1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/TargetLowering.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/CodeGen/CallingConvLower.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/SelectionDAG.h" 23 #include "llvm/CodeGen/TargetLoweringObjectFile.h" 24 #include "llvm/CodeGen/TargetRegisterInfo.h" 25 #include "llvm/CodeGen/TargetSubtargetInfo.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/GlobalVariable.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/MC/MCAsmInfo.h" 31 #include "llvm/MC/MCExpr.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/KnownBits.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include <cctype> 37 using namespace llvm; 38 39 /// NOTE: The TargetMachine owns TLOF. 40 TargetLowering::TargetLowering(const TargetMachine &tm) 41 : TargetLoweringBase(tm) {} 42 43 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 44 return nullptr; 45 } 46 47 bool TargetLowering::isPositionIndependent() const { 48 return getTargetMachine().isPositionIndependent(); 49 } 50 51 /// Check whether a given call node is in tail position within its function. If 52 /// so, it sets Chain to the input chain of the tail call. 53 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 54 SDValue &Chain) const { 55 const Function &F = DAG.getMachineFunction().getFunction(); 56 57 // Conservatively require the attributes of the call to match those of 58 // the return. Ignore noalias because it doesn't affect the call sequence. 59 AttributeList CallerAttrs = F.getAttributes(); 60 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 61 .removeAttribute(Attribute::NoAlias) 62 .hasAttributes()) 63 return false; 64 65 // It's not safe to eliminate the sign / zero extension of the return value. 66 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 67 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 68 return false; 69 70 // Check if the only use is a function return node. 71 return isUsedByReturnOnly(Node, Chain); 72 } 73 74 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 75 const uint32_t *CallerPreservedMask, 76 const SmallVectorImpl<CCValAssign> &ArgLocs, 77 const SmallVectorImpl<SDValue> &OutVals) const { 78 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 79 const CCValAssign &ArgLoc = ArgLocs[I]; 80 if (!ArgLoc.isRegLoc()) 81 continue; 82 unsigned Reg = ArgLoc.getLocReg(); 83 // Only look at callee saved registers. 84 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 85 continue; 86 // Check that we pass the value used for the caller. 87 // (We look for a CopyFromReg reading a virtual register that is used 88 // for the function live-in value of register Reg) 89 SDValue Value = OutVals[I]; 90 if (Value->getOpcode() != ISD::CopyFromReg) 91 return false; 92 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 93 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 94 return false; 95 } 96 return true; 97 } 98 99 /// \brief Set CallLoweringInfo attribute flags based on a call instruction 100 /// and called function attributes. 101 void TargetLoweringBase::ArgListEntry::setAttributes(ImmutableCallSite *CS, 102 unsigned ArgIdx) { 103 IsSExt = CS->paramHasAttr(ArgIdx, Attribute::SExt); 104 IsZExt = CS->paramHasAttr(ArgIdx, Attribute::ZExt); 105 IsInReg = CS->paramHasAttr(ArgIdx, Attribute::InReg); 106 IsSRet = CS->paramHasAttr(ArgIdx, Attribute::StructRet); 107 IsNest = CS->paramHasAttr(ArgIdx, Attribute::Nest); 108 IsByVal = CS->paramHasAttr(ArgIdx, Attribute::ByVal); 109 IsInAlloca = CS->paramHasAttr(ArgIdx, Attribute::InAlloca); 110 IsReturned = CS->paramHasAttr(ArgIdx, Attribute::Returned); 111 IsSwiftSelf = CS->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 112 IsSwiftError = CS->paramHasAttr(ArgIdx, Attribute::SwiftError); 113 Alignment = CS->getParamAlignment(ArgIdx); 114 } 115 116 /// Generate a libcall taking the given operands as arguments and returning a 117 /// result of type RetVT. 118 std::pair<SDValue, SDValue> 119 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 120 ArrayRef<SDValue> Ops, bool isSigned, 121 const SDLoc &dl, bool doesNotReturn, 122 bool isReturnValueUsed) const { 123 TargetLowering::ArgListTy Args; 124 Args.reserve(Ops.size()); 125 126 TargetLowering::ArgListEntry Entry; 127 for (SDValue Op : Ops) { 128 Entry.Node = Op; 129 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 130 Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 131 Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 132 Args.push_back(Entry); 133 } 134 135 if (LC == RTLIB::UNKNOWN_LIBCALL) 136 report_fatal_error("Unsupported library call operation!"); 137 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 138 getPointerTy(DAG.getDataLayout())); 139 140 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 141 TargetLowering::CallLoweringInfo CLI(DAG); 142 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); 143 CLI.setDebugLoc(dl) 144 .setChain(DAG.getEntryNode()) 145 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 146 .setNoReturn(doesNotReturn) 147 .setDiscardResult(!isReturnValueUsed) 148 .setSExtResult(signExtend) 149 .setZExtResult(!signExtend); 150 return LowerCallTo(CLI); 151 } 152 153 /// Soften the operands of a comparison. This code is shared among BR_CC, 154 /// SELECT_CC, and SETCC handlers. 155 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 156 SDValue &NewLHS, SDValue &NewRHS, 157 ISD::CondCode &CCCode, 158 const SDLoc &dl) const { 159 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 160 && "Unsupported setcc type!"); 161 162 // Expand into one or more soft-fp libcall(s). 163 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 164 bool ShouldInvertCC = false; 165 switch (CCCode) { 166 case ISD::SETEQ: 167 case ISD::SETOEQ: 168 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 169 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 170 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 171 break; 172 case ISD::SETNE: 173 case ISD::SETUNE: 174 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 175 (VT == MVT::f64) ? RTLIB::UNE_F64 : 176 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 177 break; 178 case ISD::SETGE: 179 case ISD::SETOGE: 180 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 181 (VT == MVT::f64) ? RTLIB::OGE_F64 : 182 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 183 break; 184 case ISD::SETLT: 185 case ISD::SETOLT: 186 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 187 (VT == MVT::f64) ? RTLIB::OLT_F64 : 188 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 189 break; 190 case ISD::SETLE: 191 case ISD::SETOLE: 192 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 193 (VT == MVT::f64) ? RTLIB::OLE_F64 : 194 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 195 break; 196 case ISD::SETGT: 197 case ISD::SETOGT: 198 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 199 (VT == MVT::f64) ? RTLIB::OGT_F64 : 200 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 201 break; 202 case ISD::SETUO: 203 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 204 (VT == MVT::f64) ? RTLIB::UO_F64 : 205 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 206 break; 207 case ISD::SETO: 208 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 209 (VT == MVT::f64) ? RTLIB::O_F64 : 210 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 211 break; 212 case ISD::SETONE: 213 // SETONE = SETOLT | SETOGT 214 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 215 (VT == MVT::f64) ? RTLIB::OLT_F64 : 216 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 217 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 218 (VT == MVT::f64) ? RTLIB::OGT_F64 : 219 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 220 break; 221 case ISD::SETUEQ: 222 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 223 (VT == MVT::f64) ? RTLIB::UO_F64 : 224 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 225 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 226 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 227 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 228 break; 229 default: 230 // Invert CC for unordered comparisons 231 ShouldInvertCC = true; 232 switch (CCCode) { 233 case ISD::SETULT: 234 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 235 (VT == MVT::f64) ? RTLIB::OGE_F64 : 236 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 237 break; 238 case ISD::SETULE: 239 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 240 (VT == MVT::f64) ? RTLIB::OGT_F64 : 241 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 242 break; 243 case ISD::SETUGT: 244 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 245 (VT == MVT::f64) ? RTLIB::OLE_F64 : 246 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 247 break; 248 case ISD::SETUGE: 249 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 250 (VT == MVT::f64) ? RTLIB::OLT_F64 : 251 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 252 break; 253 default: llvm_unreachable("Do not know how to soften this setcc!"); 254 } 255 } 256 257 // Use the target specific return value for comparions lib calls. 258 EVT RetVT = getCmpLibcallReturnType(); 259 SDValue Ops[2] = {NewLHS, NewRHS}; 260 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/, 261 dl).first; 262 NewRHS = DAG.getConstant(0, dl, RetVT); 263 264 CCCode = getCmpLibcallCC(LC1); 265 if (ShouldInvertCC) 266 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); 267 268 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 269 SDValue Tmp = DAG.getNode( 270 ISD::SETCC, dl, 271 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 272 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 273 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/, 274 dl).first; 275 NewLHS = DAG.getNode( 276 ISD::SETCC, dl, 277 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 278 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 279 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 280 NewRHS = SDValue(); 281 } 282 } 283 284 /// Return the entry encoding for a jump table in the current function. The 285 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 286 unsigned TargetLowering::getJumpTableEncoding() const { 287 // In non-pic modes, just use the address of a block. 288 if (!isPositionIndependent()) 289 return MachineJumpTableInfo::EK_BlockAddress; 290 291 // In PIC mode, if the target supports a GPRel32 directive, use it. 292 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 293 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 294 295 // Otherwise, use a label difference. 296 return MachineJumpTableInfo::EK_LabelDifference32; 297 } 298 299 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 300 SelectionDAG &DAG) const { 301 // If our PIC model is GP relative, use the global offset table as the base. 302 unsigned JTEncoding = getJumpTableEncoding(); 303 304 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 305 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 306 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 307 308 return Table; 309 } 310 311 /// This returns the relocation base for the given PIC jumptable, the same as 312 /// getPICJumpTableRelocBase, but as an MCExpr. 313 const MCExpr * 314 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 315 unsigned JTI,MCContext &Ctx) const{ 316 // The normal PIC reloc base is the label at the start of the jump table. 317 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 318 } 319 320 bool 321 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 322 const TargetMachine &TM = getTargetMachine(); 323 const GlobalValue *GV = GA->getGlobal(); 324 325 // If the address is not even local to this DSO we will have to load it from 326 // a got and then add the offset. 327 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 328 return false; 329 330 // If the code is position independent we will have to add a base register. 331 if (isPositionIndependent()) 332 return false; 333 334 // Otherwise we can do it. 335 return true; 336 } 337 338 //===----------------------------------------------------------------------===// 339 // Optimization Methods 340 //===----------------------------------------------------------------------===// 341 342 /// If the specified instruction has a constant integer operand and there are 343 /// bits set in that constant that are not demanded, then clear those bits and 344 /// return true. 345 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 346 TargetLoweringOpt &TLO) const { 347 SelectionDAG &DAG = TLO.DAG; 348 SDLoc DL(Op); 349 unsigned Opcode = Op.getOpcode(); 350 351 // Do target-specific constant optimization. 352 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 353 return TLO.New.getNode(); 354 355 // FIXME: ISD::SELECT, ISD::SELECT_CC 356 switch (Opcode) { 357 default: 358 break; 359 case ISD::XOR: 360 case ISD::AND: 361 case ISD::OR: { 362 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 363 if (!Op1C) 364 return false; 365 366 // If this is a 'not' op, don't touch it because that's a canonical form. 367 const APInt &C = Op1C->getAPIntValue(); 368 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 369 return false; 370 371 if (!C.isSubsetOf(Demanded)) { 372 EVT VT = Op.getValueType(); 373 SDValue NewC = DAG.getConstant(Demanded & C, DL, VT); 374 SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 375 return TLO.CombineTo(Op, NewOp); 376 } 377 378 break; 379 } 380 } 381 382 return false; 383 } 384 385 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 386 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 387 /// generalized for targets with other types of implicit widening casts. 388 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 389 const APInt &Demanded, 390 TargetLoweringOpt &TLO) const { 391 assert(Op.getNumOperands() == 2 && 392 "ShrinkDemandedOp only supports binary operators!"); 393 assert(Op.getNode()->getNumValues() == 1 && 394 "ShrinkDemandedOp only supports nodes with one result!"); 395 396 SelectionDAG &DAG = TLO.DAG; 397 SDLoc dl(Op); 398 399 // Early return, as this function cannot handle vector types. 400 if (Op.getValueType().isVector()) 401 return false; 402 403 // Don't do this if the node has another user, which may require the 404 // full value. 405 if (!Op.getNode()->hasOneUse()) 406 return false; 407 408 // Search for the smallest integer type with free casts to and from 409 // Op's type. For expedience, just check power-of-2 integer types. 410 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 411 unsigned DemandedSize = Demanded.getActiveBits(); 412 unsigned SmallVTBits = DemandedSize; 413 if (!isPowerOf2_32(SmallVTBits)) 414 SmallVTBits = NextPowerOf2(SmallVTBits); 415 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 416 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 417 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 418 TLI.isZExtFree(SmallVT, Op.getValueType())) { 419 // We found a type with free casts. 420 SDValue X = DAG.getNode( 421 Op.getOpcode(), dl, SmallVT, 422 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 423 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 424 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 425 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 426 return TLO.CombineTo(Op, Z); 427 } 428 } 429 return false; 430 } 431 432 bool 433 TargetLowering::SimplifyDemandedBits(SDNode *User, unsigned OpIdx, 434 const APInt &Demanded, 435 DAGCombinerInfo &DCI, 436 TargetLoweringOpt &TLO) const { 437 SDValue Op = User->getOperand(OpIdx); 438 KnownBits Known; 439 440 if (!SimplifyDemandedBits(Op, Demanded, Known, TLO, 0, true)) 441 return false; 442 443 444 // Old will not always be the same as Op. For example: 445 // 446 // Demanded = 0xffffff 447 // Op = i64 truncate (i32 and x, 0xffffff) 448 // In this case simplify demand bits will want to replace the 'and' node 449 // with the value 'x', which will give us: 450 // Old = i32 and x, 0xffffff 451 // New = x 452 if (TLO.Old.hasOneUse()) { 453 // For the one use case, we just commit the change. 454 DCI.CommitTargetLoweringOpt(TLO); 455 return true; 456 } 457 458 // If Old has more than one use then it must be Op, because the 459 // AssumeSingleUse flag is not propogated to recursive calls of 460 // SimplifyDemanded bits, so the only node with multiple use that 461 // it will attempt to combine will be Op. 462 assert(TLO.Old == Op); 463 464 SmallVector <SDValue, 4> NewOps; 465 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 466 if (i == OpIdx) { 467 NewOps.push_back(TLO.New); 468 continue; 469 } 470 NewOps.push_back(User->getOperand(i)); 471 } 472 User = TLO.DAG.UpdateNodeOperands(User, NewOps); 473 // Op has less users now, so we may be able to perform additional combines 474 // with it. 475 DCI.AddToWorklist(Op.getNode()); 476 // User's operands have been updated, so we may be able to do new combines 477 // with it. 478 DCI.AddToWorklist(User); 479 return true; 480 } 481 482 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask, 483 DAGCombinerInfo &DCI) const { 484 485 SelectionDAG &DAG = DCI.DAG; 486 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 487 !DCI.isBeforeLegalizeOps()); 488 KnownBits Known; 489 490 bool Simplified = SimplifyDemandedBits(Op, DemandedMask, Known, TLO); 491 if (Simplified) 492 DCI.CommitTargetLoweringOpt(TLO); 493 return Simplified; 494 } 495 496 /// Look at Op. At this point, we know that only the DemandedMask bits of the 497 /// result of Op are ever used downstream. If we can use this information to 498 /// simplify Op, create a new simplified DAG node and return true, returning the 499 /// original and new nodes in Old and New. Otherwise, analyze the expression and 500 /// return a mask of Known bits for the expression (used to simplify the 501 /// caller). The Known bits may only be accurate for those bits in the 502 /// DemandedMask. 503 bool TargetLowering::SimplifyDemandedBits(SDValue Op, 504 const APInt &DemandedMask, 505 KnownBits &Known, 506 TargetLoweringOpt &TLO, 507 unsigned Depth, 508 bool AssumeSingleUse) const { 509 unsigned BitWidth = DemandedMask.getBitWidth(); 510 assert(Op.getScalarValueSizeInBits() == BitWidth && 511 "Mask size mismatches value type size!"); 512 APInt NewMask = DemandedMask; 513 SDLoc dl(Op); 514 auto &DL = TLO.DAG.getDataLayout(); 515 516 // Don't know anything. 517 Known = KnownBits(BitWidth); 518 519 if (Op.getOpcode() == ISD::Constant) { 520 // We know all of the bits for a constant! 521 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 522 Known.Zero = ~Known.One; 523 return false; 524 } 525 526 // Other users may use these bits. 527 EVT VT = Op.getValueType(); 528 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 529 if (Depth != 0) { 530 // If not at the root, Just compute the Known bits to 531 // simplify things downstream. 532 TLO.DAG.computeKnownBits(Op, Known, Depth); 533 return false; 534 } 535 // If this is the root being simplified, allow it to have multiple uses, 536 // just set the NewMask to all bits. 537 NewMask = APInt::getAllOnesValue(BitWidth); 538 } else if (DemandedMask == 0) { 539 // Not demanding any bits from Op. 540 if (!Op.isUndef()) 541 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 542 return false; 543 } else if (Depth == 6) { // Limit search depth. 544 return false; 545 } 546 547 KnownBits Known2, KnownOut; 548 switch (Op.getOpcode()) { 549 case ISD::BUILD_VECTOR: 550 // Collect the known bits that are shared by every constant vector element. 551 Known.Zero.setAllBits(); Known.One.setAllBits(); 552 for (SDValue SrcOp : Op->ops()) { 553 if (!isa<ConstantSDNode>(SrcOp)) { 554 // We can only handle all constant values - bail out with no known bits. 555 Known = KnownBits(BitWidth); 556 return false; 557 } 558 Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue(); 559 Known2.Zero = ~Known2.One; 560 561 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 562 if (Known2.One.getBitWidth() != BitWidth) { 563 assert(Known2.getBitWidth() > BitWidth && 564 "Expected BUILD_VECTOR implicit truncation"); 565 Known2 = Known2.trunc(BitWidth); 566 } 567 568 // Known bits are the values that are shared by every element. 569 // TODO: support per-element known bits. 570 Known.One &= Known2.One; 571 Known.Zero &= Known2.Zero; 572 } 573 return false; // Don't fall through, will infinitely loop. 574 case ISD::AND: 575 // If the RHS is a constant, check to see if the LHS would be zero without 576 // using the bits from the RHS. Below, we use knowledge about the RHS to 577 // simplify the LHS, here we're using information from the LHS to simplify 578 // the RHS. 579 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op.getOperand(1))) { 580 SDValue Op0 = Op.getOperand(0); 581 KnownBits LHSKnown; 582 // Do not increment Depth here; that can cause an infinite loop. 583 TLO.DAG.computeKnownBits(Op0, LHSKnown, Depth); 584 // If the LHS already has zeros where RHSC does, this 'and' is dead. 585 if ((LHSKnown.Zero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) 586 return TLO.CombineTo(Op, Op0); 587 588 // If any of the set bits in the RHS are known zero on the LHS, shrink 589 // the constant. 590 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & NewMask, TLO)) 591 return true; 592 593 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 594 // constant, but if this 'and' is only clearing bits that were just set by 595 // the xor, then this 'and' can be eliminated by shrinking the mask of 596 // the xor. For example, for a 32-bit X: 597 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 598 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 599 LHSKnown.One == ~RHSC->getAPIntValue()) { 600 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), 601 Op.getOperand(1)); 602 return TLO.CombineTo(Op, Xor); 603 } 604 } 605 606 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1)) 607 return true; 608 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 609 if (SimplifyDemandedBits(Op.getOperand(0), ~Known.Zero & NewMask, 610 Known2, TLO, Depth+1)) 611 return true; 612 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 613 614 // If all of the demanded bits are known one on one side, return the other. 615 // These bits cannot contribute to the result of the 'and'. 616 if (NewMask.isSubsetOf(Known2.Zero | Known.One)) 617 return TLO.CombineTo(Op, Op.getOperand(0)); 618 if (NewMask.isSubsetOf(Known.Zero | Known2.One)) 619 return TLO.CombineTo(Op, Op.getOperand(1)); 620 // If all of the demanded bits in the inputs are known zeros, return zero. 621 if (NewMask.isSubsetOf(Known.Zero | Known2.Zero)) 622 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 623 // If the RHS is a constant, see if we can simplify it. 624 if (ShrinkDemandedConstant(Op, ~Known2.Zero & NewMask, TLO)) 625 return true; 626 // If the operation can be done in a smaller type, do so. 627 if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) 628 return true; 629 630 // Output known-1 bits are only known if set in both the LHS & RHS. 631 Known.One &= Known2.One; 632 // Output known-0 are known to be clear if zero in either the LHS | RHS. 633 Known.Zero |= Known2.Zero; 634 break; 635 case ISD::OR: 636 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1)) 637 return true; 638 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 639 if (SimplifyDemandedBits(Op.getOperand(0), ~Known.One & NewMask, 640 Known2, TLO, Depth+1)) 641 return true; 642 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 643 644 // If all of the demanded bits are known zero on one side, return the other. 645 // These bits cannot contribute to the result of the 'or'. 646 if (NewMask.isSubsetOf(Known2.One | Known.Zero)) 647 return TLO.CombineTo(Op, Op.getOperand(0)); 648 if (NewMask.isSubsetOf(Known.One | Known2.Zero)) 649 return TLO.CombineTo(Op, Op.getOperand(1)); 650 // If the RHS is a constant, see if we can simplify it. 651 if (ShrinkDemandedConstant(Op, NewMask, TLO)) 652 return true; 653 // If the operation can be done in a smaller type, do so. 654 if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) 655 return true; 656 657 // Output known-0 bits are only known if clear in both the LHS & RHS. 658 Known.Zero &= Known2.Zero; 659 // Output known-1 are known to be set if set in either the LHS | RHS. 660 Known.One |= Known2.One; 661 break; 662 case ISD::XOR: { 663 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1)) 664 return true; 665 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 666 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, Known2, TLO, Depth+1)) 667 return true; 668 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 669 670 // If all of the demanded bits are known zero on one side, return the other. 671 // These bits cannot contribute to the result of the 'xor'. 672 if (NewMask.isSubsetOf(Known.Zero)) 673 return TLO.CombineTo(Op, Op.getOperand(0)); 674 if (NewMask.isSubsetOf(Known2.Zero)) 675 return TLO.CombineTo(Op, Op.getOperand(1)); 676 // If the operation can be done in a smaller type, do so. 677 if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) 678 return true; 679 680 // If all of the unknown bits are known to be zero on one side or the other 681 // (but not both) turn this into an *inclusive* or. 682 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 683 if ((NewMask & ~Known.Zero & ~Known2.Zero) == 0) 684 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, 685 Op.getOperand(0), 686 Op.getOperand(1))); 687 688 // Output known-0 bits are known if clear or set in both the LHS & RHS. 689 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 690 // Output known-1 are known to be set if set in only one of the LHS, RHS. 691 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 692 693 // If all of the demanded bits on one side are known, and all of the set 694 // bits on that side are also known to be set on the other side, turn this 695 // into an AND, as we know the bits will be cleared. 696 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 697 // NB: it is okay if more bits are known than are requested 698 if (NewMask.isSubsetOf(Known.Zero|Known.One)) { // all known on one side 699 if (Known.One == Known2.One) { // set bits are the same on both sides 700 SDValue ANDC = TLO.DAG.getConstant(~Known.One & NewMask, dl, VT); 701 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, 702 Op.getOperand(0), ANDC)); 703 } 704 } 705 706 // If the RHS is a constant, see if we can change it. Don't alter a -1 707 // constant because that's a 'not' op, and that is better for combining and 708 // codegen. 709 ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1)); 710 if (C && !C->isAllOnesValue()) { 711 if (NewMask.isSubsetOf(C->getAPIntValue())) { 712 // We're flipping all demanded bits. Flip the undemanded bits too. 713 SDValue New = TLO.DAG.getNOT(dl, Op.getOperand(0), VT); 714 return TLO.CombineTo(Op, New); 715 } 716 // If we can't turn this into a 'not', try to shrink the constant. 717 if (ShrinkDemandedConstant(Op, NewMask, TLO)) 718 return true; 719 } 720 721 Known = std::move(KnownOut); 722 break; 723 } 724 case ISD::SELECT: 725 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, Known, TLO, Depth+1)) 726 return true; 727 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known2, TLO, Depth+1)) 728 return true; 729 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 730 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 731 732 // If the operands are constants, see if we can simplify them. 733 if (ShrinkDemandedConstant(Op, NewMask, TLO)) 734 return true; 735 736 // Only known if known in both the LHS and RHS. 737 Known.One &= Known2.One; 738 Known.Zero &= Known2.Zero; 739 break; 740 case ISD::SELECT_CC: 741 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, Known, TLO, Depth+1)) 742 return true; 743 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, Known2, TLO, Depth+1)) 744 return true; 745 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 746 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 747 748 // If the operands are constants, see if we can simplify them. 749 if (ShrinkDemandedConstant(Op, NewMask, TLO)) 750 return true; 751 752 // Only known if known in both the LHS and RHS. 753 Known.One &= Known2.One; 754 Known.Zero &= Known2.Zero; 755 break; 756 case ISD::SETCC: { 757 SDValue Op0 = Op.getOperand(0); 758 SDValue Op1 = Op.getOperand(1); 759 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 760 // If (1) we only need the sign-bit, (2) the setcc operands are the same 761 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 762 // -1, we may be able to bypass the setcc. 763 if (NewMask.isSignMask() && Op0.getScalarValueSizeInBits() == BitWidth && 764 getBooleanContents(VT) == 765 BooleanContent::ZeroOrNegativeOneBooleanContent) { 766 // If we're testing X < 0, then this compare isn't needed - just use X! 767 // FIXME: We're limiting to integer types here, but this should also work 768 // if we don't care about FP signed-zero. The use of SETLT with FP means 769 // that we don't care about NaNs. 770 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 771 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 772 return TLO.CombineTo(Op, Op0); 773 774 // TODO: Should we check for other forms of sign-bit comparisons? 775 // Examples: X <= -1, X >= 0 776 } 777 if (getBooleanContents(Op0.getValueType()) == 778 TargetLowering::ZeroOrOneBooleanContent && 779 BitWidth > 1) 780 Known.Zero.setBitsFrom(1); 781 break; 782 } 783 case ISD::SHL: 784 if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) { 785 SDValue InOp = Op.getOperand(0); 786 787 // If the shift count is an invalid immediate, don't do anything. 788 if (SA->getAPIntValue().uge(BitWidth)) 789 break; 790 791 unsigned ShAmt = SA->getZExtValue(); 792 793 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 794 // single shift. We can do this if the bottom bits (which are shifted 795 // out) are never demanded. 796 if (InOp.getOpcode() == ISD::SRL) { 797 if (ConstantSDNode *SA2 = isConstOrConstSplat(InOp.getOperand(1))) { 798 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 799 if (SA2->getAPIntValue().ult(BitWidth)) { 800 unsigned C1 = SA2->getZExtValue(); 801 unsigned Opc = ISD::SHL; 802 int Diff = ShAmt-C1; 803 if (Diff < 0) { 804 Diff = -Diff; 805 Opc = ISD::SRL; 806 } 807 808 SDValue NewSA = 809 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 810 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 811 InOp.getOperand(0), 812 NewSA)); 813 } 814 } 815 } 816 } 817 818 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), Known, TLO, Depth+1)) 819 return true; 820 821 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 822 // are not demanded. This will likely allow the anyext to be folded away. 823 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { 824 SDValue InnerOp = InOp.getOperand(0); 825 EVT InnerVT = InnerOp.getValueType(); 826 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 827 if (ShAmt < InnerBits && NewMask.getActiveBits() <= InnerBits && 828 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 829 EVT ShTy = getShiftAmountTy(InnerVT, DL); 830 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 831 ShTy = InnerVT; 832 SDValue NarrowShl = 833 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 834 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 835 return 836 TLO.CombineTo(Op, 837 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 838 } 839 // Repeat the SHL optimization above in cases where an extension 840 // intervenes: (shl (anyext (shr x, c1)), c2) to 841 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 842 // aren't demanded (as above) and that the shifted upper c1 bits of 843 // x aren't demanded. 844 if (InOp.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 845 InnerOp.hasOneUse()) { 846 if (ConstantSDNode *SA2 = isConstOrConstSplat(InnerOp.getOperand(1))) { 847 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 848 if (InnerShAmt < ShAmt && 849 InnerShAmt < InnerBits && 850 NewMask.getActiveBits() <= (InnerBits - InnerShAmt + ShAmt) && 851 NewMask.countTrailingZeros() >= ShAmt) { 852 SDValue NewSA = 853 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 854 Op.getOperand(1).getValueType()); 855 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 856 InnerOp.getOperand(0)); 857 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, 858 NewExt, NewSA)); 859 } 860 } 861 } 862 } 863 864 Known.Zero <<= ShAmt; 865 Known.One <<= ShAmt; 866 // low bits known zero. 867 Known.Zero.setLowBits(ShAmt); 868 } 869 break; 870 case ISD::SRL: 871 if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) { 872 SDValue InOp = Op.getOperand(0); 873 874 // If the shift count is an invalid immediate, don't do anything. 875 if (SA->getAPIntValue().uge(BitWidth)) 876 break; 877 878 unsigned ShAmt = SA->getZExtValue(); 879 APInt InDemandedMask = (NewMask << ShAmt); 880 881 // If the shift is exact, then it does demand the low bits (and knows that 882 // they are zero). 883 if (Op->getFlags().hasExact()) 884 InDemandedMask.setLowBits(ShAmt); 885 886 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 887 // single shift. We can do this if the top bits (which are shifted out) 888 // are never demanded. 889 if (InOp.getOpcode() == ISD::SHL) { 890 if (ConstantSDNode *SA2 = isConstOrConstSplat(InOp.getOperand(1))) { 891 if (ShAmt && 892 (NewMask & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) { 893 if (SA2->getAPIntValue().ult(BitWidth)) { 894 unsigned C1 = SA2->getZExtValue(); 895 unsigned Opc = ISD::SRL; 896 int Diff = ShAmt-C1; 897 if (Diff < 0) { 898 Diff = -Diff; 899 Opc = ISD::SHL; 900 } 901 902 SDValue NewSA = 903 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 904 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 905 InOp.getOperand(0), 906 NewSA)); 907 } 908 } 909 } 910 } 911 912 // Compute the new bits that are at the top now. 913 if (SimplifyDemandedBits(InOp, InDemandedMask, Known, TLO, Depth+1)) 914 return true; 915 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 916 Known.Zero.lshrInPlace(ShAmt); 917 Known.One.lshrInPlace(ShAmt); 918 919 Known.Zero.setHighBits(ShAmt); // High bits known zero. 920 } 921 break; 922 case ISD::SRA: 923 // If this is an arithmetic shift right and only the low-bit is set, we can 924 // always convert this into a logical shr, even if the shift amount is 925 // variable. The low bit of the shift cannot be an input sign bit unless 926 // the shift amount is >= the size of the datatype, which is undefined. 927 if (NewMask.isOneValue()) 928 return TLO.CombineTo(Op, 929 TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0), 930 Op.getOperand(1))); 931 932 if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) { 933 // If the shift count is an invalid immediate, don't do anything. 934 if (SA->getAPIntValue().uge(BitWidth)) 935 break; 936 937 unsigned ShAmt = SA->getZExtValue(); 938 APInt InDemandedMask = (NewMask << ShAmt); 939 940 // If the shift is exact, then it does demand the low bits (and knows that 941 // they are zero). 942 if (Op->getFlags().hasExact()) 943 InDemandedMask.setLowBits(ShAmt); 944 945 // If any of the demanded bits are produced by the sign extension, we also 946 // demand the input sign bit. 947 if (NewMask.countLeadingZeros() < ShAmt) 948 InDemandedMask.setSignBit(); 949 950 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, Known, TLO, 951 Depth+1)) 952 return true; 953 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 954 Known.Zero.lshrInPlace(ShAmt); 955 Known.One.lshrInPlace(ShAmt); 956 957 // If the input sign bit is known to be zero, or if none of the top bits 958 // are demanded, turn this into an unsigned shift right. 959 if (Known.Zero[BitWidth - ShAmt - 1] || 960 NewMask.countLeadingZeros() >= ShAmt) { 961 SDNodeFlags Flags; 962 Flags.setExact(Op->getFlags().hasExact()); 963 return TLO.CombineTo(Op, 964 TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0), 965 Op.getOperand(1), Flags)); 966 } 967 968 int Log2 = NewMask.exactLogBase2(); 969 if (Log2 >= 0) { 970 // The bit must come from the sign. 971 SDValue NewSA = 972 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, 973 Op.getOperand(1).getValueType()); 974 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 975 Op.getOperand(0), NewSA)); 976 } 977 978 if (Known.One[BitWidth - ShAmt - 1]) 979 // New bits are known one. 980 Known.One.setHighBits(ShAmt); 981 } 982 break; 983 case ISD::SIGN_EXTEND_INREG: { 984 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 985 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 986 987 // If we only care about the highest bit, don't bother shifting right. 988 if (NewMask.isSignMask()) { 989 SDValue InOp = Op.getOperand(0); 990 bool AlreadySignExtended = 991 TLO.DAG.ComputeNumSignBits(InOp) >= BitWidth-ExVTBits+1; 992 // However if the input is already sign extended we expect the sign 993 // extension to be dropped altogether later and do not simplify. 994 if (!AlreadySignExtended) { 995 // Compute the correct shift amount type, which must be getShiftAmountTy 996 // for scalar types after legalization. 997 EVT ShiftAmtTy = VT; 998 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 999 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1000 1001 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl, 1002 ShiftAmtTy); 1003 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, InOp, 1004 ShiftAmt)); 1005 } 1006 } 1007 1008 // If none of the extended bits are demanded, eliminate the sextinreg. 1009 if (NewMask.getActiveBits() <= ExVTBits) 1010 return TLO.CombineTo(Op, Op.getOperand(0)); 1011 1012 APInt InputDemandedBits = NewMask.getLoBits(ExVTBits); 1013 1014 // Since the sign extended bits are demanded, we know that the sign 1015 // bit is demanded. 1016 InputDemandedBits.setBit(ExVTBits - 1); 1017 1018 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, 1019 Known, TLO, Depth+1)) 1020 return true; 1021 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1022 1023 // If the sign bit of the input is known set or clear, then we know the 1024 // top bits of the result. 1025 1026 // If the input sign bit is known zero, convert this into a zero extension. 1027 if (Known.Zero[ExVTBits - 1]) 1028 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg( 1029 Op.getOperand(0), dl, ExVT.getScalarType())); 1030 1031 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1032 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1033 Known.One.setBitsFrom(ExVTBits); 1034 Known.Zero &= Mask; 1035 } else { // Input sign bit unknown 1036 Known.Zero &= Mask; 1037 Known.One &= Mask; 1038 } 1039 break; 1040 } 1041 case ISD::BUILD_PAIR: { 1042 EVT HalfVT = Op.getOperand(0).getValueType(); 1043 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1044 1045 APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1046 APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1047 1048 KnownBits KnownLo, KnownHi; 1049 1050 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1051 return true; 1052 1053 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1054 return true; 1055 1056 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1057 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1058 1059 Known.One = KnownLo.One.zext(BitWidth) | 1060 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1061 break; 1062 } 1063 case ISD::ZERO_EXTEND: { 1064 unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 1065 1066 // If none of the top bits are demanded, convert this into an any_extend. 1067 if (NewMask.getActiveBits() <= OperandBitWidth) 1068 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1069 Op.getOperand(0))); 1070 1071 APInt InMask = NewMask.trunc(OperandBitWidth); 1072 if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1)) 1073 return true; 1074 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1075 Known = Known.zext(BitWidth); 1076 Known.Zero.setBitsFrom(OperandBitWidth); 1077 break; 1078 } 1079 case ISD::SIGN_EXTEND: { 1080 unsigned InBits = Op.getOperand(0).getValueType().getScalarSizeInBits(); 1081 1082 // If none of the top bits are demanded, convert this into an any_extend. 1083 if (NewMask.getActiveBits() <= InBits) 1084 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1085 Op.getOperand(0))); 1086 1087 // Since some of the sign extended bits are demanded, we know that the sign 1088 // bit is demanded. 1089 APInt InDemandedBits = NewMask.trunc(InBits); 1090 InDemandedBits.setBit(InBits - 1); 1091 1092 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, Known, TLO, 1093 Depth+1)) 1094 return true; 1095 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1096 // If the sign bit is known one, the top bits match. 1097 Known = Known.sext(BitWidth); 1098 1099 // If the sign bit is known zero, convert this to a zero extend. 1100 if (Known.isNonNegative()) 1101 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, 1102 Op.getOperand(0))); 1103 break; 1104 } 1105 case ISD::ANY_EXTEND: { 1106 unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 1107 APInt InMask = NewMask.trunc(OperandBitWidth); 1108 if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1)) 1109 return true; 1110 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1111 Known = Known.zext(BitWidth); 1112 break; 1113 } 1114 case ISD::TRUNCATE: { 1115 // Simplify the input, using demanded bit information, and compute the known 1116 // zero/one bits live out. 1117 unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 1118 APInt TruncMask = NewMask.zext(OperandBitWidth); 1119 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, Known, TLO, Depth+1)) 1120 return true; 1121 Known = Known.trunc(BitWidth); 1122 1123 // If the input is only used by this truncate, see if we can shrink it based 1124 // on the known demanded bits. 1125 if (Op.getOperand(0).getNode()->hasOneUse()) { 1126 SDValue In = Op.getOperand(0); 1127 switch (In.getOpcode()) { 1128 default: break; 1129 case ISD::SRL: 1130 // Shrink SRL by a constant if none of the high bits shifted in are 1131 // demanded. 1132 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1133 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1134 // undesirable. 1135 break; 1136 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); 1137 if (!ShAmt) 1138 break; 1139 SDValue Shift = In.getOperand(1); 1140 if (TLO.LegalTypes()) { 1141 uint64_t ShVal = ShAmt->getZExtValue(); 1142 Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1143 } 1144 1145 if (ShAmt->getZExtValue() < BitWidth) { 1146 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 1147 OperandBitWidth - BitWidth); 1148 HighBits.lshrInPlace(ShAmt->getZExtValue()); 1149 HighBits = HighBits.trunc(BitWidth); 1150 1151 if (!(HighBits & NewMask)) { 1152 // None of the shifted in bits are needed. Add a truncate of the 1153 // shift input, then shift it. 1154 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, 1155 In.getOperand(0)); 1156 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, 1157 Shift)); 1158 } 1159 } 1160 break; 1161 } 1162 } 1163 1164 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1165 break; 1166 } 1167 case ISD::AssertZext: { 1168 // AssertZext demands all of the high bits, plus any of the low bits 1169 // demanded by its users. 1170 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1171 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1172 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask, 1173 Known, TLO, Depth+1)) 1174 return true; 1175 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1176 1177 Known.Zero |= ~InMask; 1178 break; 1179 } 1180 case ISD::BITCAST: 1181 // If this is an FP->Int bitcast and if the sign bit is the only 1182 // thing demanded, turn this into a FGETSIGN. 1183 if (!TLO.LegalOperations() && !VT.isVector() && 1184 !Op.getOperand(0).getValueType().isVector() && 1185 NewMask == APInt::getSignMask(Op.getValueSizeInBits()) && 1186 Op.getOperand(0).getValueType().isFloatingPoint()) { 1187 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1188 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1189 if ((OpVTLegal || i32Legal) && VT.isSimple() && 1190 Op.getOperand(0).getValueType() != MVT::f128) { 1191 // Cannot eliminate/lower SHL for f128 yet. 1192 EVT Ty = OpVTLegal ? VT : MVT::i32; 1193 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1194 // place. We expect the SHL to be eliminated by other optimizations. 1195 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0)); 1196 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1197 if (!OpVTLegal && OpVTSizeInBits > 32) 1198 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 1199 unsigned ShVal = Op.getValueSizeInBits() - 1; 1200 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 1201 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 1202 } 1203 } 1204 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 1205 // recursive call where Known may be useful to the caller. 1206 if (Depth > 0) { 1207 TLO.DAG.computeKnownBits(Op, Known, Depth); 1208 return false; 1209 } 1210 break; 1211 case ISD::ADD: 1212 case ISD::MUL: 1213 case ISD::SUB: { 1214 // Add, Sub, and Mul don't demand any bits in positions beyond that 1215 // of the highest bit demanded of them. 1216 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 1217 unsigned NewMaskLZ = NewMask.countLeadingZeros(); 1218 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - NewMaskLZ); 1219 if (SimplifyDemandedBits(Op0, LoMask, Known2, TLO, Depth + 1) || 1220 SimplifyDemandedBits(Op1, LoMask, Known2, TLO, Depth + 1) || 1221 // See if the operation should be performed at a smaller bit width. 1222 ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) { 1223 SDNodeFlags Flags = Op.getNode()->getFlags(); 1224 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 1225 // Disable the nsw and nuw flags. We can no longer guarantee that we 1226 // won't wrap after simplification. 1227 Flags.setNoSignedWrap(false); 1228 Flags.setNoUnsignedWrap(false); 1229 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, 1230 Flags); 1231 return TLO.CombineTo(Op, NewOp); 1232 } 1233 return true; 1234 } 1235 1236 // If we have a constant operand, we may be able to turn it into -1 if we 1237 // do not demand the high bits. This can make the constant smaller to 1238 // encode, allow more general folding, or match specialized instruction 1239 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 1240 // is probably not useful (and could be detrimental). 1241 ConstantSDNode *C = isConstOrConstSplat(Op1); 1242 APInt HighMask = APInt::getHighBitsSet(NewMask.getBitWidth(), NewMaskLZ); 1243 if (C && !C->isAllOnesValue() && !C->isOne() && 1244 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 1245 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 1246 // We can't guarantee that the new math op doesn't wrap, so explicitly 1247 // clear those flags to prevent folding with a potential existing node 1248 // that has those flags set. 1249 SDNodeFlags Flags; 1250 Flags.setNoSignedWrap(false); 1251 Flags.setNoUnsignedWrap(false); 1252 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 1253 return TLO.CombineTo(Op, NewOp); 1254 } 1255 1256 LLVM_FALLTHROUGH; 1257 } 1258 default: 1259 // Just use computeKnownBits to compute output bits. 1260 TLO.DAG.computeKnownBits(Op, Known, Depth); 1261 break; 1262 } 1263 1264 // If we know the value of all of the demanded bits, return this as a 1265 // constant. 1266 if (NewMask.isSubsetOf(Known.Zero|Known.One)) { 1267 // Avoid folding to a constant if any OpaqueConstant is involved. 1268 const SDNode *N = Op.getNode(); 1269 for (SDNodeIterator I = SDNodeIterator::begin(N), 1270 E = SDNodeIterator::end(N); I != E; ++I) { 1271 SDNode *Op = *I; 1272 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 1273 if (C->isOpaque()) 1274 return false; 1275 } 1276 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 1277 } 1278 1279 return false; 1280 } 1281 1282 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 1283 const APInt &DemandedElts, 1284 APInt &KnownUndef, 1285 APInt &KnownZero, 1286 DAGCombinerInfo &DCI) const { 1287 SelectionDAG &DAG = DCI.DAG; 1288 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 1289 !DCI.isBeforeLegalizeOps()); 1290 1291 bool Simplified = 1292 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 1293 if (Simplified) 1294 DCI.CommitTargetLoweringOpt(TLO); 1295 return Simplified; 1296 } 1297 1298 bool TargetLowering::SimplifyDemandedVectorElts( 1299 SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef, 1300 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 1301 bool AssumeSingleUse) const { 1302 EVT VT = Op.getValueType(); 1303 APInt DemandedElts = DemandedEltMask; 1304 unsigned NumElts = DemandedElts.getBitWidth(); 1305 assert(VT.isVector() && "Expected vector op"); 1306 assert(VT.getVectorNumElements() == NumElts && 1307 "Mask size mismatches value type element count!"); 1308 1309 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 1310 1311 // Undef operand. 1312 if (Op.isUndef()) { 1313 KnownUndef.setAllBits(); 1314 return false; 1315 } 1316 1317 // If Op has other users, assume that all elements are needed. 1318 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 1319 DemandedElts.setAllBits(); 1320 1321 // Not demanding any elements from Op. 1322 if (DemandedElts == 0) { 1323 KnownUndef.setAllBits(); 1324 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1325 } 1326 1327 // Limit search depth. 1328 if (Depth >= 6) 1329 return false; 1330 1331 SDLoc DL(Op); 1332 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 1333 1334 switch (Op.getOpcode()) { 1335 case ISD::SCALAR_TO_VECTOR: { 1336 if (!DemandedElts[0]) { 1337 KnownUndef.setAllBits(); 1338 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1339 } 1340 KnownUndef.setHighBits(NumElts - 1); 1341 break; 1342 } 1343 case ISD::BUILD_VECTOR: { 1344 // Check all elements and simplify any unused elements with UNDEF. 1345 if (!DemandedElts.isAllOnesValue()) { 1346 // Don't simplify BROADCASTS. 1347 if (llvm::any_of(Op->op_values(), 1348 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 1349 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 1350 bool Updated = false; 1351 for (unsigned i = 0; i != NumElts; ++i) { 1352 if (!DemandedElts[i] && !Ops[i].isUndef()) { 1353 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 1354 KnownUndef.setBit(i); 1355 Updated = true; 1356 } 1357 } 1358 if (Updated) 1359 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 1360 } 1361 } 1362 for (unsigned i = 0; i != NumElts; ++i) { 1363 SDValue SrcOp = Op.getOperand(i); 1364 if (SrcOp.isUndef()) { 1365 KnownUndef.setBit(i); 1366 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 1367 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 1368 KnownZero.setBit(i); 1369 } 1370 } 1371 break; 1372 } 1373 case ISD::CONCAT_VECTORS: { 1374 EVT SubVT = Op.getOperand(0).getValueType(); 1375 unsigned NumSubVecs = Op.getNumOperands(); 1376 unsigned NumSubElts = SubVT.getVectorNumElements(); 1377 for (unsigned i = 0; i != NumSubVecs; ++i) { 1378 SDValue SubOp = Op.getOperand(i); 1379 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1380 APInt SubUndef, SubZero; 1381 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 1382 Depth + 1)) 1383 return true; 1384 KnownUndef.insertBits(SubUndef, i * NumSubElts); 1385 KnownZero.insertBits(SubZero, i * NumSubElts); 1386 } 1387 break; 1388 } 1389 case ISD::INSERT_SUBVECTOR: { 1390 if (!isa<ConstantSDNode>(Op.getOperand(2))) 1391 break; 1392 SDValue Base = Op.getOperand(0); 1393 SDValue Sub = Op.getOperand(1); 1394 EVT SubVT = Sub.getValueType(); 1395 unsigned NumSubElts = SubVT.getVectorNumElements(); 1396 APInt Idx = cast<ConstantSDNode>(Op.getOperand(2))->getAPIntValue(); 1397 if (Idx.uge(NumElts - NumSubElts)) 1398 break; 1399 unsigned SubIdx = Idx.getZExtValue(); 1400 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 1401 APInt SubUndef, SubZero; 1402 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 1403 Depth + 1)) 1404 return true; 1405 APInt BaseElts = DemandedElts; 1406 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 1407 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 1408 Depth + 1)) 1409 return true; 1410 KnownUndef.insertBits(SubUndef, SubIdx); 1411 KnownZero.insertBits(SubZero, SubIdx); 1412 break; 1413 } 1414 case ISD::INSERT_VECTOR_ELT: { 1415 SDValue Vec = Op.getOperand(0); 1416 SDValue Scl = Op.getOperand(1); 1417 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1418 1419 // For a legal, constant insertion index, if we don't need this insertion 1420 // then strip it, else remove it from the demanded elts. 1421 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 1422 unsigned Idx = CIdx->getZExtValue(); 1423 if (!DemandedElts[Idx]) 1424 return TLO.CombineTo(Op, Vec); 1425 DemandedElts.clearBit(Idx); 1426 1427 if (SimplifyDemandedVectorElts(Vec, DemandedElts, KnownUndef, 1428 KnownZero, TLO, Depth + 1)) 1429 return true; 1430 1431 KnownUndef.clearBit(Idx); 1432 if (Scl.isUndef()) 1433 KnownUndef.setBit(Idx); 1434 1435 KnownZero.clearBit(Idx); 1436 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 1437 KnownZero.setBit(Idx); 1438 break; 1439 } 1440 1441 APInt VecUndef, VecZero; 1442 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 1443 Depth + 1)) 1444 return true; 1445 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 1446 break; 1447 } 1448 case ISD::VSELECT: { 1449 APInt DemandedLHS(DemandedElts); 1450 APInt DemandedRHS(DemandedElts); 1451 1452 // TODO - add support for constant vselect masks. 1453 1454 // See if we can simplify either vselect operand. 1455 APInt UndefLHS, ZeroLHS; 1456 APInt UndefRHS, ZeroRHS; 1457 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 1458 ZeroLHS, TLO, Depth + 1)) 1459 return true; 1460 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 1461 ZeroRHS, TLO, Depth + 1)) 1462 return true; 1463 1464 KnownUndef = UndefLHS & UndefRHS; 1465 KnownZero = ZeroLHS & ZeroRHS; 1466 break; 1467 } 1468 case ISD::VECTOR_SHUFFLE: { 1469 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1470 1471 // Collect demanded elements from shuffle operands.. 1472 APInt DemandedLHS(NumElts, 0); 1473 APInt DemandedRHS(NumElts, 0); 1474 for (unsigned i = 0; i != NumElts; ++i) { 1475 int M = ShuffleMask[i]; 1476 if (M < 0 || !DemandedElts[i]) 1477 continue; 1478 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1479 if (M < (int)NumElts) 1480 DemandedLHS.setBit(M); 1481 else 1482 DemandedRHS.setBit(M - NumElts); 1483 } 1484 1485 // See if we can simplify either shuffle operand. 1486 APInt UndefLHS, ZeroLHS; 1487 APInt UndefRHS, ZeroRHS; 1488 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 1489 ZeroLHS, TLO, Depth + 1)) 1490 return true; 1491 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 1492 ZeroRHS, TLO, Depth + 1)) 1493 return true; 1494 1495 // Simplify mask using undef elements from LHS/RHS. 1496 bool Updated = false; 1497 bool IdentityLHS = true, IdentityRHS = true; 1498 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 1499 for (unsigned i = 0; i != NumElts; ++i) { 1500 int &M = NewMask[i]; 1501 if (M < 0) 1502 continue; 1503 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 1504 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 1505 Updated = true; 1506 M = -1; 1507 } 1508 IdentityLHS &= (M < 0) || (M == (int)i); 1509 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 1510 } 1511 1512 // Update legal shuffle masks based on demanded elements if it won't reduce 1513 // to Identity which can cause premature removal of the shuffle mask. 1514 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps && 1515 isShuffleMaskLegal(NewMask, VT)) 1516 return TLO.CombineTo(Op, 1517 TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0), 1518 Op.getOperand(1), NewMask)); 1519 1520 // Propagate undef/zero elements from LHS/RHS. 1521 for (unsigned i = 0; i != NumElts; ++i) { 1522 int M = ShuffleMask[i]; 1523 if (M < 0) { 1524 KnownUndef.setBit(i); 1525 } else if (M < (int)NumElts) { 1526 if (UndefLHS[M]) 1527 KnownUndef.setBit(i); 1528 if (ZeroLHS[M]) 1529 KnownZero.setBit(i); 1530 } else { 1531 if (UndefRHS[M - NumElts]) 1532 KnownUndef.setBit(i); 1533 if (ZeroRHS[M - NumElts]) 1534 KnownZero.setBit(i); 1535 } 1536 } 1537 break; 1538 } 1539 case ISD::ADD: 1540 case ISD::SUB: { 1541 APInt SrcUndef, SrcZero; 1542 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 1543 SrcZero, TLO, Depth + 1)) 1544 return true; 1545 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 1546 KnownZero, TLO, Depth + 1)) 1547 return true; 1548 KnownZero &= SrcZero; 1549 KnownUndef &= SrcUndef; 1550 break; 1551 } 1552 case ISD::TRUNCATE: 1553 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 1554 KnownZero, TLO, Depth + 1)) 1555 return true; 1556 break; 1557 default: { 1558 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 1559 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 1560 KnownZero, TLO, Depth)) 1561 return true; 1562 break; 1563 } 1564 } 1565 1566 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 1567 return false; 1568 } 1569 1570 /// Determine which of the bits specified in Mask are known to be either zero or 1571 /// one and return them in the Known. 1572 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1573 KnownBits &Known, 1574 const APInt &DemandedElts, 1575 const SelectionDAG &DAG, 1576 unsigned Depth) const { 1577 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1578 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1579 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1580 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1581 "Should use MaskedValueIsZero if you don't know whether Op" 1582 " is a target node!"); 1583 Known.resetAll(); 1584 } 1585 1586 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 1587 KnownBits &Known, 1588 const APInt &DemandedElts, 1589 const SelectionDAG &DAG, 1590 unsigned Depth) const { 1591 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 1592 1593 if (unsigned Align = DAG.InferPtrAlignment(Op)) { 1594 // The low bits are known zero if the pointer is aligned. 1595 Known.Zero.setLowBits(Log2_32(Align)); 1596 } 1597 } 1598 1599 /// This method can be implemented by targets that want to expose additional 1600 /// information about sign bits to the DAG Combiner. 1601 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 1602 const APInt &, 1603 const SelectionDAG &, 1604 unsigned Depth) const { 1605 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1606 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1607 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1608 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1609 "Should use ComputeNumSignBits if you don't know whether Op" 1610 " is a target node!"); 1611 return 1; 1612 } 1613 1614 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 1615 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 1616 TargetLoweringOpt &TLO, unsigned Depth) const { 1617 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1618 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1619 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1620 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1621 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 1622 " is a target node!"); 1623 return false; 1624 } 1625 1626 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 1627 // work with truncating build vectors and vectors with elements of less than 1628 // 8 bits. 1629 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 1630 if (!N) 1631 return false; 1632 1633 APInt CVal; 1634 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 1635 CVal = CN->getAPIntValue(); 1636 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 1637 auto *CN = BV->getConstantSplatNode(); 1638 if (!CN) 1639 return false; 1640 1641 // If this is a truncating build vector, truncate the splat value. 1642 // Otherwise, we may fail to match the expected values below. 1643 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 1644 CVal = CN->getAPIntValue(); 1645 if (BVEltWidth < CVal.getBitWidth()) 1646 CVal = CVal.trunc(BVEltWidth); 1647 } else { 1648 return false; 1649 } 1650 1651 switch (getBooleanContents(N->getValueType(0))) { 1652 case UndefinedBooleanContent: 1653 return CVal[0]; 1654 case ZeroOrOneBooleanContent: 1655 return CVal.isOneValue(); 1656 case ZeroOrNegativeOneBooleanContent: 1657 return CVal.isAllOnesValue(); 1658 } 1659 1660 llvm_unreachable("Invalid boolean contents"); 1661 } 1662 1663 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 1664 if (!N) 1665 return false; 1666 1667 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1668 if (!CN) { 1669 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1670 if (!BV) 1671 return false; 1672 1673 // Only interested in constant splats, we don't care about undef 1674 // elements in identifying boolean constants and getConstantSplatNode 1675 // returns NULL if all ops are undef; 1676 CN = BV->getConstantSplatNode(); 1677 if (!CN) 1678 return false; 1679 } 1680 1681 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 1682 return !CN->getAPIntValue()[0]; 1683 1684 return CN->isNullValue(); 1685 } 1686 1687 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 1688 bool SExt) const { 1689 if (VT == MVT::i1) 1690 return N->isOne(); 1691 1692 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 1693 switch (Cnt) { 1694 case TargetLowering::ZeroOrOneBooleanContent: 1695 // An extended value of 1 is always true, unless its original type is i1, 1696 // in which case it will be sign extended to -1. 1697 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 1698 case TargetLowering::UndefinedBooleanContent: 1699 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1700 return N->isAllOnesValue() && SExt; 1701 } 1702 llvm_unreachable("Unexpected enumeration."); 1703 } 1704 1705 /// This helper function of SimplifySetCC tries to optimize the comparison when 1706 /// either operand of the SetCC node is a bitwise-and instruction. 1707 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 1708 ISD::CondCode Cond, 1709 DAGCombinerInfo &DCI, 1710 const SDLoc &DL) const { 1711 // Match these patterns in any of their permutations: 1712 // (X & Y) == Y 1713 // (X & Y) != Y 1714 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 1715 std::swap(N0, N1); 1716 1717 EVT OpVT = N0.getValueType(); 1718 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 1719 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 1720 return SDValue(); 1721 1722 SDValue X, Y; 1723 if (N0.getOperand(0) == N1) { 1724 X = N0.getOperand(1); 1725 Y = N0.getOperand(0); 1726 } else if (N0.getOperand(1) == N1) { 1727 X = N0.getOperand(0); 1728 Y = N0.getOperand(1); 1729 } else { 1730 return SDValue(); 1731 } 1732 1733 SelectionDAG &DAG = DCI.DAG; 1734 SDValue Zero = DAG.getConstant(0, DL, OpVT); 1735 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 1736 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 1737 // Note that where Y is variable and is known to have at most one bit set 1738 // (for example, if it is Z & 1) we cannot do this; the expressions are not 1739 // equivalent when Y == 0. 1740 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 1741 if (DCI.isBeforeLegalizeOps() || 1742 isCondCodeLegal(Cond, N0.getSimpleValueType())) 1743 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 1744 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 1745 // If the target supports an 'and-not' or 'and-complement' logic operation, 1746 // try to use that to make a comparison operation more efficient. 1747 // But don't do this transform if the mask is a single bit because there are 1748 // more efficient ways to deal with that case (for example, 'bt' on x86 or 1749 // 'rlwinm' on PPC). 1750 1751 // Bail out if the compare operand that we want to turn into a zero is 1752 // already a zero (otherwise, infinite loop). 1753 auto *YConst = dyn_cast<ConstantSDNode>(Y); 1754 if (YConst && YConst->isNullValue()) 1755 return SDValue(); 1756 1757 // Transform this into: ~X & Y == 0. 1758 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 1759 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 1760 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 1761 } 1762 1763 return SDValue(); 1764 } 1765 1766 /// Try to simplify a setcc built with the specified operands and cc. If it is 1767 /// unable to simplify it, return a null SDValue. 1768 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 1769 ISD::CondCode Cond, bool foldBooleans, 1770 DAGCombinerInfo &DCI, 1771 const SDLoc &dl) const { 1772 SelectionDAG &DAG = DCI.DAG; 1773 EVT OpVT = N0.getValueType(); 1774 1775 // These setcc operations always fold. 1776 switch (Cond) { 1777 default: break; 1778 case ISD::SETFALSE: 1779 case ISD::SETFALSE2: return DAG.getBoolConstant(false, dl, VT, OpVT); 1780 case ISD::SETTRUE: 1781 case ISD::SETTRUE2: return DAG.getBoolConstant(true, dl, VT, OpVT); 1782 } 1783 1784 // Ensure that the constant occurs on the RHS and fold constant comparisons. 1785 // TODO: Handle non-splat vector constants. All undef causes trouble. 1786 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 1787 if (isConstOrConstSplat(N0) && 1788 (DCI.isBeforeLegalizeOps() || 1789 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 1790 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 1791 1792 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 1793 const APInt &C1 = N1C->getAPIntValue(); 1794 1795 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 1796 // equality comparison, then we're just comparing whether X itself is 1797 // zero. 1798 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 1799 N0.getOperand(0).getOpcode() == ISD::CTLZ && 1800 N0.getOperand(1).getOpcode() == ISD::Constant) { 1801 const APInt &ShAmt 1802 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1803 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1804 ShAmt == Log2_32(N0.getValueSizeInBits())) { 1805 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 1806 // (srl (ctlz x), 5) == 0 -> X != 0 1807 // (srl (ctlz x), 5) != 1 -> X != 0 1808 Cond = ISD::SETNE; 1809 } else { 1810 // (srl (ctlz x), 5) != 0 -> X == 0 1811 // (srl (ctlz x), 5) == 1 -> X == 0 1812 Cond = ISD::SETEQ; 1813 } 1814 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 1815 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 1816 Zero, Cond); 1817 } 1818 } 1819 1820 SDValue CTPOP = N0; 1821 // Look through truncs that don't change the value of a ctpop. 1822 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 1823 CTPOP = N0.getOperand(0); 1824 1825 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 1826 (N0 == CTPOP || 1827 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 1828 EVT CTVT = CTPOP.getValueType(); 1829 SDValue CTOp = CTPOP.getOperand(0); 1830 1831 // (ctpop x) u< 2 -> (x & x-1) == 0 1832 // (ctpop x) u> 1 -> (x & x-1) != 0 1833 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 1834 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 1835 DAG.getConstant(1, dl, CTVT)); 1836 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 1837 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 1838 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 1839 } 1840 1841 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 1842 } 1843 1844 // (zext x) == C --> x == (trunc C) 1845 // (sext x) == C --> x == (trunc C) 1846 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1847 DCI.isBeforeLegalize() && N0->hasOneUse()) { 1848 unsigned MinBits = N0.getValueSizeInBits(); 1849 SDValue PreExt; 1850 bool Signed = false; 1851 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 1852 // ZExt 1853 MinBits = N0->getOperand(0).getValueSizeInBits(); 1854 PreExt = N0->getOperand(0); 1855 } else if (N0->getOpcode() == ISD::AND) { 1856 // DAGCombine turns costly ZExts into ANDs 1857 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 1858 if ((C->getAPIntValue()+1).isPowerOf2()) { 1859 MinBits = C->getAPIntValue().countTrailingOnes(); 1860 PreExt = N0->getOperand(0); 1861 } 1862 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 1863 // SExt 1864 MinBits = N0->getOperand(0).getValueSizeInBits(); 1865 PreExt = N0->getOperand(0); 1866 Signed = true; 1867 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 1868 // ZEXTLOAD / SEXTLOAD 1869 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 1870 MinBits = LN0->getMemoryVT().getSizeInBits(); 1871 PreExt = N0; 1872 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 1873 Signed = true; 1874 MinBits = LN0->getMemoryVT().getSizeInBits(); 1875 PreExt = N0; 1876 } 1877 } 1878 1879 // Figure out how many bits we need to preserve this constant. 1880 unsigned ReqdBits = Signed ? 1881 C1.getBitWidth() - C1.getNumSignBits() + 1 : 1882 C1.getActiveBits(); 1883 1884 // Make sure we're not losing bits from the constant. 1885 if (MinBits > 0 && 1886 MinBits < C1.getBitWidth() && 1887 MinBits >= ReqdBits) { 1888 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 1889 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 1890 // Will get folded away. 1891 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 1892 if (MinBits == 1 && C1 == 1) 1893 // Invert the condition. 1894 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 1895 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1896 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 1897 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 1898 } 1899 1900 // If truncating the setcc operands is not desirable, we can still 1901 // simplify the expression in some cases: 1902 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 1903 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 1904 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 1905 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 1906 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 1907 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 1908 SDValue TopSetCC = N0->getOperand(0); 1909 unsigned N0Opc = N0->getOpcode(); 1910 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 1911 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 1912 TopSetCC.getOpcode() == ISD::SETCC && 1913 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 1914 (isConstFalseVal(N1C) || 1915 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 1916 1917 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 1918 (!N1C->isNullValue() && Cond == ISD::SETNE); 1919 1920 if (!Inverse) 1921 return TopSetCC; 1922 1923 ISD::CondCode InvCond = ISD::getSetCCInverse( 1924 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 1925 TopSetCC.getOperand(0).getValueType().isInteger()); 1926 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 1927 TopSetCC.getOperand(1), 1928 InvCond); 1929 } 1930 } 1931 } 1932 1933 // If the LHS is '(and load, const)', the RHS is 0, the test is for 1934 // equality or unsigned, and all 1 bits of the const are in the same 1935 // partial word, see if we can shorten the load. 1936 if (DCI.isBeforeLegalize() && 1937 !ISD::isSignedIntSetCC(Cond) && 1938 N0.getOpcode() == ISD::AND && C1 == 0 && 1939 N0.getNode()->hasOneUse() && 1940 isa<LoadSDNode>(N0.getOperand(0)) && 1941 N0.getOperand(0).getNode()->hasOneUse() && 1942 isa<ConstantSDNode>(N0.getOperand(1))) { 1943 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 1944 APInt bestMask; 1945 unsigned bestWidth = 0, bestOffset = 0; 1946 if (!Lod->isVolatile() && Lod->isUnindexed()) { 1947 unsigned origWidth = N0.getValueSizeInBits(); 1948 unsigned maskWidth = origWidth; 1949 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 1950 // 8 bits, but have to be careful... 1951 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 1952 origWidth = Lod->getMemoryVT().getSizeInBits(); 1953 const APInt &Mask = 1954 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1955 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 1956 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 1957 for (unsigned offset=0; offset<origWidth/width; offset++) { 1958 if (Mask.isSubsetOf(newMask)) { 1959 if (DAG.getDataLayout().isLittleEndian()) 1960 bestOffset = (uint64_t)offset * (width/8); 1961 else 1962 bestOffset = (origWidth/width - offset - 1) * (width/8); 1963 bestMask = Mask.lshr(offset * (width/8) * 8); 1964 bestWidth = width; 1965 break; 1966 } 1967 newMask <<= width; 1968 } 1969 } 1970 } 1971 if (bestWidth) { 1972 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 1973 if (newVT.isRound()) { 1974 EVT PtrType = Lod->getOperand(1).getValueType(); 1975 SDValue Ptr = Lod->getBasePtr(); 1976 if (bestOffset != 0) 1977 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 1978 DAG.getConstant(bestOffset, dl, PtrType)); 1979 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 1980 SDValue NewLoad = DAG.getLoad( 1981 newVT, dl, Lod->getChain(), Ptr, 1982 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 1983 return DAG.getSetCC(dl, VT, 1984 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 1985 DAG.getConstant(bestMask.trunc(bestWidth), 1986 dl, newVT)), 1987 DAG.getConstant(0LL, dl, newVT), Cond); 1988 } 1989 } 1990 } 1991 1992 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 1993 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 1994 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 1995 1996 // If the comparison constant has bits in the upper part, the 1997 // zero-extended value could never match. 1998 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 1999 C1.getBitWidth() - InSize))) { 2000 switch (Cond) { 2001 case ISD::SETUGT: 2002 case ISD::SETUGE: 2003 case ISD::SETEQ: 2004 return DAG.getConstant(0, dl, VT); 2005 case ISD::SETULT: 2006 case ISD::SETULE: 2007 case ISD::SETNE: 2008 return DAG.getConstant(1, dl, VT); 2009 case ISD::SETGT: 2010 case ISD::SETGE: 2011 // True if the sign bit of C1 is set. 2012 return DAG.getConstant(C1.isNegative(), dl, VT); 2013 case ISD::SETLT: 2014 case ISD::SETLE: 2015 // True if the sign bit of C1 isn't set. 2016 return DAG.getConstant(C1.isNonNegative(), dl, VT); 2017 default: 2018 break; 2019 } 2020 } 2021 2022 // Otherwise, we can perform the comparison with the low bits. 2023 switch (Cond) { 2024 case ISD::SETEQ: 2025 case ISD::SETNE: 2026 case ISD::SETUGT: 2027 case ISD::SETUGE: 2028 case ISD::SETULT: 2029 case ISD::SETULE: { 2030 EVT newVT = N0.getOperand(0).getValueType(); 2031 if (DCI.isBeforeLegalizeOps() || 2032 (isOperationLegal(ISD::SETCC, newVT) && 2033 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 2034 EVT NewSetCCVT = 2035 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); 2036 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 2037 2038 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 2039 NewConst, Cond); 2040 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 2041 } 2042 break; 2043 } 2044 default: 2045 break; // todo, be more careful with signed comparisons 2046 } 2047 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 2048 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2049 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 2050 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 2051 EVT ExtDstTy = N0.getValueType(); 2052 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 2053 2054 // If the constant doesn't fit into the number of bits for the source of 2055 // the sign extension, it is impossible for both sides to be equal. 2056 if (C1.getMinSignedBits() > ExtSrcTyBits) 2057 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 2058 2059 SDValue ZextOp; 2060 EVT Op0Ty = N0.getOperand(0).getValueType(); 2061 if (Op0Ty == ExtSrcTy) { 2062 ZextOp = N0.getOperand(0); 2063 } else { 2064 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 2065 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 2066 DAG.getConstant(Imm, dl, Op0Ty)); 2067 } 2068 if (!DCI.isCalledByLegalizer()) 2069 DCI.AddToWorklist(ZextOp.getNode()); 2070 // Otherwise, make this a use of a zext. 2071 return DAG.getSetCC(dl, VT, ZextOp, 2072 DAG.getConstant(C1 & APInt::getLowBitsSet( 2073 ExtDstTyBits, 2074 ExtSrcTyBits), 2075 dl, ExtDstTy), 2076 Cond); 2077 } else if ((N1C->isNullValue() || N1C->isOne()) && 2078 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2079 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 2080 if (N0.getOpcode() == ISD::SETCC && 2081 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 2082 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 2083 if (TrueWhenTrue) 2084 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 2085 // Invert the condition. 2086 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 2087 CC = ISD::getSetCCInverse(CC, 2088 N0.getOperand(0).getValueType().isInteger()); 2089 if (DCI.isBeforeLegalizeOps() || 2090 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 2091 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 2092 } 2093 2094 if ((N0.getOpcode() == ISD::XOR || 2095 (N0.getOpcode() == ISD::AND && 2096 N0.getOperand(0).getOpcode() == ISD::XOR && 2097 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 2098 isa<ConstantSDNode>(N0.getOperand(1)) && 2099 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 2100 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 2101 // can only do this if the top bits are known zero. 2102 unsigned BitWidth = N0.getValueSizeInBits(); 2103 if (DAG.MaskedValueIsZero(N0, 2104 APInt::getHighBitsSet(BitWidth, 2105 BitWidth-1))) { 2106 // Okay, get the un-inverted input value. 2107 SDValue Val; 2108 if (N0.getOpcode() == ISD::XOR) { 2109 Val = N0.getOperand(0); 2110 } else { 2111 assert(N0.getOpcode() == ISD::AND && 2112 N0.getOperand(0).getOpcode() == ISD::XOR); 2113 // ((X^1)&1)^1 -> X & 1 2114 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 2115 N0.getOperand(0).getOperand(0), 2116 N0.getOperand(1)); 2117 } 2118 2119 return DAG.getSetCC(dl, VT, Val, N1, 2120 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2121 } 2122 } else if (N1C->isOne() && 2123 (VT == MVT::i1 || 2124 getBooleanContents(N0->getValueType(0)) == 2125 ZeroOrOneBooleanContent)) { 2126 SDValue Op0 = N0; 2127 if (Op0.getOpcode() == ISD::TRUNCATE) 2128 Op0 = Op0.getOperand(0); 2129 2130 if ((Op0.getOpcode() == ISD::XOR) && 2131 Op0.getOperand(0).getOpcode() == ISD::SETCC && 2132 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 2133 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 2134 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 2135 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 2136 Cond); 2137 } 2138 if (Op0.getOpcode() == ISD::AND && 2139 isa<ConstantSDNode>(Op0.getOperand(1)) && 2140 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 2141 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 2142 if (Op0.getValueType().bitsGT(VT)) 2143 Op0 = DAG.getNode(ISD::AND, dl, VT, 2144 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 2145 DAG.getConstant(1, dl, VT)); 2146 else if (Op0.getValueType().bitsLT(VT)) 2147 Op0 = DAG.getNode(ISD::AND, dl, VT, 2148 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 2149 DAG.getConstant(1, dl, VT)); 2150 2151 return DAG.getSetCC(dl, VT, Op0, 2152 DAG.getConstant(0, dl, Op0.getValueType()), 2153 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2154 } 2155 if (Op0.getOpcode() == ISD::AssertZext && 2156 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 2157 return DAG.getSetCC(dl, VT, Op0, 2158 DAG.getConstant(0, dl, Op0.getValueType()), 2159 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2160 } 2161 } 2162 } 2163 2164 // These simplifications apply to splat vectors as well. 2165 // TODO: Handle more splat vector cases. 2166 if (auto *N1C = isConstOrConstSplat(N1)) { 2167 const APInt &C1 = N1C->getAPIntValue(); 2168 2169 APInt MinVal, MaxVal; 2170 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 2171 if (ISD::isSignedIntSetCC(Cond)) { 2172 MinVal = APInt::getSignedMinValue(OperandBitSize); 2173 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 2174 } else { 2175 MinVal = APInt::getMinValue(OperandBitSize); 2176 MaxVal = APInt::getMaxValue(OperandBitSize); 2177 } 2178 2179 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 2180 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 2181 // X >= MIN --> true 2182 if (C1 == MinVal) 2183 return DAG.getBoolConstant(true, dl, VT, OpVT); 2184 2185 if (!VT.isVector()) { // TODO: Support this for vectors. 2186 // X >= C0 --> X > (C0 - 1) 2187 APInt C = C1 - 1; 2188 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 2189 if ((DCI.isBeforeLegalizeOps() || 2190 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 2191 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 2192 isLegalICmpImmediate(C.getSExtValue())))) { 2193 return DAG.getSetCC(dl, VT, N0, 2194 DAG.getConstant(C, dl, N1.getValueType()), 2195 NewCC); 2196 } 2197 } 2198 } 2199 2200 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 2201 // X <= MAX --> true 2202 if (C1 == MaxVal) 2203 return DAG.getBoolConstant(true, dl, VT, OpVT); 2204 2205 // X <= C0 --> X < (C0 + 1) 2206 if (!VT.isVector()) { // TODO: Support this for vectors. 2207 APInt C = C1 + 1; 2208 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 2209 if ((DCI.isBeforeLegalizeOps() || 2210 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 2211 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 2212 isLegalICmpImmediate(C.getSExtValue())))) { 2213 return DAG.getSetCC(dl, VT, N0, 2214 DAG.getConstant(C, dl, N1.getValueType()), 2215 NewCC); 2216 } 2217 } 2218 } 2219 2220 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 2221 if (C1 == MinVal) 2222 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 2223 2224 // TODO: Support this for vectors after legalize ops. 2225 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2226 // Canonicalize setlt X, Max --> setne X, Max 2227 if (C1 == MaxVal) 2228 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 2229 2230 // If we have setult X, 1, turn it into seteq X, 0 2231 if (C1 == MinVal+1) 2232 return DAG.getSetCC(dl, VT, N0, 2233 DAG.getConstant(MinVal, dl, N0.getValueType()), 2234 ISD::SETEQ); 2235 } 2236 } 2237 2238 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 2239 if (C1 == MaxVal) 2240 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 2241 2242 // TODO: Support this for vectors after legalize ops. 2243 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2244 // Canonicalize setgt X, Min --> setne X, Min 2245 if (C1 == MinVal) 2246 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 2247 2248 // If we have setugt X, Max-1, turn it into seteq X, Max 2249 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) 2250 return DAG.getSetCC(dl, VT, N0, 2251 DAG.getConstant(MaxVal, dl, N0.getValueType()), 2252 ISD::SETEQ); 2253 } 2254 } 2255 2256 // If we have "setcc X, C0", check to see if we can shrink the immediate 2257 // by changing cc. 2258 // TODO: Support this for vectors after legalize ops. 2259 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2260 // SETUGT X, SINTMAX -> SETLT X, 0 2261 if (Cond == ISD::SETUGT && 2262 C1 == APInt::getSignedMaxValue(OperandBitSize)) 2263 return DAG.getSetCC(dl, VT, N0, 2264 DAG.getConstant(0, dl, N1.getValueType()), 2265 ISD::SETLT); 2266 2267 // SETULT X, SINTMIN -> SETGT X, -1 2268 if (Cond == ISD::SETULT && 2269 C1 == APInt::getSignedMinValue(OperandBitSize)) { 2270 SDValue ConstMinusOne = 2271 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 2272 N1.getValueType()); 2273 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 2274 } 2275 } 2276 } 2277 2278 // Back to non-vector simplifications. 2279 // TODO: Can we do these for vector splats? 2280 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 2281 const APInt &C1 = N1C->getAPIntValue(); 2282 2283 // Fold bit comparisons when we can. 2284 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2285 (VT == N0.getValueType() || 2286 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 2287 N0.getOpcode() == ISD::AND) { 2288 auto &DL = DAG.getDataLayout(); 2289 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2290 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 2291 !DCI.isBeforeLegalize()); 2292 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 2293 // Perform the xform if the AND RHS is a single bit. 2294 if (AndRHS->getAPIntValue().isPowerOf2()) { 2295 return DAG.getNode(ISD::TRUNCATE, dl, VT, 2296 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 2297 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, 2298 ShiftTy))); 2299 } 2300 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 2301 // (X & 8) == 8 --> (X & 8) >> 3 2302 // Perform the xform if C1 is a single bit. 2303 if (C1.isPowerOf2()) { 2304 return DAG.getNode(ISD::TRUNCATE, dl, VT, 2305 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 2306 DAG.getConstant(C1.logBase2(), dl, 2307 ShiftTy))); 2308 } 2309 } 2310 } 2311 } 2312 2313 if (C1.getMinSignedBits() <= 64 && 2314 !isLegalICmpImmediate(C1.getSExtValue())) { 2315 // (X & -256) == 256 -> (X >> 8) == 1 2316 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2317 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 2318 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2319 const APInt &AndRHSC = AndRHS->getAPIntValue(); 2320 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 2321 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 2322 auto &DL = DAG.getDataLayout(); 2323 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 2324 !DCI.isBeforeLegalize()); 2325 EVT CmpTy = N0.getValueType(); 2326 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 2327 DAG.getConstant(ShiftBits, dl, 2328 ShiftTy)); 2329 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); 2330 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 2331 } 2332 } 2333 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 2334 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 2335 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 2336 // X < 0x100000000 -> (X >> 32) < 1 2337 // X >= 0x100000000 -> (X >> 32) >= 1 2338 // X <= 0x0ffffffff -> (X >> 32) < 1 2339 // X > 0x0ffffffff -> (X >> 32) >= 1 2340 unsigned ShiftBits; 2341 APInt NewC = C1; 2342 ISD::CondCode NewCond = Cond; 2343 if (AdjOne) { 2344 ShiftBits = C1.countTrailingOnes(); 2345 NewC = NewC + 1; 2346 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 2347 } else { 2348 ShiftBits = C1.countTrailingZeros(); 2349 } 2350 NewC.lshrInPlace(ShiftBits); 2351 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 2352 isLegalICmpImmediate(NewC.getSExtValue())) { 2353 auto &DL = DAG.getDataLayout(); 2354 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 2355 !DCI.isBeforeLegalize()); 2356 EVT CmpTy = N0.getValueType(); 2357 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 2358 DAG.getConstant(ShiftBits, dl, ShiftTy)); 2359 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); 2360 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 2361 } 2362 } 2363 } 2364 } 2365 2366 if (isa<ConstantFPSDNode>(N0.getNode())) { 2367 // Constant fold or commute setcc. 2368 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); 2369 if (O.getNode()) return O; 2370 } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { 2371 // If the RHS of an FP comparison is a constant, simplify it away in 2372 // some cases. 2373 if (CFP->getValueAPF().isNaN()) { 2374 // If an operand is known to be a nan, we can fold it. 2375 switch (ISD::getUnorderedFlavor(Cond)) { 2376 default: llvm_unreachable("Unknown flavor!"); 2377 case 0: // Known false. 2378 return DAG.getBoolConstant(false, dl, VT, OpVT); 2379 case 1: // Known true. 2380 return DAG.getBoolConstant(true, dl, VT, OpVT); 2381 case 2: // Undefined. 2382 return DAG.getUNDEF(VT); 2383 } 2384 } 2385 2386 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 2387 // constant if knowing that the operand is non-nan is enough. We prefer to 2388 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 2389 // materialize 0.0. 2390 if (Cond == ISD::SETO || Cond == ISD::SETUO) 2391 return DAG.getSetCC(dl, VT, N0, N0, Cond); 2392 2393 // setcc (fneg x), C -> setcc swap(pred) x, -C 2394 if (N0.getOpcode() == ISD::FNEG) { 2395 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 2396 if (DCI.isBeforeLegalizeOps() || 2397 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 2398 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 2399 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 2400 } 2401 } 2402 2403 // If the condition is not legal, see if we can find an equivalent one 2404 // which is legal. 2405 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 2406 // If the comparison was an awkward floating-point == or != and one of 2407 // the comparison operands is infinity or negative infinity, convert the 2408 // condition to a less-awkward <= or >=. 2409 if (CFP->getValueAPF().isInfinity()) { 2410 if (CFP->getValueAPF().isNegative()) { 2411 if (Cond == ISD::SETOEQ && 2412 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 2413 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 2414 if (Cond == ISD::SETUEQ && 2415 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 2416 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 2417 if (Cond == ISD::SETUNE && 2418 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 2419 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 2420 if (Cond == ISD::SETONE && 2421 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 2422 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 2423 } else { 2424 if (Cond == ISD::SETOEQ && 2425 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 2426 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 2427 if (Cond == ISD::SETUEQ && 2428 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 2429 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 2430 if (Cond == ISD::SETUNE && 2431 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 2432 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 2433 if (Cond == ISD::SETONE && 2434 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 2435 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 2436 } 2437 } 2438 } 2439 } 2440 2441 if (N0 == N1) { 2442 // The sext(setcc()) => setcc() optimization relies on the appropriate 2443 // constant being emitted. 2444 2445 bool EqTrue = ISD::isTrueWhenEqual(Cond); 2446 2447 // We can always fold X == X for integer setcc's. 2448 if (N0.getValueType().isInteger()) 2449 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 2450 2451 unsigned UOF = ISD::getUnorderedFlavor(Cond); 2452 if (UOF == 2) // FP operators that are undefined on NaNs. 2453 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 2454 if (UOF == unsigned(EqTrue)) 2455 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 2456 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 2457 // if it is not already. 2458 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 2459 if (NewCond != Cond && 2460 (DCI.isBeforeLegalizeOps() || 2461 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 2462 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 2463 } 2464 2465 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2466 N0.getValueType().isInteger()) { 2467 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 2468 N0.getOpcode() == ISD::XOR) { 2469 // Simplify (X+Y) == (X+Z) --> Y == Z 2470 if (N0.getOpcode() == N1.getOpcode()) { 2471 if (N0.getOperand(0) == N1.getOperand(0)) 2472 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 2473 if (N0.getOperand(1) == N1.getOperand(1)) 2474 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 2475 if (isCommutativeBinOp(N0.getOpcode())) { 2476 // If X op Y == Y op X, try other combinations. 2477 if (N0.getOperand(0) == N1.getOperand(1)) 2478 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 2479 Cond); 2480 if (N0.getOperand(1) == N1.getOperand(0)) 2481 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 2482 Cond); 2483 } 2484 } 2485 2486 // If RHS is a legal immediate value for a compare instruction, we need 2487 // to be careful about increasing register pressure needlessly. 2488 bool LegalRHSImm = false; 2489 2490 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 2491 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2492 // Turn (X+C1) == C2 --> X == C2-C1 2493 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 2494 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2495 DAG.getConstant(RHSC->getAPIntValue()- 2496 LHSR->getAPIntValue(), 2497 dl, N0.getValueType()), Cond); 2498 } 2499 2500 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 2501 if (N0.getOpcode() == ISD::XOR) 2502 // If we know that all of the inverted bits are zero, don't bother 2503 // performing the inversion. 2504 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 2505 return 2506 DAG.getSetCC(dl, VT, N0.getOperand(0), 2507 DAG.getConstant(LHSR->getAPIntValue() ^ 2508 RHSC->getAPIntValue(), 2509 dl, N0.getValueType()), 2510 Cond); 2511 } 2512 2513 // Turn (C1-X) == C2 --> X == C1-C2 2514 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 2515 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 2516 return 2517 DAG.getSetCC(dl, VT, N0.getOperand(1), 2518 DAG.getConstant(SUBC->getAPIntValue() - 2519 RHSC->getAPIntValue(), 2520 dl, N0.getValueType()), 2521 Cond); 2522 } 2523 } 2524 2525 // Could RHSC fold directly into a compare? 2526 if (RHSC->getValueType(0).getSizeInBits() <= 64) 2527 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 2528 } 2529 2530 // Simplify (X+Z) == X --> Z == 0 2531 // Don't do this if X is an immediate that can fold into a cmp 2532 // instruction and X+Z has other uses. It could be an induction variable 2533 // chain, and the transform would increase register pressure. 2534 if (!LegalRHSImm || N0.getNode()->hasOneUse()) { 2535 if (N0.getOperand(0) == N1) 2536 return DAG.getSetCC(dl, VT, N0.getOperand(1), 2537 DAG.getConstant(0, dl, N0.getValueType()), Cond); 2538 if (N0.getOperand(1) == N1) { 2539 if (isCommutativeBinOp(N0.getOpcode())) 2540 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2541 DAG.getConstant(0, dl, N0.getValueType()), 2542 Cond); 2543 if (N0.getNode()->hasOneUse()) { 2544 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); 2545 auto &DL = DAG.getDataLayout(); 2546 // (Z-X) == X --> Z == X<<1 2547 SDValue SH = DAG.getNode( 2548 ISD::SHL, dl, N1.getValueType(), N1, 2549 DAG.getConstant(1, dl, 2550 getShiftAmountTy(N1.getValueType(), DL, 2551 !DCI.isBeforeLegalize()))); 2552 if (!DCI.isCalledByLegalizer()) 2553 DCI.AddToWorklist(SH.getNode()); 2554 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); 2555 } 2556 } 2557 } 2558 } 2559 2560 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 2561 N1.getOpcode() == ISD::XOR) { 2562 // Simplify X == (X+Z) --> Z == 0 2563 if (N1.getOperand(0) == N0) 2564 return DAG.getSetCC(dl, VT, N1.getOperand(1), 2565 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2566 if (N1.getOperand(1) == N0) { 2567 if (isCommutativeBinOp(N1.getOpcode())) 2568 return DAG.getSetCC(dl, VT, N1.getOperand(0), 2569 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2570 if (N1.getNode()->hasOneUse()) { 2571 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); 2572 auto &DL = DAG.getDataLayout(); 2573 // X == (Z-X) --> X<<1 == Z 2574 SDValue SH = DAG.getNode( 2575 ISD::SHL, dl, N1.getValueType(), N0, 2576 DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL, 2577 !DCI.isBeforeLegalize()))); 2578 if (!DCI.isCalledByLegalizer()) 2579 DCI.AddToWorklist(SH.getNode()); 2580 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); 2581 } 2582 } 2583 } 2584 2585 if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl)) 2586 return V; 2587 } 2588 2589 // Fold away ALL boolean setcc's. 2590 SDValue Temp; 2591 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 2592 EVT OpVT = N0.getValueType(); 2593 switch (Cond) { 2594 default: llvm_unreachable("Unknown integer setcc!"); 2595 case ISD::SETEQ: // X == Y -> ~(X^Y) 2596 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 2597 N0 = DAG.getNOT(dl, Temp, OpVT); 2598 if (!DCI.isCalledByLegalizer()) 2599 DCI.AddToWorklist(Temp.getNode()); 2600 break; 2601 case ISD::SETNE: // X != Y --> (X^Y) 2602 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 2603 break; 2604 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 2605 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 2606 Temp = DAG.getNOT(dl, N0, OpVT); 2607 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 2608 if (!DCI.isCalledByLegalizer()) 2609 DCI.AddToWorklist(Temp.getNode()); 2610 break; 2611 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 2612 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 2613 Temp = DAG.getNOT(dl, N1, OpVT); 2614 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 2615 if (!DCI.isCalledByLegalizer()) 2616 DCI.AddToWorklist(Temp.getNode()); 2617 break; 2618 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 2619 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 2620 Temp = DAG.getNOT(dl, N0, OpVT); 2621 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 2622 if (!DCI.isCalledByLegalizer()) 2623 DCI.AddToWorklist(Temp.getNode()); 2624 break; 2625 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 2626 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 2627 Temp = DAG.getNOT(dl, N1, OpVT); 2628 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 2629 break; 2630 } 2631 if (VT.getScalarType() != MVT::i1) { 2632 if (!DCI.isCalledByLegalizer()) 2633 DCI.AddToWorklist(N0.getNode()); 2634 // FIXME: If running after legalize, we probably can't do this. 2635 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 2636 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 2637 } 2638 return N0; 2639 } 2640 2641 // Could not fold it. 2642 return SDValue(); 2643 } 2644 2645 /// Returns true (and the GlobalValue and the offset) if the node is a 2646 /// GlobalAddress + offset. 2647 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, 2648 int64_t &Offset) const { 2649 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 2650 GA = GASD->getGlobal(); 2651 Offset += GASD->getOffset(); 2652 return true; 2653 } 2654 2655 if (N->getOpcode() == ISD::ADD) { 2656 SDValue N1 = N->getOperand(0); 2657 SDValue N2 = N->getOperand(1); 2658 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 2659 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 2660 Offset += V->getSExtValue(); 2661 return true; 2662 } 2663 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 2664 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 2665 Offset += V->getSExtValue(); 2666 return true; 2667 } 2668 } 2669 } 2670 2671 return false; 2672 } 2673 2674 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 2675 DAGCombinerInfo &DCI) const { 2676 // Default implementation: no optimization. 2677 return SDValue(); 2678 } 2679 2680 //===----------------------------------------------------------------------===// 2681 // Inline Assembler Implementation Methods 2682 //===----------------------------------------------------------------------===// 2683 2684 TargetLowering::ConstraintType 2685 TargetLowering::getConstraintType(StringRef Constraint) const { 2686 unsigned S = Constraint.size(); 2687 2688 if (S == 1) { 2689 switch (Constraint[0]) { 2690 default: break; 2691 case 'r': return C_RegisterClass; 2692 case 'm': // memory 2693 case 'o': // offsetable 2694 case 'V': // not offsetable 2695 return C_Memory; 2696 case 'i': // Simple Integer or Relocatable Constant 2697 case 'n': // Simple Integer 2698 case 'E': // Floating Point Constant 2699 case 'F': // Floating Point Constant 2700 case 's': // Relocatable Constant 2701 case 'p': // Address. 2702 case 'X': // Allow ANY value. 2703 case 'I': // Target registers. 2704 case 'J': 2705 case 'K': 2706 case 'L': 2707 case 'M': 2708 case 'N': 2709 case 'O': 2710 case 'P': 2711 case '<': 2712 case '>': 2713 return C_Other; 2714 } 2715 } 2716 2717 if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { 2718 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 2719 return C_Memory; 2720 return C_Register; 2721 } 2722 return C_Unknown; 2723 } 2724 2725 /// Try to replace an X constraint, which matches anything, with another that 2726 /// has more specific requirements based on the type of the corresponding 2727 /// operand. 2728 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ 2729 if (ConstraintVT.isInteger()) 2730 return "r"; 2731 if (ConstraintVT.isFloatingPoint()) 2732 return "f"; // works for many targets 2733 return nullptr; 2734 } 2735 2736 /// Lower the specified operand into the Ops vector. 2737 /// If it is invalid, don't add anything to Ops. 2738 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 2739 std::string &Constraint, 2740 std::vector<SDValue> &Ops, 2741 SelectionDAG &DAG) const { 2742 2743 if (Constraint.length() > 1) return; 2744 2745 char ConstraintLetter = Constraint[0]; 2746 switch (ConstraintLetter) { 2747 default: break; 2748 case 'X': // Allows any operand; labels (basic block) use this. 2749 if (Op.getOpcode() == ISD::BasicBlock) { 2750 Ops.push_back(Op); 2751 return; 2752 } 2753 LLVM_FALLTHROUGH; 2754 case 'i': // Simple Integer or Relocatable Constant 2755 case 'n': // Simple Integer 2756 case 's': { // Relocatable Constant 2757 // These operands are interested in values of the form (GV+C), where C may 2758 // be folded in as an offset of GV, or it may be explicitly added. Also, it 2759 // is possible and fine if either GV or C are missing. 2760 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2761 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 2762 2763 // If we have "(add GV, C)", pull out GV/C 2764 if (Op.getOpcode() == ISD::ADD) { 2765 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2766 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 2767 if (!C || !GA) { 2768 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 2769 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 2770 } 2771 if (!C || !GA) { 2772 C = nullptr; 2773 GA = nullptr; 2774 } 2775 } 2776 2777 // If we find a valid operand, map to the TargetXXX version so that the 2778 // value itself doesn't get selected. 2779 if (GA) { // Either &GV or &GV+C 2780 if (ConstraintLetter != 'n') { 2781 int64_t Offs = GA->getOffset(); 2782 if (C) Offs += C->getZExtValue(); 2783 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 2784 C ? SDLoc(C) : SDLoc(), 2785 Op.getValueType(), Offs)); 2786 } 2787 return; 2788 } 2789 if (C) { // just C, no GV. 2790 // Simple constants are not allowed for 's'. 2791 if (ConstraintLetter != 's') { 2792 // gcc prints these as sign extended. Sign extend value to 64 bits 2793 // now; without this it would get ZExt'd later in 2794 // ScheduleDAGSDNodes::EmitNode, which is very generic. 2795 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), 2796 SDLoc(C), MVT::i64)); 2797 } 2798 return; 2799 } 2800 break; 2801 } 2802 } 2803 } 2804 2805 std::pair<unsigned, const TargetRegisterClass *> 2806 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 2807 StringRef Constraint, 2808 MVT VT) const { 2809 if (Constraint.empty() || Constraint[0] != '{') 2810 return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr)); 2811 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); 2812 2813 // Remove the braces from around the name. 2814 StringRef RegName(Constraint.data()+1, Constraint.size()-2); 2815 2816 std::pair<unsigned, const TargetRegisterClass*> R = 2817 std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr)); 2818 2819 // Figure out which register class contains this reg. 2820 for (const TargetRegisterClass *RC : RI->regclasses()) { 2821 // If none of the value types for this register class are valid, we 2822 // can't use it. For example, 64-bit reg classes on 32-bit targets. 2823 if (!isLegalRC(*RI, *RC)) 2824 continue; 2825 2826 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 2827 I != E; ++I) { 2828 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 2829 std::pair<unsigned, const TargetRegisterClass*> S = 2830 std::make_pair(*I, RC); 2831 2832 // If this register class has the requested value type, return it, 2833 // otherwise keep searching and return the first class found 2834 // if no other is found which explicitly has the requested type. 2835 if (RI->isTypeLegalForClass(*RC, VT)) 2836 return S; 2837 if (!R.second) 2838 R = S; 2839 } 2840 } 2841 } 2842 2843 return R; 2844 } 2845 2846 //===----------------------------------------------------------------------===// 2847 // Constraint Selection. 2848 2849 /// Return true of this is an input operand that is a matching constraint like 2850 /// "4". 2851 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 2852 assert(!ConstraintCode.empty() && "No known constraint!"); 2853 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 2854 } 2855 2856 /// If this is an input matching constraint, this method returns the output 2857 /// operand it matches. 2858 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 2859 assert(!ConstraintCode.empty() && "No known constraint!"); 2860 return atoi(ConstraintCode.c_str()); 2861 } 2862 2863 /// Split up the constraint string from the inline assembly value into the 2864 /// specific constraints and their prefixes, and also tie in the associated 2865 /// operand values. 2866 /// If this returns an empty vector, and if the constraint string itself 2867 /// isn't empty, there was an error parsing. 2868 TargetLowering::AsmOperandInfoVector 2869 TargetLowering::ParseConstraints(const DataLayout &DL, 2870 const TargetRegisterInfo *TRI, 2871 ImmutableCallSite CS) const { 2872 /// Information about all of the constraints. 2873 AsmOperandInfoVector ConstraintOperands; 2874 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 2875 unsigned maCount = 0; // Largest number of multiple alternative constraints. 2876 2877 // Do a prepass over the constraints, canonicalizing them, and building up the 2878 // ConstraintOperands list. 2879 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 2880 unsigned ResNo = 0; // ResNo - The result number of the next output. 2881 2882 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 2883 ConstraintOperands.emplace_back(std::move(CI)); 2884 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 2885 2886 // Update multiple alternative constraint count. 2887 if (OpInfo.multipleAlternatives.size() > maCount) 2888 maCount = OpInfo.multipleAlternatives.size(); 2889 2890 OpInfo.ConstraintVT = MVT::Other; 2891 2892 // Compute the value type for each operand. 2893 switch (OpInfo.Type) { 2894 case InlineAsm::isOutput: 2895 // Indirect outputs just consume an argument. 2896 if (OpInfo.isIndirect) { 2897 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2898 break; 2899 } 2900 2901 // The return value of the call is this value. As such, there is no 2902 // corresponding argument. 2903 assert(!CS.getType()->isVoidTy() && 2904 "Bad inline asm!"); 2905 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 2906 OpInfo.ConstraintVT = 2907 getSimpleValueType(DL, STy->getElementType(ResNo)); 2908 } else { 2909 assert(ResNo == 0 && "Asm only has one result!"); 2910 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 2911 } 2912 ++ResNo; 2913 break; 2914 case InlineAsm::isInput: 2915 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2916 break; 2917 case InlineAsm::isClobber: 2918 // Nothing to do. 2919 break; 2920 } 2921 2922 if (OpInfo.CallOperandVal) { 2923 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 2924 if (OpInfo.isIndirect) { 2925 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 2926 if (!PtrTy) 2927 report_fatal_error("Indirect operand for inline asm not a pointer!"); 2928 OpTy = PtrTy->getElementType(); 2929 } 2930 2931 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 2932 if (StructType *STy = dyn_cast<StructType>(OpTy)) 2933 if (STy->getNumElements() == 1) 2934 OpTy = STy->getElementType(0); 2935 2936 // If OpTy is not a single value, it may be a struct/union that we 2937 // can tile with integers. 2938 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 2939 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 2940 switch (BitSize) { 2941 default: break; 2942 case 1: 2943 case 8: 2944 case 16: 2945 case 32: 2946 case 64: 2947 case 128: 2948 OpInfo.ConstraintVT = 2949 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 2950 break; 2951 } 2952 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 2953 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 2954 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 2955 } else { 2956 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 2957 } 2958 } 2959 } 2960 2961 // If we have multiple alternative constraints, select the best alternative. 2962 if (!ConstraintOperands.empty()) { 2963 if (maCount) { 2964 unsigned bestMAIndex = 0; 2965 int bestWeight = -1; 2966 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 2967 int weight = -1; 2968 unsigned maIndex; 2969 // Compute the sums of the weights for each alternative, keeping track 2970 // of the best (highest weight) one so far. 2971 for (maIndex = 0; maIndex < maCount; ++maIndex) { 2972 int weightSum = 0; 2973 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2974 cIndex != eIndex; ++cIndex) { 2975 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2976 if (OpInfo.Type == InlineAsm::isClobber) 2977 continue; 2978 2979 // If this is an output operand with a matching input operand, 2980 // look up the matching input. If their types mismatch, e.g. one 2981 // is an integer, the other is floating point, or their sizes are 2982 // different, flag it as an maCantMatch. 2983 if (OpInfo.hasMatchingInput()) { 2984 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2985 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2986 if ((OpInfo.ConstraintVT.isInteger() != 2987 Input.ConstraintVT.isInteger()) || 2988 (OpInfo.ConstraintVT.getSizeInBits() != 2989 Input.ConstraintVT.getSizeInBits())) { 2990 weightSum = -1; // Can't match. 2991 break; 2992 } 2993 } 2994 } 2995 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 2996 if (weight == -1) { 2997 weightSum = -1; 2998 break; 2999 } 3000 weightSum += weight; 3001 } 3002 // Update best. 3003 if (weightSum > bestWeight) { 3004 bestWeight = weightSum; 3005 bestMAIndex = maIndex; 3006 } 3007 } 3008 3009 // Now select chosen alternative in each constraint. 3010 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3011 cIndex != eIndex; ++cIndex) { 3012 AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; 3013 if (cInfo.Type == InlineAsm::isClobber) 3014 continue; 3015 cInfo.selectAlternative(bestMAIndex); 3016 } 3017 } 3018 } 3019 3020 // Check and hook up tied operands, choose constraint code to use. 3021 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3022 cIndex != eIndex; ++cIndex) { 3023 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 3024 3025 // If this is an output operand with a matching input operand, look up the 3026 // matching input. If their types mismatch, e.g. one is an integer, the 3027 // other is floating point, or their sizes are different, flag it as an 3028 // error. 3029 if (OpInfo.hasMatchingInput()) { 3030 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 3031 3032 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 3033 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 3034 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 3035 OpInfo.ConstraintVT); 3036 std::pair<unsigned, const TargetRegisterClass *> InputRC = 3037 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 3038 Input.ConstraintVT); 3039 if ((OpInfo.ConstraintVT.isInteger() != 3040 Input.ConstraintVT.isInteger()) || 3041 (MatchRC.second != InputRC.second)) { 3042 report_fatal_error("Unsupported asm: input constraint" 3043 " with a matching output constraint of" 3044 " incompatible type!"); 3045 } 3046 } 3047 } 3048 } 3049 3050 return ConstraintOperands; 3051 } 3052 3053 /// Return an integer indicating how general CT is. 3054 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 3055 switch (CT) { 3056 case TargetLowering::C_Other: 3057 case TargetLowering::C_Unknown: 3058 return 0; 3059 case TargetLowering::C_Register: 3060 return 1; 3061 case TargetLowering::C_RegisterClass: 3062 return 2; 3063 case TargetLowering::C_Memory: 3064 return 3; 3065 } 3066 llvm_unreachable("Invalid constraint type"); 3067 } 3068 3069 /// Examine constraint type and operand type and determine a weight value. 3070 /// This object must already have been set up with the operand type 3071 /// and the current alternative constraint selected. 3072 TargetLowering::ConstraintWeight 3073 TargetLowering::getMultipleConstraintMatchWeight( 3074 AsmOperandInfo &info, int maIndex) const { 3075 InlineAsm::ConstraintCodeVector *rCodes; 3076 if (maIndex >= (int)info.multipleAlternatives.size()) 3077 rCodes = &info.Codes; 3078 else 3079 rCodes = &info.multipleAlternatives[maIndex].Codes; 3080 ConstraintWeight BestWeight = CW_Invalid; 3081 3082 // Loop over the options, keeping track of the most general one. 3083 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 3084 ConstraintWeight weight = 3085 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 3086 if (weight > BestWeight) 3087 BestWeight = weight; 3088 } 3089 3090 return BestWeight; 3091 } 3092 3093 /// Examine constraint type and operand type and determine a weight value. 3094 /// This object must already have been set up with the operand type 3095 /// and the current alternative constraint selected. 3096 TargetLowering::ConstraintWeight 3097 TargetLowering::getSingleConstraintMatchWeight( 3098 AsmOperandInfo &info, const char *constraint) const { 3099 ConstraintWeight weight = CW_Invalid; 3100 Value *CallOperandVal = info.CallOperandVal; 3101 // If we don't have a value, we can't do a match, 3102 // but allow it at the lowest weight. 3103 if (!CallOperandVal) 3104 return CW_Default; 3105 // Look at the constraint type. 3106 switch (*constraint) { 3107 case 'i': // immediate integer. 3108 case 'n': // immediate integer with a known value. 3109 if (isa<ConstantInt>(CallOperandVal)) 3110 weight = CW_Constant; 3111 break; 3112 case 's': // non-explicit intregal immediate. 3113 if (isa<GlobalValue>(CallOperandVal)) 3114 weight = CW_Constant; 3115 break; 3116 case 'E': // immediate float if host format. 3117 case 'F': // immediate float. 3118 if (isa<ConstantFP>(CallOperandVal)) 3119 weight = CW_Constant; 3120 break; 3121 case '<': // memory operand with autodecrement. 3122 case '>': // memory operand with autoincrement. 3123 case 'm': // memory operand. 3124 case 'o': // offsettable memory operand 3125 case 'V': // non-offsettable memory operand 3126 weight = CW_Memory; 3127 break; 3128 case 'r': // general register. 3129 case 'g': // general register, memory operand or immediate integer. 3130 // note: Clang converts "g" to "imr". 3131 if (CallOperandVal->getType()->isIntegerTy()) 3132 weight = CW_Register; 3133 break; 3134 case 'X': // any operand. 3135 default: 3136 weight = CW_Default; 3137 break; 3138 } 3139 return weight; 3140 } 3141 3142 /// If there are multiple different constraints that we could pick for this 3143 /// operand (e.g. "imr") try to pick the 'best' one. 3144 /// This is somewhat tricky: constraints fall into four classes: 3145 /// Other -> immediates and magic values 3146 /// Register -> one specific register 3147 /// RegisterClass -> a group of regs 3148 /// Memory -> memory 3149 /// Ideally, we would pick the most specific constraint possible: if we have 3150 /// something that fits into a register, we would pick it. The problem here 3151 /// is that if we have something that could either be in a register or in 3152 /// memory that use of the register could cause selection of *other* 3153 /// operands to fail: they might only succeed if we pick memory. Because of 3154 /// this the heuristic we use is: 3155 /// 3156 /// 1) If there is an 'other' constraint, and if the operand is valid for 3157 /// that constraint, use it. This makes us take advantage of 'i' 3158 /// constraints when available. 3159 /// 2) Otherwise, pick the most general constraint present. This prefers 3160 /// 'm' over 'r', for example. 3161 /// 3162 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 3163 const TargetLowering &TLI, 3164 SDValue Op, SelectionDAG *DAG) { 3165 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 3166 unsigned BestIdx = 0; 3167 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 3168 int BestGenerality = -1; 3169 3170 // Loop over the options, keeping track of the most general one. 3171 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 3172 TargetLowering::ConstraintType CType = 3173 TLI.getConstraintType(OpInfo.Codes[i]); 3174 3175 // If this is an 'other' constraint, see if the operand is valid for it. 3176 // For example, on X86 we might have an 'rI' constraint. If the operand 3177 // is an integer in the range [0..31] we want to use I (saving a load 3178 // of a register), otherwise we must use 'r'. 3179 if (CType == TargetLowering::C_Other && Op.getNode()) { 3180 assert(OpInfo.Codes[i].size() == 1 && 3181 "Unhandled multi-letter 'other' constraint"); 3182 std::vector<SDValue> ResultOps; 3183 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 3184 ResultOps, *DAG); 3185 if (!ResultOps.empty()) { 3186 BestType = CType; 3187 BestIdx = i; 3188 break; 3189 } 3190 } 3191 3192 // Things with matching constraints can only be registers, per gcc 3193 // documentation. This mainly affects "g" constraints. 3194 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 3195 continue; 3196 3197 // This constraint letter is more general than the previous one, use it. 3198 int Generality = getConstraintGenerality(CType); 3199 if (Generality > BestGenerality) { 3200 BestType = CType; 3201 BestIdx = i; 3202 BestGenerality = Generality; 3203 } 3204 } 3205 3206 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 3207 OpInfo.ConstraintType = BestType; 3208 } 3209 3210 /// Determines the constraint code and constraint type to use for the specific 3211 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 3212 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 3213 SDValue Op, 3214 SelectionDAG *DAG) const { 3215 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 3216 3217 // Single-letter constraints ('r') are very common. 3218 if (OpInfo.Codes.size() == 1) { 3219 OpInfo.ConstraintCode = OpInfo.Codes[0]; 3220 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 3221 } else { 3222 ChooseConstraint(OpInfo, *this, Op, DAG); 3223 } 3224 3225 // 'X' matches anything. 3226 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 3227 // Labels and constants are handled elsewhere ('X' is the only thing 3228 // that matches labels). For Functions, the type here is the type of 3229 // the result, which is not what we want to look at; leave them alone. 3230 Value *v = OpInfo.CallOperandVal; 3231 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 3232 OpInfo.CallOperandVal = v; 3233 return; 3234 } 3235 3236 // Otherwise, try to resolve it to something we know about by looking at 3237 // the actual operand type. 3238 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 3239 OpInfo.ConstraintCode = Repl; 3240 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 3241 } 3242 } 3243 } 3244 3245 /// \brief Given an exact SDIV by a constant, create a multiplication 3246 /// with the multiplicative inverse of the constant. 3247 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d, 3248 const SDLoc &dl, SelectionDAG &DAG, 3249 std::vector<SDNode *> &Created) { 3250 assert(d != 0 && "Division by zero!"); 3251 3252 // Shift the value upfront if it is even, so the LSB is one. 3253 unsigned ShAmt = d.countTrailingZeros(); 3254 if (ShAmt) { 3255 // TODO: For UDIV use SRL instead of SRA. 3256 SDValue Amt = 3257 DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(), 3258 DAG.getDataLayout())); 3259 SDNodeFlags Flags; 3260 Flags.setExact(true); 3261 Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, Flags); 3262 Created.push_back(Op1.getNode()); 3263 d.ashrInPlace(ShAmt); 3264 } 3265 3266 // Calculate the multiplicative inverse, using Newton's method. 3267 APInt t, xn = d; 3268 while ((t = d*xn) != 1) 3269 xn *= APInt(d.getBitWidth(), 2) - t; 3270 3271 SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType()); 3272 SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2); 3273 Created.push_back(Mul.getNode()); 3274 return Mul; 3275 } 3276 3277 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 3278 SelectionDAG &DAG, 3279 std::vector<SDNode *> *Created) const { 3280 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 3281 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3282 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 3283 return SDValue(N,0); // Lower SDIV as SDIV 3284 return SDValue(); 3285 } 3286 3287 /// \brief Given an ISD::SDIV node expressing a divide by constant, 3288 /// return a DAG expression to select that will generate the same value by 3289 /// multiplying by a magic number. 3290 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 3291 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor, 3292 SelectionDAG &DAG, bool IsAfterLegalization, 3293 std::vector<SDNode *> *Created) const { 3294 assert(Created && "No vector to hold sdiv ops."); 3295 3296 EVT VT = N->getValueType(0); 3297 SDLoc dl(N); 3298 3299 // Check to see if we can do this. 3300 // FIXME: We should be more aggressive here. 3301 if (!isTypeLegal(VT)) 3302 return SDValue(); 3303 3304 // If the sdiv has an 'exact' bit we can use a simpler lowering. 3305 if (N->getFlags().hasExact()) 3306 return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created); 3307 3308 APInt::ms magics = Divisor.magic(); 3309 3310 // Multiply the numerator (operand 0) by the magic value 3311 // FIXME: We should support doing a MUL in a wider type 3312 SDValue Q; 3313 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) : 3314 isOperationLegalOrCustom(ISD::MULHS, VT)) 3315 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0), 3316 DAG.getConstant(magics.m, dl, VT)); 3317 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) : 3318 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) 3319 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), 3320 N->getOperand(0), 3321 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 3322 else 3323 return SDValue(); // No mulhs or equvialent 3324 // If d > 0 and m < 0, add the numerator 3325 if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 3326 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); 3327 Created->push_back(Q.getNode()); 3328 } 3329 // If d < 0 and m > 0, subtract the numerator. 3330 if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 3331 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0)); 3332 Created->push_back(Q.getNode()); 3333 } 3334 auto &DL = DAG.getDataLayout(); 3335 // Shift right algebraic if shift value is nonzero 3336 if (magics.s > 0) { 3337 Q = DAG.getNode( 3338 ISD::SRA, dl, VT, Q, 3339 DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); 3340 Created->push_back(Q.getNode()); 3341 } 3342 // Extract the sign bit and add it to the quotient 3343 SDValue T = 3344 DAG.getNode(ISD::SRL, dl, VT, Q, 3345 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, 3346 getShiftAmountTy(Q.getValueType(), DL))); 3347 Created->push_back(T.getNode()); 3348 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 3349 } 3350 3351 /// \brief Given an ISD::UDIV node expressing a divide by constant, 3352 /// return a DAG expression to select that will generate the same value by 3353 /// multiplying by a magic number. 3354 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 3355 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor, 3356 SelectionDAG &DAG, bool IsAfterLegalization, 3357 std::vector<SDNode *> *Created) const { 3358 assert(Created && "No vector to hold udiv ops."); 3359 3360 EVT VT = N->getValueType(0); 3361 SDLoc dl(N); 3362 auto &DL = DAG.getDataLayout(); 3363 3364 // Check to see if we can do this. 3365 // FIXME: We should be more aggressive here. 3366 if (!isTypeLegal(VT)) 3367 return SDValue(); 3368 3369 // FIXME: We should use a narrower constant when the upper 3370 // bits are known to be zero. 3371 APInt::mu magics = Divisor.magicu(); 3372 3373 SDValue Q = N->getOperand(0); 3374 3375 // If the divisor is even, we can avoid using the expensive fixup by shifting 3376 // the divided value upfront. 3377 if (magics.a != 0 && !Divisor[0]) { 3378 unsigned Shift = Divisor.countTrailingZeros(); 3379 Q = DAG.getNode( 3380 ISD::SRL, dl, VT, Q, 3381 DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL))); 3382 Created->push_back(Q.getNode()); 3383 3384 // Get magic number for the shifted divisor. 3385 magics = Divisor.lshr(Shift).magicu(Shift); 3386 assert(magics.a == 0 && "Should use cheap fixup now"); 3387 } 3388 3389 // Multiply the numerator (operand 0) by the magic value 3390 // FIXME: We should support doing a MUL in a wider type 3391 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) : 3392 isOperationLegalOrCustom(ISD::MULHU, VT)) 3393 Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT)); 3394 else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) : 3395 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) 3396 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q, 3397 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 3398 else 3399 return SDValue(); // No mulhu or equivalent 3400 3401 Created->push_back(Q.getNode()); 3402 3403 if (magics.a == 0) { 3404 assert(magics.s < Divisor.getBitWidth() && 3405 "We shouldn't generate an undefined shift!"); 3406 return DAG.getNode( 3407 ISD::SRL, dl, VT, Q, 3408 DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); 3409 } else { 3410 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); 3411 Created->push_back(NPQ.getNode()); 3412 NPQ = DAG.getNode( 3413 ISD::SRL, dl, VT, NPQ, 3414 DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL))); 3415 Created->push_back(NPQ.getNode()); 3416 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 3417 Created->push_back(NPQ.getNode()); 3418 return DAG.getNode( 3419 ISD::SRL, dl, VT, NPQ, 3420 DAG.getConstant(magics.s - 1, dl, 3421 getShiftAmountTy(NPQ.getValueType(), DL))); 3422 } 3423 } 3424 3425 bool TargetLowering:: 3426 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 3427 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 3428 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 3429 "be a constant integer"); 3430 return true; 3431 } 3432 3433 return false; 3434 } 3435 3436 //===----------------------------------------------------------------------===// 3437 // Legalization Utilities 3438 //===----------------------------------------------------------------------===// 3439 3440 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 3441 SDValue LHS, SDValue RHS, 3442 SmallVectorImpl<SDValue> &Result, 3443 EVT HiLoVT, SelectionDAG &DAG, 3444 MulExpansionKind Kind, SDValue LL, 3445 SDValue LH, SDValue RL, SDValue RH) const { 3446 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 3447 Opcode == ISD::SMUL_LOHI); 3448 3449 bool HasMULHS = (Kind == MulExpansionKind::Always) || 3450 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 3451 bool HasMULHU = (Kind == MulExpansionKind::Always) || 3452 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 3453 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 3454 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 3455 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 3456 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 3457 3458 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 3459 return false; 3460 3461 unsigned OuterBitSize = VT.getScalarSizeInBits(); 3462 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 3463 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 3464 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 3465 3466 // LL, LH, RL, and RH must be either all NULL or all set to a value. 3467 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 3468 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 3469 3470 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 3471 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 3472 bool Signed) -> bool { 3473 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 3474 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 3475 Hi = SDValue(Lo.getNode(), 1); 3476 return true; 3477 } 3478 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 3479 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 3480 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 3481 return true; 3482 } 3483 return false; 3484 }; 3485 3486 SDValue Lo, Hi; 3487 3488 if (!LL.getNode() && !RL.getNode() && 3489 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 3490 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 3491 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 3492 } 3493 3494 if (!LL.getNode()) 3495 return false; 3496 3497 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 3498 if (DAG.MaskedValueIsZero(LHS, HighMask) && 3499 DAG.MaskedValueIsZero(RHS, HighMask)) { 3500 // The inputs are both zero-extended. 3501 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 3502 Result.push_back(Lo); 3503 Result.push_back(Hi); 3504 if (Opcode != ISD::MUL) { 3505 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 3506 Result.push_back(Zero); 3507 Result.push_back(Zero); 3508 } 3509 return true; 3510 } 3511 } 3512 3513 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 3514 RHSSB > InnerBitSize) { 3515 // The input values are both sign-extended. 3516 // TODO non-MUL case? 3517 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 3518 Result.push_back(Lo); 3519 Result.push_back(Hi); 3520 return true; 3521 } 3522 } 3523 3524 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 3525 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 3526 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 3527 // FIXME getShiftAmountTy does not always return a sensible result when VT 3528 // is an illegal type, and so the type may be too small to fit the shift 3529 // amount. Override it with i32. The shift will have to be legalized. 3530 ShiftAmountTy = MVT::i32; 3531 } 3532 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 3533 3534 if (!LH.getNode() && !RH.getNode() && 3535 isOperationLegalOrCustom(ISD::SRL, VT) && 3536 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 3537 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 3538 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 3539 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 3540 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 3541 } 3542 3543 if (!LH.getNode()) 3544 return false; 3545 3546 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 3547 return false; 3548 3549 Result.push_back(Lo); 3550 3551 if (Opcode == ISD::MUL) { 3552 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 3553 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 3554 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 3555 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 3556 Result.push_back(Hi); 3557 return true; 3558 } 3559 3560 // Compute the full width result. 3561 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 3562 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3563 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 3564 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3565 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 3566 }; 3567 3568 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 3569 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 3570 return false; 3571 3572 // This is effectively the add part of a multiply-add of half-sized operands, 3573 // so it cannot overflow. 3574 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 3575 3576 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 3577 return false; 3578 3579 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 3580 Merge(Lo, Hi)); 3581 3582 SDValue Carry = Next.getValue(1); 3583 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 3584 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 3585 3586 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 3587 return false; 3588 3589 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 3590 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 3591 Carry); 3592 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 3593 3594 if (Opcode == ISD::SMUL_LOHI) { 3595 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 3596 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 3597 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 3598 3599 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 3600 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 3601 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 3602 } 3603 3604 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 3605 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 3606 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 3607 return true; 3608 } 3609 3610 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 3611 SelectionDAG &DAG, MulExpansionKind Kind, 3612 SDValue LL, SDValue LH, SDValue RL, 3613 SDValue RH) const { 3614 SmallVector<SDValue, 2> Result; 3615 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 3616 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 3617 DAG, Kind, LL, LH, RL, RH); 3618 if (Ok) { 3619 assert(Result.size() == 2); 3620 Lo = Result[0]; 3621 Hi = Result[1]; 3622 } 3623 return Ok; 3624 } 3625 3626 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 3627 SelectionDAG &DAG) const { 3628 EVT VT = Node->getOperand(0).getValueType(); 3629 EVT NVT = Node->getValueType(0); 3630 SDLoc dl(SDValue(Node, 0)); 3631 3632 // FIXME: Only f32 to i64 conversions are supported. 3633 if (VT != MVT::f32 || NVT != MVT::i64) 3634 return false; 3635 3636 // Expand f32 -> i64 conversion 3637 // This algorithm comes from compiler-rt's implementation of fixsfdi: 3638 // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c 3639 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), 3640 VT.getSizeInBits()); 3641 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 3642 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 3643 SDValue Bias = DAG.getConstant(127, dl, IntVT); 3644 SDValue SignMask = DAG.getConstant(APInt::getSignMask(VT.getSizeInBits()), dl, 3645 IntVT); 3646 SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT); 3647 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 3648 3649 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0)); 3650 3651 auto &DL = DAG.getDataLayout(); 3652 SDValue ExponentBits = DAG.getNode( 3653 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 3654 DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL))); 3655 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 3656 3657 SDValue Sign = DAG.getNode( 3658 ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 3659 DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL))); 3660 Sign = DAG.getSExtOrTrunc(Sign, dl, NVT); 3661 3662 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 3663 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 3664 DAG.getConstant(0x00800000, dl, IntVT)); 3665 3666 R = DAG.getZExtOrTrunc(R, dl, NVT); 3667 3668 R = DAG.getSelectCC( 3669 dl, Exponent, ExponentLoBit, 3670 DAG.getNode(ISD::SHL, dl, NVT, R, 3671 DAG.getZExtOrTrunc( 3672 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 3673 dl, getShiftAmountTy(IntVT, DL))), 3674 DAG.getNode(ISD::SRL, dl, NVT, R, 3675 DAG.getZExtOrTrunc( 3676 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 3677 dl, getShiftAmountTy(IntVT, DL))), 3678 ISD::SETGT); 3679 3680 SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT, 3681 DAG.getNode(ISD::XOR, dl, NVT, R, Sign), 3682 Sign); 3683 3684 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 3685 DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT); 3686 return true; 3687 } 3688 3689 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 3690 SelectionDAG &DAG) const { 3691 SDLoc SL(LD); 3692 SDValue Chain = LD->getChain(); 3693 SDValue BasePTR = LD->getBasePtr(); 3694 EVT SrcVT = LD->getMemoryVT(); 3695 ISD::LoadExtType ExtType = LD->getExtensionType(); 3696 3697 unsigned NumElem = SrcVT.getVectorNumElements(); 3698 3699 EVT SrcEltVT = SrcVT.getScalarType(); 3700 EVT DstEltVT = LD->getValueType(0).getScalarType(); 3701 3702 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 3703 assert(SrcEltVT.isByteSized()); 3704 3705 EVT PtrVT = BasePTR.getValueType(); 3706 3707 SmallVector<SDValue, 8> Vals; 3708 SmallVector<SDValue, 8> LoadChains; 3709 3710 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 3711 SDValue ScalarLoad = 3712 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 3713 LD->getPointerInfo().getWithOffset(Idx * Stride), 3714 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 3715 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3716 3717 BasePTR = DAG.getNode(ISD::ADD, SL, PtrVT, BasePTR, 3718 DAG.getConstant(Stride, SL, PtrVT)); 3719 3720 Vals.push_back(ScalarLoad.getValue(0)); 3721 LoadChains.push_back(ScalarLoad.getValue(1)); 3722 } 3723 3724 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 3725 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); 3726 3727 return DAG.getMergeValues({ Value, NewChain }, SL); 3728 } 3729 3730 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 3731 SelectionDAG &DAG) const { 3732 SDLoc SL(ST); 3733 3734 SDValue Chain = ST->getChain(); 3735 SDValue BasePtr = ST->getBasePtr(); 3736 SDValue Value = ST->getValue(); 3737 EVT StVT = ST->getMemoryVT(); 3738 3739 // The type of the data we want to save 3740 EVT RegVT = Value.getValueType(); 3741 EVT RegSclVT = RegVT.getScalarType(); 3742 3743 // The type of data as saved in memory. 3744 EVT MemSclVT = StVT.getScalarType(); 3745 3746 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 3747 unsigned NumElem = StVT.getVectorNumElements(); 3748 3749 // A vector must always be stored in memory as-is, i.e. without any padding 3750 // between the elements, since various code depend on it, e.g. in the 3751 // handling of a bitcast of a vector type to int, which may be done with a 3752 // vector store followed by an integer load. A vector that does not have 3753 // elements that are byte-sized must therefore be stored as an integer 3754 // built out of the extracted vector elements. 3755 if (!MemSclVT.isByteSized()) { 3756 unsigned NumBits = StVT.getSizeInBits(); 3757 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 3758 3759 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 3760 3761 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 3762 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 3763 DAG.getConstant(Idx, SL, IdxVT)); 3764 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 3765 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 3766 unsigned ShiftIntoIdx = 3767 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 3768 SDValue ShiftAmount = 3769 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 3770 SDValue ShiftedElt = 3771 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 3772 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 3773 } 3774 3775 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 3776 ST->getAlignment(), ST->getMemOperand()->getFlags(), 3777 ST->getAAInfo()); 3778 } 3779 3780 // Store Stride in bytes 3781 unsigned Stride = MemSclVT.getSizeInBits() / 8; 3782 assert (Stride && "Zero stride!"); 3783 // Extract each of the elements from the original vector and save them into 3784 // memory individually. 3785 SmallVector<SDValue, 8> Stores; 3786 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 3787 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 3788 DAG.getConstant(Idx, SL, IdxVT)); 3789 3790 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 3791 3792 // This scalar TruncStore may be illegal, but we legalize it later. 3793 SDValue Store = DAG.getTruncStore( 3794 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 3795 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 3796 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 3797 3798 Stores.push_back(Store); 3799 } 3800 3801 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 3802 } 3803 3804 std::pair<SDValue, SDValue> 3805 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 3806 assert(LD->getAddressingMode() == ISD::UNINDEXED && 3807 "unaligned indexed loads not implemented!"); 3808 SDValue Chain = LD->getChain(); 3809 SDValue Ptr = LD->getBasePtr(); 3810 EVT VT = LD->getValueType(0); 3811 EVT LoadedVT = LD->getMemoryVT(); 3812 SDLoc dl(LD); 3813 auto &MF = DAG.getMachineFunction(); 3814 3815 if (VT.isFloatingPoint() || VT.isVector()) { 3816 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 3817 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 3818 if (!isOperationLegalOrCustom(ISD::LOAD, intVT)) { 3819 // Scalarize the load and let the individual components be handled. 3820 SDValue Scalarized = scalarizeVectorLoad(LD, DAG); 3821 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); 3822 } 3823 3824 // Expand to a (misaligned) integer load of the same size, 3825 // then bitconvert to floating point or vector. 3826 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 3827 LD->getMemOperand()); 3828 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 3829 if (LoadedVT != VT) 3830 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 3831 ISD::ANY_EXTEND, dl, VT, Result); 3832 3833 return std::make_pair(Result, newLoad.getValue(1)); 3834 } 3835 3836 // Copy the value to a (aligned) stack slot using (unaligned) integer 3837 // loads and stores, then do a (aligned) load from the stack slot. 3838 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 3839 unsigned LoadedBytes = LoadedVT.getStoreSize(); 3840 unsigned RegBytes = RegVT.getSizeInBits() / 8; 3841 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 3842 3843 // Make sure the stack slot is also aligned for the register type. 3844 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 3845 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 3846 SmallVector<SDValue, 8> Stores; 3847 SDValue StackPtr = StackBase; 3848 unsigned Offset = 0; 3849 3850 EVT PtrVT = Ptr.getValueType(); 3851 EVT StackPtrVT = StackPtr.getValueType(); 3852 3853 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 3854 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 3855 3856 // Do all but one copies using the full register width. 3857 for (unsigned i = 1; i < NumRegs; i++) { 3858 // Load one integer register's worth from the original location. 3859 SDValue Load = DAG.getLoad( 3860 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 3861 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 3862 LD->getAAInfo()); 3863 // Follow the load with a store to the stack slot. Remember the store. 3864 Stores.push_back(DAG.getStore( 3865 Load.getValue(1), dl, Load, StackPtr, 3866 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 3867 // Increment the pointers. 3868 Offset += RegBytes; 3869 3870 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 3871 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 3872 } 3873 3874 // The last copy may be partial. Do an extending load. 3875 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 3876 8 * (LoadedBytes - Offset)); 3877 SDValue Load = 3878 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 3879 LD->getPointerInfo().getWithOffset(Offset), MemVT, 3880 MinAlign(LD->getAlignment(), Offset), 3881 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3882 // Follow the load with a store to the stack slot. Remember the store. 3883 // On big-endian machines this requires a truncating store to ensure 3884 // that the bits end up in the right place. 3885 Stores.push_back(DAG.getTruncStore( 3886 Load.getValue(1), dl, Load, StackPtr, 3887 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 3888 3889 // The order of the stores doesn't matter - say it with a TokenFactor. 3890 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 3891 3892 // Finally, perform the original load only redirected to the stack slot. 3893 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 3894 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 3895 LoadedVT); 3896 3897 // Callers expect a MERGE_VALUES node. 3898 return std::make_pair(Load, TF); 3899 } 3900 3901 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 3902 "Unaligned load of unsupported type."); 3903 3904 // Compute the new VT that is half the size of the old one. This is an 3905 // integer MVT. 3906 unsigned NumBits = LoadedVT.getSizeInBits(); 3907 EVT NewLoadedVT; 3908 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 3909 NumBits >>= 1; 3910 3911 unsigned Alignment = LD->getAlignment(); 3912 unsigned IncrementSize = NumBits / 8; 3913 ISD::LoadExtType HiExtType = LD->getExtensionType(); 3914 3915 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 3916 if (HiExtType == ISD::NON_EXTLOAD) 3917 HiExtType = ISD::ZEXTLOAD; 3918 3919 // Load the value in two parts 3920 SDValue Lo, Hi; 3921 if (DAG.getDataLayout().isLittleEndian()) { 3922 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 3923 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 3924 LD->getAAInfo()); 3925 3926 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 3927 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 3928 LD->getPointerInfo().getWithOffset(IncrementSize), 3929 NewLoadedVT, MinAlign(Alignment, IncrementSize), 3930 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3931 } else { 3932 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 3933 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 3934 LD->getAAInfo()); 3935 3936 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 3937 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 3938 LD->getPointerInfo().getWithOffset(IncrementSize), 3939 NewLoadedVT, MinAlign(Alignment, IncrementSize), 3940 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3941 } 3942 3943 // aggregate the two parts 3944 SDValue ShiftAmount = 3945 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 3946 DAG.getDataLayout())); 3947 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 3948 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 3949 3950 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 3951 Hi.getValue(1)); 3952 3953 return std::make_pair(Result, TF); 3954 } 3955 3956 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 3957 SelectionDAG &DAG) const { 3958 assert(ST->getAddressingMode() == ISD::UNINDEXED && 3959 "unaligned indexed stores not implemented!"); 3960 SDValue Chain = ST->getChain(); 3961 SDValue Ptr = ST->getBasePtr(); 3962 SDValue Val = ST->getValue(); 3963 EVT VT = Val.getValueType(); 3964 int Alignment = ST->getAlignment(); 3965 auto &MF = DAG.getMachineFunction(); 3966 3967 SDLoc dl(ST); 3968 if (ST->getMemoryVT().isFloatingPoint() || 3969 ST->getMemoryVT().isVector()) { 3970 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 3971 if (isTypeLegal(intVT)) { 3972 if (!isOperationLegalOrCustom(ISD::STORE, intVT)) { 3973 // Scalarize the store and let the individual components be handled. 3974 SDValue Result = scalarizeVectorStore(ST, DAG); 3975 3976 return Result; 3977 } 3978 // Expand to a bitconvert of the value to the integer type of the 3979 // same size, then a (misaligned) int store. 3980 // FIXME: Does not handle truncating floating point stores! 3981 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 3982 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 3983 Alignment, ST->getMemOperand()->getFlags()); 3984 return Result; 3985 } 3986 // Do a (aligned) store to a stack slot, then copy from the stack slot 3987 // to the final destination using (unaligned) integer loads and stores. 3988 EVT StoredVT = ST->getMemoryVT(); 3989 MVT RegVT = 3990 getRegisterType(*DAG.getContext(), 3991 EVT::getIntegerVT(*DAG.getContext(), 3992 StoredVT.getSizeInBits())); 3993 EVT PtrVT = Ptr.getValueType(); 3994 unsigned StoredBytes = StoredVT.getStoreSize(); 3995 unsigned RegBytes = RegVT.getSizeInBits() / 8; 3996 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 3997 3998 // Make sure the stack slot is also aligned for the register type. 3999 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 4000 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 4001 4002 // Perform the original store, only redirected to the stack slot. 4003 SDValue Store = DAG.getTruncStore( 4004 Chain, dl, Val, StackPtr, 4005 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoredVT); 4006 4007 EVT StackPtrVT = StackPtr.getValueType(); 4008 4009 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 4010 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 4011 SmallVector<SDValue, 8> Stores; 4012 unsigned Offset = 0; 4013 4014 // Do all but one copies using the full register width. 4015 for (unsigned i = 1; i < NumRegs; i++) { 4016 // Load one integer register's worth from the stack slot. 4017 SDValue Load = DAG.getLoad( 4018 RegVT, dl, Store, StackPtr, 4019 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 4020 // Store it to the final location. Remember the store. 4021 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 4022 ST->getPointerInfo().getWithOffset(Offset), 4023 MinAlign(ST->getAlignment(), Offset), 4024 ST->getMemOperand()->getFlags())); 4025 // Increment the pointers. 4026 Offset += RegBytes; 4027 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 4028 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 4029 } 4030 4031 // The last store may be partial. Do a truncating store. On big-endian 4032 // machines this requires an extending load from the stack slot to ensure 4033 // that the bits are in the right place. 4034 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 4035 8 * (StoredBytes - Offset)); 4036 4037 // Load from the stack slot. 4038 SDValue Load = DAG.getExtLoad( 4039 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 4040 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT); 4041 4042 Stores.push_back( 4043 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 4044 ST->getPointerInfo().getWithOffset(Offset), MemVT, 4045 MinAlign(ST->getAlignment(), Offset), 4046 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 4047 // The order of the stores doesn't matter - say it with a TokenFactor. 4048 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 4049 return Result; 4050 } 4051 4052 assert(ST->getMemoryVT().isInteger() && 4053 !ST->getMemoryVT().isVector() && 4054 "Unaligned store of unknown type."); 4055 // Get the half-size VT 4056 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); 4057 int NumBits = NewStoredVT.getSizeInBits(); 4058 int IncrementSize = NumBits / 8; 4059 4060 // Divide the stored value in two parts. 4061 SDValue ShiftAmount = 4062 DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(), 4063 DAG.getDataLayout())); 4064 SDValue Lo = Val; 4065 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 4066 4067 // Store the two parts 4068 SDValue Store1, Store2; 4069 Store1 = DAG.getTruncStore(Chain, dl, 4070 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 4071 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 4072 ST->getMemOperand()->getFlags()); 4073 4074 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 4075 Alignment = MinAlign(Alignment, IncrementSize); 4076 Store2 = DAG.getTruncStore( 4077 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 4078 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 4079 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 4080 4081 SDValue Result = 4082 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 4083 return Result; 4084 } 4085 4086 SDValue 4087 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 4088 const SDLoc &DL, EVT DataVT, 4089 SelectionDAG &DAG, 4090 bool IsCompressedMemory) const { 4091 SDValue Increment; 4092 EVT AddrVT = Addr.getValueType(); 4093 EVT MaskVT = Mask.getValueType(); 4094 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 4095 "Incompatible types of Data and Mask"); 4096 if (IsCompressedMemory) { 4097 // Incrementing the pointer according to number of '1's in the mask. 4098 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 4099 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 4100 if (MaskIntVT.getSizeInBits() < 32) { 4101 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 4102 MaskIntVT = MVT::i32; 4103 } 4104 4105 // Count '1's with POPCNT. 4106 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 4107 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 4108 // Scale is an element size in bytes. 4109 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 4110 AddrVT); 4111 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 4112 } else 4113 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 4114 4115 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 4116 } 4117 4118 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 4119 SDValue Idx, 4120 EVT VecVT, 4121 const SDLoc &dl) { 4122 if (isa<ConstantSDNode>(Idx)) 4123 return Idx; 4124 4125 EVT IdxVT = Idx.getValueType(); 4126 unsigned NElts = VecVT.getVectorNumElements(); 4127 if (isPowerOf2_32(NElts)) { 4128 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 4129 Log2_32(NElts)); 4130 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 4131 DAG.getConstant(Imm, dl, IdxVT)); 4132 } 4133 4134 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 4135 DAG.getConstant(NElts - 1, dl, IdxVT)); 4136 } 4137 4138 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 4139 SDValue VecPtr, EVT VecVT, 4140 SDValue Index) const { 4141 SDLoc dl(Index); 4142 // Make sure the index type is big enough to compute in. 4143 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 4144 4145 EVT EltVT = VecVT.getVectorElementType(); 4146 4147 // Calculate the element offset and add it to the pointer. 4148 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 4149 assert(EltSize * 8 == EltVT.getSizeInBits() && 4150 "Converting bits to bytes lost precision"); 4151 4152 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 4153 4154 EVT IdxVT = Index.getValueType(); 4155 4156 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 4157 DAG.getConstant(EltSize, dl, IdxVT)); 4158 return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index); 4159 } 4160 4161 //===----------------------------------------------------------------------===// 4162 // Implementation of Emulated TLS Model 4163 //===----------------------------------------------------------------------===// 4164 4165 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 4166 SelectionDAG &DAG) const { 4167 // Access to address of TLS varialbe xyz is lowered to a function call: 4168 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 4169 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4170 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 4171 SDLoc dl(GA); 4172 4173 ArgListTy Args; 4174 ArgListEntry Entry; 4175 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 4176 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 4177 StringRef EmuTlsVarName(NameString); 4178 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 4179 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 4180 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 4181 Entry.Ty = VoidPtrType; 4182 Args.push_back(Entry); 4183 4184 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 4185 4186 TargetLowering::CallLoweringInfo CLI(DAG); 4187 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 4188 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 4189 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 4190 4191 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 4192 // At last for X86 targets, maybe good for other targets too? 4193 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 4194 MFI.setAdjustsStack(true); // Is this only for X86 target? 4195 MFI.setHasCalls(true); 4196 4197 assert((GA->getOffset() == 0) && 4198 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 4199 return CallResult.first; 4200 } 4201 4202 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 4203 SelectionDAG &DAG) const { 4204 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 4205 if (!isCtlzFast()) 4206 return SDValue(); 4207 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 4208 SDLoc dl(Op); 4209 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 4210 if (C->isNullValue() && CC == ISD::SETEQ) { 4211 EVT VT = Op.getOperand(0).getValueType(); 4212 SDValue Zext = Op.getOperand(0); 4213 if (VT.bitsLT(MVT::i32)) { 4214 VT = MVT::i32; 4215 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 4216 } 4217 unsigned Log2b = Log2_32(VT.getSizeInBits()); 4218 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 4219 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 4220 DAG.getConstant(Log2b, dl, MVT::i32)); 4221 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 4222 } 4223 } 4224 return SDValue(); 4225 } 4226