1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/TargetLowering.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/CodeGen/CallingConvLower.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/CodeGen/TargetRegisterInfo.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/KnownBits.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Target/TargetLoweringObjectFile.h"
35 #include "llvm/Target/TargetMachine.h"
36 #include <cctype>
37 using namespace llvm;
38 
39 /// NOTE: The TargetMachine owns TLOF.
40 TargetLowering::TargetLowering(const TargetMachine &tm)
41   : TargetLoweringBase(tm) {}
42 
43 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
44   return nullptr;
45 }
46 
47 bool TargetLowering::isPositionIndependent() const {
48   return getTargetMachine().isPositionIndependent();
49 }
50 
51 /// Check whether a given call node is in tail position within its function. If
52 /// so, it sets Chain to the input chain of the tail call.
53 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
54                                           SDValue &Chain) const {
55   const Function &F = DAG.getMachineFunction().getFunction();
56 
57   // Conservatively require the attributes of the call to match those of
58   // the return. Ignore NoAlias and NonNull because they don't affect the
59   // call sequence.
60   AttributeList CallerAttrs = F.getAttributes();
61   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
62           .removeAttribute(Attribute::NoAlias)
63           .removeAttribute(Attribute::NonNull)
64           .hasAttributes())
65     return false;
66 
67   // It's not safe to eliminate the sign / zero extension of the return value.
68   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
69       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
70     return false;
71 
72   // Check if the only use is a function return node.
73   return isUsedByReturnOnly(Node, Chain);
74 }
75 
76 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
77     const uint32_t *CallerPreservedMask,
78     const SmallVectorImpl<CCValAssign> &ArgLocs,
79     const SmallVectorImpl<SDValue> &OutVals) const {
80   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
81     const CCValAssign &ArgLoc = ArgLocs[I];
82     if (!ArgLoc.isRegLoc())
83       continue;
84     unsigned Reg = ArgLoc.getLocReg();
85     // Only look at callee saved registers.
86     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
87       continue;
88     // Check that we pass the value used for the caller.
89     // (We look for a CopyFromReg reading a virtual register that is used
90     //  for the function live-in value of register Reg)
91     SDValue Value = OutVals[I];
92     if (Value->getOpcode() != ISD::CopyFromReg)
93       return false;
94     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
95     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
96       return false;
97   }
98   return true;
99 }
100 
101 /// Set CallLoweringInfo attribute flags based on a call instruction
102 /// and called function attributes.
103 void TargetLoweringBase::ArgListEntry::setAttributes(ImmutableCallSite *CS,
104                                                      unsigned ArgIdx) {
105   IsSExt = CS->paramHasAttr(ArgIdx, Attribute::SExt);
106   IsZExt = CS->paramHasAttr(ArgIdx, Attribute::ZExt);
107   IsInReg = CS->paramHasAttr(ArgIdx, Attribute::InReg);
108   IsSRet = CS->paramHasAttr(ArgIdx, Attribute::StructRet);
109   IsNest = CS->paramHasAttr(ArgIdx, Attribute::Nest);
110   IsByVal = CS->paramHasAttr(ArgIdx, Attribute::ByVal);
111   IsInAlloca = CS->paramHasAttr(ArgIdx, Attribute::InAlloca);
112   IsReturned = CS->paramHasAttr(ArgIdx, Attribute::Returned);
113   IsSwiftSelf = CS->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
114   IsSwiftError = CS->paramHasAttr(ArgIdx, Attribute::SwiftError);
115   Alignment  = CS->getParamAlignment(ArgIdx);
116 }
117 
118 /// Generate a libcall taking the given operands as arguments and returning a
119 /// result of type RetVT.
120 std::pair<SDValue, SDValue>
121 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
122                             ArrayRef<SDValue> Ops, bool isSigned,
123                             const SDLoc &dl, bool doesNotReturn,
124                             bool isReturnValueUsed) const {
125   TargetLowering::ArgListTy Args;
126   Args.reserve(Ops.size());
127 
128   TargetLowering::ArgListEntry Entry;
129   for (SDValue Op : Ops) {
130     Entry.Node = Op;
131     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
132     Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
133     Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
134     Args.push_back(Entry);
135   }
136 
137   if (LC == RTLIB::UNKNOWN_LIBCALL)
138     report_fatal_error("Unsupported library call operation!");
139   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
140                                          getPointerTy(DAG.getDataLayout()));
141 
142   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
143   TargetLowering::CallLoweringInfo CLI(DAG);
144   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
145   CLI.setDebugLoc(dl)
146       .setChain(DAG.getEntryNode())
147       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
148       .setNoReturn(doesNotReturn)
149       .setDiscardResult(!isReturnValueUsed)
150       .setSExtResult(signExtend)
151       .setZExtResult(!signExtend);
152   return LowerCallTo(CLI);
153 }
154 
155 /// Soften the operands of a comparison. This code is shared among BR_CC,
156 /// SELECT_CC, and SETCC handlers.
157 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
158                                          SDValue &NewLHS, SDValue &NewRHS,
159                                          ISD::CondCode &CCCode,
160                                          const SDLoc &dl) const {
161   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
162          && "Unsupported setcc type!");
163 
164   // Expand into one or more soft-fp libcall(s).
165   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
166   bool ShouldInvertCC = false;
167   switch (CCCode) {
168   case ISD::SETEQ:
169   case ISD::SETOEQ:
170     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
171           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
172           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
173     break;
174   case ISD::SETNE:
175   case ISD::SETUNE:
176     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
177           (VT == MVT::f64) ? RTLIB::UNE_F64 :
178           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
179     break;
180   case ISD::SETGE:
181   case ISD::SETOGE:
182     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
183           (VT == MVT::f64) ? RTLIB::OGE_F64 :
184           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
185     break;
186   case ISD::SETLT:
187   case ISD::SETOLT:
188     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
189           (VT == MVT::f64) ? RTLIB::OLT_F64 :
190           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
191     break;
192   case ISD::SETLE:
193   case ISD::SETOLE:
194     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
195           (VT == MVT::f64) ? RTLIB::OLE_F64 :
196           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
197     break;
198   case ISD::SETGT:
199   case ISD::SETOGT:
200     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
201           (VT == MVT::f64) ? RTLIB::OGT_F64 :
202           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
203     break;
204   case ISD::SETUO:
205     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
206           (VT == MVT::f64) ? RTLIB::UO_F64 :
207           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
208     break;
209   case ISD::SETO:
210     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
211           (VT == MVT::f64) ? RTLIB::O_F64 :
212           (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
213     break;
214   case ISD::SETONE:
215     // SETONE = SETOLT | SETOGT
216     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
217           (VT == MVT::f64) ? RTLIB::OLT_F64 :
218           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
219     LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
220           (VT == MVT::f64) ? RTLIB::OGT_F64 :
221           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
222     break;
223   case ISD::SETUEQ:
224     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
225           (VT == MVT::f64) ? RTLIB::UO_F64 :
226           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
227     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
228           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
229           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
230     break;
231   default:
232     // Invert CC for unordered comparisons
233     ShouldInvertCC = true;
234     switch (CCCode) {
235     case ISD::SETULT:
236       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
237             (VT == MVT::f64) ? RTLIB::OGE_F64 :
238             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
239       break;
240     case ISD::SETULE:
241       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
242             (VT == MVT::f64) ? RTLIB::OGT_F64 :
243             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
244       break;
245     case ISD::SETUGT:
246       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
247             (VT == MVT::f64) ? RTLIB::OLE_F64 :
248             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
249       break;
250     case ISD::SETUGE:
251       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
252             (VT == MVT::f64) ? RTLIB::OLT_F64 :
253             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
254       break;
255     default: llvm_unreachable("Do not know how to soften this setcc!");
256     }
257   }
258 
259   // Use the target specific return value for comparions lib calls.
260   EVT RetVT = getCmpLibcallReturnType();
261   SDValue Ops[2] = {NewLHS, NewRHS};
262   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
263                        dl).first;
264   NewRHS = DAG.getConstant(0, dl, RetVT);
265 
266   CCCode = getCmpLibcallCC(LC1);
267   if (ShouldInvertCC)
268     CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
269 
270   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
271     SDValue Tmp = DAG.getNode(
272         ISD::SETCC, dl,
273         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
274         NewLHS, NewRHS, DAG.getCondCode(CCCode));
275     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
276                          dl).first;
277     NewLHS = DAG.getNode(
278         ISD::SETCC, dl,
279         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
280         NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
281     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
282     NewRHS = SDValue();
283   }
284 }
285 
286 /// Return the entry encoding for a jump table in the current function. The
287 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
288 unsigned TargetLowering::getJumpTableEncoding() const {
289   // In non-pic modes, just use the address of a block.
290   if (!isPositionIndependent())
291     return MachineJumpTableInfo::EK_BlockAddress;
292 
293   // In PIC mode, if the target supports a GPRel32 directive, use it.
294   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
295     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
296 
297   // Otherwise, use a label difference.
298   return MachineJumpTableInfo::EK_LabelDifference32;
299 }
300 
301 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
302                                                  SelectionDAG &DAG) const {
303   // If our PIC model is GP relative, use the global offset table as the base.
304   unsigned JTEncoding = getJumpTableEncoding();
305 
306   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
307       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
308     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
309 
310   return Table;
311 }
312 
313 /// This returns the relocation base for the given PIC jumptable, the same as
314 /// getPICJumpTableRelocBase, but as an MCExpr.
315 const MCExpr *
316 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
317                                              unsigned JTI,MCContext &Ctx) const{
318   // The normal PIC reloc base is the label at the start of the jump table.
319   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
320 }
321 
322 bool
323 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
324   const TargetMachine &TM = getTargetMachine();
325   const GlobalValue *GV = GA->getGlobal();
326 
327   // If the address is not even local to this DSO we will have to load it from
328   // a got and then add the offset.
329   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
330     return false;
331 
332   // If the code is position independent we will have to add a base register.
333   if (isPositionIndependent())
334     return false;
335 
336   // Otherwise we can do it.
337   return true;
338 }
339 
340 //===----------------------------------------------------------------------===//
341 //  Optimization Methods
342 //===----------------------------------------------------------------------===//
343 
344 /// If the specified instruction has a constant integer operand and there are
345 /// bits set in that constant that are not demanded, then clear those bits and
346 /// return true.
347 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
348                                             TargetLoweringOpt &TLO) const {
349   SelectionDAG &DAG = TLO.DAG;
350   SDLoc DL(Op);
351   unsigned Opcode = Op.getOpcode();
352 
353   // Do target-specific constant optimization.
354   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
355     return TLO.New.getNode();
356 
357   // FIXME: ISD::SELECT, ISD::SELECT_CC
358   switch (Opcode) {
359   default:
360     break;
361   case ISD::XOR:
362   case ISD::AND:
363   case ISD::OR: {
364     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
365     if (!Op1C)
366       return false;
367 
368     // If this is a 'not' op, don't touch it because that's a canonical form.
369     const APInt &C = Op1C->getAPIntValue();
370     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
371       return false;
372 
373     if (!C.isSubsetOf(Demanded)) {
374       EVT VT = Op.getValueType();
375       SDValue NewC = DAG.getConstant(Demanded & C, DL, VT);
376       SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
377       return TLO.CombineTo(Op, NewOp);
378     }
379 
380     break;
381   }
382   }
383 
384   return false;
385 }
386 
387 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
388 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
389 /// generalized for targets with other types of implicit widening casts.
390 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
391                                       const APInt &Demanded,
392                                       TargetLoweringOpt &TLO) const {
393   assert(Op.getNumOperands() == 2 &&
394          "ShrinkDemandedOp only supports binary operators!");
395   assert(Op.getNode()->getNumValues() == 1 &&
396          "ShrinkDemandedOp only supports nodes with one result!");
397 
398   SelectionDAG &DAG = TLO.DAG;
399   SDLoc dl(Op);
400 
401   // Early return, as this function cannot handle vector types.
402   if (Op.getValueType().isVector())
403     return false;
404 
405   // Don't do this if the node has another user, which may require the
406   // full value.
407   if (!Op.getNode()->hasOneUse())
408     return false;
409 
410   // Search for the smallest integer type with free casts to and from
411   // Op's type. For expedience, just check power-of-2 integer types.
412   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
413   unsigned DemandedSize = Demanded.getActiveBits();
414   unsigned SmallVTBits = DemandedSize;
415   if (!isPowerOf2_32(SmallVTBits))
416     SmallVTBits = NextPowerOf2(SmallVTBits);
417   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
418     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
419     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
420         TLI.isZExtFree(SmallVT, Op.getValueType())) {
421       // We found a type with free casts.
422       SDValue X = DAG.getNode(
423           Op.getOpcode(), dl, SmallVT,
424           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
425           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
426       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
427       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
428       return TLO.CombineTo(Op, Z);
429     }
430   }
431   return false;
432 }
433 
434 bool
435 TargetLowering::SimplifyDemandedBits(SDNode *User, unsigned OpIdx,
436                                      const APInt &DemandedBits,
437                                      DAGCombinerInfo &DCI,
438                                      TargetLoweringOpt &TLO) const {
439   SDValue Op = User->getOperand(OpIdx);
440   KnownBits Known;
441 
442   if (!SimplifyDemandedBits(Op, DemandedBits, Known, TLO, 0, true))
443     return false;
444 
445 
446   // Old will not always be the same as Op.  For example:
447   //
448   // Demanded = 0xffffff
449   // Op = i64 truncate (i32 and x, 0xffffff)
450   // In this case simplify demand bits will want to replace the 'and' node
451   // with the value 'x', which will give us:
452   // Old = i32 and x, 0xffffff
453   // New = x
454   if (TLO.Old.hasOneUse()) {
455     // For the one use case, we just commit the change.
456     DCI.CommitTargetLoweringOpt(TLO);
457     return true;
458   }
459 
460   // If Old has more than one use then it must be Op, because the
461   // AssumeSingleUse flag is not propogated to recursive calls of
462   // SimplifyDemanded bits, so the only node with multiple use that
463   // it will attempt to combine will be Op.
464   assert(TLO.Old == Op);
465 
466   SmallVector <SDValue, 4> NewOps;
467   for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
468     if (i == OpIdx) {
469       NewOps.push_back(TLO.New);
470       continue;
471     }
472     NewOps.push_back(User->getOperand(i));
473   }
474   User = TLO.DAG.UpdateNodeOperands(User, NewOps);
475   // Op has less users now, so we may be able to perform additional combines
476   // with it.
477   DCI.AddToWorklist(Op.getNode());
478   // User's operands have been updated, so we may be able to do new combines
479   // with it.
480   DCI.AddToWorklist(User);
481   return true;
482 }
483 
484 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
485                                           DAGCombinerInfo &DCI) const {
486   SelectionDAG &DAG = DCI.DAG;
487   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
488                         !DCI.isBeforeLegalizeOps());
489   KnownBits Known;
490 
491   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
492   if (Simplified) {
493     DCI.AddToWorklist(Op.getNode());
494     DCI.CommitTargetLoweringOpt(TLO);
495   }
496   return Simplified;
497 }
498 
499 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
500                                           KnownBits &Known,
501                                           TargetLoweringOpt &TLO,
502                                           unsigned Depth,
503                                           bool AssumeSingleUse) const {
504   EVT VT = Op.getValueType();
505   APInt DemandedElts = VT.isVector()
506                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
507                            : APInt(1, 1);
508   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
509                               AssumeSingleUse);
510 }
511 
512 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
513 /// result of Op are ever used downstream. If we can use this information to
514 /// simplify Op, create a new simplified DAG node and return true, returning the
515 /// original and new nodes in Old and New. Otherwise, analyze the expression and
516 /// return a mask of Known bits for the expression (used to simplify the
517 /// caller).  The Known bits may only be accurate for those bits in the
518 /// OriginalDemandedBits and OriginalDemandedElts.
519 bool TargetLowering::SimplifyDemandedBits(
520     SDValue Op, const APInt &OriginalDemandedBits,
521     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
522     unsigned Depth, bool AssumeSingleUse) const {
523   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
524   assert(Op.getScalarValueSizeInBits() == BitWidth &&
525          "Mask size mismatches value type size!");
526 
527   unsigned NumElts = OriginalDemandedElts.getBitWidth();
528   assert((!Op.getValueType().isVector() ||
529           NumElts == Op.getValueType().getVectorNumElements()) &&
530          "Unexpected vector size");
531 
532   APInt DemandedBits = OriginalDemandedBits;
533   APInt DemandedElts = OriginalDemandedElts;
534   SDLoc dl(Op);
535   auto &DL = TLO.DAG.getDataLayout();
536 
537   // Don't know anything.
538   Known = KnownBits(BitWidth);
539 
540   if (Op.getOpcode() == ISD::Constant) {
541     // We know all of the bits for a constant!
542     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
543     Known.Zero = ~Known.One;
544     return false;
545   }
546 
547   // Other users may use these bits.
548   EVT VT = Op.getValueType();
549   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
550     if (Depth != 0) {
551       // If not at the root, Just compute the Known bits to
552       // simplify things downstream.
553       TLO.DAG.computeKnownBits(Op, Known, DemandedElts, Depth);
554       return false;
555     }
556     // If this is the root being simplified, allow it to have multiple uses,
557     // just set the DemandedBits/Elts to all bits.
558     DemandedBits = APInt::getAllOnesValue(BitWidth);
559     DemandedElts = APInt::getAllOnesValue(NumElts);
560   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
561     // Not demanding any bits/elts from Op.
562     if (!Op.isUndef())
563       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
564     return false;
565   } else if (Depth == 6) { // Limit search depth.
566     return false;
567   }
568 
569   KnownBits Known2, KnownOut;
570   switch (Op.getOpcode()) {
571   case ISD::BUILD_VECTOR:
572     // Collect the known bits that are shared by every constant vector element.
573     Known.Zero.setAllBits(); Known.One.setAllBits();
574     for (SDValue SrcOp : Op->ops()) {
575       if (!isa<ConstantSDNode>(SrcOp)) {
576         // We can only handle all constant values - bail out with no known bits.
577         Known = KnownBits(BitWidth);
578         return false;
579       }
580       Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue();
581       Known2.Zero = ~Known2.One;
582 
583       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
584       if (Known2.One.getBitWidth() != BitWidth) {
585         assert(Known2.getBitWidth() > BitWidth &&
586                "Expected BUILD_VECTOR implicit truncation");
587         Known2 = Known2.trunc(BitWidth);
588       }
589 
590       // Known bits are the values that are shared by every element.
591       // TODO: support per-element known bits.
592       Known.One &= Known2.One;
593       Known.Zero &= Known2.Zero;
594     }
595     return false; // Don't fall through, will infinitely loop.
596   case ISD::CONCAT_VECTORS: {
597     Known.Zero.setAllBits();
598     Known.One.setAllBits();
599     EVT SubVT = Op.getOperand(0).getValueType();
600     unsigned NumSubVecs = Op.getNumOperands();
601     unsigned NumSubElts = SubVT.getVectorNumElements();
602     for (unsigned i = 0; i != NumSubVecs; ++i) {
603       APInt DemandedSubElts =
604           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
605       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
606                                Known2, TLO, Depth + 1))
607         return true;
608       // Known bits are shared by every demanded subvector element.
609       if (!!DemandedSubElts) {
610         Known.One &= Known2.One;
611         Known.Zero &= Known2.Zero;
612       }
613     }
614     break;
615   }
616   case ISD::VECTOR_SHUFFLE: {
617     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
618 
619     // Collect demanded elements from shuffle operands..
620     APInt DemandedLHS(NumElts, 0);
621     APInt DemandedRHS(NumElts, 0);
622     for (unsigned i = 0; i != NumElts; ++i) {
623       if (!DemandedElts[i])
624         continue;
625       int M = ShuffleMask[i];
626       if (M < 0) {
627         // For UNDEF elements, we don't know anything about the common state of
628         // the shuffle result.
629         DemandedLHS.clearAllBits();
630         DemandedRHS.clearAllBits();
631         break;
632       }
633       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
634       if (M < (int)NumElts)
635         DemandedLHS.setBit(M);
636       else
637         DemandedRHS.setBit(M - NumElts);
638     }
639 
640     if (!!DemandedLHS || !!DemandedRHS) {
641       Known.Zero.setAllBits();
642       Known.One.setAllBits();
643       if (!!DemandedLHS) {
644         if (SimplifyDemandedBits(Op.getOperand(0), DemandedBits, DemandedLHS,
645                                  Known2, TLO, Depth + 1))
646           return true;
647         Known.One &= Known2.One;
648         Known.Zero &= Known2.Zero;
649       }
650       if (!!DemandedRHS) {
651         if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedRHS,
652                                  Known2, TLO, Depth + 1))
653           return true;
654         Known.One &= Known2.One;
655         Known.Zero &= Known2.Zero;
656       }
657     }
658     break;
659   }
660   case ISD::AND: {
661     SDValue Op0 = Op.getOperand(0);
662     SDValue Op1 = Op.getOperand(1);
663 
664     // If the RHS is a constant, check to see if the LHS would be zero without
665     // using the bits from the RHS.  Below, we use knowledge about the RHS to
666     // simplify the LHS, here we're using information from the LHS to simplify
667     // the RHS.
668     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
669       KnownBits LHSKnown;
670       // Do not increment Depth here; that can cause an infinite loop.
671       TLO.DAG.computeKnownBits(Op0, LHSKnown, DemandedElts, Depth);
672       // If the LHS already has zeros where RHSC does, this 'and' is dead.
673       if ((LHSKnown.Zero & DemandedBits) ==
674           (~RHSC->getAPIntValue() & DemandedBits))
675         return TLO.CombineTo(Op, Op0);
676 
677       // If any of the set bits in the RHS are known zero on the LHS, shrink
678       // the constant.
679       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
680         return true;
681 
682       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
683       // constant, but if this 'and' is only clearing bits that were just set by
684       // the xor, then this 'and' can be eliminated by shrinking the mask of
685       // the xor. For example, for a 32-bit X:
686       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
687       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
688           LHSKnown.One == ~RHSC->getAPIntValue()) {
689         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
690         return TLO.CombineTo(Op, Xor);
691       }
692     }
693 
694     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, Depth + 1))
695       return true;
696     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
697     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, Known2, TLO,
698                              Depth + 1))
699       return true;
700     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
701 
702     // If all of the demanded bits are known one on one side, return the other.
703     // These bits cannot contribute to the result of the 'and'.
704     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
705       return TLO.CombineTo(Op, Op0);
706     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
707       return TLO.CombineTo(Op, Op1);
708     // If all of the demanded bits in the inputs are known zeros, return zero.
709     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
710       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
711     // If the RHS is a constant, see if we can simplify it.
712     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
713       return true;
714     // If the operation can be done in a smaller type, do so.
715     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
716       return true;
717 
718     // Output known-1 bits are only known if set in both the LHS & RHS.
719     Known.One &= Known2.One;
720     // Output known-0 are known to be clear if zero in either the LHS | RHS.
721     Known.Zero |= Known2.Zero;
722     break;
723   }
724   case ISD::OR: {
725     SDValue Op0 = Op.getOperand(0);
726     SDValue Op1 = Op.getOperand(1);
727 
728     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, Depth + 1))
729       return true;
730     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
731     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, Known2, TLO,
732                              Depth + 1))
733       return true;
734     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
735 
736     // If all of the demanded bits are known zero on one side, return the other.
737     // These bits cannot contribute to the result of the 'or'.
738     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
739       return TLO.CombineTo(Op, Op0);
740     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
741       return TLO.CombineTo(Op, Op1);
742     // If the RHS is a constant, see if we can simplify it.
743     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
744       return true;
745     // If the operation can be done in a smaller type, do so.
746     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
747       return true;
748 
749     // Output known-0 bits are only known if clear in both the LHS & RHS.
750     Known.Zero &= Known2.Zero;
751     // Output known-1 are known to be set if set in either the LHS | RHS.
752     Known.One |= Known2.One;
753     break;
754   }
755   case ISD::XOR: {
756     SDValue Op0 = Op.getOperand(0);
757     SDValue Op1 = Op.getOperand(1);
758 
759     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, Depth + 1))
760       return true;
761     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
762     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, Depth + 1))
763       return true;
764     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
765 
766     // If all of the demanded bits are known zero on one side, return the other.
767     // These bits cannot contribute to the result of the 'xor'.
768     if (DemandedBits.isSubsetOf(Known.Zero))
769       return TLO.CombineTo(Op, Op0);
770     if (DemandedBits.isSubsetOf(Known2.Zero))
771       return TLO.CombineTo(Op, Op1);
772     // If the operation can be done in a smaller type, do so.
773     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
774       return true;
775 
776     // If all of the unknown bits are known to be zero on one side or the other
777     // (but not both) turn this into an *inclusive* or.
778     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
779     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
780       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
781 
782     // Output known-0 bits are known if clear or set in both the LHS & RHS.
783     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
784     // Output known-1 are known to be set if set in only one of the LHS, RHS.
785     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
786 
787     if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
788       // If one side is a constant, and all of the known set bits on the other
789       // side are also set in the constant, turn this into an AND, as we know
790       // the bits will be cleared.
791       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
792       // NB: it is okay if more bits are known than are requested
793       if (C->getAPIntValue() == Known2.One) {
794         SDValue ANDC =
795             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
796         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
797       }
798 
799       // If the RHS is a constant, see if we can change it. Don't alter a -1
800       // constant because that's a 'not' op, and that is better for combining
801       // and codegen.
802       if (!C->isAllOnesValue()) {
803         if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
804           // We're flipping all demanded bits. Flip the undemanded bits too.
805           SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
806           return TLO.CombineTo(Op, New);
807         }
808         // If we can't turn this into a 'not', try to shrink the constant.
809         if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
810           return true;
811       }
812     }
813 
814     Known = std::move(KnownOut);
815     break;
816   }
817   case ISD::SELECT:
818     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
819                              Depth + 1))
820       return true;
821     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
822                              Depth + 1))
823       return true;
824     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
825     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
826 
827     // If the operands are constants, see if we can simplify them.
828     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
829       return true;
830 
831     // Only known if known in both the LHS and RHS.
832     Known.One &= Known2.One;
833     Known.Zero &= Known2.Zero;
834     break;
835   case ISD::SELECT_CC:
836     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
837                              Depth + 1))
838       return true;
839     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
840                              Depth + 1))
841       return true;
842     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
843     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
844 
845     // If the operands are constants, see if we can simplify them.
846     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
847       return true;
848 
849     // Only known if known in both the LHS and RHS.
850     Known.One &= Known2.One;
851     Known.Zero &= Known2.Zero;
852     break;
853   case ISD::SETCC: {
854     SDValue Op0 = Op.getOperand(0);
855     SDValue Op1 = Op.getOperand(1);
856     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
857     // If (1) we only need the sign-bit, (2) the setcc operands are the same
858     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
859     // -1, we may be able to bypass the setcc.
860     if (DemandedBits.isSignMask() &&
861         Op0.getScalarValueSizeInBits() == BitWidth &&
862         getBooleanContents(VT) ==
863             BooleanContent::ZeroOrNegativeOneBooleanContent) {
864       // If we're testing X < 0, then this compare isn't needed - just use X!
865       // FIXME: We're limiting to integer types here, but this should also work
866       // if we don't care about FP signed-zero. The use of SETLT with FP means
867       // that we don't care about NaNs.
868       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
869           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
870         return TLO.CombineTo(Op, Op0);
871 
872       // TODO: Should we check for other forms of sign-bit comparisons?
873       // Examples: X <= -1, X >= 0
874     }
875     if (getBooleanContents(Op0.getValueType()) ==
876             TargetLowering::ZeroOrOneBooleanContent &&
877         BitWidth > 1)
878       Known.Zero.setBitsFrom(1);
879     break;
880   }
881   case ISD::SHL: {
882     SDValue Op0 = Op.getOperand(0);
883     SDValue Op1 = Op.getOperand(1);
884 
885     if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
886       // If the shift count is an invalid immediate, don't do anything.
887       if (SA->getAPIntValue().uge(BitWidth))
888         break;
889 
890       unsigned ShAmt = SA->getZExtValue();
891 
892       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
893       // single shift.  We can do this if the bottom bits (which are shifted
894       // out) are never demanded.
895       if (Op0.getOpcode() == ISD::SRL) {
896         if (ShAmt &&
897             (DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
898           if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) {
899             if (SA2->getAPIntValue().ult(BitWidth)) {
900               unsigned C1 = SA2->getZExtValue();
901               unsigned Opc = ISD::SHL;
902               int Diff = ShAmt - C1;
903               if (Diff < 0) {
904                 Diff = -Diff;
905                 Opc = ISD::SRL;
906               }
907 
908               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
909               return TLO.CombineTo(
910                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
911             }
912           }
913         }
914       }
915 
916       if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts, Known, TLO,
917                                Depth + 1))
918         return true;
919 
920       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
921       // are not demanded. This will likely allow the anyext to be folded away.
922       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
923         SDValue InnerOp = Op0.getOperand(0);
924         EVT InnerVT = InnerOp.getValueType();
925         unsigned InnerBits = InnerVT.getScalarSizeInBits();
926         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
927             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
928           EVT ShTy = getShiftAmountTy(InnerVT, DL);
929           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
930             ShTy = InnerVT;
931           SDValue NarrowShl =
932               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
933                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
934           return TLO.CombineTo(
935               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
936         }
937         // Repeat the SHL optimization above in cases where an extension
938         // intervenes: (shl (anyext (shr x, c1)), c2) to
939         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
940         // aren't demanded (as above) and that the shifted upper c1 bits of
941         // x aren't demanded.
942         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
943             InnerOp.hasOneUse()) {
944           if (ConstantSDNode *SA2 =
945                   isConstOrConstSplat(InnerOp.getOperand(1))) {
946             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
947             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
948                 DemandedBits.getActiveBits() <=
949                     (InnerBits - InnerShAmt + ShAmt) &&
950                 DemandedBits.countTrailingZeros() >= ShAmt) {
951               SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
952                                                   Op1.getValueType());
953               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
954                                                InnerOp.getOperand(0));
955               return TLO.CombineTo(
956                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
957             }
958           }
959         }
960       }
961 
962       Known.Zero <<= ShAmt;
963       Known.One <<= ShAmt;
964       // low bits known zero.
965       Known.Zero.setLowBits(ShAmt);
966     }
967     break;
968   }
969   case ISD::SRL: {
970     SDValue Op0 = Op.getOperand(0);
971     SDValue Op1 = Op.getOperand(1);
972 
973     if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
974       // If the shift count is an invalid immediate, don't do anything.
975       if (SA->getAPIntValue().uge(BitWidth))
976         break;
977 
978       unsigned ShAmt = SA->getZExtValue();
979       APInt InDemandedMask = (DemandedBits << ShAmt);
980 
981       // If the shift is exact, then it does demand the low bits (and knows that
982       // they are zero).
983       if (Op->getFlags().hasExact())
984         InDemandedMask.setLowBits(ShAmt);
985 
986       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
987       // single shift.  We can do this if the top bits (which are shifted out)
988       // are never demanded.
989       if (Op0.getOpcode() == ISD::SHL) {
990         if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) {
991           if (ShAmt &&
992               (DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) {
993             if (SA2->getAPIntValue().ult(BitWidth)) {
994               unsigned C1 = SA2->getZExtValue();
995               unsigned Opc = ISD::SRL;
996               int Diff = ShAmt - C1;
997               if (Diff < 0) {
998                 Diff = -Diff;
999                 Opc = ISD::SHL;
1000               }
1001 
1002               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
1003               return TLO.CombineTo(
1004                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1005             }
1006           }
1007         }
1008       }
1009 
1010       // Compute the new bits that are at the top now.
1011       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, Depth + 1))
1012         return true;
1013       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1014       Known.Zero.lshrInPlace(ShAmt);
1015       Known.One.lshrInPlace(ShAmt);
1016 
1017       Known.Zero.setHighBits(ShAmt); // High bits known zero.
1018     }
1019     break;
1020   }
1021   case ISD::SRA: {
1022     SDValue Op0 = Op.getOperand(0);
1023     SDValue Op1 = Op.getOperand(1);
1024 
1025     // If this is an arithmetic shift right and only the low-bit is set, we can
1026     // always convert this into a logical shr, even if the shift amount is
1027     // variable.  The low bit of the shift cannot be an input sign bit unless
1028     // the shift amount is >= the size of the datatype, which is undefined.
1029     if (DemandedBits.isOneValue())
1030       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1031 
1032     if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
1033       // If the shift count is an invalid immediate, don't do anything.
1034       if (SA->getAPIntValue().uge(BitWidth))
1035         break;
1036 
1037       unsigned ShAmt = SA->getZExtValue();
1038       APInt InDemandedMask = (DemandedBits << ShAmt);
1039 
1040       // If the shift is exact, then it does demand the low bits (and knows that
1041       // they are zero).
1042       if (Op->getFlags().hasExact())
1043         InDemandedMask.setLowBits(ShAmt);
1044 
1045       // If any of the demanded bits are produced by the sign extension, we also
1046       // demand the input sign bit.
1047       if (DemandedBits.countLeadingZeros() < ShAmt)
1048         InDemandedMask.setSignBit();
1049 
1050       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, Depth + 1))
1051         return true;
1052       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1053       Known.Zero.lshrInPlace(ShAmt);
1054       Known.One.lshrInPlace(ShAmt);
1055 
1056       // If the input sign bit is known to be zero, or if none of the top bits
1057       // are demanded, turn this into an unsigned shift right.
1058       if (Known.Zero[BitWidth - ShAmt - 1] ||
1059           DemandedBits.countLeadingZeros() >= ShAmt) {
1060         SDNodeFlags Flags;
1061         Flags.setExact(Op->getFlags().hasExact());
1062         return TLO.CombineTo(
1063             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1064       }
1065 
1066       int Log2 = DemandedBits.exactLogBase2();
1067       if (Log2 >= 0) {
1068         // The bit must come from the sign.
1069         SDValue NewSA =
1070             TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType());
1071         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1072       }
1073 
1074       if (Known.One[BitWidth - ShAmt - 1])
1075         // New bits are known one.
1076         Known.One.setHighBits(ShAmt);
1077     }
1078     break;
1079   }
1080   case ISD::SIGN_EXTEND_INREG: {
1081     SDValue Op0 = Op.getOperand(0);
1082     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1083     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1084 
1085     // If we only care about the highest bit, don't bother shifting right.
1086     if (DemandedBits.isSignMask()) {
1087       bool AlreadySignExtended =
1088           TLO.DAG.ComputeNumSignBits(Op0) >= BitWidth - ExVTBits + 1;
1089       // However if the input is already sign extended we expect the sign
1090       // extension to be dropped altogether later and do not simplify.
1091       if (!AlreadySignExtended) {
1092         // Compute the correct shift amount type, which must be getShiftAmountTy
1093         // for scalar types after legalization.
1094         EVT ShiftAmtTy = VT;
1095         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1096           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1097 
1098         SDValue ShiftAmt =
1099             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1100         return TLO.CombineTo(Op,
1101                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1102       }
1103     }
1104 
1105     // If none of the extended bits are demanded, eliminate the sextinreg.
1106     if (DemandedBits.getActiveBits() <= ExVTBits)
1107       return TLO.CombineTo(Op, Op0);
1108 
1109     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1110 
1111     // Since the sign extended bits are demanded, we know that the sign
1112     // bit is demanded.
1113     InputDemandedBits.setBit(ExVTBits - 1);
1114 
1115     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1116       return true;
1117     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1118 
1119     // If the sign bit of the input is known set or clear, then we know the
1120     // top bits of the result.
1121 
1122     // If the input sign bit is known zero, convert this into a zero extension.
1123     if (Known.Zero[ExVTBits - 1])
1124       return TLO.CombineTo(
1125           Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
1126 
1127     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1128     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1129       Known.One.setBitsFrom(ExVTBits);
1130       Known.Zero &= Mask;
1131     } else { // Input sign bit unknown
1132       Known.Zero &= Mask;
1133       Known.One &= Mask;
1134     }
1135     break;
1136   }
1137   case ISD::BUILD_PAIR: {
1138     EVT HalfVT = Op.getOperand(0).getValueType();
1139     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1140 
1141     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1142     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1143 
1144     KnownBits KnownLo, KnownHi;
1145 
1146     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1147       return true;
1148 
1149     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1150       return true;
1151 
1152     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1153                 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1154 
1155     Known.One = KnownLo.One.zext(BitWidth) |
1156                KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1157     break;
1158   }
1159   case ISD::ZERO_EXTEND: {
1160     SDValue Src = Op.getOperand(0);
1161     unsigned InBits = Src.getScalarValueSizeInBits();
1162 
1163     // If none of the top bits are demanded, convert this into an any_extend.
1164     if (DemandedBits.getActiveBits() <= InBits)
1165       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src));
1166 
1167     APInt InDemandedBits = DemandedBits.trunc(InBits);
1168     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth+1))
1169       return true;
1170     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1171     Known = Known.zext(BitWidth);
1172     Known.Zero.setBitsFrom(InBits);
1173     break;
1174   }
1175   case ISD::SIGN_EXTEND: {
1176     SDValue Src = Op.getOperand(0);
1177     unsigned InBits = Src.getScalarValueSizeInBits();
1178 
1179     // If none of the top bits are demanded, convert this into an any_extend.
1180     if (DemandedBits.getActiveBits() <= InBits)
1181       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src));
1182 
1183     // Since some of the sign extended bits are demanded, we know that the sign
1184     // bit is demanded.
1185     APInt InDemandedBits = DemandedBits.trunc(InBits);
1186     InDemandedBits.setBit(InBits - 1);
1187 
1188     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1))
1189       return true;
1190     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1191     // If the sign bit is known one, the top bits match.
1192     Known = Known.sext(BitWidth);
1193 
1194     // If the sign bit is known zero, convert this to a zero extend.
1195     if (Known.isNonNegative())
1196       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Src));
1197     break;
1198   }
1199   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1200     // TODO - merge this with SIGN_EXTEND above?
1201     SDValue Src = Op.getOperand(0);
1202     unsigned InBits = Src.getScalarValueSizeInBits();
1203 
1204     APInt InDemandedBits = DemandedBits.trunc(InBits);
1205 
1206     // If some of the sign extended bits are demanded, we know that the sign
1207     // bit is demanded.
1208     if (InBits < DemandedBits.getActiveBits())
1209       InDemandedBits.setBit(InBits - 1);
1210 
1211     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1))
1212       return true;
1213     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1214     // If the sign bit is known one, the top bits match.
1215     Known = Known.sext(BitWidth);
1216     break;
1217   }
1218   case ISD::ANY_EXTEND: {
1219     SDValue Src = Op.getOperand(0);
1220     unsigned InBits = Src.getScalarValueSizeInBits();
1221     APInt InDemandedBits = DemandedBits.trunc(InBits);
1222     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth+1))
1223       return true;
1224     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1225     Known = Known.zext(BitWidth);
1226     break;
1227   }
1228   case ISD::TRUNCATE: {
1229     SDValue Src = Op.getOperand(0);
1230 
1231     // Simplify the input, using demanded bit information, and compute the known
1232     // zero/one bits live out.
1233     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1234     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1235     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1236       return true;
1237     Known = Known.trunc(BitWidth);
1238 
1239     // If the input is only used by this truncate, see if we can shrink it based
1240     // on the known demanded bits.
1241     if (Src.getNode()->hasOneUse()) {
1242       switch (Src.getOpcode()) {
1243       default:
1244         break;
1245       case ISD::SRL:
1246         // Shrink SRL by a constant if none of the high bits shifted in are
1247         // demanded.
1248         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1249           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1250           // undesirable.
1251           break;
1252         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
1253         if (!ShAmt)
1254           break;
1255         SDValue Shift = Src.getOperand(1);
1256         if (TLO.LegalTypes()) {
1257           uint64_t ShVal = ShAmt->getZExtValue();
1258           Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1259         }
1260 
1261         if (ShAmt->getZExtValue() < BitWidth) {
1262           APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1263                                                  OperandBitWidth - BitWidth);
1264           HighBits.lshrInPlace(ShAmt->getZExtValue());
1265           HighBits = HighBits.trunc(BitWidth);
1266 
1267           if (!(HighBits & DemandedBits)) {
1268             // None of the shifted in bits are needed.  Add a truncate of the
1269             // shift input, then shift it.
1270             SDValue NewTrunc =
1271                 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1272             return TLO.CombineTo(
1273                 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift));
1274           }
1275         }
1276         break;
1277       }
1278     }
1279 
1280     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1281     break;
1282   }
1283   case ISD::AssertZext: {
1284     // AssertZext demands all of the high bits, plus any of the low bits
1285     // demanded by its users.
1286     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1287     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1288     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits,
1289                              Known, TLO, Depth+1))
1290       return true;
1291     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1292 
1293     Known.Zero |= ~InMask;
1294     break;
1295   }
1296   case ISD::EXTRACT_VECTOR_ELT: {
1297     SDValue Src = Op.getOperand(0);
1298     SDValue Idx = Op.getOperand(1);
1299     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1300     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1301 
1302     // Demand the bits from every vector element without a constant index.
1303     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1304     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1305       if (CIdx->getAPIntValue().ult(NumSrcElts))
1306         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1307 
1308     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1309     // anything about the extended bits.
1310     APInt DemandedSrcBits = DemandedBits;
1311     if (BitWidth > EltBitWidth)
1312       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1313 
1314     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1315                              Depth + 1))
1316       return true;
1317 
1318     Known = Known2;
1319     if (BitWidth > EltBitWidth)
1320       Known = Known.zext(BitWidth);
1321     break;
1322   }
1323   case ISD::BITCAST: {
1324     SDValue Src = Op.getOperand(0);
1325     EVT SrcVT = Src.getValueType();
1326     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1327 
1328     // If this is an FP->Int bitcast and if the sign bit is the only
1329     // thing demanded, turn this into a FGETSIGN.
1330     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1331         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1332         SrcVT.isFloatingPoint()) {
1333       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1334       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1335       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1336           SrcVT != MVT::f128) {
1337         // Cannot eliminate/lower SHL for f128 yet.
1338         EVT Ty = OpVTLegal ? VT : MVT::i32;
1339         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1340         // place.  We expect the SHL to be eliminated by other optimizations.
1341         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
1342         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1343         if (!OpVTLegal && OpVTSizeInBits > 32)
1344           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1345         unsigned ShVal = Op.getValueSizeInBits() - 1;
1346         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1347         return TLO.CombineTo(Op,
1348                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1349       }
1350     }
1351     // If bitcast from a vector, see if we can use SimplifyDemandedVectorElts by
1352     // demanding the element if any bits from it are demanded.
1353     // TODO - bigendian once we have test coverage.
1354     // TODO - bool vectors once SimplifyDemandedVectorElts has SETCC support.
1355     if (SrcVT.isVector() && NumSrcEltBits > 1 &&
1356         (BitWidth % NumSrcEltBits) == 0 &&
1357         TLO.DAG.getDataLayout().isLittleEndian()) {
1358       unsigned Scale = BitWidth / NumSrcEltBits;
1359       auto GetDemandedSubMask = [&](APInt &DemandedSubElts) -> bool {
1360         DemandedSubElts = APInt::getNullValue(Scale);
1361         for (unsigned i = 0; i != Scale; ++i) {
1362           unsigned Offset = i * NumSrcEltBits;
1363           APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
1364           if (!Sub.isNullValue())
1365             DemandedSubElts.setBit(i);
1366         }
1367         return true;
1368       };
1369 
1370       APInt DemandedSubElts;
1371       if (GetDemandedSubMask(DemandedSubElts)) {
1372         unsigned NumSrcElts = SrcVT.getVectorNumElements();
1373         APInt DemandedElts = APInt::getSplat(NumSrcElts, DemandedSubElts);
1374 
1375         APInt KnownUndef, KnownZero;
1376         if (SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, KnownZero,
1377                                        TLO, Depth + 1))
1378           return true;
1379       }
1380     }
1381     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
1382     // recursive call where Known may be useful to the caller.
1383     if (Depth > 0) {
1384       TLO.DAG.computeKnownBits(Op, Known, Depth);
1385       return false;
1386     }
1387     break;
1388   }
1389   case ISD::ADD:
1390   case ISD::MUL:
1391   case ISD::SUB: {
1392     // Add, Sub, and Mul don't demand any bits in positions beyond that
1393     // of the highest bit demanded of them.
1394     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
1395     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
1396     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
1397     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, Depth + 1) ||
1398         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, Depth + 1) ||
1399         // See if the operation should be performed at a smaller bit width.
1400         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
1401       SDNodeFlags Flags = Op.getNode()->getFlags();
1402       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1403         // Disable the nsw and nuw flags. We can no longer guarantee that we
1404         // won't wrap after simplification.
1405         Flags.setNoSignedWrap(false);
1406         Flags.setNoUnsignedWrap(false);
1407         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1,
1408                                         Flags);
1409         return TLO.CombineTo(Op, NewOp);
1410       }
1411       return true;
1412     }
1413 
1414     // If we have a constant operand, we may be able to turn it into -1 if we
1415     // do not demand the high bits. This can make the constant smaller to
1416     // encode, allow more general folding, or match specialized instruction
1417     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
1418     // is probably not useful (and could be detrimental).
1419     ConstantSDNode *C = isConstOrConstSplat(Op1);
1420     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
1421     if (C && !C->isAllOnesValue() && !C->isOne() &&
1422         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
1423       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
1424       // We can't guarantee that the new math op doesn't wrap, so explicitly
1425       // clear those flags to prevent folding with a potential existing node
1426       // that has those flags set.
1427       SDNodeFlags Flags;
1428       Flags.setNoSignedWrap(false);
1429       Flags.setNoUnsignedWrap(false);
1430       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
1431       return TLO.CombineTo(Op, NewOp);
1432     }
1433 
1434     LLVM_FALLTHROUGH;
1435   }
1436   default:
1437     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1438       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
1439                                             Known, TLO, Depth))
1440         return true;
1441       break;
1442     }
1443 
1444     // Just use computeKnownBits to compute output bits.
1445     TLO.DAG.computeKnownBits(Op, Known, DemandedElts, Depth);
1446     break;
1447   }
1448 
1449   // If we know the value of all of the demanded bits, return this as a
1450   // constant.
1451   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
1452     // Avoid folding to a constant if any OpaqueConstant is involved.
1453     const SDNode *N = Op.getNode();
1454     for (SDNodeIterator I = SDNodeIterator::begin(N),
1455                         E = SDNodeIterator::end(N);
1456          I != E; ++I) {
1457       SDNode *Op = *I;
1458       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
1459         if (C->isOpaque())
1460           return false;
1461     }
1462     // TODO: Handle float bits as well.
1463     if (VT.isInteger())
1464       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
1465   }
1466 
1467   return false;
1468 }
1469 
1470 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
1471                                                 const APInt &DemandedElts,
1472                                                 APInt &KnownUndef,
1473                                                 APInt &KnownZero,
1474                                                 DAGCombinerInfo &DCI) const {
1475   SelectionDAG &DAG = DCI.DAG;
1476   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1477                         !DCI.isBeforeLegalizeOps());
1478 
1479   bool Simplified =
1480       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
1481   if (Simplified) {
1482     DCI.AddToWorklist(Op.getNode());
1483     DCI.CommitTargetLoweringOpt(TLO);
1484   }
1485   return Simplified;
1486 }
1487 
1488 bool TargetLowering::SimplifyDemandedVectorElts(
1489     SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef,
1490     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
1491     bool AssumeSingleUse) const {
1492   EVT VT = Op.getValueType();
1493   APInt DemandedElts = DemandedEltMask;
1494   unsigned NumElts = DemandedElts.getBitWidth();
1495   assert(VT.isVector() && "Expected vector op");
1496   assert(VT.getVectorNumElements() == NumElts &&
1497          "Mask size mismatches value type element count!");
1498 
1499   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
1500 
1501   // Undef operand.
1502   if (Op.isUndef()) {
1503     KnownUndef.setAllBits();
1504     return false;
1505   }
1506 
1507   // If Op has other users, assume that all elements are needed.
1508   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
1509     DemandedElts.setAllBits();
1510 
1511   // Not demanding any elements from Op.
1512   if (DemandedElts == 0) {
1513     KnownUndef.setAllBits();
1514     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1515   }
1516 
1517   // Limit search depth.
1518   if (Depth >= 6)
1519     return false;
1520 
1521   SDLoc DL(Op);
1522   unsigned EltSizeInBits = VT.getScalarSizeInBits();
1523 
1524   switch (Op.getOpcode()) {
1525   case ISD::SCALAR_TO_VECTOR: {
1526     if (!DemandedElts[0]) {
1527       KnownUndef.setAllBits();
1528       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1529     }
1530     KnownUndef.setHighBits(NumElts - 1);
1531     break;
1532   }
1533   case ISD::BITCAST: {
1534     SDValue Src = Op.getOperand(0);
1535     EVT SrcVT = Src.getValueType();
1536 
1537     // We only handle vectors here.
1538     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
1539     if (!SrcVT.isVector())
1540       break;
1541 
1542     // Fast handling of 'identity' bitcasts.
1543     unsigned NumSrcElts = SrcVT.getVectorNumElements();
1544     if (NumSrcElts == NumElts)
1545       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
1546                                         KnownZero, TLO, Depth + 1);
1547 
1548     APInt SrcZero, SrcUndef;
1549     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
1550 
1551     // Bitcast from 'large element' src vector to 'small element' vector, we
1552     // must demand a source element if any DemandedElt maps to it.
1553     if ((NumElts % NumSrcElts) == 0) {
1554       unsigned Scale = NumElts / NumSrcElts;
1555       for (unsigned i = 0; i != NumElts; ++i)
1556         if (DemandedElts[i])
1557           SrcDemandedElts.setBit(i / Scale);
1558 
1559       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
1560                                      TLO, Depth + 1))
1561         return true;
1562 
1563       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
1564       // of the large element.
1565       // TODO - bigendian once we have test coverage.
1566       if (TLO.DAG.getDataLayout().isLittleEndian()) {
1567         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
1568         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
1569         for (unsigned i = 0; i != NumElts; ++i)
1570           if (DemandedElts[i]) {
1571             unsigned Ofs = (i % Scale) * EltSizeInBits;
1572             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
1573           }
1574 
1575         KnownBits Known;
1576         if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1))
1577           return true;
1578       }
1579 
1580       // If the src element is zero/undef then all the output elements will be -
1581       // only demanded elements are guaranteed to be correct.
1582       for (unsigned i = 0; i != NumSrcElts; ++i) {
1583         if (SrcDemandedElts[i]) {
1584           if (SrcZero[i])
1585             KnownZero.setBits(i * Scale, (i + 1) * Scale);
1586           if (SrcUndef[i])
1587             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
1588         }
1589       }
1590     }
1591 
1592     // Bitcast from 'small element' src vector to 'large element' vector, we
1593     // demand all smaller source elements covered by the larger demanded element
1594     // of this vector.
1595     if ((NumSrcElts % NumElts) == 0) {
1596       unsigned Scale = NumSrcElts / NumElts;
1597       for (unsigned i = 0; i != NumElts; ++i)
1598         if (DemandedElts[i])
1599           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
1600 
1601       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
1602                                      TLO, Depth + 1))
1603         return true;
1604 
1605       // If all the src elements covering an output element are zero/undef, then
1606       // the output element will be as well, assuming it was demanded.
1607       for (unsigned i = 0; i != NumElts; ++i) {
1608         if (DemandedElts[i]) {
1609           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
1610             KnownZero.setBit(i);
1611           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
1612             KnownUndef.setBit(i);
1613         }
1614       }
1615     }
1616     break;
1617   }
1618   case ISD::BUILD_VECTOR: {
1619     // Check all elements and simplify any unused elements with UNDEF.
1620     if (!DemandedElts.isAllOnesValue()) {
1621       // Don't simplify BROADCASTS.
1622       if (llvm::any_of(Op->op_values(),
1623                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
1624         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
1625         bool Updated = false;
1626         for (unsigned i = 0; i != NumElts; ++i) {
1627           if (!DemandedElts[i] && !Ops[i].isUndef()) {
1628             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
1629             KnownUndef.setBit(i);
1630             Updated = true;
1631           }
1632         }
1633         if (Updated)
1634           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
1635       }
1636     }
1637     for (unsigned i = 0; i != NumElts; ++i) {
1638       SDValue SrcOp = Op.getOperand(i);
1639       if (SrcOp.isUndef()) {
1640         KnownUndef.setBit(i);
1641       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
1642                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
1643         KnownZero.setBit(i);
1644       }
1645     }
1646     break;
1647   }
1648   case ISD::CONCAT_VECTORS: {
1649     EVT SubVT = Op.getOperand(0).getValueType();
1650     unsigned NumSubVecs = Op.getNumOperands();
1651     unsigned NumSubElts = SubVT.getVectorNumElements();
1652     for (unsigned i = 0; i != NumSubVecs; ++i) {
1653       SDValue SubOp = Op.getOperand(i);
1654       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1655       APInt SubUndef, SubZero;
1656       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
1657                                      Depth + 1))
1658         return true;
1659       KnownUndef.insertBits(SubUndef, i * NumSubElts);
1660       KnownZero.insertBits(SubZero, i * NumSubElts);
1661     }
1662     break;
1663   }
1664   case ISD::INSERT_SUBVECTOR: {
1665     if (!isa<ConstantSDNode>(Op.getOperand(2)))
1666       break;
1667     SDValue Base = Op.getOperand(0);
1668     SDValue Sub = Op.getOperand(1);
1669     EVT SubVT = Sub.getValueType();
1670     unsigned NumSubElts = SubVT.getVectorNumElements();
1671     const APInt& Idx = cast<ConstantSDNode>(Op.getOperand(2))->getAPIntValue();
1672     if (Idx.ugt(NumElts - NumSubElts))
1673       break;
1674     unsigned SubIdx = Idx.getZExtValue();
1675     APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
1676     APInt SubUndef, SubZero;
1677     if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
1678                                    Depth + 1))
1679       return true;
1680     APInt BaseElts = DemandedElts;
1681     BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
1682     if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
1683                                    Depth + 1))
1684       return true;
1685     KnownUndef.insertBits(SubUndef, SubIdx);
1686     KnownZero.insertBits(SubZero, SubIdx);
1687     break;
1688   }
1689   case ISD::EXTRACT_SUBVECTOR: {
1690     SDValue Src = Op.getOperand(0);
1691     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1692     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1693     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
1694       // Offset the demanded elts by the subvector index.
1695       uint64_t Idx = SubIdx->getZExtValue();
1696       APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1697       APInt SrcUndef, SrcZero;
1698       if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
1699                                      Depth + 1))
1700         return true;
1701       KnownUndef = SrcUndef.extractBits(NumElts, Idx);
1702       KnownZero = SrcZero.extractBits(NumElts, Idx);
1703     }
1704     break;
1705   }
1706   case ISD::INSERT_VECTOR_ELT: {
1707     SDValue Vec = Op.getOperand(0);
1708     SDValue Scl = Op.getOperand(1);
1709     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1710 
1711     // For a legal, constant insertion index, if we don't need this insertion
1712     // then strip it, else remove it from the demanded elts.
1713     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
1714       unsigned Idx = CIdx->getZExtValue();
1715       if (!DemandedElts[Idx])
1716         return TLO.CombineTo(Op, Vec);
1717 
1718       APInt DemandedVecElts(DemandedElts);
1719       DemandedVecElts.clearBit(Idx);
1720       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
1721                                      KnownZero, TLO, Depth + 1))
1722         return true;
1723 
1724       KnownUndef.clearBit(Idx);
1725       if (Scl.isUndef())
1726         KnownUndef.setBit(Idx);
1727 
1728       KnownZero.clearBit(Idx);
1729       if (isNullConstant(Scl) || isNullFPConstant(Scl))
1730         KnownZero.setBit(Idx);
1731       break;
1732     }
1733 
1734     APInt VecUndef, VecZero;
1735     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
1736                                    Depth + 1))
1737       return true;
1738     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
1739     break;
1740   }
1741   case ISD::VSELECT: {
1742     // Try to transform the select condition based on the current demanded
1743     // elements.
1744     // TODO: If a condition element is undef, we can choose from one arm of the
1745     //       select (and if one arm is undef, then we can propagate that to the
1746     //       result).
1747     // TODO - add support for constant vselect masks (see IR version of this).
1748     APInt UnusedUndef, UnusedZero;
1749     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
1750                                    UnusedZero, TLO, Depth + 1))
1751       return true;
1752 
1753     // See if we can simplify either vselect operand.
1754     APInt DemandedLHS(DemandedElts);
1755     APInt DemandedRHS(DemandedElts);
1756     APInt UndefLHS, ZeroLHS;
1757     APInt UndefRHS, ZeroRHS;
1758     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
1759                                    ZeroLHS, TLO, Depth + 1))
1760       return true;
1761     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
1762                                    ZeroRHS, TLO, Depth + 1))
1763       return true;
1764 
1765     KnownUndef = UndefLHS & UndefRHS;
1766     KnownZero = ZeroLHS & ZeroRHS;
1767     break;
1768   }
1769   case ISD::VECTOR_SHUFFLE: {
1770     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1771 
1772     // Collect demanded elements from shuffle operands..
1773     APInt DemandedLHS(NumElts, 0);
1774     APInt DemandedRHS(NumElts, 0);
1775     for (unsigned i = 0; i != NumElts; ++i) {
1776       int M = ShuffleMask[i];
1777       if (M < 0 || !DemandedElts[i])
1778         continue;
1779       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1780       if (M < (int)NumElts)
1781         DemandedLHS.setBit(M);
1782       else
1783         DemandedRHS.setBit(M - NumElts);
1784     }
1785 
1786     // See if we can simplify either shuffle operand.
1787     APInt UndefLHS, ZeroLHS;
1788     APInt UndefRHS, ZeroRHS;
1789     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
1790                                    ZeroLHS, TLO, Depth + 1))
1791       return true;
1792     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
1793                                    ZeroRHS, TLO, Depth + 1))
1794       return true;
1795 
1796     // Simplify mask using undef elements from LHS/RHS.
1797     bool Updated = false;
1798     bool IdentityLHS = true, IdentityRHS = true;
1799     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
1800     for (unsigned i = 0; i != NumElts; ++i) {
1801       int &M = NewMask[i];
1802       if (M < 0)
1803         continue;
1804       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
1805           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
1806         Updated = true;
1807         M = -1;
1808       }
1809       IdentityLHS &= (M < 0) || (M == (int)i);
1810       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
1811     }
1812 
1813     // Update legal shuffle masks based on demanded elements if it won't reduce
1814     // to Identity which can cause premature removal of the shuffle mask.
1815     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps &&
1816         isShuffleMaskLegal(NewMask, VT))
1817       return TLO.CombineTo(Op,
1818                            TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0),
1819                                                     Op.getOperand(1), NewMask));
1820 
1821     // Propagate undef/zero elements from LHS/RHS.
1822     for (unsigned i = 0; i != NumElts; ++i) {
1823       int M = ShuffleMask[i];
1824       if (M < 0) {
1825         KnownUndef.setBit(i);
1826       } else if (M < (int)NumElts) {
1827         if (UndefLHS[M])
1828           KnownUndef.setBit(i);
1829         if (ZeroLHS[M])
1830           KnownZero.setBit(i);
1831       } else {
1832         if (UndefRHS[M - NumElts])
1833           KnownUndef.setBit(i);
1834         if (ZeroRHS[M - NumElts])
1835           KnownZero.setBit(i);
1836       }
1837     }
1838     break;
1839   }
1840   case ISD::SIGN_EXTEND_VECTOR_INREG:
1841   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1842     APInt SrcUndef, SrcZero;
1843     SDValue Src = Op.getOperand(0);
1844     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1845     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
1846     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef,
1847                                    SrcZero, TLO, Depth + 1))
1848       return true;
1849     KnownZero = SrcZero.zextOrTrunc(NumElts);
1850     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
1851 
1852     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
1853       // zext(undef) upper bits are guaranteed to be zero.
1854       if (DemandedElts.isSubsetOf(KnownUndef))
1855         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
1856       KnownUndef.clearAllBits();
1857     }
1858     break;
1859   }
1860   case ISD::OR:
1861   case ISD::XOR:
1862   case ISD::ADD:
1863   case ISD::SUB:
1864   case ISD::FADD:
1865   case ISD::FSUB:
1866   case ISD::FMUL:
1867   case ISD::FDIV:
1868   case ISD::FREM: {
1869     APInt SrcUndef, SrcZero;
1870     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
1871                                    SrcZero, TLO, Depth + 1))
1872       return true;
1873     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
1874                                    KnownZero, TLO, Depth + 1))
1875       return true;
1876     KnownZero &= SrcZero;
1877     KnownUndef &= SrcUndef;
1878     break;
1879   }
1880   case ISD::AND: {
1881     APInt SrcUndef, SrcZero;
1882     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
1883                                    SrcZero, TLO, Depth + 1))
1884       return true;
1885     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
1886                                    KnownZero, TLO, Depth + 1))
1887       return true;
1888 
1889     // If either side has a zero element, then the result element is zero, even
1890     // if the other is an UNDEF.
1891     KnownZero |= SrcZero;
1892     KnownUndef &= SrcUndef;
1893     KnownUndef &= ~KnownZero;
1894     break;
1895   }
1896   case ISD::TRUNCATE:
1897   case ISD::SIGN_EXTEND:
1898   case ISD::ZERO_EXTEND:
1899     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
1900                                    KnownZero, TLO, Depth + 1))
1901       return true;
1902 
1903     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
1904       // zext(undef) upper bits are guaranteed to be zero.
1905       if (DemandedElts.isSubsetOf(KnownUndef))
1906         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
1907       KnownUndef.clearAllBits();
1908     }
1909     break;
1910   default: {
1911     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1912       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
1913                                                   KnownZero, TLO, Depth))
1914         return true;
1915     } else {
1916       KnownBits Known;
1917       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
1918       if (SimplifyDemandedBits(Op, DemandedBits, DemandedEltMask, Known, TLO,
1919                                Depth, AssumeSingleUse))
1920         return true;
1921     }
1922     break;
1923   }
1924   }
1925   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
1926 
1927   // Constant fold all undef cases.
1928   // TODO: Handle zero cases as well.
1929   if (DemandedElts.isSubsetOf(KnownUndef))
1930     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1931 
1932   return false;
1933 }
1934 
1935 /// Determine which of the bits specified in Mask are known to be either zero or
1936 /// one and return them in the Known.
1937 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1938                                                    KnownBits &Known,
1939                                                    const APInt &DemandedElts,
1940                                                    const SelectionDAG &DAG,
1941                                                    unsigned Depth) const {
1942   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1943           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1944           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1945           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1946          "Should use MaskedValueIsZero if you don't know whether Op"
1947          " is a target node!");
1948   Known.resetAll();
1949 }
1950 
1951 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
1952                                                    KnownBits &Known,
1953                                                    const APInt &DemandedElts,
1954                                                    const SelectionDAG &DAG,
1955                                                    unsigned Depth) const {
1956   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
1957 
1958   if (unsigned Align = DAG.InferPtrAlignment(Op)) {
1959     // The low bits are known zero if the pointer is aligned.
1960     Known.Zero.setLowBits(Log2_32(Align));
1961   }
1962 }
1963 
1964 /// This method can be implemented by targets that want to expose additional
1965 /// information about sign bits to the DAG Combiner.
1966 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1967                                                          const APInt &,
1968                                                          const SelectionDAG &,
1969                                                          unsigned Depth) const {
1970   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1971           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1972           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1973           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1974          "Should use ComputeNumSignBits if you don't know whether Op"
1975          " is a target node!");
1976   return 1;
1977 }
1978 
1979 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
1980     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
1981     TargetLoweringOpt &TLO, unsigned Depth) const {
1982   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1983           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1984           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1985           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1986          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
1987          " is a target node!");
1988   return false;
1989 }
1990 
1991 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
1992     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
1993     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
1994   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1995           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1996           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1997           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1998          "Should use SimplifyDemandedBits if you don't know whether Op"
1999          " is a target node!");
2000   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2001   return false;
2002 }
2003 
2004 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2005                                                   const SelectionDAG &DAG,
2006                                                   bool SNaN,
2007                                                   unsigned Depth) const {
2008   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2009           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2010           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2011           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2012          "Should use isKnownNeverNaN if you don't know whether Op"
2013          " is a target node!");
2014   return false;
2015 }
2016 
2017 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2018 // work with truncating build vectors and vectors with elements of less than
2019 // 8 bits.
2020 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2021   if (!N)
2022     return false;
2023 
2024   APInt CVal;
2025   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2026     CVal = CN->getAPIntValue();
2027   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2028     auto *CN = BV->getConstantSplatNode();
2029     if (!CN)
2030       return false;
2031 
2032     // If this is a truncating build vector, truncate the splat value.
2033     // Otherwise, we may fail to match the expected values below.
2034     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2035     CVal = CN->getAPIntValue();
2036     if (BVEltWidth < CVal.getBitWidth())
2037       CVal = CVal.trunc(BVEltWidth);
2038   } else {
2039     return false;
2040   }
2041 
2042   switch (getBooleanContents(N->getValueType(0))) {
2043   case UndefinedBooleanContent:
2044     return CVal[0];
2045   case ZeroOrOneBooleanContent:
2046     return CVal.isOneValue();
2047   case ZeroOrNegativeOneBooleanContent:
2048     return CVal.isAllOnesValue();
2049   }
2050 
2051   llvm_unreachable("Invalid boolean contents");
2052 }
2053 
2054 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2055   if (!N)
2056     return false;
2057 
2058   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2059   if (!CN) {
2060     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2061     if (!BV)
2062       return false;
2063 
2064     // Only interested in constant splats, we don't care about undef
2065     // elements in identifying boolean constants and getConstantSplatNode
2066     // returns NULL if all ops are undef;
2067     CN = BV->getConstantSplatNode();
2068     if (!CN)
2069       return false;
2070   }
2071 
2072   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2073     return !CN->getAPIntValue()[0];
2074 
2075   return CN->isNullValue();
2076 }
2077 
2078 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2079                                        bool SExt) const {
2080   if (VT == MVT::i1)
2081     return N->isOne();
2082 
2083   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2084   switch (Cnt) {
2085   case TargetLowering::ZeroOrOneBooleanContent:
2086     // An extended value of 1 is always true, unless its original type is i1,
2087     // in which case it will be sign extended to -1.
2088     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
2089   case TargetLowering::UndefinedBooleanContent:
2090   case TargetLowering::ZeroOrNegativeOneBooleanContent:
2091     return N->isAllOnesValue() && SExt;
2092   }
2093   llvm_unreachable("Unexpected enumeration.");
2094 }
2095 
2096 /// This helper function of SimplifySetCC tries to optimize the comparison when
2097 /// either operand of the SetCC node is a bitwise-and instruction.
2098 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
2099                                              ISD::CondCode Cond,
2100                                              DAGCombinerInfo &DCI,
2101                                              const SDLoc &DL) const {
2102   // Match these patterns in any of their permutations:
2103   // (X & Y) == Y
2104   // (X & Y) != Y
2105   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
2106     std::swap(N0, N1);
2107 
2108   EVT OpVT = N0.getValueType();
2109   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
2110       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
2111     return SDValue();
2112 
2113   SDValue X, Y;
2114   if (N0.getOperand(0) == N1) {
2115     X = N0.getOperand(1);
2116     Y = N0.getOperand(0);
2117   } else if (N0.getOperand(1) == N1) {
2118     X = N0.getOperand(0);
2119     Y = N0.getOperand(1);
2120   } else {
2121     return SDValue();
2122   }
2123 
2124   SelectionDAG &DAG = DCI.DAG;
2125   SDValue Zero = DAG.getConstant(0, DL, OpVT);
2126   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
2127     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2128     // Note that where Y is variable and is known to have at most one bit set
2129     // (for example, if it is Z & 1) we cannot do this; the expressions are not
2130     // equivalent when Y == 0.
2131     Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2132     if (DCI.isBeforeLegalizeOps() ||
2133         isCondCodeLegal(Cond, N0.getSimpleValueType()))
2134       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
2135   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
2136     // If the target supports an 'and-not' or 'and-complement' logic operation,
2137     // try to use that to make a comparison operation more efficient.
2138     // But don't do this transform if the mask is a single bit because there are
2139     // more efficient ways to deal with that case (for example, 'bt' on x86 or
2140     // 'rlwinm' on PPC).
2141 
2142     // Bail out if the compare operand that we want to turn into a zero is
2143     // already a zero (otherwise, infinite loop).
2144     auto *YConst = dyn_cast<ConstantSDNode>(Y);
2145     if (YConst && YConst->isNullValue())
2146       return SDValue();
2147 
2148     // Transform this into: ~X & Y == 0.
2149     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
2150     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
2151     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
2152   }
2153 
2154   return SDValue();
2155 }
2156 
2157 /// There are multiple IR patterns that could be checking whether certain
2158 /// truncation of a signed number would be lossy or not. The pattern which is
2159 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
2160 /// We are looking for the following pattern: (KeptBits is a constant)
2161 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
2162 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
2163 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
2164 /// We will unfold it into the natural trunc+sext pattern:
2165 ///   ((%x << C) a>> C) dstcond %x
2166 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
2167 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
2168     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
2169     const SDLoc &DL) const {
2170   // We must be comparing with a constant.
2171   ConstantSDNode *C1;
2172   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
2173     return SDValue();
2174 
2175   // N0 should be:  add %x, (1 << (KeptBits-1))
2176   if (N0->getOpcode() != ISD::ADD)
2177     return SDValue();
2178 
2179   // And we must be 'add'ing a constant.
2180   ConstantSDNode *C01;
2181   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
2182     return SDValue();
2183 
2184   SDValue X = N0->getOperand(0);
2185   EVT XVT = X.getValueType();
2186 
2187   // Validate constants ...
2188 
2189   APInt I1 = C1->getAPIntValue();
2190 
2191   ISD::CondCode NewCond;
2192   if (Cond == ISD::CondCode::SETULT) {
2193     NewCond = ISD::CondCode::SETEQ;
2194   } else if (Cond == ISD::CondCode::SETULE) {
2195     NewCond = ISD::CondCode::SETEQ;
2196     // But need to 'canonicalize' the constant.
2197     I1 += 1;
2198   } else if (Cond == ISD::CondCode::SETUGT) {
2199     NewCond = ISD::CondCode::SETNE;
2200     // But need to 'canonicalize' the constant.
2201     I1 += 1;
2202   } else if (Cond == ISD::CondCode::SETUGE) {
2203     NewCond = ISD::CondCode::SETNE;
2204   } else
2205     return SDValue();
2206 
2207   APInt I01 = C01->getAPIntValue();
2208 
2209   auto checkConstants = [&I1, &I01]() -> bool {
2210     // Both of them must be power-of-two, and the constant from setcc is bigger.
2211     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
2212   };
2213 
2214   if (checkConstants()) {
2215     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
2216   } else {
2217     // What if we invert constants? (and the target predicate)
2218     I1.negate();
2219     I01.negate();
2220     NewCond = getSetCCInverse(NewCond, /*isInteger=*/true);
2221     if (!checkConstants())
2222       return SDValue();
2223     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
2224   }
2225 
2226   // They are power-of-two, so which bit is set?
2227   const unsigned KeptBits = I1.logBase2();
2228   const unsigned KeptBitsMinusOne = I01.logBase2();
2229 
2230   // Magic!
2231   if (KeptBits != (KeptBitsMinusOne + 1))
2232     return SDValue();
2233   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
2234 
2235   // We don't want to do this in every single case.
2236   SelectionDAG &DAG = DCI.DAG;
2237   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
2238           XVT, KeptBits))
2239     return SDValue();
2240 
2241   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
2242   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
2243 
2244   // Unfold into:  ((%x << C) a>> C) cond %x
2245   // Where 'cond' will be either 'eq' or 'ne'.
2246   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
2247   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
2248   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
2249   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
2250 
2251   return T2;
2252 }
2253 
2254 /// Try to simplify a setcc built with the specified operands and cc. If it is
2255 /// unable to simplify it, return a null SDValue.
2256 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
2257                                       ISD::CondCode Cond, bool foldBooleans,
2258                                       DAGCombinerInfo &DCI,
2259                                       const SDLoc &dl) const {
2260   SelectionDAG &DAG = DCI.DAG;
2261   EVT OpVT = N0.getValueType();
2262 
2263   // These setcc operations always fold.
2264   switch (Cond) {
2265   default: break;
2266   case ISD::SETFALSE:
2267   case ISD::SETFALSE2: return DAG.getBoolConstant(false, dl, VT, OpVT);
2268   case ISD::SETTRUE:
2269   case ISD::SETTRUE2:  return DAG.getBoolConstant(true, dl, VT, OpVT);
2270   }
2271 
2272   // Ensure that the constant occurs on the RHS and fold constant comparisons.
2273   // TODO: Handle non-splat vector constants. All undef causes trouble.
2274   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
2275   if (isConstOrConstSplat(N0) &&
2276       (DCI.isBeforeLegalizeOps() ||
2277        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
2278     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
2279 
2280   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
2281     const APInt &C1 = N1C->getAPIntValue();
2282 
2283     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
2284     // equality comparison, then we're just comparing whether X itself is
2285     // zero.
2286     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
2287         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
2288         N0.getOperand(1).getOpcode() == ISD::Constant) {
2289       const APInt &ShAmt
2290         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2291       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2292           ShAmt == Log2_32(N0.getValueSizeInBits())) {
2293         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
2294           // (srl (ctlz x), 5) == 0  -> X != 0
2295           // (srl (ctlz x), 5) != 1  -> X != 0
2296           Cond = ISD::SETNE;
2297         } else {
2298           // (srl (ctlz x), 5) != 0  -> X == 0
2299           // (srl (ctlz x), 5) == 1  -> X == 0
2300           Cond = ISD::SETEQ;
2301         }
2302         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
2303         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
2304                             Zero, Cond);
2305       }
2306     }
2307 
2308     SDValue CTPOP = N0;
2309     // Look through truncs that don't change the value of a ctpop.
2310     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
2311       CTPOP = N0.getOperand(0);
2312 
2313     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
2314         (N0 == CTPOP ||
2315          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
2316       EVT CTVT = CTPOP.getValueType();
2317       SDValue CTOp = CTPOP.getOperand(0);
2318 
2319       // (ctpop x) u< 2 -> (x & x-1) == 0
2320       // (ctpop x) u> 1 -> (x & x-1) != 0
2321       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
2322         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
2323                                   DAG.getConstant(1, dl, CTVT));
2324         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
2325         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
2326         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
2327       }
2328 
2329       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
2330     }
2331 
2332     // (zext x) == C --> x == (trunc C)
2333     // (sext x) == C --> x == (trunc C)
2334     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2335         DCI.isBeforeLegalize() && N0->hasOneUse()) {
2336       unsigned MinBits = N0.getValueSizeInBits();
2337       SDValue PreExt;
2338       bool Signed = false;
2339       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
2340         // ZExt
2341         MinBits = N0->getOperand(0).getValueSizeInBits();
2342         PreExt = N0->getOperand(0);
2343       } else if (N0->getOpcode() == ISD::AND) {
2344         // DAGCombine turns costly ZExts into ANDs
2345         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
2346           if ((C->getAPIntValue()+1).isPowerOf2()) {
2347             MinBits = C->getAPIntValue().countTrailingOnes();
2348             PreExt = N0->getOperand(0);
2349           }
2350       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
2351         // SExt
2352         MinBits = N0->getOperand(0).getValueSizeInBits();
2353         PreExt = N0->getOperand(0);
2354         Signed = true;
2355       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
2356         // ZEXTLOAD / SEXTLOAD
2357         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
2358           MinBits = LN0->getMemoryVT().getSizeInBits();
2359           PreExt = N0;
2360         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
2361           Signed = true;
2362           MinBits = LN0->getMemoryVT().getSizeInBits();
2363           PreExt = N0;
2364         }
2365       }
2366 
2367       // Figure out how many bits we need to preserve this constant.
2368       unsigned ReqdBits = Signed ?
2369         C1.getBitWidth() - C1.getNumSignBits() + 1 :
2370         C1.getActiveBits();
2371 
2372       // Make sure we're not losing bits from the constant.
2373       if (MinBits > 0 &&
2374           MinBits < C1.getBitWidth() &&
2375           MinBits >= ReqdBits) {
2376         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
2377         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
2378           // Will get folded away.
2379           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
2380           if (MinBits == 1 && C1 == 1)
2381             // Invert the condition.
2382             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
2383                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2384           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
2385           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
2386         }
2387 
2388         // If truncating the setcc operands is not desirable, we can still
2389         // simplify the expression in some cases:
2390         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
2391         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
2392         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
2393         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
2394         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
2395         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
2396         SDValue TopSetCC = N0->getOperand(0);
2397         unsigned N0Opc = N0->getOpcode();
2398         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
2399         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
2400             TopSetCC.getOpcode() == ISD::SETCC &&
2401             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
2402             (isConstFalseVal(N1C) ||
2403              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
2404 
2405           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
2406                          (!N1C->isNullValue() && Cond == ISD::SETNE);
2407 
2408           if (!Inverse)
2409             return TopSetCC;
2410 
2411           ISD::CondCode InvCond = ISD::getSetCCInverse(
2412               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
2413               TopSetCC.getOperand(0).getValueType().isInteger());
2414           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
2415                                       TopSetCC.getOperand(1),
2416                                       InvCond);
2417         }
2418       }
2419     }
2420 
2421     // If the LHS is '(and load, const)', the RHS is 0, the test is for
2422     // equality or unsigned, and all 1 bits of the const are in the same
2423     // partial word, see if we can shorten the load.
2424     if (DCI.isBeforeLegalize() &&
2425         !ISD::isSignedIntSetCC(Cond) &&
2426         N0.getOpcode() == ISD::AND && C1 == 0 &&
2427         N0.getNode()->hasOneUse() &&
2428         isa<LoadSDNode>(N0.getOperand(0)) &&
2429         N0.getOperand(0).getNode()->hasOneUse() &&
2430         isa<ConstantSDNode>(N0.getOperand(1))) {
2431       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
2432       APInt bestMask;
2433       unsigned bestWidth = 0, bestOffset = 0;
2434       if (!Lod->isVolatile() && Lod->isUnindexed()) {
2435         unsigned origWidth = N0.getValueSizeInBits();
2436         unsigned maskWidth = origWidth;
2437         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
2438         // 8 bits, but have to be careful...
2439         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
2440           origWidth = Lod->getMemoryVT().getSizeInBits();
2441         const APInt &Mask =
2442           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2443         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
2444           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
2445           for (unsigned offset=0; offset<origWidth/width; offset++) {
2446             if (Mask.isSubsetOf(newMask)) {
2447               if (DAG.getDataLayout().isLittleEndian())
2448                 bestOffset = (uint64_t)offset * (width/8);
2449               else
2450                 bestOffset = (origWidth/width - offset - 1) * (width/8);
2451               bestMask = Mask.lshr(offset * (width/8) * 8);
2452               bestWidth = width;
2453               break;
2454             }
2455             newMask <<= width;
2456           }
2457         }
2458       }
2459       if (bestWidth) {
2460         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
2461         if (newVT.isRound() &&
2462             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
2463           EVT PtrType = Lod->getOperand(1).getValueType();
2464           SDValue Ptr = Lod->getBasePtr();
2465           if (bestOffset != 0)
2466             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
2467                               DAG.getConstant(bestOffset, dl, PtrType));
2468           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
2469           SDValue NewLoad = DAG.getLoad(
2470               newVT, dl, Lod->getChain(), Ptr,
2471               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
2472           return DAG.getSetCC(dl, VT,
2473                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
2474                                       DAG.getConstant(bestMask.trunc(bestWidth),
2475                                                       dl, newVT)),
2476                               DAG.getConstant(0LL, dl, newVT), Cond);
2477         }
2478       }
2479     }
2480 
2481     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
2482     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
2483       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
2484 
2485       // If the comparison constant has bits in the upper part, the
2486       // zero-extended value could never match.
2487       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
2488                                               C1.getBitWidth() - InSize))) {
2489         switch (Cond) {
2490         case ISD::SETUGT:
2491         case ISD::SETUGE:
2492         case ISD::SETEQ:
2493           return DAG.getConstant(0, dl, VT);
2494         case ISD::SETULT:
2495         case ISD::SETULE:
2496         case ISD::SETNE:
2497           return DAG.getConstant(1, dl, VT);
2498         case ISD::SETGT:
2499         case ISD::SETGE:
2500           // True if the sign bit of C1 is set.
2501           return DAG.getConstant(C1.isNegative(), dl, VT);
2502         case ISD::SETLT:
2503         case ISD::SETLE:
2504           // True if the sign bit of C1 isn't set.
2505           return DAG.getConstant(C1.isNonNegative(), dl, VT);
2506         default:
2507           break;
2508         }
2509       }
2510 
2511       // Otherwise, we can perform the comparison with the low bits.
2512       switch (Cond) {
2513       case ISD::SETEQ:
2514       case ISD::SETNE:
2515       case ISD::SETUGT:
2516       case ISD::SETUGE:
2517       case ISD::SETULT:
2518       case ISD::SETULE: {
2519         EVT newVT = N0.getOperand(0).getValueType();
2520         if (DCI.isBeforeLegalizeOps() ||
2521             (isOperationLegal(ISD::SETCC, newVT) &&
2522              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
2523           EVT NewSetCCVT =
2524               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
2525           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
2526 
2527           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
2528                                           NewConst, Cond);
2529           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
2530         }
2531         break;
2532       }
2533       default:
2534         break;   // todo, be more careful with signed comparisons
2535       }
2536     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2537                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2538       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
2539       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
2540       EVT ExtDstTy = N0.getValueType();
2541       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
2542 
2543       // If the constant doesn't fit into the number of bits for the source of
2544       // the sign extension, it is impossible for both sides to be equal.
2545       if (C1.getMinSignedBits() > ExtSrcTyBits)
2546         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
2547 
2548       SDValue ZextOp;
2549       EVT Op0Ty = N0.getOperand(0).getValueType();
2550       if (Op0Ty == ExtSrcTy) {
2551         ZextOp = N0.getOperand(0);
2552       } else {
2553         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
2554         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
2555                               DAG.getConstant(Imm, dl, Op0Ty));
2556       }
2557       if (!DCI.isCalledByLegalizer())
2558         DCI.AddToWorklist(ZextOp.getNode());
2559       // Otherwise, make this a use of a zext.
2560       return DAG.getSetCC(dl, VT, ZextOp,
2561                           DAG.getConstant(C1 & APInt::getLowBitsSet(
2562                                                               ExtDstTyBits,
2563                                                               ExtSrcTyBits),
2564                                           dl, ExtDstTy),
2565                           Cond);
2566     } else if ((N1C->isNullValue() || N1C->isOne()) &&
2567                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2568       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
2569       if (N0.getOpcode() == ISD::SETCC &&
2570           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
2571         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
2572         if (TrueWhenTrue)
2573           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
2574         // Invert the condition.
2575         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
2576         CC = ISD::getSetCCInverse(CC,
2577                                   N0.getOperand(0).getValueType().isInteger());
2578         if (DCI.isBeforeLegalizeOps() ||
2579             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
2580           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
2581       }
2582 
2583       if ((N0.getOpcode() == ISD::XOR ||
2584            (N0.getOpcode() == ISD::AND &&
2585             N0.getOperand(0).getOpcode() == ISD::XOR &&
2586             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
2587           isa<ConstantSDNode>(N0.getOperand(1)) &&
2588           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
2589         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
2590         // can only do this if the top bits are known zero.
2591         unsigned BitWidth = N0.getValueSizeInBits();
2592         if (DAG.MaskedValueIsZero(N0,
2593                                   APInt::getHighBitsSet(BitWidth,
2594                                                         BitWidth-1))) {
2595           // Okay, get the un-inverted input value.
2596           SDValue Val;
2597           if (N0.getOpcode() == ISD::XOR) {
2598             Val = N0.getOperand(0);
2599           } else {
2600             assert(N0.getOpcode() == ISD::AND &&
2601                     N0.getOperand(0).getOpcode() == ISD::XOR);
2602             // ((X^1)&1)^1 -> X & 1
2603             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
2604                               N0.getOperand(0).getOperand(0),
2605                               N0.getOperand(1));
2606           }
2607 
2608           return DAG.getSetCC(dl, VT, Val, N1,
2609                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2610         }
2611       } else if (N1C->isOne() &&
2612                  (VT == MVT::i1 ||
2613                   getBooleanContents(N0->getValueType(0)) ==
2614                       ZeroOrOneBooleanContent)) {
2615         SDValue Op0 = N0;
2616         if (Op0.getOpcode() == ISD::TRUNCATE)
2617           Op0 = Op0.getOperand(0);
2618 
2619         if ((Op0.getOpcode() == ISD::XOR) &&
2620             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
2621             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
2622           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
2623           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
2624           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
2625                               Cond);
2626         }
2627         if (Op0.getOpcode() == ISD::AND &&
2628             isa<ConstantSDNode>(Op0.getOperand(1)) &&
2629             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
2630           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
2631           if (Op0.getValueType().bitsGT(VT))
2632             Op0 = DAG.getNode(ISD::AND, dl, VT,
2633                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
2634                           DAG.getConstant(1, dl, VT));
2635           else if (Op0.getValueType().bitsLT(VT))
2636             Op0 = DAG.getNode(ISD::AND, dl, VT,
2637                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
2638                         DAG.getConstant(1, dl, VT));
2639 
2640           return DAG.getSetCC(dl, VT, Op0,
2641                               DAG.getConstant(0, dl, Op0.getValueType()),
2642                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2643         }
2644         if (Op0.getOpcode() == ISD::AssertZext &&
2645             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
2646           return DAG.getSetCC(dl, VT, Op0,
2647                               DAG.getConstant(0, dl, Op0.getValueType()),
2648                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2649       }
2650     }
2651 
2652     if (SDValue V =
2653             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
2654       return V;
2655   }
2656 
2657   // These simplifications apply to splat vectors as well.
2658   // TODO: Handle more splat vector cases.
2659   if (auto *N1C = isConstOrConstSplat(N1)) {
2660     const APInt &C1 = N1C->getAPIntValue();
2661 
2662     APInt MinVal, MaxVal;
2663     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
2664     if (ISD::isSignedIntSetCC(Cond)) {
2665       MinVal = APInt::getSignedMinValue(OperandBitSize);
2666       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
2667     } else {
2668       MinVal = APInt::getMinValue(OperandBitSize);
2669       MaxVal = APInt::getMaxValue(OperandBitSize);
2670     }
2671 
2672     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2673     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
2674       // X >= MIN --> true
2675       if (C1 == MinVal)
2676         return DAG.getBoolConstant(true, dl, VT, OpVT);
2677 
2678       if (!VT.isVector()) { // TODO: Support this for vectors.
2679         // X >= C0 --> X > (C0 - 1)
2680         APInt C = C1 - 1;
2681         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
2682         if ((DCI.isBeforeLegalizeOps() ||
2683              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
2684             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
2685                                   isLegalICmpImmediate(C.getSExtValue())))) {
2686           return DAG.getSetCC(dl, VT, N0,
2687                               DAG.getConstant(C, dl, N1.getValueType()),
2688                               NewCC);
2689         }
2690       }
2691     }
2692 
2693     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
2694       // X <= MAX --> true
2695       if (C1 == MaxVal)
2696         return DAG.getBoolConstant(true, dl, VT, OpVT);
2697 
2698       // X <= C0 --> X < (C0 + 1)
2699       if (!VT.isVector()) { // TODO: Support this for vectors.
2700         APInt C = C1 + 1;
2701         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
2702         if ((DCI.isBeforeLegalizeOps() ||
2703              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
2704             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
2705                                   isLegalICmpImmediate(C.getSExtValue())))) {
2706           return DAG.getSetCC(dl, VT, N0,
2707                               DAG.getConstant(C, dl, N1.getValueType()),
2708                               NewCC);
2709         }
2710       }
2711     }
2712 
2713     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
2714       if (C1 == MinVal)
2715         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
2716 
2717       // TODO: Support this for vectors after legalize ops.
2718       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
2719         // Canonicalize setlt X, Max --> setne X, Max
2720         if (C1 == MaxVal)
2721           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2722 
2723         // If we have setult X, 1, turn it into seteq X, 0
2724         if (C1 == MinVal+1)
2725           return DAG.getSetCC(dl, VT, N0,
2726                               DAG.getConstant(MinVal, dl, N0.getValueType()),
2727                               ISD::SETEQ);
2728       }
2729     }
2730 
2731     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
2732       if (C1 == MaxVal)
2733         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
2734 
2735       // TODO: Support this for vectors after legalize ops.
2736       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
2737         // Canonicalize setgt X, Min --> setne X, Min
2738         if (C1 == MinVal)
2739           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2740 
2741         // If we have setugt X, Max-1, turn it into seteq X, Max
2742         if (C1 == MaxVal-1)
2743           return DAG.getSetCC(dl, VT, N0,
2744                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
2745                               ISD::SETEQ);
2746       }
2747     }
2748 
2749     // If we have "setcc X, C0", check to see if we can shrink the immediate
2750     // by changing cc.
2751     // TODO: Support this for vectors after legalize ops.
2752     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
2753       // SETUGT X, SINTMAX  -> SETLT X, 0
2754       if (Cond == ISD::SETUGT &&
2755           C1 == APInt::getSignedMaxValue(OperandBitSize))
2756         return DAG.getSetCC(dl, VT, N0,
2757                             DAG.getConstant(0, dl, N1.getValueType()),
2758                             ISD::SETLT);
2759 
2760       // SETULT X, SINTMIN  -> SETGT X, -1
2761       if (Cond == ISD::SETULT &&
2762           C1 == APInt::getSignedMinValue(OperandBitSize)) {
2763         SDValue ConstMinusOne =
2764             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
2765                             N1.getValueType());
2766         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2767       }
2768     }
2769   }
2770 
2771   // Back to non-vector simplifications.
2772   // TODO: Can we do these for vector splats?
2773   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
2774     const APInt &C1 = N1C->getAPIntValue();
2775 
2776     // Fold bit comparisons when we can.
2777     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2778         (VT == N0.getValueType() ||
2779          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2780         N0.getOpcode() == ISD::AND) {
2781       auto &DL = DAG.getDataLayout();
2782       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2783         EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
2784                                        !DCI.isBeforeLegalize());
2785         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
2786           // Perform the xform if the AND RHS is a single bit.
2787           if (AndRHS->getAPIntValue().isPowerOf2()) {
2788             return DAG.getNode(ISD::TRUNCATE, dl, VT,
2789                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2790                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
2791                                    ShiftTy)));
2792           }
2793         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2794           // (X & 8) == 8  -->  (X & 8) >> 3
2795           // Perform the xform if C1 is a single bit.
2796           if (C1.isPowerOf2()) {
2797             return DAG.getNode(ISD::TRUNCATE, dl, VT,
2798                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2799                                       DAG.getConstant(C1.logBase2(), dl,
2800                                                       ShiftTy)));
2801           }
2802         }
2803       }
2804     }
2805 
2806     if (C1.getMinSignedBits() <= 64 &&
2807         !isLegalICmpImmediate(C1.getSExtValue())) {
2808       // (X & -256) == 256 -> (X >> 8) == 1
2809       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2810           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
2811         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2812           const APInt &AndRHSC = AndRHS->getAPIntValue();
2813           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
2814             unsigned ShiftBits = AndRHSC.countTrailingZeros();
2815             auto &DL = DAG.getDataLayout();
2816             EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
2817                                            !DCI.isBeforeLegalize());
2818             EVT CmpTy = N0.getValueType();
2819             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
2820                                         DAG.getConstant(ShiftBits, dl,
2821                                                         ShiftTy));
2822             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
2823             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
2824           }
2825         }
2826       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
2827                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
2828         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
2829         // X <  0x100000000 -> (X >> 32) <  1
2830         // X >= 0x100000000 -> (X >> 32) >= 1
2831         // X <= 0x0ffffffff -> (X >> 32) <  1
2832         // X >  0x0ffffffff -> (X >> 32) >= 1
2833         unsigned ShiftBits;
2834         APInt NewC = C1;
2835         ISD::CondCode NewCond = Cond;
2836         if (AdjOne) {
2837           ShiftBits = C1.countTrailingOnes();
2838           NewC = NewC + 1;
2839           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2840         } else {
2841           ShiftBits = C1.countTrailingZeros();
2842         }
2843         NewC.lshrInPlace(ShiftBits);
2844         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
2845           isLegalICmpImmediate(NewC.getSExtValue())) {
2846           auto &DL = DAG.getDataLayout();
2847           EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
2848                                          !DCI.isBeforeLegalize());
2849           EVT CmpTy = N0.getValueType();
2850           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
2851                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
2852           SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
2853           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
2854         }
2855       }
2856     }
2857   }
2858 
2859   if (isa<ConstantFPSDNode>(N0.getNode())) {
2860     // Constant fold or commute setcc.
2861     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2862     if (O.getNode()) return O;
2863   } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2864     // If the RHS of an FP comparison is a constant, simplify it away in
2865     // some cases.
2866     if (CFP->getValueAPF().isNaN()) {
2867       // If an operand is known to be a nan, we can fold it.
2868       switch (ISD::getUnorderedFlavor(Cond)) {
2869       default: llvm_unreachable("Unknown flavor!");
2870       case 0:  // Known false.
2871         return DAG.getBoolConstant(false, dl, VT, OpVT);
2872       case 1:  // Known true.
2873         return DAG.getBoolConstant(true, dl, VT, OpVT);
2874       case 2:  // Undefined.
2875         return DAG.getUNDEF(VT);
2876       }
2877     }
2878 
2879     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2880     // constant if knowing that the operand is non-nan is enough.  We prefer to
2881     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2882     // materialize 0.0.
2883     if (Cond == ISD::SETO || Cond == ISD::SETUO)
2884       return DAG.getSetCC(dl, VT, N0, N0, Cond);
2885 
2886     // setcc (fneg x), C -> setcc swap(pred) x, -C
2887     if (N0.getOpcode() == ISD::FNEG) {
2888       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
2889       if (DCI.isBeforeLegalizeOps() ||
2890           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
2891         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
2892         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
2893       }
2894     }
2895 
2896     // If the condition is not legal, see if we can find an equivalent one
2897     // which is legal.
2898     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
2899       // If the comparison was an awkward floating-point == or != and one of
2900       // the comparison operands is infinity or negative infinity, convert the
2901       // condition to a less-awkward <= or >=.
2902       if (CFP->getValueAPF().isInfinity()) {
2903         if (CFP->getValueAPF().isNegative()) {
2904           if (Cond == ISD::SETOEQ &&
2905               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
2906             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2907           if (Cond == ISD::SETUEQ &&
2908               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
2909             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2910           if (Cond == ISD::SETUNE &&
2911               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
2912             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2913           if (Cond == ISD::SETONE &&
2914               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
2915             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2916         } else {
2917           if (Cond == ISD::SETOEQ &&
2918               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
2919             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2920           if (Cond == ISD::SETUEQ &&
2921               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
2922             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2923           if (Cond == ISD::SETUNE &&
2924               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
2925             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2926           if (Cond == ISD::SETONE &&
2927               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
2928             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2929         }
2930       }
2931     }
2932   }
2933 
2934   if (N0 == N1) {
2935     // The sext(setcc()) => setcc() optimization relies on the appropriate
2936     // constant being emitted.
2937 
2938     bool EqTrue = ISD::isTrueWhenEqual(Cond);
2939 
2940     // We can always fold X == X for integer setcc's.
2941     if (N0.getValueType().isInteger())
2942       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
2943 
2944     unsigned UOF = ISD::getUnorderedFlavor(Cond);
2945     if (UOF == 2)   // FP operators that are undefined on NaNs.
2946       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
2947     if (UOF == unsigned(EqTrue))
2948       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
2949     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2950     // if it is not already.
2951     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2952     if (NewCond != Cond &&
2953         (DCI.isBeforeLegalizeOps() ||
2954          isCondCodeLegal(NewCond, N0.getSimpleValueType())))
2955       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2956   }
2957 
2958   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2959       N0.getValueType().isInteger()) {
2960     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2961         N0.getOpcode() == ISD::XOR) {
2962       // Simplify (X+Y) == (X+Z) -->  Y == Z
2963       if (N0.getOpcode() == N1.getOpcode()) {
2964         if (N0.getOperand(0) == N1.getOperand(0))
2965           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2966         if (N0.getOperand(1) == N1.getOperand(1))
2967           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2968         if (isCommutativeBinOp(N0.getOpcode())) {
2969           // If X op Y == Y op X, try other combinations.
2970           if (N0.getOperand(0) == N1.getOperand(1))
2971             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2972                                 Cond);
2973           if (N0.getOperand(1) == N1.getOperand(0))
2974             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2975                                 Cond);
2976         }
2977       }
2978 
2979       // If RHS is a legal immediate value for a compare instruction, we need
2980       // to be careful about increasing register pressure needlessly.
2981       bool LegalRHSImm = false;
2982 
2983       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2984         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2985           // Turn (X+C1) == C2 --> X == C2-C1
2986           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2987             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2988                                 DAG.getConstant(RHSC->getAPIntValue()-
2989                                                 LHSR->getAPIntValue(),
2990                                 dl, N0.getValueType()), Cond);
2991           }
2992 
2993           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2994           if (N0.getOpcode() == ISD::XOR)
2995             // If we know that all of the inverted bits are zero, don't bother
2996             // performing the inversion.
2997             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2998               return
2999                 DAG.getSetCC(dl, VT, N0.getOperand(0),
3000                              DAG.getConstant(LHSR->getAPIntValue() ^
3001                                                RHSC->getAPIntValue(),
3002                                              dl, N0.getValueType()),
3003                              Cond);
3004         }
3005 
3006         // Turn (C1-X) == C2 --> X == C1-C2
3007         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3008           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
3009             return
3010               DAG.getSetCC(dl, VT, N0.getOperand(1),
3011                            DAG.getConstant(SUBC->getAPIntValue() -
3012                                              RHSC->getAPIntValue(),
3013                                            dl, N0.getValueType()),
3014                            Cond);
3015           }
3016         }
3017 
3018         // Could RHSC fold directly into a compare?
3019         if (RHSC->getValueType(0).getSizeInBits() <= 64)
3020           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
3021       }
3022 
3023       // Simplify (X+Z) == X -->  Z == 0
3024       // Don't do this if X is an immediate that can fold into a cmp
3025       // instruction and X+Z has other uses. It could be an induction variable
3026       // chain, and the transform would increase register pressure.
3027       if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
3028         if (N0.getOperand(0) == N1)
3029           return DAG.getSetCC(dl, VT, N0.getOperand(1),
3030                               DAG.getConstant(0, dl, N0.getValueType()), Cond);
3031         if (N0.getOperand(1) == N1) {
3032           if (isCommutativeBinOp(N0.getOpcode()))
3033             return DAG.getSetCC(dl, VT, N0.getOperand(0),
3034                                 DAG.getConstant(0, dl, N0.getValueType()),
3035                                 Cond);
3036           if (N0.getNode()->hasOneUse()) {
3037             assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
3038             auto &DL = DAG.getDataLayout();
3039             // (Z-X) == X  --> Z == X<<1
3040             SDValue SH = DAG.getNode(
3041                 ISD::SHL, dl, N1.getValueType(), N1,
3042                 DAG.getConstant(1, dl,
3043                                 getShiftAmountTy(N1.getValueType(), DL,
3044                                                  !DCI.isBeforeLegalize())));
3045             if (!DCI.isCalledByLegalizer())
3046               DCI.AddToWorklist(SH.getNode());
3047             return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
3048           }
3049         }
3050       }
3051     }
3052 
3053     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
3054         N1.getOpcode() == ISD::XOR) {
3055       // Simplify  X == (X+Z) -->  Z == 0
3056       if (N1.getOperand(0) == N0)
3057         return DAG.getSetCC(dl, VT, N1.getOperand(1),
3058                         DAG.getConstant(0, dl, N1.getValueType()), Cond);
3059       if (N1.getOperand(1) == N0) {
3060         if (isCommutativeBinOp(N1.getOpcode()))
3061           return DAG.getSetCC(dl, VT, N1.getOperand(0),
3062                           DAG.getConstant(0, dl, N1.getValueType()), Cond);
3063         if (N1.getNode()->hasOneUse()) {
3064           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
3065           auto &DL = DAG.getDataLayout();
3066           // X == (Z-X)  --> X<<1 == Z
3067           SDValue SH = DAG.getNode(
3068               ISD::SHL, dl, N1.getValueType(), N0,
3069               DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL,
3070                                                       !DCI.isBeforeLegalize())));
3071           if (!DCI.isCalledByLegalizer())
3072             DCI.AddToWorklist(SH.getNode());
3073           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
3074         }
3075       }
3076     }
3077 
3078     if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl))
3079       return V;
3080   }
3081 
3082   // Fold away ALL boolean setcc's.
3083   SDValue Temp;
3084   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
3085     EVT OpVT = N0.getValueType();
3086     switch (Cond) {
3087     default: llvm_unreachable("Unknown integer setcc!");
3088     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
3089       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3090       N0 = DAG.getNOT(dl, Temp, OpVT);
3091       if (!DCI.isCalledByLegalizer())
3092         DCI.AddToWorklist(Temp.getNode());
3093       break;
3094     case ISD::SETNE:  // X != Y   -->  (X^Y)
3095       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3096       break;
3097     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
3098     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
3099       Temp = DAG.getNOT(dl, N0, OpVT);
3100       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
3101       if (!DCI.isCalledByLegalizer())
3102         DCI.AddToWorklist(Temp.getNode());
3103       break;
3104     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
3105     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
3106       Temp = DAG.getNOT(dl, N1, OpVT);
3107       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
3108       if (!DCI.isCalledByLegalizer())
3109         DCI.AddToWorklist(Temp.getNode());
3110       break;
3111     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
3112     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
3113       Temp = DAG.getNOT(dl, N0, OpVT);
3114       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
3115       if (!DCI.isCalledByLegalizer())
3116         DCI.AddToWorklist(Temp.getNode());
3117       break;
3118     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
3119     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
3120       Temp = DAG.getNOT(dl, N1, OpVT);
3121       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
3122       break;
3123     }
3124     if (VT.getScalarType() != MVT::i1) {
3125       if (!DCI.isCalledByLegalizer())
3126         DCI.AddToWorklist(N0.getNode());
3127       // FIXME: If running after legalize, we probably can't do this.
3128       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
3129       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
3130     }
3131     return N0;
3132   }
3133 
3134   // Could not fold it.
3135   return SDValue();
3136 }
3137 
3138 /// Returns true (and the GlobalValue and the offset) if the node is a
3139 /// GlobalAddress + offset.
3140 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
3141                                     int64_t &Offset) const {
3142 
3143   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
3144 
3145   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
3146     GA = GASD->getGlobal();
3147     Offset += GASD->getOffset();
3148     return true;
3149   }
3150 
3151   if (N->getOpcode() == ISD::ADD) {
3152     SDValue N1 = N->getOperand(0);
3153     SDValue N2 = N->getOperand(1);
3154     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
3155       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
3156         Offset += V->getSExtValue();
3157         return true;
3158       }
3159     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
3160       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
3161         Offset += V->getSExtValue();
3162         return true;
3163       }
3164     }
3165   }
3166 
3167   return false;
3168 }
3169 
3170 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
3171                                           DAGCombinerInfo &DCI) const {
3172   // Default implementation: no optimization.
3173   return SDValue();
3174 }
3175 
3176 //===----------------------------------------------------------------------===//
3177 //  Inline Assembler Implementation Methods
3178 //===----------------------------------------------------------------------===//
3179 
3180 TargetLowering::ConstraintType
3181 TargetLowering::getConstraintType(StringRef Constraint) const {
3182   unsigned S = Constraint.size();
3183 
3184   if (S == 1) {
3185     switch (Constraint[0]) {
3186     default: break;
3187     case 'r': return C_RegisterClass;
3188     case 'm':    // memory
3189     case 'o':    // offsetable
3190     case 'V':    // not offsetable
3191       return C_Memory;
3192     case 'i':    // Simple Integer or Relocatable Constant
3193     case 'n':    // Simple Integer
3194     case 'E':    // Floating Point Constant
3195     case 'F':    // Floating Point Constant
3196     case 's':    // Relocatable Constant
3197     case 'p':    // Address.
3198     case 'X':    // Allow ANY value.
3199     case 'I':    // Target registers.
3200     case 'J':
3201     case 'K':
3202     case 'L':
3203     case 'M':
3204     case 'N':
3205     case 'O':
3206     case 'P':
3207     case '<':
3208     case '>':
3209       return C_Other;
3210     }
3211   }
3212 
3213   if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
3214     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
3215       return C_Memory;
3216     return C_Register;
3217   }
3218   return C_Unknown;
3219 }
3220 
3221 /// Try to replace an X constraint, which matches anything, with another that
3222 /// has more specific requirements based on the type of the corresponding
3223 /// operand.
3224 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
3225   if (ConstraintVT.isInteger())
3226     return "r";
3227   if (ConstraintVT.isFloatingPoint())
3228     return "f";      // works for many targets
3229   return nullptr;
3230 }
3231 
3232 /// Lower the specified operand into the Ops vector.
3233 /// If it is invalid, don't add anything to Ops.
3234 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3235                                                   std::string &Constraint,
3236                                                   std::vector<SDValue> &Ops,
3237                                                   SelectionDAG &DAG) const {
3238 
3239   if (Constraint.length() > 1) return;
3240 
3241   char ConstraintLetter = Constraint[0];
3242   switch (ConstraintLetter) {
3243   default: break;
3244   case 'X':     // Allows any operand; labels (basic block) use this.
3245     if (Op.getOpcode() == ISD::BasicBlock) {
3246       Ops.push_back(Op);
3247       return;
3248     }
3249     LLVM_FALLTHROUGH;
3250   case 'i':    // Simple Integer or Relocatable Constant
3251   case 'n':    // Simple Integer
3252   case 's': {  // Relocatable Constant
3253     // These operands are interested in values of the form (GV+C), where C may
3254     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
3255     // is possible and fine if either GV or C are missing.
3256     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
3257     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
3258 
3259     // If we have "(add GV, C)", pull out GV/C
3260     if (Op.getOpcode() == ISD::ADD) {
3261       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3262       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
3263       if (!C || !GA) {
3264         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
3265         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
3266       }
3267       if (!C || !GA) {
3268         C = nullptr;
3269         GA = nullptr;
3270       }
3271     }
3272 
3273     // If we find a valid operand, map to the TargetXXX version so that the
3274     // value itself doesn't get selected.
3275     if (GA) {   // Either &GV   or   &GV+C
3276       if (ConstraintLetter != 'n') {
3277         int64_t Offs = GA->getOffset();
3278         if (C) Offs += C->getZExtValue();
3279         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
3280                                                  C ? SDLoc(C) : SDLoc(),
3281                                                  Op.getValueType(), Offs));
3282       }
3283       return;
3284     }
3285     if (C) {   // just C, no GV.
3286       // Simple constants are not allowed for 's'.
3287       if (ConstraintLetter != 's') {
3288         // gcc prints these as sign extended.  Sign extend value to 64 bits
3289         // now; without this it would get ZExt'd later in
3290         // ScheduleDAGSDNodes::EmitNode, which is very generic.
3291         Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
3292                                             SDLoc(C), MVT::i64));
3293       }
3294       return;
3295     }
3296     break;
3297   }
3298   }
3299 }
3300 
3301 std::pair<unsigned, const TargetRegisterClass *>
3302 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
3303                                              StringRef Constraint,
3304                                              MVT VT) const {
3305   if (Constraint.empty() || Constraint[0] != '{')
3306     return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr));
3307   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
3308 
3309   // Remove the braces from around the name.
3310   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
3311 
3312   std::pair<unsigned, const TargetRegisterClass*> R =
3313     std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr));
3314 
3315   // Figure out which register class contains this reg.
3316   for (const TargetRegisterClass *RC : RI->regclasses()) {
3317     // If none of the value types for this register class are valid, we
3318     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3319     if (!isLegalRC(*RI, *RC))
3320       continue;
3321 
3322     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
3323          I != E; ++I) {
3324       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
3325         std::pair<unsigned, const TargetRegisterClass*> S =
3326           std::make_pair(*I, RC);
3327 
3328         // If this register class has the requested value type, return it,
3329         // otherwise keep searching and return the first class found
3330         // if no other is found which explicitly has the requested type.
3331         if (RI->isTypeLegalForClass(*RC, VT))
3332           return S;
3333         if (!R.second)
3334           R = S;
3335       }
3336     }
3337   }
3338 
3339   return R;
3340 }
3341 
3342 //===----------------------------------------------------------------------===//
3343 // Constraint Selection.
3344 
3345 /// Return true of this is an input operand that is a matching constraint like
3346 /// "4".
3347 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
3348   assert(!ConstraintCode.empty() && "No known constraint!");
3349   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
3350 }
3351 
3352 /// If this is an input matching constraint, this method returns the output
3353 /// operand it matches.
3354 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
3355   assert(!ConstraintCode.empty() && "No known constraint!");
3356   return atoi(ConstraintCode.c_str());
3357 }
3358 
3359 /// Split up the constraint string from the inline assembly value into the
3360 /// specific constraints and their prefixes, and also tie in the associated
3361 /// operand values.
3362 /// If this returns an empty vector, and if the constraint string itself
3363 /// isn't empty, there was an error parsing.
3364 TargetLowering::AsmOperandInfoVector
3365 TargetLowering::ParseConstraints(const DataLayout &DL,
3366                                  const TargetRegisterInfo *TRI,
3367                                  ImmutableCallSite CS) const {
3368   /// Information about all of the constraints.
3369   AsmOperandInfoVector ConstraintOperands;
3370   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
3371   unsigned maCount = 0; // Largest number of multiple alternative constraints.
3372 
3373   // Do a prepass over the constraints, canonicalizing them, and building up the
3374   // ConstraintOperands list.
3375   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
3376   unsigned ResNo = 0;   // ResNo - The result number of the next output.
3377 
3378   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
3379     ConstraintOperands.emplace_back(std::move(CI));
3380     AsmOperandInfo &OpInfo = ConstraintOperands.back();
3381 
3382     // Update multiple alternative constraint count.
3383     if (OpInfo.multipleAlternatives.size() > maCount)
3384       maCount = OpInfo.multipleAlternatives.size();
3385 
3386     OpInfo.ConstraintVT = MVT::Other;
3387 
3388     // Compute the value type for each operand.
3389     switch (OpInfo.Type) {
3390     case InlineAsm::isOutput:
3391       // Indirect outputs just consume an argument.
3392       if (OpInfo.isIndirect) {
3393         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
3394         break;
3395       }
3396 
3397       // The return value of the call is this value.  As such, there is no
3398       // corresponding argument.
3399       assert(!CS.getType()->isVoidTy() &&
3400              "Bad inline asm!");
3401       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
3402         OpInfo.ConstraintVT =
3403             getSimpleValueType(DL, STy->getElementType(ResNo));
3404       } else {
3405         assert(ResNo == 0 && "Asm only has one result!");
3406         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
3407       }
3408       ++ResNo;
3409       break;
3410     case InlineAsm::isInput:
3411       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
3412       break;
3413     case InlineAsm::isClobber:
3414       // Nothing to do.
3415       break;
3416     }
3417 
3418     if (OpInfo.CallOperandVal) {
3419       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
3420       if (OpInfo.isIndirect) {
3421         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
3422         if (!PtrTy)
3423           report_fatal_error("Indirect operand for inline asm not a pointer!");
3424         OpTy = PtrTy->getElementType();
3425       }
3426 
3427       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
3428       if (StructType *STy = dyn_cast<StructType>(OpTy))
3429         if (STy->getNumElements() == 1)
3430           OpTy = STy->getElementType(0);
3431 
3432       // If OpTy is not a single value, it may be a struct/union that we
3433       // can tile with integers.
3434       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
3435         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
3436         switch (BitSize) {
3437         default: break;
3438         case 1:
3439         case 8:
3440         case 16:
3441         case 32:
3442         case 64:
3443         case 128:
3444           OpInfo.ConstraintVT =
3445             MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
3446           break;
3447         }
3448       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
3449         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
3450         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
3451       } else {
3452         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
3453       }
3454     }
3455   }
3456 
3457   // If we have multiple alternative constraints, select the best alternative.
3458   if (!ConstraintOperands.empty()) {
3459     if (maCount) {
3460       unsigned bestMAIndex = 0;
3461       int bestWeight = -1;
3462       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
3463       int weight = -1;
3464       unsigned maIndex;
3465       // Compute the sums of the weights for each alternative, keeping track
3466       // of the best (highest weight) one so far.
3467       for (maIndex = 0; maIndex < maCount; ++maIndex) {
3468         int weightSum = 0;
3469         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3470             cIndex != eIndex; ++cIndex) {
3471           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
3472           if (OpInfo.Type == InlineAsm::isClobber)
3473             continue;
3474 
3475           // If this is an output operand with a matching input operand,
3476           // look up the matching input. If their types mismatch, e.g. one
3477           // is an integer, the other is floating point, or their sizes are
3478           // different, flag it as an maCantMatch.
3479           if (OpInfo.hasMatchingInput()) {
3480             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
3481             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
3482               if ((OpInfo.ConstraintVT.isInteger() !=
3483                    Input.ConstraintVT.isInteger()) ||
3484                   (OpInfo.ConstraintVT.getSizeInBits() !=
3485                    Input.ConstraintVT.getSizeInBits())) {
3486                 weightSum = -1;  // Can't match.
3487                 break;
3488               }
3489             }
3490           }
3491           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
3492           if (weight == -1) {
3493             weightSum = -1;
3494             break;
3495           }
3496           weightSum += weight;
3497         }
3498         // Update best.
3499         if (weightSum > bestWeight) {
3500           bestWeight = weightSum;
3501           bestMAIndex = maIndex;
3502         }
3503       }
3504 
3505       // Now select chosen alternative in each constraint.
3506       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3507           cIndex != eIndex; ++cIndex) {
3508         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
3509         if (cInfo.Type == InlineAsm::isClobber)
3510           continue;
3511         cInfo.selectAlternative(bestMAIndex);
3512       }
3513     }
3514   }
3515 
3516   // Check and hook up tied operands, choose constraint code to use.
3517   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3518       cIndex != eIndex; ++cIndex) {
3519     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
3520 
3521     // If this is an output operand with a matching input operand, look up the
3522     // matching input. If their types mismatch, e.g. one is an integer, the
3523     // other is floating point, or their sizes are different, flag it as an
3524     // error.
3525     if (OpInfo.hasMatchingInput()) {
3526       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
3527 
3528       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
3529         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
3530             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
3531                                          OpInfo.ConstraintVT);
3532         std::pair<unsigned, const TargetRegisterClass *> InputRC =
3533             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
3534                                          Input.ConstraintVT);
3535         if ((OpInfo.ConstraintVT.isInteger() !=
3536              Input.ConstraintVT.isInteger()) ||
3537             (MatchRC.second != InputRC.second)) {
3538           report_fatal_error("Unsupported asm: input constraint"
3539                              " with a matching output constraint of"
3540                              " incompatible type!");
3541         }
3542       }
3543     }
3544   }
3545 
3546   return ConstraintOperands;
3547 }
3548 
3549 /// Return an integer indicating how general CT is.
3550 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3551   switch (CT) {
3552   case TargetLowering::C_Other:
3553   case TargetLowering::C_Unknown:
3554     return 0;
3555   case TargetLowering::C_Register:
3556     return 1;
3557   case TargetLowering::C_RegisterClass:
3558     return 2;
3559   case TargetLowering::C_Memory:
3560     return 3;
3561   }
3562   llvm_unreachable("Invalid constraint type");
3563 }
3564 
3565 /// Examine constraint type and operand type and determine a weight value.
3566 /// This object must already have been set up with the operand type
3567 /// and the current alternative constraint selected.
3568 TargetLowering::ConstraintWeight
3569   TargetLowering::getMultipleConstraintMatchWeight(
3570     AsmOperandInfo &info, int maIndex) const {
3571   InlineAsm::ConstraintCodeVector *rCodes;
3572   if (maIndex >= (int)info.multipleAlternatives.size())
3573     rCodes = &info.Codes;
3574   else
3575     rCodes = &info.multipleAlternatives[maIndex].Codes;
3576   ConstraintWeight BestWeight = CW_Invalid;
3577 
3578   // Loop over the options, keeping track of the most general one.
3579   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
3580     ConstraintWeight weight =
3581       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
3582     if (weight > BestWeight)
3583       BestWeight = weight;
3584   }
3585 
3586   return BestWeight;
3587 }
3588 
3589 /// Examine constraint type and operand type and determine a weight value.
3590 /// This object must already have been set up with the operand type
3591 /// and the current alternative constraint selected.
3592 TargetLowering::ConstraintWeight
3593   TargetLowering::getSingleConstraintMatchWeight(
3594     AsmOperandInfo &info, const char *constraint) const {
3595   ConstraintWeight weight = CW_Invalid;
3596   Value *CallOperandVal = info.CallOperandVal;
3597     // If we don't have a value, we can't do a match,
3598     // but allow it at the lowest weight.
3599   if (!CallOperandVal)
3600     return CW_Default;
3601   // Look at the constraint type.
3602   switch (*constraint) {
3603     case 'i': // immediate integer.
3604     case 'n': // immediate integer with a known value.
3605       if (isa<ConstantInt>(CallOperandVal))
3606         weight = CW_Constant;
3607       break;
3608     case 's': // non-explicit intregal immediate.
3609       if (isa<GlobalValue>(CallOperandVal))
3610         weight = CW_Constant;
3611       break;
3612     case 'E': // immediate float if host format.
3613     case 'F': // immediate float.
3614       if (isa<ConstantFP>(CallOperandVal))
3615         weight = CW_Constant;
3616       break;
3617     case '<': // memory operand with autodecrement.
3618     case '>': // memory operand with autoincrement.
3619     case 'm': // memory operand.
3620     case 'o': // offsettable memory operand
3621     case 'V': // non-offsettable memory operand
3622       weight = CW_Memory;
3623       break;
3624     case 'r': // general register.
3625     case 'g': // general register, memory operand or immediate integer.
3626               // note: Clang converts "g" to "imr".
3627       if (CallOperandVal->getType()->isIntegerTy())
3628         weight = CW_Register;
3629       break;
3630     case 'X': // any operand.
3631     default:
3632       weight = CW_Default;
3633       break;
3634   }
3635   return weight;
3636 }
3637 
3638 /// If there are multiple different constraints that we could pick for this
3639 /// operand (e.g. "imr") try to pick the 'best' one.
3640 /// This is somewhat tricky: constraints fall into four classes:
3641 ///    Other         -> immediates and magic values
3642 ///    Register      -> one specific register
3643 ///    RegisterClass -> a group of regs
3644 ///    Memory        -> memory
3645 /// Ideally, we would pick the most specific constraint possible: if we have
3646 /// something that fits into a register, we would pick it.  The problem here
3647 /// is that if we have something that could either be in a register or in
3648 /// memory that use of the register could cause selection of *other*
3649 /// operands to fail: they might only succeed if we pick memory.  Because of
3650 /// this the heuristic we use is:
3651 ///
3652 ///  1) If there is an 'other' constraint, and if the operand is valid for
3653 ///     that constraint, use it.  This makes us take advantage of 'i'
3654 ///     constraints when available.
3655 ///  2) Otherwise, pick the most general constraint present.  This prefers
3656 ///     'm' over 'r', for example.
3657 ///
3658 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
3659                              const TargetLowering &TLI,
3660                              SDValue Op, SelectionDAG *DAG) {
3661   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
3662   unsigned BestIdx = 0;
3663   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
3664   int BestGenerality = -1;
3665 
3666   // Loop over the options, keeping track of the most general one.
3667   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
3668     TargetLowering::ConstraintType CType =
3669       TLI.getConstraintType(OpInfo.Codes[i]);
3670 
3671     // If this is an 'other' constraint, see if the operand is valid for it.
3672     // For example, on X86 we might have an 'rI' constraint.  If the operand
3673     // is an integer in the range [0..31] we want to use I (saving a load
3674     // of a register), otherwise we must use 'r'.
3675     if (CType == TargetLowering::C_Other && Op.getNode()) {
3676       assert(OpInfo.Codes[i].size() == 1 &&
3677              "Unhandled multi-letter 'other' constraint");
3678       std::vector<SDValue> ResultOps;
3679       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
3680                                        ResultOps, *DAG);
3681       if (!ResultOps.empty()) {
3682         BestType = CType;
3683         BestIdx = i;
3684         break;
3685       }
3686     }
3687 
3688     // Things with matching constraints can only be registers, per gcc
3689     // documentation.  This mainly affects "g" constraints.
3690     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
3691       continue;
3692 
3693     // This constraint letter is more general than the previous one, use it.
3694     int Generality = getConstraintGenerality(CType);
3695     if (Generality > BestGenerality) {
3696       BestType = CType;
3697       BestIdx = i;
3698       BestGenerality = Generality;
3699     }
3700   }
3701 
3702   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
3703   OpInfo.ConstraintType = BestType;
3704 }
3705 
3706 /// Determines the constraint code and constraint type to use for the specific
3707 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
3708 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
3709                                             SDValue Op,
3710                                             SelectionDAG *DAG) const {
3711   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
3712 
3713   // Single-letter constraints ('r') are very common.
3714   if (OpInfo.Codes.size() == 1) {
3715     OpInfo.ConstraintCode = OpInfo.Codes[0];
3716     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3717   } else {
3718     ChooseConstraint(OpInfo, *this, Op, DAG);
3719   }
3720 
3721   // 'X' matches anything.
3722   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
3723     // Labels and constants are handled elsewhere ('X' is the only thing
3724     // that matches labels).  For Functions, the type here is the type of
3725     // the result, which is not what we want to look at; leave them alone.
3726     Value *v = OpInfo.CallOperandVal;
3727     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
3728       OpInfo.CallOperandVal = v;
3729       return;
3730     }
3731 
3732     // Otherwise, try to resolve it to something we know about by looking at
3733     // the actual operand type.
3734     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
3735       OpInfo.ConstraintCode = Repl;
3736       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3737     }
3738   }
3739 }
3740 
3741 /// Given an exact SDIV by a constant, create a multiplication
3742 /// with the multiplicative inverse of the constant.
3743 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
3744                               const SDLoc &dl, SelectionDAG &DAG,
3745                               SmallVectorImpl<SDNode *> &Created) {
3746   SDValue Op0 = N->getOperand(0);
3747   SDValue Op1 = N->getOperand(1);
3748   EVT VT = N->getValueType(0);
3749   EVT SVT = VT.getScalarType();
3750   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
3751   EVT ShSVT = ShVT.getScalarType();
3752 
3753   bool UseSRA = false;
3754   SmallVector<SDValue, 16> Shifts, Factors;
3755 
3756   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
3757     if (C->isNullValue())
3758       return false;
3759     APInt Divisor = C->getAPIntValue();
3760     unsigned Shift = Divisor.countTrailingZeros();
3761     if (Shift) {
3762       Divisor.ashrInPlace(Shift);
3763       UseSRA = true;
3764     }
3765     // Calculate the multiplicative inverse, using Newton's method.
3766     APInt t;
3767     APInt Factor = Divisor;
3768     while ((t = Divisor * Factor) != 1)
3769       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
3770     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
3771     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
3772     return true;
3773   };
3774 
3775   // Collect all magic values from the build vector.
3776   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
3777     return SDValue();
3778 
3779   SDValue Shift, Factor;
3780   if (VT.isVector()) {
3781     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
3782     Factor = DAG.getBuildVector(VT, dl, Factors);
3783   } else {
3784     Shift = Shifts[0];
3785     Factor = Factors[0];
3786   }
3787 
3788   SDValue Res = Op0;
3789 
3790   // Shift the value upfront if it is even, so the LSB is one.
3791   if (UseSRA) {
3792     // TODO: For UDIV use SRL instead of SRA.
3793     SDNodeFlags Flags;
3794     Flags.setExact(true);
3795     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
3796     Created.push_back(Res.getNode());
3797   }
3798 
3799   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
3800 }
3801 
3802 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
3803                                      SelectionDAG &DAG,
3804                                      SmallVectorImpl<SDNode *> &Created) const {
3805   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3806   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3807   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
3808     return SDValue(N,0); // Lower SDIV as SDIV
3809   return SDValue();
3810 }
3811 
3812 /// Given an ISD::SDIV node expressing a divide by constant,
3813 /// return a DAG expression to select that will generate the same value by
3814 /// multiplying by a magic number.
3815 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
3816 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
3817                                   bool IsAfterLegalization,
3818                                   SmallVectorImpl<SDNode *> &Created) const {
3819   SDLoc dl(N);
3820   EVT VT = N->getValueType(0);
3821   EVT SVT = VT.getScalarType();
3822   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
3823   EVT ShSVT = ShVT.getScalarType();
3824   unsigned EltBits = VT.getScalarSizeInBits();
3825 
3826   // Check to see if we can do this.
3827   // FIXME: We should be more aggressive here.
3828   if (!isTypeLegal(VT))
3829     return SDValue();
3830 
3831   // If the sdiv has an 'exact' bit we can use a simpler lowering.
3832   if (N->getFlags().hasExact())
3833     return BuildExactSDIV(*this, N, dl, DAG, Created);
3834 
3835   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
3836 
3837   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
3838     if (C->isNullValue())
3839       return false;
3840 
3841     const APInt &Divisor = C->getAPIntValue();
3842     APInt::ms magics = Divisor.magic();
3843     int NumeratorFactor = 0;
3844     int ShiftMask = -1;
3845 
3846     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
3847       // If d is +1/-1, we just multiply the numerator by +1/-1.
3848       NumeratorFactor = Divisor.getSExtValue();
3849       magics.m = 0;
3850       magics.s = 0;
3851       ShiftMask = 0;
3852     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
3853       // If d > 0 and m < 0, add the numerator.
3854       NumeratorFactor = 1;
3855     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
3856       // If d < 0 and m > 0, subtract the numerator.
3857       NumeratorFactor = -1;
3858     }
3859 
3860     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
3861     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
3862     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
3863     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
3864     return true;
3865   };
3866 
3867   SDValue N0 = N->getOperand(0);
3868   SDValue N1 = N->getOperand(1);
3869 
3870   // Collect the shifts / magic values from each element.
3871   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
3872     return SDValue();
3873 
3874   SDValue MagicFactor, Factor, Shift, ShiftMask;
3875   if (VT.isVector()) {
3876     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
3877     Factor = DAG.getBuildVector(VT, dl, Factors);
3878     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
3879     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
3880   } else {
3881     MagicFactor = MagicFactors[0];
3882     Factor = Factors[0];
3883     Shift = Shifts[0];
3884     ShiftMask = ShiftMasks[0];
3885   }
3886 
3887   // Multiply the numerator (operand 0) by the magic value.
3888   // FIXME: We should support doing a MUL in a wider type.
3889   SDValue Q;
3890   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
3891                           : isOperationLegalOrCustom(ISD::MULHS, VT))
3892     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
3893   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
3894                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
3895     SDValue LoHi =
3896         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
3897     Q = SDValue(LoHi.getNode(), 1);
3898   } else
3899     return SDValue(); // No mulhs or equivalent.
3900   Created.push_back(Q.getNode());
3901 
3902   // (Optionally) Add/subtract the numerator using Factor.
3903   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
3904   Created.push_back(Factor.getNode());
3905   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
3906   Created.push_back(Q.getNode());
3907 
3908   // Shift right algebraic by shift value.
3909   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
3910   Created.push_back(Q.getNode());
3911 
3912   // Extract the sign bit, mask it and add it to the quotient.
3913   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
3914   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
3915   Created.push_back(T.getNode());
3916   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
3917   Created.push_back(T.getNode());
3918   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3919 }
3920 
3921 /// Given an ISD::UDIV node expressing a divide by constant,
3922 /// return a DAG expression to select that will generate the same value by
3923 /// multiplying by a magic number.
3924 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
3925 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
3926                                   bool IsAfterLegalization,
3927                                   SmallVectorImpl<SDNode *> &Created) const {
3928   SDLoc dl(N);
3929   EVT VT = N->getValueType(0);
3930   EVT SVT = VT.getScalarType();
3931   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
3932   EVT ShSVT = ShVT.getScalarType();
3933   unsigned EltBits = VT.getScalarSizeInBits();
3934 
3935   // Check to see if we can do this.
3936   // FIXME: We should be more aggressive here.
3937   if (!isTypeLegal(VT))
3938     return SDValue();
3939 
3940   bool UseNPQ = false;
3941   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
3942 
3943   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
3944     if (C->isNullValue())
3945       return false;
3946     // FIXME: We should use a narrower constant when the upper
3947     // bits are known to be zero.
3948     APInt Divisor = C->getAPIntValue();
3949     APInt::mu magics = Divisor.magicu();
3950     unsigned PreShift = 0, PostShift = 0;
3951 
3952     // If the divisor is even, we can avoid using the expensive fixup by
3953     // shifting the divided value upfront.
3954     if (magics.a != 0 && !Divisor[0]) {
3955       PreShift = Divisor.countTrailingZeros();
3956       // Get magic number for the shifted divisor.
3957       magics = Divisor.lshr(PreShift).magicu(PreShift);
3958       assert(magics.a == 0 && "Should use cheap fixup now");
3959     }
3960 
3961     APInt Magic = magics.m;
3962 
3963     unsigned SelNPQ;
3964     if (magics.a == 0 || Divisor.isOneValue()) {
3965       assert(magics.s < Divisor.getBitWidth() &&
3966              "We shouldn't generate an undefined shift!");
3967       PostShift = magics.s;
3968       SelNPQ = false;
3969     } else {
3970       PostShift = magics.s - 1;
3971       SelNPQ = true;
3972     }
3973 
3974     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
3975     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
3976     NPQFactors.push_back(
3977         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
3978                                : APInt::getNullValue(EltBits),
3979                         dl, SVT));
3980     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
3981     UseNPQ |= SelNPQ;
3982     return true;
3983   };
3984 
3985   SDValue N0 = N->getOperand(0);
3986   SDValue N1 = N->getOperand(1);
3987 
3988   // Collect the shifts/magic values from each element.
3989   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
3990     return SDValue();
3991 
3992   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
3993   if (VT.isVector()) {
3994     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
3995     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
3996     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
3997     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
3998   } else {
3999     PreShift = PreShifts[0];
4000     MagicFactor = MagicFactors[0];
4001     PostShift = PostShifts[0];
4002   }
4003 
4004   SDValue Q = N0;
4005   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
4006   Created.push_back(Q.getNode());
4007 
4008   // FIXME: We should support doing a MUL in a wider type.
4009   auto GetMULHU = [&](SDValue X, SDValue Y) {
4010     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
4011                             : isOperationLegalOrCustom(ISD::MULHU, VT))
4012       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
4013     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
4014                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
4015       SDValue LoHi =
4016           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
4017       return SDValue(LoHi.getNode(), 1);
4018     }
4019     return SDValue(); // No mulhu or equivalent
4020   };
4021 
4022   // Multiply the numerator (operand 0) by the magic value.
4023   Q = GetMULHU(Q, MagicFactor);
4024   if (!Q)
4025     return SDValue();
4026 
4027   Created.push_back(Q.getNode());
4028 
4029   if (UseNPQ) {
4030     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
4031     Created.push_back(NPQ.getNode());
4032 
4033     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
4034     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
4035     if (VT.isVector())
4036       NPQ = GetMULHU(NPQ, NPQFactor);
4037     else
4038       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
4039 
4040     Created.push_back(NPQ.getNode());
4041 
4042     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
4043     Created.push_back(Q.getNode());
4044   }
4045 
4046   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
4047   Created.push_back(Q.getNode());
4048 
4049   SDValue One = DAG.getConstant(1, dl, VT);
4050   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
4051   return DAG.getSelect(dl, VT, IsOne, N0, Q);
4052 }
4053 
4054 bool TargetLowering::
4055 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
4056   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
4057     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
4058                                 "be a constant integer");
4059     return true;
4060   }
4061 
4062   return false;
4063 }
4064 
4065 //===----------------------------------------------------------------------===//
4066 // Legalization Utilities
4067 //===----------------------------------------------------------------------===//
4068 
4069 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
4070                                     SDValue LHS, SDValue RHS,
4071                                     SmallVectorImpl<SDValue> &Result,
4072                                     EVT HiLoVT, SelectionDAG &DAG,
4073                                     MulExpansionKind Kind, SDValue LL,
4074                                     SDValue LH, SDValue RL, SDValue RH) const {
4075   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
4076          Opcode == ISD::SMUL_LOHI);
4077 
4078   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
4079                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
4080   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
4081                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
4082   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
4083                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
4084   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
4085                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
4086 
4087   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
4088     return false;
4089 
4090   unsigned OuterBitSize = VT.getScalarSizeInBits();
4091   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
4092   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
4093   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
4094 
4095   // LL, LH, RL, and RH must be either all NULL or all set to a value.
4096   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
4097          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
4098 
4099   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
4100   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
4101                           bool Signed) -> bool {
4102     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
4103       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
4104       Hi = SDValue(Lo.getNode(), 1);
4105       return true;
4106     }
4107     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
4108       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
4109       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
4110       return true;
4111     }
4112     return false;
4113   };
4114 
4115   SDValue Lo, Hi;
4116 
4117   if (!LL.getNode() && !RL.getNode() &&
4118       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
4119     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
4120     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
4121   }
4122 
4123   if (!LL.getNode())
4124     return false;
4125 
4126   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
4127   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
4128       DAG.MaskedValueIsZero(RHS, HighMask)) {
4129     // The inputs are both zero-extended.
4130     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
4131       Result.push_back(Lo);
4132       Result.push_back(Hi);
4133       if (Opcode != ISD::MUL) {
4134         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
4135         Result.push_back(Zero);
4136         Result.push_back(Zero);
4137       }
4138       return true;
4139     }
4140   }
4141 
4142   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
4143       RHSSB > InnerBitSize) {
4144     // The input values are both sign-extended.
4145     // TODO non-MUL case?
4146     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
4147       Result.push_back(Lo);
4148       Result.push_back(Hi);
4149       return true;
4150     }
4151   }
4152 
4153   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
4154   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
4155   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
4156     // FIXME getShiftAmountTy does not always return a sensible result when VT
4157     // is an illegal type, and so the type may be too small to fit the shift
4158     // amount. Override it with i32. The shift will have to be legalized.
4159     ShiftAmountTy = MVT::i32;
4160   }
4161   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
4162 
4163   if (!LH.getNode() && !RH.getNode() &&
4164       isOperationLegalOrCustom(ISD::SRL, VT) &&
4165       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
4166     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
4167     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
4168     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
4169     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
4170   }
4171 
4172   if (!LH.getNode())
4173     return false;
4174 
4175   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
4176     return false;
4177 
4178   Result.push_back(Lo);
4179 
4180   if (Opcode == ISD::MUL) {
4181     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
4182     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
4183     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
4184     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
4185     Result.push_back(Hi);
4186     return true;
4187   }
4188 
4189   // Compute the full width result.
4190   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
4191     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
4192     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
4193     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
4194     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
4195   };
4196 
4197   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
4198   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
4199     return false;
4200 
4201   // This is effectively the add part of a multiply-add of half-sized operands,
4202   // so it cannot overflow.
4203   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
4204 
4205   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
4206     return false;
4207 
4208   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
4209   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
4210 
4211   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
4212                   isOperationLegalOrCustom(ISD::ADDE, VT));
4213   if (UseGlue)
4214     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
4215                        Merge(Lo, Hi));
4216   else
4217     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
4218                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
4219 
4220   SDValue Carry = Next.getValue(1);
4221   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
4222   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
4223 
4224   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
4225     return false;
4226 
4227   if (UseGlue)
4228     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
4229                      Carry);
4230   else
4231     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
4232                      Zero, Carry);
4233 
4234   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
4235 
4236   if (Opcode == ISD::SMUL_LOHI) {
4237     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
4238                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
4239     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
4240 
4241     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
4242                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
4243     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
4244   }
4245 
4246   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
4247   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
4248   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
4249   return true;
4250 }
4251 
4252 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
4253                                SelectionDAG &DAG, MulExpansionKind Kind,
4254                                SDValue LL, SDValue LH, SDValue RL,
4255                                SDValue RH) const {
4256   SmallVector<SDValue, 2> Result;
4257   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
4258                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
4259                            DAG, Kind, LL, LH, RL, RH);
4260   if (Ok) {
4261     assert(Result.size() == 2);
4262     Lo = Result[0];
4263     Hi = Result[1];
4264   }
4265   return Ok;
4266 }
4267 
4268 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
4269                                        SelectionDAG &DAG) const {
4270   EVT VT = Node->getValueType(0);
4271 
4272   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
4273                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
4274                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
4275                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
4276     return false;
4277 
4278   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
4279   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
4280   SDValue X = Node->getOperand(0);
4281   SDValue Y = Node->getOperand(1);
4282   SDValue Z = Node->getOperand(2);
4283 
4284   unsigned EltSizeInBits = VT.getScalarSizeInBits();
4285   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
4286   SDLoc DL(SDValue(Node, 0));
4287 
4288   EVT ShVT = Z.getValueType();
4289   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
4290   SDValue Zero = DAG.getConstant(0, DL, ShVT);
4291 
4292   SDValue ShAmt;
4293   if (isPowerOf2_32(EltSizeInBits)) {
4294     SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
4295     ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
4296   } else {
4297     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
4298   }
4299 
4300   SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
4301   SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
4302   SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
4303   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
4304 
4305   // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
4306   // and that is undefined. We must compare and select to avoid UB.
4307   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
4308 
4309   // For fshl, 0-shift returns the 1st arg (X).
4310   // For fshr, 0-shift returns the 2nd arg (Y).
4311   SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
4312   Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
4313   return true;
4314 }
4315 
4316 // TODO: Merge with expandFunnelShift.
4317 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
4318                                SelectionDAG &DAG) const {
4319   EVT VT = Node->getValueType(0);
4320   unsigned EltSizeInBits = VT.getScalarSizeInBits();
4321   bool IsLeft = Node->getOpcode() == ISD::ROTL;
4322   SDValue Op0 = Node->getOperand(0);
4323   SDValue Op1 = Node->getOperand(1);
4324   SDLoc DL(SDValue(Node, 0));
4325 
4326   EVT ShVT = Op1.getValueType();
4327   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
4328 
4329   // If a rotate in the other direction is legal, use it.
4330   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
4331   if (isOperationLegal(RevRot, VT)) {
4332     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
4333     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
4334     return true;
4335   }
4336 
4337   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
4338                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
4339                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
4340                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
4341                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
4342     return false;
4343 
4344   // Otherwise,
4345   //   (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
4346   //   (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
4347   //
4348   assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
4349          "Expecting the type bitwidth to be a power of 2");
4350   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
4351   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
4352   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
4353   SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
4354   SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
4355   SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
4356   Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
4357                        DAG.getNode(HsOpc, DL, VT, Op0, And1));
4358   return true;
4359 }
4360 
4361 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
4362                                SelectionDAG &DAG) const {
4363   SDValue Src = Node->getOperand(0);
4364   EVT SrcVT = Src.getValueType();
4365   EVT DstVT = Node->getValueType(0);
4366   SDLoc dl(SDValue(Node, 0));
4367 
4368   // FIXME: Only f32 to i64 conversions are supported.
4369   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
4370     return false;
4371 
4372   // Expand f32 -> i64 conversion
4373   // This algorithm comes from compiler-rt's implementation of fixsfdi:
4374   // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c
4375   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
4376   EVT IntVT = SrcVT.changeTypeToInteger();
4377   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
4378 
4379   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
4380   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
4381   SDValue Bias = DAG.getConstant(127, dl, IntVT);
4382   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
4383   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
4384   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
4385 
4386   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
4387 
4388   SDValue ExponentBits = DAG.getNode(
4389       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
4390       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
4391   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
4392 
4393   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
4394                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
4395                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
4396   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
4397 
4398   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
4399                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
4400                           DAG.getConstant(0x00800000, dl, IntVT));
4401 
4402   R = DAG.getZExtOrTrunc(R, dl, DstVT);
4403 
4404   R = DAG.getSelectCC(
4405       dl, Exponent, ExponentLoBit,
4406       DAG.getNode(ISD::SHL, dl, DstVT, R,
4407                   DAG.getZExtOrTrunc(
4408                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
4409                       dl, IntShVT)),
4410       DAG.getNode(ISD::SRL, dl, DstVT, R,
4411                   DAG.getZExtOrTrunc(
4412                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
4413                       dl, IntShVT)),
4414       ISD::SETGT);
4415 
4416   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
4417                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
4418 
4419   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
4420                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
4421   return true;
4422 }
4423 
4424 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
4425                                       SelectionDAG &DAG) const {
4426   SDLoc dl(SDValue(Node, 0));
4427   SDValue Src = Node->getOperand(0);
4428 
4429   EVT SrcVT = Src.getValueType();
4430   EVT DstVT = Node->getValueType(0);
4431   EVT SetCCVT =
4432       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
4433 
4434   // Only expand vector types if we have the appropriate vector bit operations.
4435   if (DstVT.isVector() && (!isOperationLegalOrCustom(ISD::FP_TO_SINT, DstVT) ||
4436                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
4437     return false;
4438 
4439   // If the maximum float value is smaller then the signed integer range,
4440   // the destination signmask can't be represented by the float, so we can
4441   // just use FP_TO_SINT directly.
4442   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
4443   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
4444   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
4445   if (APFloat::opOverflow &
4446       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
4447     Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
4448     return true;
4449   }
4450 
4451   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
4452   SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
4453 
4454   bool Strict = shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
4455   if (Strict) {
4456     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
4457     // signmask then offset (the result of which should be fully representable).
4458     // Sel = Src < 0x8000000000000000
4459     // Val = select Sel, Src, Src - 0x8000000000000000
4460     // Ofs = select Sel, 0, 0x8000000000000000
4461     // Result = fp_to_sint(Val) ^ Ofs
4462 
4463     // TODO: Should any fast-math-flags be set for the FSUB?
4464     SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src,
4465                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
4466     SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT),
4467                                 DAG.getConstant(SignMask, dl, DstVT));
4468     Result = DAG.getNode(ISD::XOR, dl, DstVT,
4469                          DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val), Ofs);
4470   } else {
4471     // Expand based on maximum range of FP_TO_SINT:
4472     // True = fp_to_sint(Src)
4473     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
4474     // Result = select (Src < 0x8000000000000000), True, False
4475 
4476     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
4477     // TODO: Should any fast-math-flags be set for the FSUB?
4478     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
4479                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
4480     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
4481                         DAG.getConstant(SignMask, dl, DstVT));
4482     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
4483   }
4484   return true;
4485 }
4486 
4487 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
4488                                       SelectionDAG &DAG) const {
4489   SDValue Src = Node->getOperand(0);
4490   EVT SrcVT = Src.getValueType();
4491   EVT DstVT = Node->getValueType(0);
4492 
4493   if (SrcVT.getScalarType() != MVT::i64)
4494     return false;
4495 
4496   SDLoc dl(SDValue(Node, 0));
4497   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
4498 
4499   if (DstVT.getScalarType() == MVT::f32) {
4500     // Only expand vector types if we have the appropriate vector bit
4501     // operations.
4502     if (SrcVT.isVector() &&
4503         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
4504          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
4505          !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) ||
4506          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
4507          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
4508       return false;
4509 
4510     // For unsigned conversions, convert them to signed conversions using the
4511     // algorithm from the x86_64 __floatundidf in compiler_rt.
4512     SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src);
4513 
4514     SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
4515     SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst);
4516     SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
4517     SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst);
4518     SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
4519 
4520     SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or);
4521     SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt);
4522 
4523     // TODO: This really should be implemented using a branch rather than a
4524     // select.  We happen to get lucky and machinesink does the right
4525     // thing most of the time.  This would be a good candidate for a
4526     // pseudo-op, or, even better, for whole-function isel.
4527     EVT SetCCVT =
4528         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
4529 
4530     SDValue SignBitTest = DAG.getSetCC(
4531         dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
4532     Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast);
4533     return true;
4534   }
4535 
4536   if (DstVT.getScalarType() == MVT::f64) {
4537     // Only expand vector types if we have the appropriate vector bit
4538     // operations.
4539     if (SrcVT.isVector() &&
4540         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
4541          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
4542          !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
4543          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
4544          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
4545       return false;
4546 
4547     // Implementation of unsigned i64 to f64 following the algorithm in
4548     // __floatundidf in compiler_rt. This implementation has the advantage
4549     // of performing rounding correctly, both in the default rounding mode
4550     // and in all alternate rounding modes.
4551     SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
4552     SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
4553         BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
4554     SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
4555     SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
4556     SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
4557 
4558     SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
4559     SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
4560     SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
4561     SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
4562     SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
4563     SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
4564     SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
4565     Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
4566     return true;
4567   }
4568 
4569   return false;
4570 }
4571 
4572 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
4573                                               SelectionDAG &DAG) const {
4574   SDLoc dl(Node);
4575   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
4576     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
4577   EVT VT = Node->getValueType(0);
4578   if (isOperationLegalOrCustom(NewOp, VT)) {
4579     SDValue Quiet0 = Node->getOperand(0);
4580     SDValue Quiet1 = Node->getOperand(1);
4581 
4582     if (!Node->getFlags().hasNoNaNs()) {
4583       // Insert canonicalizes if it's possible we need to quiet to get correct
4584       // sNaN behavior.
4585       if (!DAG.isKnownNeverSNaN(Quiet0)) {
4586         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
4587                              Node->getFlags());
4588       }
4589       if (!DAG.isKnownNeverSNaN(Quiet1)) {
4590         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
4591                              Node->getFlags());
4592       }
4593     }
4594 
4595     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
4596   }
4597 
4598   return SDValue();
4599 }
4600 
4601 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
4602                                  SelectionDAG &DAG) const {
4603   SDLoc dl(Node);
4604   EVT VT = Node->getValueType(0);
4605   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4606   SDValue Op = Node->getOperand(0);
4607   unsigned Len = VT.getScalarSizeInBits();
4608   assert(VT.isInteger() && "CTPOP not implemented for this type.");
4609 
4610   // TODO: Add support for irregular type lengths.
4611   if (!(Len <= 128 && Len % 8 == 0))
4612     return false;
4613 
4614   // Only expand vector types if we have the appropriate vector bit operations.
4615   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
4616                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
4617                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
4618                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
4619                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
4620     return false;
4621 
4622   // This is the "best" algorithm from
4623   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
4624   SDValue Mask55 =
4625       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
4626   SDValue Mask33 =
4627       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
4628   SDValue Mask0F =
4629       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
4630   SDValue Mask01 =
4631       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
4632 
4633   // v = v - ((v >> 1) & 0x55555555...)
4634   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
4635                    DAG.getNode(ISD::AND, dl, VT,
4636                                DAG.getNode(ISD::SRL, dl, VT, Op,
4637                                            DAG.getConstant(1, dl, ShVT)),
4638                                Mask55));
4639   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
4640   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
4641                    DAG.getNode(ISD::AND, dl, VT,
4642                                DAG.getNode(ISD::SRL, dl, VT, Op,
4643                                            DAG.getConstant(2, dl, ShVT)),
4644                                Mask33));
4645   // v = (v + (v >> 4)) & 0x0F0F0F0F...
4646   Op = DAG.getNode(ISD::AND, dl, VT,
4647                    DAG.getNode(ISD::ADD, dl, VT, Op,
4648                                DAG.getNode(ISD::SRL, dl, VT, Op,
4649                                            DAG.getConstant(4, dl, ShVT))),
4650                    Mask0F);
4651   // v = (v * 0x01010101...) >> (Len - 8)
4652   if (Len > 8)
4653     Op =
4654         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
4655                     DAG.getConstant(Len - 8, dl, ShVT));
4656 
4657   Result = Op;
4658   return true;
4659 }
4660 
4661 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
4662                                 SelectionDAG &DAG) const {
4663   SDLoc dl(Node);
4664   EVT VT = Node->getValueType(0);
4665   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4666   SDValue Op = Node->getOperand(0);
4667   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
4668 
4669   // If the non-ZERO_UNDEF version is supported we can use that instead.
4670   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
4671       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
4672     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
4673     return true;
4674   }
4675 
4676   // If the ZERO_UNDEF version is supported use that and handle the zero case.
4677   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
4678     EVT SetCCVT =
4679         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
4680     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
4681     SDValue Zero = DAG.getConstant(0, dl, VT);
4682     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
4683     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
4684                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
4685     return true;
4686   }
4687 
4688   // Only expand vector types if we have the appropriate vector bit operations.
4689   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
4690                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
4691                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
4692                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
4693     return false;
4694 
4695   // for now, we do this:
4696   // x = x | (x >> 1);
4697   // x = x | (x >> 2);
4698   // ...
4699   // x = x | (x >>16);
4700   // x = x | (x >>32); // for 64-bit input
4701   // return popcount(~x);
4702   //
4703   // Ref: "Hacker's Delight" by Henry Warren
4704   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
4705     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
4706     Op = DAG.getNode(ISD::OR, dl, VT, Op,
4707                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
4708   }
4709   Op = DAG.getNOT(dl, Op, VT);
4710   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
4711   return true;
4712 }
4713 
4714 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
4715                                 SelectionDAG &DAG) const {
4716   SDLoc dl(Node);
4717   EVT VT = Node->getValueType(0);
4718   SDValue Op = Node->getOperand(0);
4719   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
4720 
4721   // If the non-ZERO_UNDEF version is supported we can use that instead.
4722   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
4723       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
4724     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
4725     return true;
4726   }
4727 
4728   // If the ZERO_UNDEF version is supported use that and handle the zero case.
4729   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
4730     EVT SetCCVT =
4731         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
4732     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
4733     SDValue Zero = DAG.getConstant(0, dl, VT);
4734     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
4735     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
4736                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
4737     return true;
4738   }
4739 
4740   // Only expand vector types if we have the appropriate vector bit operations.
4741   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
4742                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
4743                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
4744                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
4745                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
4746                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
4747     return false;
4748 
4749   // for now, we use: { return popcount(~x & (x - 1)); }
4750   // unless the target has ctlz but not ctpop, in which case we use:
4751   // { return 32 - nlz(~x & (x-1)); }
4752   // Ref: "Hacker's Delight" by Henry Warren
4753   SDValue Tmp = DAG.getNode(
4754       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
4755       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
4756 
4757   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
4758   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
4759     Result =
4760         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
4761                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
4762     return true;
4763   }
4764 
4765   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
4766   return true;
4767 }
4768 
4769 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
4770                                             SelectionDAG &DAG) const {
4771   SDLoc SL(LD);
4772   SDValue Chain = LD->getChain();
4773   SDValue BasePTR = LD->getBasePtr();
4774   EVT SrcVT = LD->getMemoryVT();
4775   ISD::LoadExtType ExtType = LD->getExtensionType();
4776 
4777   unsigned NumElem = SrcVT.getVectorNumElements();
4778 
4779   EVT SrcEltVT = SrcVT.getScalarType();
4780   EVT DstEltVT = LD->getValueType(0).getScalarType();
4781 
4782   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
4783   assert(SrcEltVT.isByteSized());
4784 
4785   SmallVector<SDValue, 8> Vals;
4786   SmallVector<SDValue, 8> LoadChains;
4787 
4788   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
4789     SDValue ScalarLoad =
4790         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
4791                        LD->getPointerInfo().getWithOffset(Idx * Stride),
4792                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
4793                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
4794 
4795     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
4796 
4797     Vals.push_back(ScalarLoad.getValue(0));
4798     LoadChains.push_back(ScalarLoad.getValue(1));
4799   }
4800 
4801   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
4802   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
4803 
4804   return DAG.getMergeValues({ Value, NewChain }, SL);
4805 }
4806 
4807 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
4808                                              SelectionDAG &DAG) const {
4809   SDLoc SL(ST);
4810 
4811   SDValue Chain = ST->getChain();
4812   SDValue BasePtr = ST->getBasePtr();
4813   SDValue Value = ST->getValue();
4814   EVT StVT = ST->getMemoryVT();
4815 
4816   // The type of the data we want to save
4817   EVT RegVT = Value.getValueType();
4818   EVT RegSclVT = RegVT.getScalarType();
4819 
4820   // The type of data as saved in memory.
4821   EVT MemSclVT = StVT.getScalarType();
4822 
4823   EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
4824   unsigned NumElem = StVT.getVectorNumElements();
4825 
4826   // A vector must always be stored in memory as-is, i.e. without any padding
4827   // between the elements, since various code depend on it, e.g. in the
4828   // handling of a bitcast of a vector type to int, which may be done with a
4829   // vector store followed by an integer load. A vector that does not have
4830   // elements that are byte-sized must therefore be stored as an integer
4831   // built out of the extracted vector elements.
4832   if (!MemSclVT.isByteSized()) {
4833     unsigned NumBits = StVT.getSizeInBits();
4834     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
4835 
4836     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
4837 
4838     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
4839       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
4840                                 DAG.getConstant(Idx, SL, IdxVT));
4841       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
4842       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
4843       unsigned ShiftIntoIdx =
4844           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
4845       SDValue ShiftAmount =
4846           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
4847       SDValue ShiftedElt =
4848           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
4849       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
4850     }
4851 
4852     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
4853                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
4854                         ST->getAAInfo());
4855   }
4856 
4857   // Store Stride in bytes
4858   unsigned Stride = MemSclVT.getSizeInBits() / 8;
4859   assert (Stride && "Zero stride!");
4860   // Extract each of the elements from the original vector and save them into
4861   // memory individually.
4862   SmallVector<SDValue, 8> Stores;
4863   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
4864     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
4865                               DAG.getConstant(Idx, SL, IdxVT));
4866 
4867     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
4868 
4869     // This scalar TruncStore may be illegal, but we legalize it later.
4870     SDValue Store = DAG.getTruncStore(
4871         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
4872         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
4873         ST->getMemOperand()->getFlags(), ST->getAAInfo());
4874 
4875     Stores.push_back(Store);
4876   }
4877 
4878   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
4879 }
4880 
4881 std::pair<SDValue, SDValue>
4882 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
4883   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
4884          "unaligned indexed loads not implemented!");
4885   SDValue Chain = LD->getChain();
4886   SDValue Ptr = LD->getBasePtr();
4887   EVT VT = LD->getValueType(0);
4888   EVT LoadedVT = LD->getMemoryVT();
4889   SDLoc dl(LD);
4890   auto &MF = DAG.getMachineFunction();
4891 
4892   if (VT.isFloatingPoint() || VT.isVector()) {
4893     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
4894     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
4895       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
4896           LoadedVT.isVector()) {
4897         // Scalarize the load and let the individual components be handled.
4898         SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
4899         if (Scalarized->getOpcode() == ISD::MERGE_VALUES)
4900           return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1));
4901         return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
4902       }
4903 
4904       // Expand to a (misaligned) integer load of the same size,
4905       // then bitconvert to floating point or vector.
4906       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
4907                                     LD->getMemOperand());
4908       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
4909       if (LoadedVT != VT)
4910         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
4911                              ISD::ANY_EXTEND, dl, VT, Result);
4912 
4913       return std::make_pair(Result, newLoad.getValue(1));
4914     }
4915 
4916     // Copy the value to a (aligned) stack slot using (unaligned) integer
4917     // loads and stores, then do a (aligned) load from the stack slot.
4918     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
4919     unsigned LoadedBytes = LoadedVT.getStoreSize();
4920     unsigned RegBytes = RegVT.getSizeInBits() / 8;
4921     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
4922 
4923     // Make sure the stack slot is also aligned for the register type.
4924     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
4925     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
4926     SmallVector<SDValue, 8> Stores;
4927     SDValue StackPtr = StackBase;
4928     unsigned Offset = 0;
4929 
4930     EVT PtrVT = Ptr.getValueType();
4931     EVT StackPtrVT = StackPtr.getValueType();
4932 
4933     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
4934     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
4935 
4936     // Do all but one copies using the full register width.
4937     for (unsigned i = 1; i < NumRegs; i++) {
4938       // Load one integer register's worth from the original location.
4939       SDValue Load = DAG.getLoad(
4940           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
4941           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
4942           LD->getAAInfo());
4943       // Follow the load with a store to the stack slot.  Remember the store.
4944       Stores.push_back(DAG.getStore(
4945           Load.getValue(1), dl, Load, StackPtr,
4946           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
4947       // Increment the pointers.
4948       Offset += RegBytes;
4949 
4950       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
4951       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
4952     }
4953 
4954     // The last copy may be partial.  Do an extending load.
4955     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
4956                                   8 * (LoadedBytes - Offset));
4957     SDValue Load =
4958         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
4959                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
4960                        MinAlign(LD->getAlignment(), Offset),
4961                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
4962     // Follow the load with a store to the stack slot.  Remember the store.
4963     // On big-endian machines this requires a truncating store to ensure
4964     // that the bits end up in the right place.
4965     Stores.push_back(DAG.getTruncStore(
4966         Load.getValue(1), dl, Load, StackPtr,
4967         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
4968 
4969     // The order of the stores doesn't matter - say it with a TokenFactor.
4970     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
4971 
4972     // Finally, perform the original load only redirected to the stack slot.
4973     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
4974                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
4975                           LoadedVT);
4976 
4977     // Callers expect a MERGE_VALUES node.
4978     return std::make_pair(Load, TF);
4979   }
4980 
4981   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
4982          "Unaligned load of unsupported type.");
4983 
4984   // Compute the new VT that is half the size of the old one.  This is an
4985   // integer MVT.
4986   unsigned NumBits = LoadedVT.getSizeInBits();
4987   EVT NewLoadedVT;
4988   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
4989   NumBits >>= 1;
4990 
4991   unsigned Alignment = LD->getAlignment();
4992   unsigned IncrementSize = NumBits / 8;
4993   ISD::LoadExtType HiExtType = LD->getExtensionType();
4994 
4995   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
4996   if (HiExtType == ISD::NON_EXTLOAD)
4997     HiExtType = ISD::ZEXTLOAD;
4998 
4999   // Load the value in two parts
5000   SDValue Lo, Hi;
5001   if (DAG.getDataLayout().isLittleEndian()) {
5002     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
5003                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
5004                         LD->getAAInfo());
5005 
5006     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
5007     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
5008                         LD->getPointerInfo().getWithOffset(IncrementSize),
5009                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
5010                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
5011   } else {
5012     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
5013                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
5014                         LD->getAAInfo());
5015 
5016     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
5017     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
5018                         LD->getPointerInfo().getWithOffset(IncrementSize),
5019                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
5020                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
5021   }
5022 
5023   // aggregate the two parts
5024   SDValue ShiftAmount =
5025       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
5026                                                     DAG.getDataLayout()));
5027   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
5028   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
5029 
5030   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
5031                              Hi.getValue(1));
5032 
5033   return std::make_pair(Result, TF);
5034 }
5035 
5036 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
5037                                              SelectionDAG &DAG) const {
5038   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
5039          "unaligned indexed stores not implemented!");
5040   SDValue Chain = ST->getChain();
5041   SDValue Ptr = ST->getBasePtr();
5042   SDValue Val = ST->getValue();
5043   EVT VT = Val.getValueType();
5044   int Alignment = ST->getAlignment();
5045   auto &MF = DAG.getMachineFunction();
5046   EVT MemVT = ST->getMemoryVT();
5047 
5048   SDLoc dl(ST);
5049   if (MemVT.isFloatingPoint() || MemVT.isVector()) {
5050     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
5051     if (isTypeLegal(intVT)) {
5052       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
5053           MemVT.isVector()) {
5054         // Scalarize the store and let the individual components be handled.
5055         SDValue Result = scalarizeVectorStore(ST, DAG);
5056 
5057         return Result;
5058       }
5059       // Expand to a bitconvert of the value to the integer type of the
5060       // same size, then a (misaligned) int store.
5061       // FIXME: Does not handle truncating floating point stores!
5062       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
5063       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
5064                             Alignment, ST->getMemOperand()->getFlags());
5065       return Result;
5066     }
5067     // Do a (aligned) store to a stack slot, then copy from the stack slot
5068     // to the final destination using (unaligned) integer loads and stores.
5069     EVT StoredVT = ST->getMemoryVT();
5070     MVT RegVT =
5071       getRegisterType(*DAG.getContext(),
5072                       EVT::getIntegerVT(*DAG.getContext(),
5073                                         StoredVT.getSizeInBits()));
5074     EVT PtrVT = Ptr.getValueType();
5075     unsigned StoredBytes = StoredVT.getStoreSize();
5076     unsigned RegBytes = RegVT.getSizeInBits() / 8;
5077     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
5078 
5079     // Make sure the stack slot is also aligned for the register type.
5080     SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
5081     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
5082 
5083     // Perform the original store, only redirected to the stack slot.
5084     SDValue Store = DAG.getTruncStore(
5085         Chain, dl, Val, StackPtr,
5086         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoredVT);
5087 
5088     EVT StackPtrVT = StackPtr.getValueType();
5089 
5090     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
5091     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
5092     SmallVector<SDValue, 8> Stores;
5093     unsigned Offset = 0;
5094 
5095     // Do all but one copies using the full register width.
5096     for (unsigned i = 1; i < NumRegs; i++) {
5097       // Load one integer register's worth from the stack slot.
5098       SDValue Load = DAG.getLoad(
5099           RegVT, dl, Store, StackPtr,
5100           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
5101       // Store it to the final location.  Remember the store.
5102       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
5103                                     ST->getPointerInfo().getWithOffset(Offset),
5104                                     MinAlign(ST->getAlignment(), Offset),
5105                                     ST->getMemOperand()->getFlags()));
5106       // Increment the pointers.
5107       Offset += RegBytes;
5108       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
5109       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
5110     }
5111 
5112     // The last store may be partial.  Do a truncating store.  On big-endian
5113     // machines this requires an extending load from the stack slot to ensure
5114     // that the bits are in the right place.
5115     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
5116                                   8 * (StoredBytes - Offset));
5117 
5118     // Load from the stack slot.
5119     SDValue Load = DAG.getExtLoad(
5120         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
5121         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT);
5122 
5123     Stores.push_back(
5124         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
5125                           ST->getPointerInfo().getWithOffset(Offset), MemVT,
5126                           MinAlign(ST->getAlignment(), Offset),
5127                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
5128     // The order of the stores doesn't matter - say it with a TokenFactor.
5129     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
5130     return Result;
5131   }
5132 
5133   assert(ST->getMemoryVT().isInteger() &&
5134          !ST->getMemoryVT().isVector() &&
5135          "Unaligned store of unknown type.");
5136   // Get the half-size VT
5137   EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
5138   int NumBits = NewStoredVT.getSizeInBits();
5139   int IncrementSize = NumBits / 8;
5140 
5141   // Divide the stored value in two parts.
5142   SDValue ShiftAmount =
5143       DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(),
5144                                                     DAG.getDataLayout()));
5145   SDValue Lo = Val;
5146   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
5147 
5148   // Store the two parts
5149   SDValue Store1, Store2;
5150   Store1 = DAG.getTruncStore(Chain, dl,
5151                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
5152                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
5153                              ST->getMemOperand()->getFlags());
5154 
5155   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
5156   Alignment = MinAlign(Alignment, IncrementSize);
5157   Store2 = DAG.getTruncStore(
5158       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
5159       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
5160       ST->getMemOperand()->getFlags(), ST->getAAInfo());
5161 
5162   SDValue Result =
5163     DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
5164   return Result;
5165 }
5166 
5167 SDValue
5168 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
5169                                        const SDLoc &DL, EVT DataVT,
5170                                        SelectionDAG &DAG,
5171                                        bool IsCompressedMemory) const {
5172   SDValue Increment;
5173   EVT AddrVT = Addr.getValueType();
5174   EVT MaskVT = Mask.getValueType();
5175   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
5176          "Incompatible types of Data and Mask");
5177   if (IsCompressedMemory) {
5178     // Incrementing the pointer according to number of '1's in the mask.
5179     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
5180     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
5181     if (MaskIntVT.getSizeInBits() < 32) {
5182       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
5183       MaskIntVT = MVT::i32;
5184     }
5185 
5186     // Count '1's with POPCNT.
5187     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
5188     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
5189     // Scale is an element size in bytes.
5190     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
5191                                     AddrVT);
5192     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
5193   } else
5194     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
5195 
5196   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
5197 }
5198 
5199 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
5200                                        SDValue Idx,
5201                                        EVT VecVT,
5202                                        const SDLoc &dl) {
5203   if (isa<ConstantSDNode>(Idx))
5204     return Idx;
5205 
5206   EVT IdxVT = Idx.getValueType();
5207   unsigned NElts = VecVT.getVectorNumElements();
5208   if (isPowerOf2_32(NElts)) {
5209     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
5210                                      Log2_32(NElts));
5211     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
5212                        DAG.getConstant(Imm, dl, IdxVT));
5213   }
5214 
5215   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
5216                      DAG.getConstant(NElts - 1, dl, IdxVT));
5217 }
5218 
5219 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
5220                                                 SDValue VecPtr, EVT VecVT,
5221                                                 SDValue Index) const {
5222   SDLoc dl(Index);
5223   // Make sure the index type is big enough to compute in.
5224   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
5225 
5226   EVT EltVT = VecVT.getVectorElementType();
5227 
5228   // Calculate the element offset and add it to the pointer.
5229   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
5230   assert(EltSize * 8 == EltVT.getSizeInBits() &&
5231          "Converting bits to bytes lost precision");
5232 
5233   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
5234 
5235   EVT IdxVT = Index.getValueType();
5236 
5237   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
5238                       DAG.getConstant(EltSize, dl, IdxVT));
5239   return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index);
5240 }
5241 
5242 //===----------------------------------------------------------------------===//
5243 // Implementation of Emulated TLS Model
5244 //===----------------------------------------------------------------------===//
5245 
5246 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
5247                                                 SelectionDAG &DAG) const {
5248   // Access to address of TLS varialbe xyz is lowered to a function call:
5249   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
5250   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5251   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
5252   SDLoc dl(GA);
5253 
5254   ArgListTy Args;
5255   ArgListEntry Entry;
5256   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
5257   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
5258   StringRef EmuTlsVarName(NameString);
5259   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
5260   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
5261   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
5262   Entry.Ty = VoidPtrType;
5263   Args.push_back(Entry);
5264 
5265   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
5266 
5267   TargetLowering::CallLoweringInfo CLI(DAG);
5268   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
5269   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
5270   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
5271 
5272   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
5273   // At last for X86 targets, maybe good for other targets too?
5274   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5275   MFI.setAdjustsStack(true);  // Is this only for X86 target?
5276   MFI.setHasCalls(true);
5277 
5278   assert((GA->getOffset() == 0) &&
5279          "Emulated TLS must have zero offset in GlobalAddressSDNode");
5280   return CallResult.first;
5281 }
5282 
5283 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
5284                                                 SelectionDAG &DAG) const {
5285   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
5286   if (!isCtlzFast())
5287     return SDValue();
5288   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5289   SDLoc dl(Op);
5290   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5291     if (C->isNullValue() && CC == ISD::SETEQ) {
5292       EVT VT = Op.getOperand(0).getValueType();
5293       SDValue Zext = Op.getOperand(0);
5294       if (VT.bitsLT(MVT::i32)) {
5295         VT = MVT::i32;
5296         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
5297       }
5298       unsigned Log2b = Log2_32(VT.getSizeInBits());
5299       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
5300       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
5301                                 DAG.getConstant(Log2b, dl, MVT::i32));
5302       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
5303     }
5304   }
5305   return SDValue();
5306 }
5307 
5308 SDValue TargetLowering::getExpandedSaturationAdditionSubtraction(
5309     SDNode *Node, SelectionDAG &DAG) const {
5310   unsigned Opcode = Node->getOpcode();
5311   unsigned OverflowOp;
5312   switch (Opcode) {
5313   case ISD::SADDSAT:
5314     OverflowOp = ISD::SADDO;
5315     break;
5316   case ISD::UADDSAT:
5317     OverflowOp = ISD::UADDO;
5318     break;
5319   case ISD::SSUBSAT:
5320     OverflowOp = ISD::SSUBO;
5321     break;
5322   case ISD::USUBSAT:
5323     OverflowOp = ISD::USUBO;
5324     break;
5325   default:
5326     llvm_unreachable("Expected method to receive signed or unsigned saturation "
5327                      "addition or subtraction node.");
5328   }
5329   assert(Node->getNumOperands() == 2 && "Expected node to have 2 operands.");
5330 
5331   SDLoc dl(Node);
5332   SDValue LHS = Node->getOperand(0);
5333   SDValue RHS = Node->getOperand(1);
5334   assert(LHS.getValueType().isScalarInteger() &&
5335          "Expected operands to be integers. Vector of int arguments should "
5336          "already be unrolled.");
5337   assert(RHS.getValueType().isScalarInteger() &&
5338          "Expected operands to be integers. Vector of int arguments should "
5339          "already be unrolled.");
5340   assert(LHS.getValueType() == RHS.getValueType() &&
5341          "Expected both operands to be the same type");
5342 
5343   unsigned BitWidth = LHS.getValueSizeInBits();
5344   EVT ResultType = LHS.getValueType();
5345   EVT BoolVT =
5346       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ResultType);
5347   SDValue Result =
5348       DAG.getNode(OverflowOp, dl, DAG.getVTList(ResultType, BoolVT), LHS, RHS);
5349   SDValue SumDiff = Result.getValue(0);
5350   SDValue Overflow = Result.getValue(1);
5351   SDValue Zero = DAG.getConstant(0, dl, ResultType);
5352 
5353   if (Opcode == ISD::UADDSAT) {
5354     // Just need to check overflow for SatMax.
5355     APInt MaxVal = APInt::getMaxValue(BitWidth);
5356     SDValue SatMax = DAG.getConstant(MaxVal, dl, ResultType);
5357     return DAG.getSelect(dl, ResultType, Overflow, SatMax, SumDiff);
5358   } else if (Opcode == ISD::USUBSAT) {
5359     // Just need to check overflow for SatMin.
5360     APInt MinVal = APInt::getMinValue(BitWidth);
5361     SDValue SatMin = DAG.getConstant(MinVal, dl, ResultType);
5362     return DAG.getSelect(dl, ResultType, Overflow, SatMin, SumDiff);
5363   } else {
5364     // SatMax -> Overflow && SumDiff < 0
5365     // SatMin -> Overflow && SumDiff >= 0
5366     APInt MinVal = APInt::getSignedMinValue(BitWidth);
5367     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
5368     SDValue SatMin = DAG.getConstant(MinVal, dl, ResultType);
5369     SDValue SatMax = DAG.getConstant(MaxVal, dl, ResultType);
5370     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
5371     Result = DAG.getSelect(dl, ResultType, SumNeg, SatMax, SatMin);
5372     return DAG.getSelect(dl, ResultType, Overflow, Result, SumDiff);
5373   }
5374 }
5375 
5376 SDValue
5377 TargetLowering::getExpandedFixedPointMultiplication(SDNode *Node,
5378                                                     SelectionDAG &DAG) const {
5379   assert(Node->getOpcode() == ISD::SMULFIX && "Expected opcode to be SMULFIX.");
5380   assert(Node->getNumOperands() == 3 &&
5381          "Expected signed fixed point multiplication to have 3 operands.");
5382 
5383   SDLoc dl(Node);
5384   SDValue LHS = Node->getOperand(0);
5385   SDValue RHS = Node->getOperand(1);
5386   assert(LHS.getValueType().isScalarInteger() &&
5387          "Expected operands to be integers. Vector of int arguments should "
5388          "already be unrolled.");
5389   assert(RHS.getValueType().isScalarInteger() &&
5390          "Expected operands to be integers. Vector of int arguments should "
5391          "already be unrolled.");
5392   assert(LHS.getValueType() == RHS.getValueType() &&
5393          "Expected both operands to be the same type");
5394 
5395   unsigned Scale = Node->getConstantOperandVal(2);
5396   EVT VT = LHS.getValueType();
5397   assert(Scale < VT.getScalarSizeInBits() &&
5398          "Expected scale to be less than the number of bits.");
5399 
5400   if (!Scale)
5401     return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
5402 
5403   // Get the upper and lower bits of the result.
5404   SDValue Lo, Hi;
5405   if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
5406     SDValue Result =
5407         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), LHS, RHS);
5408     Lo = Result.getValue(0);
5409     Hi = Result.getValue(1);
5410   } else if (isOperationLegalOrCustom(ISD::MULHS, VT)) {
5411     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
5412     Hi = DAG.getNode(ISD::MULHS, dl, VT, LHS, RHS);
5413   } else {
5414     report_fatal_error("Unable to expand signed fixed point multiplication.");
5415   }
5416 
5417   // The result will need to be shifted right by the scale since both operands
5418   // are scaled. The result is given to us in 2 halves, so we only want part of
5419   // both in the result.
5420   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
5421   Lo = DAG.getNode(ISD::SRL, dl, VT, Lo, DAG.getConstant(Scale, dl, ShiftTy));
5422   Hi = DAG.getNode(
5423       ISD::SHL, dl, VT, Hi,
5424       DAG.getConstant(VT.getScalarSizeInBits() - Scale, dl, ShiftTy));
5425   return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
5426 }
5427