 from the quotient to round towards
9095     // negative infinity.
9096     SDValue Rem;
9097     // FIXME: Ideally we would always produce an SDIVREM here, but if the
9098     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
9099     // we couldn't just form a libcall, but the type legalizer doesn't do it.
9100     if (isTypeLegal(VT) &&
9101         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
9102       Quot = DAG.getNode(ISD::SDIVREM, dl,
9103                          DAG.getVTList(VT, VT),
9104                          LHS, RHS);
9105       Rem = Quot.getValue(1);
9106       Quot = Quot.getValue(0);
9107     } else {
9108       Quot = DAG.getNode(ISD::SDIV, dl, VT,
9109                          LHS, RHS);
9110       Rem = DAG.getNode(ISD::SREM, dl, VT,
9111                         LHS, RHS);
9112     }
9113     SDValue Zero = DAG.getConstant(0, dl, VT);
9114     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
9115     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
9116     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
9117     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
9118     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
9119                                DAG.getConstant(1, dl, VT));
9120     Quot = DAG.getSelect(dl, VT,
9121                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
9122                          Sub1, Quot);
9123   } else
9124     Quot = DAG.getNode(ISD::UDIV, dl, VT,
9125                        LHS, RHS);
9126 
9127   return Quot;
9128 }
9129 
9130 void TargetLowering::expandUADDSUBO(
9131     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
9132   SDLoc dl(Node);
9133   SDValue LHS = Node->getOperand(0);
9134   SDValue RHS = Node->getOperand(1);
9135   bool IsAdd = Node->getOpcode() == ISD::UADDO;
9136 
9137   // If ADD/SUBCARRY is legal, use that instead.
9138   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
9139   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
9140     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
9141     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
9142                                     { LHS, RHS, CarryIn });
9143     Result = SDValue(NodeCarry.getNode(), 0);
9144     Overflow = SDValue(NodeCarry.getNode(), 1);
9145     return;
9146   }
9147 
9148   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
9149                             LHS.getValueType(), LHS, RHS);
9150 
9151   EVT ResultType = Node->getValueType(1);
9152   EVT SetCCType = getSetCCResultType(
9153       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
9154   SDValue SetCC;
9155   if (IsAdd && isOneConstant(RHS)) {
9156     // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces
9157     // the live range of X. We assume comparing with 0 is cheap.
9158     // The general case (X + C) < C is not necessarily beneficial. Although we
9159     // reduce the live range of X, we may introduce the materialization of
9160     // constant C.
9161     SetCC =
9162         DAG.getSetCC(dl, SetCCType, Result,
9163                      DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ);
9164   } else {
9165     ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
9166     SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
9167   }
9168   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
9169 }
9170 
9171 void TargetLowering::expandSADDSUBO(
9172     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
9173   SDLoc dl(Node);
9174   SDValue LHS = Node->getOperand(0);
9175   SDValue RHS = Node->getOperand(1);
9176   bool IsAdd = Node->getOpcode() == ISD::SADDO;
9177 
9178   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
9179                             LHS.getValueType(), LHS, RHS);
9180 
9181   EVT ResultType = Node->getValueType(1);
9182   EVT OType = getSetCCResultType(
9183       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
9184 
9185   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
9186   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
9187   if (isOperationLegal(OpcSat, LHS.getValueType())) {
9188     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
9189     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
9190     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
9191     return;
9192   }
9193 
9194   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
9195 
9196   // For an addition, the result should be less than one of the operands (LHS)
9197   // if and only if the other operand (RHS) is negative, otherwise there will
9198   // be overflow.
9199   // For a subtraction, the result should be less than one of the operands
9200   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
9201   // otherwise there will be overflow.
9202   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
9203   SDValue ConditionRHS =
9204       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
9205 
9206   Overflow = DAG.getBoolExtOrTrunc(
9207       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
9208       ResultType, ResultType);
9209 }
9210 
9211 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
9212                                 SDValue &Overflow, SelectionDAG &DAG) const {
9213   SDLoc dl(Node);
9214   EVT VT = Node->getValueType(0);
9215   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9216   SDValue LHS = Node->getOperand(0);
9217   SDValue RHS = Node->getOperand(1);
9218   bool isSigned = Node->getOpcode() == ISD::SMULO;
9219 
9220   // For power-of-two multiplications we can use a simpler shift expansion.
9221   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
9222     const APInt &C = RHSC->getAPIntValue();
9223     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
9224     if (C.isPowerOf2()) {
9225       // smulo(x, signed_min) is same as umulo(x, signed_min).
9226       bool UseArithShift = isSigned && !C.isMinSignedValue();
9227       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
9228       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
9229       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
9230       Overflow = DAG.getSetCC(dl, SetCCVT,
9231           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
9232                       dl, VT, Result, ShiftAmt),
9233           LHS, ISD::SETNE);
9234       return true;
9235     }
9236   }
9237 
9238   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
9239   if (VT.isVector())
9240     WideVT =
9241         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
9242 
9243   SDValue BottomHalf;
9244   SDValue TopHalf;
9245   static const unsigned Ops[2][3] =
9246       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
9247         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
9248   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
9249     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
9250     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
9251   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
9252     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
9253                              RHS);
9254     TopHalf = BottomHalf.getValue(1);
9255   } else if (isTypeLegal(WideVT)) {
9256     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
9257     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
9258     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
9259     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
9260     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
9261         getShiftAmountTy(WideVT, DAG.getDataLayout()));
9262     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
9263                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
9264   } else {
9265     if (VT.isVector())
9266       return false;
9267 
9268     // We can fall back to a libcall with an illegal type for the MUL if we
9269     // have a libcall big enough.
9270     // Also, we can fall back to a division in some cases, but that's a big
9271     // performance hit in the general case.
9272     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
9273     if (WideVT == MVT::i16)
9274       LC = RTLIB::MUL_I16;
9275     else if (WideVT == MVT::i32)
9276       LC = RTLIB::MUL_I32;
9277     else if (WideVT == MVT::i64)
9278       LC = RTLIB::MUL_I64;
9279     else if (WideVT == MVT::i128)
9280       LC = RTLIB::MUL_I128;
9281     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
9282 
9283     SDValue HiLHS;
9284     SDValue HiRHS;
9285     if (isSigned) {
9286       // The high part is obtained by SRA'ing all but one of the bits of low
9287       // part.
9288       unsigned LoSize = VT.getFixedSizeInBits();
9289       HiLHS =
9290           DAG.getNode(ISD::SRA, dl, VT, LHS,
9291                       DAG.getConstant(LoSize - 1, dl,
9292                                       getPointerTy(DAG.getDataLayout())));
9293       HiRHS =
9294           DAG.getNode(ISD::SRA, dl, VT, RHS,
9295                       DAG.getConstant(LoSize - 1, dl,
9296                                       getPointerTy(DAG.getDataLayout())));
9297     } else {
9298         HiLHS = DAG.getConstant(0, dl, VT);
9299         HiRHS = DAG.getConstant(0, dl, VT);
9300     }
9301 
9302     // Here we're passing the 2 arguments explicitly as 4 arguments that are
9303     // pre-lowered to the correct types. This all depends upon WideVT not
9304     // being a legal type for the architecture and thus has to be split to
9305     // two arguments.
9306     SDValue Ret;
9307     TargetLowering::MakeLibCallOptions CallOptions;
9308     CallOptions.setSExt(isSigned);
9309     CallOptions.setIsPostTypeLegalization(true);
9310     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
9311       // Halves of WideVT are packed into registers in different order
9312       // depending on platform endianness. This is usually handled by
9313       // the C calling convention, but we can't defer to it in
9314       // the legalizer.
9315       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
9316       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
9317     } else {
9318       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
9319       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
9320     }
9321     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
9322            "Ret value is a collection of constituent nodes holding result.");
9323     if (DAG.getDataLayout().isLittleEndian()) {
9324       // Same as above.
9325       BottomHalf = Ret.getOperand(0);
9326       TopHalf = Ret.getOperand(1);
9327     } else {
9328       BottomHalf = Ret.getOperand(1);
9329       TopHalf = Ret.getOperand(0);
9330     }
9331   }
9332 
9333   Result = BottomHalf;
9334   if (isSigned) {
9335     SDValue ShiftAmt = DAG.getConstant(
9336         VT.getScalarSizeInBits() - 1, dl,
9337         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
9338     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
9339     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
9340   } else {
9341     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
9342                             DAG.getConstant(0, dl, VT), ISD::SETNE);
9343   }
9344 
9345   // Truncate the result if SetCC returns a larger type than needed.
9346   EVT RType = Node->getValueType(1);
9347   if (RType.bitsLT(Overflow.getValueType()))
9348     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
9349 
9350   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
9351          "Unexpected result type for S/UMULO legalization");
9352   return true;
9353 }
9354 
9355 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
9356   SDLoc dl(Node);
9357   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
9358   SDValue Op = Node->getOperand(0);
9359   EVT VT = Op.getValueType();
9360 
9361   if (VT.isScalableVector())
9362     report_fatal_error(
9363         "Expanding reductions for scalable vectors is undefined.");
9364 
9365   // Try to use a shuffle reduction for power of two vectors.
9366   if (VT.isPow2VectorType()) {
9367     while (VT.getVectorNumElements() > 1) {
9368       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
9369       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
9370         break;
9371 
9372       SDValue Lo, Hi;
9373       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
9374       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
9375       VT = HalfVT;
9376     }
9377   }
9378 
9379   EVT EltVT = VT.getVectorElementType();
9380   unsigned NumElts = VT.getVectorNumElements();
9381 
9382   SmallVector<SDValue, 8> Ops;
9383   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
9384 
9385   SDValue Res = Ops[0];
9386   for (unsigned i = 1; i < NumElts; i++)
9387     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
9388 
9389   // Result type may be wider than element type.
9390   if (EltVT != Node->getValueType(0))
9391     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
9392   return Res;
9393 }
9394 
9395 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
9396   SDLoc dl(Node);
9397   SDValue AccOp = Node->getOperand(0);
9398   SDValue VecOp = Node->getOperand(1);
9399   SDNodeFlags Flags = Node->getFlags();
9400 
9401   EVT VT = VecOp.getValueType();
9402   EVT EltVT = VT.getVectorElementType();
9403 
9404   if (VT.isScalableVector())
9405     report_fatal_error(
9406         "Expanding reductions for scalable vectors is undefined.");
9407 
9408   unsigned NumElts = VT.getVectorNumElements();
9409 
9410   SmallVector<SDValue, 8> Ops;
9411   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
9412 
9413   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
9414 
9415   SDValue Res = AccOp;
9416   for (unsigned i = 0; i < NumElts; i++)
9417     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
9418 
9419   return Res;
9420 }
9421 
9422 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
9423                                SelectionDAG &DAG) const {
9424   EVT VT = Node->getValueType(0);
9425   SDLoc dl(Node);
9426   bool isSigned = Node->getOpcode() == ISD::SREM;
9427   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
9428   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
9429   SDValue Dividend = Node->getOperand(0);
9430   SDValue Divisor = Node->getOperand(1);
9431   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
9432     SDVTList VTs = DAG.getVTList(VT, VT);
9433     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
9434     return true;
9435   }
9436   if (isOperationLegalOrCustom(DivOpc, VT)) {
9437     // X % Y -> X-X/Y*Y
9438     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
9439     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
9440     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
9441     return true;
9442   }
9443   return false;
9444 }
9445 
9446 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
9447                                             SelectionDAG &DAG) const {
9448   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
9449   SDLoc dl(SDValue(Node, 0));
9450   SDValue Src = Node->getOperand(0);
9451 
9452   // DstVT is the result type, while SatVT is the size to which we saturate
9453   EVT SrcVT = Src.getValueType();
9454   EVT DstVT = Node->getValueType(0);
9455 
9456   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
9457   unsigned SatWidth = SatVT.getScalarSizeInBits();
9458   unsigned DstWidth = DstVT.getScalarSizeInBits();
9459   assert(SatWidth <= DstWidth &&
9460          "Expected saturation width smaller than result width");
9461 
9462   // Determine minimum and maximum integer values and their corresponding
9463   // floating-point values.
9464   APInt MinInt, MaxInt;
9465   if (IsSigned) {
9466     MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth);
9467     MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth);
9468   } else {
9469     MinInt = APInt::getMinValue(SatWidth).zext(DstWidth);
9470     MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth);
9471   }
9472 
9473   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
9474   // libcall emission cannot handle this. Large result types will fail.
9475   if (SrcVT == MVT::f16) {
9476     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
9477     SrcVT = Src.getValueType();
9478   }
9479 
9480   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
9481   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
9482 
9483   APFloat::opStatus MinStatus =
9484       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
9485   APFloat::opStatus MaxStatus =
9486       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
9487   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
9488                              !(MaxStatus & APFloat::opStatus::opInexact);
9489 
9490   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
9491   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
9492 
9493   // If the integer bounds are exactly representable as floats and min/max are
9494   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
9495   // of comparisons and selects.
9496   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
9497                      isOperationLegal(ISD::FMAXNUM, SrcVT);
9498   if (AreExactFloatBounds && MinMaxLegal) {
9499     SDValue Clamped = Src;
9500 
9501     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
9502     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
9503     // Clamp by MaxFloat from above. NaN cannot occur.
9504     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
9505     // Convert clamped value to integer.
9506     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
9507                                   dl, DstVT, Clamped);
9508 
9509     // In the unsigned case we're done, because we mapped NaN to MinFloat,
9510     // which will cast to zero.
9511     if (!IsSigned)
9512       return FpToInt;
9513 
9514     // Otherwise, select 0 if Src is NaN.
9515     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9516     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
9517                            ISD::CondCode::SETUO);
9518   }
9519 
9520   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
9521   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
9522 
9523   // Result of direct conversion. The assumption here is that the operation is
9524   // non-trapping and it's fine to apply it to an out-of-range value if we
9525   // select it away later.
9526   SDValue FpToInt =
9527       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
9528 
9529   SDValue Select = FpToInt;
9530 
9531   // If Src ULT MinFloat, select MinInt. In particular, this also selects
9532   // MinInt if Src is NaN.
9533   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
9534                            ISD::CondCode::SETULT);
9535   // If Src OGT MaxFloat, select MaxInt.
9536   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
9537                            ISD::CondCode::SETOGT);
9538 
9539   // In the unsigned case we are done, because we mapped NaN to MinInt, which
9540   // is already zero.
9541   if (!IsSigned)
9542     return Select;
9543 
9544   // Otherwise, select 0 if Src is NaN.
9545   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9546   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
9547 }
9548 
9549 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
9550                                            SelectionDAG &DAG) const {
9551   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
9552   assert(Node->getValueType(0).isScalableVector() &&
9553          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
9554 
9555   EVT VT = Node->getValueType(0);
9556   SDValue V1 = Node->getOperand(0);
9557   SDValue V2 = Node->getOperand(1);
9558   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
9559   SDLoc DL(Node);
9560 
9561   // Expand through memory thusly:
9562   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
9563   //  Store V1, Ptr
9564   //  Store V2, Ptr + sizeof(V1)
9565   //  If (Imm < 0)
9566   //    TrailingElts = -Imm
9567   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
9568   //  else
9569   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
9570   //  Res = Load Ptr
9571 
9572   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
9573 
9574   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
9575                                VT.getVectorElementCount() * 2);
9576   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
9577   EVT PtrVT = StackPtr.getValueType();
9578   auto &MF = DAG.getMachineFunction();
9579   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
9580   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
9581 
9582   // Store the lo part of CONCAT_VECTORS(V1, V2)
9583   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
9584   // Store the hi part of CONCAT_VECTORS(V1, V2)
9585   SDValue OffsetToV2 = DAG.getVScale(
9586       DL, PtrVT,
9587       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9588   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
9589   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
9590 
9591   if (Imm >= 0) {
9592     // Load back the required element. getVectorElementPointer takes care of
9593     // clamping the index if it's out-of-bounds.
9594     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
9595     // Load the spliced result
9596     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
9597                        MachinePointerInfo::getUnknownStack(MF));
9598   }
9599 
9600   uint64_t TrailingElts = -Imm;
9601 
9602   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
9603   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
9604   SDValue TrailingBytes =
9605       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
9606 
9607   if (TrailingElts > VT.getVectorMinNumElements()) {
9608     SDValue VLBytes = DAG.getVScale(
9609         DL, PtrVT,
9610         APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9611     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
9612   }
9613 
9614   // Calculate the start address of the spliced result.
9615   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
9616 
9617   // Load the spliced result
9618   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
9619                      MachinePointerInfo::getUnknownStack(MF));
9620 }
9621 
9622 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
9623                                            SDValue &LHS, SDValue &RHS,
9624                                            SDValue &CC, SDValue Mask,
9625                                            SDValue EVL, bool &NeedInvert,
9626                                            const SDLoc &dl, SDValue &Chain,
9627                                            bool IsSignaling) const {
9628   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9629   MVT OpVT = LHS.getSimpleValueType();
9630   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
9631   NeedInvert = false;
9632   assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset");
9633   bool IsNonVP = !EVL;
9634   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
9635   default:
9636     llvm_unreachable("Unknown condition code action!");
9637   case TargetLowering::Legal:
9638     // Nothing to do.
9639     break;
9640   case TargetLowering::Expand: {
9641     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
9642     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9643       std::swap(LHS, RHS);
9644       CC = DAG.getCondCode(InvCC);
9645       return true;
9646     }
9647     // Swapping operands didn't work. Try inverting the condition.
9648     bool NeedSwap = false;
9649     InvCC = getSetCCInverse(CCCode, OpVT);
9650     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9651       // If inverting the condition is not enough, try swapping operands
9652       // on top of it.
9653       InvCC = ISD::getSetCCSwappedOperands(InvCC);
9654       NeedSwap = true;
9655     }
9656     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9657       CC = DAG.getCondCode(InvCC);
9658       NeedInvert = true;
9659       if (NeedSwap)
9660         std::swap(LHS, RHS);
9661       return true;
9662     }
9663 
9664     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
9665     unsigned Opc = 0;
9666     switch (CCCode) {
9667     default:
9668       llvm_unreachable("Don't know how to expand this condition!");
9669     case ISD::SETUO:
9670       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
9671         CC1 = ISD::SETUNE;
9672         CC2 = ISD::SETUNE;
9673         Opc = ISD::OR;
9674         break;
9675       }
9676       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9677              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
9678       NeedInvert = true;
9679       LLVM_FALLTHROUGH;
9680     case ISD::SETO:
9681       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9682              "If SETO is expanded, SETOEQ must be legal!");
9683       CC1 = ISD::SETOEQ;
9684       CC2 = ISD::SETOEQ;
9685       Opc = ISD::AND;
9686       break;
9687     case ISD::SETONE:
9688     case ISD::SETUEQ:
9689       // If the SETUO or SETO CC isn't legal, we might be able to use
9690       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
9691       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
9692       // the operands.
9693       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9694       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
9695           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
9696            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
9697         CC1 = ISD::SETOGT;
9698         CC2 = ISD::SETOLT;
9699         Opc = ISD::OR;
9700         NeedInvert = ((unsigned)CCCode & 0x8U);
9701         break;
9702       }
9703       LLVM_FALLTHROUGH;
9704     case ISD::SETOEQ:
9705     case ISD::SETOGT:
9706     case ISD::SETOGE:
9707     case ISD::SETOLT:
9708     case ISD::SETOLE:
9709     case ISD::SETUNE:
9710     case ISD::SETUGT:
9711     case ISD::SETUGE:
9712     case ISD::SETULT:
9713     case ISD::SETULE:
9714       // If we are floating point, assign and break, otherwise fall through.
9715       if (!OpVT.isInteger()) {
9716         // We can use the 4th bit to tell if we are the unordered
9717         // or ordered version of the opcode.
9718         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9719         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
9720         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
9721         break;
9722       }
9723       // Fallthrough if we are unsigned integer.
9724       LLVM_FALLTHROUGH;
9725     case ISD::SETLE:
9726     case ISD::SETGT:
9727     case ISD::SETGE:
9728     case ISD::SETLT:
9729     case ISD::SETNE:
9730     case ISD::SETEQ:
9731       // If all combinations of inverting the condition and swapping operands
9732       // didn't work then we have no means to expand the condition.
9733       llvm_unreachable("Don't know how to expand this condition!");
9734     }
9735 
9736     SDValue SetCC1, SetCC2;
9737     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
9738       // If we aren't the ordered or unorder operation,
9739       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
9740       if (IsNonVP) {
9741         SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
9742         SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
9743       } else {
9744         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL);
9745         SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL);
9746       }
9747     } else {
9748       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
9749       if (IsNonVP) {
9750         SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
9751         SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
9752       } else {
9753         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL);
9754         SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL);
9755       }
9756     }
9757     if (Chain)
9758       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
9759                           SetCC2.getValue(1));
9760     if (IsNonVP)
9761       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
9762     else {
9763       // Transform the binary opcode to the VP equivalent.
9764       assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode");
9765       Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND;
9766       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL);
9767     }
9768     RHS = SDValue();
9769     CC = SDValue();
9770     return true;
9771   }
9772   }
9773   return false;
9774 }
9775