1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore NoAlias and NonNull because they don't affect the
61   // call sequence.
62   AttributeList CallerAttrs = F.getAttributes();
63   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
64           .removeAttribute(Attribute::NoAlias)
65           .removeAttribute(Attribute::NonNull)
66           .hasAttributes())
67     return false;
68 
69   // It's not safe to eliminate the sign / zero extension of the return value.
70   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
71       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
72     return false;
73 
74   // Check if the only use is a function return node.
75   return isUsedByReturnOnly(Node, Chain);
76 }
77 
78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
79     const uint32_t *CallerPreservedMask,
80     const SmallVectorImpl<CCValAssign> &ArgLocs,
81     const SmallVectorImpl<SDValue> &OutVals) const {
82   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
83     const CCValAssign &ArgLoc = ArgLocs[I];
84     if (!ArgLoc.isRegLoc())
85       continue;
86     MCRegister Reg = ArgLoc.getLocReg();
87     // Only look at callee saved registers.
88     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
89       continue;
90     // Check that we pass the value used for the caller.
91     // (We look for a CopyFromReg reading a virtual register that is used
92     //  for the function live-in value of register Reg)
93     SDValue Value = OutVals[I];
94     if (Value->getOpcode() != ISD::CopyFromReg)
95       return false;
96     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
97     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
98       return false;
99   }
100   return true;
101 }
102 
103 /// Set CallLoweringInfo attribute flags based on a call instruction
104 /// and called function attributes.
105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
106                                                      unsigned ArgIdx) {
107   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
108   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
109   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
110   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
111   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
112   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
113   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
114   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
115   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
116   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
117   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
118   Alignment = Call->getParamAlign(ArgIdx);
119   ByValType = nullptr;
120   if (IsByVal)
121     ByValType = Call->getParamByValType(ArgIdx);
122   PreallocatedType = nullptr;
123   if (IsPreallocated)
124     PreallocatedType = Call->getParamPreallocatedType(ArgIdx);
125 }
126 
127 /// Generate a libcall taking the given operands as arguments and returning a
128 /// result of type RetVT.
129 std::pair<SDValue, SDValue>
130 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
131                             ArrayRef<SDValue> Ops,
132                             MakeLibCallOptions CallOptions,
133                             const SDLoc &dl,
134                             SDValue InChain) const {
135   if (!InChain)
136     InChain = DAG.getEntryNode();
137 
138   TargetLowering::ArgListTy Args;
139   Args.reserve(Ops.size());
140 
141   TargetLowering::ArgListEntry Entry;
142   for (unsigned i = 0; i < Ops.size(); ++i) {
143     SDValue NewOp = Ops[i];
144     Entry.Node = NewOp;
145     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
146     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
147                                                  CallOptions.IsSExt);
148     Entry.IsZExt = !Entry.IsSExt;
149 
150     if (CallOptions.IsSoften &&
151         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
152       Entry.IsSExt = Entry.IsZExt = false;
153     }
154     Args.push_back(Entry);
155   }
156 
157   if (LC == RTLIB::UNKNOWN_LIBCALL)
158     report_fatal_error("Unsupported library call operation!");
159   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
160                                          getPointerTy(DAG.getDataLayout()));
161 
162   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
163   TargetLowering::CallLoweringInfo CLI(DAG);
164   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
165   bool zeroExtend = !signExtend;
166 
167   if (CallOptions.IsSoften &&
168       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
169     signExtend = zeroExtend = false;
170   }
171 
172   CLI.setDebugLoc(dl)
173       .setChain(InChain)
174       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
175       .setNoReturn(CallOptions.DoesNotReturn)
176       .setDiscardResult(!CallOptions.IsReturnValueUsed)
177       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
178       .setSExtResult(signExtend)
179       .setZExtResult(zeroExtend);
180   return LowerCallTo(CLI);
181 }
182 
183 bool TargetLowering::findOptimalMemOpLowering(
184     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
185     unsigned SrcAS, const AttributeList &FuncAttributes) const {
186   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
187     return false;
188 
189   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
190 
191   if (VT == MVT::Other) {
192     // Use the largest integer type whose alignment constraints are satisfied.
193     // We only need to check DstAlign here as SrcAlign is always greater or
194     // equal to DstAlign (or zero).
195     VT = MVT::i64;
196     if (Op.isFixedDstAlign())
197       while (
198           Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
199           !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value()))
200         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
201     assert(VT.isInteger());
202 
203     // Find the largest legal integer type.
204     MVT LVT = MVT::i64;
205     while (!isTypeLegal(LVT))
206       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
207     assert(LVT.isInteger());
208 
209     // If the type we've chosen is larger than the largest legal integer type
210     // then use that instead.
211     if (VT.bitsGT(LVT))
212       VT = LVT;
213   }
214 
215   unsigned NumMemOps = 0;
216   uint64_t Size = Op.size();
217   while (Size) {
218     unsigned VTSize = VT.getSizeInBits() / 8;
219     while (VTSize > Size) {
220       // For now, only use non-vector load / store's for the left-over pieces.
221       EVT NewVT = VT;
222       unsigned NewVTSize;
223 
224       bool Found = false;
225       if (VT.isVector() || VT.isFloatingPoint()) {
226         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
227         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
228             isSafeMemOpType(NewVT.getSimpleVT()))
229           Found = true;
230         else if (NewVT == MVT::i64 &&
231                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
232                  isSafeMemOpType(MVT::f64)) {
233           // i64 is usually not legal on 32-bit targets, but f64 may be.
234           NewVT = MVT::f64;
235           Found = true;
236         }
237       }
238 
239       if (!Found) {
240         do {
241           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
242           if (NewVT == MVT::i8)
243             break;
244         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
245       }
246       NewVTSize = NewVT.getSizeInBits() / 8;
247 
248       // If the new VT cannot cover all of the remaining bits, then consider
249       // issuing a (or a pair of) unaligned and overlapping load / store.
250       bool Fast;
251       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
252           allowsMisalignedMemoryAccesses(
253               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 1,
254               MachineMemOperand::MONone, &Fast) &&
255           Fast)
256         VTSize = Size;
257       else {
258         VT = NewVT;
259         VTSize = NewVTSize;
260       }
261     }
262 
263     if (++NumMemOps > Limit)
264       return false;
265 
266     MemOps.push_back(VT);
267     Size -= VTSize;
268   }
269 
270   return true;
271 }
272 
273 /// Soften the operands of a comparison. This code is shared among BR_CC,
274 /// SELECT_CC, and SETCC handlers.
275 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
276                                          SDValue &NewLHS, SDValue &NewRHS,
277                                          ISD::CondCode &CCCode,
278                                          const SDLoc &dl, const SDValue OldLHS,
279                                          const SDValue OldRHS) const {
280   SDValue Chain;
281   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
282                              OldRHS, Chain);
283 }
284 
285 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
286                                          SDValue &NewLHS, SDValue &NewRHS,
287                                          ISD::CondCode &CCCode,
288                                          const SDLoc &dl, const SDValue OldLHS,
289                                          const SDValue OldRHS,
290                                          SDValue &Chain,
291                                          bool IsSignaling) const {
292   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
293   // not supporting it. We can update this code when libgcc provides such
294   // functions.
295 
296   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
297          && "Unsupported setcc type!");
298 
299   // Expand into one or more soft-fp libcall(s).
300   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
301   bool ShouldInvertCC = false;
302   switch (CCCode) {
303   case ISD::SETEQ:
304   case ISD::SETOEQ:
305     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
306           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
307           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
308     break;
309   case ISD::SETNE:
310   case ISD::SETUNE:
311     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
312           (VT == MVT::f64) ? RTLIB::UNE_F64 :
313           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
314     break;
315   case ISD::SETGE:
316   case ISD::SETOGE:
317     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
318           (VT == MVT::f64) ? RTLIB::OGE_F64 :
319           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
320     break;
321   case ISD::SETLT:
322   case ISD::SETOLT:
323     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
324           (VT == MVT::f64) ? RTLIB::OLT_F64 :
325           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
326     break;
327   case ISD::SETLE:
328   case ISD::SETOLE:
329     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
330           (VT == MVT::f64) ? RTLIB::OLE_F64 :
331           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
332     break;
333   case ISD::SETGT:
334   case ISD::SETOGT:
335     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
336           (VT == MVT::f64) ? RTLIB::OGT_F64 :
337           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
338     break;
339   case ISD::SETO:
340     ShouldInvertCC = true;
341     LLVM_FALLTHROUGH;
342   case ISD::SETUO:
343     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
344           (VT == MVT::f64) ? RTLIB::UO_F64 :
345           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
346     break;
347   case ISD::SETONE:
348     // SETONE = O && UNE
349     ShouldInvertCC = true;
350     LLVM_FALLTHROUGH;
351   case ISD::SETUEQ:
352     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
353           (VT == MVT::f64) ? RTLIB::UO_F64 :
354           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
355     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
356           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
357           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
358     break;
359   default:
360     // Invert CC for unordered comparisons
361     ShouldInvertCC = true;
362     switch (CCCode) {
363     case ISD::SETULT:
364       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
365             (VT == MVT::f64) ? RTLIB::OGE_F64 :
366             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
367       break;
368     case ISD::SETULE:
369       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
370             (VT == MVT::f64) ? RTLIB::OGT_F64 :
371             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
372       break;
373     case ISD::SETUGT:
374       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
375             (VT == MVT::f64) ? RTLIB::OLE_F64 :
376             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
377       break;
378     case ISD::SETUGE:
379       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
380             (VT == MVT::f64) ? RTLIB::OLT_F64 :
381             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
382       break;
383     default: llvm_unreachable("Do not know how to soften this setcc!");
384     }
385   }
386 
387   // Use the target specific return value for comparions lib calls.
388   EVT RetVT = getCmpLibcallReturnType();
389   SDValue Ops[2] = {NewLHS, NewRHS};
390   TargetLowering::MakeLibCallOptions CallOptions;
391   EVT OpsVT[2] = { OldLHS.getValueType(),
392                    OldRHS.getValueType() };
393   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
394   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
395   NewLHS = Call.first;
396   NewRHS = DAG.getConstant(0, dl, RetVT);
397 
398   CCCode = getCmpLibcallCC(LC1);
399   if (ShouldInvertCC) {
400     assert(RetVT.isInteger());
401     CCCode = getSetCCInverse(CCCode, RetVT);
402   }
403 
404   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
405     // Update Chain.
406     Chain = Call.second;
407   } else {
408     EVT SetCCVT =
409         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
410     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
411     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
412     CCCode = getCmpLibcallCC(LC2);
413     if (ShouldInvertCC)
414       CCCode = getSetCCInverse(CCCode, RetVT);
415     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
416     if (Chain)
417       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
418                           Call2.second);
419     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
420                          Tmp.getValueType(), Tmp, NewLHS);
421     NewRHS = SDValue();
422   }
423 }
424 
425 /// Return the entry encoding for a jump table in the current function. The
426 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
427 unsigned TargetLowering::getJumpTableEncoding() const {
428   // In non-pic modes, just use the address of a block.
429   if (!isPositionIndependent())
430     return MachineJumpTableInfo::EK_BlockAddress;
431 
432   // In PIC mode, if the target supports a GPRel32 directive, use it.
433   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
434     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
435 
436   // Otherwise, use a label difference.
437   return MachineJumpTableInfo::EK_LabelDifference32;
438 }
439 
440 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
441                                                  SelectionDAG &DAG) const {
442   // If our PIC model is GP relative, use the global offset table as the base.
443   unsigned JTEncoding = getJumpTableEncoding();
444 
445   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
446       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
447     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
448 
449   return Table;
450 }
451 
452 /// This returns the relocation base for the given PIC jumptable, the same as
453 /// getPICJumpTableRelocBase, but as an MCExpr.
454 const MCExpr *
455 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
456                                              unsigned JTI,MCContext &Ctx) const{
457   // The normal PIC reloc base is the label at the start of the jump table.
458   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
459 }
460 
461 bool
462 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
463   const TargetMachine &TM = getTargetMachine();
464   const GlobalValue *GV = GA->getGlobal();
465 
466   // If the address is not even local to this DSO we will have to load it from
467   // a got and then add the offset.
468   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
469     return false;
470 
471   // If the code is position independent we will have to add a base register.
472   if (isPositionIndependent())
473     return false;
474 
475   // Otherwise we can do it.
476   return true;
477 }
478 
479 //===----------------------------------------------------------------------===//
480 //  Optimization Methods
481 //===----------------------------------------------------------------------===//
482 
483 /// If the specified instruction has a constant integer operand and there are
484 /// bits set in that constant that are not demanded, then clear those bits and
485 /// return true.
486 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
487                                             const APInt &DemandedBits,
488                                             const APInt &DemandedElts,
489                                             TargetLoweringOpt &TLO) const {
490   SDLoc DL(Op);
491   unsigned Opcode = Op.getOpcode();
492 
493   // Do target-specific constant optimization.
494   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
495     return TLO.New.getNode();
496 
497   // FIXME: ISD::SELECT, ISD::SELECT_CC
498   switch (Opcode) {
499   default:
500     break;
501   case ISD::XOR:
502   case ISD::AND:
503   case ISD::OR: {
504     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
505     if (!Op1C)
506       return false;
507 
508     // If this is a 'not' op, don't touch it because that's a canonical form.
509     const APInt &C = Op1C->getAPIntValue();
510     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
511       return false;
512 
513     if (!C.isSubsetOf(DemandedBits)) {
514       EVT VT = Op.getValueType();
515       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
516       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
517       return TLO.CombineTo(Op, NewOp);
518     }
519 
520     break;
521   }
522   }
523 
524   return false;
525 }
526 
527 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
528                                             const APInt &DemandedBits,
529                                             TargetLoweringOpt &TLO) const {
530   EVT VT = Op.getValueType();
531   APInt DemandedElts = VT.isVector()
532                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
533                            : APInt(1, 1);
534   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
535 }
536 
537 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
538 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
539 /// generalized for targets with other types of implicit widening casts.
540 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
541                                       const APInt &Demanded,
542                                       TargetLoweringOpt &TLO) const {
543   assert(Op.getNumOperands() == 2 &&
544          "ShrinkDemandedOp only supports binary operators!");
545   assert(Op.getNode()->getNumValues() == 1 &&
546          "ShrinkDemandedOp only supports nodes with one result!");
547 
548   SelectionDAG &DAG = TLO.DAG;
549   SDLoc dl(Op);
550 
551   // Early return, as this function cannot handle vector types.
552   if (Op.getValueType().isVector())
553     return false;
554 
555   // Don't do this if the node has another user, which may require the
556   // full value.
557   if (!Op.getNode()->hasOneUse())
558     return false;
559 
560   // Search for the smallest integer type with free casts to and from
561   // Op's type. For expedience, just check power-of-2 integer types.
562   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
563   unsigned DemandedSize = Demanded.getActiveBits();
564   unsigned SmallVTBits = DemandedSize;
565   if (!isPowerOf2_32(SmallVTBits))
566     SmallVTBits = NextPowerOf2(SmallVTBits);
567   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
568     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
569     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
570         TLI.isZExtFree(SmallVT, Op.getValueType())) {
571       // We found a type with free casts.
572       SDValue X = DAG.getNode(
573           Op.getOpcode(), dl, SmallVT,
574           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
575           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
576       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
577       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
578       return TLO.CombineTo(Op, Z);
579     }
580   }
581   return false;
582 }
583 
584 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
585                                           DAGCombinerInfo &DCI) const {
586   SelectionDAG &DAG = DCI.DAG;
587   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
588                         !DCI.isBeforeLegalizeOps());
589   KnownBits Known;
590 
591   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
592   if (Simplified) {
593     DCI.AddToWorklist(Op.getNode());
594     DCI.CommitTargetLoweringOpt(TLO);
595   }
596   return Simplified;
597 }
598 
599 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
600                                           KnownBits &Known,
601                                           TargetLoweringOpt &TLO,
602                                           unsigned Depth,
603                                           bool AssumeSingleUse) const {
604   EVT VT = Op.getValueType();
605 
606   // TODO: We can probably do more work on calculating the known bits and
607   // simplifying the operations for scalable vectors, but for now we just
608   // bail out.
609   if (VT.isScalableVector()) {
610     // Pretend we don't know anything for now.
611     Known = KnownBits(DemandedBits.getBitWidth());
612     return false;
613   }
614 
615   APInt DemandedElts = VT.isVector()
616                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
617                            : APInt(1, 1);
618   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
619                               AssumeSingleUse);
620 }
621 
622 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
623 // TODO: Under what circumstances can we create nodes? Constant folding?
624 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
625     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
626     SelectionDAG &DAG, unsigned Depth) const {
627   // Limit search depth.
628   if (Depth >= SelectionDAG::MaxRecursionDepth)
629     return SDValue();
630 
631   // Ignore UNDEFs.
632   if (Op.isUndef())
633     return SDValue();
634 
635   // Not demanding any bits/elts from Op.
636   if (DemandedBits == 0 || DemandedElts == 0)
637     return DAG.getUNDEF(Op.getValueType());
638 
639   unsigned NumElts = DemandedElts.getBitWidth();
640   unsigned BitWidth = DemandedBits.getBitWidth();
641   KnownBits LHSKnown, RHSKnown;
642   switch (Op.getOpcode()) {
643   case ISD::BITCAST: {
644     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
645     EVT SrcVT = Src.getValueType();
646     EVT DstVT = Op.getValueType();
647     if (SrcVT == DstVT)
648       return Src;
649 
650     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
651     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
652     if (NumSrcEltBits == NumDstEltBits)
653       if (SDValue V = SimplifyMultipleUseDemandedBits(
654               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
655         return DAG.getBitcast(DstVT, V);
656 
657     // TODO - bigendian once we have test coverage.
658     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
659         DAG.getDataLayout().isLittleEndian()) {
660       unsigned Scale = NumDstEltBits / NumSrcEltBits;
661       unsigned NumSrcElts = SrcVT.getVectorNumElements();
662       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
663       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
664       for (unsigned i = 0; i != Scale; ++i) {
665         unsigned Offset = i * NumSrcEltBits;
666         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
667         if (!Sub.isNullValue()) {
668           DemandedSrcBits |= Sub;
669           for (unsigned j = 0; j != NumElts; ++j)
670             if (DemandedElts[j])
671               DemandedSrcElts.setBit((j * Scale) + i);
672         }
673       }
674 
675       if (SDValue V = SimplifyMultipleUseDemandedBits(
676               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
677         return DAG.getBitcast(DstVT, V);
678     }
679 
680     // TODO - bigendian once we have test coverage.
681     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
682         DAG.getDataLayout().isLittleEndian()) {
683       unsigned Scale = NumSrcEltBits / NumDstEltBits;
684       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
685       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
686       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
687       for (unsigned i = 0; i != NumElts; ++i)
688         if (DemandedElts[i]) {
689           unsigned Offset = (i % Scale) * NumDstEltBits;
690           DemandedSrcBits.insertBits(DemandedBits, Offset);
691           DemandedSrcElts.setBit(i / Scale);
692         }
693 
694       if (SDValue V = SimplifyMultipleUseDemandedBits(
695               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
696         return DAG.getBitcast(DstVT, V);
697     }
698 
699     break;
700   }
701   case ISD::AND: {
702     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
703     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
704 
705     // If all of the demanded bits are known 1 on one side, return the other.
706     // These bits cannot contribute to the result of the 'and' in this
707     // context.
708     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
709       return Op.getOperand(0);
710     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
711       return Op.getOperand(1);
712     break;
713   }
714   case ISD::OR: {
715     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
716     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
717 
718     // If all of the demanded bits are known zero on one side, return the
719     // other.  These bits cannot contribute to the result of the 'or' in this
720     // context.
721     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
722       return Op.getOperand(0);
723     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
724       return Op.getOperand(1);
725     break;
726   }
727   case ISD::XOR: {
728     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
729     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
730 
731     // If all of the demanded bits are known zero on one side, return the
732     // other.
733     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
734       return Op.getOperand(0);
735     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
736       return Op.getOperand(1);
737     break;
738   }
739   case ISD::SHL: {
740     // If we are only demanding sign bits then we can use the shift source
741     // directly.
742     if (const APInt *MaxSA =
743             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
744       SDValue Op0 = Op.getOperand(0);
745       unsigned ShAmt = MaxSA->getZExtValue();
746       unsigned NumSignBits =
747           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
748       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
749       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
750         return Op0;
751     }
752     break;
753   }
754   case ISD::SETCC: {
755     SDValue Op0 = Op.getOperand(0);
756     SDValue Op1 = Op.getOperand(1);
757     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
758     // If (1) we only need the sign-bit, (2) the setcc operands are the same
759     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
760     // -1, we may be able to bypass the setcc.
761     if (DemandedBits.isSignMask() &&
762         Op0.getScalarValueSizeInBits() == BitWidth &&
763         getBooleanContents(Op0.getValueType()) ==
764             BooleanContent::ZeroOrNegativeOneBooleanContent) {
765       // If we're testing X < 0, then this compare isn't needed - just use X!
766       // FIXME: We're limiting to integer types here, but this should also work
767       // if we don't care about FP signed-zero. The use of SETLT with FP means
768       // that we don't care about NaNs.
769       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
770           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
771         return Op0;
772     }
773     break;
774   }
775   case ISD::SIGN_EXTEND_INREG: {
776     // If none of the extended bits are demanded, eliminate the sextinreg.
777     SDValue Op0 = Op.getOperand(0);
778     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
779     unsigned ExBits = ExVT.getScalarSizeInBits();
780     if (DemandedBits.getActiveBits() <= ExBits)
781       return Op0;
782     // If the input is already sign extended, just drop the extension.
783     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
784     if (NumSignBits >= (BitWidth - ExBits + 1))
785       return Op0;
786     break;
787   }
788   case ISD::ANY_EXTEND_VECTOR_INREG:
789   case ISD::SIGN_EXTEND_VECTOR_INREG:
790   case ISD::ZERO_EXTEND_VECTOR_INREG: {
791     // If we only want the lowest element and none of extended bits, then we can
792     // return the bitcasted source vector.
793     SDValue Src = Op.getOperand(0);
794     EVT SrcVT = Src.getValueType();
795     EVT DstVT = Op.getValueType();
796     if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
797         DAG.getDataLayout().isLittleEndian() &&
798         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
799       return DAG.getBitcast(DstVT, Src);
800     }
801     break;
802   }
803   case ISD::INSERT_VECTOR_ELT: {
804     // If we don't demand the inserted element, return the base vector.
805     SDValue Vec = Op.getOperand(0);
806     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
807     EVT VecVT = Vec.getValueType();
808     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
809         !DemandedElts[CIdx->getZExtValue()])
810       return Vec;
811     break;
812   }
813   case ISD::INSERT_SUBVECTOR: {
814     // If we don't demand the inserted subvector, return the base vector.
815     SDValue Vec = Op.getOperand(0);
816     SDValue Sub = Op.getOperand(1);
817     uint64_t Idx = Op.getConstantOperandVal(2);
818     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
819     if (DemandedElts.extractBits(NumSubElts, Idx) == 0)
820       return Vec;
821     break;
822   }
823   case ISD::VECTOR_SHUFFLE: {
824     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
825 
826     // If all the demanded elts are from one operand and are inline,
827     // then we can use the operand directly.
828     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
829     for (unsigned i = 0; i != NumElts; ++i) {
830       int M = ShuffleMask[i];
831       if (M < 0 || !DemandedElts[i])
832         continue;
833       AllUndef = false;
834       IdentityLHS &= (M == (int)i);
835       IdentityRHS &= ((M - NumElts) == i);
836     }
837 
838     if (AllUndef)
839       return DAG.getUNDEF(Op.getValueType());
840     if (IdentityLHS)
841       return Op.getOperand(0);
842     if (IdentityRHS)
843       return Op.getOperand(1);
844     break;
845   }
846   default:
847     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
848       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
849               Op, DemandedBits, DemandedElts, DAG, Depth))
850         return V;
851     break;
852   }
853   return SDValue();
854 }
855 
856 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
857     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
858     unsigned Depth) const {
859   EVT VT = Op.getValueType();
860   APInt DemandedElts = VT.isVector()
861                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
862                            : APInt(1, 1);
863   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
864                                          Depth);
865 }
866 
867 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
868     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
869     unsigned Depth) const {
870   APInt DemandedBits = APInt::getAllOnesValue(Op.getScalarValueSizeInBits());
871   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
872                                          Depth);
873 }
874 
875 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
876 /// result of Op are ever used downstream. If we can use this information to
877 /// simplify Op, create a new simplified DAG node and return true, returning the
878 /// original and new nodes in Old and New. Otherwise, analyze the expression and
879 /// return a mask of Known bits for the expression (used to simplify the
880 /// caller).  The Known bits may only be accurate for those bits in the
881 /// OriginalDemandedBits and OriginalDemandedElts.
882 bool TargetLowering::SimplifyDemandedBits(
883     SDValue Op, const APInt &OriginalDemandedBits,
884     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
885     unsigned Depth, bool AssumeSingleUse) const {
886   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
887   assert(Op.getScalarValueSizeInBits() == BitWidth &&
888          "Mask size mismatches value type size!");
889 
890   // Don't know anything.
891   Known = KnownBits(BitWidth);
892 
893   // TODO: We can probably do more work on calculating the known bits and
894   // simplifying the operations for scalable vectors, but for now we just
895   // bail out.
896   if (Op.getValueType().isScalableVector())
897     return false;
898 
899   unsigned NumElts = OriginalDemandedElts.getBitWidth();
900   assert((!Op.getValueType().isVector() ||
901           NumElts == Op.getValueType().getVectorNumElements()) &&
902          "Unexpected vector size");
903 
904   APInt DemandedBits = OriginalDemandedBits;
905   APInt DemandedElts = OriginalDemandedElts;
906   SDLoc dl(Op);
907   auto &DL = TLO.DAG.getDataLayout();
908 
909   // Undef operand.
910   if (Op.isUndef())
911     return false;
912 
913   if (Op.getOpcode() == ISD::Constant) {
914     // We know all of the bits for a constant!
915     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
916     return false;
917   }
918 
919   if (Op.getOpcode() == ISD::ConstantFP) {
920     // We know all of the bits for a floating point constant!
921     Known = KnownBits::makeConstant(
922         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
923     return false;
924   }
925 
926   // Other users may use these bits.
927   EVT VT = Op.getValueType();
928   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
929     if (Depth != 0) {
930       // If not at the root, Just compute the Known bits to
931       // simplify things downstream.
932       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
933       return false;
934     }
935     // If this is the root being simplified, allow it to have multiple uses,
936     // just set the DemandedBits/Elts to all bits.
937     DemandedBits = APInt::getAllOnesValue(BitWidth);
938     DemandedElts = APInt::getAllOnesValue(NumElts);
939   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
940     // Not demanding any bits/elts from Op.
941     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
942   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
943     // Limit search depth.
944     return false;
945   }
946 
947   KnownBits Known2;
948   switch (Op.getOpcode()) {
949   case ISD::TargetConstant:
950     llvm_unreachable("Can't simplify this node");
951   case ISD::SCALAR_TO_VECTOR: {
952     if (!DemandedElts[0])
953       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
954 
955     KnownBits SrcKnown;
956     SDValue Src = Op.getOperand(0);
957     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
958     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
959     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
960       return true;
961 
962     // Upper elements are undef, so only get the knownbits if we just demand
963     // the bottom element.
964     if (DemandedElts == 1)
965       Known = SrcKnown.anyextOrTrunc(BitWidth);
966     break;
967   }
968   case ISD::BUILD_VECTOR:
969     // Collect the known bits that are shared by every demanded element.
970     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
971     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
972     return false; // Don't fall through, will infinitely loop.
973   case ISD::LOAD: {
974     LoadSDNode *LD = cast<LoadSDNode>(Op);
975     if (getTargetConstantFromLoad(LD)) {
976       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
977       return false; // Don't fall through, will infinitely loop.
978     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
979       // If this is a ZEXTLoad and we are looking at the loaded value.
980       EVT MemVT = LD->getMemoryVT();
981       unsigned MemBits = MemVT.getScalarSizeInBits();
982       Known.Zero.setBitsFrom(MemBits);
983       return false; // Don't fall through, will infinitely loop.
984     }
985     break;
986   }
987   case ISD::INSERT_VECTOR_ELT: {
988     SDValue Vec = Op.getOperand(0);
989     SDValue Scl = Op.getOperand(1);
990     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
991     EVT VecVT = Vec.getValueType();
992 
993     // If index isn't constant, assume we need all vector elements AND the
994     // inserted element.
995     APInt DemandedVecElts(DemandedElts);
996     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
997       unsigned Idx = CIdx->getZExtValue();
998       DemandedVecElts.clearBit(Idx);
999 
1000       // Inserted element is not required.
1001       if (!DemandedElts[Idx])
1002         return TLO.CombineTo(Op, Vec);
1003     }
1004 
1005     KnownBits KnownScl;
1006     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1007     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1008     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1009       return true;
1010 
1011     Known = KnownScl.anyextOrTrunc(BitWidth);
1012 
1013     KnownBits KnownVec;
1014     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1015                              Depth + 1))
1016       return true;
1017 
1018     if (!!DemandedVecElts)
1019       Known = KnownBits::commonBits(Known, KnownVec);
1020 
1021     return false;
1022   }
1023   case ISD::INSERT_SUBVECTOR: {
1024     // Demand any elements from the subvector and the remainder from the src its
1025     // inserted into.
1026     SDValue Src = Op.getOperand(0);
1027     SDValue Sub = Op.getOperand(1);
1028     uint64_t Idx = Op.getConstantOperandVal(2);
1029     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1030     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1031     APInt DemandedSrcElts = DemandedElts;
1032     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
1033 
1034     KnownBits KnownSub, KnownSrc;
1035     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1036                              Depth + 1))
1037       return true;
1038     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1039                              Depth + 1))
1040       return true;
1041 
1042     Known.Zero.setAllBits();
1043     Known.One.setAllBits();
1044     if (!!DemandedSubElts)
1045       Known = KnownBits::commonBits(Known, KnownSub);
1046     if (!!DemandedSrcElts)
1047       Known = KnownBits::commonBits(Known, KnownSrc);
1048 
1049     // Attempt to avoid multi-use src if we don't need anything from it.
1050     if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() ||
1051         !DemandedSrcElts.isAllOnesValue()) {
1052       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1053           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1054       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1055           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1056       if (NewSub || NewSrc) {
1057         NewSub = NewSub ? NewSub : Sub;
1058         NewSrc = NewSrc ? NewSrc : Src;
1059         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1060                                         Op.getOperand(2));
1061         return TLO.CombineTo(Op, NewOp);
1062       }
1063     }
1064     break;
1065   }
1066   case ISD::EXTRACT_SUBVECTOR: {
1067     // Offset the demanded elts by the subvector index.
1068     SDValue Src = Op.getOperand(0);
1069     if (Src.getValueType().isScalableVector())
1070       break;
1071     uint64_t Idx = Op.getConstantOperandVal(1);
1072     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1073     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1074 
1075     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1076                              Depth + 1))
1077       return true;
1078 
1079     // Attempt to avoid multi-use src if we don't need anything from it.
1080     if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) {
1081       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1082           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1083       if (DemandedSrc) {
1084         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1085                                         Op.getOperand(1));
1086         return TLO.CombineTo(Op, NewOp);
1087       }
1088     }
1089     break;
1090   }
1091   case ISD::CONCAT_VECTORS: {
1092     Known.Zero.setAllBits();
1093     Known.One.setAllBits();
1094     EVT SubVT = Op.getOperand(0).getValueType();
1095     unsigned NumSubVecs = Op.getNumOperands();
1096     unsigned NumSubElts = SubVT.getVectorNumElements();
1097     for (unsigned i = 0; i != NumSubVecs; ++i) {
1098       APInt DemandedSubElts =
1099           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1100       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1101                                Known2, TLO, Depth + 1))
1102         return true;
1103       // Known bits are shared by every demanded subvector element.
1104       if (!!DemandedSubElts)
1105         Known = KnownBits::commonBits(Known, Known2);
1106     }
1107     break;
1108   }
1109   case ISD::VECTOR_SHUFFLE: {
1110     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1111 
1112     // Collect demanded elements from shuffle operands..
1113     APInt DemandedLHS(NumElts, 0);
1114     APInt DemandedRHS(NumElts, 0);
1115     for (unsigned i = 0; i != NumElts; ++i) {
1116       if (!DemandedElts[i])
1117         continue;
1118       int M = ShuffleMask[i];
1119       if (M < 0) {
1120         // For UNDEF elements, we don't know anything about the common state of
1121         // the shuffle result.
1122         DemandedLHS.clearAllBits();
1123         DemandedRHS.clearAllBits();
1124         break;
1125       }
1126       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1127       if (M < (int)NumElts)
1128         DemandedLHS.setBit(M);
1129       else
1130         DemandedRHS.setBit(M - NumElts);
1131     }
1132 
1133     if (!!DemandedLHS || !!DemandedRHS) {
1134       SDValue Op0 = Op.getOperand(0);
1135       SDValue Op1 = Op.getOperand(1);
1136 
1137       Known.Zero.setAllBits();
1138       Known.One.setAllBits();
1139       if (!!DemandedLHS) {
1140         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1141                                  Depth + 1))
1142           return true;
1143         Known = KnownBits::commonBits(Known, Known2);
1144       }
1145       if (!!DemandedRHS) {
1146         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1147                                  Depth + 1))
1148           return true;
1149         Known = KnownBits::commonBits(Known, Known2);
1150       }
1151 
1152       // Attempt to avoid multi-use ops if we don't need anything from them.
1153       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1154           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1155       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1156           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1157       if (DemandedOp0 || DemandedOp1) {
1158         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1159         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1160         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1161         return TLO.CombineTo(Op, NewOp);
1162       }
1163     }
1164     break;
1165   }
1166   case ISD::AND: {
1167     SDValue Op0 = Op.getOperand(0);
1168     SDValue Op1 = Op.getOperand(1);
1169 
1170     // If the RHS is a constant, check to see if the LHS would be zero without
1171     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1172     // simplify the LHS, here we're using information from the LHS to simplify
1173     // the RHS.
1174     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1175       // Do not increment Depth here; that can cause an infinite loop.
1176       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1177       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1178       if ((LHSKnown.Zero & DemandedBits) ==
1179           (~RHSC->getAPIntValue() & DemandedBits))
1180         return TLO.CombineTo(Op, Op0);
1181 
1182       // If any of the set bits in the RHS are known zero on the LHS, shrink
1183       // the constant.
1184       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1185                                  DemandedElts, TLO))
1186         return true;
1187 
1188       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1189       // constant, but if this 'and' is only clearing bits that were just set by
1190       // the xor, then this 'and' can be eliminated by shrinking the mask of
1191       // the xor. For example, for a 32-bit X:
1192       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1193       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1194           LHSKnown.One == ~RHSC->getAPIntValue()) {
1195         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1196         return TLO.CombineTo(Op, Xor);
1197       }
1198     }
1199 
1200     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1201                              Depth + 1))
1202       return true;
1203     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1204     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1205                              Known2, TLO, Depth + 1))
1206       return true;
1207     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1208 
1209     // Attempt to avoid multi-use ops if we don't need anything from them.
1210     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1211       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1212           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1213       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1214           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1215       if (DemandedOp0 || DemandedOp1) {
1216         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1217         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1218         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1219         return TLO.CombineTo(Op, NewOp);
1220       }
1221     }
1222 
1223     // If all of the demanded bits are known one on one side, return the other.
1224     // These bits cannot contribute to the result of the 'and'.
1225     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1226       return TLO.CombineTo(Op, Op0);
1227     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1228       return TLO.CombineTo(Op, Op1);
1229     // If all of the demanded bits in the inputs are known zeros, return zero.
1230     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1231       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1232     // If the RHS is a constant, see if we can simplify it.
1233     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1234                                TLO))
1235       return true;
1236     // If the operation can be done in a smaller type, do so.
1237     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1238       return true;
1239 
1240     Known &= Known2;
1241     break;
1242   }
1243   case ISD::OR: {
1244     SDValue Op0 = Op.getOperand(0);
1245     SDValue Op1 = Op.getOperand(1);
1246 
1247     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1248                              Depth + 1))
1249       return true;
1250     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1251     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1252                              Known2, TLO, Depth + 1))
1253       return true;
1254     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1255 
1256     // Attempt to avoid multi-use ops if we don't need anything from them.
1257     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1258       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1259           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1260       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1261           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1262       if (DemandedOp0 || DemandedOp1) {
1263         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1264         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1265         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1266         return TLO.CombineTo(Op, NewOp);
1267       }
1268     }
1269 
1270     // If all of the demanded bits are known zero on one side, return the other.
1271     // These bits cannot contribute to the result of the 'or'.
1272     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1273       return TLO.CombineTo(Op, Op0);
1274     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1275       return TLO.CombineTo(Op, Op1);
1276     // If the RHS is a constant, see if we can simplify it.
1277     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1278       return true;
1279     // If the operation can be done in a smaller type, do so.
1280     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1281       return true;
1282 
1283     Known |= Known2;
1284     break;
1285   }
1286   case ISD::XOR: {
1287     SDValue Op0 = Op.getOperand(0);
1288     SDValue Op1 = Op.getOperand(1);
1289 
1290     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1291                              Depth + 1))
1292       return true;
1293     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1294     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1295                              Depth + 1))
1296       return true;
1297     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1298 
1299     // Attempt to avoid multi-use ops if we don't need anything from them.
1300     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1301       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1302           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1303       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1304           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1305       if (DemandedOp0 || DemandedOp1) {
1306         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1307         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1308         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1309         return TLO.CombineTo(Op, NewOp);
1310       }
1311     }
1312 
1313     // If all of the demanded bits are known zero on one side, return the other.
1314     // These bits cannot contribute to the result of the 'xor'.
1315     if (DemandedBits.isSubsetOf(Known.Zero))
1316       return TLO.CombineTo(Op, Op0);
1317     if (DemandedBits.isSubsetOf(Known2.Zero))
1318       return TLO.CombineTo(Op, Op1);
1319     // If the operation can be done in a smaller type, do so.
1320     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1321       return true;
1322 
1323     // If all of the unknown bits are known to be zero on one side or the other
1324     // turn this into an *inclusive* or.
1325     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1326     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1327       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1328 
1329     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1330     if (C) {
1331       // If one side is a constant, and all of the set bits in the constant are
1332       // also known set on the other side, turn this into an AND, as we know
1333       // the bits will be cleared.
1334       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1335       // NB: it is okay if more bits are known than are requested
1336       if (C->getAPIntValue() == Known2.One) {
1337         SDValue ANDC =
1338             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1339         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1340       }
1341 
1342       // If the RHS is a constant, see if we can change it. Don't alter a -1
1343       // constant because that's a 'not' op, and that is better for combining
1344       // and codegen.
1345       if (!C->isAllOnesValue() &&
1346           DemandedBits.isSubsetOf(C->getAPIntValue())) {
1347         // We're flipping all demanded bits. Flip the undemanded bits too.
1348         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1349         return TLO.CombineTo(Op, New);
1350       }
1351     }
1352 
1353     // If we can't turn this into a 'not', try to shrink the constant.
1354     if (!C || !C->isAllOnesValue())
1355       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1356         return true;
1357 
1358     Known ^= Known2;
1359     break;
1360   }
1361   case ISD::SELECT:
1362     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1363                              Depth + 1))
1364       return true;
1365     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1366                              Depth + 1))
1367       return true;
1368     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1369     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1370 
1371     // If the operands are constants, see if we can simplify them.
1372     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1373       return true;
1374 
1375     // Only known if known in both the LHS and RHS.
1376     Known = KnownBits::commonBits(Known, Known2);
1377     break;
1378   case ISD::SELECT_CC:
1379     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1380                              Depth + 1))
1381       return true;
1382     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1383                              Depth + 1))
1384       return true;
1385     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1386     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1387 
1388     // If the operands are constants, see if we can simplify them.
1389     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1390       return true;
1391 
1392     // Only known if known in both the LHS and RHS.
1393     Known = KnownBits::commonBits(Known, Known2);
1394     break;
1395   case ISD::SETCC: {
1396     SDValue Op0 = Op.getOperand(0);
1397     SDValue Op1 = Op.getOperand(1);
1398     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1399     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1400     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1401     // -1, we may be able to bypass the setcc.
1402     if (DemandedBits.isSignMask() &&
1403         Op0.getScalarValueSizeInBits() == BitWidth &&
1404         getBooleanContents(Op0.getValueType()) ==
1405             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1406       // If we're testing X < 0, then this compare isn't needed - just use X!
1407       // FIXME: We're limiting to integer types here, but this should also work
1408       // if we don't care about FP signed-zero. The use of SETLT with FP means
1409       // that we don't care about NaNs.
1410       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1411           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1412         return TLO.CombineTo(Op, Op0);
1413 
1414       // TODO: Should we check for other forms of sign-bit comparisons?
1415       // Examples: X <= -1, X >= 0
1416     }
1417     if (getBooleanContents(Op0.getValueType()) ==
1418             TargetLowering::ZeroOrOneBooleanContent &&
1419         BitWidth > 1)
1420       Known.Zero.setBitsFrom(1);
1421     break;
1422   }
1423   case ISD::SHL: {
1424     SDValue Op0 = Op.getOperand(0);
1425     SDValue Op1 = Op.getOperand(1);
1426     EVT ShiftVT = Op1.getValueType();
1427 
1428     if (const APInt *SA =
1429             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1430       unsigned ShAmt = SA->getZExtValue();
1431       if (ShAmt == 0)
1432         return TLO.CombineTo(Op, Op0);
1433 
1434       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1435       // single shift.  We can do this if the bottom bits (which are shifted
1436       // out) are never demanded.
1437       // TODO - support non-uniform vector amounts.
1438       if (Op0.getOpcode() == ISD::SRL) {
1439         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1440           if (const APInt *SA2 =
1441                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1442             unsigned C1 = SA2->getZExtValue();
1443             unsigned Opc = ISD::SHL;
1444             int Diff = ShAmt - C1;
1445             if (Diff < 0) {
1446               Diff = -Diff;
1447               Opc = ISD::SRL;
1448             }
1449             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1450             return TLO.CombineTo(
1451                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1452           }
1453         }
1454       }
1455 
1456       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1457       // are not demanded. This will likely allow the anyext to be folded away.
1458       // TODO - support non-uniform vector amounts.
1459       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1460         SDValue InnerOp = Op0.getOperand(0);
1461         EVT InnerVT = InnerOp.getValueType();
1462         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1463         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1464             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1465           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1466           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1467             ShTy = InnerVT;
1468           SDValue NarrowShl =
1469               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1470                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1471           return TLO.CombineTo(
1472               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1473         }
1474 
1475         // Repeat the SHL optimization above in cases where an extension
1476         // intervenes: (shl (anyext (shr x, c1)), c2) to
1477         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1478         // aren't demanded (as above) and that the shifted upper c1 bits of
1479         // x aren't demanded.
1480         // TODO - support non-uniform vector amounts.
1481         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1482             InnerOp.hasOneUse()) {
1483           if (const APInt *SA2 =
1484                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1485             unsigned InnerShAmt = SA2->getZExtValue();
1486             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1487                 DemandedBits.getActiveBits() <=
1488                     (InnerBits - InnerShAmt + ShAmt) &&
1489                 DemandedBits.countTrailingZeros() >= ShAmt) {
1490               SDValue NewSA =
1491                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1492               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1493                                                InnerOp.getOperand(0));
1494               return TLO.CombineTo(
1495                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1496             }
1497           }
1498         }
1499       }
1500 
1501       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1502       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1503                                Depth + 1))
1504         return true;
1505       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1506       Known.Zero <<= ShAmt;
1507       Known.One <<= ShAmt;
1508       // low bits known zero.
1509       Known.Zero.setLowBits(ShAmt);
1510 
1511       // Try shrinking the operation as long as the shift amount will still be
1512       // in range.
1513       if ((ShAmt < DemandedBits.getActiveBits()) &&
1514           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1515         return true;
1516     }
1517 
1518     // If we are only demanding sign bits then we can use the shift source
1519     // directly.
1520     if (const APInt *MaxSA =
1521             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1522       unsigned ShAmt = MaxSA->getZExtValue();
1523       unsigned NumSignBits =
1524           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1525       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1526       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1527         return TLO.CombineTo(Op, Op0);
1528     }
1529     break;
1530   }
1531   case ISD::SRL: {
1532     SDValue Op0 = Op.getOperand(0);
1533     SDValue Op1 = Op.getOperand(1);
1534     EVT ShiftVT = Op1.getValueType();
1535 
1536     if (const APInt *SA =
1537             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1538       unsigned ShAmt = SA->getZExtValue();
1539       if (ShAmt == 0)
1540         return TLO.CombineTo(Op, Op0);
1541 
1542       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1543       // single shift.  We can do this if the top bits (which are shifted out)
1544       // are never demanded.
1545       // TODO - support non-uniform vector amounts.
1546       if (Op0.getOpcode() == ISD::SHL) {
1547         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1548           if (const APInt *SA2 =
1549                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1550             unsigned C1 = SA2->getZExtValue();
1551             unsigned Opc = ISD::SRL;
1552             int Diff = ShAmt - C1;
1553             if (Diff < 0) {
1554               Diff = -Diff;
1555               Opc = ISD::SHL;
1556             }
1557             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1558             return TLO.CombineTo(
1559                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1560           }
1561         }
1562       }
1563 
1564       APInt InDemandedMask = (DemandedBits << ShAmt);
1565 
1566       // If the shift is exact, then it does demand the low bits (and knows that
1567       // they are zero).
1568       if (Op->getFlags().hasExact())
1569         InDemandedMask.setLowBits(ShAmt);
1570 
1571       // Compute the new bits that are at the top now.
1572       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1573                                Depth + 1))
1574         return true;
1575       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1576       Known.Zero.lshrInPlace(ShAmt);
1577       Known.One.lshrInPlace(ShAmt);
1578       // High bits known zero.
1579       Known.Zero.setHighBits(ShAmt);
1580     }
1581     break;
1582   }
1583   case ISD::SRA: {
1584     SDValue Op0 = Op.getOperand(0);
1585     SDValue Op1 = Op.getOperand(1);
1586     EVT ShiftVT = Op1.getValueType();
1587 
1588     // If we only want bits that already match the signbit then we don't need
1589     // to shift.
1590     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1591     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1592         NumHiDemandedBits)
1593       return TLO.CombineTo(Op, Op0);
1594 
1595     // If this is an arithmetic shift right and only the low-bit is set, we can
1596     // always convert this into a logical shr, even if the shift amount is
1597     // variable.  The low bit of the shift cannot be an input sign bit unless
1598     // the shift amount is >= the size of the datatype, which is undefined.
1599     if (DemandedBits.isOneValue())
1600       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1601 
1602     if (const APInt *SA =
1603             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1604       unsigned ShAmt = SA->getZExtValue();
1605       if (ShAmt == 0)
1606         return TLO.CombineTo(Op, Op0);
1607 
1608       APInt InDemandedMask = (DemandedBits << ShAmt);
1609 
1610       // If the shift is exact, then it does demand the low bits (and knows that
1611       // they are zero).
1612       if (Op->getFlags().hasExact())
1613         InDemandedMask.setLowBits(ShAmt);
1614 
1615       // If any of the demanded bits are produced by the sign extension, we also
1616       // demand the input sign bit.
1617       if (DemandedBits.countLeadingZeros() < ShAmt)
1618         InDemandedMask.setSignBit();
1619 
1620       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1621                                Depth + 1))
1622         return true;
1623       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1624       Known.Zero.lshrInPlace(ShAmt);
1625       Known.One.lshrInPlace(ShAmt);
1626 
1627       // If the input sign bit is known to be zero, or if none of the top bits
1628       // are demanded, turn this into an unsigned shift right.
1629       if (Known.Zero[BitWidth - ShAmt - 1] ||
1630           DemandedBits.countLeadingZeros() >= ShAmt) {
1631         SDNodeFlags Flags;
1632         Flags.setExact(Op->getFlags().hasExact());
1633         return TLO.CombineTo(
1634             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1635       }
1636 
1637       int Log2 = DemandedBits.exactLogBase2();
1638       if (Log2 >= 0) {
1639         // The bit must come from the sign.
1640         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1641         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1642       }
1643 
1644       if (Known.One[BitWidth - ShAmt - 1])
1645         // New bits are known one.
1646         Known.One.setHighBits(ShAmt);
1647 
1648       // Attempt to avoid multi-use ops if we don't need anything from them.
1649       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1650         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1651             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1652         if (DemandedOp0) {
1653           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1654           return TLO.CombineTo(Op, NewOp);
1655         }
1656       }
1657     }
1658     break;
1659   }
1660   case ISD::FSHL:
1661   case ISD::FSHR: {
1662     SDValue Op0 = Op.getOperand(0);
1663     SDValue Op1 = Op.getOperand(1);
1664     SDValue Op2 = Op.getOperand(2);
1665     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1666 
1667     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1668       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1669 
1670       // For fshl, 0-shift returns the 1st arg.
1671       // For fshr, 0-shift returns the 2nd arg.
1672       if (Amt == 0) {
1673         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1674                                  Known, TLO, Depth + 1))
1675           return true;
1676         break;
1677       }
1678 
1679       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1680       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1681       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1682       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1683       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1684                                Depth + 1))
1685         return true;
1686       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1687                                Depth + 1))
1688         return true;
1689 
1690       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1691       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1692       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1693       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1694       Known.One |= Known2.One;
1695       Known.Zero |= Known2.Zero;
1696     }
1697 
1698     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1699     if (isPowerOf2_32(BitWidth)) {
1700       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1701       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1702                                Known2, TLO, Depth + 1))
1703         return true;
1704     }
1705     break;
1706   }
1707   case ISD::ROTL:
1708   case ISD::ROTR: {
1709     SDValue Op0 = Op.getOperand(0);
1710     SDValue Op1 = Op.getOperand(1);
1711 
1712     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1713     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1714       return TLO.CombineTo(Op, Op0);
1715 
1716     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1717     if (isPowerOf2_32(BitWidth)) {
1718       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1719       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1720                                Depth + 1))
1721         return true;
1722     }
1723     break;
1724   }
1725   case ISD::UMIN: {
1726     // Check if one arg is always less than (or equal) to the other arg.
1727     SDValue Op0 = Op.getOperand(0);
1728     SDValue Op1 = Op.getOperand(1);
1729     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1730     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1731     Known = KnownBits::umin(Known0, Known1);
1732     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
1733       return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1);
1734     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
1735       return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1);
1736     break;
1737   }
1738   case ISD::UMAX: {
1739     // Check if one arg is always greater than (or equal) to the other arg.
1740     SDValue Op0 = Op.getOperand(0);
1741     SDValue Op1 = Op.getOperand(1);
1742     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1743     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1744     Known = KnownBits::umax(Known0, Known1);
1745     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
1746       return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1);
1747     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
1748       return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1);
1749     break;
1750   }
1751   case ISD::BITREVERSE: {
1752     SDValue Src = Op.getOperand(0);
1753     APInt DemandedSrcBits = DemandedBits.reverseBits();
1754     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1755                              Depth + 1))
1756       return true;
1757     Known.One = Known2.One.reverseBits();
1758     Known.Zero = Known2.Zero.reverseBits();
1759     break;
1760   }
1761   case ISD::BSWAP: {
1762     SDValue Src = Op.getOperand(0);
1763     APInt DemandedSrcBits = DemandedBits.byteSwap();
1764     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1765                              Depth + 1))
1766       return true;
1767     Known.One = Known2.One.byteSwap();
1768     Known.Zero = Known2.Zero.byteSwap();
1769     break;
1770   }
1771   case ISD::CTPOP: {
1772     // If only 1 bit is demanded, replace with PARITY as long as we're before
1773     // op legalization.
1774     // FIXME: Limit to scalars for now.
1775     if (DemandedBits.isOneValue() && !TLO.LegalOps && !VT.isVector())
1776       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
1777                                                Op.getOperand(0)));
1778 
1779     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1780     break;
1781   }
1782   case ISD::SIGN_EXTEND_INREG: {
1783     SDValue Op0 = Op.getOperand(0);
1784     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1785     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1786 
1787     // If we only care about the highest bit, don't bother shifting right.
1788     if (DemandedBits.isSignMask()) {
1789       unsigned NumSignBits =
1790           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1791       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1792       // However if the input is already sign extended we expect the sign
1793       // extension to be dropped altogether later and do not simplify.
1794       if (!AlreadySignExtended) {
1795         // Compute the correct shift amount type, which must be getShiftAmountTy
1796         // for scalar types after legalization.
1797         EVT ShiftAmtTy = VT;
1798         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1799           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1800 
1801         SDValue ShiftAmt =
1802             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1803         return TLO.CombineTo(Op,
1804                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1805       }
1806     }
1807 
1808     // If none of the extended bits are demanded, eliminate the sextinreg.
1809     if (DemandedBits.getActiveBits() <= ExVTBits)
1810       return TLO.CombineTo(Op, Op0);
1811 
1812     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1813 
1814     // Since the sign extended bits are demanded, we know that the sign
1815     // bit is demanded.
1816     InputDemandedBits.setBit(ExVTBits - 1);
1817 
1818     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1819       return true;
1820     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1821 
1822     // If the sign bit of the input is known set or clear, then we know the
1823     // top bits of the result.
1824 
1825     // If the input sign bit is known zero, convert this into a zero extension.
1826     if (Known.Zero[ExVTBits - 1])
1827       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
1828 
1829     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1830     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1831       Known.One.setBitsFrom(ExVTBits);
1832       Known.Zero &= Mask;
1833     } else { // Input sign bit unknown
1834       Known.Zero &= Mask;
1835       Known.One &= Mask;
1836     }
1837     break;
1838   }
1839   case ISD::BUILD_PAIR: {
1840     EVT HalfVT = Op.getOperand(0).getValueType();
1841     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1842 
1843     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1844     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1845 
1846     KnownBits KnownLo, KnownHi;
1847 
1848     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1849       return true;
1850 
1851     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1852       return true;
1853 
1854     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1855                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1856 
1857     Known.One = KnownLo.One.zext(BitWidth) |
1858                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1859     break;
1860   }
1861   case ISD::ZERO_EXTEND:
1862   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1863     SDValue Src = Op.getOperand(0);
1864     EVT SrcVT = Src.getValueType();
1865     unsigned InBits = SrcVT.getScalarSizeInBits();
1866     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1867     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1868 
1869     // If none of the top bits are demanded, convert this into an any_extend.
1870     if (DemandedBits.getActiveBits() <= InBits) {
1871       // If we only need the non-extended bits of the bottom element
1872       // then we can just bitcast to the result.
1873       if (IsVecInReg && DemandedElts == 1 &&
1874           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1875           TLO.DAG.getDataLayout().isLittleEndian())
1876         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1877 
1878       unsigned Opc =
1879           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1880       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1881         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1882     }
1883 
1884     APInt InDemandedBits = DemandedBits.trunc(InBits);
1885     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1886     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1887                              Depth + 1))
1888       return true;
1889     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1890     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1891     Known = Known.zext(BitWidth);
1892 
1893     // Attempt to avoid multi-use ops if we don't need anything from them.
1894     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1895             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1896       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1897     break;
1898   }
1899   case ISD::SIGN_EXTEND:
1900   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1901     SDValue Src = Op.getOperand(0);
1902     EVT SrcVT = Src.getValueType();
1903     unsigned InBits = SrcVT.getScalarSizeInBits();
1904     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1905     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1906 
1907     // If none of the top bits are demanded, convert this into an any_extend.
1908     if (DemandedBits.getActiveBits() <= InBits) {
1909       // If we only need the non-extended bits of the bottom element
1910       // then we can just bitcast to the result.
1911       if (IsVecInReg && DemandedElts == 1 &&
1912           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1913           TLO.DAG.getDataLayout().isLittleEndian())
1914         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1915 
1916       unsigned Opc =
1917           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1918       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1919         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1920     }
1921 
1922     APInt InDemandedBits = DemandedBits.trunc(InBits);
1923     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1924 
1925     // Since some of the sign extended bits are demanded, we know that the sign
1926     // bit is demanded.
1927     InDemandedBits.setBit(InBits - 1);
1928 
1929     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1930                              Depth + 1))
1931       return true;
1932     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1933     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1934 
1935     // If the sign bit is known one, the top bits match.
1936     Known = Known.sext(BitWidth);
1937 
1938     // If the sign bit is known zero, convert this to a zero extend.
1939     if (Known.isNonNegative()) {
1940       unsigned Opc =
1941           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1942       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1943         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1944     }
1945 
1946     // Attempt to avoid multi-use ops if we don't need anything from them.
1947     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1948             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1949       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1950     break;
1951   }
1952   case ISD::ANY_EXTEND:
1953   case ISD::ANY_EXTEND_VECTOR_INREG: {
1954     SDValue Src = Op.getOperand(0);
1955     EVT SrcVT = Src.getValueType();
1956     unsigned InBits = SrcVT.getScalarSizeInBits();
1957     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1958     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1959 
1960     // If we only need the bottom element then we can just bitcast.
1961     // TODO: Handle ANY_EXTEND?
1962     if (IsVecInReg && DemandedElts == 1 &&
1963         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1964         TLO.DAG.getDataLayout().isLittleEndian())
1965       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1966 
1967     APInt InDemandedBits = DemandedBits.trunc(InBits);
1968     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1969     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1970                              Depth + 1))
1971       return true;
1972     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1973     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1974     Known = Known.anyext(BitWidth);
1975 
1976     // Attempt to avoid multi-use ops if we don't need anything from them.
1977     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1978             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1979       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1980     break;
1981   }
1982   case ISD::TRUNCATE: {
1983     SDValue Src = Op.getOperand(0);
1984 
1985     // Simplify the input, using demanded bit information, and compute the known
1986     // zero/one bits live out.
1987     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1988     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1989     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
1990                              Depth + 1))
1991       return true;
1992     Known = Known.trunc(BitWidth);
1993 
1994     // Attempt to avoid multi-use ops if we don't need anything from them.
1995     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1996             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
1997       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
1998 
1999     // If the input is only used by this truncate, see if we can shrink it based
2000     // on the known demanded bits.
2001     if (Src.getNode()->hasOneUse()) {
2002       switch (Src.getOpcode()) {
2003       default:
2004         break;
2005       case ISD::SRL:
2006         // Shrink SRL by a constant if none of the high bits shifted in are
2007         // demanded.
2008         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2009           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2010           // undesirable.
2011           break;
2012 
2013         const APInt *ShAmtC =
2014             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2015         if (!ShAmtC)
2016           break;
2017         uint64_t ShVal = ShAmtC->getZExtValue();
2018 
2019         APInt HighBits =
2020             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2021         HighBits.lshrInPlace(ShVal);
2022         HighBits = HighBits.trunc(BitWidth);
2023 
2024         if (!(HighBits & DemandedBits)) {
2025           // None of the shifted in bits are needed.  Add a truncate of the
2026           // shift input, then shift it.
2027           SDValue NewShAmt = TLO.DAG.getConstant(
2028               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2029           SDValue NewTrunc =
2030               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2031           return TLO.CombineTo(
2032               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2033         }
2034         break;
2035       }
2036     }
2037 
2038     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2039     break;
2040   }
2041   case ISD::AssertZext: {
2042     // AssertZext demands all of the high bits, plus any of the low bits
2043     // demanded by its users.
2044     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2045     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2046     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2047                              TLO, Depth + 1))
2048       return true;
2049     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2050 
2051     Known.Zero |= ~InMask;
2052     break;
2053   }
2054   case ISD::EXTRACT_VECTOR_ELT: {
2055     SDValue Src = Op.getOperand(0);
2056     SDValue Idx = Op.getOperand(1);
2057     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2058     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2059 
2060     if (SrcEltCnt.isScalable())
2061       return false;
2062 
2063     // Demand the bits from every vector element without a constant index.
2064     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2065     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
2066     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2067       if (CIdx->getAPIntValue().ult(NumSrcElts))
2068         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2069 
2070     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2071     // anything about the extended bits.
2072     APInt DemandedSrcBits = DemandedBits;
2073     if (BitWidth > EltBitWidth)
2074       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2075 
2076     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2077                              Depth + 1))
2078       return true;
2079 
2080     // Attempt to avoid multi-use ops if we don't need anything from them.
2081     if (!DemandedSrcBits.isAllOnesValue() ||
2082         !DemandedSrcElts.isAllOnesValue()) {
2083       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2084               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2085         SDValue NewOp =
2086             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2087         return TLO.CombineTo(Op, NewOp);
2088       }
2089     }
2090 
2091     Known = Known2;
2092     if (BitWidth > EltBitWidth)
2093       Known = Known.anyext(BitWidth);
2094     break;
2095   }
2096   case ISD::BITCAST: {
2097     SDValue Src = Op.getOperand(0);
2098     EVT SrcVT = Src.getValueType();
2099     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2100 
2101     // If this is an FP->Int bitcast and if the sign bit is the only
2102     // thing demanded, turn this into a FGETSIGN.
2103     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2104         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2105         SrcVT.isFloatingPoint()) {
2106       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2107       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2108       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2109           SrcVT != MVT::f128) {
2110         // Cannot eliminate/lower SHL for f128 yet.
2111         EVT Ty = OpVTLegal ? VT : MVT::i32;
2112         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2113         // place.  We expect the SHL to be eliminated by other optimizations.
2114         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2115         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2116         if (!OpVTLegal && OpVTSizeInBits > 32)
2117           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2118         unsigned ShVal = Op.getValueSizeInBits() - 1;
2119         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2120         return TLO.CombineTo(Op,
2121                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2122       }
2123     }
2124 
2125     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2126     // Demand the elt/bit if any of the original elts/bits are demanded.
2127     // TODO - bigendian once we have test coverage.
2128     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
2129         TLO.DAG.getDataLayout().isLittleEndian()) {
2130       unsigned Scale = BitWidth / NumSrcEltBits;
2131       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2132       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2133       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2134       for (unsigned i = 0; i != Scale; ++i) {
2135         unsigned Offset = i * NumSrcEltBits;
2136         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
2137         if (!Sub.isNullValue()) {
2138           DemandedSrcBits |= Sub;
2139           for (unsigned j = 0; j != NumElts; ++j)
2140             if (DemandedElts[j])
2141               DemandedSrcElts.setBit((j * Scale) + i);
2142         }
2143       }
2144 
2145       APInt KnownSrcUndef, KnownSrcZero;
2146       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2147                                      KnownSrcZero, TLO, Depth + 1))
2148         return true;
2149 
2150       KnownBits KnownSrcBits;
2151       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2152                                KnownSrcBits, TLO, Depth + 1))
2153         return true;
2154     } else if ((NumSrcEltBits % BitWidth) == 0 &&
2155                TLO.DAG.getDataLayout().isLittleEndian()) {
2156       unsigned Scale = NumSrcEltBits / BitWidth;
2157       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2158       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2159       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2160       for (unsigned i = 0; i != NumElts; ++i)
2161         if (DemandedElts[i]) {
2162           unsigned Offset = (i % Scale) * BitWidth;
2163           DemandedSrcBits.insertBits(DemandedBits, Offset);
2164           DemandedSrcElts.setBit(i / Scale);
2165         }
2166 
2167       if (SrcVT.isVector()) {
2168         APInt KnownSrcUndef, KnownSrcZero;
2169         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2170                                        KnownSrcZero, TLO, Depth + 1))
2171           return true;
2172       }
2173 
2174       KnownBits KnownSrcBits;
2175       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2176                                KnownSrcBits, TLO, Depth + 1))
2177         return true;
2178     }
2179 
2180     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2181     // recursive call where Known may be useful to the caller.
2182     if (Depth > 0) {
2183       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2184       return false;
2185     }
2186     break;
2187   }
2188   case ISD::ADD:
2189   case ISD::MUL:
2190   case ISD::SUB: {
2191     // Add, Sub, and Mul don't demand any bits in positions beyond that
2192     // of the highest bit demanded of them.
2193     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2194     SDNodeFlags Flags = Op.getNode()->getFlags();
2195     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2196     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2197     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2198                              Depth + 1) ||
2199         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2200                              Depth + 1) ||
2201         // See if the operation should be performed at a smaller bit width.
2202         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2203       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2204         // Disable the nsw and nuw flags. We can no longer guarantee that we
2205         // won't wrap after simplification.
2206         Flags.setNoSignedWrap(false);
2207         Flags.setNoUnsignedWrap(false);
2208         SDValue NewOp =
2209             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2210         return TLO.CombineTo(Op, NewOp);
2211       }
2212       return true;
2213     }
2214 
2215     // Attempt to avoid multi-use ops if we don't need anything from them.
2216     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
2217       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2218           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2219       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2220           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2221       if (DemandedOp0 || DemandedOp1) {
2222         Flags.setNoSignedWrap(false);
2223         Flags.setNoUnsignedWrap(false);
2224         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2225         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2226         SDValue NewOp =
2227             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2228         return TLO.CombineTo(Op, NewOp);
2229       }
2230     }
2231 
2232     // If we have a constant operand, we may be able to turn it into -1 if we
2233     // do not demand the high bits. This can make the constant smaller to
2234     // encode, allow more general folding, or match specialized instruction
2235     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2236     // is probably not useful (and could be detrimental).
2237     ConstantSDNode *C = isConstOrConstSplat(Op1);
2238     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2239     if (C && !C->isAllOnesValue() && !C->isOne() &&
2240         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
2241       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2242       // Disable the nsw and nuw flags. We can no longer guarantee that we
2243       // won't wrap after simplification.
2244       Flags.setNoSignedWrap(false);
2245       Flags.setNoUnsignedWrap(false);
2246       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2247       return TLO.CombineTo(Op, NewOp);
2248     }
2249 
2250     LLVM_FALLTHROUGH;
2251   }
2252   default:
2253     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2254       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2255                                             Known, TLO, Depth))
2256         return true;
2257       break;
2258     }
2259 
2260     // Just use computeKnownBits to compute output bits.
2261     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2262     break;
2263   }
2264 
2265   // If we know the value of all of the demanded bits, return this as a
2266   // constant.
2267   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2268     // Avoid folding to a constant if any OpaqueConstant is involved.
2269     const SDNode *N = Op.getNode();
2270     for (SDNodeIterator I = SDNodeIterator::begin(N),
2271                         E = SDNodeIterator::end(N);
2272          I != E; ++I) {
2273       SDNode *Op = *I;
2274       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2275         if (C->isOpaque())
2276           return false;
2277     }
2278     if (VT.isInteger())
2279       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2280     if (VT.isFloatingPoint())
2281       return TLO.CombineTo(
2282           Op,
2283           TLO.DAG.getConstantFP(
2284               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2285   }
2286 
2287   return false;
2288 }
2289 
2290 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2291                                                 const APInt &DemandedElts,
2292                                                 APInt &KnownUndef,
2293                                                 APInt &KnownZero,
2294                                                 DAGCombinerInfo &DCI) const {
2295   SelectionDAG &DAG = DCI.DAG;
2296   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2297                         !DCI.isBeforeLegalizeOps());
2298 
2299   bool Simplified =
2300       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2301   if (Simplified) {
2302     DCI.AddToWorklist(Op.getNode());
2303     DCI.CommitTargetLoweringOpt(TLO);
2304   }
2305 
2306   return Simplified;
2307 }
2308 
2309 /// Given a vector binary operation and known undefined elements for each input
2310 /// operand, compute whether each element of the output is undefined.
2311 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2312                                          const APInt &UndefOp0,
2313                                          const APInt &UndefOp1) {
2314   EVT VT = BO.getValueType();
2315   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2316          "Vector binop only");
2317 
2318   EVT EltVT = VT.getVectorElementType();
2319   unsigned NumElts = VT.getVectorNumElements();
2320   assert(UndefOp0.getBitWidth() == NumElts &&
2321          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2322 
2323   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2324                                    const APInt &UndefVals) {
2325     if (UndefVals[Index])
2326       return DAG.getUNDEF(EltVT);
2327 
2328     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2329       // Try hard to make sure that the getNode() call is not creating temporary
2330       // nodes. Ignore opaque integers because they do not constant fold.
2331       SDValue Elt = BV->getOperand(Index);
2332       auto *C = dyn_cast<ConstantSDNode>(Elt);
2333       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2334         return Elt;
2335     }
2336 
2337     return SDValue();
2338   };
2339 
2340   APInt KnownUndef = APInt::getNullValue(NumElts);
2341   for (unsigned i = 0; i != NumElts; ++i) {
2342     // If both inputs for this element are either constant or undef and match
2343     // the element type, compute the constant/undef result for this element of
2344     // the vector.
2345     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2346     // not handle FP constants. The code within getNode() should be refactored
2347     // to avoid the danger of creating a bogus temporary node here.
2348     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2349     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2350     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2351       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2352         KnownUndef.setBit(i);
2353   }
2354   return KnownUndef;
2355 }
2356 
2357 bool TargetLowering::SimplifyDemandedVectorElts(
2358     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2359     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2360     bool AssumeSingleUse) const {
2361   EVT VT = Op.getValueType();
2362   unsigned Opcode = Op.getOpcode();
2363   APInt DemandedElts = OriginalDemandedElts;
2364   unsigned NumElts = DemandedElts.getBitWidth();
2365   assert(VT.isVector() && "Expected vector op");
2366 
2367   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2368 
2369   // TODO: For now we assume we know nothing about scalable vectors.
2370   if (VT.isScalableVector())
2371     return false;
2372 
2373   assert(VT.getVectorNumElements() == NumElts &&
2374          "Mask size mismatches value type element count!");
2375 
2376   // Undef operand.
2377   if (Op.isUndef()) {
2378     KnownUndef.setAllBits();
2379     return false;
2380   }
2381 
2382   // If Op has other users, assume that all elements are needed.
2383   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2384     DemandedElts.setAllBits();
2385 
2386   // Not demanding any elements from Op.
2387   if (DemandedElts == 0) {
2388     KnownUndef.setAllBits();
2389     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2390   }
2391 
2392   // Limit search depth.
2393   if (Depth >= SelectionDAG::MaxRecursionDepth)
2394     return false;
2395 
2396   SDLoc DL(Op);
2397   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2398 
2399   // Helper for demanding the specified elements and all the bits of both binary
2400   // operands.
2401   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2402     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2403                                                            TLO.DAG, Depth + 1);
2404     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2405                                                            TLO.DAG, Depth + 1);
2406     if (NewOp0 || NewOp1) {
2407       SDValue NewOp = TLO.DAG.getNode(
2408           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2409       return TLO.CombineTo(Op, NewOp);
2410     }
2411     return false;
2412   };
2413 
2414   switch (Opcode) {
2415   case ISD::SCALAR_TO_VECTOR: {
2416     if (!DemandedElts[0]) {
2417       KnownUndef.setAllBits();
2418       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2419     }
2420     KnownUndef.setHighBits(NumElts - 1);
2421     break;
2422   }
2423   case ISD::BITCAST: {
2424     SDValue Src = Op.getOperand(0);
2425     EVT SrcVT = Src.getValueType();
2426 
2427     // We only handle vectors here.
2428     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2429     if (!SrcVT.isVector())
2430       break;
2431 
2432     // Fast handling of 'identity' bitcasts.
2433     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2434     if (NumSrcElts == NumElts)
2435       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2436                                         KnownZero, TLO, Depth + 1);
2437 
2438     APInt SrcZero, SrcUndef;
2439     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2440 
2441     // Bitcast from 'large element' src vector to 'small element' vector, we
2442     // must demand a source element if any DemandedElt maps to it.
2443     if ((NumElts % NumSrcElts) == 0) {
2444       unsigned Scale = NumElts / NumSrcElts;
2445       for (unsigned i = 0; i != NumElts; ++i)
2446         if (DemandedElts[i])
2447           SrcDemandedElts.setBit(i / Scale);
2448 
2449       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2450                                      TLO, Depth + 1))
2451         return true;
2452 
2453       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2454       // of the large element.
2455       // TODO - bigendian once we have test coverage.
2456       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2457         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2458         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2459         for (unsigned i = 0; i != NumElts; ++i)
2460           if (DemandedElts[i]) {
2461             unsigned Ofs = (i % Scale) * EltSizeInBits;
2462             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2463           }
2464 
2465         KnownBits Known;
2466         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2467                                  TLO, Depth + 1))
2468           return true;
2469       }
2470 
2471       // If the src element is zero/undef then all the output elements will be -
2472       // only demanded elements are guaranteed to be correct.
2473       for (unsigned i = 0; i != NumSrcElts; ++i) {
2474         if (SrcDemandedElts[i]) {
2475           if (SrcZero[i])
2476             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2477           if (SrcUndef[i])
2478             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2479         }
2480       }
2481     }
2482 
2483     // Bitcast from 'small element' src vector to 'large element' vector, we
2484     // demand all smaller source elements covered by the larger demanded element
2485     // of this vector.
2486     if ((NumSrcElts % NumElts) == 0) {
2487       unsigned Scale = NumSrcElts / NumElts;
2488       for (unsigned i = 0; i != NumElts; ++i)
2489         if (DemandedElts[i])
2490           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2491 
2492       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2493                                      TLO, Depth + 1))
2494         return true;
2495 
2496       // If all the src elements covering an output element are zero/undef, then
2497       // the output element will be as well, assuming it was demanded.
2498       for (unsigned i = 0; i != NumElts; ++i) {
2499         if (DemandedElts[i]) {
2500           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2501             KnownZero.setBit(i);
2502           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2503             KnownUndef.setBit(i);
2504         }
2505       }
2506     }
2507     break;
2508   }
2509   case ISD::BUILD_VECTOR: {
2510     // Check all elements and simplify any unused elements with UNDEF.
2511     if (!DemandedElts.isAllOnesValue()) {
2512       // Don't simplify BROADCASTS.
2513       if (llvm::any_of(Op->op_values(),
2514                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2515         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2516         bool Updated = false;
2517         for (unsigned i = 0; i != NumElts; ++i) {
2518           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2519             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2520             KnownUndef.setBit(i);
2521             Updated = true;
2522           }
2523         }
2524         if (Updated)
2525           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2526       }
2527     }
2528     for (unsigned i = 0; i != NumElts; ++i) {
2529       SDValue SrcOp = Op.getOperand(i);
2530       if (SrcOp.isUndef()) {
2531         KnownUndef.setBit(i);
2532       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2533                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2534         KnownZero.setBit(i);
2535       }
2536     }
2537     break;
2538   }
2539   case ISD::CONCAT_VECTORS: {
2540     EVT SubVT = Op.getOperand(0).getValueType();
2541     unsigned NumSubVecs = Op.getNumOperands();
2542     unsigned NumSubElts = SubVT.getVectorNumElements();
2543     for (unsigned i = 0; i != NumSubVecs; ++i) {
2544       SDValue SubOp = Op.getOperand(i);
2545       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2546       APInt SubUndef, SubZero;
2547       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2548                                      Depth + 1))
2549         return true;
2550       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2551       KnownZero.insertBits(SubZero, i * NumSubElts);
2552     }
2553     break;
2554   }
2555   case ISD::INSERT_SUBVECTOR: {
2556     // Demand any elements from the subvector and the remainder from the src its
2557     // inserted into.
2558     SDValue Src = Op.getOperand(0);
2559     SDValue Sub = Op.getOperand(1);
2560     uint64_t Idx = Op.getConstantOperandVal(2);
2561     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2562     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2563     APInt DemandedSrcElts = DemandedElts;
2564     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2565 
2566     APInt SubUndef, SubZero;
2567     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2568                                    Depth + 1))
2569       return true;
2570 
2571     // If none of the src operand elements are demanded, replace it with undef.
2572     if (!DemandedSrcElts && !Src.isUndef())
2573       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2574                                                TLO.DAG.getUNDEF(VT), Sub,
2575                                                Op.getOperand(2)));
2576 
2577     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2578                                    TLO, Depth + 1))
2579       return true;
2580     KnownUndef.insertBits(SubUndef, Idx);
2581     KnownZero.insertBits(SubZero, Idx);
2582 
2583     // Attempt to avoid multi-use ops if we don't need anything from them.
2584     if (!DemandedSrcElts.isAllOnesValue() ||
2585         !DemandedSubElts.isAllOnesValue()) {
2586       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2587           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2588       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2589           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2590       if (NewSrc || NewSub) {
2591         NewSrc = NewSrc ? NewSrc : Src;
2592         NewSub = NewSub ? NewSub : Sub;
2593         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2594                                         NewSub, Op.getOperand(2));
2595         return TLO.CombineTo(Op, NewOp);
2596       }
2597     }
2598     break;
2599   }
2600   case ISD::EXTRACT_SUBVECTOR: {
2601     // Offset the demanded elts by the subvector index.
2602     SDValue Src = Op.getOperand(0);
2603     if (Src.getValueType().isScalableVector())
2604       break;
2605     uint64_t Idx = Op.getConstantOperandVal(1);
2606     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2607     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2608 
2609     APInt SrcUndef, SrcZero;
2610     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2611                                    Depth + 1))
2612       return true;
2613     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2614     KnownZero = SrcZero.extractBits(NumElts, Idx);
2615 
2616     // Attempt to avoid multi-use ops if we don't need anything from them.
2617     if (!DemandedElts.isAllOnesValue()) {
2618       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2619           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2620       if (NewSrc) {
2621         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2622                                         Op.getOperand(1));
2623         return TLO.CombineTo(Op, NewOp);
2624       }
2625     }
2626     break;
2627   }
2628   case ISD::INSERT_VECTOR_ELT: {
2629     SDValue Vec = Op.getOperand(0);
2630     SDValue Scl = Op.getOperand(1);
2631     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2632 
2633     // For a legal, constant insertion index, if we don't need this insertion
2634     // then strip it, else remove it from the demanded elts.
2635     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2636       unsigned Idx = CIdx->getZExtValue();
2637       if (!DemandedElts[Idx])
2638         return TLO.CombineTo(Op, Vec);
2639 
2640       APInt DemandedVecElts(DemandedElts);
2641       DemandedVecElts.clearBit(Idx);
2642       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2643                                      KnownZero, TLO, Depth + 1))
2644         return true;
2645 
2646       KnownUndef.setBitVal(Idx, Scl.isUndef());
2647 
2648       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
2649       break;
2650     }
2651 
2652     APInt VecUndef, VecZero;
2653     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2654                                    Depth + 1))
2655       return true;
2656     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2657     break;
2658   }
2659   case ISD::VSELECT: {
2660     // Try to transform the select condition based on the current demanded
2661     // elements.
2662     // TODO: If a condition element is undef, we can choose from one arm of the
2663     //       select (and if one arm is undef, then we can propagate that to the
2664     //       result).
2665     // TODO - add support for constant vselect masks (see IR version of this).
2666     APInt UnusedUndef, UnusedZero;
2667     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2668                                    UnusedZero, TLO, Depth + 1))
2669       return true;
2670 
2671     // See if we can simplify either vselect operand.
2672     APInt DemandedLHS(DemandedElts);
2673     APInt DemandedRHS(DemandedElts);
2674     APInt UndefLHS, ZeroLHS;
2675     APInt UndefRHS, ZeroRHS;
2676     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2677                                    ZeroLHS, TLO, Depth + 1))
2678       return true;
2679     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2680                                    ZeroRHS, TLO, Depth + 1))
2681       return true;
2682 
2683     KnownUndef = UndefLHS & UndefRHS;
2684     KnownZero = ZeroLHS & ZeroRHS;
2685     break;
2686   }
2687   case ISD::VECTOR_SHUFFLE: {
2688     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2689 
2690     // Collect demanded elements from shuffle operands..
2691     APInt DemandedLHS(NumElts, 0);
2692     APInt DemandedRHS(NumElts, 0);
2693     for (unsigned i = 0; i != NumElts; ++i) {
2694       int M = ShuffleMask[i];
2695       if (M < 0 || !DemandedElts[i])
2696         continue;
2697       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2698       if (M < (int)NumElts)
2699         DemandedLHS.setBit(M);
2700       else
2701         DemandedRHS.setBit(M - NumElts);
2702     }
2703 
2704     // See if we can simplify either shuffle operand.
2705     APInt UndefLHS, ZeroLHS;
2706     APInt UndefRHS, ZeroRHS;
2707     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2708                                    ZeroLHS, TLO, Depth + 1))
2709       return true;
2710     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2711                                    ZeroRHS, TLO, Depth + 1))
2712       return true;
2713 
2714     // Simplify mask using undef elements from LHS/RHS.
2715     bool Updated = false;
2716     bool IdentityLHS = true, IdentityRHS = true;
2717     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2718     for (unsigned i = 0; i != NumElts; ++i) {
2719       int &M = NewMask[i];
2720       if (M < 0)
2721         continue;
2722       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2723           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2724         Updated = true;
2725         M = -1;
2726       }
2727       IdentityLHS &= (M < 0) || (M == (int)i);
2728       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2729     }
2730 
2731     // Update legal shuffle masks based on demanded elements if it won't reduce
2732     // to Identity which can cause premature removal of the shuffle mask.
2733     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2734       SDValue LegalShuffle =
2735           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2736                                   NewMask, TLO.DAG);
2737       if (LegalShuffle)
2738         return TLO.CombineTo(Op, LegalShuffle);
2739     }
2740 
2741     // Propagate undef/zero elements from LHS/RHS.
2742     for (unsigned i = 0; i != NumElts; ++i) {
2743       int M = ShuffleMask[i];
2744       if (M < 0) {
2745         KnownUndef.setBit(i);
2746       } else if (M < (int)NumElts) {
2747         if (UndefLHS[M])
2748           KnownUndef.setBit(i);
2749         if (ZeroLHS[M])
2750           KnownZero.setBit(i);
2751       } else {
2752         if (UndefRHS[M - NumElts])
2753           KnownUndef.setBit(i);
2754         if (ZeroRHS[M - NumElts])
2755           KnownZero.setBit(i);
2756       }
2757     }
2758     break;
2759   }
2760   case ISD::ANY_EXTEND_VECTOR_INREG:
2761   case ISD::SIGN_EXTEND_VECTOR_INREG:
2762   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2763     APInt SrcUndef, SrcZero;
2764     SDValue Src = Op.getOperand(0);
2765     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2766     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2767     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2768                                    Depth + 1))
2769       return true;
2770     KnownZero = SrcZero.zextOrTrunc(NumElts);
2771     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2772 
2773     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2774         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2775         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2776       // aext - if we just need the bottom element then we can bitcast.
2777       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2778     }
2779 
2780     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2781       // zext(undef) upper bits are guaranteed to be zero.
2782       if (DemandedElts.isSubsetOf(KnownUndef))
2783         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2784       KnownUndef.clearAllBits();
2785     }
2786     break;
2787   }
2788 
2789   // TODO: There are more binop opcodes that could be handled here - MIN,
2790   // MAX, saturated math, etc.
2791   case ISD::OR:
2792   case ISD::XOR:
2793   case ISD::ADD:
2794   case ISD::SUB:
2795   case ISD::FADD:
2796   case ISD::FSUB:
2797   case ISD::FMUL:
2798   case ISD::FDIV:
2799   case ISD::FREM: {
2800     SDValue Op0 = Op.getOperand(0);
2801     SDValue Op1 = Op.getOperand(1);
2802 
2803     APInt UndefRHS, ZeroRHS;
2804     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2805                                    Depth + 1))
2806       return true;
2807     APInt UndefLHS, ZeroLHS;
2808     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2809                                    Depth + 1))
2810       return true;
2811 
2812     KnownZero = ZeroLHS & ZeroRHS;
2813     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2814 
2815     // Attempt to avoid multi-use ops if we don't need anything from them.
2816     // TODO - use KnownUndef to relax the demandedelts?
2817     if (!DemandedElts.isAllOnesValue())
2818       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2819         return true;
2820     break;
2821   }
2822   case ISD::SHL:
2823   case ISD::SRL:
2824   case ISD::SRA:
2825   case ISD::ROTL:
2826   case ISD::ROTR: {
2827     SDValue Op0 = Op.getOperand(0);
2828     SDValue Op1 = Op.getOperand(1);
2829 
2830     APInt UndefRHS, ZeroRHS;
2831     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2832                                    Depth + 1))
2833       return true;
2834     APInt UndefLHS, ZeroLHS;
2835     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2836                                    Depth + 1))
2837       return true;
2838 
2839     KnownZero = ZeroLHS;
2840     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2841 
2842     // Attempt to avoid multi-use ops if we don't need anything from them.
2843     // TODO - use KnownUndef to relax the demandedelts?
2844     if (!DemandedElts.isAllOnesValue())
2845       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2846         return true;
2847     break;
2848   }
2849   case ISD::MUL:
2850   case ISD::AND: {
2851     SDValue Op0 = Op.getOperand(0);
2852     SDValue Op1 = Op.getOperand(1);
2853 
2854     APInt SrcUndef, SrcZero;
2855     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
2856                                    Depth + 1))
2857       return true;
2858     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
2859                                    TLO, Depth + 1))
2860       return true;
2861 
2862     // If either side has a zero element, then the result element is zero, even
2863     // if the other is an UNDEF.
2864     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2865     // and then handle 'and' nodes with the rest of the binop opcodes.
2866     KnownZero |= SrcZero;
2867     KnownUndef &= SrcUndef;
2868     KnownUndef &= ~KnownZero;
2869 
2870     // Attempt to avoid multi-use ops if we don't need anything from them.
2871     // TODO - use KnownUndef to relax the demandedelts?
2872     if (!DemandedElts.isAllOnesValue())
2873       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2874         return true;
2875     break;
2876   }
2877   case ISD::TRUNCATE:
2878   case ISD::SIGN_EXTEND:
2879   case ISD::ZERO_EXTEND:
2880     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2881                                    KnownZero, TLO, Depth + 1))
2882       return true;
2883 
2884     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2885       // zext(undef) upper bits are guaranteed to be zero.
2886       if (DemandedElts.isSubsetOf(KnownUndef))
2887         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2888       KnownUndef.clearAllBits();
2889     }
2890     break;
2891   default: {
2892     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2893       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2894                                                   KnownZero, TLO, Depth))
2895         return true;
2896     } else {
2897       KnownBits Known;
2898       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2899       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2900                                TLO, Depth, AssumeSingleUse))
2901         return true;
2902     }
2903     break;
2904   }
2905   }
2906   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2907 
2908   // Constant fold all undef cases.
2909   // TODO: Handle zero cases as well.
2910   if (DemandedElts.isSubsetOf(KnownUndef))
2911     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2912 
2913   return false;
2914 }
2915 
2916 /// Determine which of the bits specified in Mask are known to be either zero or
2917 /// one and return them in the Known.
2918 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2919                                                    KnownBits &Known,
2920                                                    const APInt &DemandedElts,
2921                                                    const SelectionDAG &DAG,
2922                                                    unsigned Depth) const {
2923   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2924           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2925           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2926           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2927          "Should use MaskedValueIsZero if you don't know whether Op"
2928          " is a target node!");
2929   Known.resetAll();
2930 }
2931 
2932 void TargetLowering::computeKnownBitsForTargetInstr(
2933     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2934     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2935     unsigned Depth) const {
2936   Known.resetAll();
2937 }
2938 
2939 void TargetLowering::computeKnownBitsForFrameIndex(
2940   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
2941   // The low bits are known zero if the pointer is aligned.
2942   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
2943 }
2944 
2945 Align TargetLowering::computeKnownAlignForTargetInstr(
2946   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
2947   unsigned Depth) const {
2948   return Align(1);
2949 }
2950 
2951 /// This method can be implemented by targets that want to expose additional
2952 /// information about sign bits to the DAG Combiner.
2953 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2954                                                          const APInt &,
2955                                                          const SelectionDAG &,
2956                                                          unsigned Depth) const {
2957   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2958           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2959           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2960           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2961          "Should use ComputeNumSignBits if you don't know whether Op"
2962          " is a target node!");
2963   return 1;
2964 }
2965 
2966 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
2967   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
2968   const MachineRegisterInfo &MRI, unsigned Depth) const {
2969   return 1;
2970 }
2971 
2972 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2973     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2974     TargetLoweringOpt &TLO, unsigned Depth) const {
2975   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2976           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2977           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2978           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2979          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2980          " is a target node!");
2981   return false;
2982 }
2983 
2984 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2985     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2986     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2987   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2988           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2989           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2990           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2991          "Should use SimplifyDemandedBits if you don't know whether Op"
2992          " is a target node!");
2993   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2994   return false;
2995 }
2996 
2997 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2998     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2999     SelectionDAG &DAG, unsigned Depth) const {
3000   assert(
3001       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3002        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3003        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3004        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3005       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3006       " is a target node!");
3007   return SDValue();
3008 }
3009 
3010 SDValue
3011 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3012                                         SDValue N1, MutableArrayRef<int> Mask,
3013                                         SelectionDAG &DAG) const {
3014   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3015   if (!LegalMask) {
3016     std::swap(N0, N1);
3017     ShuffleVectorSDNode::commuteMask(Mask);
3018     LegalMask = isShuffleMaskLegal(Mask, VT);
3019   }
3020 
3021   if (!LegalMask)
3022     return SDValue();
3023 
3024   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3025 }
3026 
3027 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3028   return nullptr;
3029 }
3030 
3031 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3032                                                   const SelectionDAG &DAG,
3033                                                   bool SNaN,
3034                                                   unsigned Depth) const {
3035   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3036           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3037           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3038           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3039          "Should use isKnownNeverNaN if you don't know whether Op"
3040          " is a target node!");
3041   return false;
3042 }
3043 
3044 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3045 // work with truncating build vectors and vectors with elements of less than
3046 // 8 bits.
3047 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
3048   if (!N)
3049     return false;
3050 
3051   APInt CVal;
3052   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
3053     CVal = CN->getAPIntValue();
3054   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
3055     auto *CN = BV->getConstantSplatNode();
3056     if (!CN)
3057       return false;
3058 
3059     // If this is a truncating build vector, truncate the splat value.
3060     // Otherwise, we may fail to match the expected values below.
3061     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
3062     CVal = CN->getAPIntValue();
3063     if (BVEltWidth < CVal.getBitWidth())
3064       CVal = CVal.trunc(BVEltWidth);
3065   } else {
3066     return false;
3067   }
3068 
3069   switch (getBooleanContents(N->getValueType(0))) {
3070   case UndefinedBooleanContent:
3071     return CVal[0];
3072   case ZeroOrOneBooleanContent:
3073     return CVal.isOneValue();
3074   case ZeroOrNegativeOneBooleanContent:
3075     return CVal.isAllOnesValue();
3076   }
3077 
3078   llvm_unreachable("Invalid boolean contents");
3079 }
3080 
3081 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
3082   if (!N)
3083     return false;
3084 
3085   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3086   if (!CN) {
3087     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3088     if (!BV)
3089       return false;
3090 
3091     // Only interested in constant splats, we don't care about undef
3092     // elements in identifying boolean constants and getConstantSplatNode
3093     // returns NULL if all ops are undef;
3094     CN = BV->getConstantSplatNode();
3095     if (!CN)
3096       return false;
3097   }
3098 
3099   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3100     return !CN->getAPIntValue()[0];
3101 
3102   return CN->isNullValue();
3103 }
3104 
3105 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3106                                        bool SExt) const {
3107   if (VT == MVT::i1)
3108     return N->isOne();
3109 
3110   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3111   switch (Cnt) {
3112   case TargetLowering::ZeroOrOneBooleanContent:
3113     // An extended value of 1 is always true, unless its original type is i1,
3114     // in which case it will be sign extended to -1.
3115     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3116   case TargetLowering::UndefinedBooleanContent:
3117   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3118     return N->isAllOnesValue() && SExt;
3119   }
3120   llvm_unreachable("Unexpected enumeration.");
3121 }
3122 
3123 /// This helper function of SimplifySetCC tries to optimize the comparison when
3124 /// either operand of the SetCC node is a bitwise-and instruction.
3125 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3126                                          ISD::CondCode Cond, const SDLoc &DL,
3127                                          DAGCombinerInfo &DCI) const {
3128   // Match these patterns in any of their permutations:
3129   // (X & Y) == Y
3130   // (X & Y) != Y
3131   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3132     std::swap(N0, N1);
3133 
3134   EVT OpVT = N0.getValueType();
3135   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3136       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3137     return SDValue();
3138 
3139   SDValue X, Y;
3140   if (N0.getOperand(0) == N1) {
3141     X = N0.getOperand(1);
3142     Y = N0.getOperand(0);
3143   } else if (N0.getOperand(1) == N1) {
3144     X = N0.getOperand(0);
3145     Y = N0.getOperand(1);
3146   } else {
3147     return SDValue();
3148   }
3149 
3150   SelectionDAG &DAG = DCI.DAG;
3151   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3152   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3153     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3154     // Note that where Y is variable and is known to have at most one bit set
3155     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3156     // equivalent when Y == 0.
3157     assert(OpVT.isInteger());
3158     Cond = ISD::getSetCCInverse(Cond, OpVT);
3159     if (DCI.isBeforeLegalizeOps() ||
3160         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3161       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3162   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3163     // If the target supports an 'and-not' or 'and-complement' logic operation,
3164     // try to use that to make a comparison operation more efficient.
3165     // But don't do this transform if the mask is a single bit because there are
3166     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3167     // 'rlwinm' on PPC).
3168 
3169     // Bail out if the compare operand that we want to turn into a zero is
3170     // already a zero (otherwise, infinite loop).
3171     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3172     if (YConst && YConst->isNullValue())
3173       return SDValue();
3174 
3175     // Transform this into: ~X & Y == 0.
3176     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3177     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3178     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3179   }
3180 
3181   return SDValue();
3182 }
3183 
3184 /// There are multiple IR patterns that could be checking whether certain
3185 /// truncation of a signed number would be lossy or not. The pattern which is
3186 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3187 /// We are looking for the following pattern: (KeptBits is a constant)
3188 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3189 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3190 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3191 /// We will unfold it into the natural trunc+sext pattern:
3192 ///   ((%x << C) a>> C) dstcond %x
3193 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3194 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3195     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3196     const SDLoc &DL) const {
3197   // We must be comparing with a constant.
3198   ConstantSDNode *C1;
3199   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3200     return SDValue();
3201 
3202   // N0 should be:  add %x, (1 << (KeptBits-1))
3203   if (N0->getOpcode() != ISD::ADD)
3204     return SDValue();
3205 
3206   // And we must be 'add'ing a constant.
3207   ConstantSDNode *C01;
3208   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3209     return SDValue();
3210 
3211   SDValue X = N0->getOperand(0);
3212   EVT XVT = X.getValueType();
3213 
3214   // Validate constants ...
3215 
3216   APInt I1 = C1->getAPIntValue();
3217 
3218   ISD::CondCode NewCond;
3219   if (Cond == ISD::CondCode::SETULT) {
3220     NewCond = ISD::CondCode::SETEQ;
3221   } else if (Cond == ISD::CondCode::SETULE) {
3222     NewCond = ISD::CondCode::SETEQ;
3223     // But need to 'canonicalize' the constant.
3224     I1 += 1;
3225   } else if (Cond == ISD::CondCode::SETUGT) {
3226     NewCond = ISD::CondCode::SETNE;
3227     // But need to 'canonicalize' the constant.
3228     I1 += 1;
3229   } else if (Cond == ISD::CondCode::SETUGE) {
3230     NewCond = ISD::CondCode::SETNE;
3231   } else
3232     return SDValue();
3233 
3234   APInt I01 = C01->getAPIntValue();
3235 
3236   auto checkConstants = [&I1, &I01]() -> bool {
3237     // Both of them must be power-of-two, and the constant from setcc is bigger.
3238     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3239   };
3240 
3241   if (checkConstants()) {
3242     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3243   } else {
3244     // What if we invert constants? (and the target predicate)
3245     I1.negate();
3246     I01.negate();
3247     assert(XVT.isInteger());
3248     NewCond = getSetCCInverse(NewCond, XVT);
3249     if (!checkConstants())
3250       return SDValue();
3251     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3252   }
3253 
3254   // They are power-of-two, so which bit is set?
3255   const unsigned KeptBits = I1.logBase2();
3256   const unsigned KeptBitsMinusOne = I01.logBase2();
3257 
3258   // Magic!
3259   if (KeptBits != (KeptBitsMinusOne + 1))
3260     return SDValue();
3261   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3262 
3263   // We don't want to do this in every single case.
3264   SelectionDAG &DAG = DCI.DAG;
3265   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3266           XVT, KeptBits))
3267     return SDValue();
3268 
3269   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3270   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3271 
3272   // Unfold into:  ((%x << C) a>> C) cond %x
3273   // Where 'cond' will be either 'eq' or 'ne'.
3274   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3275   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3276   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3277   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3278 
3279   return T2;
3280 }
3281 
3282 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3283 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3284     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3285     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3286   assert(isConstOrConstSplat(N1C) &&
3287          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
3288          "Should be a comparison with 0.");
3289   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3290          "Valid only for [in]equality comparisons.");
3291 
3292   unsigned NewShiftOpcode;
3293   SDValue X, C, Y;
3294 
3295   SelectionDAG &DAG = DCI.DAG;
3296   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3297 
3298   // Look for '(C l>>/<< Y)'.
3299   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3300     // The shift should be one-use.
3301     if (!V.hasOneUse())
3302       return false;
3303     unsigned OldShiftOpcode = V.getOpcode();
3304     switch (OldShiftOpcode) {
3305     case ISD::SHL:
3306       NewShiftOpcode = ISD::SRL;
3307       break;
3308     case ISD::SRL:
3309       NewShiftOpcode = ISD::SHL;
3310       break;
3311     default:
3312       return false; // must be a logical shift.
3313     }
3314     // We should be shifting a constant.
3315     // FIXME: best to use isConstantOrConstantVector().
3316     C = V.getOperand(0);
3317     ConstantSDNode *CC =
3318         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3319     if (!CC)
3320       return false;
3321     Y = V.getOperand(1);
3322 
3323     ConstantSDNode *XC =
3324         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3325     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3326         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3327   };
3328 
3329   // LHS of comparison should be an one-use 'and'.
3330   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3331     return SDValue();
3332 
3333   X = N0.getOperand(0);
3334   SDValue Mask = N0.getOperand(1);
3335 
3336   // 'and' is commutative!
3337   if (!Match(Mask)) {
3338     std::swap(X, Mask);
3339     if (!Match(Mask))
3340       return SDValue();
3341   }
3342 
3343   EVT VT = X.getValueType();
3344 
3345   // Produce:
3346   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3347   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3348   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3349   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3350   return T2;
3351 }
3352 
3353 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3354 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3355 /// handle the commuted versions of these patterns.
3356 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3357                                            ISD::CondCode Cond, const SDLoc &DL,
3358                                            DAGCombinerInfo &DCI) const {
3359   unsigned BOpcode = N0.getOpcode();
3360   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3361          "Unexpected binop");
3362   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3363 
3364   // (X + Y) == X --> Y == 0
3365   // (X - Y) == X --> Y == 0
3366   // (X ^ Y) == X --> Y == 0
3367   SelectionDAG &DAG = DCI.DAG;
3368   EVT OpVT = N0.getValueType();
3369   SDValue X = N0.getOperand(0);
3370   SDValue Y = N0.getOperand(1);
3371   if (X == N1)
3372     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3373 
3374   if (Y != N1)
3375     return SDValue();
3376 
3377   // (X + Y) == Y --> X == 0
3378   // (X ^ Y) == Y --> X == 0
3379   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3380     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3381 
3382   // The shift would not be valid if the operands are boolean (i1).
3383   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3384     return SDValue();
3385 
3386   // (X - Y) == Y --> X == Y << 1
3387   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3388                                  !DCI.isBeforeLegalize());
3389   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3390   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3391   if (!DCI.isCalledByLegalizer())
3392     DCI.AddToWorklist(YShl1.getNode());
3393   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3394 }
3395 
3396 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3397                                       SDValue N0, const APInt &C1,
3398                                       ISD::CondCode Cond, const SDLoc &dl,
3399                                       SelectionDAG &DAG) {
3400   // Look through truncs that don't change the value of a ctpop.
3401   // FIXME: Add vector support? Need to be careful with setcc result type below.
3402   SDValue CTPOP = N0;
3403   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3404       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3405     CTPOP = N0.getOperand(0);
3406 
3407   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3408     return SDValue();
3409 
3410   EVT CTVT = CTPOP.getValueType();
3411   SDValue CTOp = CTPOP.getOperand(0);
3412 
3413   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3414   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3415   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3416     return SDValue();
3417 
3418   // (ctpop x) u< 2 -> (x & x-1) == 0
3419   // (ctpop x) u> 1 -> (x & x-1) != 0
3420   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3421     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3422     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3423       return SDValue();
3424     if (C1 == 0 && (Cond == ISD::SETULT))
3425       return SDValue(); // This is handled elsewhere.
3426 
3427     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3428 
3429     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3430     SDValue Result = CTOp;
3431     for (unsigned i = 0; i < Passes; i++) {
3432       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3433       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3434     }
3435     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3436     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3437   }
3438 
3439   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3440   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3441     // For scalars, keep CTPOP if it is legal or custom.
3442     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3443       return SDValue();
3444     // This is based on X86's custom lowering for CTPOP which produces more
3445     // instructions than the expansion here.
3446 
3447     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3448     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3449     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3450     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3451     assert(CTVT.isInteger());
3452     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3453     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3454     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3455     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3456     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3457     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3458     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3459   }
3460 
3461   return SDValue();
3462 }
3463 
3464 /// Try to simplify a setcc built with the specified operands and cc. If it is
3465 /// unable to simplify it, return a null SDValue.
3466 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3467                                       ISD::CondCode Cond, bool foldBooleans,
3468                                       DAGCombinerInfo &DCI,
3469                                       const SDLoc &dl) const {
3470   SelectionDAG &DAG = DCI.DAG;
3471   const DataLayout &Layout = DAG.getDataLayout();
3472   EVT OpVT = N0.getValueType();
3473 
3474   // Constant fold or commute setcc.
3475   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3476     return Fold;
3477 
3478   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3479   // TODO: Handle non-splat vector constants. All undef causes trouble.
3480   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
3481   // infinite loop here when we encounter one.
3482   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3483   if (isConstOrConstSplat(N0) &&
3484       (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) &&
3485       (DCI.isBeforeLegalizeOps() ||
3486        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3487     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3488 
3489   // If we have a subtract with the same 2 non-constant operands as this setcc
3490   // -- but in reverse order -- then try to commute the operands of this setcc
3491   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3492   // instruction on some targets.
3493   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3494       (DCI.isBeforeLegalizeOps() ||
3495        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3496       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
3497       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
3498     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3499 
3500   if (auto *N1C = isConstOrConstSplat(N1)) {
3501     const APInt &C1 = N1C->getAPIntValue();
3502 
3503     // Optimize some CTPOP cases.
3504     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
3505       return V;
3506 
3507     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3508     // equality comparison, then we're just comparing whether X itself is
3509     // zero.
3510     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3511         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3512         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
3513       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
3514         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3515             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
3516           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3517             // (srl (ctlz x), 5) == 0  -> X != 0
3518             // (srl (ctlz x), 5) != 1  -> X != 0
3519             Cond = ISD::SETNE;
3520           } else {
3521             // (srl (ctlz x), 5) != 0  -> X == 0
3522             // (srl (ctlz x), 5) == 1  -> X == 0
3523             Cond = ISD::SETEQ;
3524           }
3525           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3526           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
3527                               Cond);
3528         }
3529       }
3530     }
3531   }
3532 
3533   // FIXME: Support vectors.
3534   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3535     const APInt &C1 = N1C->getAPIntValue();
3536 
3537     // (zext x) == C --> x == (trunc C)
3538     // (sext x) == C --> x == (trunc C)
3539     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3540         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3541       unsigned MinBits = N0.getValueSizeInBits();
3542       SDValue PreExt;
3543       bool Signed = false;
3544       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3545         // ZExt
3546         MinBits = N0->getOperand(0).getValueSizeInBits();
3547         PreExt = N0->getOperand(0);
3548       } else if (N0->getOpcode() == ISD::AND) {
3549         // DAGCombine turns costly ZExts into ANDs
3550         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3551           if ((C->getAPIntValue()+1).isPowerOf2()) {
3552             MinBits = C->getAPIntValue().countTrailingOnes();
3553             PreExt = N0->getOperand(0);
3554           }
3555       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3556         // SExt
3557         MinBits = N0->getOperand(0).getValueSizeInBits();
3558         PreExt = N0->getOperand(0);
3559         Signed = true;
3560       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3561         // ZEXTLOAD / SEXTLOAD
3562         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3563           MinBits = LN0->getMemoryVT().getSizeInBits();
3564           PreExt = N0;
3565         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3566           Signed = true;
3567           MinBits = LN0->getMemoryVT().getSizeInBits();
3568           PreExt = N0;
3569         }
3570       }
3571 
3572       // Figure out how many bits we need to preserve this constant.
3573       unsigned ReqdBits = Signed ?
3574         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3575         C1.getActiveBits();
3576 
3577       // Make sure we're not losing bits from the constant.
3578       if (MinBits > 0 &&
3579           MinBits < C1.getBitWidth() &&
3580           MinBits >= ReqdBits) {
3581         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3582         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3583           // Will get folded away.
3584           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3585           if (MinBits == 1 && C1 == 1)
3586             // Invert the condition.
3587             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3588                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3589           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3590           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3591         }
3592 
3593         // If truncating the setcc operands is not desirable, we can still
3594         // simplify the expression in some cases:
3595         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3596         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3597         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3598         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3599         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3600         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3601         SDValue TopSetCC = N0->getOperand(0);
3602         unsigned N0Opc = N0->getOpcode();
3603         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3604         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3605             TopSetCC.getOpcode() == ISD::SETCC &&
3606             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3607             (isConstFalseVal(N1C) ||
3608              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3609 
3610           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3611                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3612 
3613           if (!Inverse)
3614             return TopSetCC;
3615 
3616           ISD::CondCode InvCond = ISD::getSetCCInverse(
3617               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3618               TopSetCC.getOperand(0).getValueType());
3619           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3620                                       TopSetCC.getOperand(1),
3621                                       InvCond);
3622         }
3623       }
3624     }
3625 
3626     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3627     // equality or unsigned, and all 1 bits of the const are in the same
3628     // partial word, see if we can shorten the load.
3629     if (DCI.isBeforeLegalize() &&
3630         !ISD::isSignedIntSetCC(Cond) &&
3631         N0.getOpcode() == ISD::AND && C1 == 0 &&
3632         N0.getNode()->hasOneUse() &&
3633         isa<LoadSDNode>(N0.getOperand(0)) &&
3634         N0.getOperand(0).getNode()->hasOneUse() &&
3635         isa<ConstantSDNode>(N0.getOperand(1))) {
3636       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3637       APInt bestMask;
3638       unsigned bestWidth = 0, bestOffset = 0;
3639       if (Lod->isSimple() && Lod->isUnindexed()) {
3640         unsigned origWidth = N0.getValueSizeInBits();
3641         unsigned maskWidth = origWidth;
3642         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3643         // 8 bits, but have to be careful...
3644         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3645           origWidth = Lod->getMemoryVT().getSizeInBits();
3646         const APInt &Mask = N0.getConstantOperandAPInt(1);
3647         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3648           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3649           for (unsigned offset=0; offset<origWidth/width; offset++) {
3650             if (Mask.isSubsetOf(newMask)) {
3651               if (Layout.isLittleEndian())
3652                 bestOffset = (uint64_t)offset * (width/8);
3653               else
3654                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3655               bestMask = Mask.lshr(offset * (width/8) * 8);
3656               bestWidth = width;
3657               break;
3658             }
3659             newMask <<= width;
3660           }
3661         }
3662       }
3663       if (bestWidth) {
3664         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3665         if (newVT.isRound() &&
3666             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3667           SDValue Ptr = Lod->getBasePtr();
3668           if (bestOffset != 0)
3669             Ptr =
3670                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
3671           SDValue NewLoad =
3672               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
3673                           Lod->getPointerInfo().getWithOffset(bestOffset),
3674                           Lod->getOriginalAlign());
3675           return DAG.getSetCC(dl, VT,
3676                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3677                                       DAG.getConstant(bestMask.trunc(bestWidth),
3678                                                       dl, newVT)),
3679                               DAG.getConstant(0LL, dl, newVT), Cond);
3680         }
3681       }
3682     }
3683 
3684     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3685     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3686       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3687 
3688       // If the comparison constant has bits in the upper part, the
3689       // zero-extended value could never match.
3690       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3691                                               C1.getBitWidth() - InSize))) {
3692         switch (Cond) {
3693         case ISD::SETUGT:
3694         case ISD::SETUGE:
3695         case ISD::SETEQ:
3696           return DAG.getConstant(0, dl, VT);
3697         case ISD::SETULT:
3698         case ISD::SETULE:
3699         case ISD::SETNE:
3700           return DAG.getConstant(1, dl, VT);
3701         case ISD::SETGT:
3702         case ISD::SETGE:
3703           // True if the sign bit of C1 is set.
3704           return DAG.getConstant(C1.isNegative(), dl, VT);
3705         case ISD::SETLT:
3706         case ISD::SETLE:
3707           // True if the sign bit of C1 isn't set.
3708           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3709         default:
3710           break;
3711         }
3712       }
3713 
3714       // Otherwise, we can perform the comparison with the low bits.
3715       switch (Cond) {
3716       case ISD::SETEQ:
3717       case ISD::SETNE:
3718       case ISD::SETUGT:
3719       case ISD::SETUGE:
3720       case ISD::SETULT:
3721       case ISD::SETULE: {
3722         EVT newVT = N0.getOperand(0).getValueType();
3723         if (DCI.isBeforeLegalizeOps() ||
3724             (isOperationLegal(ISD::SETCC, newVT) &&
3725              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3726           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3727           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3728 
3729           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3730                                           NewConst, Cond);
3731           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3732         }
3733         break;
3734       }
3735       default:
3736         break; // todo, be more careful with signed comparisons
3737       }
3738     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3739                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3740       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3741       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3742       EVT ExtDstTy = N0.getValueType();
3743       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3744 
3745       // If the constant doesn't fit into the number of bits for the source of
3746       // the sign extension, it is impossible for both sides to be equal.
3747       if (C1.getMinSignedBits() > ExtSrcTyBits)
3748         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
3749 
3750       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
3751              ExtDstTy != ExtSrcTy && "Unexpected types!");
3752       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3753       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
3754                                    DAG.getConstant(Imm, dl, ExtDstTy));
3755       if (!DCI.isCalledByLegalizer())
3756         DCI.AddToWorklist(ZextOp.getNode());
3757       // Otherwise, make this a use of a zext.
3758       return DAG.getSetCC(dl, VT, ZextOp,
3759                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
3760     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3761                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3762       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3763       if (N0.getOpcode() == ISD::SETCC &&
3764           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3765           (N0.getValueType() == MVT::i1 ||
3766            getBooleanContents(N0.getOperand(0).getValueType()) ==
3767                        ZeroOrOneBooleanContent)) {
3768         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3769         if (TrueWhenTrue)
3770           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3771         // Invert the condition.
3772         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3773         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3774         if (DCI.isBeforeLegalizeOps() ||
3775             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3776           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3777       }
3778 
3779       if ((N0.getOpcode() == ISD::XOR ||
3780            (N0.getOpcode() == ISD::AND &&
3781             N0.getOperand(0).getOpcode() == ISD::XOR &&
3782             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3783           isa<ConstantSDNode>(N0.getOperand(1)) &&
3784           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
3785         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3786         // can only do this if the top bits are known zero.
3787         unsigned BitWidth = N0.getValueSizeInBits();
3788         if (DAG.MaskedValueIsZero(N0,
3789                                   APInt::getHighBitsSet(BitWidth,
3790                                                         BitWidth-1))) {
3791           // Okay, get the un-inverted input value.
3792           SDValue Val;
3793           if (N0.getOpcode() == ISD::XOR) {
3794             Val = N0.getOperand(0);
3795           } else {
3796             assert(N0.getOpcode() == ISD::AND &&
3797                     N0.getOperand(0).getOpcode() == ISD::XOR);
3798             // ((X^1)&1)^1 -> X & 1
3799             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3800                               N0.getOperand(0).getOperand(0),
3801                               N0.getOperand(1));
3802           }
3803 
3804           return DAG.getSetCC(dl, VT, Val, N1,
3805                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3806         }
3807       } else if (N1C->isOne()) {
3808         SDValue Op0 = N0;
3809         if (Op0.getOpcode() == ISD::TRUNCATE)
3810           Op0 = Op0.getOperand(0);
3811 
3812         if ((Op0.getOpcode() == ISD::XOR) &&
3813             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3814             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3815           SDValue XorLHS = Op0.getOperand(0);
3816           SDValue XorRHS = Op0.getOperand(1);
3817           // Ensure that the input setccs return an i1 type or 0/1 value.
3818           if (Op0.getValueType() == MVT::i1 ||
3819               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3820                       ZeroOrOneBooleanContent &&
3821                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3822                         ZeroOrOneBooleanContent)) {
3823             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3824             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3825             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3826           }
3827         }
3828         if (Op0.getOpcode() == ISD::AND &&
3829             isa<ConstantSDNode>(Op0.getOperand(1)) &&
3830             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
3831           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3832           if (Op0.getValueType().bitsGT(VT))
3833             Op0 = DAG.getNode(ISD::AND, dl, VT,
3834                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3835                           DAG.getConstant(1, dl, VT));
3836           else if (Op0.getValueType().bitsLT(VT))
3837             Op0 = DAG.getNode(ISD::AND, dl, VT,
3838                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3839                         DAG.getConstant(1, dl, VT));
3840 
3841           return DAG.getSetCC(dl, VT, Op0,
3842                               DAG.getConstant(0, dl, Op0.getValueType()),
3843                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3844         }
3845         if (Op0.getOpcode() == ISD::AssertZext &&
3846             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3847           return DAG.getSetCC(dl, VT, Op0,
3848                               DAG.getConstant(0, dl, Op0.getValueType()),
3849                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3850       }
3851     }
3852 
3853     // Given:
3854     //   icmp eq/ne (urem %x, %y), 0
3855     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3856     //   icmp eq/ne %x, 0
3857     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3858         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3859       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3860       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3861       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3862         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3863     }
3864 
3865     if (SDValue V =
3866             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3867       return V;
3868   }
3869 
3870   // These simplifications apply to splat vectors as well.
3871   // TODO: Handle more splat vector cases.
3872   if (auto *N1C = isConstOrConstSplat(N1)) {
3873     const APInt &C1 = N1C->getAPIntValue();
3874 
3875     APInt MinVal, MaxVal;
3876     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3877     if (ISD::isSignedIntSetCC(Cond)) {
3878       MinVal = APInt::getSignedMinValue(OperandBitSize);
3879       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3880     } else {
3881       MinVal = APInt::getMinValue(OperandBitSize);
3882       MaxVal = APInt::getMaxValue(OperandBitSize);
3883     }
3884 
3885     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3886     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3887       // X >= MIN --> true
3888       if (C1 == MinVal)
3889         return DAG.getBoolConstant(true, dl, VT, OpVT);
3890 
3891       if (!VT.isVector()) { // TODO: Support this for vectors.
3892         // X >= C0 --> X > (C0 - 1)
3893         APInt C = C1 - 1;
3894         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3895         if ((DCI.isBeforeLegalizeOps() ||
3896              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3897             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3898                                   isLegalICmpImmediate(C.getSExtValue())))) {
3899           return DAG.getSetCC(dl, VT, N0,
3900                               DAG.getConstant(C, dl, N1.getValueType()),
3901                               NewCC);
3902         }
3903       }
3904     }
3905 
3906     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3907       // X <= MAX --> true
3908       if (C1 == MaxVal)
3909         return DAG.getBoolConstant(true, dl, VT, OpVT);
3910 
3911       // X <= C0 --> X < (C0 + 1)
3912       if (!VT.isVector()) { // TODO: Support this for vectors.
3913         APInt C = C1 + 1;
3914         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3915         if ((DCI.isBeforeLegalizeOps() ||
3916              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3917             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3918                                   isLegalICmpImmediate(C.getSExtValue())))) {
3919           return DAG.getSetCC(dl, VT, N0,
3920                               DAG.getConstant(C, dl, N1.getValueType()),
3921                               NewCC);
3922         }
3923       }
3924     }
3925 
3926     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3927       if (C1 == MinVal)
3928         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3929 
3930       // TODO: Support this for vectors after legalize ops.
3931       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3932         // Canonicalize setlt X, Max --> setne X, Max
3933         if (C1 == MaxVal)
3934           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3935 
3936         // If we have setult X, 1, turn it into seteq X, 0
3937         if (C1 == MinVal+1)
3938           return DAG.getSetCC(dl, VT, N0,
3939                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3940                               ISD::SETEQ);
3941       }
3942     }
3943 
3944     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3945       if (C1 == MaxVal)
3946         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3947 
3948       // TODO: Support this for vectors after legalize ops.
3949       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3950         // Canonicalize setgt X, Min --> setne X, Min
3951         if (C1 == MinVal)
3952           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3953 
3954         // If we have setugt X, Max-1, turn it into seteq X, Max
3955         if (C1 == MaxVal-1)
3956           return DAG.getSetCC(dl, VT, N0,
3957                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3958                               ISD::SETEQ);
3959       }
3960     }
3961 
3962     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3963       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3964       if (C1.isNullValue())
3965         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3966                 VT, N0, N1, Cond, DCI, dl))
3967           return CC;
3968 
3969       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
3970       // For example, when high 32-bits of i64 X are known clear:
3971       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
3972       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
3973       bool CmpZero = N1C->getAPIntValue().isNullValue();
3974       bool CmpNegOne = N1C->getAPIntValue().isAllOnesValue();
3975       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
3976         // Match or(lo,shl(hi,bw/2)) pattern.
3977         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
3978           unsigned EltBits = V.getScalarValueSizeInBits();
3979           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
3980             return false;
3981           SDValue LHS = V.getOperand(0);
3982           SDValue RHS = V.getOperand(1);
3983           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
3984           // Unshifted element must have zero upperbits.
3985           if (RHS.getOpcode() == ISD::SHL &&
3986               isa<ConstantSDNode>(RHS.getOperand(1)) &&
3987               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
3988               DAG.MaskedValueIsZero(LHS, HiBits)) {
3989             Lo = LHS;
3990             Hi = RHS.getOperand(0);
3991             return true;
3992           }
3993           if (LHS.getOpcode() == ISD::SHL &&
3994               isa<ConstantSDNode>(LHS.getOperand(1)) &&
3995               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
3996               DAG.MaskedValueIsZero(RHS, HiBits)) {
3997             Lo = RHS;
3998             Hi = LHS.getOperand(0);
3999             return true;
4000           }
4001           return false;
4002         };
4003 
4004         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4005           unsigned EltBits = N0.getScalarValueSizeInBits();
4006           unsigned HalfBits = EltBits / 2;
4007           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4008           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4009           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4010           SDValue NewN0 =
4011               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4012           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4013           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4014         };
4015 
4016         SDValue Lo, Hi;
4017         if (IsConcat(N0, Lo, Hi))
4018           return MergeConcat(Lo, Hi);
4019 
4020         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4021           SDValue Lo0, Lo1, Hi0, Hi1;
4022           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4023               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4024             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4025                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4026           }
4027         }
4028       }
4029     }
4030 
4031     // If we have "setcc X, C0", check to see if we can shrink the immediate
4032     // by changing cc.
4033     // TODO: Support this for vectors after legalize ops.
4034     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4035       // SETUGT X, SINTMAX  -> SETLT X, 0
4036       // SETUGE X, SINTMIN -> SETLT X, 0
4037       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4038           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4039         return DAG.getSetCC(dl, VT, N0,
4040                             DAG.getConstant(0, dl, N1.getValueType()),
4041                             ISD::SETLT);
4042 
4043       // SETULT X, SINTMIN  -> SETGT X, -1
4044       // SETULE X, SINTMAX  -> SETGT X, -1
4045       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4046           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4047         return DAG.getSetCC(dl, VT, N0,
4048                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4049                             ISD::SETGT);
4050     }
4051   }
4052 
4053   // Back to non-vector simplifications.
4054   // TODO: Can we do these for vector splats?
4055   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4056     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4057     const APInt &C1 = N1C->getAPIntValue();
4058     EVT ShValTy = N0.getValueType();
4059 
4060     // Fold bit comparisons when we can. This will result in an
4061     // incorrect value when boolean false is negative one, unless
4062     // the bitsize is 1 in which case the false value is the same
4063     // in practice regardless of the representation.
4064     if ((VT.getSizeInBits() == 1 ||
4065          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4066         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4067         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4068         N0.getOpcode() == ISD::AND) {
4069       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4070         EVT ShiftTy =
4071             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4072         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4073           // Perform the xform if the AND RHS is a single bit.
4074           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4075           if (AndRHS->getAPIntValue().isPowerOf2() &&
4076               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4077             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4078                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4079                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4080           }
4081         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4082           // (X & 8) == 8  -->  (X & 8) >> 3
4083           // Perform the xform if C1 is a single bit.
4084           unsigned ShCt = C1.logBase2();
4085           if (C1.isPowerOf2() &&
4086               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4087             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4088                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4089                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4090           }
4091         }
4092       }
4093     }
4094 
4095     if (C1.getMinSignedBits() <= 64 &&
4096         !isLegalICmpImmediate(C1.getSExtValue())) {
4097       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4098       // (X & -256) == 256 -> (X >> 8) == 1
4099       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4100           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4101         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4102           const APInt &AndRHSC = AndRHS->getAPIntValue();
4103           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
4104             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4105             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4106               SDValue Shift =
4107                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4108                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4109               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4110               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4111             }
4112           }
4113         }
4114       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4115                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4116         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4117         // X <  0x100000000 -> (X >> 32) <  1
4118         // X >= 0x100000000 -> (X >> 32) >= 1
4119         // X <= 0x0ffffffff -> (X >> 32) <  1
4120         // X >  0x0ffffffff -> (X >> 32) >= 1
4121         unsigned ShiftBits;
4122         APInt NewC = C1;
4123         ISD::CondCode NewCond = Cond;
4124         if (AdjOne) {
4125           ShiftBits = C1.countTrailingOnes();
4126           NewC = NewC + 1;
4127           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4128         } else {
4129           ShiftBits = C1.countTrailingZeros();
4130         }
4131         NewC.lshrInPlace(ShiftBits);
4132         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4133             isLegalICmpImmediate(NewC.getSExtValue()) &&
4134             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4135           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4136                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4137           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4138           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4139         }
4140       }
4141     }
4142   }
4143 
4144   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4145     auto *CFP = cast<ConstantFPSDNode>(N1);
4146     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4147 
4148     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4149     // constant if knowing that the operand is non-nan is enough.  We prefer to
4150     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4151     // materialize 0.0.
4152     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4153       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4154 
4155     // setcc (fneg x), C -> setcc swap(pred) x, -C
4156     if (N0.getOpcode() == ISD::FNEG) {
4157       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4158       if (DCI.isBeforeLegalizeOps() ||
4159           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4160         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4161         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4162       }
4163     }
4164 
4165     // If the condition is not legal, see if we can find an equivalent one
4166     // which is legal.
4167     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4168       // If the comparison was an awkward floating-point == or != and one of
4169       // the comparison operands is infinity or negative infinity, convert the
4170       // condition to a less-awkward <= or >=.
4171       if (CFP->getValueAPF().isInfinity()) {
4172         bool IsNegInf = CFP->getValueAPF().isNegative();
4173         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4174         switch (Cond) {
4175         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4176         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4177         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4178         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4179         default: break;
4180         }
4181         if (NewCond != ISD::SETCC_INVALID &&
4182             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4183           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4184       }
4185     }
4186   }
4187 
4188   if (N0 == N1) {
4189     // The sext(setcc()) => setcc() optimization relies on the appropriate
4190     // constant being emitted.
4191     assert(!N0.getValueType().isInteger() &&
4192            "Integer types should be handled by FoldSetCC");
4193 
4194     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4195     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4196     if (UOF == 2) // FP operators that are undefined on NaNs.
4197       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4198     if (UOF == unsigned(EqTrue))
4199       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4200     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4201     // if it is not already.
4202     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4203     if (NewCond != Cond &&
4204         (DCI.isBeforeLegalizeOps() ||
4205                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4206       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4207   }
4208 
4209   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4210       N0.getValueType().isInteger()) {
4211     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4212         N0.getOpcode() == ISD::XOR) {
4213       // Simplify (X+Y) == (X+Z) -->  Y == Z
4214       if (N0.getOpcode() == N1.getOpcode()) {
4215         if (N0.getOperand(0) == N1.getOperand(0))
4216           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4217         if (N0.getOperand(1) == N1.getOperand(1))
4218           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4219         if (isCommutativeBinOp(N0.getOpcode())) {
4220           // If X op Y == Y op X, try other combinations.
4221           if (N0.getOperand(0) == N1.getOperand(1))
4222             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4223                                 Cond);
4224           if (N0.getOperand(1) == N1.getOperand(0))
4225             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4226                                 Cond);
4227         }
4228       }
4229 
4230       // If RHS is a legal immediate value for a compare instruction, we need
4231       // to be careful about increasing register pressure needlessly.
4232       bool LegalRHSImm = false;
4233 
4234       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4235         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4236           // Turn (X+C1) == C2 --> X == C2-C1
4237           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
4238             return DAG.getSetCC(dl, VT, N0.getOperand(0),
4239                                 DAG.getConstant(RHSC->getAPIntValue()-
4240                                                 LHSR->getAPIntValue(),
4241                                 dl, N0.getValueType()), Cond);
4242           }
4243 
4244           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
4245           if (N0.getOpcode() == ISD::XOR)
4246             // If we know that all of the inverted bits are zero, don't bother
4247             // performing the inversion.
4248             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
4249               return
4250                 DAG.getSetCC(dl, VT, N0.getOperand(0),
4251                              DAG.getConstant(LHSR->getAPIntValue() ^
4252                                                RHSC->getAPIntValue(),
4253                                              dl, N0.getValueType()),
4254                              Cond);
4255         }
4256 
4257         // Turn (C1-X) == C2 --> X == C1-C2
4258         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
4259           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
4260             return
4261               DAG.getSetCC(dl, VT, N0.getOperand(1),
4262                            DAG.getConstant(SUBC->getAPIntValue() -
4263                                              RHSC->getAPIntValue(),
4264                                            dl, N0.getValueType()),
4265                            Cond);
4266           }
4267         }
4268 
4269         // Could RHSC fold directly into a compare?
4270         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4271           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4272       }
4273 
4274       // (X+Y) == X --> Y == 0 and similar folds.
4275       // Don't do this if X is an immediate that can fold into a cmp
4276       // instruction and X+Y has other uses. It could be an induction variable
4277       // chain, and the transform would increase register pressure.
4278       if (!LegalRHSImm || N0.hasOneUse())
4279         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4280           return V;
4281     }
4282 
4283     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4284         N1.getOpcode() == ISD::XOR)
4285       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4286         return V;
4287 
4288     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4289       return V;
4290   }
4291 
4292   // Fold remainder of division by a constant.
4293   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4294       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4295     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4296 
4297     // When division is cheap or optimizing for minimum size,
4298     // fall through to DIVREM creation by skipping this fold.
4299     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
4300       if (N0.getOpcode() == ISD::UREM) {
4301         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4302           return Folded;
4303       } else if (N0.getOpcode() == ISD::SREM) {
4304         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4305           return Folded;
4306       }
4307     }
4308   }
4309 
4310   // Fold away ALL boolean setcc's.
4311   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4312     SDValue Temp;
4313     switch (Cond) {
4314     default: llvm_unreachable("Unknown integer setcc!");
4315     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4316       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4317       N0 = DAG.getNOT(dl, Temp, OpVT);
4318       if (!DCI.isCalledByLegalizer())
4319         DCI.AddToWorklist(Temp.getNode());
4320       break;
4321     case ISD::SETNE:  // X != Y   -->  (X^Y)
4322       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4323       break;
4324     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4325     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4326       Temp = DAG.getNOT(dl, N0, OpVT);
4327       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4328       if (!DCI.isCalledByLegalizer())
4329         DCI.AddToWorklist(Temp.getNode());
4330       break;
4331     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4332     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4333       Temp = DAG.getNOT(dl, N1, OpVT);
4334       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4335       if (!DCI.isCalledByLegalizer())
4336         DCI.AddToWorklist(Temp.getNode());
4337       break;
4338     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4339     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4340       Temp = DAG.getNOT(dl, N0, OpVT);
4341       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4342       if (!DCI.isCalledByLegalizer())
4343         DCI.AddToWorklist(Temp.getNode());
4344       break;
4345     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4346     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4347       Temp = DAG.getNOT(dl, N1, OpVT);
4348       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4349       break;
4350     }
4351     if (VT.getScalarType() != MVT::i1) {
4352       if (!DCI.isCalledByLegalizer())
4353         DCI.AddToWorklist(N0.getNode());
4354       // FIXME: If running after legalize, we probably can't do this.
4355       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4356       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4357     }
4358     return N0;
4359   }
4360 
4361   // Could not fold it.
4362   return SDValue();
4363 }
4364 
4365 /// Returns true (and the GlobalValue and the offset) if the node is a
4366 /// GlobalAddress + offset.
4367 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4368                                     int64_t &Offset) const {
4369 
4370   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4371 
4372   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4373     GA = GASD->getGlobal();
4374     Offset += GASD->getOffset();
4375     return true;
4376   }
4377 
4378   if (N->getOpcode() == ISD::ADD) {
4379     SDValue N1 = N->getOperand(0);
4380     SDValue N2 = N->getOperand(1);
4381     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4382       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4383         Offset += V->getSExtValue();
4384         return true;
4385       }
4386     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4387       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4388         Offset += V->getSExtValue();
4389         return true;
4390       }
4391     }
4392   }
4393 
4394   return false;
4395 }
4396 
4397 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4398                                           DAGCombinerInfo &DCI) const {
4399   // Default implementation: no optimization.
4400   return SDValue();
4401 }
4402 
4403 //===----------------------------------------------------------------------===//
4404 //  Inline Assembler Implementation Methods
4405 //===----------------------------------------------------------------------===//
4406 
4407 TargetLowering::ConstraintType
4408 TargetLowering::getConstraintType(StringRef Constraint) const {
4409   unsigned S = Constraint.size();
4410 
4411   if (S == 1) {
4412     switch (Constraint[0]) {
4413     default: break;
4414     case 'r':
4415       return C_RegisterClass;
4416     case 'm': // memory
4417     case 'o': // offsetable
4418     case 'V': // not offsetable
4419       return C_Memory;
4420     case 'n': // Simple Integer
4421     case 'E': // Floating Point Constant
4422     case 'F': // Floating Point Constant
4423       return C_Immediate;
4424     case 'i': // Simple Integer or Relocatable Constant
4425     case 's': // Relocatable Constant
4426     case 'p': // Address.
4427     case 'X': // Allow ANY value.
4428     case 'I': // Target registers.
4429     case 'J':
4430     case 'K':
4431     case 'L':
4432     case 'M':
4433     case 'N':
4434     case 'O':
4435     case 'P':
4436     case '<':
4437     case '>':
4438       return C_Other;
4439     }
4440   }
4441 
4442   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4443     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4444       return C_Memory;
4445     return C_Register;
4446   }
4447   return C_Unknown;
4448 }
4449 
4450 /// Try to replace an X constraint, which matches anything, with another that
4451 /// has more specific requirements based on the type of the corresponding
4452 /// operand.
4453 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4454   if (ConstraintVT.isInteger())
4455     return "r";
4456   if (ConstraintVT.isFloatingPoint())
4457     return "f"; // works for many targets
4458   return nullptr;
4459 }
4460 
4461 SDValue TargetLowering::LowerAsmOutputForConstraint(
4462     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
4463     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
4464   return SDValue();
4465 }
4466 
4467 /// Lower the specified operand into the Ops vector.
4468 /// If it is invalid, don't add anything to Ops.
4469 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4470                                                   std::string &Constraint,
4471                                                   std::vector<SDValue> &Ops,
4472                                                   SelectionDAG &DAG) const {
4473 
4474   if (Constraint.length() > 1) return;
4475 
4476   char ConstraintLetter = Constraint[0];
4477   switch (ConstraintLetter) {
4478   default: break;
4479   case 'X':     // Allows any operand; labels (basic block) use this.
4480     if (Op.getOpcode() == ISD::BasicBlock ||
4481         Op.getOpcode() == ISD::TargetBlockAddress) {
4482       Ops.push_back(Op);
4483       return;
4484     }
4485     LLVM_FALLTHROUGH;
4486   case 'i':    // Simple Integer or Relocatable Constant
4487   case 'n':    // Simple Integer
4488   case 's': {  // Relocatable Constant
4489 
4490     GlobalAddressSDNode *GA;
4491     ConstantSDNode *C;
4492     BlockAddressSDNode *BA;
4493     uint64_t Offset = 0;
4494 
4495     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4496     // etc., since getelementpointer is variadic. We can't use
4497     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4498     // while in this case the GA may be furthest from the root node which is
4499     // likely an ISD::ADD.
4500     while (1) {
4501       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4502         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4503                                                  GA->getValueType(0),
4504                                                  Offset + GA->getOffset()));
4505         return;
4506       } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
4507                  ConstraintLetter != 's') {
4508         // gcc prints these as sign extended.  Sign extend value to 64 bits
4509         // now; without this it would get ZExt'd later in
4510         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4511         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4512         BooleanContent BCont = getBooleanContents(MVT::i64);
4513         ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
4514                                       : ISD::SIGN_EXTEND;
4515         int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
4516                                                     : C->getSExtValue();
4517         Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
4518                                             SDLoc(C), MVT::i64));
4519         return;
4520       } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
4521                  ConstraintLetter != 'n') {
4522         Ops.push_back(DAG.getTargetBlockAddress(
4523             BA->getBlockAddress(), BA->getValueType(0),
4524             Offset + BA->getOffset(), BA->getTargetFlags()));
4525         return;
4526       } else {
4527         const unsigned OpCode = Op.getOpcode();
4528         if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4529           if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4530             Op = Op.getOperand(1);
4531           // Subtraction is not commutative.
4532           else if (OpCode == ISD::ADD &&
4533                    (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4534             Op = Op.getOperand(0);
4535           else
4536             return;
4537           Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4538           continue;
4539         }
4540       }
4541       return;
4542     }
4543     break;
4544   }
4545   }
4546 }
4547 
4548 std::pair<unsigned, const TargetRegisterClass *>
4549 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4550                                              StringRef Constraint,
4551                                              MVT VT) const {
4552   if (Constraint.empty() || Constraint[0] != '{')
4553     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4554   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4555 
4556   // Remove the braces from around the name.
4557   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4558 
4559   std::pair<unsigned, const TargetRegisterClass *> R =
4560       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4561 
4562   // Figure out which register class contains this reg.
4563   for (const TargetRegisterClass *RC : RI->regclasses()) {
4564     // If none of the value types for this register class are valid, we
4565     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4566     if (!isLegalRC(*RI, *RC))
4567       continue;
4568 
4569     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4570          I != E; ++I) {
4571       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4572         std::pair<unsigned, const TargetRegisterClass *> S =
4573             std::make_pair(*I, RC);
4574 
4575         // If this register class has the requested value type, return it,
4576         // otherwise keep searching and return the first class found
4577         // if no other is found which explicitly has the requested type.
4578         if (RI->isTypeLegalForClass(*RC, VT))
4579           return S;
4580         if (!R.second)
4581           R = S;
4582       }
4583     }
4584   }
4585 
4586   return R;
4587 }
4588 
4589 //===----------------------------------------------------------------------===//
4590 // Constraint Selection.
4591 
4592 /// Return true of this is an input operand that is a matching constraint like
4593 /// "4".
4594 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4595   assert(!ConstraintCode.empty() && "No known constraint!");
4596   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4597 }
4598 
4599 /// If this is an input matching constraint, this method returns the output
4600 /// operand it matches.
4601 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4602   assert(!ConstraintCode.empty() && "No known constraint!");
4603   return atoi(ConstraintCode.c_str());
4604 }
4605 
4606 /// Split up the constraint string from the inline assembly value into the
4607 /// specific constraints and their prefixes, and also tie in the associated
4608 /// operand values.
4609 /// If this returns an empty vector, and if the constraint string itself
4610 /// isn't empty, there was an error parsing.
4611 TargetLowering::AsmOperandInfoVector
4612 TargetLowering::ParseConstraints(const DataLayout &DL,
4613                                  const TargetRegisterInfo *TRI,
4614                                  const CallBase &Call) const {
4615   /// Information about all of the constraints.
4616   AsmOperandInfoVector ConstraintOperands;
4617   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
4618   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4619 
4620   // Do a prepass over the constraints, canonicalizing them, and building up the
4621   // ConstraintOperands list.
4622   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4623   unsigned ResNo = 0; // ResNo - The result number of the next output.
4624 
4625   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4626     ConstraintOperands.emplace_back(std::move(CI));
4627     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4628 
4629     // Update multiple alternative constraint count.
4630     if (OpInfo.multipleAlternatives.size() > maCount)
4631       maCount = OpInfo.multipleAlternatives.size();
4632 
4633     OpInfo.ConstraintVT = MVT::Other;
4634 
4635     // Compute the value type for each operand.
4636     switch (OpInfo.Type) {
4637     case InlineAsm::isOutput:
4638       // Indirect outputs just consume an argument.
4639       if (OpInfo.isIndirect) {
4640         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4641         break;
4642       }
4643 
4644       // The return value of the call is this value.  As such, there is no
4645       // corresponding argument.
4646       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
4647       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
4648         OpInfo.ConstraintVT =
4649             getSimpleValueType(DL, STy->getElementType(ResNo));
4650       } else {
4651         assert(ResNo == 0 && "Asm only has one result!");
4652         OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType());
4653       }
4654       ++ResNo;
4655       break;
4656     case InlineAsm::isInput:
4657       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4658       break;
4659     case InlineAsm::isClobber:
4660       // Nothing to do.
4661       break;
4662     }
4663 
4664     if (OpInfo.CallOperandVal) {
4665       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4666       if (OpInfo.isIndirect) {
4667         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4668         if (!PtrTy)
4669           report_fatal_error("Indirect operand for inline asm not a pointer!");
4670         OpTy = PtrTy->getElementType();
4671       }
4672 
4673       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4674       if (StructType *STy = dyn_cast<StructType>(OpTy))
4675         if (STy->getNumElements() == 1)
4676           OpTy = STy->getElementType(0);
4677 
4678       // If OpTy is not a single value, it may be a struct/union that we
4679       // can tile with integers.
4680       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4681         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4682         switch (BitSize) {
4683         default: break;
4684         case 1:
4685         case 8:
4686         case 16:
4687         case 32:
4688         case 64:
4689         case 128:
4690           OpInfo.ConstraintVT =
4691               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4692           break;
4693         }
4694       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4695         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4696         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4697       } else {
4698         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4699       }
4700     }
4701   }
4702 
4703   // If we have multiple alternative constraints, select the best alternative.
4704   if (!ConstraintOperands.empty()) {
4705     if (maCount) {
4706       unsigned bestMAIndex = 0;
4707       int bestWeight = -1;
4708       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4709       int weight = -1;
4710       unsigned maIndex;
4711       // Compute the sums of the weights for each alternative, keeping track
4712       // of the best (highest weight) one so far.
4713       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4714         int weightSum = 0;
4715         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4716              cIndex != eIndex; ++cIndex) {
4717           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4718           if (OpInfo.Type == InlineAsm::isClobber)
4719             continue;
4720 
4721           // If this is an output operand with a matching input operand,
4722           // look up the matching input. If their types mismatch, e.g. one
4723           // is an integer, the other is floating point, or their sizes are
4724           // different, flag it as an maCantMatch.
4725           if (OpInfo.hasMatchingInput()) {
4726             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4727             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4728               if ((OpInfo.ConstraintVT.isInteger() !=
4729                    Input.ConstraintVT.isInteger()) ||
4730                   (OpInfo.ConstraintVT.getSizeInBits() !=
4731                    Input.ConstraintVT.getSizeInBits())) {
4732                 weightSum = -1; // Can't match.
4733                 break;
4734               }
4735             }
4736           }
4737           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4738           if (weight == -1) {
4739             weightSum = -1;
4740             break;
4741           }
4742           weightSum += weight;
4743         }
4744         // Update best.
4745         if (weightSum > bestWeight) {
4746           bestWeight = weightSum;
4747           bestMAIndex = maIndex;
4748         }
4749       }
4750 
4751       // Now select chosen alternative in each constraint.
4752       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4753            cIndex != eIndex; ++cIndex) {
4754         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4755         if (cInfo.Type == InlineAsm::isClobber)
4756           continue;
4757         cInfo.selectAlternative(bestMAIndex);
4758       }
4759     }
4760   }
4761 
4762   // Check and hook up tied operands, choose constraint code to use.
4763   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4764        cIndex != eIndex; ++cIndex) {
4765     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4766 
4767     // If this is an output operand with a matching input operand, look up the
4768     // matching input. If their types mismatch, e.g. one is an integer, the
4769     // other is floating point, or their sizes are different, flag it as an
4770     // error.
4771     if (OpInfo.hasMatchingInput()) {
4772       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4773 
4774       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4775         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4776             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4777                                          OpInfo.ConstraintVT);
4778         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4779             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4780                                          Input.ConstraintVT);
4781         if ((OpInfo.ConstraintVT.isInteger() !=
4782              Input.ConstraintVT.isInteger()) ||
4783             (MatchRC.second != InputRC.second)) {
4784           report_fatal_error("Unsupported asm: input constraint"
4785                              " with a matching output constraint of"
4786                              " incompatible type!");
4787         }
4788       }
4789     }
4790   }
4791 
4792   return ConstraintOperands;
4793 }
4794 
4795 /// Return an integer indicating how general CT is.
4796 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4797   switch (CT) {
4798   case TargetLowering::C_Immediate:
4799   case TargetLowering::C_Other:
4800   case TargetLowering::C_Unknown:
4801     return 0;
4802   case TargetLowering::C_Register:
4803     return 1;
4804   case TargetLowering::C_RegisterClass:
4805     return 2;
4806   case TargetLowering::C_Memory:
4807     return 3;
4808   }
4809   llvm_unreachable("Invalid constraint type");
4810 }
4811 
4812 /// Examine constraint type and operand type and determine a weight value.
4813 /// This object must already have been set up with the operand type
4814 /// and the current alternative constraint selected.
4815 TargetLowering::ConstraintWeight
4816   TargetLowering::getMultipleConstraintMatchWeight(
4817     AsmOperandInfo &info, int maIndex) const {
4818   InlineAsm::ConstraintCodeVector *rCodes;
4819   if (maIndex >= (int)info.multipleAlternatives.size())
4820     rCodes = &info.Codes;
4821   else
4822     rCodes = &info.multipleAlternatives[maIndex].Codes;
4823   ConstraintWeight BestWeight = CW_Invalid;
4824 
4825   // Loop over the options, keeping track of the most general one.
4826   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4827     ConstraintWeight weight =
4828       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4829     if (weight > BestWeight)
4830       BestWeight = weight;
4831   }
4832 
4833   return BestWeight;
4834 }
4835 
4836 /// Examine constraint type and operand type and determine a weight value.
4837 /// This object must already have been set up with the operand type
4838 /// and the current alternative constraint selected.
4839 TargetLowering::ConstraintWeight
4840   TargetLowering::getSingleConstraintMatchWeight(
4841     AsmOperandInfo &info, const char *constraint) const {
4842   ConstraintWeight weight = CW_Invalid;
4843   Value *CallOperandVal = info.CallOperandVal;
4844     // If we don't have a value, we can't do a match,
4845     // but allow it at the lowest weight.
4846   if (!CallOperandVal)
4847     return CW_Default;
4848   // Look at the constraint type.
4849   switch (*constraint) {
4850     case 'i': // immediate integer.
4851     case 'n': // immediate integer with a known value.
4852       if (isa<ConstantInt>(CallOperandVal))
4853         weight = CW_Constant;
4854       break;
4855     case 's': // non-explicit intregal immediate.
4856       if (isa<GlobalValue>(CallOperandVal))
4857         weight = CW_Constant;
4858       break;
4859     case 'E': // immediate float if host format.
4860     case 'F': // immediate float.
4861       if (isa<ConstantFP>(CallOperandVal))
4862         weight = CW_Constant;
4863       break;
4864     case '<': // memory operand with autodecrement.
4865     case '>': // memory operand with autoincrement.
4866     case 'm': // memory operand.
4867     case 'o': // offsettable memory operand
4868     case 'V': // non-offsettable memory operand
4869       weight = CW_Memory;
4870       break;
4871     case 'r': // general register.
4872     case 'g': // general register, memory operand or immediate integer.
4873               // note: Clang converts "g" to "imr".
4874       if (CallOperandVal->getType()->isIntegerTy())
4875         weight = CW_Register;
4876       break;
4877     case 'X': // any operand.
4878   default:
4879     weight = CW_Default;
4880     break;
4881   }
4882   return weight;
4883 }
4884 
4885 /// If there are multiple different constraints that we could pick for this
4886 /// operand (e.g. "imr") try to pick the 'best' one.
4887 /// This is somewhat tricky: constraints fall into four classes:
4888 ///    Other         -> immediates and magic values
4889 ///    Register      -> one specific register
4890 ///    RegisterClass -> a group of regs
4891 ///    Memory        -> memory
4892 /// Ideally, we would pick the most specific constraint possible: if we have
4893 /// something that fits into a register, we would pick it.  The problem here
4894 /// is that if we have something that could either be in a register or in
4895 /// memory that use of the register could cause selection of *other*
4896 /// operands to fail: they might only succeed if we pick memory.  Because of
4897 /// this the heuristic we use is:
4898 ///
4899 ///  1) If there is an 'other' constraint, and if the operand is valid for
4900 ///     that constraint, use it.  This makes us take advantage of 'i'
4901 ///     constraints when available.
4902 ///  2) Otherwise, pick the most general constraint present.  This prefers
4903 ///     'm' over 'r', for example.
4904 ///
4905 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4906                              const TargetLowering &TLI,
4907                              SDValue Op, SelectionDAG *DAG) {
4908   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4909   unsigned BestIdx = 0;
4910   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4911   int BestGenerality = -1;
4912 
4913   // Loop over the options, keeping track of the most general one.
4914   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4915     TargetLowering::ConstraintType CType =
4916       TLI.getConstraintType(OpInfo.Codes[i]);
4917 
4918     // Indirect 'other' or 'immediate' constraints are not allowed.
4919     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4920                                CType == TargetLowering::C_Register ||
4921                                CType == TargetLowering::C_RegisterClass))
4922       continue;
4923 
4924     // If this is an 'other' or 'immediate' constraint, see if the operand is
4925     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4926     // the operand is an integer in the range [0..31] we want to use I (saving a
4927     // load of a register), otherwise we must use 'r'.
4928     if ((CType == TargetLowering::C_Other ||
4929          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4930       assert(OpInfo.Codes[i].size() == 1 &&
4931              "Unhandled multi-letter 'other' constraint");
4932       std::vector<SDValue> ResultOps;
4933       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4934                                        ResultOps, *DAG);
4935       if (!ResultOps.empty()) {
4936         BestType = CType;
4937         BestIdx = i;
4938         break;
4939       }
4940     }
4941 
4942     // Things with matching constraints can only be registers, per gcc
4943     // documentation.  This mainly affects "g" constraints.
4944     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4945       continue;
4946 
4947     // This constraint letter is more general than the previous one, use it.
4948     int Generality = getConstraintGenerality(CType);
4949     if (Generality > BestGenerality) {
4950       BestType = CType;
4951       BestIdx = i;
4952       BestGenerality = Generality;
4953     }
4954   }
4955 
4956   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4957   OpInfo.ConstraintType = BestType;
4958 }
4959 
4960 /// Determines the constraint code and constraint type to use for the specific
4961 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4962 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4963                                             SDValue Op,
4964                                             SelectionDAG *DAG) const {
4965   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4966 
4967   // Single-letter constraints ('r') are very common.
4968   if (OpInfo.Codes.size() == 1) {
4969     OpInfo.ConstraintCode = OpInfo.Codes[0];
4970     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4971   } else {
4972     ChooseConstraint(OpInfo, *this, Op, DAG);
4973   }
4974 
4975   // 'X' matches anything.
4976   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4977     // Labels and constants are handled elsewhere ('X' is the only thing
4978     // that matches labels).  For Functions, the type here is the type of
4979     // the result, which is not what we want to look at; leave them alone.
4980     Value *v = OpInfo.CallOperandVal;
4981     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4982       OpInfo.CallOperandVal = v;
4983       return;
4984     }
4985 
4986     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4987       return;
4988 
4989     // Otherwise, try to resolve it to something we know about by looking at
4990     // the actual operand type.
4991     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4992       OpInfo.ConstraintCode = Repl;
4993       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4994     }
4995   }
4996 }
4997 
4998 /// Given an exact SDIV by a constant, create a multiplication
4999 /// with the multiplicative inverse of the constant.
5000 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5001                               const SDLoc &dl, SelectionDAG &DAG,
5002                               SmallVectorImpl<SDNode *> &Created) {
5003   SDValue Op0 = N->getOperand(0);
5004   SDValue Op1 = N->getOperand(1);
5005   EVT VT = N->getValueType(0);
5006   EVT SVT = VT.getScalarType();
5007   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5008   EVT ShSVT = ShVT.getScalarType();
5009 
5010   bool UseSRA = false;
5011   SmallVector<SDValue, 16> Shifts, Factors;
5012 
5013   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5014     if (C->isNullValue())
5015       return false;
5016     APInt Divisor = C->getAPIntValue();
5017     unsigned Shift = Divisor.countTrailingZeros();
5018     if (Shift) {
5019       Divisor.ashrInPlace(Shift);
5020       UseSRA = true;
5021     }
5022     // Calculate the multiplicative inverse, using Newton's method.
5023     APInt t;
5024     APInt Factor = Divisor;
5025     while ((t = Divisor * Factor) != 1)
5026       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5027     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5028     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5029     return true;
5030   };
5031 
5032   // Collect all magic values from the build vector.
5033   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5034     return SDValue();
5035 
5036   SDValue Shift, Factor;
5037   if (VT.isVector()) {
5038     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5039     Factor = DAG.getBuildVector(VT, dl, Factors);
5040   } else {
5041     Shift = Shifts[0];
5042     Factor = Factors[0];
5043   }
5044 
5045   SDValue Res = Op0;
5046 
5047   // Shift the value upfront if it is even, so the LSB is one.
5048   if (UseSRA) {
5049     // TODO: For UDIV use SRL instead of SRA.
5050     SDNodeFlags Flags;
5051     Flags.setExact(true);
5052     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5053     Created.push_back(Res.getNode());
5054   }
5055 
5056   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5057 }
5058 
5059 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5060                               SelectionDAG &DAG,
5061                               SmallVectorImpl<SDNode *> &Created) const {
5062   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5063   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5064   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5065     return SDValue(N, 0); // Lower SDIV as SDIV
5066   return SDValue();
5067 }
5068 
5069 /// Given an ISD::SDIV node expressing a divide by constant,
5070 /// return a DAG expression to select that will generate the same value by
5071 /// multiplying by a magic number.
5072 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5073 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5074                                   bool IsAfterLegalization,
5075                                   SmallVectorImpl<SDNode *> &Created) const {
5076   SDLoc dl(N);
5077   EVT VT = N->getValueType(0);
5078   EVT SVT = VT.getScalarType();
5079   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5080   EVT ShSVT = ShVT.getScalarType();
5081   unsigned EltBits = VT.getScalarSizeInBits();
5082 
5083   // Check to see if we can do this.
5084   // FIXME: We should be more aggressive here.
5085   if (!isTypeLegal(VT))
5086     return SDValue();
5087 
5088   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5089   if (N->getFlags().hasExact())
5090     return BuildExactSDIV(*this, N, dl, DAG, Created);
5091 
5092   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5093 
5094   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5095     if (C->isNullValue())
5096       return false;
5097 
5098     const APInt &Divisor = C->getAPIntValue();
5099     APInt::ms magics = Divisor.magic();
5100     int NumeratorFactor = 0;
5101     int ShiftMask = -1;
5102 
5103     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
5104       // If d is +1/-1, we just multiply the numerator by +1/-1.
5105       NumeratorFactor = Divisor.getSExtValue();
5106       magics.m = 0;
5107       magics.s = 0;
5108       ShiftMask = 0;
5109     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
5110       // If d > 0 and m < 0, add the numerator.
5111       NumeratorFactor = 1;
5112     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
5113       // If d < 0 and m > 0, subtract the numerator.
5114       NumeratorFactor = -1;
5115     }
5116 
5117     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
5118     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5119     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
5120     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5121     return true;
5122   };
5123 
5124   SDValue N0 = N->getOperand(0);
5125   SDValue N1 = N->getOperand(1);
5126 
5127   // Collect the shifts / magic values from each element.
5128   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5129     return SDValue();
5130 
5131   SDValue MagicFactor, Factor, Shift, ShiftMask;
5132   if (VT.isVector()) {
5133     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5134     Factor = DAG.getBuildVector(VT, dl, Factors);
5135     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5136     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5137   } else {
5138     MagicFactor = MagicFactors[0];
5139     Factor = Factors[0];
5140     Shift = Shifts[0];
5141     ShiftMask = ShiftMasks[0];
5142   }
5143 
5144   // Multiply the numerator (operand 0) by the magic value.
5145   // FIXME: We should support doing a MUL in a wider type.
5146   SDValue Q;
5147   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
5148                           : isOperationLegalOrCustom(ISD::MULHS, VT))
5149     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
5150   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
5151                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
5152     SDValue LoHi =
5153         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
5154     Q = SDValue(LoHi.getNode(), 1);
5155   } else
5156     return SDValue(); // No mulhs or equivalent.
5157   Created.push_back(Q.getNode());
5158 
5159   // (Optionally) Add/subtract the numerator using Factor.
5160   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5161   Created.push_back(Factor.getNode());
5162   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5163   Created.push_back(Q.getNode());
5164 
5165   // Shift right algebraic by shift value.
5166   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5167   Created.push_back(Q.getNode());
5168 
5169   // Extract the sign bit, mask it and add it to the quotient.
5170   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5171   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5172   Created.push_back(T.getNode());
5173   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5174   Created.push_back(T.getNode());
5175   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5176 }
5177 
5178 /// Given an ISD::UDIV node expressing a divide by constant,
5179 /// return a DAG expression to select that will generate the same value by
5180 /// multiplying by a magic number.
5181 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5182 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5183                                   bool IsAfterLegalization,
5184                                   SmallVectorImpl<SDNode *> &Created) const {
5185   SDLoc dl(N);
5186   EVT VT = N->getValueType(0);
5187   EVT SVT = VT.getScalarType();
5188   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5189   EVT ShSVT = ShVT.getScalarType();
5190   unsigned EltBits = VT.getScalarSizeInBits();
5191 
5192   // Check to see if we can do this.
5193   // FIXME: We should be more aggressive here.
5194   if (!isTypeLegal(VT))
5195     return SDValue();
5196 
5197   bool UseNPQ = false;
5198   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5199 
5200   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5201     if (C->isNullValue())
5202       return false;
5203     // FIXME: We should use a narrower constant when the upper
5204     // bits are known to be zero.
5205     APInt Divisor = C->getAPIntValue();
5206     APInt::mu magics = Divisor.magicu();
5207     unsigned PreShift = 0, PostShift = 0;
5208 
5209     // If the divisor is even, we can avoid using the expensive fixup by
5210     // shifting the divided value upfront.
5211     if (magics.a != 0 && !Divisor[0]) {
5212       PreShift = Divisor.countTrailingZeros();
5213       // Get magic number for the shifted divisor.
5214       magics = Divisor.lshr(PreShift).magicu(PreShift);
5215       assert(magics.a == 0 && "Should use cheap fixup now");
5216     }
5217 
5218     APInt Magic = magics.m;
5219 
5220     unsigned SelNPQ;
5221     if (magics.a == 0 || Divisor.isOneValue()) {
5222       assert(magics.s < Divisor.getBitWidth() &&
5223              "We shouldn't generate an undefined shift!");
5224       PostShift = magics.s;
5225       SelNPQ = false;
5226     } else {
5227       PostShift = magics.s - 1;
5228       SelNPQ = true;
5229     }
5230 
5231     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5232     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5233     NPQFactors.push_back(
5234         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5235                                : APInt::getNullValue(EltBits),
5236                         dl, SVT));
5237     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5238     UseNPQ |= SelNPQ;
5239     return true;
5240   };
5241 
5242   SDValue N0 = N->getOperand(0);
5243   SDValue N1 = N->getOperand(1);
5244 
5245   // Collect the shifts/magic values from each element.
5246   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5247     return SDValue();
5248 
5249   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5250   if (VT.isVector()) {
5251     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5252     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5253     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5254     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5255   } else {
5256     PreShift = PreShifts[0];
5257     MagicFactor = MagicFactors[0];
5258     PostShift = PostShifts[0];
5259   }
5260 
5261   SDValue Q = N0;
5262   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5263   Created.push_back(Q.getNode());
5264 
5265   // FIXME: We should support doing a MUL in a wider type.
5266   auto GetMULHU = [&](SDValue X, SDValue Y) {
5267     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
5268                             : isOperationLegalOrCustom(ISD::MULHU, VT))
5269       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5270     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
5271                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
5272       SDValue LoHi =
5273           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5274       return SDValue(LoHi.getNode(), 1);
5275     }
5276     return SDValue(); // No mulhu or equivalent
5277   };
5278 
5279   // Multiply the numerator (operand 0) by the magic value.
5280   Q = GetMULHU(Q, MagicFactor);
5281   if (!Q)
5282     return SDValue();
5283 
5284   Created.push_back(Q.getNode());
5285 
5286   if (UseNPQ) {
5287     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5288     Created.push_back(NPQ.getNode());
5289 
5290     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5291     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5292     if (VT.isVector())
5293       NPQ = GetMULHU(NPQ, NPQFactor);
5294     else
5295       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5296 
5297     Created.push_back(NPQ.getNode());
5298 
5299     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5300     Created.push_back(Q.getNode());
5301   }
5302 
5303   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5304   Created.push_back(Q.getNode());
5305 
5306   SDValue One = DAG.getConstant(1, dl, VT);
5307   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
5308   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5309 }
5310 
5311 /// If all values in Values that *don't* match the predicate are same 'splat'
5312 /// value, then replace all values with that splat value.
5313 /// Else, if AlternativeReplacement was provided, then replace all values that
5314 /// do match predicate with AlternativeReplacement value.
5315 static void
5316 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5317                           std::function<bool(SDValue)> Predicate,
5318                           SDValue AlternativeReplacement = SDValue()) {
5319   SDValue Replacement;
5320   // Is there a value for which the Predicate does *NOT* match? What is it?
5321   auto SplatValue = llvm::find_if_not(Values, Predicate);
5322   if (SplatValue != Values.end()) {
5323     // Does Values consist only of SplatValue's and values matching Predicate?
5324     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5325           return Value == *SplatValue || Predicate(Value);
5326         })) // Then we shall replace values matching predicate with SplatValue.
5327       Replacement = *SplatValue;
5328   }
5329   if (!Replacement) {
5330     // Oops, we did not find the "baseline" splat value.
5331     if (!AlternativeReplacement)
5332       return; // Nothing to do.
5333     // Let's replace with provided value then.
5334     Replacement = AlternativeReplacement;
5335   }
5336   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5337 }
5338 
5339 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5340 /// where the divisor is constant and the comparison target is zero,
5341 /// return a DAG expression that will generate the same comparison result
5342 /// using only multiplications, additions and shifts/rotations.
5343 /// Ref: "Hacker's Delight" 10-17.
5344 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5345                                         SDValue CompTargetNode,
5346                                         ISD::CondCode Cond,
5347                                         DAGCombinerInfo &DCI,
5348                                         const SDLoc &DL) const {
5349   SmallVector<SDNode *, 5> Built;
5350   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5351                                          DCI, DL, Built)) {
5352     for (SDNode *N : Built)
5353       DCI.AddToWorklist(N);
5354     return Folded;
5355   }
5356 
5357   return SDValue();
5358 }
5359 
5360 SDValue
5361 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5362                                   SDValue CompTargetNode, ISD::CondCode Cond,
5363                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5364                                   SmallVectorImpl<SDNode *> &Created) const {
5365   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5366   // - D must be constant, with D = D0 * 2^K where D0 is odd
5367   // - P is the multiplicative inverse of D0 modulo 2^W
5368   // - Q = floor(((2^W) - 1) / D)
5369   // where W is the width of the common type of N and D.
5370   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5371          "Only applicable for (in)equality comparisons.");
5372 
5373   SelectionDAG &DAG = DCI.DAG;
5374 
5375   EVT VT = REMNode.getValueType();
5376   EVT SVT = VT.getScalarType();
5377   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5378   EVT ShSVT = ShVT.getScalarType();
5379 
5380   // If MUL is unavailable, we cannot proceed in any case.
5381   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5382     return SDValue();
5383 
5384   bool ComparingWithAllZeros = true;
5385   bool AllComparisonsWithNonZerosAreTautological = true;
5386   bool HadTautologicalLanes = false;
5387   bool AllLanesAreTautological = true;
5388   bool HadEvenDivisor = false;
5389   bool AllDivisorsArePowerOfTwo = true;
5390   bool HadTautologicalInvertedLanes = false;
5391   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5392 
5393   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5394     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5395     if (CDiv->isNullValue())
5396       return false;
5397 
5398     const APInt &D = CDiv->getAPIntValue();
5399     const APInt &Cmp = CCmp->getAPIntValue();
5400 
5401     ComparingWithAllZeros &= Cmp.isNullValue();
5402 
5403     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5404     // if C2 is not less than C1, the comparison is always false.
5405     // But we will only be able to produce the comparison that will give the
5406     // opposive tautological answer. So this lane would need to be fixed up.
5407     bool TautologicalInvertedLane = D.ule(Cmp);
5408     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5409 
5410     // If all lanes are tautological (either all divisors are ones, or divisor
5411     // is not greater than the constant we are comparing with),
5412     // we will prefer to avoid the fold.
5413     bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane;
5414     HadTautologicalLanes |= TautologicalLane;
5415     AllLanesAreTautological &= TautologicalLane;
5416 
5417     // If we are comparing with non-zero, we need'll need  to subtract said
5418     // comparison value from the LHS. But there is no point in doing that if
5419     // every lane where we are comparing with non-zero is tautological..
5420     if (!Cmp.isNullValue())
5421       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5422 
5423     // Decompose D into D0 * 2^K
5424     unsigned K = D.countTrailingZeros();
5425     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5426     APInt D0 = D.lshr(K);
5427 
5428     // D is even if it has trailing zeros.
5429     HadEvenDivisor |= (K != 0);
5430     // D is a power-of-two if D0 is one.
5431     // If all divisors are power-of-two, we will prefer to avoid the fold.
5432     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5433 
5434     // P = inv(D0, 2^W)
5435     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5436     unsigned W = D.getBitWidth();
5437     APInt P = D0.zext(W + 1)
5438                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5439                   .trunc(W);
5440     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5441     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5442 
5443     // Q = floor((2^W - 1) u/ D)
5444     // R = ((2^W - 1) u% D)
5445     APInt Q, R;
5446     APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R);
5447 
5448     // If we are comparing with zero, then that comparison constant is okay,
5449     // else it may need to be one less than that.
5450     if (Cmp.ugt(R))
5451       Q -= 1;
5452 
5453     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5454            "We are expecting that K is always less than all-ones for ShSVT");
5455 
5456     // If the lane is tautological the result can be constant-folded.
5457     if (TautologicalLane) {
5458       // Set P and K amount to a bogus values so we can try to splat them.
5459       P = 0;
5460       K = -1;
5461       // And ensure that comparison constant is tautological,
5462       // it will always compare true/false.
5463       Q = -1;
5464     }
5465 
5466     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5467     KAmts.push_back(
5468         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5469     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5470     return true;
5471   };
5472 
5473   SDValue N = REMNode.getOperand(0);
5474   SDValue D = REMNode.getOperand(1);
5475 
5476   // Collect the values from each element.
5477   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5478     return SDValue();
5479 
5480   // If all lanes are tautological, the result can be constant-folded.
5481   if (AllLanesAreTautological)
5482     return SDValue();
5483 
5484   // If this is a urem by a powers-of-two, avoid the fold since it can be
5485   // best implemented as a bit test.
5486   if (AllDivisorsArePowerOfTwo)
5487     return SDValue();
5488 
5489   SDValue PVal, KVal, QVal;
5490   if (VT.isVector()) {
5491     if (HadTautologicalLanes) {
5492       // Try to turn PAmts into a splat, since we don't care about the values
5493       // that are currently '0'. If we can't, just keep '0'`s.
5494       turnVectorIntoSplatVector(PAmts, isNullConstant);
5495       // Try to turn KAmts into a splat, since we don't care about the values
5496       // that are currently '-1'. If we can't, change them to '0'`s.
5497       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5498                                 DAG.getConstant(0, DL, ShSVT));
5499     }
5500 
5501     PVal = DAG.getBuildVector(VT, DL, PAmts);
5502     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5503     QVal = DAG.getBuildVector(VT, DL, QAmts);
5504   } else {
5505     PVal = PAmts[0];
5506     KVal = KAmts[0];
5507     QVal = QAmts[0];
5508   }
5509 
5510   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5511     if (!isOperationLegalOrCustom(ISD::SUB, VT))
5512       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5513     assert(CompTargetNode.getValueType() == N.getValueType() &&
5514            "Expecting that the types on LHS and RHS of comparisons match.");
5515     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5516   }
5517 
5518   // (mul N, P)
5519   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5520   Created.push_back(Op0.getNode());
5521 
5522   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5523   // divisors as a performance improvement, since rotating by 0 is a no-op.
5524   if (HadEvenDivisor) {
5525     // We need ROTR to do this.
5526     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5527       return SDValue();
5528     SDNodeFlags Flags;
5529     Flags.setExact(true);
5530     // UREM: (rotr (mul N, P), K)
5531     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5532     Created.push_back(Op0.getNode());
5533   }
5534 
5535   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5536   SDValue NewCC =
5537       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5538                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5539   if (!HadTautologicalInvertedLanes)
5540     return NewCC;
5541 
5542   // If any lanes previously compared always-false, the NewCC will give
5543   // always-true result for them, so we need to fixup those lanes.
5544   // Or the other way around for inequality predicate.
5545   assert(VT.isVector() && "Can/should only get here for vectors.");
5546   Created.push_back(NewCC.getNode());
5547 
5548   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5549   // if C2 is not less than C1, the comparison is always false.
5550   // But we have produced the comparison that will give the
5551   // opposive tautological answer. So these lanes would need to be fixed up.
5552   SDValue TautologicalInvertedChannels =
5553       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5554   Created.push_back(TautologicalInvertedChannels.getNode());
5555 
5556   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5557     // If we have a vector select, let's replace the comparison results in the
5558     // affected lanes with the correct tautological result.
5559     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5560                                               DL, SETCCVT, SETCCVT);
5561     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5562                        Replacement, NewCC);
5563   }
5564 
5565   // Else, we can just invert the comparison result in the appropriate lanes.
5566   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5567     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5568                        TautologicalInvertedChannels);
5569 
5570   return SDValue(); // Don't know how to lower.
5571 }
5572 
5573 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5574 /// where the divisor is constant and the comparison target is zero,
5575 /// return a DAG expression that will generate the same comparison result
5576 /// using only multiplications, additions and shifts/rotations.
5577 /// Ref: "Hacker's Delight" 10-17.
5578 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5579                                         SDValue CompTargetNode,
5580                                         ISD::CondCode Cond,
5581                                         DAGCombinerInfo &DCI,
5582                                         const SDLoc &DL) const {
5583   SmallVector<SDNode *, 7> Built;
5584   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5585                                          DCI, DL, Built)) {
5586     assert(Built.size() <= 7 && "Max size prediction failed.");
5587     for (SDNode *N : Built)
5588       DCI.AddToWorklist(N);
5589     return Folded;
5590   }
5591 
5592   return SDValue();
5593 }
5594 
5595 SDValue
5596 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5597                                   SDValue CompTargetNode, ISD::CondCode Cond,
5598                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5599                                   SmallVectorImpl<SDNode *> &Created) const {
5600   // Fold:
5601   //   (seteq/ne (srem N, D), 0)
5602   // To:
5603   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5604   //
5605   // - D must be constant, with D = D0 * 2^K where D0 is odd
5606   // - P is the multiplicative inverse of D0 modulo 2^W
5607   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5608   // - Q = floor((2 * A) / (2^K))
5609   // where W is the width of the common type of N and D.
5610   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5611          "Only applicable for (in)equality comparisons.");
5612 
5613   SelectionDAG &DAG = DCI.DAG;
5614 
5615   EVT VT = REMNode.getValueType();
5616   EVT SVT = VT.getScalarType();
5617   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5618   EVT ShSVT = ShVT.getScalarType();
5619 
5620   // If MUL is unavailable, we cannot proceed in any case.
5621   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5622     return SDValue();
5623 
5624   // TODO: Could support comparing with non-zero too.
5625   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5626   if (!CompTarget || !CompTarget->isNullValue())
5627     return SDValue();
5628 
5629   bool HadIntMinDivisor = false;
5630   bool HadOneDivisor = false;
5631   bool AllDivisorsAreOnes = true;
5632   bool HadEvenDivisor = false;
5633   bool NeedToApplyOffset = false;
5634   bool AllDivisorsArePowerOfTwo = true;
5635   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5636 
5637   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5638     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5639     if (C->isNullValue())
5640       return false;
5641 
5642     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5643 
5644     // WARNING: this fold is only valid for positive divisors!
5645     APInt D = C->getAPIntValue();
5646     if (D.isNegative())
5647       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5648 
5649     HadIntMinDivisor |= D.isMinSignedValue();
5650 
5651     // If all divisors are ones, we will prefer to avoid the fold.
5652     HadOneDivisor |= D.isOneValue();
5653     AllDivisorsAreOnes &= D.isOneValue();
5654 
5655     // Decompose D into D0 * 2^K
5656     unsigned K = D.countTrailingZeros();
5657     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5658     APInt D0 = D.lshr(K);
5659 
5660     if (!D.isMinSignedValue()) {
5661       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5662       // we don't care about this lane in this fold, we'll special-handle it.
5663       HadEvenDivisor |= (K != 0);
5664     }
5665 
5666     // D is a power-of-two if D0 is one. This includes INT_MIN.
5667     // If all divisors are power-of-two, we will prefer to avoid the fold.
5668     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5669 
5670     // P = inv(D0, 2^W)
5671     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5672     unsigned W = D.getBitWidth();
5673     APInt P = D0.zext(W + 1)
5674                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5675                   .trunc(W);
5676     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5677     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5678 
5679     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5680     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5681     A.clearLowBits(K);
5682 
5683     if (!D.isMinSignedValue()) {
5684       // If divisor INT_MIN, then we don't care about this lane in this fold,
5685       // we'll special-handle it.
5686       NeedToApplyOffset |= A != 0;
5687     }
5688 
5689     // Q = floor((2 * A) / (2^K))
5690     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5691 
5692     assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5693            "We are expecting that A is always less than all-ones for SVT");
5694     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5695            "We are expecting that K is always less than all-ones for ShSVT");
5696 
5697     // If the divisor is 1 the result can be constant-folded. Likewise, we
5698     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5699     if (D.isOneValue()) {
5700       // Set P, A and K to a bogus values so we can try to splat them.
5701       P = 0;
5702       A = -1;
5703       K = -1;
5704 
5705       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5706       Q = -1;
5707     }
5708 
5709     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5710     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5711     KAmts.push_back(
5712         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5713     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5714     return true;
5715   };
5716 
5717   SDValue N = REMNode.getOperand(0);
5718   SDValue D = REMNode.getOperand(1);
5719 
5720   // Collect the values from each element.
5721   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5722     return SDValue();
5723 
5724   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5725   if (AllDivisorsAreOnes)
5726     return SDValue();
5727 
5728   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5729   // since it can be best implemented as a bit test.
5730   if (AllDivisorsArePowerOfTwo)
5731     return SDValue();
5732 
5733   SDValue PVal, AVal, KVal, QVal;
5734   if (VT.isVector()) {
5735     if (HadOneDivisor) {
5736       // Try to turn PAmts into a splat, since we don't care about the values
5737       // that are currently '0'. If we can't, just keep '0'`s.
5738       turnVectorIntoSplatVector(PAmts, isNullConstant);
5739       // Try to turn AAmts into a splat, since we don't care about the
5740       // values that are currently '-1'. If we can't, change them to '0'`s.
5741       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5742                                 DAG.getConstant(0, DL, SVT));
5743       // Try to turn KAmts into a splat, since we don't care about the values
5744       // that are currently '-1'. If we can't, change them to '0'`s.
5745       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5746                                 DAG.getConstant(0, DL, ShSVT));
5747     }
5748 
5749     PVal = DAG.getBuildVector(VT, DL, PAmts);
5750     AVal = DAG.getBuildVector(VT, DL, AAmts);
5751     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5752     QVal = DAG.getBuildVector(VT, DL, QAmts);
5753   } else {
5754     PVal = PAmts[0];
5755     AVal = AAmts[0];
5756     KVal = KAmts[0];
5757     QVal = QAmts[0];
5758   }
5759 
5760   // (mul N, P)
5761   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5762   Created.push_back(Op0.getNode());
5763 
5764   if (NeedToApplyOffset) {
5765     // We need ADD to do this.
5766     if (!isOperationLegalOrCustom(ISD::ADD, VT))
5767       return SDValue();
5768 
5769     // (add (mul N, P), A)
5770     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5771     Created.push_back(Op0.getNode());
5772   }
5773 
5774   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5775   // divisors as a performance improvement, since rotating by 0 is a no-op.
5776   if (HadEvenDivisor) {
5777     // We need ROTR to do this.
5778     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5779       return SDValue();
5780     SDNodeFlags Flags;
5781     Flags.setExact(true);
5782     // SREM: (rotr (add (mul N, P), A), K)
5783     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5784     Created.push_back(Op0.getNode());
5785   }
5786 
5787   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5788   SDValue Fold =
5789       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5790                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5791 
5792   // If we didn't have lanes with INT_MIN divisor, then we're done.
5793   if (!HadIntMinDivisor)
5794     return Fold;
5795 
5796   // That fold is only valid for positive divisors. Which effectively means,
5797   // it is invalid for INT_MIN divisors. So if we have such a lane,
5798   // we must fix-up results for said lanes.
5799   assert(VT.isVector() && "Can/should only get here for vectors.");
5800 
5801   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5802       !isOperationLegalOrCustom(ISD::AND, VT) ||
5803       !isOperationLegalOrCustom(Cond, VT) ||
5804       !isOperationLegalOrCustom(ISD::VSELECT, VT))
5805     return SDValue();
5806 
5807   Created.push_back(Fold.getNode());
5808 
5809   SDValue IntMin = DAG.getConstant(
5810       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5811   SDValue IntMax = DAG.getConstant(
5812       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5813   SDValue Zero =
5814       DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5815 
5816   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5817   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5818   Created.push_back(DivisorIsIntMin.getNode());
5819 
5820   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
5821   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5822   Created.push_back(Masked.getNode());
5823   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5824   Created.push_back(MaskedIsZero.getNode());
5825 
5826   // To produce final result we need to blend 2 vectors: 'SetCC' and
5827   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5828   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5829   // constant-folded, select can get lowered to a shuffle with constant mask.
5830   SDValue Blended =
5831       DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5832 
5833   return Blended;
5834 }
5835 
5836 bool TargetLowering::
5837 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5838   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5839     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5840                                 "be a constant integer");
5841     return true;
5842   }
5843 
5844   return false;
5845 }
5846 
5847 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
5848                                              bool LegalOps, bool OptForSize,
5849                                              NegatibleCost &Cost,
5850                                              unsigned Depth) const {
5851   // fneg is removable even if it has multiple uses.
5852   if (Op.getOpcode() == ISD::FNEG) {
5853     Cost = NegatibleCost::Cheaper;
5854     return Op.getOperand(0);
5855   }
5856 
5857   // Don't recurse exponentially.
5858   if (Depth > SelectionDAG::MaxRecursionDepth)
5859     return SDValue();
5860 
5861   // Pre-increment recursion depth for use in recursive calls.
5862   ++Depth;
5863   const SDNodeFlags Flags = Op->getFlags();
5864   const TargetOptions &Options = DAG.getTarget().Options;
5865   EVT VT = Op.getValueType();
5866   unsigned Opcode = Op.getOpcode();
5867 
5868   // Don't allow anything with multiple uses unless we know it is free.
5869   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
5870     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
5871                         isFPExtFree(VT, Op.getOperand(0).getValueType());
5872     if (!IsFreeExtend)
5873       return SDValue();
5874   }
5875 
5876   auto RemoveDeadNode = [&](SDValue N) {
5877     if (N && N.getNode()->use_empty())
5878       DAG.RemoveDeadNode(N.getNode());
5879   };
5880 
5881   SDLoc DL(Op);
5882 
5883   switch (Opcode) {
5884   case ISD::ConstantFP: {
5885     // Don't invert constant FP values after legalization unless the target says
5886     // the negated constant is legal.
5887     bool IsOpLegal =
5888         isOperationLegal(ISD::ConstantFP, VT) ||
5889         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
5890                      OptForSize);
5891 
5892     if (LegalOps && !IsOpLegal)
5893       break;
5894 
5895     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
5896     V.changeSign();
5897     SDValue CFP = DAG.getConstantFP(V, DL, VT);
5898 
5899     // If we already have the use of the negated floating constant, it is free
5900     // to negate it even it has multiple uses.
5901     if (!Op.hasOneUse() && CFP.use_empty())
5902       break;
5903     Cost = NegatibleCost::Neutral;
5904     return CFP;
5905   }
5906   case ISD::BUILD_VECTOR: {
5907     // Only permit BUILD_VECTOR of constants.
5908     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
5909           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
5910         }))
5911       break;
5912 
5913     bool IsOpLegal =
5914         (isOperationLegal(ISD::ConstantFP, VT) &&
5915          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
5916         llvm::all_of(Op->op_values(), [&](SDValue N) {
5917           return N.isUndef() ||
5918                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
5919                               OptForSize);
5920         });
5921 
5922     if (LegalOps && !IsOpLegal)
5923       break;
5924 
5925     SmallVector<SDValue, 4> Ops;
5926     for (SDValue C : Op->op_values()) {
5927       if (C.isUndef()) {
5928         Ops.push_back(C);
5929         continue;
5930       }
5931       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
5932       V.changeSign();
5933       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
5934     }
5935     Cost = NegatibleCost::Neutral;
5936     return DAG.getBuildVector(VT, DL, Ops);
5937   }
5938   case ISD::FADD: {
5939     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5940       break;
5941 
5942     // After operation legalization, it might not be legal to create new FSUBs.
5943     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
5944       break;
5945     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5946 
5947     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
5948     NegatibleCost CostX = NegatibleCost::Expensive;
5949     SDValue NegX =
5950         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
5951     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
5952     NegatibleCost CostY = NegatibleCost::Expensive;
5953     SDValue NegY =
5954         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
5955 
5956     // Negate the X if its cost is less or equal than Y.
5957     if (NegX && (CostX <= CostY)) {
5958       Cost = CostX;
5959       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
5960       if (NegY != N)
5961         RemoveDeadNode(NegY);
5962       return N;
5963     }
5964 
5965     // Negate the Y if it is not expensive.
5966     if (NegY) {
5967       Cost = CostY;
5968       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
5969       if (NegX != N)
5970         RemoveDeadNode(NegX);
5971       return N;
5972     }
5973     break;
5974   }
5975   case ISD::FSUB: {
5976     // We can't turn -(A-B) into B-A when we honor signed zeros.
5977     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5978       break;
5979 
5980     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5981     // fold (fneg (fsub 0, Y)) -> Y
5982     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
5983       if (C->isZero()) {
5984         Cost = NegatibleCost::Cheaper;
5985         return Y;
5986       }
5987 
5988     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
5989     Cost = NegatibleCost::Neutral;
5990     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
5991   }
5992   case ISD::FMUL:
5993   case ISD::FDIV: {
5994     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5995 
5996     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
5997     NegatibleCost CostX = NegatibleCost::Expensive;
5998     SDValue NegX =
5999         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6000     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6001     NegatibleCost CostY = NegatibleCost::Expensive;
6002     SDValue NegY =
6003         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6004 
6005     // Negate the X if its cost is less or equal than Y.
6006     if (NegX && (CostX <= CostY)) {
6007       Cost = CostX;
6008       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6009       if (NegY != N)
6010         RemoveDeadNode(NegY);
6011       return N;
6012     }
6013 
6014     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6015     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6016       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6017         break;
6018 
6019     // Negate the Y if it is not expensive.
6020     if (NegY) {
6021       Cost = CostY;
6022       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6023       if (NegX != N)
6024         RemoveDeadNode(NegX);
6025       return N;
6026     }
6027     break;
6028   }
6029   case ISD::FMA:
6030   case ISD::FMAD: {
6031     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6032       break;
6033 
6034     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6035     NegatibleCost CostZ = NegatibleCost::Expensive;
6036     SDValue NegZ =
6037         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6038     // Give up if fail to negate the Z.
6039     if (!NegZ)
6040       break;
6041 
6042     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6043     NegatibleCost CostX = NegatibleCost::Expensive;
6044     SDValue NegX =
6045         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6046     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6047     NegatibleCost CostY = NegatibleCost::Expensive;
6048     SDValue NegY =
6049         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6050 
6051     // Negate the X if its cost is less or equal than Y.
6052     if (NegX && (CostX <= CostY)) {
6053       Cost = std::min(CostX, CostZ);
6054       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6055       if (NegY != N)
6056         RemoveDeadNode(NegY);
6057       return N;
6058     }
6059 
6060     // Negate the Y if it is not expensive.
6061     if (NegY) {
6062       Cost = std::min(CostY, CostZ);
6063       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6064       if (NegX != N)
6065         RemoveDeadNode(NegX);
6066       return N;
6067     }
6068     break;
6069   }
6070 
6071   case ISD::FP_EXTEND:
6072   case ISD::FSIN:
6073     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6074                                             OptForSize, Cost, Depth))
6075       return DAG.getNode(Opcode, DL, VT, NegV);
6076     break;
6077   case ISD::FP_ROUND:
6078     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6079                                             OptForSize, Cost, Depth))
6080       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6081     break;
6082   }
6083 
6084   return SDValue();
6085 }
6086 
6087 //===----------------------------------------------------------------------===//
6088 // Legalization Utilities
6089 //===----------------------------------------------------------------------===//
6090 
6091 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6092                                     SDValue LHS, SDValue RHS,
6093                                     SmallVectorImpl<SDValue> &Result,
6094                                     EVT HiLoVT, SelectionDAG &DAG,
6095                                     MulExpansionKind Kind, SDValue LL,
6096                                     SDValue LH, SDValue RL, SDValue RH) const {
6097   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6098          Opcode == ISD::SMUL_LOHI);
6099 
6100   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6101                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6102   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6103                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6104   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6105                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6106   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6107                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6108 
6109   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6110     return false;
6111 
6112   unsigned OuterBitSize = VT.getScalarSizeInBits();
6113   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6114 
6115   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6116   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6117          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6118 
6119   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6120   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6121                           bool Signed) -> bool {
6122     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6123       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6124       Hi = SDValue(Lo.getNode(), 1);
6125       return true;
6126     }
6127     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6128       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6129       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6130       return true;
6131     }
6132     return false;
6133   };
6134 
6135   SDValue Lo, Hi;
6136 
6137   if (!LL.getNode() && !RL.getNode() &&
6138       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6139     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6140     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6141   }
6142 
6143   if (!LL.getNode())
6144     return false;
6145 
6146   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6147   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6148       DAG.MaskedValueIsZero(RHS, HighMask)) {
6149     // The inputs are both zero-extended.
6150     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6151       Result.push_back(Lo);
6152       Result.push_back(Hi);
6153       if (Opcode != ISD::MUL) {
6154         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6155         Result.push_back(Zero);
6156         Result.push_back(Zero);
6157       }
6158       return true;
6159     }
6160   }
6161 
6162   if (!VT.isVector() && Opcode == ISD::MUL &&
6163       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6164       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6165     // The input values are both sign-extended.
6166     // TODO non-MUL case?
6167     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6168       Result.push_back(Lo);
6169       Result.push_back(Hi);
6170       return true;
6171     }
6172   }
6173 
6174   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6175   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6176   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
6177     // FIXME getShiftAmountTy does not always return a sensible result when VT
6178     // is an illegal type, and so the type may be too small to fit the shift
6179     // amount. Override it with i32. The shift will have to be legalized.
6180     ShiftAmountTy = MVT::i32;
6181   }
6182   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6183 
6184   if (!LH.getNode() && !RH.getNode() &&
6185       isOperationLegalOrCustom(ISD::SRL, VT) &&
6186       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6187     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6188     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6189     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6190     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6191   }
6192 
6193   if (!LH.getNode())
6194     return false;
6195 
6196   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6197     return false;
6198 
6199   Result.push_back(Lo);
6200 
6201   if (Opcode == ISD::MUL) {
6202     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6203     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6204     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6205     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6206     Result.push_back(Hi);
6207     return true;
6208   }
6209 
6210   // Compute the full width result.
6211   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6212     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6213     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6214     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6215     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6216   };
6217 
6218   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6219   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6220     return false;
6221 
6222   // This is effectively the add part of a multiply-add of half-sized operands,
6223   // so it cannot overflow.
6224   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6225 
6226   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6227     return false;
6228 
6229   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6230   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6231 
6232   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6233                   isOperationLegalOrCustom(ISD::ADDE, VT));
6234   if (UseGlue)
6235     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6236                        Merge(Lo, Hi));
6237   else
6238     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6239                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6240 
6241   SDValue Carry = Next.getValue(1);
6242   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6243   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6244 
6245   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6246     return false;
6247 
6248   if (UseGlue)
6249     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6250                      Carry);
6251   else
6252     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6253                      Zero, Carry);
6254 
6255   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6256 
6257   if (Opcode == ISD::SMUL_LOHI) {
6258     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6259                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6260     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6261 
6262     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6263                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6264     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6265   }
6266 
6267   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6268   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6269   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6270   return true;
6271 }
6272 
6273 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6274                                SelectionDAG &DAG, MulExpansionKind Kind,
6275                                SDValue LL, SDValue LH, SDValue RL,
6276                                SDValue RH) const {
6277   SmallVector<SDValue, 2> Result;
6278   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6279                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6280                            DAG, Kind, LL, LH, RL, RH);
6281   if (Ok) {
6282     assert(Result.size() == 2);
6283     Lo = Result[0];
6284     Hi = Result[1];
6285   }
6286   return Ok;
6287 }
6288 
6289 // Check that (every element of) Z is undef or not an exact multiple of BW.
6290 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
6291   return ISD::matchUnaryPredicate(
6292       Z,
6293       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
6294       true);
6295 }
6296 
6297 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
6298                                        SelectionDAG &DAG) const {
6299   EVT VT = Node->getValueType(0);
6300 
6301   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6302                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6303                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6304                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6305     return false;
6306 
6307   SDValue X = Node->getOperand(0);
6308   SDValue Y = Node->getOperand(1);
6309   SDValue Z = Node->getOperand(2);
6310 
6311   unsigned BW = VT.getScalarSizeInBits();
6312   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6313   SDLoc DL(SDValue(Node, 0));
6314 
6315   EVT ShVT = Z.getValueType();
6316 
6317   // If a funnel shift in the other direction is more supported, use it.
6318   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
6319   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6320       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
6321     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6322       // fshl X, Y, Z -> fshr X, Y, -Z
6323       // fshr X, Y, Z -> fshl X, Y, -Z
6324       SDValue Zero = DAG.getConstant(0, DL, ShVT);
6325       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
6326     } else {
6327       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
6328       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
6329       SDValue One = DAG.getConstant(1, DL, ShVT);
6330       if (IsFSHL) {
6331         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6332         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
6333       } else {
6334         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6335         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
6336       }
6337       Z = DAG.getNOT(DL, Z, ShVT);
6338     }
6339     Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
6340     return true;
6341   }
6342 
6343   SDValue ShX, ShY;
6344   SDValue ShAmt, InvShAmt;
6345   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6346     // fshl: X << C | Y >> (BW - C)
6347     // fshr: X << (BW - C) | Y >> C
6348     // where C = Z % BW is not zero
6349     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6350     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6351     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6352     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6353     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6354   } else {
6355     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6356     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6357     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
6358     if (isPowerOf2_32(BW)) {
6359       // Z % BW -> Z & (BW - 1)
6360       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6361       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
6362       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
6363     } else {
6364       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6365       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6366       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
6367     }
6368 
6369     SDValue One = DAG.getConstant(1, DL, ShVT);
6370     if (IsFSHL) {
6371       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
6372       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
6373       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
6374     } else {
6375       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
6376       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
6377       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
6378     }
6379   }
6380   Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6381   return true;
6382 }
6383 
6384 // TODO: Merge with expandFunnelShift.
6385 bool TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
6386                                SDValue &Result, SelectionDAG &DAG) const {
6387   EVT VT = Node->getValueType(0);
6388   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6389   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6390   SDValue Op0 = Node->getOperand(0);
6391   SDValue Op1 = Node->getOperand(1);
6392   SDLoc DL(SDValue(Node, 0));
6393 
6394   EVT ShVT = Op1.getValueType();
6395   SDValue Zero = DAG.getConstant(0, DL, ShVT);
6396 
6397   // If a rotate in the other direction is supported, use it.
6398   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6399   if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
6400     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6401     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6402     return true;
6403   }
6404 
6405   if (!AllowVectorOps && VT.isVector() &&
6406       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6407        !isOperationLegalOrCustom(ISD::SRL, VT) ||
6408        !isOperationLegalOrCustom(ISD::SUB, VT) ||
6409        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6410        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6411     return false;
6412 
6413   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6414   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6415   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6416   SDValue ShVal;
6417   SDValue HsVal;
6418   if (isPowerOf2_32(EltSizeInBits)) {
6419     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
6420     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
6421     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6422     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6423     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6424     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6425     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
6426   } else {
6427     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
6428     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
6429     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6430     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
6431     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6432     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
6433     SDValue One = DAG.getConstant(1, DL, ShVT);
6434     HsVal =
6435         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
6436   }
6437   Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
6438   return true;
6439 }
6440 
6441 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6442                                       SelectionDAG &DAG) const {
6443   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6444   SDValue Src = Node->getOperand(OpNo);
6445   EVT SrcVT = Src.getValueType();
6446   EVT DstVT = Node->getValueType(0);
6447   SDLoc dl(SDValue(Node, 0));
6448 
6449   // FIXME: Only f32 to i64 conversions are supported.
6450   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6451     return false;
6452 
6453   if (Node->isStrictFPOpcode())
6454     // When a NaN is converted to an integer a trap is allowed. We can't
6455     // use this expansion here because it would eliminate that trap. Other
6456     // traps are also allowed and cannot be eliminated. See
6457     // IEEE 754-2008 sec 5.8.
6458     return false;
6459 
6460   // Expand f32 -> i64 conversion
6461   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6462   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
6463   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6464   EVT IntVT = SrcVT.changeTypeToInteger();
6465   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6466 
6467   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6468   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6469   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6470   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6471   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6472   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6473 
6474   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6475 
6476   SDValue ExponentBits = DAG.getNode(
6477       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6478       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6479   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6480 
6481   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6482                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6483                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6484   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6485 
6486   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6487                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6488                           DAG.getConstant(0x00800000, dl, IntVT));
6489 
6490   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6491 
6492   R = DAG.getSelectCC(
6493       dl, Exponent, ExponentLoBit,
6494       DAG.getNode(ISD::SHL, dl, DstVT, R,
6495                   DAG.getZExtOrTrunc(
6496                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6497                       dl, IntShVT)),
6498       DAG.getNode(ISD::SRL, dl, DstVT, R,
6499                   DAG.getZExtOrTrunc(
6500                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6501                       dl, IntShVT)),
6502       ISD::SETGT);
6503 
6504   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6505                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6506 
6507   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6508                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6509   return true;
6510 }
6511 
6512 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6513                                       SDValue &Chain,
6514                                       SelectionDAG &DAG) const {
6515   SDLoc dl(SDValue(Node, 0));
6516   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6517   SDValue Src = Node->getOperand(OpNo);
6518 
6519   EVT SrcVT = Src.getValueType();
6520   EVT DstVT = Node->getValueType(0);
6521   EVT SetCCVT =
6522       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6523   EVT DstSetCCVT =
6524       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6525 
6526   // Only expand vector types if we have the appropriate vector bit operations.
6527   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6528                                                    ISD::FP_TO_SINT;
6529   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6530                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6531     return false;
6532 
6533   // If the maximum float value is smaller then the signed integer range,
6534   // the destination signmask can't be represented by the float, so we can
6535   // just use FP_TO_SINT directly.
6536   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6537   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
6538   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6539   if (APFloat::opOverflow &
6540       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6541     if (Node->isStrictFPOpcode()) {
6542       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6543                            { Node->getOperand(0), Src });
6544       Chain = Result.getValue(1);
6545     } else
6546       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6547     return true;
6548   }
6549 
6550   // Don't expand it if there isn't cheap fsub instruction.
6551   if (!isOperationLegalOrCustom(
6552           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
6553     return false;
6554 
6555   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6556   SDValue Sel;
6557 
6558   if (Node->isStrictFPOpcode()) {
6559     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6560                        Node->getOperand(0), /*IsSignaling*/ true);
6561     Chain = Sel.getValue(1);
6562   } else {
6563     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6564   }
6565 
6566   bool Strict = Node->isStrictFPOpcode() ||
6567                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6568 
6569   if (Strict) {
6570     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6571     // signmask then offset (the result of which should be fully representable).
6572     // Sel = Src < 0x8000000000000000
6573     // FltOfs = select Sel, 0, 0x8000000000000000
6574     // IntOfs = select Sel, 0, 0x8000000000000000
6575     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6576 
6577     // TODO: Should any fast-math-flags be set for the FSUB?
6578     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6579                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6580     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6581     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6582                                    DAG.getConstant(0, dl, DstVT),
6583                                    DAG.getConstant(SignMask, dl, DstVT));
6584     SDValue SInt;
6585     if (Node->isStrictFPOpcode()) {
6586       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6587                                 { Chain, Src, FltOfs });
6588       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6589                          { Val.getValue(1), Val });
6590       Chain = SInt.getValue(1);
6591     } else {
6592       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6593       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6594     }
6595     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6596   } else {
6597     // Expand based on maximum range of FP_TO_SINT:
6598     // True = fp_to_sint(Src)
6599     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6600     // Result = select (Src < 0x8000000000000000), True, False
6601 
6602     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6603     // TODO: Should any fast-math-flags be set for the FSUB?
6604     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6605                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6606     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6607                         DAG.getConstant(SignMask, dl, DstVT));
6608     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6609     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6610   }
6611   return true;
6612 }
6613 
6614 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6615                                       SDValue &Chain,
6616                                       SelectionDAG &DAG) const {
6617   // This transform is not correct for converting 0 when rounding mode is set
6618   // to round toward negative infinity which will produce -0.0. So disable under
6619   // strictfp.
6620   if (Node->isStrictFPOpcode())
6621     return false;
6622 
6623   SDValue Src = Node->getOperand(0);
6624   EVT SrcVT = Src.getValueType();
6625   EVT DstVT = Node->getValueType(0);
6626 
6627   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6628     return false;
6629 
6630   // Only expand vector types if we have the appropriate vector bit operations.
6631   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6632                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6633                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6634                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6635                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6636     return false;
6637 
6638   SDLoc dl(SDValue(Node, 0));
6639   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6640 
6641   // Implementation of unsigned i64 to f64 following the algorithm in
6642   // __floatundidf in compiler_rt.  This implementation performs rounding
6643   // correctly in all rounding modes with the exception of converting 0
6644   // when rounding toward negative infinity. In that case the fsub will produce
6645   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
6646   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6647   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6648       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6649   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6650   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6651   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6652 
6653   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6654   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6655   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6656   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6657   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6658   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6659   SDValue HiSub =
6660       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6661   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6662   return true;
6663 }
6664 
6665 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6666                                               SelectionDAG &DAG) const {
6667   SDLoc dl(Node);
6668   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6669     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6670   EVT VT = Node->getValueType(0);
6671 
6672   if (VT.isScalableVector())
6673     report_fatal_error(
6674         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
6675 
6676   if (isOperationLegalOrCustom(NewOp, VT)) {
6677     SDValue Quiet0 = Node->getOperand(0);
6678     SDValue Quiet1 = Node->getOperand(1);
6679 
6680     if (!Node->getFlags().hasNoNaNs()) {
6681       // Insert canonicalizes if it's possible we need to quiet to get correct
6682       // sNaN behavior.
6683       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6684         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6685                              Node->getFlags());
6686       }
6687       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6688         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6689                              Node->getFlags());
6690       }
6691     }
6692 
6693     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6694   }
6695 
6696   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6697   // instead if there are no NaNs.
6698   if (Node->getFlags().hasNoNaNs()) {
6699     unsigned IEEE2018Op =
6700         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6701     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6702       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6703                          Node->getOperand(1), Node->getFlags());
6704     }
6705   }
6706 
6707   // If none of the above worked, but there are no NaNs, then expand to
6708   // a compare/select sequence.  This is required for correctness since
6709   // InstCombine might have canonicalized a fcmp+select sequence to a
6710   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
6711   // expansion to libcall, we might introduce a link-time dependency
6712   // on libm into a file that originally did not have one.
6713   if (Node->getFlags().hasNoNaNs()) {
6714     ISD::CondCode Pred =
6715         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
6716     SDValue Op1 = Node->getOperand(0);
6717     SDValue Op2 = Node->getOperand(1);
6718     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
6719     // Copy FMF flags, but always set the no-signed-zeros flag
6720     // as this is implied by the FMINNUM/FMAXNUM semantics.
6721     SDNodeFlags Flags = Node->getFlags();
6722     Flags.setNoSignedZeros(true);
6723     SelCC->setFlags(Flags);
6724     return SelCC;
6725   }
6726 
6727   return SDValue();
6728 }
6729 
6730 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
6731                                  SelectionDAG &DAG) const {
6732   SDLoc dl(Node);
6733   EVT VT = Node->getValueType(0);
6734   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6735   SDValue Op = Node->getOperand(0);
6736   unsigned Len = VT.getScalarSizeInBits();
6737   assert(VT.isInteger() && "CTPOP not implemented for this type.");
6738 
6739   // TODO: Add support for irregular type lengths.
6740   if (!(Len <= 128 && Len % 8 == 0))
6741     return false;
6742 
6743   // Only expand vector types if we have the appropriate vector bit operations.
6744   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
6745                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6746                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6747                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
6748                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6749     return false;
6750 
6751   // This is the "best" algorithm from
6752   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
6753   SDValue Mask55 =
6754       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
6755   SDValue Mask33 =
6756       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
6757   SDValue Mask0F =
6758       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
6759   SDValue Mask01 =
6760       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
6761 
6762   // v = v - ((v >> 1) & 0x55555555...)
6763   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
6764                    DAG.getNode(ISD::AND, dl, VT,
6765                                DAG.getNode(ISD::SRL, dl, VT, Op,
6766                                            DAG.getConstant(1, dl, ShVT)),
6767                                Mask55));
6768   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
6769   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
6770                    DAG.getNode(ISD::AND, dl, VT,
6771                                DAG.getNode(ISD::SRL, dl, VT, Op,
6772                                            DAG.getConstant(2, dl, ShVT)),
6773                                Mask33));
6774   // v = (v + (v >> 4)) & 0x0F0F0F0F...
6775   Op = DAG.getNode(ISD::AND, dl, VT,
6776                    DAG.getNode(ISD::ADD, dl, VT, Op,
6777                                DAG.getNode(ISD::SRL, dl, VT, Op,
6778                                            DAG.getConstant(4, dl, ShVT))),
6779                    Mask0F);
6780   // v = (v * 0x01010101...) >> (Len - 8)
6781   if (Len > 8)
6782     Op =
6783         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
6784                     DAG.getConstant(Len - 8, dl, ShVT));
6785 
6786   Result = Op;
6787   return true;
6788 }
6789 
6790 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
6791                                 SelectionDAG &DAG) const {
6792   SDLoc dl(Node);
6793   EVT VT = Node->getValueType(0);
6794   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6795   SDValue Op = Node->getOperand(0);
6796   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6797 
6798   // If the non-ZERO_UNDEF version is supported we can use that instead.
6799   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
6800       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
6801     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
6802     return true;
6803   }
6804 
6805   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6806   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
6807     EVT SetCCVT =
6808         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6809     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
6810     SDValue Zero = DAG.getConstant(0, dl, VT);
6811     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6812     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6813                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
6814     return true;
6815   }
6816 
6817   // Only expand vector types if we have the appropriate vector bit operations.
6818   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6819                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
6820                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6821                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6822     return false;
6823 
6824   // for now, we do this:
6825   // x = x | (x >> 1);
6826   // x = x | (x >> 2);
6827   // ...
6828   // x = x | (x >>16);
6829   // x = x | (x >>32); // for 64-bit input
6830   // return popcount(~x);
6831   //
6832   // Ref: "Hacker's Delight" by Henry Warren
6833   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
6834     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
6835     Op = DAG.getNode(ISD::OR, dl, VT, Op,
6836                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
6837   }
6838   Op = DAG.getNOT(dl, Op, VT);
6839   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
6840   return true;
6841 }
6842 
6843 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
6844                                 SelectionDAG &DAG) const {
6845   SDLoc dl(Node);
6846   EVT VT = Node->getValueType(0);
6847   SDValue Op = Node->getOperand(0);
6848   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6849 
6850   // If the non-ZERO_UNDEF version is supported we can use that instead.
6851   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
6852       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
6853     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
6854     return true;
6855   }
6856 
6857   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6858   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
6859     EVT SetCCVT =
6860         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6861     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
6862     SDValue Zero = DAG.getConstant(0, dl, VT);
6863     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6864     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6865                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
6866     return true;
6867   }
6868 
6869   // Only expand vector types if we have the appropriate vector bit operations.
6870   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6871                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
6872                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
6873                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6874                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
6875                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6876     return false;
6877 
6878   // for now, we use: { return popcount(~x & (x - 1)); }
6879   // unless the target has ctlz but not ctpop, in which case we use:
6880   // { return 32 - nlz(~x & (x-1)); }
6881   // Ref: "Hacker's Delight" by Henry Warren
6882   SDValue Tmp = DAG.getNode(
6883       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
6884       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
6885 
6886   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6887   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
6888     Result =
6889         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
6890                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
6891     return true;
6892   }
6893 
6894   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
6895   return true;
6896 }
6897 
6898 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
6899                                SelectionDAG &DAG, bool IsNegative) const {
6900   SDLoc dl(N);
6901   EVT VT = N->getValueType(0);
6902   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6903   SDValue Op = N->getOperand(0);
6904 
6905   // abs(x) -> smax(x,sub(0,x))
6906   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
6907       isOperationLegal(ISD::SMAX, VT)) {
6908     SDValue Zero = DAG.getConstant(0, dl, VT);
6909     Result = DAG.getNode(ISD::SMAX, dl, VT, Op,
6910                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
6911     return true;
6912   }
6913 
6914   // abs(x) -> umin(x,sub(0,x))
6915   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
6916       isOperationLegal(ISD::UMIN, VT)) {
6917     SDValue Zero = DAG.getConstant(0, dl, VT);
6918     Result = DAG.getNode(ISD::UMIN, dl, VT, Op,
6919                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
6920     return true;
6921   }
6922 
6923   // 0 - abs(x) -> smin(x, sub(0,x))
6924   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
6925       isOperationLegal(ISD::SMIN, VT)) {
6926     SDValue Zero = DAG.getConstant(0, dl, VT);
6927     Result = DAG.getNode(ISD::SMIN, dl, VT, Op,
6928                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
6929     return true;
6930   }
6931 
6932   // Only expand vector types if we have the appropriate vector operations.
6933   if (VT.isVector() &&
6934       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
6935        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
6936        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
6937        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6938     return false;
6939 
6940   SDValue Shift =
6941       DAG.getNode(ISD::SRA, dl, VT, Op,
6942                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
6943   if (!IsNegative) {
6944     SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
6945     Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
6946   } else {
6947     // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
6948     SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
6949     Result = DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
6950   }
6951   return true;
6952 }
6953 
6954 std::pair<SDValue, SDValue>
6955 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
6956                                     SelectionDAG &DAG) const {
6957   SDLoc SL(LD);
6958   SDValue Chain = LD->getChain();
6959   SDValue BasePTR = LD->getBasePtr();
6960   EVT SrcVT = LD->getMemoryVT();
6961   EVT DstVT = LD->getValueType(0);
6962   ISD::LoadExtType ExtType = LD->getExtensionType();
6963 
6964   if (SrcVT.isScalableVector())
6965     report_fatal_error("Cannot scalarize scalable vector loads");
6966 
6967   unsigned NumElem = SrcVT.getVectorNumElements();
6968 
6969   EVT SrcEltVT = SrcVT.getScalarType();
6970   EVT DstEltVT = DstVT.getScalarType();
6971 
6972   // A vector must always be stored in memory as-is, i.e. without any padding
6973   // between the elements, since various code depend on it, e.g. in the
6974   // handling of a bitcast of a vector type to int, which may be done with a
6975   // vector store followed by an integer load. A vector that does not have
6976   // elements that are byte-sized must therefore be stored as an integer
6977   // built out of the extracted vector elements.
6978   if (!SrcEltVT.isByteSized()) {
6979     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
6980     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
6981 
6982     unsigned NumSrcBits = SrcVT.getSizeInBits();
6983     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
6984 
6985     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
6986     SDValue SrcEltBitMask = DAG.getConstant(
6987         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
6988 
6989     // Load the whole vector and avoid masking off the top bits as it makes
6990     // the codegen worse.
6991     SDValue Load =
6992         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
6993                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
6994                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6995 
6996     SmallVector<SDValue, 8> Vals;
6997     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6998       unsigned ShiftIntoIdx =
6999           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7000       SDValue ShiftAmount =
7001           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
7002                                      LoadVT, SL, /*LegalTypes=*/false);
7003       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
7004       SDValue Elt =
7005           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
7006       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
7007 
7008       if (ExtType != ISD::NON_EXTLOAD) {
7009         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
7010         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
7011       }
7012 
7013       Vals.push_back(Scalar);
7014     }
7015 
7016     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7017     return std::make_pair(Value, Load.getValue(1));
7018   }
7019 
7020   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
7021   assert(SrcEltVT.isByteSized());
7022 
7023   SmallVector<SDValue, 8> Vals;
7024   SmallVector<SDValue, 8> LoadChains;
7025 
7026   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7027     SDValue ScalarLoad =
7028         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
7029                        LD->getPointerInfo().getWithOffset(Idx * Stride),
7030                        SrcEltVT, LD->getOriginalAlign(),
7031                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7032 
7033     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
7034 
7035     Vals.push_back(ScalarLoad.getValue(0));
7036     LoadChains.push_back(ScalarLoad.getValue(1));
7037   }
7038 
7039   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
7040   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7041 
7042   return std::make_pair(Value, NewChain);
7043 }
7044 
7045 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
7046                                              SelectionDAG &DAG) const {
7047   SDLoc SL(ST);
7048 
7049   SDValue Chain = ST->getChain();
7050   SDValue BasePtr = ST->getBasePtr();
7051   SDValue Value = ST->getValue();
7052   EVT StVT = ST->getMemoryVT();
7053 
7054   if (StVT.isScalableVector())
7055     report_fatal_error("Cannot scalarize scalable vector stores");
7056 
7057   // The type of the data we want to save
7058   EVT RegVT = Value.getValueType();
7059   EVT RegSclVT = RegVT.getScalarType();
7060 
7061   // The type of data as saved in memory.
7062   EVT MemSclVT = StVT.getScalarType();
7063 
7064   unsigned NumElem = StVT.getVectorNumElements();
7065 
7066   // A vector must always be stored in memory as-is, i.e. without any padding
7067   // between the elements, since various code depend on it, e.g. in the
7068   // handling of a bitcast of a vector type to int, which may be done with a
7069   // vector store followed by an integer load. A vector that does not have
7070   // elements that are byte-sized must therefore be stored as an integer
7071   // built out of the extracted vector elements.
7072   if (!MemSclVT.isByteSized()) {
7073     unsigned NumBits = StVT.getSizeInBits();
7074     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
7075 
7076     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
7077 
7078     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7079       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7080                                 DAG.getVectorIdxConstant(Idx, SL));
7081       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
7082       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
7083       unsigned ShiftIntoIdx =
7084           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7085       SDValue ShiftAmount =
7086           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
7087       SDValue ShiftedElt =
7088           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
7089       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
7090     }
7091 
7092     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
7093                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7094                         ST->getAAInfo());
7095   }
7096 
7097   // Store Stride in bytes
7098   unsigned Stride = MemSclVT.getSizeInBits() / 8;
7099   assert(Stride && "Zero stride!");
7100   // Extract each of the elements from the original vector and save them into
7101   // memory individually.
7102   SmallVector<SDValue, 8> Stores;
7103   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7104     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7105                               DAG.getVectorIdxConstant(Idx, SL));
7106 
7107     SDValue Ptr =
7108         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
7109 
7110     // This scalar TruncStore may be illegal, but we legalize it later.
7111     SDValue Store = DAG.getTruncStore(
7112         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
7113         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7114         ST->getAAInfo());
7115 
7116     Stores.push_back(Store);
7117   }
7118 
7119   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
7120 }
7121 
7122 std::pair<SDValue, SDValue>
7123 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
7124   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
7125          "unaligned indexed loads not implemented!");
7126   SDValue Chain = LD->getChain();
7127   SDValue Ptr = LD->getBasePtr();
7128   EVT VT = LD->getValueType(0);
7129   EVT LoadedVT = LD->getMemoryVT();
7130   SDLoc dl(LD);
7131   auto &MF = DAG.getMachineFunction();
7132 
7133   if (VT.isFloatingPoint() || VT.isVector()) {
7134     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
7135     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
7136       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
7137           LoadedVT.isVector()) {
7138         // Scalarize the load and let the individual components be handled.
7139         return scalarizeVectorLoad(LD, DAG);
7140       }
7141 
7142       // Expand to a (misaligned) integer load of the same size,
7143       // then bitconvert to floating point or vector.
7144       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
7145                                     LD->getMemOperand());
7146       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
7147       if (LoadedVT != VT)
7148         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
7149                              ISD::ANY_EXTEND, dl, VT, Result);
7150 
7151       return std::make_pair(Result, newLoad.getValue(1));
7152     }
7153 
7154     // Copy the value to a (aligned) stack slot using (unaligned) integer
7155     // loads and stores, then do a (aligned) load from the stack slot.
7156     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
7157     unsigned LoadedBytes = LoadedVT.getStoreSize();
7158     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7159     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
7160 
7161     // Make sure the stack slot is also aligned for the register type.
7162     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
7163     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
7164     SmallVector<SDValue, 8> Stores;
7165     SDValue StackPtr = StackBase;
7166     unsigned Offset = 0;
7167 
7168     EVT PtrVT = Ptr.getValueType();
7169     EVT StackPtrVT = StackPtr.getValueType();
7170 
7171     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7172     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7173 
7174     // Do all but one copies using the full register width.
7175     for (unsigned i = 1; i < NumRegs; i++) {
7176       // Load one integer register's worth from the original location.
7177       SDValue Load = DAG.getLoad(
7178           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
7179           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7180           LD->getAAInfo());
7181       // Follow the load with a store to the stack slot.  Remember the store.
7182       Stores.push_back(DAG.getStore(
7183           Load.getValue(1), dl, Load, StackPtr,
7184           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
7185       // Increment the pointers.
7186       Offset += RegBytes;
7187 
7188       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7189       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7190     }
7191 
7192     // The last copy may be partial.  Do an extending load.
7193     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
7194                                   8 * (LoadedBytes - Offset));
7195     SDValue Load =
7196         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
7197                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
7198                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7199                        LD->getAAInfo());
7200     // Follow the load with a store to the stack slot.  Remember the store.
7201     // On big-endian machines this requires a truncating store to ensure
7202     // that the bits end up in the right place.
7203     Stores.push_back(DAG.getTruncStore(
7204         Load.getValue(1), dl, Load, StackPtr,
7205         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
7206 
7207     // The order of the stores doesn't matter - say it with a TokenFactor.
7208     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7209 
7210     // Finally, perform the original load only redirected to the stack slot.
7211     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
7212                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
7213                           LoadedVT);
7214 
7215     // Callers expect a MERGE_VALUES node.
7216     return std::make_pair(Load, TF);
7217   }
7218 
7219   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
7220          "Unaligned load of unsupported type.");
7221 
7222   // Compute the new VT that is half the size of the old one.  This is an
7223   // integer MVT.
7224   unsigned NumBits = LoadedVT.getSizeInBits();
7225   EVT NewLoadedVT;
7226   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
7227   NumBits >>= 1;
7228 
7229   Align Alignment = LD->getOriginalAlign();
7230   unsigned IncrementSize = NumBits / 8;
7231   ISD::LoadExtType HiExtType = LD->getExtensionType();
7232 
7233   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
7234   if (HiExtType == ISD::NON_EXTLOAD)
7235     HiExtType = ISD::ZEXTLOAD;
7236 
7237   // Load the value in two parts
7238   SDValue Lo, Hi;
7239   if (DAG.getDataLayout().isLittleEndian()) {
7240     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7241                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7242                         LD->getAAInfo());
7243 
7244     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7245     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
7246                         LD->getPointerInfo().getWithOffset(IncrementSize),
7247                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7248                         LD->getAAInfo());
7249   } else {
7250     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7251                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7252                         LD->getAAInfo());
7253 
7254     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7255     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
7256                         LD->getPointerInfo().getWithOffset(IncrementSize),
7257                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7258                         LD->getAAInfo());
7259   }
7260 
7261   // aggregate the two parts
7262   SDValue ShiftAmount =
7263       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
7264                                                     DAG.getDataLayout()));
7265   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
7266   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
7267 
7268   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
7269                              Hi.getValue(1));
7270 
7271   return std::make_pair(Result, TF);
7272 }
7273 
7274 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
7275                                              SelectionDAG &DAG) const {
7276   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
7277          "unaligned indexed stores not implemented!");
7278   SDValue Chain = ST->getChain();
7279   SDValue Ptr = ST->getBasePtr();
7280   SDValue Val = ST->getValue();
7281   EVT VT = Val.getValueType();
7282   Align Alignment = ST->getOriginalAlign();
7283   auto &MF = DAG.getMachineFunction();
7284   EVT StoreMemVT = ST->getMemoryVT();
7285 
7286   SDLoc dl(ST);
7287   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
7288     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7289     if (isTypeLegal(intVT)) {
7290       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
7291           StoreMemVT.isVector()) {
7292         // Scalarize the store and let the individual components be handled.
7293         SDValue Result = scalarizeVectorStore(ST, DAG);
7294         return Result;
7295       }
7296       // Expand to a bitconvert of the value to the integer type of the
7297       // same size, then a (misaligned) int store.
7298       // FIXME: Does not handle truncating floating point stores!
7299       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
7300       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
7301                             Alignment, ST->getMemOperand()->getFlags());
7302       return Result;
7303     }
7304     // Do a (aligned) store to a stack slot, then copy from the stack slot
7305     // to the final destination using (unaligned) integer loads and stores.
7306     MVT RegVT = getRegisterType(
7307         *DAG.getContext(),
7308         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
7309     EVT PtrVT = Ptr.getValueType();
7310     unsigned StoredBytes = StoreMemVT.getStoreSize();
7311     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7312     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
7313 
7314     // Make sure the stack slot is also aligned for the register type.
7315     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
7316     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
7317 
7318     // Perform the original store, only redirected to the stack slot.
7319     SDValue Store = DAG.getTruncStore(
7320         Chain, dl, Val, StackPtr,
7321         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
7322 
7323     EVT StackPtrVT = StackPtr.getValueType();
7324 
7325     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7326     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7327     SmallVector<SDValue, 8> Stores;
7328     unsigned Offset = 0;
7329 
7330     // Do all but one copies using the full register width.
7331     for (unsigned i = 1; i < NumRegs; i++) {
7332       // Load one integer register's worth from the stack slot.
7333       SDValue Load = DAG.getLoad(
7334           RegVT, dl, Store, StackPtr,
7335           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
7336       // Store it to the final location.  Remember the store.
7337       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
7338                                     ST->getPointerInfo().getWithOffset(Offset),
7339                                     ST->getOriginalAlign(),
7340                                     ST->getMemOperand()->getFlags()));
7341       // Increment the pointers.
7342       Offset += RegBytes;
7343       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7344       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7345     }
7346 
7347     // The last store may be partial.  Do a truncating store.  On big-endian
7348     // machines this requires an extending load from the stack slot to ensure
7349     // that the bits are in the right place.
7350     EVT LoadMemVT =
7351         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
7352 
7353     // Load from the stack slot.
7354     SDValue Load = DAG.getExtLoad(
7355         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
7356         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
7357 
7358     Stores.push_back(
7359         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
7360                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
7361                           ST->getOriginalAlign(),
7362                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
7363     // The order of the stores doesn't matter - say it with a TokenFactor.
7364     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7365     return Result;
7366   }
7367 
7368   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
7369          "Unaligned store of unknown type.");
7370   // Get the half-size VT
7371   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
7372   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
7373   unsigned IncrementSize = NumBits / 8;
7374 
7375   // Divide the stored value in two parts.
7376   SDValue ShiftAmount = DAG.getConstant(
7377       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
7378   SDValue Lo = Val;
7379   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
7380 
7381   // Store the two parts
7382   SDValue Store1, Store2;
7383   Store1 = DAG.getTruncStore(Chain, dl,
7384                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
7385                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
7386                              ST->getMemOperand()->getFlags());
7387 
7388   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7389   Store2 = DAG.getTruncStore(
7390       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
7391       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
7392       ST->getMemOperand()->getFlags(), ST->getAAInfo());
7393 
7394   SDValue Result =
7395       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
7396   return Result;
7397 }
7398 
7399 SDValue
7400 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
7401                                        const SDLoc &DL, EVT DataVT,
7402                                        SelectionDAG &DAG,
7403                                        bool IsCompressedMemory) const {
7404   SDValue Increment;
7405   EVT AddrVT = Addr.getValueType();
7406   EVT MaskVT = Mask.getValueType();
7407   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
7408          "Incompatible types of Data and Mask");
7409   if (IsCompressedMemory) {
7410     if (DataVT.isScalableVector())
7411       report_fatal_error(
7412           "Cannot currently handle compressed memory with scalable vectors");
7413     // Incrementing the pointer according to number of '1's in the mask.
7414     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7415     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7416     if (MaskIntVT.getSizeInBits() < 32) {
7417       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7418       MaskIntVT = MVT::i32;
7419     }
7420 
7421     // Count '1's with POPCNT.
7422     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7423     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7424     // Scale is an element size in bytes.
7425     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7426                                     AddrVT);
7427     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7428   } else if (DataVT.isScalableVector()) {
7429     Increment = DAG.getVScale(DL, AddrVT,
7430                               APInt(AddrVT.getFixedSizeInBits(),
7431                                     DataVT.getStoreSize().getKnownMinSize()));
7432   } else
7433     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7434 
7435   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7436 }
7437 
7438 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
7439                                        SDValue Idx,
7440                                        EVT VecVT,
7441                                        const SDLoc &dl) {
7442   if (!VecVT.isScalableVector() && isa<ConstantSDNode>(Idx))
7443     return Idx;
7444 
7445   EVT IdxVT = Idx.getValueType();
7446   unsigned NElts = VecVT.getVectorMinNumElements();
7447   if (VecVT.isScalableVector()) {
7448     SDValue VS = DAG.getVScale(dl, IdxVT,
7449                                APInt(IdxVT.getFixedSizeInBits(),
7450                                      NElts));
7451     SDValue Sub = DAG.getNode(ISD::SUB, dl, IdxVT, VS,
7452                               DAG.getConstant(1, dl, IdxVT));
7453 
7454     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
7455   } else {
7456     if (isPowerOf2_32(NElts)) {
7457       APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
7458                                        Log2_32(NElts));
7459       return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7460                          DAG.getConstant(Imm, dl, IdxVT));
7461     }
7462   }
7463 
7464   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7465                      DAG.getConstant(NElts - 1, dl, IdxVT));
7466 }
7467 
7468 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7469                                                 SDValue VecPtr, EVT VecVT,
7470                                                 SDValue Index) const {
7471   SDLoc dl(Index);
7472   // Make sure the index type is big enough to compute in.
7473   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7474 
7475   EVT EltVT = VecVT.getVectorElementType();
7476 
7477   // Calculate the element offset and add it to the pointer.
7478   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
7479   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
7480          "Converting bits to bytes lost precision");
7481 
7482   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
7483 
7484   EVT IdxVT = Index.getValueType();
7485 
7486   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7487                       DAG.getConstant(EltSize, dl, IdxVT));
7488   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7489 }
7490 
7491 //===----------------------------------------------------------------------===//
7492 // Implementation of Emulated TLS Model
7493 //===----------------------------------------------------------------------===//
7494 
7495 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7496                                                 SelectionDAG &DAG) const {
7497   // Access to address of TLS varialbe xyz is lowered to a function call:
7498   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7499   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7500   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7501   SDLoc dl(GA);
7502 
7503   ArgListTy Args;
7504   ArgListEntry Entry;
7505   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7506   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7507   StringRef EmuTlsVarName(NameString);
7508   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7509   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7510   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7511   Entry.Ty = VoidPtrType;
7512   Args.push_back(Entry);
7513 
7514   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7515 
7516   TargetLowering::CallLoweringInfo CLI(DAG);
7517   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7518   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7519   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7520 
7521   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7522   // At last for X86 targets, maybe good for other targets too?
7523   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7524   MFI.setAdjustsStack(true); // Is this only for X86 target?
7525   MFI.setHasCalls(true);
7526 
7527   assert((GA->getOffset() == 0) &&
7528          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7529   return CallResult.first;
7530 }
7531 
7532 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7533                                                 SelectionDAG &DAG) const {
7534   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7535   if (!isCtlzFast())
7536     return SDValue();
7537   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7538   SDLoc dl(Op);
7539   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7540     if (C->isNullValue() && CC == ISD::SETEQ) {
7541       EVT VT = Op.getOperand(0).getValueType();
7542       SDValue Zext = Op.getOperand(0);
7543       if (VT.bitsLT(MVT::i32)) {
7544         VT = MVT::i32;
7545         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7546       }
7547       unsigned Log2b = Log2_32(VT.getSizeInBits());
7548       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7549       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7550                                 DAG.getConstant(Log2b, dl, MVT::i32));
7551       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7552     }
7553   }
7554   return SDValue();
7555 }
7556 
7557 // Convert redundant addressing modes (e.g. scaling is redundant
7558 // when accessing bytes).
7559 ISD::MemIndexType
7560 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT,
7561                                       SDValue Offsets) const {
7562   bool IsScaledIndex =
7563       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED);
7564   bool IsSignedIndex =
7565       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED);
7566 
7567   // Scaling is unimportant for bytes, canonicalize to unscaled.
7568   if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) {
7569     IsScaledIndex = false;
7570     IndexType = IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED;
7571   }
7572 
7573   return IndexType;
7574 }
7575 
7576 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
7577   SDValue Op0 = Node->getOperand(0);
7578   SDValue Op1 = Node->getOperand(1);
7579   EVT VT = Op0.getValueType();
7580   unsigned Opcode = Node->getOpcode();
7581   SDLoc DL(Node);
7582 
7583   // umin(x,y) -> sub(x,usubsat(x,y))
7584   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
7585       isOperationLegal(ISD::USUBSAT, VT)) {
7586     return DAG.getNode(ISD::SUB, DL, VT, Op0,
7587                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
7588   }
7589 
7590   // umax(x,y) -> add(x,usubsat(y,x))
7591   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
7592       isOperationLegal(ISD::USUBSAT, VT)) {
7593     return DAG.getNode(ISD::ADD, DL, VT, Op0,
7594                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
7595   }
7596 
7597   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
7598   ISD::CondCode CC;
7599   switch (Opcode) {
7600   default: llvm_unreachable("How did we get here?");
7601   case ISD::SMAX: CC = ISD::SETGT; break;
7602   case ISD::SMIN: CC = ISD::SETLT; break;
7603   case ISD::UMAX: CC = ISD::SETUGT; break;
7604   case ISD::UMIN: CC = ISD::SETULT; break;
7605   }
7606 
7607   // FIXME: Should really try to split the vector in case it's legal on a
7608   // subvector.
7609   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
7610     return DAG.UnrollVectorOp(Node);
7611 
7612   SDValue Cond = DAG.getSetCC(DL, VT, Op0, Op1, CC);
7613   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
7614 }
7615 
7616 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
7617   unsigned Opcode = Node->getOpcode();
7618   SDValue LHS = Node->getOperand(0);
7619   SDValue RHS = Node->getOperand(1);
7620   EVT VT = LHS.getValueType();
7621   SDLoc dl(Node);
7622 
7623   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7624   assert(VT.isInteger() && "Expected operands to be integers");
7625 
7626   // usub.sat(a, b) -> umax(a, b) - b
7627   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
7628     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
7629     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
7630   }
7631 
7632   // uadd.sat(a, b) -> umin(a, ~b) + b
7633   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
7634     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
7635     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
7636     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
7637   }
7638 
7639   unsigned OverflowOp;
7640   switch (Opcode) {
7641   case ISD::SADDSAT:
7642     OverflowOp = ISD::SADDO;
7643     break;
7644   case ISD::UADDSAT:
7645     OverflowOp = ISD::UADDO;
7646     break;
7647   case ISD::SSUBSAT:
7648     OverflowOp = ISD::SSUBO;
7649     break;
7650   case ISD::USUBSAT:
7651     OverflowOp = ISD::USUBO;
7652     break;
7653   default:
7654     llvm_unreachable("Expected method to receive signed or unsigned saturation "
7655                      "addition or subtraction node.");
7656   }
7657 
7658   // FIXME: Should really try to split the vector in case it's legal on a
7659   // subvector.
7660   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
7661     return DAG.UnrollVectorOp(Node);
7662 
7663   unsigned BitWidth = LHS.getScalarValueSizeInBits();
7664   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7665   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
7666                                LHS, RHS);
7667   SDValue SumDiff = Result.getValue(0);
7668   SDValue Overflow = Result.getValue(1);
7669   SDValue Zero = DAG.getConstant(0, dl, VT);
7670   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
7671 
7672   if (Opcode == ISD::UADDSAT) {
7673     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7674       // (LHS + RHS) | OverflowMask
7675       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7676       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
7677     }
7678     // Overflow ? 0xffff.... : (LHS + RHS)
7679     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
7680   } else if (Opcode == ISD::USUBSAT) {
7681     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7682       // (LHS - RHS) & ~OverflowMask
7683       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7684       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
7685       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
7686     }
7687     // Overflow ? 0 : (LHS - RHS)
7688     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
7689   } else {
7690     // SatMax -> Overflow && SumDiff < 0
7691     // SatMin -> Overflow && SumDiff >= 0
7692     APInt MinVal = APInt::getSignedMinValue(BitWidth);
7693     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
7694     SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7695     SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7696     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
7697     Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
7698     return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
7699   }
7700 }
7701 
7702 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
7703   unsigned Opcode = Node->getOpcode();
7704   bool IsSigned = Opcode == ISD::SSHLSAT;
7705   SDValue LHS = Node->getOperand(0);
7706   SDValue RHS = Node->getOperand(1);
7707   EVT VT = LHS.getValueType();
7708   SDLoc dl(Node);
7709 
7710   assert((Node->getOpcode() == ISD::SSHLSAT ||
7711           Node->getOpcode() == ISD::USHLSAT) &&
7712           "Expected a SHLSAT opcode");
7713   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7714   assert(VT.isInteger() && "Expected operands to be integers");
7715 
7716   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
7717 
7718   unsigned BW = VT.getScalarSizeInBits();
7719   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
7720   SDValue Orig =
7721       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
7722 
7723   SDValue SatVal;
7724   if (IsSigned) {
7725     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
7726     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
7727     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
7728                              SatMin, SatMax, ISD::SETLT);
7729   } else {
7730     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
7731   }
7732   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
7733 
7734   return Result;
7735 }
7736 
7737 SDValue
7738 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
7739   assert((Node->getOpcode() == ISD::SMULFIX ||
7740           Node->getOpcode() == ISD::UMULFIX ||
7741           Node->getOpcode() == ISD::SMULFIXSAT ||
7742           Node->getOpcode() == ISD::UMULFIXSAT) &&
7743          "Expected a fixed point multiplication opcode");
7744 
7745   SDLoc dl(Node);
7746   SDValue LHS = Node->getOperand(0);
7747   SDValue RHS = Node->getOperand(1);
7748   EVT VT = LHS.getValueType();
7749   unsigned Scale = Node->getConstantOperandVal(2);
7750   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
7751                      Node->getOpcode() == ISD::UMULFIXSAT);
7752   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
7753                  Node->getOpcode() == ISD::SMULFIXSAT);
7754   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7755   unsigned VTSize = VT.getScalarSizeInBits();
7756 
7757   if (!Scale) {
7758     // [us]mul.fix(a, b, 0) -> mul(a, b)
7759     if (!Saturating) {
7760       if (isOperationLegalOrCustom(ISD::MUL, VT))
7761         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7762     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
7763       SDValue Result =
7764           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7765       SDValue Product = Result.getValue(0);
7766       SDValue Overflow = Result.getValue(1);
7767       SDValue Zero = DAG.getConstant(0, dl, VT);
7768 
7769       APInt MinVal = APInt::getSignedMinValue(VTSize);
7770       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
7771       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7772       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7773       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
7774       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
7775       return DAG.getSelect(dl, VT, Overflow, Result, Product);
7776     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
7777       SDValue Result =
7778           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7779       SDValue Product = Result.getValue(0);
7780       SDValue Overflow = Result.getValue(1);
7781 
7782       APInt MaxVal = APInt::getMaxValue(VTSize);
7783       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7784       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
7785     }
7786   }
7787 
7788   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
7789          "Expected scale to be less than the number of bits if signed or at "
7790          "most the number of bits if unsigned.");
7791   assert(LHS.getValueType() == RHS.getValueType() &&
7792          "Expected both operands to be the same type");
7793 
7794   // Get the upper and lower bits of the result.
7795   SDValue Lo, Hi;
7796   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
7797   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
7798   if (isOperationLegalOrCustom(LoHiOp, VT)) {
7799     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
7800     Lo = Result.getValue(0);
7801     Hi = Result.getValue(1);
7802   } else if (isOperationLegalOrCustom(HiOp, VT)) {
7803     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7804     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
7805   } else if (VT.isVector()) {
7806     return SDValue();
7807   } else {
7808     report_fatal_error("Unable to expand fixed point multiplication.");
7809   }
7810 
7811   if (Scale == VTSize)
7812     // Result is just the top half since we'd be shifting by the width of the
7813     // operand. Overflow impossible so this works for both UMULFIX and
7814     // UMULFIXSAT.
7815     return Hi;
7816 
7817   // The result will need to be shifted right by the scale since both operands
7818   // are scaled. The result is given to us in 2 halves, so we only want part of
7819   // both in the result.
7820   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7821   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
7822                                DAG.getConstant(Scale, dl, ShiftTy));
7823   if (!Saturating)
7824     return Result;
7825 
7826   if (!Signed) {
7827     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
7828     // widened multiplication) aren't all zeroes.
7829 
7830     // Saturate to max if ((Hi >> Scale) != 0),
7831     // which is the same as if (Hi > ((1 << Scale) - 1))
7832     APInt MaxVal = APInt::getMaxValue(VTSize);
7833     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
7834                                       dl, VT);
7835     Result = DAG.getSelectCC(dl, Hi, LowMask,
7836                              DAG.getConstant(MaxVal, dl, VT), Result,
7837                              ISD::SETUGT);
7838 
7839     return Result;
7840   }
7841 
7842   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
7843   // widened multiplication) aren't all ones or all zeroes.
7844 
7845   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
7846   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
7847 
7848   if (Scale == 0) {
7849     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
7850                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
7851     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
7852     // Saturated to SatMin if wide product is negative, and SatMax if wide
7853     // product is positive ...
7854     SDValue Zero = DAG.getConstant(0, dl, VT);
7855     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
7856                                                ISD::SETLT);
7857     // ... but only if we overflowed.
7858     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
7859   }
7860 
7861   //  We handled Scale==0 above so all the bits to examine is in Hi.
7862 
7863   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
7864   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
7865   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
7866                                     dl, VT);
7867   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
7868   // Saturate to min if (Hi >> (Scale - 1)) < -1),
7869   // which is the same as if (HI < (-1 << (Scale - 1))
7870   SDValue HighMask =
7871       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
7872                       dl, VT);
7873   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
7874   return Result;
7875 }
7876 
7877 SDValue
7878 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
7879                                     SDValue LHS, SDValue RHS,
7880                                     unsigned Scale, SelectionDAG &DAG) const {
7881   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
7882           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
7883          "Expected a fixed point division opcode");
7884 
7885   EVT VT = LHS.getValueType();
7886   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
7887   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
7888   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7889 
7890   // If there is enough room in the type to upscale the LHS or downscale the
7891   // RHS before the division, we can perform it in this type without having to
7892   // resize. For signed operations, the LHS headroom is the number of
7893   // redundant sign bits, and for unsigned ones it is the number of zeroes.
7894   // The headroom for the RHS is the number of trailing zeroes.
7895   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
7896                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
7897   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
7898 
7899   // For signed saturating operations, we need to be able to detect true integer
7900   // division overflow; that is, when you have MIN / -EPS. However, this
7901   // is undefined behavior and if we emit divisions that could take such
7902   // values it may cause undesired behavior (arithmetic exceptions on x86, for
7903   // example).
7904   // Avoid this by requiring an extra bit so that we never get this case.
7905   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
7906   // signed saturating division, we need to emit a whopping 32-bit division.
7907   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
7908     return SDValue();
7909 
7910   unsigned LHSShift = std::min(LHSLead, Scale);
7911   unsigned RHSShift = Scale - LHSShift;
7912 
7913   // At this point, we know that if we shift the LHS up by LHSShift and the
7914   // RHS down by RHSShift, we can emit a regular division with a final scaling
7915   // factor of Scale.
7916 
7917   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7918   if (LHSShift)
7919     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
7920                       DAG.getConstant(LHSShift, dl, ShiftTy));
7921   if (RHSShift)
7922     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
7923                       DAG.getConstant(RHSShift, dl, ShiftTy));
7924 
7925   SDValue Quot;
7926   if (Signed) {
7927     // For signed operations, if the resulting quotient is negative and the
7928     // remainder is nonzero, subtract 1 from the quotient to round towards
7929     // negative infinity.
7930     SDValue Rem;
7931     // FIXME: Ideally we would always produce an SDIVREM here, but if the
7932     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
7933     // we couldn't just form a libcall, but the type legalizer doesn't do it.
7934     if (isTypeLegal(VT) &&
7935         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
7936       Quot = DAG.getNode(ISD::SDIVREM, dl,
7937                          DAG.getVTList(VT, VT),
7938                          LHS, RHS);
7939       Rem = Quot.getValue(1);
7940       Quot = Quot.getValue(0);
7941     } else {
7942       Quot = DAG.getNode(ISD::SDIV, dl, VT,
7943                          LHS, RHS);
7944       Rem = DAG.getNode(ISD::SREM, dl, VT,
7945                         LHS, RHS);
7946     }
7947     SDValue Zero = DAG.getConstant(0, dl, VT);
7948     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
7949     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
7950     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
7951     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
7952     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
7953                                DAG.getConstant(1, dl, VT));
7954     Quot = DAG.getSelect(dl, VT,
7955                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
7956                          Sub1, Quot);
7957   } else
7958     Quot = DAG.getNode(ISD::UDIV, dl, VT,
7959                        LHS, RHS);
7960 
7961   return Quot;
7962 }
7963 
7964 void TargetLowering::expandUADDSUBO(
7965     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7966   SDLoc dl(Node);
7967   SDValue LHS = Node->getOperand(0);
7968   SDValue RHS = Node->getOperand(1);
7969   bool IsAdd = Node->getOpcode() == ISD::UADDO;
7970 
7971   // If ADD/SUBCARRY is legal, use that instead.
7972   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
7973   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
7974     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
7975     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
7976                                     { LHS, RHS, CarryIn });
7977     Result = SDValue(NodeCarry.getNode(), 0);
7978     Overflow = SDValue(NodeCarry.getNode(), 1);
7979     return;
7980   }
7981 
7982   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7983                             LHS.getValueType(), LHS, RHS);
7984 
7985   EVT ResultType = Node->getValueType(1);
7986   EVT SetCCType = getSetCCResultType(
7987       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7988   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
7989   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
7990   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7991 }
7992 
7993 void TargetLowering::expandSADDSUBO(
7994     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7995   SDLoc dl(Node);
7996   SDValue LHS = Node->getOperand(0);
7997   SDValue RHS = Node->getOperand(1);
7998   bool IsAdd = Node->getOpcode() == ISD::SADDO;
7999 
8000   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8001                             LHS.getValueType(), LHS, RHS);
8002 
8003   EVT ResultType = Node->getValueType(1);
8004   EVT OType = getSetCCResultType(
8005       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8006 
8007   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
8008   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
8009   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
8010     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
8011     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
8012     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8013     return;
8014   }
8015 
8016   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
8017 
8018   // For an addition, the result should be less than one of the operands (LHS)
8019   // if and only if the other operand (RHS) is negative, otherwise there will
8020   // be overflow.
8021   // For a subtraction, the result should be less than one of the operands
8022   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
8023   // otherwise there will be overflow.
8024   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
8025   SDValue ConditionRHS =
8026       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
8027 
8028   Overflow = DAG.getBoolExtOrTrunc(
8029       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
8030       ResultType, ResultType);
8031 }
8032 
8033 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
8034                                 SDValue &Overflow, SelectionDAG &DAG) const {
8035   SDLoc dl(Node);
8036   EVT VT = Node->getValueType(0);
8037   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8038   SDValue LHS = Node->getOperand(0);
8039   SDValue RHS = Node->getOperand(1);
8040   bool isSigned = Node->getOpcode() == ISD::SMULO;
8041 
8042   // For power-of-two multiplications we can use a simpler shift expansion.
8043   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
8044     const APInt &C = RHSC->getAPIntValue();
8045     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
8046     if (C.isPowerOf2()) {
8047       // smulo(x, signed_min) is same as umulo(x, signed_min).
8048       bool UseArithShift = isSigned && !C.isMinSignedValue();
8049       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
8050       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
8051       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
8052       Overflow = DAG.getSetCC(dl, SetCCVT,
8053           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
8054                       dl, VT, Result, ShiftAmt),
8055           LHS, ISD::SETNE);
8056       return true;
8057     }
8058   }
8059 
8060   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
8061   if (VT.isVector())
8062     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
8063                               VT.getVectorNumElements());
8064 
8065   SDValue BottomHalf;
8066   SDValue TopHalf;
8067   static const unsigned Ops[2][3] =
8068       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
8069         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
8070   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
8071     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8072     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
8073   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
8074     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
8075                              RHS);
8076     TopHalf = BottomHalf.getValue(1);
8077   } else if (isTypeLegal(WideVT)) {
8078     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
8079     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
8080     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
8081     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
8082     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
8083         getShiftAmountTy(WideVT, DAG.getDataLayout()));
8084     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
8085                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
8086   } else {
8087     if (VT.isVector())
8088       return false;
8089 
8090     // We can fall back to a libcall with an illegal type for the MUL if we
8091     // have a libcall big enough.
8092     // Also, we can fall back to a division in some cases, but that's a big
8093     // performance hit in the general case.
8094     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
8095     if (WideVT == MVT::i16)
8096       LC = RTLIB::MUL_I16;
8097     else if (WideVT == MVT::i32)
8098       LC = RTLIB::MUL_I32;
8099     else if (WideVT == MVT::i64)
8100       LC = RTLIB::MUL_I64;
8101     else if (WideVT == MVT::i128)
8102       LC = RTLIB::MUL_I128;
8103     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
8104 
8105     SDValue HiLHS;
8106     SDValue HiRHS;
8107     if (isSigned) {
8108       // The high part is obtained by SRA'ing all but one of the bits of low
8109       // part.
8110       unsigned LoSize = VT.getFixedSizeInBits();
8111       HiLHS =
8112           DAG.getNode(ISD::SRA, dl, VT, LHS,
8113                       DAG.getConstant(LoSize - 1, dl,
8114                                       getPointerTy(DAG.getDataLayout())));
8115       HiRHS =
8116           DAG.getNode(ISD::SRA, dl, VT, RHS,
8117                       DAG.getConstant(LoSize - 1, dl,
8118                                       getPointerTy(DAG.getDataLayout())));
8119     } else {
8120         HiLHS = DAG.getConstant(0, dl, VT);
8121         HiRHS = DAG.getConstant(0, dl, VT);
8122     }
8123 
8124     // Here we're passing the 2 arguments explicitly as 4 arguments that are
8125     // pre-lowered to the correct types. This all depends upon WideVT not
8126     // being a legal type for the architecture and thus has to be split to
8127     // two arguments.
8128     SDValue Ret;
8129     TargetLowering::MakeLibCallOptions CallOptions;
8130     CallOptions.setSExt(isSigned);
8131     CallOptions.setIsPostTypeLegalization(true);
8132     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
8133       // Halves of WideVT are packed into registers in different order
8134       // depending on platform endianness. This is usually handled by
8135       // the C calling convention, but we can't defer to it in
8136       // the legalizer.
8137       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
8138       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8139     } else {
8140       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
8141       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8142     }
8143     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
8144            "Ret value is a collection of constituent nodes holding result.");
8145     if (DAG.getDataLayout().isLittleEndian()) {
8146       // Same as above.
8147       BottomHalf = Ret.getOperand(0);
8148       TopHalf = Ret.getOperand(1);
8149     } else {
8150       BottomHalf = Ret.getOperand(1);
8151       TopHalf = Ret.getOperand(0);
8152     }
8153   }
8154 
8155   Result = BottomHalf;
8156   if (isSigned) {
8157     SDValue ShiftAmt = DAG.getConstant(
8158         VT.getScalarSizeInBits() - 1, dl,
8159         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
8160     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
8161     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
8162   } else {
8163     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
8164                             DAG.getConstant(0, dl, VT), ISD::SETNE);
8165   }
8166 
8167   // Truncate the result if SetCC returns a larger type than needed.
8168   EVT RType = Node->getValueType(1);
8169   if (RType.bitsLT(Overflow.getValueType()))
8170     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
8171 
8172   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
8173          "Unexpected result type for S/UMULO legalization");
8174   return true;
8175 }
8176 
8177 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
8178   SDLoc dl(Node);
8179   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8180   SDValue Op = Node->getOperand(0);
8181   EVT VT = Op.getValueType();
8182 
8183   if (VT.isScalableVector())
8184     report_fatal_error(
8185         "Expanding reductions for scalable vectors is undefined.");
8186 
8187   // Try to use a shuffle reduction for power of two vectors.
8188   if (VT.isPow2VectorType()) {
8189     while (VT.getVectorNumElements() > 1) {
8190       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
8191       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
8192         break;
8193 
8194       SDValue Lo, Hi;
8195       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
8196       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
8197       VT = HalfVT;
8198     }
8199   }
8200 
8201   EVT EltVT = VT.getVectorElementType();
8202   unsigned NumElts = VT.getVectorNumElements();
8203 
8204   SmallVector<SDValue, 8> Ops;
8205   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
8206 
8207   SDValue Res = Ops[0];
8208   for (unsigned i = 1; i < NumElts; i++)
8209     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
8210 
8211   // Result type may be wider than element type.
8212   if (EltVT != Node->getValueType(0))
8213     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
8214   return Res;
8215 }
8216 
8217 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
8218   SDLoc dl(Node);
8219   SDValue AccOp = Node->getOperand(0);
8220   SDValue VecOp = Node->getOperand(1);
8221   SDNodeFlags Flags = Node->getFlags();
8222 
8223   EVT VT = VecOp.getValueType();
8224   EVT EltVT = VT.getVectorElementType();
8225 
8226   if (VT.isScalableVector())
8227     report_fatal_error(
8228         "Expanding reductions for scalable vectors is undefined.");
8229 
8230   unsigned NumElts = VT.getVectorNumElements();
8231 
8232   SmallVector<SDValue, 8> Ops;
8233   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
8234 
8235   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8236 
8237   SDValue Res = AccOp;
8238   for (unsigned i = 0; i < NumElts; i++)
8239     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
8240 
8241   return Res;
8242 }
8243 
8244 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
8245                                SelectionDAG &DAG) const {
8246   EVT VT = Node->getValueType(0);
8247   SDLoc dl(Node);
8248   bool isSigned = Node->getOpcode() == ISD::SREM;
8249   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
8250   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
8251   SDValue Dividend = Node->getOperand(0);
8252   SDValue Divisor = Node->getOperand(1);
8253   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
8254     SDVTList VTs = DAG.getVTList(VT, VT);
8255     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
8256     return true;
8257   } else if (isOperationLegalOrCustom(DivOpc, VT)) {
8258     // X % Y -> X-X/Y*Y
8259     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
8260     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
8261     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
8262     return true;
8263   }
8264   return false;
8265 }
8266 
8267 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
8268                                             SelectionDAG &DAG) const {
8269   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
8270   SDLoc dl(SDValue(Node, 0));
8271   SDValue Src = Node->getOperand(0);
8272 
8273   // DstVT is the result type, while SatVT is the size to which we saturate
8274   EVT SrcVT = Src.getValueType();
8275   EVT DstVT = Node->getValueType(0);
8276 
8277   unsigned SatWidth = Node->getConstantOperandVal(1);
8278   unsigned DstWidth = DstVT.getScalarSizeInBits();
8279   assert(SatWidth <= DstWidth &&
8280          "Expected saturation width smaller than result width");
8281 
8282   // Determine minimum and maximum integer values and their corresponding
8283   // floating-point values.
8284   APInt MinInt, MaxInt;
8285   if (IsSigned) {
8286     MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth);
8287     MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth);
8288   } else {
8289     MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth);
8290     MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth);
8291   }
8292 
8293   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
8294   // libcall emission cannot handle this. Large result types will fail.
8295   if (SrcVT == MVT::f16) {
8296     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
8297     SrcVT = Src.getValueType();
8298   }
8299 
8300   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8301   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8302 
8303   APFloat::opStatus MinStatus =
8304       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
8305   APFloat::opStatus MaxStatus =
8306       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
8307   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
8308                              !(MaxStatus & APFloat::opStatus::opInexact);
8309 
8310   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
8311   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
8312 
8313   // If the integer bounds are exactly representable as floats and min/max are
8314   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
8315   // of comparisons and selects.
8316   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
8317                      isOperationLegal(ISD::FMAXNUM, SrcVT);
8318   if (AreExactFloatBounds && MinMaxLegal) {
8319     SDValue Clamped = Src;
8320 
8321     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
8322     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
8323     // Clamp by MaxFloat from above. NaN cannot occur.
8324     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
8325     // Convert clamped value to integer.
8326     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
8327                                   dl, DstVT, Clamped);
8328 
8329     // In the unsigned case we're done, because we mapped NaN to MinFloat,
8330     // which will cast to zero.
8331     if (!IsSigned)
8332       return FpToInt;
8333 
8334     // Otherwise, select 0 if Src is NaN.
8335     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8336     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
8337                            ISD::CondCode::SETUO);
8338   }
8339 
8340   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
8341   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
8342 
8343   // Result of direct conversion. The assumption here is that the operation is
8344   // non-trapping and it's fine to apply it to an out-of-range value if we
8345   // select it away later.
8346   SDValue FpToInt =
8347       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
8348 
8349   SDValue Select = FpToInt;
8350 
8351   // If Src ULT MinFloat, select MinInt. In particular, this also selects
8352   // MinInt if Src is NaN.
8353   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
8354                            ISD::CondCode::SETULT);
8355   // If Src OGT MaxFloat, select MaxInt.
8356   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
8357                            ISD::CondCode::SETOGT);
8358 
8359   // In the unsigned case we are done, because we mapped NaN to MinInt, which
8360   // is already zero.
8361   if (!IsSigned)
8362     return Select;
8363 
8364   // Otherwise, select 0 if Src is NaN.
8365   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8366   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
8367 }
8368