1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/CodeGenCommonISel.h" 17 #include "llvm/CodeGen/MachineFrameInfo.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineJumpTableInfo.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/SelectionDAG.h" 22 #include "llvm/CodeGen/TargetRegisterInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/DivisionByConstantInfo.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore following attributes because they don't affect the 61 // call sequence. 62 AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs()); 63 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 64 Attribute::DereferenceableOrNull, Attribute::NoAlias, 65 Attribute::NonNull, Attribute::NoUndef}) 66 CallerAttrs.removeAttribute(Attr); 67 68 if (CallerAttrs.hasAttributes()) 69 return false; 70 71 // It's not safe to eliminate the sign / zero extension of the return value. 72 if (CallerAttrs.contains(Attribute::ZExt) || 73 CallerAttrs.contains(Attribute::SExt)) 74 return false; 75 76 // Check if the only use is a function return node. 77 return isUsedByReturnOnly(Node, Chain); 78 } 79 80 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 81 const uint32_t *CallerPreservedMask, 82 const SmallVectorImpl<CCValAssign> &ArgLocs, 83 const SmallVectorImpl<SDValue> &OutVals) const { 84 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 85 const CCValAssign &ArgLoc = ArgLocs[I]; 86 if (!ArgLoc.isRegLoc()) 87 continue; 88 MCRegister Reg = ArgLoc.getLocReg(); 89 // Only look at callee saved registers. 90 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 91 continue; 92 // Check that we pass the value used for the caller. 93 // (We look for a CopyFromReg reading a virtual register that is used 94 // for the function live-in value of register Reg) 95 SDValue Value = OutVals[I]; 96 if (Value->getOpcode() == ISD::AssertZext) 97 Value = Value.getOperand(0); 98 if (Value->getOpcode() != ISD::CopyFromReg) 99 return false; 100 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 101 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 102 return false; 103 } 104 return true; 105 } 106 107 /// Set CallLoweringInfo attribute flags based on a call instruction 108 /// and called function attributes. 109 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 110 unsigned ArgIdx) { 111 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 112 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 113 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 114 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 115 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 116 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 117 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 118 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 119 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 120 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 121 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 122 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 123 Alignment = Call->getParamStackAlign(ArgIdx); 124 IndirectType = nullptr; 125 assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 && 126 "multiple ABI attributes?"); 127 if (IsByVal) { 128 IndirectType = Call->getParamByValType(ArgIdx); 129 if (!Alignment) 130 Alignment = Call->getParamAlign(ArgIdx); 131 } 132 if (IsPreallocated) 133 IndirectType = Call->getParamPreallocatedType(ArgIdx); 134 if (IsInAlloca) 135 IndirectType = Call->getParamInAllocaType(ArgIdx); 136 if (IsSRet) 137 IndirectType = Call->getParamStructRetType(ArgIdx); 138 } 139 140 /// Generate a libcall taking the given operands as arguments and returning a 141 /// result of type RetVT. 142 std::pair<SDValue, SDValue> 143 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 144 ArrayRef<SDValue> Ops, 145 MakeLibCallOptions CallOptions, 146 const SDLoc &dl, 147 SDValue InChain) const { 148 if (!InChain) 149 InChain = DAG.getEntryNode(); 150 151 TargetLowering::ArgListTy Args; 152 Args.reserve(Ops.size()); 153 154 TargetLowering::ArgListEntry Entry; 155 for (unsigned i = 0; i < Ops.size(); ++i) { 156 SDValue NewOp = Ops[i]; 157 Entry.Node = NewOp; 158 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 159 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 160 CallOptions.IsSExt); 161 Entry.IsZExt = !Entry.IsSExt; 162 163 if (CallOptions.IsSoften && 164 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 165 Entry.IsSExt = Entry.IsZExt = false; 166 } 167 Args.push_back(Entry); 168 } 169 170 if (LC == RTLIB::UNKNOWN_LIBCALL) 171 report_fatal_error("Unsupported library call operation!"); 172 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 173 getPointerTy(DAG.getDataLayout())); 174 175 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 176 TargetLowering::CallLoweringInfo CLI(DAG); 177 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 178 bool zeroExtend = !signExtend; 179 180 if (CallOptions.IsSoften && 181 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 182 signExtend = zeroExtend = false; 183 } 184 185 CLI.setDebugLoc(dl) 186 .setChain(InChain) 187 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 188 .setNoReturn(CallOptions.DoesNotReturn) 189 .setDiscardResult(!CallOptions.IsReturnValueUsed) 190 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 191 .setSExtResult(signExtend) 192 .setZExtResult(zeroExtend); 193 return LowerCallTo(CLI); 194 } 195 196 bool TargetLowering::findOptimalMemOpLowering( 197 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 198 unsigned SrcAS, const AttributeList &FuncAttributes) const { 199 if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() && 200 Op.getSrcAlign() < Op.getDstAlign()) 201 return false; 202 203 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 204 205 if (VT == MVT::Other) { 206 // Use the largest integer type whose alignment constraints are satisfied. 207 // We only need to check DstAlign here as SrcAlign is always greater or 208 // equal to DstAlign (or zero). 209 VT = MVT::i64; 210 if (Op.isFixedDstAlign()) 211 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 212 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 213 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 214 assert(VT.isInteger()); 215 216 // Find the largest legal integer type. 217 MVT LVT = MVT::i64; 218 while (!isTypeLegal(LVT)) 219 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 220 assert(LVT.isInteger()); 221 222 // If the type we've chosen is larger than the largest legal integer type 223 // then use that instead. 224 if (VT.bitsGT(LVT)) 225 VT = LVT; 226 } 227 228 unsigned NumMemOps = 0; 229 uint64_t Size = Op.size(); 230 while (Size) { 231 unsigned VTSize = VT.getSizeInBits() / 8; 232 while (VTSize > Size) { 233 // For now, only use non-vector load / store's for the left-over pieces. 234 EVT NewVT = VT; 235 unsigned NewVTSize; 236 237 bool Found = false; 238 if (VT.isVector() || VT.isFloatingPoint()) { 239 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 240 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 241 isSafeMemOpType(NewVT.getSimpleVT())) 242 Found = true; 243 else if (NewVT == MVT::i64 && 244 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 245 isSafeMemOpType(MVT::f64)) { 246 // i64 is usually not legal on 32-bit targets, but f64 may be. 247 NewVT = MVT::f64; 248 Found = true; 249 } 250 } 251 252 if (!Found) { 253 do { 254 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 255 if (NewVT == MVT::i8) 256 break; 257 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 258 } 259 NewVTSize = NewVT.getSizeInBits() / 8; 260 261 // If the new VT cannot cover all of the remaining bits, then consider 262 // issuing a (or a pair of) unaligned and overlapping load / store. 263 bool Fast; 264 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 265 allowsMisalignedMemoryAccesses( 266 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 267 MachineMemOperand::MONone, &Fast) && 268 Fast) 269 VTSize = Size; 270 else { 271 VT = NewVT; 272 VTSize = NewVTSize; 273 } 274 } 275 276 if (++NumMemOps > Limit) 277 return false; 278 279 MemOps.push_back(VT); 280 Size -= VTSize; 281 } 282 283 return true; 284 } 285 286 /// Soften the operands of a comparison. This code is shared among BR_CC, 287 /// SELECT_CC, and SETCC handlers. 288 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 289 SDValue &NewLHS, SDValue &NewRHS, 290 ISD::CondCode &CCCode, 291 const SDLoc &dl, const SDValue OldLHS, 292 const SDValue OldRHS) const { 293 SDValue Chain; 294 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 295 OldRHS, Chain); 296 } 297 298 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 299 SDValue &NewLHS, SDValue &NewRHS, 300 ISD::CondCode &CCCode, 301 const SDLoc &dl, const SDValue OldLHS, 302 const SDValue OldRHS, 303 SDValue &Chain, 304 bool IsSignaling) const { 305 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 306 // not supporting it. We can update this code when libgcc provides such 307 // functions. 308 309 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 310 && "Unsupported setcc type!"); 311 312 // Expand into one or more soft-fp libcall(s). 313 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 314 bool ShouldInvertCC = false; 315 switch (CCCode) { 316 case ISD::SETEQ: 317 case ISD::SETOEQ: 318 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 319 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 320 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 321 break; 322 case ISD::SETNE: 323 case ISD::SETUNE: 324 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 325 (VT == MVT::f64) ? RTLIB::UNE_F64 : 326 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 327 break; 328 case ISD::SETGE: 329 case ISD::SETOGE: 330 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 331 (VT == MVT::f64) ? RTLIB::OGE_F64 : 332 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 333 break; 334 case ISD::SETLT: 335 case ISD::SETOLT: 336 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 337 (VT == MVT::f64) ? RTLIB::OLT_F64 : 338 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 339 break; 340 case ISD::SETLE: 341 case ISD::SETOLE: 342 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 343 (VT == MVT::f64) ? RTLIB::OLE_F64 : 344 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 345 break; 346 case ISD::SETGT: 347 case ISD::SETOGT: 348 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 349 (VT == MVT::f64) ? RTLIB::OGT_F64 : 350 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 351 break; 352 case ISD::SETO: 353 ShouldInvertCC = true; 354 LLVM_FALLTHROUGH; 355 case ISD::SETUO: 356 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 357 (VT == MVT::f64) ? RTLIB::UO_F64 : 358 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 359 break; 360 case ISD::SETONE: 361 // SETONE = O && UNE 362 ShouldInvertCC = true; 363 LLVM_FALLTHROUGH; 364 case ISD::SETUEQ: 365 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 366 (VT == MVT::f64) ? RTLIB::UO_F64 : 367 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 368 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 369 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 370 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 371 break; 372 default: 373 // Invert CC for unordered comparisons 374 ShouldInvertCC = true; 375 switch (CCCode) { 376 case ISD::SETULT: 377 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 378 (VT == MVT::f64) ? RTLIB::OGE_F64 : 379 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 380 break; 381 case ISD::SETULE: 382 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 383 (VT == MVT::f64) ? RTLIB::OGT_F64 : 384 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 385 break; 386 case ISD::SETUGT: 387 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 388 (VT == MVT::f64) ? RTLIB::OLE_F64 : 389 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 390 break; 391 case ISD::SETUGE: 392 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 393 (VT == MVT::f64) ? RTLIB::OLT_F64 : 394 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 395 break; 396 default: llvm_unreachable("Do not know how to soften this setcc!"); 397 } 398 } 399 400 // Use the target specific return value for comparions lib calls. 401 EVT RetVT = getCmpLibcallReturnType(); 402 SDValue Ops[2] = {NewLHS, NewRHS}; 403 TargetLowering::MakeLibCallOptions CallOptions; 404 EVT OpsVT[2] = { OldLHS.getValueType(), 405 OldRHS.getValueType() }; 406 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 407 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 408 NewLHS = Call.first; 409 NewRHS = DAG.getConstant(0, dl, RetVT); 410 411 CCCode = getCmpLibcallCC(LC1); 412 if (ShouldInvertCC) { 413 assert(RetVT.isInteger()); 414 CCCode = getSetCCInverse(CCCode, RetVT); 415 } 416 417 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 418 // Update Chain. 419 Chain = Call.second; 420 } else { 421 EVT SetCCVT = 422 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 423 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 424 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 425 CCCode = getCmpLibcallCC(LC2); 426 if (ShouldInvertCC) 427 CCCode = getSetCCInverse(CCCode, RetVT); 428 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 429 if (Chain) 430 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 431 Call2.second); 432 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 433 Tmp.getValueType(), Tmp, NewLHS); 434 NewRHS = SDValue(); 435 } 436 } 437 438 /// Return the entry encoding for a jump table in the current function. The 439 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 440 unsigned TargetLowering::getJumpTableEncoding() const { 441 // In non-pic modes, just use the address of a block. 442 if (!isPositionIndependent()) 443 return MachineJumpTableInfo::EK_BlockAddress; 444 445 // In PIC mode, if the target supports a GPRel32 directive, use it. 446 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 447 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 448 449 // Otherwise, use a label difference. 450 return MachineJumpTableInfo::EK_LabelDifference32; 451 } 452 453 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 454 SelectionDAG &DAG) const { 455 // If our PIC model is GP relative, use the global offset table as the base. 456 unsigned JTEncoding = getJumpTableEncoding(); 457 458 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 459 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 460 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 461 462 return Table; 463 } 464 465 /// This returns the relocation base for the given PIC jumptable, the same as 466 /// getPICJumpTableRelocBase, but as an MCExpr. 467 const MCExpr * 468 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 469 unsigned JTI,MCContext &Ctx) const{ 470 // The normal PIC reloc base is the label at the start of the jump table. 471 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 472 } 473 474 bool 475 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 476 const TargetMachine &TM = getTargetMachine(); 477 const GlobalValue *GV = GA->getGlobal(); 478 479 // If the address is not even local to this DSO we will have to load it from 480 // a got and then add the offset. 481 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 482 return false; 483 484 // If the code is position independent we will have to add a base register. 485 if (isPositionIndependent()) 486 return false; 487 488 // Otherwise we can do it. 489 return true; 490 } 491 492 //===----------------------------------------------------------------------===// 493 // Optimization Methods 494 //===----------------------------------------------------------------------===// 495 496 /// If the specified instruction has a constant integer operand and there are 497 /// bits set in that constant that are not demanded, then clear those bits and 498 /// return true. 499 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 500 const APInt &DemandedBits, 501 const APInt &DemandedElts, 502 TargetLoweringOpt &TLO) const { 503 SDLoc DL(Op); 504 unsigned Opcode = Op.getOpcode(); 505 506 // Do target-specific constant optimization. 507 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 508 return TLO.New.getNode(); 509 510 // FIXME: ISD::SELECT, ISD::SELECT_CC 511 switch (Opcode) { 512 default: 513 break; 514 case ISD::XOR: 515 case ISD::AND: 516 case ISD::OR: { 517 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 518 if (!Op1C || Op1C->isOpaque()) 519 return false; 520 521 // If this is a 'not' op, don't touch it because that's a canonical form. 522 const APInt &C = Op1C->getAPIntValue(); 523 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 524 return false; 525 526 if (!C.isSubsetOf(DemandedBits)) { 527 EVT VT = Op.getValueType(); 528 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 529 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 530 return TLO.CombineTo(Op, NewOp); 531 } 532 533 break; 534 } 535 } 536 537 return false; 538 } 539 540 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 541 const APInt &DemandedBits, 542 TargetLoweringOpt &TLO) const { 543 EVT VT = Op.getValueType(); 544 APInt DemandedElts = VT.isVector() 545 ? APInt::getAllOnes(VT.getVectorNumElements()) 546 : APInt(1, 1); 547 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 548 } 549 550 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 551 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 552 /// generalized for targets with other types of implicit widening casts. 553 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 554 const APInt &Demanded, 555 TargetLoweringOpt &TLO) const { 556 assert(Op.getNumOperands() == 2 && 557 "ShrinkDemandedOp only supports binary operators!"); 558 assert(Op.getNode()->getNumValues() == 1 && 559 "ShrinkDemandedOp only supports nodes with one result!"); 560 561 SelectionDAG &DAG = TLO.DAG; 562 SDLoc dl(Op); 563 564 // Early return, as this function cannot handle vector types. 565 if (Op.getValueType().isVector()) 566 return false; 567 568 // Don't do this if the node has another user, which may require the 569 // full value. 570 if (!Op.getNode()->hasOneUse()) 571 return false; 572 573 // Search for the smallest integer type with free casts to and from 574 // Op's type. For expedience, just check power-of-2 integer types. 575 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 576 unsigned DemandedSize = Demanded.getActiveBits(); 577 unsigned SmallVTBits = DemandedSize; 578 if (!isPowerOf2_32(SmallVTBits)) 579 SmallVTBits = NextPowerOf2(SmallVTBits); 580 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 581 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 582 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 583 TLI.isZExtFree(SmallVT, Op.getValueType())) { 584 // We found a type with free casts. 585 SDValue X = DAG.getNode( 586 Op.getOpcode(), dl, SmallVT, 587 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 588 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 589 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 590 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 591 return TLO.CombineTo(Op, Z); 592 } 593 } 594 return false; 595 } 596 597 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 598 DAGCombinerInfo &DCI) const { 599 SelectionDAG &DAG = DCI.DAG; 600 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 601 !DCI.isBeforeLegalizeOps()); 602 KnownBits Known; 603 604 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 605 if (Simplified) { 606 DCI.AddToWorklist(Op.getNode()); 607 DCI.CommitTargetLoweringOpt(TLO); 608 } 609 return Simplified; 610 } 611 612 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 613 const APInt &DemandedElts, 614 DAGCombinerInfo &DCI) const { 615 SelectionDAG &DAG = DCI.DAG; 616 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 617 !DCI.isBeforeLegalizeOps()); 618 KnownBits Known; 619 620 bool Simplified = 621 SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO); 622 if (Simplified) { 623 DCI.AddToWorklist(Op.getNode()); 624 DCI.CommitTargetLoweringOpt(TLO); 625 } 626 return Simplified; 627 } 628 629 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 630 KnownBits &Known, 631 TargetLoweringOpt &TLO, 632 unsigned Depth, 633 bool AssumeSingleUse) const { 634 EVT VT = Op.getValueType(); 635 636 // TODO: We can probably do more work on calculating the known bits and 637 // simplifying the operations for scalable vectors, but for now we just 638 // bail out. 639 if (VT.isScalableVector()) { 640 // Pretend we don't know anything for now. 641 Known = KnownBits(DemandedBits.getBitWidth()); 642 return false; 643 } 644 645 APInt DemandedElts = VT.isVector() 646 ? APInt::getAllOnes(VT.getVectorNumElements()) 647 : APInt(1, 1); 648 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 649 AssumeSingleUse); 650 } 651 652 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 653 // TODO: Under what circumstances can we create nodes? Constant folding? 654 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 655 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 656 SelectionDAG &DAG, unsigned Depth) const { 657 // Limit search depth. 658 if (Depth >= SelectionDAG::MaxRecursionDepth) 659 return SDValue(); 660 661 // Ignore UNDEFs. 662 if (Op.isUndef()) 663 return SDValue(); 664 665 // Not demanding any bits/elts from Op. 666 if (DemandedBits == 0 || DemandedElts == 0) 667 return DAG.getUNDEF(Op.getValueType()); 668 669 bool IsLE = DAG.getDataLayout().isLittleEndian(); 670 unsigned NumElts = DemandedElts.getBitWidth(); 671 unsigned BitWidth = DemandedBits.getBitWidth(); 672 KnownBits LHSKnown, RHSKnown; 673 switch (Op.getOpcode()) { 674 case ISD::BITCAST: { 675 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 676 EVT SrcVT = Src.getValueType(); 677 EVT DstVT = Op.getValueType(); 678 if (SrcVT == DstVT) 679 return Src; 680 681 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 682 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 683 if (NumSrcEltBits == NumDstEltBits) 684 if (SDValue V = SimplifyMultipleUseDemandedBits( 685 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 686 return DAG.getBitcast(DstVT, V); 687 688 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) { 689 unsigned Scale = NumDstEltBits / NumSrcEltBits; 690 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 691 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 692 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 693 for (unsigned i = 0; i != Scale; ++i) { 694 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 695 unsigned BitOffset = EltOffset * NumSrcEltBits; 696 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 697 if (!Sub.isZero()) { 698 DemandedSrcBits |= Sub; 699 for (unsigned j = 0; j != NumElts; ++j) 700 if (DemandedElts[j]) 701 DemandedSrcElts.setBit((j * Scale) + i); 702 } 703 } 704 705 if (SDValue V = SimplifyMultipleUseDemandedBits( 706 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 707 return DAG.getBitcast(DstVT, V); 708 } 709 710 // TODO - bigendian once we have test coverage. 711 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) { 712 unsigned Scale = NumSrcEltBits / NumDstEltBits; 713 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 714 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 715 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 716 for (unsigned i = 0; i != NumElts; ++i) 717 if (DemandedElts[i]) { 718 unsigned Offset = (i % Scale) * NumDstEltBits; 719 DemandedSrcBits.insertBits(DemandedBits, Offset); 720 DemandedSrcElts.setBit(i / Scale); 721 } 722 723 if (SDValue V = SimplifyMultipleUseDemandedBits( 724 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 725 return DAG.getBitcast(DstVT, V); 726 } 727 728 break; 729 } 730 case ISD::AND: { 731 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 732 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 733 734 // If all of the demanded bits are known 1 on one side, return the other. 735 // These bits cannot contribute to the result of the 'and' in this 736 // context. 737 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 738 return Op.getOperand(0); 739 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 740 return Op.getOperand(1); 741 break; 742 } 743 case ISD::OR: { 744 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 745 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 746 747 // If all of the demanded bits are known zero on one side, return the 748 // other. These bits cannot contribute to the result of the 'or' in this 749 // context. 750 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 751 return Op.getOperand(0); 752 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 753 return Op.getOperand(1); 754 break; 755 } 756 case ISD::XOR: { 757 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 758 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 759 760 // If all of the demanded bits are known zero on one side, return the 761 // other. 762 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 763 return Op.getOperand(0); 764 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 765 return Op.getOperand(1); 766 break; 767 } 768 case ISD::SHL: { 769 // If we are only demanding sign bits then we can use the shift source 770 // directly. 771 if (const APInt *MaxSA = 772 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 773 SDValue Op0 = Op.getOperand(0); 774 unsigned ShAmt = MaxSA->getZExtValue(); 775 unsigned NumSignBits = 776 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 777 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 778 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 779 return Op0; 780 } 781 break; 782 } 783 case ISD::SETCC: { 784 SDValue Op0 = Op.getOperand(0); 785 SDValue Op1 = Op.getOperand(1); 786 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 787 // If (1) we only need the sign-bit, (2) the setcc operands are the same 788 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 789 // -1, we may be able to bypass the setcc. 790 if (DemandedBits.isSignMask() && 791 Op0.getScalarValueSizeInBits() == BitWidth && 792 getBooleanContents(Op0.getValueType()) == 793 BooleanContent::ZeroOrNegativeOneBooleanContent) { 794 // If we're testing X < 0, then this compare isn't needed - just use X! 795 // FIXME: We're limiting to integer types here, but this should also work 796 // if we don't care about FP signed-zero. The use of SETLT with FP means 797 // that we don't care about NaNs. 798 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 799 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 800 return Op0; 801 } 802 break; 803 } 804 case ISD::SIGN_EXTEND_INREG: { 805 // If none of the extended bits are demanded, eliminate the sextinreg. 806 SDValue Op0 = Op.getOperand(0); 807 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 808 unsigned ExBits = ExVT.getScalarSizeInBits(); 809 if (DemandedBits.getActiveBits() <= ExBits) 810 return Op0; 811 // If the input is already sign extended, just drop the extension. 812 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 813 if (NumSignBits >= (BitWidth - ExBits + 1)) 814 return Op0; 815 break; 816 } 817 case ISD::ANY_EXTEND_VECTOR_INREG: 818 case ISD::SIGN_EXTEND_VECTOR_INREG: 819 case ISD::ZERO_EXTEND_VECTOR_INREG: { 820 // If we only want the lowest element and none of extended bits, then we can 821 // return the bitcasted source vector. 822 SDValue Src = Op.getOperand(0); 823 EVT SrcVT = Src.getValueType(); 824 EVT DstVT = Op.getValueType(); 825 if (IsLE && DemandedElts == 1 && 826 DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 827 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 828 return DAG.getBitcast(DstVT, Src); 829 } 830 break; 831 } 832 case ISD::INSERT_VECTOR_ELT: { 833 // If we don't demand the inserted element, return the base vector. 834 SDValue Vec = Op.getOperand(0); 835 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 836 EVT VecVT = Vec.getValueType(); 837 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 838 !DemandedElts[CIdx->getZExtValue()]) 839 return Vec; 840 break; 841 } 842 case ISD::INSERT_SUBVECTOR: { 843 SDValue Vec = Op.getOperand(0); 844 SDValue Sub = Op.getOperand(1); 845 uint64_t Idx = Op.getConstantOperandVal(2); 846 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 847 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 848 // If we don't demand the inserted subvector, return the base vector. 849 if (DemandedSubElts == 0) 850 return Vec; 851 // If this simply widens the lowest subvector, see if we can do it earlier. 852 if (Idx == 0 && Vec.isUndef()) { 853 if (SDValue NewSub = SimplifyMultipleUseDemandedBits( 854 Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1)) 855 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 856 Op.getOperand(0), NewSub, Op.getOperand(2)); 857 } 858 break; 859 } 860 case ISD::VECTOR_SHUFFLE: { 861 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 862 863 // If all the demanded elts are from one operand and are inline, 864 // then we can use the operand directly. 865 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 866 for (unsigned i = 0; i != NumElts; ++i) { 867 int M = ShuffleMask[i]; 868 if (M < 0 || !DemandedElts[i]) 869 continue; 870 AllUndef = false; 871 IdentityLHS &= (M == (int)i); 872 IdentityRHS &= ((M - NumElts) == i); 873 } 874 875 if (AllUndef) 876 return DAG.getUNDEF(Op.getValueType()); 877 if (IdentityLHS) 878 return Op.getOperand(0); 879 if (IdentityRHS) 880 return Op.getOperand(1); 881 break; 882 } 883 default: 884 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 885 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 886 Op, DemandedBits, DemandedElts, DAG, Depth)) 887 return V; 888 break; 889 } 890 return SDValue(); 891 } 892 893 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 894 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 895 unsigned Depth) const { 896 EVT VT = Op.getValueType(); 897 APInt DemandedElts = VT.isVector() 898 ? APInt::getAllOnes(VT.getVectorNumElements()) 899 : APInt(1, 1); 900 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 901 Depth); 902 } 903 904 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 905 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 906 unsigned Depth) const { 907 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits()); 908 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 909 Depth); 910 } 911 912 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1). 913 // or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1). 914 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG, 915 const TargetLowering &TLI, 916 const APInt &DemandedBits, 917 const APInt &DemandedElts, 918 unsigned Depth) { 919 assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) && 920 "SRL or SRA node is required here!"); 921 // Is the right shift using an immediate value of 1? 922 ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 923 if (!N1C || !N1C->isOne()) 924 return SDValue(); 925 926 // We are looking for an avgfloor 927 // add(ext, ext) 928 // or one of these as a avgceil 929 // add(add(ext, ext), 1) 930 // add(add(ext, 1), ext) 931 // add(ext, add(ext, 1)) 932 SDValue Add = Op.getOperand(0); 933 if (Add.getOpcode() != ISD::ADD) 934 return SDValue(); 935 936 SDValue ExtOpA = Add.getOperand(0); 937 SDValue ExtOpB = Add.getOperand(1); 938 auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) { 939 ConstantSDNode *ConstOp; 940 if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) && 941 ConstOp->isOne()) { 942 ExtOpA = Op2; 943 ExtOpB = Op3; 944 return true; 945 } 946 if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) && 947 ConstOp->isOne()) { 948 ExtOpA = Op1; 949 ExtOpB = Op3; 950 return true; 951 } 952 if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) && 953 ConstOp->isOne()) { 954 ExtOpA = Op1; 955 ExtOpB = Op2; 956 return true; 957 } 958 return false; 959 }; 960 bool IsCeil = 961 (ExtOpA.getOpcode() == ISD::ADD && 962 MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) || 963 (ExtOpB.getOpcode() == ISD::ADD && 964 MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA)); 965 966 // If the shift is signed (sra): 967 // - Needs >= 2 sign bit for both operands. 968 // - Needs >= 2 zero bits. 969 // If the shift is unsigned (srl): 970 // - Needs >= 1 zero bit for both operands. 971 // - Needs 1 demanded bit zero and >= 2 sign bits. 972 unsigned ShiftOpc = Op.getOpcode(); 973 bool IsSigned = false; 974 unsigned KnownBits; 975 unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth); 976 unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth); 977 unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1; 978 unsigned NumZeroA = 979 DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros(); 980 unsigned NumZeroB = 981 DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros(); 982 unsigned NumZero = std::min(NumZeroA, NumZeroB); 983 984 switch (ShiftOpc) { 985 default: 986 llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG"); 987 case ISD::SRA: { 988 if (NumZero >= 2 && NumSigned < NumZero) { 989 IsSigned = false; 990 KnownBits = NumZero; 991 break; 992 } 993 if (NumSigned >= 1) { 994 IsSigned = true; 995 KnownBits = NumSigned; 996 break; 997 } 998 return SDValue(); 999 } 1000 case ISD::SRL: { 1001 if (NumZero >= 1 && NumSigned < NumZero) { 1002 IsSigned = false; 1003 KnownBits = NumZero; 1004 break; 1005 } 1006 if (NumSigned >= 1 && DemandedBits.isSignBitClear()) { 1007 IsSigned = true; 1008 KnownBits = NumSigned; 1009 break; 1010 } 1011 return SDValue(); 1012 } 1013 } 1014 1015 unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU) 1016 : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU); 1017 1018 // Find the smallest power-2 type that is legal for this vector size and 1019 // operation, given the original type size and the number of known sign/zero 1020 // bits. 1021 EVT VT = Op.getValueType(); 1022 unsigned MinWidth = 1023 std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8); 1024 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth)); 1025 if (VT.isVector()) 1026 NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount()); 1027 if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT)) 1028 return SDValue(); 1029 1030 SDLoc DL(Op); 1031 SDValue ResultAVG = 1032 DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA), 1033 DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB)); 1034 return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT, 1035 ResultAVG); 1036 } 1037 1038 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 1039 /// result of Op are ever used downstream. If we can use this information to 1040 /// simplify Op, create a new simplified DAG node and return true, returning the 1041 /// original and new nodes in Old and New. Otherwise, analyze the expression and 1042 /// return a mask of Known bits for the expression (used to simplify the 1043 /// caller). The Known bits may only be accurate for those bits in the 1044 /// OriginalDemandedBits and OriginalDemandedElts. 1045 bool TargetLowering::SimplifyDemandedBits( 1046 SDValue Op, const APInt &OriginalDemandedBits, 1047 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 1048 unsigned Depth, bool AssumeSingleUse) const { 1049 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 1050 assert(Op.getScalarValueSizeInBits() == BitWidth && 1051 "Mask size mismatches value type size!"); 1052 1053 // Don't know anything. 1054 Known = KnownBits(BitWidth); 1055 1056 // TODO: We can probably do more work on calculating the known bits and 1057 // simplifying the operations for scalable vectors, but for now we just 1058 // bail out. 1059 if (Op.getValueType().isScalableVector()) 1060 return false; 1061 1062 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 1063 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 1064 assert((!Op.getValueType().isVector() || 1065 NumElts == Op.getValueType().getVectorNumElements()) && 1066 "Unexpected vector size"); 1067 1068 APInt DemandedBits = OriginalDemandedBits; 1069 APInt DemandedElts = OriginalDemandedElts; 1070 SDLoc dl(Op); 1071 auto &DL = TLO.DAG.getDataLayout(); 1072 1073 // Undef operand. 1074 if (Op.isUndef()) 1075 return false; 1076 1077 if (Op.getOpcode() == ISD::Constant) { 1078 // We know all of the bits for a constant! 1079 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 1080 return false; 1081 } 1082 1083 if (Op.getOpcode() == ISD::ConstantFP) { 1084 // We know all of the bits for a floating point constant! 1085 Known = KnownBits::makeConstant( 1086 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 1087 return false; 1088 } 1089 1090 // Other users may use these bits. 1091 EVT VT = Op.getValueType(); 1092 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 1093 if (Depth != 0) { 1094 // If not at the root, Just compute the Known bits to 1095 // simplify things downstream. 1096 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1097 return false; 1098 } 1099 // If this is the root being simplified, allow it to have multiple uses, 1100 // just set the DemandedBits/Elts to all bits. 1101 DemandedBits = APInt::getAllOnes(BitWidth); 1102 DemandedElts = APInt::getAllOnes(NumElts); 1103 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 1104 // Not demanding any bits/elts from Op. 1105 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1106 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 1107 // Limit search depth. 1108 return false; 1109 } 1110 1111 KnownBits Known2; 1112 switch (Op.getOpcode()) { 1113 case ISD::TargetConstant: 1114 llvm_unreachable("Can't simplify this node"); 1115 case ISD::SCALAR_TO_VECTOR: { 1116 if (!DemandedElts[0]) 1117 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1118 1119 KnownBits SrcKnown; 1120 SDValue Src = Op.getOperand(0); 1121 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 1122 APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth); 1123 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 1124 return true; 1125 1126 // Upper elements are undef, so only get the knownbits if we just demand 1127 // the bottom element. 1128 if (DemandedElts == 1) 1129 Known = SrcKnown.anyextOrTrunc(BitWidth); 1130 break; 1131 } 1132 case ISD::BUILD_VECTOR: 1133 // Collect the known bits that are shared by every demanded element. 1134 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 1135 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1136 return false; // Don't fall through, will infinitely loop. 1137 case ISD::LOAD: { 1138 auto *LD = cast<LoadSDNode>(Op); 1139 if (getTargetConstantFromLoad(LD)) { 1140 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1141 return false; // Don't fall through, will infinitely loop. 1142 } 1143 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 1144 // If this is a ZEXTLoad and we are looking at the loaded value. 1145 EVT MemVT = LD->getMemoryVT(); 1146 unsigned MemBits = MemVT.getScalarSizeInBits(); 1147 Known.Zero.setBitsFrom(MemBits); 1148 return false; // Don't fall through, will infinitely loop. 1149 } 1150 break; 1151 } 1152 case ISD::INSERT_VECTOR_ELT: { 1153 SDValue Vec = Op.getOperand(0); 1154 SDValue Scl = Op.getOperand(1); 1155 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1156 EVT VecVT = Vec.getValueType(); 1157 1158 // If index isn't constant, assume we need all vector elements AND the 1159 // inserted element. 1160 APInt DemandedVecElts(DemandedElts); 1161 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1162 unsigned Idx = CIdx->getZExtValue(); 1163 DemandedVecElts.clearBit(Idx); 1164 1165 // Inserted element is not required. 1166 if (!DemandedElts[Idx]) 1167 return TLO.CombineTo(Op, Vec); 1168 } 1169 1170 KnownBits KnownScl; 1171 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1172 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1173 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1174 return true; 1175 1176 Known = KnownScl.anyextOrTrunc(BitWidth); 1177 1178 KnownBits KnownVec; 1179 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1180 Depth + 1)) 1181 return true; 1182 1183 if (!!DemandedVecElts) 1184 Known = KnownBits::commonBits(Known, KnownVec); 1185 1186 return false; 1187 } 1188 case ISD::INSERT_SUBVECTOR: { 1189 // Demand any elements from the subvector and the remainder from the src its 1190 // inserted into. 1191 SDValue Src = Op.getOperand(0); 1192 SDValue Sub = Op.getOperand(1); 1193 uint64_t Idx = Op.getConstantOperandVal(2); 1194 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1195 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1196 APInt DemandedSrcElts = DemandedElts; 1197 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 1198 1199 KnownBits KnownSub, KnownSrc; 1200 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1201 Depth + 1)) 1202 return true; 1203 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1204 Depth + 1)) 1205 return true; 1206 1207 Known.Zero.setAllBits(); 1208 Known.One.setAllBits(); 1209 if (!!DemandedSubElts) 1210 Known = KnownBits::commonBits(Known, KnownSub); 1211 if (!!DemandedSrcElts) 1212 Known = KnownBits::commonBits(Known, KnownSrc); 1213 1214 // Attempt to avoid multi-use src if we don't need anything from it. 1215 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || 1216 !DemandedSrcElts.isAllOnes()) { 1217 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1218 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1219 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1220 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1221 if (NewSub || NewSrc) { 1222 NewSub = NewSub ? NewSub : Sub; 1223 NewSrc = NewSrc ? NewSrc : Src; 1224 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1225 Op.getOperand(2)); 1226 return TLO.CombineTo(Op, NewOp); 1227 } 1228 } 1229 break; 1230 } 1231 case ISD::EXTRACT_SUBVECTOR: { 1232 // Offset the demanded elts by the subvector index. 1233 SDValue Src = Op.getOperand(0); 1234 if (Src.getValueType().isScalableVector()) 1235 break; 1236 uint64_t Idx = Op.getConstantOperandVal(1); 1237 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1238 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 1239 1240 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1241 Depth + 1)) 1242 return true; 1243 1244 // Attempt to avoid multi-use src if we don't need anything from it. 1245 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 1246 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1247 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1248 if (DemandedSrc) { 1249 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1250 Op.getOperand(1)); 1251 return TLO.CombineTo(Op, NewOp); 1252 } 1253 } 1254 break; 1255 } 1256 case ISD::CONCAT_VECTORS: { 1257 Known.Zero.setAllBits(); 1258 Known.One.setAllBits(); 1259 EVT SubVT = Op.getOperand(0).getValueType(); 1260 unsigned NumSubVecs = Op.getNumOperands(); 1261 unsigned NumSubElts = SubVT.getVectorNumElements(); 1262 for (unsigned i = 0; i != NumSubVecs; ++i) { 1263 APInt DemandedSubElts = 1264 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1265 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1266 Known2, TLO, Depth + 1)) 1267 return true; 1268 // Known bits are shared by every demanded subvector element. 1269 if (!!DemandedSubElts) 1270 Known = KnownBits::commonBits(Known, Known2); 1271 } 1272 break; 1273 } 1274 case ISD::VECTOR_SHUFFLE: { 1275 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1276 1277 // Collect demanded elements from shuffle operands.. 1278 APInt DemandedLHS(NumElts, 0); 1279 APInt DemandedRHS(NumElts, 0); 1280 for (unsigned i = 0; i != NumElts; ++i) { 1281 if (!DemandedElts[i]) 1282 continue; 1283 int M = ShuffleMask[i]; 1284 if (M < 0) { 1285 // For UNDEF elements, we don't know anything about the common state of 1286 // the shuffle result. 1287 DemandedLHS.clearAllBits(); 1288 DemandedRHS.clearAllBits(); 1289 break; 1290 } 1291 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1292 if (M < (int)NumElts) 1293 DemandedLHS.setBit(M); 1294 else 1295 DemandedRHS.setBit(M - NumElts); 1296 } 1297 1298 if (!!DemandedLHS || !!DemandedRHS) { 1299 SDValue Op0 = Op.getOperand(0); 1300 SDValue Op1 = Op.getOperand(1); 1301 1302 Known.Zero.setAllBits(); 1303 Known.One.setAllBits(); 1304 if (!!DemandedLHS) { 1305 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1306 Depth + 1)) 1307 return true; 1308 Known = KnownBits::commonBits(Known, Known2); 1309 } 1310 if (!!DemandedRHS) { 1311 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1312 Depth + 1)) 1313 return true; 1314 Known = KnownBits::commonBits(Known, Known2); 1315 } 1316 1317 // Attempt to avoid multi-use ops if we don't need anything from them. 1318 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1319 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1320 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1321 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1322 if (DemandedOp0 || DemandedOp1) { 1323 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1324 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1325 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1326 return TLO.CombineTo(Op, NewOp); 1327 } 1328 } 1329 break; 1330 } 1331 case ISD::AND: { 1332 SDValue Op0 = Op.getOperand(0); 1333 SDValue Op1 = Op.getOperand(1); 1334 1335 // If the RHS is a constant, check to see if the LHS would be zero without 1336 // using the bits from the RHS. Below, we use knowledge about the RHS to 1337 // simplify the LHS, here we're using information from the LHS to simplify 1338 // the RHS. 1339 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1340 // Do not increment Depth here; that can cause an infinite loop. 1341 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1342 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1343 if ((LHSKnown.Zero & DemandedBits) == 1344 (~RHSC->getAPIntValue() & DemandedBits)) 1345 return TLO.CombineTo(Op, Op0); 1346 1347 // If any of the set bits in the RHS are known zero on the LHS, shrink 1348 // the constant. 1349 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1350 DemandedElts, TLO)) 1351 return true; 1352 1353 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1354 // constant, but if this 'and' is only clearing bits that were just set by 1355 // the xor, then this 'and' can be eliminated by shrinking the mask of 1356 // the xor. For example, for a 32-bit X: 1357 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1358 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1359 LHSKnown.One == ~RHSC->getAPIntValue()) { 1360 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1361 return TLO.CombineTo(Op, Xor); 1362 } 1363 } 1364 1365 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1366 Depth + 1)) 1367 return true; 1368 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1369 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1370 Known2, TLO, Depth + 1)) 1371 return true; 1372 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1373 1374 // Attempt to avoid multi-use ops if we don't need anything from them. 1375 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1376 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1377 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1378 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1379 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1380 if (DemandedOp0 || DemandedOp1) { 1381 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1382 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1383 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1384 return TLO.CombineTo(Op, NewOp); 1385 } 1386 } 1387 1388 // If all of the demanded bits are known one on one side, return the other. 1389 // These bits cannot contribute to the result of the 'and'. 1390 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1391 return TLO.CombineTo(Op, Op0); 1392 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1393 return TLO.CombineTo(Op, Op1); 1394 // If all of the demanded bits in the inputs are known zeros, return zero. 1395 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1396 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1397 // If the RHS is a constant, see if we can simplify it. 1398 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1399 TLO)) 1400 return true; 1401 // If the operation can be done in a smaller type, do so. 1402 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1403 return true; 1404 1405 Known &= Known2; 1406 break; 1407 } 1408 case ISD::OR: { 1409 SDValue Op0 = Op.getOperand(0); 1410 SDValue Op1 = Op.getOperand(1); 1411 1412 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1413 Depth + 1)) 1414 return true; 1415 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1416 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1417 Known2, TLO, Depth + 1)) 1418 return true; 1419 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1420 1421 // Attempt to avoid multi-use ops if we don't need anything from them. 1422 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1423 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1424 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1425 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1426 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1427 if (DemandedOp0 || DemandedOp1) { 1428 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1429 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1430 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1431 return TLO.CombineTo(Op, NewOp); 1432 } 1433 } 1434 1435 // If all of the demanded bits are known zero on one side, return the other. 1436 // These bits cannot contribute to the result of the 'or'. 1437 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1438 return TLO.CombineTo(Op, Op0); 1439 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1440 return TLO.CombineTo(Op, Op1); 1441 // If the RHS is a constant, see if we can simplify it. 1442 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1443 return true; 1444 // If the operation can be done in a smaller type, do so. 1445 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1446 return true; 1447 1448 Known |= Known2; 1449 break; 1450 } 1451 case ISD::XOR: { 1452 SDValue Op0 = Op.getOperand(0); 1453 SDValue Op1 = Op.getOperand(1); 1454 1455 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1456 Depth + 1)) 1457 return true; 1458 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1459 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1460 Depth + 1)) 1461 return true; 1462 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1463 1464 // Attempt to avoid multi-use ops if we don't need anything from them. 1465 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1466 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1467 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1468 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1469 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1470 if (DemandedOp0 || DemandedOp1) { 1471 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1472 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1473 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1474 return TLO.CombineTo(Op, NewOp); 1475 } 1476 } 1477 1478 // If all of the demanded bits are known zero on one side, return the other. 1479 // These bits cannot contribute to the result of the 'xor'. 1480 if (DemandedBits.isSubsetOf(Known.Zero)) 1481 return TLO.CombineTo(Op, Op0); 1482 if (DemandedBits.isSubsetOf(Known2.Zero)) 1483 return TLO.CombineTo(Op, Op1); 1484 // If the operation can be done in a smaller type, do so. 1485 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1486 return true; 1487 1488 // If all of the unknown bits are known to be zero on one side or the other 1489 // turn this into an *inclusive* or. 1490 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1491 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1492 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1493 1494 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1495 if (C) { 1496 // If one side is a constant, and all of the set bits in the constant are 1497 // also known set on the other side, turn this into an AND, as we know 1498 // the bits will be cleared. 1499 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1500 // NB: it is okay if more bits are known than are requested 1501 if (C->getAPIntValue() == Known2.One) { 1502 SDValue ANDC = 1503 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1504 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1505 } 1506 1507 // If the RHS is a constant, see if we can change it. Don't alter a -1 1508 // constant because that's a 'not' op, and that is better for combining 1509 // and codegen. 1510 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) { 1511 // We're flipping all demanded bits. Flip the undemanded bits too. 1512 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1513 return TLO.CombineTo(Op, New); 1514 } 1515 } 1516 1517 // If we can't turn this into a 'not', try to shrink the constant. 1518 if (!C || !C->isAllOnes()) 1519 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1520 return true; 1521 1522 Known ^= Known2; 1523 break; 1524 } 1525 case ISD::SELECT: 1526 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1527 Depth + 1)) 1528 return true; 1529 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1530 Depth + 1)) 1531 return true; 1532 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1533 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1534 1535 // If the operands are constants, see if we can simplify them. 1536 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1537 return true; 1538 1539 // Only known if known in both the LHS and RHS. 1540 Known = KnownBits::commonBits(Known, Known2); 1541 break; 1542 case ISD::VSELECT: 1543 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts, 1544 Known, TLO, Depth + 1)) 1545 return true; 1546 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts, 1547 Known2, TLO, Depth + 1)) 1548 return true; 1549 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1550 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1551 1552 // Only known if known in both the LHS and RHS. 1553 Known = KnownBits::commonBits(Known, Known2); 1554 break; 1555 case ISD::SELECT_CC: 1556 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1557 Depth + 1)) 1558 return true; 1559 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1560 Depth + 1)) 1561 return true; 1562 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1563 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1564 1565 // If the operands are constants, see if we can simplify them. 1566 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1567 return true; 1568 1569 // Only known if known in both the LHS and RHS. 1570 Known = KnownBits::commonBits(Known, Known2); 1571 break; 1572 case ISD::SETCC: { 1573 SDValue Op0 = Op.getOperand(0); 1574 SDValue Op1 = Op.getOperand(1); 1575 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1576 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1577 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1578 // -1, we may be able to bypass the setcc. 1579 if (DemandedBits.isSignMask() && 1580 Op0.getScalarValueSizeInBits() == BitWidth && 1581 getBooleanContents(Op0.getValueType()) == 1582 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1583 // If we're testing X < 0, then this compare isn't needed - just use X! 1584 // FIXME: We're limiting to integer types here, but this should also work 1585 // if we don't care about FP signed-zero. The use of SETLT with FP means 1586 // that we don't care about NaNs. 1587 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1588 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1589 return TLO.CombineTo(Op, Op0); 1590 1591 // TODO: Should we check for other forms of sign-bit comparisons? 1592 // Examples: X <= -1, X >= 0 1593 } 1594 if (getBooleanContents(Op0.getValueType()) == 1595 TargetLowering::ZeroOrOneBooleanContent && 1596 BitWidth > 1) 1597 Known.Zero.setBitsFrom(1); 1598 break; 1599 } 1600 case ISD::SHL: { 1601 SDValue Op0 = Op.getOperand(0); 1602 SDValue Op1 = Op.getOperand(1); 1603 EVT ShiftVT = Op1.getValueType(); 1604 1605 if (const APInt *SA = 1606 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1607 unsigned ShAmt = SA->getZExtValue(); 1608 if (ShAmt == 0) 1609 return TLO.CombineTo(Op, Op0); 1610 1611 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1612 // single shift. We can do this if the bottom bits (which are shifted 1613 // out) are never demanded. 1614 // TODO - support non-uniform vector amounts. 1615 if (Op0.getOpcode() == ISD::SRL) { 1616 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1617 if (const APInt *SA2 = 1618 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1619 unsigned C1 = SA2->getZExtValue(); 1620 unsigned Opc = ISD::SHL; 1621 int Diff = ShAmt - C1; 1622 if (Diff < 0) { 1623 Diff = -Diff; 1624 Opc = ISD::SRL; 1625 } 1626 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1627 return TLO.CombineTo( 1628 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1629 } 1630 } 1631 } 1632 1633 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1634 // are not demanded. This will likely allow the anyext to be folded away. 1635 // TODO - support non-uniform vector amounts. 1636 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1637 SDValue InnerOp = Op0.getOperand(0); 1638 EVT InnerVT = InnerOp.getValueType(); 1639 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1640 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1641 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1642 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1643 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1644 ShTy = InnerVT; 1645 SDValue NarrowShl = 1646 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1647 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1648 return TLO.CombineTo( 1649 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1650 } 1651 1652 // Repeat the SHL optimization above in cases where an extension 1653 // intervenes: (shl (anyext (shr x, c1)), c2) to 1654 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1655 // aren't demanded (as above) and that the shifted upper c1 bits of 1656 // x aren't demanded. 1657 // TODO - support non-uniform vector amounts. 1658 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1659 InnerOp.hasOneUse()) { 1660 if (const APInt *SA2 = 1661 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1662 unsigned InnerShAmt = SA2->getZExtValue(); 1663 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1664 DemandedBits.getActiveBits() <= 1665 (InnerBits - InnerShAmt + ShAmt) && 1666 DemandedBits.countTrailingZeros() >= ShAmt) { 1667 SDValue NewSA = 1668 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1669 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1670 InnerOp.getOperand(0)); 1671 return TLO.CombineTo( 1672 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1673 } 1674 } 1675 } 1676 } 1677 1678 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1679 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1680 Depth + 1)) 1681 return true; 1682 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1683 Known.Zero <<= ShAmt; 1684 Known.One <<= ShAmt; 1685 // low bits known zero. 1686 Known.Zero.setLowBits(ShAmt); 1687 1688 // Attempt to avoid multi-use ops if we don't need anything from them. 1689 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1690 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1691 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1692 if (DemandedOp0) { 1693 SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1); 1694 return TLO.CombineTo(Op, NewOp); 1695 } 1696 } 1697 1698 // Try shrinking the operation as long as the shift amount will still be 1699 // in range. 1700 if ((ShAmt < DemandedBits.getActiveBits()) && 1701 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1702 return true; 1703 } 1704 1705 // If we are only demanding sign bits then we can use the shift source 1706 // directly. 1707 if (const APInt *MaxSA = 1708 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1709 unsigned ShAmt = MaxSA->getZExtValue(); 1710 unsigned NumSignBits = 1711 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1712 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1713 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1714 return TLO.CombineTo(Op, Op0); 1715 } 1716 break; 1717 } 1718 case ISD::SRL: { 1719 SDValue Op0 = Op.getOperand(0); 1720 SDValue Op1 = Op.getOperand(1); 1721 EVT ShiftVT = Op1.getValueType(); 1722 1723 // Try to match AVG patterns. 1724 if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits, 1725 DemandedElts, Depth + 1)) 1726 return TLO.CombineTo(Op, AVG); 1727 1728 if (const APInt *SA = 1729 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1730 unsigned ShAmt = SA->getZExtValue(); 1731 if (ShAmt == 0) 1732 return TLO.CombineTo(Op, Op0); 1733 1734 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1735 // single shift. We can do this if the top bits (which are shifted out) 1736 // are never demanded. 1737 // TODO - support non-uniform vector amounts. 1738 if (Op0.getOpcode() == ISD::SHL) { 1739 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1740 if (const APInt *SA2 = 1741 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1742 unsigned C1 = SA2->getZExtValue(); 1743 unsigned Opc = ISD::SRL; 1744 int Diff = ShAmt - C1; 1745 if (Diff < 0) { 1746 Diff = -Diff; 1747 Opc = ISD::SHL; 1748 } 1749 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1750 return TLO.CombineTo( 1751 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1752 } 1753 } 1754 } 1755 1756 APInt InDemandedMask = (DemandedBits << ShAmt); 1757 1758 // If the shift is exact, then it does demand the low bits (and knows that 1759 // they are zero). 1760 if (Op->getFlags().hasExact()) 1761 InDemandedMask.setLowBits(ShAmt); 1762 1763 // Compute the new bits that are at the top now. 1764 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1765 Depth + 1)) 1766 return true; 1767 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1768 Known.Zero.lshrInPlace(ShAmt); 1769 Known.One.lshrInPlace(ShAmt); 1770 // High bits known zero. 1771 Known.Zero.setHighBits(ShAmt); 1772 } 1773 break; 1774 } 1775 case ISD::SRA: { 1776 SDValue Op0 = Op.getOperand(0); 1777 SDValue Op1 = Op.getOperand(1); 1778 EVT ShiftVT = Op1.getValueType(); 1779 1780 // If we only want bits that already match the signbit then we don't need 1781 // to shift. 1782 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1783 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1784 NumHiDemandedBits) 1785 return TLO.CombineTo(Op, Op0); 1786 1787 // If this is an arithmetic shift right and only the low-bit is set, we can 1788 // always convert this into a logical shr, even if the shift amount is 1789 // variable. The low bit of the shift cannot be an input sign bit unless 1790 // the shift amount is >= the size of the datatype, which is undefined. 1791 if (DemandedBits.isOne()) 1792 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1793 1794 // Try to match AVG patterns. 1795 if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits, 1796 DemandedElts, Depth + 1)) 1797 return TLO.CombineTo(Op, AVG); 1798 1799 if (const APInt *SA = 1800 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1801 unsigned ShAmt = SA->getZExtValue(); 1802 if (ShAmt == 0) 1803 return TLO.CombineTo(Op, Op0); 1804 1805 APInt InDemandedMask = (DemandedBits << ShAmt); 1806 1807 // If the shift is exact, then it does demand the low bits (and knows that 1808 // they are zero). 1809 if (Op->getFlags().hasExact()) 1810 InDemandedMask.setLowBits(ShAmt); 1811 1812 // If any of the demanded bits are produced by the sign extension, we also 1813 // demand the input sign bit. 1814 if (DemandedBits.countLeadingZeros() < ShAmt) 1815 InDemandedMask.setSignBit(); 1816 1817 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1818 Depth + 1)) 1819 return true; 1820 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1821 Known.Zero.lshrInPlace(ShAmt); 1822 Known.One.lshrInPlace(ShAmt); 1823 1824 // If the input sign bit is known to be zero, or if none of the top bits 1825 // are demanded, turn this into an unsigned shift right. 1826 if (Known.Zero[BitWidth - ShAmt - 1] || 1827 DemandedBits.countLeadingZeros() >= ShAmt) { 1828 SDNodeFlags Flags; 1829 Flags.setExact(Op->getFlags().hasExact()); 1830 return TLO.CombineTo( 1831 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1832 } 1833 1834 int Log2 = DemandedBits.exactLogBase2(); 1835 if (Log2 >= 0) { 1836 // The bit must come from the sign. 1837 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1838 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1839 } 1840 1841 if (Known.One[BitWidth - ShAmt - 1]) 1842 // New bits are known one. 1843 Known.One.setHighBits(ShAmt); 1844 1845 // Attempt to avoid multi-use ops if we don't need anything from them. 1846 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1847 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1848 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1849 if (DemandedOp0) { 1850 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1851 return TLO.CombineTo(Op, NewOp); 1852 } 1853 } 1854 } 1855 break; 1856 } 1857 case ISD::FSHL: 1858 case ISD::FSHR: { 1859 SDValue Op0 = Op.getOperand(0); 1860 SDValue Op1 = Op.getOperand(1); 1861 SDValue Op2 = Op.getOperand(2); 1862 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1863 1864 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1865 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1866 1867 // For fshl, 0-shift returns the 1st arg. 1868 // For fshr, 0-shift returns the 2nd arg. 1869 if (Amt == 0) { 1870 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1871 Known, TLO, Depth + 1)) 1872 return true; 1873 break; 1874 } 1875 1876 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1877 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1878 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1879 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1880 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1881 Depth + 1)) 1882 return true; 1883 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1884 Depth + 1)) 1885 return true; 1886 1887 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1888 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1889 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1890 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1891 Known.One |= Known2.One; 1892 Known.Zero |= Known2.Zero; 1893 1894 // Attempt to avoid multi-use ops if we don't need anything from them. 1895 if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() || 1896 !DemandedElts.isAllOnes()) { 1897 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1898 Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1); 1899 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1900 Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1); 1901 if (DemandedOp0 || DemandedOp1) { 1902 DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0; 1903 DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1; 1904 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0, 1905 DemandedOp1, Op2); 1906 return TLO.CombineTo(Op, NewOp); 1907 } 1908 } 1909 } 1910 1911 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1912 if (isPowerOf2_32(BitWidth)) { 1913 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1914 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1915 Known2, TLO, Depth + 1)) 1916 return true; 1917 } 1918 break; 1919 } 1920 case ISD::ROTL: 1921 case ISD::ROTR: { 1922 SDValue Op0 = Op.getOperand(0); 1923 SDValue Op1 = Op.getOperand(1); 1924 bool IsROTL = (Op.getOpcode() == ISD::ROTL); 1925 1926 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1927 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1928 return TLO.CombineTo(Op, Op0); 1929 1930 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1931 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1932 unsigned RevAmt = BitWidth - Amt; 1933 1934 // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt)) 1935 // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt) 1936 APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt); 1937 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1938 Depth + 1)) 1939 return true; 1940 1941 // rot*(x, 0) --> x 1942 if (Amt == 0) 1943 return TLO.CombineTo(Op, Op0); 1944 1945 // See if we don't demand either half of the rotated bits. 1946 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) && 1947 DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) { 1948 Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType()); 1949 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1)); 1950 } 1951 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) && 1952 DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) { 1953 Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType()); 1954 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1955 } 1956 } 1957 1958 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1959 if (isPowerOf2_32(BitWidth)) { 1960 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1961 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1962 Depth + 1)) 1963 return true; 1964 } 1965 break; 1966 } 1967 case ISD::UMIN: { 1968 // Check if one arg is always less than (or equal) to the other arg. 1969 SDValue Op0 = Op.getOperand(0); 1970 SDValue Op1 = Op.getOperand(1); 1971 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1972 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1973 Known = KnownBits::umin(Known0, Known1); 1974 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 1975 return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1); 1976 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 1977 return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1); 1978 break; 1979 } 1980 case ISD::UMAX: { 1981 // Check if one arg is always greater than (or equal) to the other arg. 1982 SDValue Op0 = Op.getOperand(0); 1983 SDValue Op1 = Op.getOperand(1); 1984 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1985 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1986 Known = KnownBits::umax(Known0, Known1); 1987 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 1988 return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1); 1989 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 1990 return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1); 1991 break; 1992 } 1993 case ISD::BITREVERSE: { 1994 SDValue Src = Op.getOperand(0); 1995 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1996 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1997 Depth + 1)) 1998 return true; 1999 Known.One = Known2.One.reverseBits(); 2000 Known.Zero = Known2.Zero.reverseBits(); 2001 break; 2002 } 2003 case ISD::BSWAP: { 2004 SDValue Src = Op.getOperand(0); 2005 2006 // If the only bits demanded come from one byte of the bswap result, 2007 // just shift the input byte into position to eliminate the bswap. 2008 unsigned NLZ = DemandedBits.countLeadingZeros(); 2009 unsigned NTZ = DemandedBits.countTrailingZeros(); 2010 2011 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 2012 // we need all the bits down to bit 8. Likewise, round NLZ. If we 2013 // have 14 leading zeros, round to 8. 2014 NLZ = alignDown(NLZ, 8); 2015 NTZ = alignDown(NTZ, 8); 2016 // If we need exactly one byte, we can do this transformation. 2017 if (BitWidth - NLZ - NTZ == 8) { 2018 // Replace this with either a left or right shift to get the byte into 2019 // the right place. 2020 unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL; 2021 if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) { 2022 EVT ShiftAmtTy = getShiftAmountTy(VT, DL); 2023 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ; 2024 SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy); 2025 SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt); 2026 return TLO.CombineTo(Op, NewOp); 2027 } 2028 } 2029 2030 APInt DemandedSrcBits = DemandedBits.byteSwap(); 2031 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 2032 Depth + 1)) 2033 return true; 2034 Known.One = Known2.One.byteSwap(); 2035 Known.Zero = Known2.Zero.byteSwap(); 2036 break; 2037 } 2038 case ISD::CTPOP: { 2039 // If only 1 bit is demanded, replace with PARITY as long as we're before 2040 // op legalization. 2041 // FIXME: Limit to scalars for now. 2042 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector()) 2043 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 2044 Op.getOperand(0))); 2045 2046 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2047 break; 2048 } 2049 case ISD::SIGN_EXTEND_INREG: { 2050 SDValue Op0 = Op.getOperand(0); 2051 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2052 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 2053 2054 // If we only care about the highest bit, don't bother shifting right. 2055 if (DemandedBits.isSignMask()) { 2056 unsigned MinSignedBits = 2057 TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1); 2058 bool AlreadySignExtended = ExVTBits >= MinSignedBits; 2059 // However if the input is already sign extended we expect the sign 2060 // extension to be dropped altogether later and do not simplify. 2061 if (!AlreadySignExtended) { 2062 // Compute the correct shift amount type, which must be getShiftAmountTy 2063 // for scalar types after legalization. 2064 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl, 2065 getShiftAmountTy(VT, DL)); 2066 return TLO.CombineTo(Op, 2067 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 2068 } 2069 } 2070 2071 // If none of the extended bits are demanded, eliminate the sextinreg. 2072 if (DemandedBits.getActiveBits() <= ExVTBits) 2073 return TLO.CombineTo(Op, Op0); 2074 2075 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 2076 2077 // Since the sign extended bits are demanded, we know that the sign 2078 // bit is demanded. 2079 InputDemandedBits.setBit(ExVTBits - 1); 2080 2081 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 2082 return true; 2083 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2084 2085 // If the sign bit of the input is known set or clear, then we know the 2086 // top bits of the result. 2087 2088 // If the input sign bit is known zero, convert this into a zero extension. 2089 if (Known.Zero[ExVTBits - 1]) 2090 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 2091 2092 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 2093 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 2094 Known.One.setBitsFrom(ExVTBits); 2095 Known.Zero &= Mask; 2096 } else { // Input sign bit unknown 2097 Known.Zero &= Mask; 2098 Known.One &= Mask; 2099 } 2100 break; 2101 } 2102 case ISD::BUILD_PAIR: { 2103 EVT HalfVT = Op.getOperand(0).getValueType(); 2104 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 2105 2106 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 2107 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 2108 2109 KnownBits KnownLo, KnownHi; 2110 2111 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 2112 return true; 2113 2114 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 2115 return true; 2116 2117 Known.Zero = KnownLo.Zero.zext(BitWidth) | 2118 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 2119 2120 Known.One = KnownLo.One.zext(BitWidth) | 2121 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 2122 break; 2123 } 2124 case ISD::ZERO_EXTEND: 2125 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2126 SDValue Src = Op.getOperand(0); 2127 EVT SrcVT = Src.getValueType(); 2128 unsigned InBits = SrcVT.getScalarSizeInBits(); 2129 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2130 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 2131 2132 // If none of the top bits are demanded, convert this into an any_extend. 2133 if (DemandedBits.getActiveBits() <= InBits) { 2134 // If we only need the non-extended bits of the bottom element 2135 // then we can just bitcast to the result. 2136 if (IsLE && IsVecInReg && DemandedElts == 1 && 2137 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2138 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2139 2140 unsigned Opc = 2141 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2142 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2143 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2144 } 2145 2146 APInt InDemandedBits = DemandedBits.trunc(InBits); 2147 APInt InDemandedElts = DemandedElts.zext(InElts); 2148 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2149 Depth + 1)) 2150 return true; 2151 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2152 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2153 Known = Known.zext(BitWidth); 2154 2155 // Attempt to avoid multi-use ops if we don't need anything from them. 2156 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2157 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2158 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2159 break; 2160 } 2161 case ISD::SIGN_EXTEND: 2162 case ISD::SIGN_EXTEND_VECTOR_INREG: { 2163 SDValue Src = Op.getOperand(0); 2164 EVT SrcVT = Src.getValueType(); 2165 unsigned InBits = SrcVT.getScalarSizeInBits(); 2166 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2167 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 2168 2169 // If none of the top bits are demanded, convert this into an any_extend. 2170 if (DemandedBits.getActiveBits() <= InBits) { 2171 // If we only need the non-extended bits of the bottom element 2172 // then we can just bitcast to the result. 2173 if (IsLE && IsVecInReg && DemandedElts == 1 && 2174 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2175 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2176 2177 unsigned Opc = 2178 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2179 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2180 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2181 } 2182 2183 APInt InDemandedBits = DemandedBits.trunc(InBits); 2184 APInt InDemandedElts = DemandedElts.zext(InElts); 2185 2186 // Since some of the sign extended bits are demanded, we know that the sign 2187 // bit is demanded. 2188 InDemandedBits.setBit(InBits - 1); 2189 2190 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2191 Depth + 1)) 2192 return true; 2193 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2194 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2195 2196 // If the sign bit is known one, the top bits match. 2197 Known = Known.sext(BitWidth); 2198 2199 // If the sign bit is known zero, convert this to a zero extend. 2200 if (Known.isNonNegative()) { 2201 unsigned Opc = 2202 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 2203 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2204 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2205 } 2206 2207 // Attempt to avoid multi-use ops if we don't need anything from them. 2208 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2209 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2210 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2211 break; 2212 } 2213 case ISD::ANY_EXTEND: 2214 case ISD::ANY_EXTEND_VECTOR_INREG: { 2215 SDValue Src = Op.getOperand(0); 2216 EVT SrcVT = Src.getValueType(); 2217 unsigned InBits = SrcVT.getScalarSizeInBits(); 2218 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2219 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 2220 2221 // If we only need the bottom element then we can just bitcast. 2222 // TODO: Handle ANY_EXTEND? 2223 if (IsLE && IsVecInReg && DemandedElts == 1 && 2224 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2225 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2226 2227 APInt InDemandedBits = DemandedBits.trunc(InBits); 2228 APInt InDemandedElts = DemandedElts.zext(InElts); 2229 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2230 Depth + 1)) 2231 return true; 2232 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2233 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2234 Known = Known.anyext(BitWidth); 2235 2236 // Attempt to avoid multi-use ops if we don't need anything from them. 2237 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2238 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2239 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2240 break; 2241 } 2242 case ISD::TRUNCATE: { 2243 SDValue Src = Op.getOperand(0); 2244 2245 // Simplify the input, using demanded bit information, and compute the known 2246 // zero/one bits live out. 2247 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2248 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2249 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2250 Depth + 1)) 2251 return true; 2252 Known = Known.trunc(BitWidth); 2253 2254 // Attempt to avoid multi-use ops if we don't need anything from them. 2255 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2256 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2257 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2258 2259 // If the input is only used by this truncate, see if we can shrink it based 2260 // on the known demanded bits. 2261 if (Src.getNode()->hasOneUse()) { 2262 switch (Src.getOpcode()) { 2263 default: 2264 break; 2265 case ISD::SRL: 2266 // Shrink SRL by a constant if none of the high bits shifted in are 2267 // demanded. 2268 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2269 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2270 // undesirable. 2271 break; 2272 2273 const APInt *ShAmtC = 2274 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2275 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2276 break; 2277 uint64_t ShVal = ShAmtC->getZExtValue(); 2278 2279 APInt HighBits = 2280 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2281 HighBits.lshrInPlace(ShVal); 2282 HighBits = HighBits.trunc(BitWidth); 2283 2284 if (!(HighBits & DemandedBits)) { 2285 // None of the shifted in bits are needed. Add a truncate of the 2286 // shift input, then shift it. 2287 SDValue NewShAmt = TLO.DAG.getConstant( 2288 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2289 SDValue NewTrunc = 2290 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2291 return TLO.CombineTo( 2292 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2293 } 2294 break; 2295 } 2296 } 2297 2298 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2299 break; 2300 } 2301 case ISD::AssertZext: { 2302 // AssertZext demands all of the high bits, plus any of the low bits 2303 // demanded by its users. 2304 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2305 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2306 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2307 TLO, Depth + 1)) 2308 return true; 2309 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2310 2311 Known.Zero |= ~InMask; 2312 break; 2313 } 2314 case ISD::EXTRACT_VECTOR_ELT: { 2315 SDValue Src = Op.getOperand(0); 2316 SDValue Idx = Op.getOperand(1); 2317 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2318 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2319 2320 if (SrcEltCnt.isScalable()) 2321 return false; 2322 2323 // Demand the bits from every vector element without a constant index. 2324 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2325 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 2326 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2327 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2328 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2329 2330 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2331 // anything about the extended bits. 2332 APInt DemandedSrcBits = DemandedBits; 2333 if (BitWidth > EltBitWidth) 2334 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2335 2336 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2337 Depth + 1)) 2338 return true; 2339 2340 // Attempt to avoid multi-use ops if we don't need anything from them. 2341 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2342 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2343 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2344 SDValue NewOp = 2345 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2346 return TLO.CombineTo(Op, NewOp); 2347 } 2348 } 2349 2350 Known = Known2; 2351 if (BitWidth > EltBitWidth) 2352 Known = Known.anyext(BitWidth); 2353 break; 2354 } 2355 case ISD::BITCAST: { 2356 SDValue Src = Op.getOperand(0); 2357 EVT SrcVT = Src.getValueType(); 2358 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2359 2360 // If this is an FP->Int bitcast and if the sign bit is the only 2361 // thing demanded, turn this into a FGETSIGN. 2362 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2363 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2364 SrcVT.isFloatingPoint()) { 2365 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2366 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2367 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2368 SrcVT != MVT::f128) { 2369 // Cannot eliminate/lower SHL for f128 yet. 2370 EVT Ty = OpVTLegal ? VT : MVT::i32; 2371 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2372 // place. We expect the SHL to be eliminated by other optimizations. 2373 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2374 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2375 if (!OpVTLegal && OpVTSizeInBits > 32) 2376 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2377 unsigned ShVal = Op.getValueSizeInBits() - 1; 2378 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2379 return TLO.CombineTo(Op, 2380 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2381 } 2382 } 2383 2384 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2385 // Demand the elt/bit if any of the original elts/bits are demanded. 2386 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) { 2387 unsigned Scale = BitWidth / NumSrcEltBits; 2388 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2389 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2390 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2391 for (unsigned i = 0; i != Scale; ++i) { 2392 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 2393 unsigned BitOffset = EltOffset * NumSrcEltBits; 2394 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 2395 if (!Sub.isZero()) { 2396 DemandedSrcBits |= Sub; 2397 for (unsigned j = 0; j != NumElts; ++j) 2398 if (DemandedElts[j]) 2399 DemandedSrcElts.setBit((j * Scale) + i); 2400 } 2401 } 2402 2403 APInt KnownSrcUndef, KnownSrcZero; 2404 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2405 KnownSrcZero, TLO, Depth + 1)) 2406 return true; 2407 2408 KnownBits KnownSrcBits; 2409 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2410 KnownSrcBits, TLO, Depth + 1)) 2411 return true; 2412 } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) { 2413 // TODO - bigendian once we have test coverage. 2414 unsigned Scale = NumSrcEltBits / BitWidth; 2415 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2416 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2417 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2418 for (unsigned i = 0; i != NumElts; ++i) 2419 if (DemandedElts[i]) { 2420 unsigned Offset = (i % Scale) * BitWidth; 2421 DemandedSrcBits.insertBits(DemandedBits, Offset); 2422 DemandedSrcElts.setBit(i / Scale); 2423 } 2424 2425 if (SrcVT.isVector()) { 2426 APInt KnownSrcUndef, KnownSrcZero; 2427 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2428 KnownSrcZero, TLO, Depth + 1)) 2429 return true; 2430 } 2431 2432 KnownBits KnownSrcBits; 2433 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2434 KnownSrcBits, TLO, Depth + 1)) 2435 return true; 2436 } 2437 2438 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2439 // recursive call where Known may be useful to the caller. 2440 if (Depth > 0) { 2441 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2442 return false; 2443 } 2444 break; 2445 } 2446 case ISD::MUL: 2447 if (DemandedBits.isPowerOf2()) { 2448 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. 2449 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is 2450 // odd (has LSB set), then the left-shifted low bit of X is the answer. 2451 unsigned CTZ = DemandedBits.countTrailingZeros(); 2452 ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 2453 if (C && C->getAPIntValue().countTrailingZeros() == CTZ) { 2454 EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout()); 2455 SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy); 2456 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC); 2457 return TLO.CombineTo(Op, Shl); 2458 } 2459 } 2460 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because: 2461 // X * X is odd iff X is odd. 2462 // 'Quadratic Reciprocity': X * X -> 0 for bit[1] 2463 if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) { 2464 SDValue One = TLO.DAG.getConstant(1, dl, VT); 2465 SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One); 2466 return TLO.CombineTo(Op, And1); 2467 } 2468 LLVM_FALLTHROUGH; 2469 case ISD::ADD: 2470 case ISD::SUB: { 2471 // Add, Sub, and Mul don't demand any bits in positions beyond that 2472 // of the highest bit demanded of them. 2473 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2474 SDNodeFlags Flags = Op.getNode()->getFlags(); 2475 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2476 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2477 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2478 Depth + 1) || 2479 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2480 Depth + 1) || 2481 // See if the operation should be performed at a smaller bit width. 2482 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2483 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2484 // Disable the nsw and nuw flags. We can no longer guarantee that we 2485 // won't wrap after simplification. 2486 Flags.setNoSignedWrap(false); 2487 Flags.setNoUnsignedWrap(false); 2488 SDValue NewOp = 2489 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2490 return TLO.CombineTo(Op, NewOp); 2491 } 2492 return true; 2493 } 2494 2495 // Attempt to avoid multi-use ops if we don't need anything from them. 2496 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2497 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2498 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2499 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2500 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2501 if (DemandedOp0 || DemandedOp1) { 2502 Flags.setNoSignedWrap(false); 2503 Flags.setNoUnsignedWrap(false); 2504 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2505 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2506 SDValue NewOp = 2507 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2508 return TLO.CombineTo(Op, NewOp); 2509 } 2510 } 2511 2512 // If we have a constant operand, we may be able to turn it into -1 if we 2513 // do not demand the high bits. This can make the constant smaller to 2514 // encode, allow more general folding, or match specialized instruction 2515 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2516 // is probably not useful (and could be detrimental). 2517 ConstantSDNode *C = isConstOrConstSplat(Op1); 2518 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2519 if (C && !C->isAllOnes() && !C->isOne() && 2520 (C->getAPIntValue() | HighMask).isAllOnes()) { 2521 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2522 // Disable the nsw and nuw flags. We can no longer guarantee that we 2523 // won't wrap after simplification. 2524 Flags.setNoSignedWrap(false); 2525 Flags.setNoUnsignedWrap(false); 2526 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2527 return TLO.CombineTo(Op, NewOp); 2528 } 2529 2530 // Match a multiply with a disguised negated-power-of-2 and convert to a 2531 // an equivalent shift-left amount. 2532 // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2533 auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned { 2534 if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse()) 2535 return 0; 2536 2537 // Don't touch opaque constants. Also, ignore zero and power-of-2 2538 // multiplies. Those will get folded later. 2539 ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1)); 2540 if (MulC && !MulC->isOpaque() && !MulC->isZero() && 2541 !MulC->getAPIntValue().isPowerOf2()) { 2542 APInt UnmaskedC = MulC->getAPIntValue() | HighMask; 2543 if (UnmaskedC.isNegatedPowerOf2()) 2544 return (-UnmaskedC).logBase2(); 2545 } 2546 return 0; 2547 }; 2548 2549 auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y, unsigned ShlAmt) { 2550 EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout()); 2551 SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy); 2552 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC); 2553 SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl); 2554 return TLO.CombineTo(Op, Res); 2555 }; 2556 2557 if (isOperationLegalOrCustom(ISD::SHL, VT)) { 2558 if (Op.getOpcode() == ISD::ADD) { 2559 // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2560 if (unsigned ShAmt = getShiftLeftAmt(Op0)) 2561 return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt); 2562 // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC)) 2563 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2564 return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt); 2565 } 2566 if (Op.getOpcode() == ISD::SUB) { 2567 // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC)) 2568 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2569 return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt); 2570 } 2571 } 2572 2573 LLVM_FALLTHROUGH; 2574 } 2575 default: 2576 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2577 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2578 Known, TLO, Depth)) 2579 return true; 2580 break; 2581 } 2582 2583 // Just use computeKnownBits to compute output bits. 2584 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2585 break; 2586 } 2587 2588 // If we know the value of all of the demanded bits, return this as a 2589 // constant. 2590 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2591 // Avoid folding to a constant if any OpaqueConstant is involved. 2592 const SDNode *N = Op.getNode(); 2593 for (SDNode *Op : 2594 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2595 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2596 if (C->isOpaque()) 2597 return false; 2598 } 2599 if (VT.isInteger()) 2600 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2601 if (VT.isFloatingPoint()) 2602 return TLO.CombineTo( 2603 Op, 2604 TLO.DAG.getConstantFP( 2605 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2606 } 2607 2608 return false; 2609 } 2610 2611 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2612 const APInt &DemandedElts, 2613 DAGCombinerInfo &DCI) const { 2614 SelectionDAG &DAG = DCI.DAG; 2615 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2616 !DCI.isBeforeLegalizeOps()); 2617 2618 APInt KnownUndef, KnownZero; 2619 bool Simplified = 2620 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2621 if (Simplified) { 2622 DCI.AddToWorklist(Op.getNode()); 2623 DCI.CommitTargetLoweringOpt(TLO); 2624 } 2625 2626 return Simplified; 2627 } 2628 2629 /// Given a vector binary operation and known undefined elements for each input 2630 /// operand, compute whether each element of the output is undefined. 2631 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2632 const APInt &UndefOp0, 2633 const APInt &UndefOp1) { 2634 EVT VT = BO.getValueType(); 2635 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2636 "Vector binop only"); 2637 2638 EVT EltVT = VT.getVectorElementType(); 2639 unsigned NumElts = VT.getVectorNumElements(); 2640 assert(UndefOp0.getBitWidth() == NumElts && 2641 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2642 2643 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2644 const APInt &UndefVals) { 2645 if (UndefVals[Index]) 2646 return DAG.getUNDEF(EltVT); 2647 2648 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2649 // Try hard to make sure that the getNode() call is not creating temporary 2650 // nodes. Ignore opaque integers because they do not constant fold. 2651 SDValue Elt = BV->getOperand(Index); 2652 auto *C = dyn_cast<ConstantSDNode>(Elt); 2653 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2654 return Elt; 2655 } 2656 2657 return SDValue(); 2658 }; 2659 2660 APInt KnownUndef = APInt::getZero(NumElts); 2661 for (unsigned i = 0; i != NumElts; ++i) { 2662 // If both inputs for this element are either constant or undef and match 2663 // the element type, compute the constant/undef result for this element of 2664 // the vector. 2665 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2666 // not handle FP constants. The code within getNode() should be refactored 2667 // to avoid the danger of creating a bogus temporary node here. 2668 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2669 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2670 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2671 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2672 KnownUndef.setBit(i); 2673 } 2674 return KnownUndef; 2675 } 2676 2677 bool TargetLowering::SimplifyDemandedVectorElts( 2678 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2679 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2680 bool AssumeSingleUse) const { 2681 EVT VT = Op.getValueType(); 2682 unsigned Opcode = Op.getOpcode(); 2683 APInt DemandedElts = OriginalDemandedElts; 2684 unsigned NumElts = DemandedElts.getBitWidth(); 2685 assert(VT.isVector() && "Expected vector op"); 2686 2687 KnownUndef = KnownZero = APInt::getZero(NumElts); 2688 2689 const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo(); 2690 if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO)) 2691 return false; 2692 2693 // TODO: For now we assume we know nothing about scalable vectors. 2694 if (VT.isScalableVector()) 2695 return false; 2696 2697 assert(VT.getVectorNumElements() == NumElts && 2698 "Mask size mismatches value type element count!"); 2699 2700 // Undef operand. 2701 if (Op.isUndef()) { 2702 KnownUndef.setAllBits(); 2703 return false; 2704 } 2705 2706 // If Op has other users, assume that all elements are needed. 2707 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2708 DemandedElts.setAllBits(); 2709 2710 // Not demanding any elements from Op. 2711 if (DemandedElts == 0) { 2712 KnownUndef.setAllBits(); 2713 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2714 } 2715 2716 // Limit search depth. 2717 if (Depth >= SelectionDAG::MaxRecursionDepth) 2718 return false; 2719 2720 SDLoc DL(Op); 2721 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2722 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 2723 2724 // Helper for demanding the specified elements and all the bits of both binary 2725 // operands. 2726 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2727 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2728 TLO.DAG, Depth + 1); 2729 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2730 TLO.DAG, Depth + 1); 2731 if (NewOp0 || NewOp1) { 2732 SDValue NewOp = TLO.DAG.getNode( 2733 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2734 return TLO.CombineTo(Op, NewOp); 2735 } 2736 return false; 2737 }; 2738 2739 switch (Opcode) { 2740 case ISD::SCALAR_TO_VECTOR: { 2741 if (!DemandedElts[0]) { 2742 KnownUndef.setAllBits(); 2743 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2744 } 2745 SDValue ScalarSrc = Op.getOperand(0); 2746 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 2747 SDValue Src = ScalarSrc.getOperand(0); 2748 SDValue Idx = ScalarSrc.getOperand(1); 2749 EVT SrcVT = Src.getValueType(); 2750 2751 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 2752 2753 if (SrcEltCnt.isScalable()) 2754 return false; 2755 2756 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2757 if (isNullConstant(Idx)) { 2758 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 2759 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 2760 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 2761 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2762 TLO, Depth + 1)) 2763 return true; 2764 } 2765 } 2766 KnownUndef.setHighBits(NumElts - 1); 2767 break; 2768 } 2769 case ISD::BITCAST: { 2770 SDValue Src = Op.getOperand(0); 2771 EVT SrcVT = Src.getValueType(); 2772 2773 // We only handle vectors here. 2774 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2775 if (!SrcVT.isVector()) 2776 break; 2777 2778 // Fast handling of 'identity' bitcasts. 2779 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2780 if (NumSrcElts == NumElts) 2781 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2782 KnownZero, TLO, Depth + 1); 2783 2784 APInt SrcDemandedElts, SrcZero, SrcUndef; 2785 2786 // Bitcast from 'large element' src vector to 'small element' vector, we 2787 // must demand a source element if any DemandedElt maps to it. 2788 if ((NumElts % NumSrcElts) == 0) { 2789 unsigned Scale = NumElts / NumSrcElts; 2790 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2791 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2792 TLO, Depth + 1)) 2793 return true; 2794 2795 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2796 // of the large element. 2797 // TODO - bigendian once we have test coverage. 2798 if (IsLE) { 2799 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2800 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits); 2801 for (unsigned i = 0; i != NumElts; ++i) 2802 if (DemandedElts[i]) { 2803 unsigned Ofs = (i % Scale) * EltSizeInBits; 2804 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2805 } 2806 2807 KnownBits Known; 2808 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2809 TLO, Depth + 1)) 2810 return true; 2811 2812 // The bitcast has split each wide element into a number of 2813 // narrow subelements. We have just computed the Known bits 2814 // for wide elements. See if element splitting results in 2815 // some subelements being zero. Only for demanded elements! 2816 for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) { 2817 if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits) 2818 .isAllOnes()) 2819 continue; 2820 for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) { 2821 unsigned Elt = Scale * SrcElt + SubElt; 2822 if (DemandedElts[Elt]) 2823 KnownZero.setBit(Elt); 2824 } 2825 } 2826 } 2827 2828 // If the src element is zero/undef then all the output elements will be - 2829 // only demanded elements are guaranteed to be correct. 2830 for (unsigned i = 0; i != NumSrcElts; ++i) { 2831 if (SrcDemandedElts[i]) { 2832 if (SrcZero[i]) 2833 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2834 if (SrcUndef[i]) 2835 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2836 } 2837 } 2838 } 2839 2840 // Bitcast from 'small element' src vector to 'large element' vector, we 2841 // demand all smaller source elements covered by the larger demanded element 2842 // of this vector. 2843 if ((NumSrcElts % NumElts) == 0) { 2844 unsigned Scale = NumSrcElts / NumElts; 2845 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2846 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2847 TLO, Depth + 1)) 2848 return true; 2849 2850 // If all the src elements covering an output element are zero/undef, then 2851 // the output element will be as well, assuming it was demanded. 2852 for (unsigned i = 0; i != NumElts; ++i) { 2853 if (DemandedElts[i]) { 2854 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes()) 2855 KnownZero.setBit(i); 2856 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes()) 2857 KnownUndef.setBit(i); 2858 } 2859 } 2860 } 2861 break; 2862 } 2863 case ISD::BUILD_VECTOR: { 2864 // Check all elements and simplify any unused elements with UNDEF. 2865 if (!DemandedElts.isAllOnes()) { 2866 // Don't simplify BROADCASTS. 2867 if (llvm::any_of(Op->op_values(), 2868 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2869 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2870 bool Updated = false; 2871 for (unsigned i = 0; i != NumElts; ++i) { 2872 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2873 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2874 KnownUndef.setBit(i); 2875 Updated = true; 2876 } 2877 } 2878 if (Updated) 2879 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2880 } 2881 } 2882 for (unsigned i = 0; i != NumElts; ++i) { 2883 SDValue SrcOp = Op.getOperand(i); 2884 if (SrcOp.isUndef()) { 2885 KnownUndef.setBit(i); 2886 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2887 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2888 KnownZero.setBit(i); 2889 } 2890 } 2891 break; 2892 } 2893 case ISD::CONCAT_VECTORS: { 2894 EVT SubVT = Op.getOperand(0).getValueType(); 2895 unsigned NumSubVecs = Op.getNumOperands(); 2896 unsigned NumSubElts = SubVT.getVectorNumElements(); 2897 for (unsigned i = 0; i != NumSubVecs; ++i) { 2898 SDValue SubOp = Op.getOperand(i); 2899 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2900 APInt SubUndef, SubZero; 2901 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2902 Depth + 1)) 2903 return true; 2904 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2905 KnownZero.insertBits(SubZero, i * NumSubElts); 2906 } 2907 2908 // Attempt to avoid multi-use ops if we don't need anything from them. 2909 if (!DemandedElts.isAllOnes()) { 2910 bool FoundNewSub = false; 2911 SmallVector<SDValue, 2> DemandedSubOps; 2912 for (unsigned i = 0; i != NumSubVecs; ++i) { 2913 SDValue SubOp = Op.getOperand(i); 2914 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2915 SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts( 2916 SubOp, SubElts, TLO.DAG, Depth + 1); 2917 DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp); 2918 FoundNewSub = NewSubOp ? true : FoundNewSub; 2919 } 2920 if (FoundNewSub) { 2921 SDValue NewOp = 2922 TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps); 2923 return TLO.CombineTo(Op, NewOp); 2924 } 2925 } 2926 break; 2927 } 2928 case ISD::INSERT_SUBVECTOR: { 2929 // Demand any elements from the subvector and the remainder from the src its 2930 // inserted into. 2931 SDValue Src = Op.getOperand(0); 2932 SDValue Sub = Op.getOperand(1); 2933 uint64_t Idx = Op.getConstantOperandVal(2); 2934 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2935 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2936 APInt DemandedSrcElts = DemandedElts; 2937 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2938 2939 APInt SubUndef, SubZero; 2940 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2941 Depth + 1)) 2942 return true; 2943 2944 // If none of the src operand elements are demanded, replace it with undef. 2945 if (!DemandedSrcElts && !Src.isUndef()) 2946 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2947 TLO.DAG.getUNDEF(VT), Sub, 2948 Op.getOperand(2))); 2949 2950 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2951 TLO, Depth + 1)) 2952 return true; 2953 KnownUndef.insertBits(SubUndef, Idx); 2954 KnownZero.insertBits(SubZero, Idx); 2955 2956 // Attempt to avoid multi-use ops if we don't need anything from them. 2957 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { 2958 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2959 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2960 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2961 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2962 if (NewSrc || NewSub) { 2963 NewSrc = NewSrc ? NewSrc : Src; 2964 NewSub = NewSub ? NewSub : Sub; 2965 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2966 NewSub, Op.getOperand(2)); 2967 return TLO.CombineTo(Op, NewOp); 2968 } 2969 } 2970 break; 2971 } 2972 case ISD::EXTRACT_SUBVECTOR: { 2973 // Offset the demanded elts by the subvector index. 2974 SDValue Src = Op.getOperand(0); 2975 if (Src.getValueType().isScalableVector()) 2976 break; 2977 uint64_t Idx = Op.getConstantOperandVal(1); 2978 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2979 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 2980 2981 APInt SrcUndef, SrcZero; 2982 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2983 Depth + 1)) 2984 return true; 2985 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2986 KnownZero = SrcZero.extractBits(NumElts, Idx); 2987 2988 // Attempt to avoid multi-use ops if we don't need anything from them. 2989 if (!DemandedElts.isAllOnes()) { 2990 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2991 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2992 if (NewSrc) { 2993 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2994 Op.getOperand(1)); 2995 return TLO.CombineTo(Op, NewOp); 2996 } 2997 } 2998 break; 2999 } 3000 case ISD::INSERT_VECTOR_ELT: { 3001 SDValue Vec = Op.getOperand(0); 3002 SDValue Scl = Op.getOperand(1); 3003 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3004 3005 // For a legal, constant insertion index, if we don't need this insertion 3006 // then strip it, else remove it from the demanded elts. 3007 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 3008 unsigned Idx = CIdx->getZExtValue(); 3009 if (!DemandedElts[Idx]) 3010 return TLO.CombineTo(Op, Vec); 3011 3012 APInt DemandedVecElts(DemandedElts); 3013 DemandedVecElts.clearBit(Idx); 3014 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 3015 KnownZero, TLO, Depth + 1)) 3016 return true; 3017 3018 KnownUndef.setBitVal(Idx, Scl.isUndef()); 3019 3020 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 3021 break; 3022 } 3023 3024 APInt VecUndef, VecZero; 3025 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 3026 Depth + 1)) 3027 return true; 3028 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 3029 break; 3030 } 3031 case ISD::VSELECT: { 3032 // Try to transform the select condition based on the current demanded 3033 // elements. 3034 // TODO: If a condition element is undef, we can choose from one arm of the 3035 // select (and if one arm is undef, then we can propagate that to the 3036 // result). 3037 // TODO - add support for constant vselect masks (see IR version of this). 3038 APInt UnusedUndef, UnusedZero; 3039 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 3040 UnusedZero, TLO, Depth + 1)) 3041 return true; 3042 3043 // See if we can simplify either vselect operand. 3044 APInt DemandedLHS(DemandedElts); 3045 APInt DemandedRHS(DemandedElts); 3046 APInt UndefLHS, ZeroLHS; 3047 APInt UndefRHS, ZeroRHS; 3048 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 3049 ZeroLHS, TLO, Depth + 1)) 3050 return true; 3051 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 3052 ZeroRHS, TLO, Depth + 1)) 3053 return true; 3054 3055 KnownUndef = UndefLHS & UndefRHS; 3056 KnownZero = ZeroLHS & ZeroRHS; 3057 break; 3058 } 3059 case ISD::VECTOR_SHUFFLE: { 3060 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 3061 3062 // Collect demanded elements from shuffle operands.. 3063 APInt DemandedLHS(NumElts, 0); 3064 APInt DemandedRHS(NumElts, 0); 3065 for (unsigned i = 0; i != NumElts; ++i) { 3066 int M = ShuffleMask[i]; 3067 if (M < 0 || !DemandedElts[i]) 3068 continue; 3069 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 3070 if (M < (int)NumElts) 3071 DemandedLHS.setBit(M); 3072 else 3073 DemandedRHS.setBit(M - NumElts); 3074 } 3075 3076 // See if we can simplify either shuffle operand. 3077 APInt UndefLHS, ZeroLHS; 3078 APInt UndefRHS, ZeroRHS; 3079 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 3080 ZeroLHS, TLO, Depth + 1)) 3081 return true; 3082 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 3083 ZeroRHS, TLO, Depth + 1)) 3084 return true; 3085 3086 // Simplify mask using undef elements from LHS/RHS. 3087 bool Updated = false; 3088 bool IdentityLHS = true, IdentityRHS = true; 3089 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 3090 for (unsigned i = 0; i != NumElts; ++i) { 3091 int &M = NewMask[i]; 3092 if (M < 0) 3093 continue; 3094 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 3095 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 3096 Updated = true; 3097 M = -1; 3098 } 3099 IdentityLHS &= (M < 0) || (M == (int)i); 3100 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 3101 } 3102 3103 // Update legal shuffle masks based on demanded elements if it won't reduce 3104 // to Identity which can cause premature removal of the shuffle mask. 3105 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 3106 SDValue LegalShuffle = 3107 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 3108 NewMask, TLO.DAG); 3109 if (LegalShuffle) 3110 return TLO.CombineTo(Op, LegalShuffle); 3111 } 3112 3113 // Propagate undef/zero elements from LHS/RHS. 3114 for (unsigned i = 0; i != NumElts; ++i) { 3115 int M = ShuffleMask[i]; 3116 if (M < 0) { 3117 KnownUndef.setBit(i); 3118 } else if (M < (int)NumElts) { 3119 if (UndefLHS[M]) 3120 KnownUndef.setBit(i); 3121 if (ZeroLHS[M]) 3122 KnownZero.setBit(i); 3123 } else { 3124 if (UndefRHS[M - NumElts]) 3125 KnownUndef.setBit(i); 3126 if (ZeroRHS[M - NumElts]) 3127 KnownZero.setBit(i); 3128 } 3129 } 3130 break; 3131 } 3132 case ISD::ANY_EXTEND_VECTOR_INREG: 3133 case ISD::SIGN_EXTEND_VECTOR_INREG: 3134 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3135 APInt SrcUndef, SrcZero; 3136 SDValue Src = Op.getOperand(0); 3137 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3138 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts); 3139 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 3140 Depth + 1)) 3141 return true; 3142 KnownZero = SrcZero.zextOrTrunc(NumElts); 3143 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 3144 3145 if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 3146 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 3147 DemandedSrcElts == 1) { 3148 // aext - if we just need the bottom element then we can bitcast. 3149 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 3150 } 3151 3152 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 3153 // zext(undef) upper bits are guaranteed to be zero. 3154 if (DemandedElts.isSubsetOf(KnownUndef)) 3155 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3156 KnownUndef.clearAllBits(); 3157 3158 // zext - if we just need the bottom element then we can mask: 3159 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and. 3160 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND && 3161 Op->isOnlyUserOf(Src.getNode()) && 3162 Op.getValueSizeInBits() == Src.getValueSizeInBits()) { 3163 SDLoc DL(Op); 3164 EVT SrcVT = Src.getValueType(); 3165 EVT SrcSVT = SrcVT.getScalarType(); 3166 SmallVector<SDValue> MaskElts; 3167 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT)); 3168 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT)); 3169 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts); 3170 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic( 3171 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) { 3172 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold); 3173 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold)); 3174 } 3175 } 3176 } 3177 break; 3178 } 3179 3180 // TODO: There are more binop opcodes that could be handled here - MIN, 3181 // MAX, saturated math, etc. 3182 case ISD::ADD: { 3183 SDValue Op0 = Op.getOperand(0); 3184 SDValue Op1 = Op.getOperand(1); 3185 if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) { 3186 APInt UndefLHS, ZeroLHS; 3187 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3188 Depth + 1, /*AssumeSingleUse*/ true)) 3189 return true; 3190 } 3191 LLVM_FALLTHROUGH; 3192 } 3193 case ISD::OR: 3194 case ISD::XOR: 3195 case ISD::SUB: 3196 case ISD::FADD: 3197 case ISD::FSUB: 3198 case ISD::FMUL: 3199 case ISD::FDIV: 3200 case ISD::FREM: { 3201 SDValue Op0 = Op.getOperand(0); 3202 SDValue Op1 = Op.getOperand(1); 3203 3204 APInt UndefRHS, ZeroRHS; 3205 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3206 Depth + 1)) 3207 return true; 3208 APInt UndefLHS, ZeroLHS; 3209 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3210 Depth + 1)) 3211 return true; 3212 3213 KnownZero = ZeroLHS & ZeroRHS; 3214 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 3215 3216 // Attempt to avoid multi-use ops if we don't need anything from them. 3217 // TODO - use KnownUndef to relax the demandedelts? 3218 if (!DemandedElts.isAllOnes()) 3219 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3220 return true; 3221 break; 3222 } 3223 case ISD::SHL: 3224 case ISD::SRL: 3225 case ISD::SRA: 3226 case ISD::ROTL: 3227 case ISD::ROTR: { 3228 SDValue Op0 = Op.getOperand(0); 3229 SDValue Op1 = Op.getOperand(1); 3230 3231 APInt UndefRHS, ZeroRHS; 3232 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3233 Depth + 1)) 3234 return true; 3235 APInt UndefLHS, ZeroLHS; 3236 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3237 Depth + 1)) 3238 return true; 3239 3240 KnownZero = ZeroLHS; 3241 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 3242 3243 // Attempt to avoid multi-use ops if we don't need anything from them. 3244 // TODO - use KnownUndef to relax the demandedelts? 3245 if (!DemandedElts.isAllOnes()) 3246 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3247 return true; 3248 break; 3249 } 3250 case ISD::MUL: 3251 case ISD::AND: { 3252 SDValue Op0 = Op.getOperand(0); 3253 SDValue Op1 = Op.getOperand(1); 3254 3255 APInt SrcUndef, SrcZero; 3256 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 3257 Depth + 1)) 3258 return true; 3259 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 3260 TLO, Depth + 1)) 3261 return true; 3262 3263 // If either side has a zero element, then the result element is zero, even 3264 // if the other is an UNDEF. 3265 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 3266 // and then handle 'and' nodes with the rest of the binop opcodes. 3267 KnownZero |= SrcZero; 3268 KnownUndef &= SrcUndef; 3269 KnownUndef &= ~KnownZero; 3270 3271 // Attempt to avoid multi-use ops if we don't need anything from them. 3272 // TODO - use KnownUndef to relax the demandedelts? 3273 if (!DemandedElts.isAllOnes()) 3274 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3275 return true; 3276 break; 3277 } 3278 case ISD::TRUNCATE: 3279 case ISD::SIGN_EXTEND: 3280 case ISD::ZERO_EXTEND: 3281 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 3282 KnownZero, TLO, Depth + 1)) 3283 return true; 3284 3285 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 3286 // zext(undef) upper bits are guaranteed to be zero. 3287 if (DemandedElts.isSubsetOf(KnownUndef)) 3288 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3289 KnownUndef.clearAllBits(); 3290 } 3291 break; 3292 default: { 3293 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 3294 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 3295 KnownZero, TLO, Depth)) 3296 return true; 3297 } else { 3298 KnownBits Known; 3299 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits); 3300 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 3301 TLO, Depth, AssumeSingleUse)) 3302 return true; 3303 } 3304 break; 3305 } 3306 } 3307 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 3308 3309 // Constant fold all undef cases. 3310 // TODO: Handle zero cases as well. 3311 if (DemandedElts.isSubsetOf(KnownUndef)) 3312 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3313 3314 return false; 3315 } 3316 3317 /// Determine which of the bits specified in Mask are known to be either zero or 3318 /// one and return them in the Known. 3319 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 3320 KnownBits &Known, 3321 const APInt &DemandedElts, 3322 const SelectionDAG &DAG, 3323 unsigned Depth) const { 3324 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3325 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3326 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3327 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3328 "Should use MaskedValueIsZero if you don't know whether Op" 3329 " is a target node!"); 3330 Known.resetAll(); 3331 } 3332 3333 void TargetLowering::computeKnownBitsForTargetInstr( 3334 GISelKnownBits &Analysis, Register R, KnownBits &Known, 3335 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 3336 unsigned Depth) const { 3337 Known.resetAll(); 3338 } 3339 3340 void TargetLowering::computeKnownBitsForFrameIndex( 3341 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 3342 // The low bits are known zero if the pointer is aligned. 3343 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 3344 } 3345 3346 Align TargetLowering::computeKnownAlignForTargetInstr( 3347 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 3348 unsigned Depth) const { 3349 return Align(1); 3350 } 3351 3352 /// This method can be implemented by targets that want to expose additional 3353 /// information about sign bits to the DAG Combiner. 3354 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 3355 const APInt &, 3356 const SelectionDAG &, 3357 unsigned Depth) const { 3358 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3359 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3360 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3361 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3362 "Should use ComputeNumSignBits if you don't know whether Op" 3363 " is a target node!"); 3364 return 1; 3365 } 3366 3367 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 3368 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 3369 const MachineRegisterInfo &MRI, unsigned Depth) const { 3370 return 1; 3371 } 3372 3373 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3374 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3375 TargetLoweringOpt &TLO, unsigned Depth) const { 3376 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3377 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3378 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3379 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3380 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3381 " is a target node!"); 3382 return false; 3383 } 3384 3385 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3386 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3387 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3388 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3389 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3390 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3391 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3392 "Should use SimplifyDemandedBits if you don't know whether Op" 3393 " is a target node!"); 3394 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3395 return false; 3396 } 3397 3398 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3399 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3400 SelectionDAG &DAG, unsigned Depth) const { 3401 assert( 3402 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3403 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3404 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3405 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3406 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3407 " is a target node!"); 3408 return SDValue(); 3409 } 3410 3411 SDValue 3412 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3413 SDValue N1, MutableArrayRef<int> Mask, 3414 SelectionDAG &DAG) const { 3415 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3416 if (!LegalMask) { 3417 std::swap(N0, N1); 3418 ShuffleVectorSDNode::commuteMask(Mask); 3419 LegalMask = isShuffleMaskLegal(Mask, VT); 3420 } 3421 3422 if (!LegalMask) 3423 return SDValue(); 3424 3425 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3426 } 3427 3428 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3429 return nullptr; 3430 } 3431 3432 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3433 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3434 bool PoisonOnly, unsigned Depth) const { 3435 assert( 3436 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3437 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3438 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3439 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3440 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3441 " is a target node!"); 3442 return false; 3443 } 3444 3445 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3446 const SelectionDAG &DAG, 3447 bool SNaN, 3448 unsigned Depth) const { 3449 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3450 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3451 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3452 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3453 "Should use isKnownNeverNaN if you don't know whether Op" 3454 " is a target node!"); 3455 return false; 3456 } 3457 3458 bool TargetLowering::isSplatValueForTargetNode(SDValue Op, 3459 const APInt &DemandedElts, 3460 APInt &UndefElts, 3461 unsigned Depth) const { 3462 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3463 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3464 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3465 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3466 "Should use isSplatValue if you don't know whether Op" 3467 " is a target node!"); 3468 return false; 3469 } 3470 3471 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3472 // work with truncating build vectors and vectors with elements of less than 3473 // 8 bits. 3474 bool TargetLowering::isConstTrueVal(SDValue N) const { 3475 if (!N) 3476 return false; 3477 3478 unsigned EltWidth; 3479 APInt CVal; 3480 if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false, 3481 /*AllowTruncation=*/true)) { 3482 CVal = CN->getAPIntValue(); 3483 EltWidth = N.getValueType().getScalarSizeInBits(); 3484 } else 3485 return false; 3486 3487 // If this is a truncating splat, truncate the splat value. 3488 // Otherwise, we may fail to match the expected values below. 3489 if (EltWidth < CVal.getBitWidth()) 3490 CVal = CVal.trunc(EltWidth); 3491 3492 switch (getBooleanContents(N.getValueType())) { 3493 case UndefinedBooleanContent: 3494 return CVal[0]; 3495 case ZeroOrOneBooleanContent: 3496 return CVal.isOne(); 3497 case ZeroOrNegativeOneBooleanContent: 3498 return CVal.isAllOnes(); 3499 } 3500 3501 llvm_unreachable("Invalid boolean contents"); 3502 } 3503 3504 bool TargetLowering::isConstFalseVal(SDValue N) const { 3505 if (!N) 3506 return false; 3507 3508 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3509 if (!CN) { 3510 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3511 if (!BV) 3512 return false; 3513 3514 // Only interested in constant splats, we don't care about undef 3515 // elements in identifying boolean constants and getConstantSplatNode 3516 // returns NULL if all ops are undef; 3517 CN = BV->getConstantSplatNode(); 3518 if (!CN) 3519 return false; 3520 } 3521 3522 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3523 return !CN->getAPIntValue()[0]; 3524 3525 return CN->isZero(); 3526 } 3527 3528 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3529 bool SExt) const { 3530 if (VT == MVT::i1) 3531 return N->isOne(); 3532 3533 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3534 switch (Cnt) { 3535 case TargetLowering::ZeroOrOneBooleanContent: 3536 // An extended value of 1 is always true, unless its original type is i1, 3537 // in which case it will be sign extended to -1. 3538 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3539 case TargetLowering::UndefinedBooleanContent: 3540 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3541 return N->isAllOnes() && SExt; 3542 } 3543 llvm_unreachable("Unexpected enumeration."); 3544 } 3545 3546 /// This helper function of SimplifySetCC tries to optimize the comparison when 3547 /// either operand of the SetCC node is a bitwise-and instruction. 3548 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3549 ISD::CondCode Cond, const SDLoc &DL, 3550 DAGCombinerInfo &DCI) const { 3551 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3552 std::swap(N0, N1); 3553 3554 SelectionDAG &DAG = DCI.DAG; 3555 EVT OpVT = N0.getValueType(); 3556 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3557 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3558 return SDValue(); 3559 3560 // (X & Y) != 0 --> zextOrTrunc(X & Y) 3561 // iff everything but LSB is known zero: 3562 if (Cond == ISD::SETNE && isNullConstant(N1) && 3563 (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent || 3564 getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) { 3565 unsigned NumEltBits = OpVT.getScalarSizeInBits(); 3566 APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1); 3567 if (DAG.MaskedValueIsZero(N0, UpperBits)) 3568 return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT); 3569 } 3570 3571 // Match these patterns in any of their permutations: 3572 // (X & Y) == Y 3573 // (X & Y) != Y 3574 SDValue X, Y; 3575 if (N0.getOperand(0) == N1) { 3576 X = N0.getOperand(1); 3577 Y = N0.getOperand(0); 3578 } else if (N0.getOperand(1) == N1) { 3579 X = N0.getOperand(0); 3580 Y = N0.getOperand(1); 3581 } else { 3582 return SDValue(); 3583 } 3584 3585 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3586 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3587 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3588 // Note that where Y is variable and is known to have at most one bit set 3589 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3590 // equivalent when Y == 0. 3591 assert(OpVT.isInteger()); 3592 Cond = ISD::getSetCCInverse(Cond, OpVT); 3593 if (DCI.isBeforeLegalizeOps() || 3594 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3595 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3596 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3597 // If the target supports an 'and-not' or 'and-complement' logic operation, 3598 // try to use that to make a comparison operation more efficient. 3599 // But don't do this transform if the mask is a single bit because there are 3600 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3601 // 'rlwinm' on PPC). 3602 3603 // Bail out if the compare operand that we want to turn into a zero is 3604 // already a zero (otherwise, infinite loop). 3605 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3606 if (YConst && YConst->isZero()) 3607 return SDValue(); 3608 3609 // Transform this into: ~X & Y == 0. 3610 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3611 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3612 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3613 } 3614 3615 return SDValue(); 3616 } 3617 3618 /// There are multiple IR patterns that could be checking whether certain 3619 /// truncation of a signed number would be lossy or not. The pattern which is 3620 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3621 /// We are looking for the following pattern: (KeptBits is a constant) 3622 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3623 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3624 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3625 /// We will unfold it into the natural trunc+sext pattern: 3626 /// ((%x << C) a>> C) dstcond %x 3627 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3628 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3629 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3630 const SDLoc &DL) const { 3631 // We must be comparing with a constant. 3632 ConstantSDNode *C1; 3633 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3634 return SDValue(); 3635 3636 // N0 should be: add %x, (1 << (KeptBits-1)) 3637 if (N0->getOpcode() != ISD::ADD) 3638 return SDValue(); 3639 3640 // And we must be 'add'ing a constant. 3641 ConstantSDNode *C01; 3642 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3643 return SDValue(); 3644 3645 SDValue X = N0->getOperand(0); 3646 EVT XVT = X.getValueType(); 3647 3648 // Validate constants ... 3649 3650 APInt I1 = C1->getAPIntValue(); 3651 3652 ISD::CondCode NewCond; 3653 if (Cond == ISD::CondCode::SETULT) { 3654 NewCond = ISD::CondCode::SETEQ; 3655 } else if (Cond == ISD::CondCode::SETULE) { 3656 NewCond = ISD::CondCode::SETEQ; 3657 // But need to 'canonicalize' the constant. 3658 I1 += 1; 3659 } else if (Cond == ISD::CondCode::SETUGT) { 3660 NewCond = ISD::CondCode::SETNE; 3661 // But need to 'canonicalize' the constant. 3662 I1 += 1; 3663 } else if (Cond == ISD::CondCode::SETUGE) { 3664 NewCond = ISD::CondCode::SETNE; 3665 } else 3666 return SDValue(); 3667 3668 APInt I01 = C01->getAPIntValue(); 3669 3670 auto checkConstants = [&I1, &I01]() -> bool { 3671 // Both of them must be power-of-two, and the constant from setcc is bigger. 3672 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3673 }; 3674 3675 if (checkConstants()) { 3676 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3677 } else { 3678 // What if we invert constants? (and the target predicate) 3679 I1.negate(); 3680 I01.negate(); 3681 assert(XVT.isInteger()); 3682 NewCond = getSetCCInverse(NewCond, XVT); 3683 if (!checkConstants()) 3684 return SDValue(); 3685 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3686 } 3687 3688 // They are power-of-two, so which bit is set? 3689 const unsigned KeptBits = I1.logBase2(); 3690 const unsigned KeptBitsMinusOne = I01.logBase2(); 3691 3692 // Magic! 3693 if (KeptBits != (KeptBitsMinusOne + 1)) 3694 return SDValue(); 3695 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3696 3697 // We don't want to do this in every single case. 3698 SelectionDAG &DAG = DCI.DAG; 3699 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3700 XVT, KeptBits)) 3701 return SDValue(); 3702 3703 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3704 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3705 3706 // Unfold into: ((%x << C) a>> C) cond %x 3707 // Where 'cond' will be either 'eq' or 'ne'. 3708 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3709 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3710 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3711 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3712 3713 return T2; 3714 } 3715 3716 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3717 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3718 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3719 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3720 assert(isConstOrConstSplat(N1C) && 3721 isConstOrConstSplat(N1C)->getAPIntValue().isZero() && 3722 "Should be a comparison with 0."); 3723 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3724 "Valid only for [in]equality comparisons."); 3725 3726 unsigned NewShiftOpcode; 3727 SDValue X, C, Y; 3728 3729 SelectionDAG &DAG = DCI.DAG; 3730 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3731 3732 // Look for '(C l>>/<< Y)'. 3733 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3734 // The shift should be one-use. 3735 if (!V.hasOneUse()) 3736 return false; 3737 unsigned OldShiftOpcode = V.getOpcode(); 3738 switch (OldShiftOpcode) { 3739 case ISD::SHL: 3740 NewShiftOpcode = ISD::SRL; 3741 break; 3742 case ISD::SRL: 3743 NewShiftOpcode = ISD::SHL; 3744 break; 3745 default: 3746 return false; // must be a logical shift. 3747 } 3748 // We should be shifting a constant. 3749 // FIXME: best to use isConstantOrConstantVector(). 3750 C = V.getOperand(0); 3751 ConstantSDNode *CC = 3752 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3753 if (!CC) 3754 return false; 3755 Y = V.getOperand(1); 3756 3757 ConstantSDNode *XC = 3758 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3759 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3760 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3761 }; 3762 3763 // LHS of comparison should be an one-use 'and'. 3764 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3765 return SDValue(); 3766 3767 X = N0.getOperand(0); 3768 SDValue Mask = N0.getOperand(1); 3769 3770 // 'and' is commutative! 3771 if (!Match(Mask)) { 3772 std::swap(X, Mask); 3773 if (!Match(Mask)) 3774 return SDValue(); 3775 } 3776 3777 EVT VT = X.getValueType(); 3778 3779 // Produce: 3780 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3781 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3782 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3783 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3784 return T2; 3785 } 3786 3787 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3788 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3789 /// handle the commuted versions of these patterns. 3790 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3791 ISD::CondCode Cond, const SDLoc &DL, 3792 DAGCombinerInfo &DCI) const { 3793 unsigned BOpcode = N0.getOpcode(); 3794 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3795 "Unexpected binop"); 3796 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3797 3798 // (X + Y) == X --> Y == 0 3799 // (X - Y) == X --> Y == 0 3800 // (X ^ Y) == X --> Y == 0 3801 SelectionDAG &DAG = DCI.DAG; 3802 EVT OpVT = N0.getValueType(); 3803 SDValue X = N0.getOperand(0); 3804 SDValue Y = N0.getOperand(1); 3805 if (X == N1) 3806 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3807 3808 if (Y != N1) 3809 return SDValue(); 3810 3811 // (X + Y) == Y --> X == 0 3812 // (X ^ Y) == Y --> X == 0 3813 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3814 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3815 3816 // The shift would not be valid if the operands are boolean (i1). 3817 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3818 return SDValue(); 3819 3820 // (X - Y) == Y --> X == Y << 1 3821 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3822 !DCI.isBeforeLegalize()); 3823 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3824 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3825 if (!DCI.isCalledByLegalizer()) 3826 DCI.AddToWorklist(YShl1.getNode()); 3827 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3828 } 3829 3830 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 3831 SDValue N0, const APInt &C1, 3832 ISD::CondCode Cond, const SDLoc &dl, 3833 SelectionDAG &DAG) { 3834 // Look through truncs that don't change the value of a ctpop. 3835 // FIXME: Add vector support? Need to be careful with setcc result type below. 3836 SDValue CTPOP = N0; 3837 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 3838 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 3839 CTPOP = N0.getOperand(0); 3840 3841 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 3842 return SDValue(); 3843 3844 EVT CTVT = CTPOP.getValueType(); 3845 SDValue CTOp = CTPOP.getOperand(0); 3846 3847 // If this is a vector CTPOP, keep the CTPOP if it is legal. 3848 // TODO: Should we check if CTPOP is legal(or custom) for scalars? 3849 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 3850 return SDValue(); 3851 3852 // (ctpop x) u< 2 -> (x & x-1) == 0 3853 // (ctpop x) u> 1 -> (x & x-1) != 0 3854 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 3855 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 3856 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 3857 return SDValue(); 3858 if (C1 == 0 && (Cond == ISD::SETULT)) 3859 return SDValue(); // This is handled elsewhere. 3860 3861 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 3862 3863 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3864 SDValue Result = CTOp; 3865 for (unsigned i = 0; i < Passes; i++) { 3866 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 3867 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 3868 } 3869 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3870 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 3871 } 3872 3873 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3874 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 3875 // For scalars, keep CTPOP if it is legal or custom. 3876 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT)) 3877 return SDValue(); 3878 // This is based on X86's custom lowering for CTPOP which produces more 3879 // instructions than the expansion here. 3880 3881 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3882 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3883 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3884 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3885 assert(CTVT.isInteger()); 3886 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3887 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3888 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3889 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3890 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3891 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3892 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3893 } 3894 3895 return SDValue(); 3896 } 3897 3898 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1, 3899 ISD::CondCode Cond, const SDLoc &dl, 3900 SelectionDAG &DAG) { 3901 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 3902 return SDValue(); 3903 3904 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 3905 if (!C1 || !(C1->isZero() || C1->isAllOnes())) 3906 return SDValue(); 3907 3908 auto getRotateSource = [](SDValue X) { 3909 if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR) 3910 return X.getOperand(0); 3911 return SDValue(); 3912 }; 3913 3914 // Peek through a rotated value compared against 0 or -1: 3915 // (rot X, Y) == 0/-1 --> X == 0/-1 3916 // (rot X, Y) != 0/-1 --> X != 0/-1 3917 if (SDValue R = getRotateSource(N0)) 3918 return DAG.getSetCC(dl, VT, R, N1, Cond); 3919 3920 // Peek through an 'or' of a rotated value compared against 0: 3921 // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0 3922 // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0 3923 // 3924 // TODO: Add the 'and' with -1 sibling. 3925 // TODO: Recurse through a series of 'or' ops to find the rotate. 3926 EVT OpVT = N0.getValueType(); 3927 if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) { 3928 if (SDValue R = getRotateSource(N0.getOperand(0))) { 3929 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1)); 3930 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 3931 } 3932 if (SDValue R = getRotateSource(N0.getOperand(1))) { 3933 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0)); 3934 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 3935 } 3936 } 3937 3938 return SDValue(); 3939 } 3940 3941 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1, 3942 ISD::CondCode Cond, const SDLoc &dl, 3943 SelectionDAG &DAG) { 3944 // If we are testing for all-bits-clear, we might be able to do that with 3945 // less shifting since bit-order does not matter. 3946 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 3947 return SDValue(); 3948 3949 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 3950 if (!C1 || !C1->isZero()) 3951 return SDValue(); 3952 3953 if (!N0.hasOneUse() || 3954 (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR)) 3955 return SDValue(); 3956 3957 unsigned BitWidth = N0.getScalarValueSizeInBits(); 3958 auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2)); 3959 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 3960 return SDValue(); 3961 3962 // Canonicalize fshr as fshl to reduce pattern-matching. 3963 unsigned ShAmt = ShAmtC->getZExtValue(); 3964 if (N0.getOpcode() == ISD::FSHR) 3965 ShAmt = BitWidth - ShAmt; 3966 3967 // Match an 'or' with a specific operand 'Other' in either commuted variant. 3968 SDValue X, Y; 3969 auto matchOr = [&X, &Y](SDValue Or, SDValue Other) { 3970 if (Or.getOpcode() != ISD::OR || !Or.hasOneUse()) 3971 return false; 3972 if (Or.getOperand(0) == Other) { 3973 X = Or.getOperand(0); 3974 Y = Or.getOperand(1); 3975 return true; 3976 } 3977 if (Or.getOperand(1) == Other) { 3978 X = Or.getOperand(1); 3979 Y = Or.getOperand(0); 3980 return true; 3981 } 3982 return false; 3983 }; 3984 3985 EVT OpVT = N0.getValueType(); 3986 EVT ShAmtVT = N0.getOperand(2).getValueType(); 3987 SDValue F0 = N0.getOperand(0); 3988 SDValue F1 = N0.getOperand(1); 3989 if (matchOr(F0, F1)) { 3990 // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0 3991 SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT); 3992 SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt); 3993 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X); 3994 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 3995 } 3996 if (matchOr(F1, F0)) { 3997 // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0 3998 SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT); 3999 SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt); 4000 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X); 4001 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4002 } 4003 4004 return SDValue(); 4005 } 4006 4007 /// Try to simplify a setcc built with the specified operands and cc. If it is 4008 /// unable to simplify it, return a null SDValue. 4009 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 4010 ISD::CondCode Cond, bool foldBooleans, 4011 DAGCombinerInfo &DCI, 4012 const SDLoc &dl) const { 4013 SelectionDAG &DAG = DCI.DAG; 4014 const DataLayout &Layout = DAG.getDataLayout(); 4015 EVT OpVT = N0.getValueType(); 4016 4017 // Constant fold or commute setcc. 4018 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 4019 return Fold; 4020 4021 bool N0ConstOrSplat = 4022 isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true); 4023 bool N1ConstOrSplat = 4024 isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true); 4025 4026 // Ensure that the constant occurs on the RHS and fold constant comparisons. 4027 // TODO: Handle non-splat vector constants. All undef causes trouble. 4028 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 4029 // infinite loop here when we encounter one. 4030 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 4031 if (N0ConstOrSplat && (!OpVT.isScalableVector() || !N1ConstOrSplat) && 4032 (DCI.isBeforeLegalizeOps() || 4033 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 4034 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 4035 4036 // If we have a subtract with the same 2 non-constant operands as this setcc 4037 // -- but in reverse order -- then try to commute the operands of this setcc 4038 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 4039 // instruction on some targets. 4040 if (!N0ConstOrSplat && !N1ConstOrSplat && 4041 (DCI.isBeforeLegalizeOps() || 4042 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 4043 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 4044 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 4045 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 4046 4047 if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG)) 4048 return V; 4049 4050 if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG)) 4051 return V; 4052 4053 if (auto *N1C = isConstOrConstSplat(N1)) { 4054 const APInt &C1 = N1C->getAPIntValue(); 4055 4056 // Optimize some CTPOP cases. 4057 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 4058 return V; 4059 4060 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 4061 // equality comparison, then we're just comparing whether X itself is 4062 // zero. 4063 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) && 4064 N0.getOperand(0).getOpcode() == ISD::CTLZ && 4065 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 4066 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 4067 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4068 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 4069 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 4070 // (srl (ctlz x), 5) == 0 -> X != 0 4071 // (srl (ctlz x), 5) != 1 -> X != 0 4072 Cond = ISD::SETNE; 4073 } else { 4074 // (srl (ctlz x), 5) != 0 -> X == 0 4075 // (srl (ctlz x), 5) == 1 -> X == 0 4076 Cond = ISD::SETEQ; 4077 } 4078 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 4079 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 4080 Cond); 4081 } 4082 } 4083 } 4084 } 4085 4086 // FIXME: Support vectors. 4087 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4088 const APInt &C1 = N1C->getAPIntValue(); 4089 4090 // (zext x) == C --> x == (trunc C) 4091 // (sext x) == C --> x == (trunc C) 4092 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4093 DCI.isBeforeLegalize() && N0->hasOneUse()) { 4094 unsigned MinBits = N0.getValueSizeInBits(); 4095 SDValue PreExt; 4096 bool Signed = false; 4097 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 4098 // ZExt 4099 MinBits = N0->getOperand(0).getValueSizeInBits(); 4100 PreExt = N0->getOperand(0); 4101 } else if (N0->getOpcode() == ISD::AND) { 4102 // DAGCombine turns costly ZExts into ANDs 4103 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 4104 if ((C->getAPIntValue()+1).isPowerOf2()) { 4105 MinBits = C->getAPIntValue().countTrailingOnes(); 4106 PreExt = N0->getOperand(0); 4107 } 4108 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 4109 // SExt 4110 MinBits = N0->getOperand(0).getValueSizeInBits(); 4111 PreExt = N0->getOperand(0); 4112 Signed = true; 4113 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 4114 // ZEXTLOAD / SEXTLOAD 4115 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 4116 MinBits = LN0->getMemoryVT().getSizeInBits(); 4117 PreExt = N0; 4118 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 4119 Signed = true; 4120 MinBits = LN0->getMemoryVT().getSizeInBits(); 4121 PreExt = N0; 4122 } 4123 } 4124 4125 // Figure out how many bits we need to preserve this constant. 4126 unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits(); 4127 4128 // Make sure we're not losing bits from the constant. 4129 if (MinBits > 0 && 4130 MinBits < C1.getBitWidth() && 4131 MinBits >= ReqdBits) { 4132 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 4133 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 4134 // Will get folded away. 4135 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 4136 if (MinBits == 1 && C1 == 1) 4137 // Invert the condition. 4138 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 4139 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4140 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 4141 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 4142 } 4143 4144 // If truncating the setcc operands is not desirable, we can still 4145 // simplify the expression in some cases: 4146 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 4147 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 4148 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 4149 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 4150 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 4151 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 4152 SDValue TopSetCC = N0->getOperand(0); 4153 unsigned N0Opc = N0->getOpcode(); 4154 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 4155 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 4156 TopSetCC.getOpcode() == ISD::SETCC && 4157 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 4158 (isConstFalseVal(N1) || 4159 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 4160 4161 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || 4162 (!N1C->isZero() && Cond == ISD::SETNE); 4163 4164 if (!Inverse) 4165 return TopSetCC; 4166 4167 ISD::CondCode InvCond = ISD::getSetCCInverse( 4168 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 4169 TopSetCC.getOperand(0).getValueType()); 4170 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 4171 TopSetCC.getOperand(1), 4172 InvCond); 4173 } 4174 } 4175 } 4176 4177 // If the LHS is '(and load, const)', the RHS is 0, the test is for 4178 // equality or unsigned, and all 1 bits of the const are in the same 4179 // partial word, see if we can shorten the load. 4180 if (DCI.isBeforeLegalize() && 4181 !ISD::isSignedIntSetCC(Cond) && 4182 N0.getOpcode() == ISD::AND && C1 == 0 && 4183 N0.getNode()->hasOneUse() && 4184 isa<LoadSDNode>(N0.getOperand(0)) && 4185 N0.getOperand(0).getNode()->hasOneUse() && 4186 isa<ConstantSDNode>(N0.getOperand(1))) { 4187 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 4188 APInt bestMask; 4189 unsigned bestWidth = 0, bestOffset = 0; 4190 if (Lod->isSimple() && Lod->isUnindexed()) { 4191 unsigned origWidth = N0.getValueSizeInBits(); 4192 unsigned maskWidth = origWidth; 4193 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 4194 // 8 bits, but have to be careful... 4195 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 4196 origWidth = Lod->getMemoryVT().getSizeInBits(); 4197 const APInt &Mask = N0.getConstantOperandAPInt(1); 4198 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 4199 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 4200 for (unsigned offset=0; offset<origWidth/width; offset++) { 4201 if (Mask.isSubsetOf(newMask)) { 4202 if (Layout.isLittleEndian()) 4203 bestOffset = (uint64_t)offset * (width/8); 4204 else 4205 bestOffset = (origWidth/width - offset - 1) * (width/8); 4206 bestMask = Mask.lshr(offset * (width/8) * 8); 4207 bestWidth = width; 4208 break; 4209 } 4210 newMask <<= width; 4211 } 4212 } 4213 } 4214 if (bestWidth) { 4215 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 4216 if (newVT.isRound() && 4217 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 4218 SDValue Ptr = Lod->getBasePtr(); 4219 if (bestOffset != 0) 4220 Ptr = 4221 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 4222 SDValue NewLoad = 4223 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 4224 Lod->getPointerInfo().getWithOffset(bestOffset), 4225 Lod->getOriginalAlign()); 4226 return DAG.getSetCC(dl, VT, 4227 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 4228 DAG.getConstant(bestMask.trunc(bestWidth), 4229 dl, newVT)), 4230 DAG.getConstant(0LL, dl, newVT), Cond); 4231 } 4232 } 4233 } 4234 4235 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 4236 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 4237 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 4238 4239 // If the comparison constant has bits in the upper part, the 4240 // zero-extended value could never match. 4241 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 4242 C1.getBitWidth() - InSize))) { 4243 switch (Cond) { 4244 case ISD::SETUGT: 4245 case ISD::SETUGE: 4246 case ISD::SETEQ: 4247 return DAG.getConstant(0, dl, VT); 4248 case ISD::SETULT: 4249 case ISD::SETULE: 4250 case ISD::SETNE: 4251 return DAG.getConstant(1, dl, VT); 4252 case ISD::SETGT: 4253 case ISD::SETGE: 4254 // True if the sign bit of C1 is set. 4255 return DAG.getConstant(C1.isNegative(), dl, VT); 4256 case ISD::SETLT: 4257 case ISD::SETLE: 4258 // True if the sign bit of C1 isn't set. 4259 return DAG.getConstant(C1.isNonNegative(), dl, VT); 4260 default: 4261 break; 4262 } 4263 } 4264 4265 // Otherwise, we can perform the comparison with the low bits. 4266 switch (Cond) { 4267 case ISD::SETEQ: 4268 case ISD::SETNE: 4269 case ISD::SETUGT: 4270 case ISD::SETUGE: 4271 case ISD::SETULT: 4272 case ISD::SETULE: { 4273 EVT newVT = N0.getOperand(0).getValueType(); 4274 if (DCI.isBeforeLegalizeOps() || 4275 (isOperationLegal(ISD::SETCC, newVT) && 4276 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 4277 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 4278 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 4279 4280 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 4281 NewConst, Cond); 4282 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 4283 } 4284 break; 4285 } 4286 default: 4287 break; // todo, be more careful with signed comparisons 4288 } 4289 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 4290 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4291 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 4292 OpVT)) { 4293 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 4294 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 4295 EVT ExtDstTy = N0.getValueType(); 4296 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 4297 4298 // If the constant doesn't fit into the number of bits for the source of 4299 // the sign extension, it is impossible for both sides to be equal. 4300 if (C1.getMinSignedBits() > ExtSrcTyBits) 4301 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 4302 4303 assert(ExtDstTy == N0.getOperand(0).getValueType() && 4304 ExtDstTy != ExtSrcTy && "Unexpected types!"); 4305 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 4306 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 4307 DAG.getConstant(Imm, dl, ExtDstTy)); 4308 if (!DCI.isCalledByLegalizer()) 4309 DCI.AddToWorklist(ZextOp.getNode()); 4310 // Otherwise, make this a use of a zext. 4311 return DAG.getSetCC(dl, VT, ZextOp, 4312 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 4313 } else if ((N1C->isZero() || N1C->isOne()) && 4314 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4315 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 4316 if (N0.getOpcode() == ISD::SETCC && 4317 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 4318 (N0.getValueType() == MVT::i1 || 4319 getBooleanContents(N0.getOperand(0).getValueType()) == 4320 ZeroOrOneBooleanContent)) { 4321 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 4322 if (TrueWhenTrue) 4323 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 4324 // Invert the condition. 4325 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 4326 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 4327 if (DCI.isBeforeLegalizeOps() || 4328 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 4329 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 4330 } 4331 4332 if ((N0.getOpcode() == ISD::XOR || 4333 (N0.getOpcode() == ISD::AND && 4334 N0.getOperand(0).getOpcode() == ISD::XOR && 4335 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 4336 isOneConstant(N0.getOperand(1))) { 4337 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 4338 // can only do this if the top bits are known zero. 4339 unsigned BitWidth = N0.getValueSizeInBits(); 4340 if (DAG.MaskedValueIsZero(N0, 4341 APInt::getHighBitsSet(BitWidth, 4342 BitWidth-1))) { 4343 // Okay, get the un-inverted input value. 4344 SDValue Val; 4345 if (N0.getOpcode() == ISD::XOR) { 4346 Val = N0.getOperand(0); 4347 } else { 4348 assert(N0.getOpcode() == ISD::AND && 4349 N0.getOperand(0).getOpcode() == ISD::XOR); 4350 // ((X^1)&1)^1 -> X & 1 4351 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 4352 N0.getOperand(0).getOperand(0), 4353 N0.getOperand(1)); 4354 } 4355 4356 return DAG.getSetCC(dl, VT, Val, N1, 4357 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4358 } 4359 } else if (N1C->isOne()) { 4360 SDValue Op0 = N0; 4361 if (Op0.getOpcode() == ISD::TRUNCATE) 4362 Op0 = Op0.getOperand(0); 4363 4364 if ((Op0.getOpcode() == ISD::XOR) && 4365 Op0.getOperand(0).getOpcode() == ISD::SETCC && 4366 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 4367 SDValue XorLHS = Op0.getOperand(0); 4368 SDValue XorRHS = Op0.getOperand(1); 4369 // Ensure that the input setccs return an i1 type or 0/1 value. 4370 if (Op0.getValueType() == MVT::i1 || 4371 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 4372 ZeroOrOneBooleanContent && 4373 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 4374 ZeroOrOneBooleanContent)) { 4375 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 4376 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 4377 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 4378 } 4379 } 4380 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 4381 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 4382 if (Op0.getValueType().bitsGT(VT)) 4383 Op0 = DAG.getNode(ISD::AND, dl, VT, 4384 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 4385 DAG.getConstant(1, dl, VT)); 4386 else if (Op0.getValueType().bitsLT(VT)) 4387 Op0 = DAG.getNode(ISD::AND, dl, VT, 4388 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 4389 DAG.getConstant(1, dl, VT)); 4390 4391 return DAG.getSetCC(dl, VT, Op0, 4392 DAG.getConstant(0, dl, Op0.getValueType()), 4393 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4394 } 4395 if (Op0.getOpcode() == ISD::AssertZext && 4396 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 4397 return DAG.getSetCC(dl, VT, Op0, 4398 DAG.getConstant(0, dl, Op0.getValueType()), 4399 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4400 } 4401 } 4402 4403 // Given: 4404 // icmp eq/ne (urem %x, %y), 0 4405 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 4406 // icmp eq/ne %x, 0 4407 if (N0.getOpcode() == ISD::UREM && N1C->isZero() && 4408 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4409 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 4410 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 4411 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 4412 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 4413 } 4414 4415 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 4416 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 4417 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4418 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && 4419 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && 4420 N1C && N1C->isAllOnes()) { 4421 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4422 DAG.getConstant(0, dl, OpVT), 4423 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); 4424 } 4425 4426 if (SDValue V = 4427 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 4428 return V; 4429 } 4430 4431 // These simplifications apply to splat vectors as well. 4432 // TODO: Handle more splat vector cases. 4433 if (auto *N1C = isConstOrConstSplat(N1)) { 4434 const APInt &C1 = N1C->getAPIntValue(); 4435 4436 APInt MinVal, MaxVal; 4437 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 4438 if (ISD::isSignedIntSetCC(Cond)) { 4439 MinVal = APInt::getSignedMinValue(OperandBitSize); 4440 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 4441 } else { 4442 MinVal = APInt::getMinValue(OperandBitSize); 4443 MaxVal = APInt::getMaxValue(OperandBitSize); 4444 } 4445 4446 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 4447 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 4448 // X >= MIN --> true 4449 if (C1 == MinVal) 4450 return DAG.getBoolConstant(true, dl, VT, OpVT); 4451 4452 if (!VT.isVector()) { // TODO: Support this for vectors. 4453 // X >= C0 --> X > (C0 - 1) 4454 APInt C = C1 - 1; 4455 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 4456 if ((DCI.isBeforeLegalizeOps() || 4457 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4458 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4459 isLegalICmpImmediate(C.getSExtValue())))) { 4460 return DAG.getSetCC(dl, VT, N0, 4461 DAG.getConstant(C, dl, N1.getValueType()), 4462 NewCC); 4463 } 4464 } 4465 } 4466 4467 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 4468 // X <= MAX --> true 4469 if (C1 == MaxVal) 4470 return DAG.getBoolConstant(true, dl, VT, OpVT); 4471 4472 // X <= C0 --> X < (C0 + 1) 4473 if (!VT.isVector()) { // TODO: Support this for vectors. 4474 APInt C = C1 + 1; 4475 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 4476 if ((DCI.isBeforeLegalizeOps() || 4477 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4478 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4479 isLegalICmpImmediate(C.getSExtValue())))) { 4480 return DAG.getSetCC(dl, VT, N0, 4481 DAG.getConstant(C, dl, N1.getValueType()), 4482 NewCC); 4483 } 4484 } 4485 } 4486 4487 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 4488 if (C1 == MinVal) 4489 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 4490 4491 // TODO: Support this for vectors after legalize ops. 4492 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4493 // Canonicalize setlt X, Max --> setne X, Max 4494 if (C1 == MaxVal) 4495 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4496 4497 // If we have setult X, 1, turn it into seteq X, 0 4498 if (C1 == MinVal+1) 4499 return DAG.getSetCC(dl, VT, N0, 4500 DAG.getConstant(MinVal, dl, N0.getValueType()), 4501 ISD::SETEQ); 4502 } 4503 } 4504 4505 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 4506 if (C1 == MaxVal) 4507 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 4508 4509 // TODO: Support this for vectors after legalize ops. 4510 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4511 // Canonicalize setgt X, Min --> setne X, Min 4512 if (C1 == MinVal) 4513 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4514 4515 // If we have setugt X, Max-1, turn it into seteq X, Max 4516 if (C1 == MaxVal-1) 4517 return DAG.getSetCC(dl, VT, N0, 4518 DAG.getConstant(MaxVal, dl, N0.getValueType()), 4519 ISD::SETEQ); 4520 } 4521 } 4522 4523 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 4524 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4525 if (C1.isZero()) 4526 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 4527 VT, N0, N1, Cond, DCI, dl)) 4528 return CC; 4529 4530 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 4531 // For example, when high 32-bits of i64 X are known clear: 4532 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 4533 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 4534 bool CmpZero = N1C->getAPIntValue().isZero(); 4535 bool CmpNegOne = N1C->getAPIntValue().isAllOnes(); 4536 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 4537 // Match or(lo,shl(hi,bw/2)) pattern. 4538 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 4539 unsigned EltBits = V.getScalarValueSizeInBits(); 4540 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 4541 return false; 4542 SDValue LHS = V.getOperand(0); 4543 SDValue RHS = V.getOperand(1); 4544 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 4545 // Unshifted element must have zero upperbits. 4546 if (RHS.getOpcode() == ISD::SHL && 4547 isa<ConstantSDNode>(RHS.getOperand(1)) && 4548 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4549 DAG.MaskedValueIsZero(LHS, HiBits)) { 4550 Lo = LHS; 4551 Hi = RHS.getOperand(0); 4552 return true; 4553 } 4554 if (LHS.getOpcode() == ISD::SHL && 4555 isa<ConstantSDNode>(LHS.getOperand(1)) && 4556 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4557 DAG.MaskedValueIsZero(RHS, HiBits)) { 4558 Lo = RHS; 4559 Hi = LHS.getOperand(0); 4560 return true; 4561 } 4562 return false; 4563 }; 4564 4565 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4566 unsigned EltBits = N0.getScalarValueSizeInBits(); 4567 unsigned HalfBits = EltBits / 2; 4568 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4569 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4570 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4571 SDValue NewN0 = 4572 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4573 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4574 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4575 }; 4576 4577 SDValue Lo, Hi; 4578 if (IsConcat(N0, Lo, Hi)) 4579 return MergeConcat(Lo, Hi); 4580 4581 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4582 SDValue Lo0, Lo1, Hi0, Hi1; 4583 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4584 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4585 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4586 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4587 } 4588 } 4589 } 4590 } 4591 4592 // If we have "setcc X, C0", check to see if we can shrink the immediate 4593 // by changing cc. 4594 // TODO: Support this for vectors after legalize ops. 4595 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4596 // SETUGT X, SINTMAX -> SETLT X, 0 4597 // SETUGE X, SINTMIN -> SETLT X, 0 4598 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4599 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4600 return DAG.getSetCC(dl, VT, N0, 4601 DAG.getConstant(0, dl, N1.getValueType()), 4602 ISD::SETLT); 4603 4604 // SETULT X, SINTMIN -> SETGT X, -1 4605 // SETULE X, SINTMAX -> SETGT X, -1 4606 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4607 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4608 return DAG.getSetCC(dl, VT, N0, 4609 DAG.getAllOnesConstant(dl, N1.getValueType()), 4610 ISD::SETGT); 4611 } 4612 } 4613 4614 // Back to non-vector simplifications. 4615 // TODO: Can we do these for vector splats? 4616 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4617 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4618 const APInt &C1 = N1C->getAPIntValue(); 4619 EVT ShValTy = N0.getValueType(); 4620 4621 // Fold bit comparisons when we can. This will result in an 4622 // incorrect value when boolean false is negative one, unless 4623 // the bitsize is 1 in which case the false value is the same 4624 // in practice regardless of the representation. 4625 if ((VT.getSizeInBits() == 1 || 4626 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4627 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4628 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4629 N0.getOpcode() == ISD::AND) { 4630 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4631 EVT ShiftTy = 4632 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4633 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4634 // Perform the xform if the AND RHS is a single bit. 4635 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4636 if (AndRHS->getAPIntValue().isPowerOf2() && 4637 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4638 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4639 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4640 DAG.getConstant(ShCt, dl, ShiftTy))); 4641 } 4642 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4643 // (X & 8) == 8 --> (X & 8) >> 3 4644 // Perform the xform if C1 is a single bit. 4645 unsigned ShCt = C1.logBase2(); 4646 if (C1.isPowerOf2() && 4647 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4648 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4649 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4650 DAG.getConstant(ShCt, dl, ShiftTy))); 4651 } 4652 } 4653 } 4654 } 4655 4656 if (C1.getMinSignedBits() <= 64 && 4657 !isLegalICmpImmediate(C1.getSExtValue())) { 4658 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4659 // (X & -256) == 256 -> (X >> 8) == 1 4660 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4661 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4662 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4663 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4664 if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) { 4665 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4666 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4667 SDValue Shift = 4668 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4669 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4670 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4671 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4672 } 4673 } 4674 } 4675 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4676 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4677 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4678 // X < 0x100000000 -> (X >> 32) < 1 4679 // X >= 0x100000000 -> (X >> 32) >= 1 4680 // X <= 0x0ffffffff -> (X >> 32) < 1 4681 // X > 0x0ffffffff -> (X >> 32) >= 1 4682 unsigned ShiftBits; 4683 APInt NewC = C1; 4684 ISD::CondCode NewCond = Cond; 4685 if (AdjOne) { 4686 ShiftBits = C1.countTrailingOnes(); 4687 NewC = NewC + 1; 4688 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4689 } else { 4690 ShiftBits = C1.countTrailingZeros(); 4691 } 4692 NewC.lshrInPlace(ShiftBits); 4693 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4694 isLegalICmpImmediate(NewC.getSExtValue()) && 4695 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4696 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4697 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4698 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4699 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4700 } 4701 } 4702 } 4703 } 4704 4705 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4706 auto *CFP = cast<ConstantFPSDNode>(N1); 4707 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4708 4709 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4710 // constant if knowing that the operand is non-nan is enough. We prefer to 4711 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4712 // materialize 0.0. 4713 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4714 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4715 4716 // setcc (fneg x), C -> setcc swap(pred) x, -C 4717 if (N0.getOpcode() == ISD::FNEG) { 4718 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4719 if (DCI.isBeforeLegalizeOps() || 4720 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4721 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4722 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4723 } 4724 } 4725 4726 // If the condition is not legal, see if we can find an equivalent one 4727 // which is legal. 4728 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4729 // If the comparison was an awkward floating-point == or != and one of 4730 // the comparison operands is infinity or negative infinity, convert the 4731 // condition to a less-awkward <= or >=. 4732 if (CFP->getValueAPF().isInfinity()) { 4733 bool IsNegInf = CFP->getValueAPF().isNegative(); 4734 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4735 switch (Cond) { 4736 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4737 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4738 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4739 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4740 default: break; 4741 } 4742 if (NewCond != ISD::SETCC_INVALID && 4743 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4744 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4745 } 4746 } 4747 } 4748 4749 if (N0 == N1) { 4750 // The sext(setcc()) => setcc() optimization relies on the appropriate 4751 // constant being emitted. 4752 assert(!N0.getValueType().isInteger() && 4753 "Integer types should be handled by FoldSetCC"); 4754 4755 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4756 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4757 if (UOF == 2) // FP operators that are undefined on NaNs. 4758 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4759 if (UOF == unsigned(EqTrue)) 4760 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4761 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4762 // if it is not already. 4763 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4764 if (NewCond != Cond && 4765 (DCI.isBeforeLegalizeOps() || 4766 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4767 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4768 } 4769 4770 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4771 N0.getValueType().isInteger()) { 4772 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4773 N0.getOpcode() == ISD::XOR) { 4774 // Simplify (X+Y) == (X+Z) --> Y == Z 4775 if (N0.getOpcode() == N1.getOpcode()) { 4776 if (N0.getOperand(0) == N1.getOperand(0)) 4777 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4778 if (N0.getOperand(1) == N1.getOperand(1)) 4779 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4780 if (isCommutativeBinOp(N0.getOpcode())) { 4781 // If X op Y == Y op X, try other combinations. 4782 if (N0.getOperand(0) == N1.getOperand(1)) 4783 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4784 Cond); 4785 if (N0.getOperand(1) == N1.getOperand(0)) 4786 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4787 Cond); 4788 } 4789 } 4790 4791 // If RHS is a legal immediate value for a compare instruction, we need 4792 // to be careful about increasing register pressure needlessly. 4793 bool LegalRHSImm = false; 4794 4795 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4796 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4797 // Turn (X+C1) == C2 --> X == C2-C1 4798 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) 4799 return DAG.getSetCC( 4800 dl, VT, N0.getOperand(0), 4801 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(), 4802 dl, N0.getValueType()), 4803 Cond); 4804 4805 // Turn (X^C1) == C2 --> X == C1^C2 4806 if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse()) 4807 return DAG.getSetCC( 4808 dl, VT, N0.getOperand(0), 4809 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(), 4810 dl, N0.getValueType()), 4811 Cond); 4812 } 4813 4814 // Turn (C1-X) == C2 --> X == C1-C2 4815 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) 4816 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) 4817 return DAG.getSetCC( 4818 dl, VT, N0.getOperand(1), 4819 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(), 4820 dl, N0.getValueType()), 4821 Cond); 4822 4823 // Could RHSC fold directly into a compare? 4824 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4825 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4826 } 4827 4828 // (X+Y) == X --> Y == 0 and similar folds. 4829 // Don't do this if X is an immediate that can fold into a cmp 4830 // instruction and X+Y has other uses. It could be an induction variable 4831 // chain, and the transform would increase register pressure. 4832 if (!LegalRHSImm || N0.hasOneUse()) 4833 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4834 return V; 4835 } 4836 4837 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4838 N1.getOpcode() == ISD::XOR) 4839 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4840 return V; 4841 4842 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4843 return V; 4844 } 4845 4846 // Fold remainder of division by a constant. 4847 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4848 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4849 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4850 4851 // When division is cheap or optimizing for minimum size, 4852 // fall through to DIVREM creation by skipping this fold. 4853 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { 4854 if (N0.getOpcode() == ISD::UREM) { 4855 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4856 return Folded; 4857 } else if (N0.getOpcode() == ISD::SREM) { 4858 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4859 return Folded; 4860 } 4861 } 4862 } 4863 4864 // Fold away ALL boolean setcc's. 4865 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4866 SDValue Temp; 4867 switch (Cond) { 4868 default: llvm_unreachable("Unknown integer setcc!"); 4869 case ISD::SETEQ: // X == Y -> ~(X^Y) 4870 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4871 N0 = DAG.getNOT(dl, Temp, OpVT); 4872 if (!DCI.isCalledByLegalizer()) 4873 DCI.AddToWorklist(Temp.getNode()); 4874 break; 4875 case ISD::SETNE: // X != Y --> (X^Y) 4876 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4877 break; 4878 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4879 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4880 Temp = DAG.getNOT(dl, N0, OpVT); 4881 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4882 if (!DCI.isCalledByLegalizer()) 4883 DCI.AddToWorklist(Temp.getNode()); 4884 break; 4885 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4886 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4887 Temp = DAG.getNOT(dl, N1, OpVT); 4888 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4889 if (!DCI.isCalledByLegalizer()) 4890 DCI.AddToWorklist(Temp.getNode()); 4891 break; 4892 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4893 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4894 Temp = DAG.getNOT(dl, N0, OpVT); 4895 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4896 if (!DCI.isCalledByLegalizer()) 4897 DCI.AddToWorklist(Temp.getNode()); 4898 break; 4899 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4900 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4901 Temp = DAG.getNOT(dl, N1, OpVT); 4902 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4903 break; 4904 } 4905 if (VT.getScalarType() != MVT::i1) { 4906 if (!DCI.isCalledByLegalizer()) 4907 DCI.AddToWorklist(N0.getNode()); 4908 // FIXME: If running after legalize, we probably can't do this. 4909 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4910 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4911 } 4912 return N0; 4913 } 4914 4915 // Could not fold it. 4916 return SDValue(); 4917 } 4918 4919 /// Returns true (and the GlobalValue and the offset) if the node is a 4920 /// GlobalAddress + offset. 4921 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4922 int64_t &Offset) const { 4923 4924 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4925 4926 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4927 GA = GASD->getGlobal(); 4928 Offset += GASD->getOffset(); 4929 return true; 4930 } 4931 4932 if (N->getOpcode() == ISD::ADD) { 4933 SDValue N1 = N->getOperand(0); 4934 SDValue N2 = N->getOperand(1); 4935 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4936 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4937 Offset += V->getSExtValue(); 4938 return true; 4939 } 4940 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4941 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4942 Offset += V->getSExtValue(); 4943 return true; 4944 } 4945 } 4946 } 4947 4948 return false; 4949 } 4950 4951 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4952 DAGCombinerInfo &DCI) const { 4953 // Default implementation: no optimization. 4954 return SDValue(); 4955 } 4956 4957 //===----------------------------------------------------------------------===// 4958 // Inline Assembler Implementation Methods 4959 //===----------------------------------------------------------------------===// 4960 4961 TargetLowering::ConstraintType 4962 TargetLowering::getConstraintType(StringRef Constraint) const { 4963 unsigned S = Constraint.size(); 4964 4965 if (S == 1) { 4966 switch (Constraint[0]) { 4967 default: break; 4968 case 'r': 4969 return C_RegisterClass; 4970 case 'm': // memory 4971 case 'o': // offsetable 4972 case 'V': // not offsetable 4973 return C_Memory; 4974 case 'p': // Address. 4975 return C_Address; 4976 case 'n': // Simple Integer 4977 case 'E': // Floating Point Constant 4978 case 'F': // Floating Point Constant 4979 return C_Immediate; 4980 case 'i': // Simple Integer or Relocatable Constant 4981 case 's': // Relocatable Constant 4982 case 'X': // Allow ANY value. 4983 case 'I': // Target registers. 4984 case 'J': 4985 case 'K': 4986 case 'L': 4987 case 'M': 4988 case 'N': 4989 case 'O': 4990 case 'P': 4991 case '<': 4992 case '>': 4993 return C_Other; 4994 } 4995 } 4996 4997 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4998 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4999 return C_Memory; 5000 return C_Register; 5001 } 5002 return C_Unknown; 5003 } 5004 5005 /// Try to replace an X constraint, which matches anything, with another that 5006 /// has more specific requirements based on the type of the corresponding 5007 /// operand. 5008 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 5009 if (ConstraintVT.isInteger()) 5010 return "r"; 5011 if (ConstraintVT.isFloatingPoint()) 5012 return "f"; // works for many targets 5013 return nullptr; 5014 } 5015 5016 SDValue TargetLowering::LowerAsmOutputForConstraint( 5017 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 5018 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 5019 return SDValue(); 5020 } 5021 5022 /// Lower the specified operand into the Ops vector. 5023 /// If it is invalid, don't add anything to Ops. 5024 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 5025 std::string &Constraint, 5026 std::vector<SDValue> &Ops, 5027 SelectionDAG &DAG) const { 5028 5029 if (Constraint.length() > 1) return; 5030 5031 char ConstraintLetter = Constraint[0]; 5032 switch (ConstraintLetter) { 5033 default: break; 5034 case 'X': // Allows any operand 5035 case 'i': // Simple Integer or Relocatable Constant 5036 case 'n': // Simple Integer 5037 case 's': { // Relocatable Constant 5038 5039 ConstantSDNode *C; 5040 uint64_t Offset = 0; 5041 5042 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 5043 // etc., since getelementpointer is variadic. We can't use 5044 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 5045 // while in this case the GA may be furthest from the root node which is 5046 // likely an ISD::ADD. 5047 while (true) { 5048 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 5049 // gcc prints these as sign extended. Sign extend value to 64 bits 5050 // now; without this it would get ZExt'd later in 5051 // ScheduleDAGSDNodes::EmitNode, which is very generic. 5052 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 5053 BooleanContent BCont = getBooleanContents(MVT::i64); 5054 ISD::NodeType ExtOpc = 5055 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 5056 int64_t ExtVal = 5057 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 5058 Ops.push_back( 5059 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 5060 return; 5061 } 5062 if (ConstraintLetter != 'n') { 5063 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 5064 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 5065 GA->getValueType(0), 5066 Offset + GA->getOffset())); 5067 return; 5068 } 5069 if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 5070 Ops.push_back(DAG.getTargetBlockAddress( 5071 BA->getBlockAddress(), BA->getValueType(0), 5072 Offset + BA->getOffset(), BA->getTargetFlags())); 5073 return; 5074 } 5075 if (isa<BasicBlockSDNode>(Op)) { 5076 Ops.push_back(Op); 5077 return; 5078 } 5079 } 5080 const unsigned OpCode = Op.getOpcode(); 5081 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 5082 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 5083 Op = Op.getOperand(1); 5084 // Subtraction is not commutative. 5085 else if (OpCode == ISD::ADD && 5086 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 5087 Op = Op.getOperand(0); 5088 else 5089 return; 5090 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 5091 continue; 5092 } 5093 return; 5094 } 5095 break; 5096 } 5097 } 5098 } 5099 5100 std::pair<unsigned, const TargetRegisterClass *> 5101 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 5102 StringRef Constraint, 5103 MVT VT) const { 5104 if (Constraint.empty() || Constraint[0] != '{') 5105 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 5106 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 5107 5108 // Remove the braces from around the name. 5109 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 5110 5111 std::pair<unsigned, const TargetRegisterClass *> R = 5112 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 5113 5114 // Figure out which register class contains this reg. 5115 for (const TargetRegisterClass *RC : RI->regclasses()) { 5116 // If none of the value types for this register class are valid, we 5117 // can't use it. For example, 64-bit reg classes on 32-bit targets. 5118 if (!isLegalRC(*RI, *RC)) 5119 continue; 5120 5121 for (const MCPhysReg &PR : *RC) { 5122 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 5123 std::pair<unsigned, const TargetRegisterClass *> S = 5124 std::make_pair(PR, RC); 5125 5126 // If this register class has the requested value type, return it, 5127 // otherwise keep searching and return the first class found 5128 // if no other is found which explicitly has the requested type. 5129 if (RI->isTypeLegalForClass(*RC, VT)) 5130 return S; 5131 if (!R.second) 5132 R = S; 5133 } 5134 } 5135 } 5136 5137 return R; 5138 } 5139 5140 //===----------------------------------------------------------------------===// 5141 // Constraint Selection. 5142 5143 /// Return true of this is an input operand that is a matching constraint like 5144 /// "4". 5145 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 5146 assert(!ConstraintCode.empty() && "No known constraint!"); 5147 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 5148 } 5149 5150 /// If this is an input matching constraint, this method returns the output 5151 /// operand it matches. 5152 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 5153 assert(!ConstraintCode.empty() && "No known constraint!"); 5154 return atoi(ConstraintCode.c_str()); 5155 } 5156 5157 /// Split up the constraint string from the inline assembly value into the 5158 /// specific constraints and their prefixes, and also tie in the associated 5159 /// operand values. 5160 /// If this returns an empty vector, and if the constraint string itself 5161 /// isn't empty, there was an error parsing. 5162 TargetLowering::AsmOperandInfoVector 5163 TargetLowering::ParseConstraints(const DataLayout &DL, 5164 const TargetRegisterInfo *TRI, 5165 const CallBase &Call) const { 5166 /// Information about all of the constraints. 5167 AsmOperandInfoVector ConstraintOperands; 5168 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 5169 unsigned maCount = 0; // Largest number of multiple alternative constraints. 5170 5171 // Do a prepass over the constraints, canonicalizing them, and building up the 5172 // ConstraintOperands list. 5173 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5174 unsigned ResNo = 0; // ResNo - The result number of the next output. 5175 5176 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 5177 ConstraintOperands.emplace_back(std::move(CI)); 5178 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 5179 5180 // Update multiple alternative constraint count. 5181 if (OpInfo.multipleAlternatives.size() > maCount) 5182 maCount = OpInfo.multipleAlternatives.size(); 5183 5184 OpInfo.ConstraintVT = MVT::Other; 5185 5186 // Compute the value type for each operand. 5187 switch (OpInfo.Type) { 5188 case InlineAsm::isOutput: 5189 // Indirect outputs just consume an argument. 5190 if (OpInfo.isIndirect) { 5191 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5192 break; 5193 } 5194 5195 // The return value of the call is this value. As such, there is no 5196 // corresponding argument. 5197 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 5198 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 5199 OpInfo.ConstraintVT = 5200 getSimpleValueType(DL, STy->getElementType(ResNo)); 5201 } else { 5202 assert(ResNo == 0 && "Asm only has one result!"); 5203 OpInfo.ConstraintVT = 5204 getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 5205 } 5206 ++ResNo; 5207 break; 5208 case InlineAsm::isInput: 5209 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5210 break; 5211 case InlineAsm::isClobber: 5212 // Nothing to do. 5213 break; 5214 } 5215 5216 if (OpInfo.CallOperandVal) { 5217 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 5218 if (OpInfo.isIndirect) { 5219 OpTy = Call.getParamElementType(ArgNo); 5220 assert(OpTy && "Indirect operand must have elementtype attribute"); 5221 } 5222 5223 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5224 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5225 if (STy->getNumElements() == 1) 5226 OpTy = STy->getElementType(0); 5227 5228 // If OpTy is not a single value, it may be a struct/union that we 5229 // can tile with integers. 5230 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5231 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5232 switch (BitSize) { 5233 default: break; 5234 case 1: 5235 case 8: 5236 case 16: 5237 case 32: 5238 case 64: 5239 case 128: 5240 OpInfo.ConstraintVT = 5241 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 5242 break; 5243 } 5244 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 5245 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 5246 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 5247 } else { 5248 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 5249 } 5250 5251 ArgNo++; 5252 } 5253 } 5254 5255 // If we have multiple alternative constraints, select the best alternative. 5256 if (!ConstraintOperands.empty()) { 5257 if (maCount) { 5258 unsigned bestMAIndex = 0; 5259 int bestWeight = -1; 5260 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 5261 int weight = -1; 5262 unsigned maIndex; 5263 // Compute the sums of the weights for each alternative, keeping track 5264 // of the best (highest weight) one so far. 5265 for (maIndex = 0; maIndex < maCount; ++maIndex) { 5266 int weightSum = 0; 5267 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5268 cIndex != eIndex; ++cIndex) { 5269 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5270 if (OpInfo.Type == InlineAsm::isClobber) 5271 continue; 5272 5273 // If this is an output operand with a matching input operand, 5274 // look up the matching input. If their types mismatch, e.g. one 5275 // is an integer, the other is floating point, or their sizes are 5276 // different, flag it as an maCantMatch. 5277 if (OpInfo.hasMatchingInput()) { 5278 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5279 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5280 if ((OpInfo.ConstraintVT.isInteger() != 5281 Input.ConstraintVT.isInteger()) || 5282 (OpInfo.ConstraintVT.getSizeInBits() != 5283 Input.ConstraintVT.getSizeInBits())) { 5284 weightSum = -1; // Can't match. 5285 break; 5286 } 5287 } 5288 } 5289 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 5290 if (weight == -1) { 5291 weightSum = -1; 5292 break; 5293 } 5294 weightSum += weight; 5295 } 5296 // Update best. 5297 if (weightSum > bestWeight) { 5298 bestWeight = weightSum; 5299 bestMAIndex = maIndex; 5300 } 5301 } 5302 5303 // Now select chosen alternative in each constraint. 5304 for (AsmOperandInfo &cInfo : ConstraintOperands) 5305 if (cInfo.Type != InlineAsm::isClobber) 5306 cInfo.selectAlternative(bestMAIndex); 5307 } 5308 } 5309 5310 // Check and hook up tied operands, choose constraint code to use. 5311 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5312 cIndex != eIndex; ++cIndex) { 5313 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5314 5315 // If this is an output operand with a matching input operand, look up the 5316 // matching input. If their types mismatch, e.g. one is an integer, the 5317 // other is floating point, or their sizes are different, flag it as an 5318 // error. 5319 if (OpInfo.hasMatchingInput()) { 5320 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5321 5322 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5323 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5324 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5325 OpInfo.ConstraintVT); 5326 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5327 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5328 Input.ConstraintVT); 5329 if ((OpInfo.ConstraintVT.isInteger() != 5330 Input.ConstraintVT.isInteger()) || 5331 (MatchRC.second != InputRC.second)) { 5332 report_fatal_error("Unsupported asm: input constraint" 5333 " with a matching output constraint of" 5334 " incompatible type!"); 5335 } 5336 } 5337 } 5338 } 5339 5340 return ConstraintOperands; 5341 } 5342 5343 /// Return an integer indicating how general CT is. 5344 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 5345 switch (CT) { 5346 case TargetLowering::C_Immediate: 5347 case TargetLowering::C_Other: 5348 case TargetLowering::C_Unknown: 5349 return 0; 5350 case TargetLowering::C_Register: 5351 return 1; 5352 case TargetLowering::C_RegisterClass: 5353 return 2; 5354 case TargetLowering::C_Memory: 5355 case TargetLowering::C_Address: 5356 return 3; 5357 } 5358 llvm_unreachable("Invalid constraint type"); 5359 } 5360 5361 /// Examine constraint type and operand type and determine a weight value. 5362 /// This object must already have been set up with the operand type 5363 /// and the current alternative constraint selected. 5364 TargetLowering::ConstraintWeight 5365 TargetLowering::getMultipleConstraintMatchWeight( 5366 AsmOperandInfo &info, int maIndex) const { 5367 InlineAsm::ConstraintCodeVector *rCodes; 5368 if (maIndex >= (int)info.multipleAlternatives.size()) 5369 rCodes = &info.Codes; 5370 else 5371 rCodes = &info.multipleAlternatives[maIndex].Codes; 5372 ConstraintWeight BestWeight = CW_Invalid; 5373 5374 // Loop over the options, keeping track of the most general one. 5375 for (const std::string &rCode : *rCodes) { 5376 ConstraintWeight weight = 5377 getSingleConstraintMatchWeight(info, rCode.c_str()); 5378 if (weight > BestWeight) 5379 BestWeight = weight; 5380 } 5381 5382 return BestWeight; 5383 } 5384 5385 /// Examine constraint type and operand type and determine a weight value. 5386 /// This object must already have been set up with the operand type 5387 /// and the current alternative constraint selected. 5388 TargetLowering::ConstraintWeight 5389 TargetLowering::getSingleConstraintMatchWeight( 5390 AsmOperandInfo &info, const char *constraint) const { 5391 ConstraintWeight weight = CW_Invalid; 5392 Value *CallOperandVal = info.CallOperandVal; 5393 // If we don't have a value, we can't do a match, 5394 // but allow it at the lowest weight. 5395 if (!CallOperandVal) 5396 return CW_Default; 5397 // Look at the constraint type. 5398 switch (*constraint) { 5399 case 'i': // immediate integer. 5400 case 'n': // immediate integer with a known value. 5401 if (isa<ConstantInt>(CallOperandVal)) 5402 weight = CW_Constant; 5403 break; 5404 case 's': // non-explicit intregal immediate. 5405 if (isa<GlobalValue>(CallOperandVal)) 5406 weight = CW_Constant; 5407 break; 5408 case 'E': // immediate float if host format. 5409 case 'F': // immediate float. 5410 if (isa<ConstantFP>(CallOperandVal)) 5411 weight = CW_Constant; 5412 break; 5413 case '<': // memory operand with autodecrement. 5414 case '>': // memory operand with autoincrement. 5415 case 'm': // memory operand. 5416 case 'o': // offsettable memory operand 5417 case 'V': // non-offsettable memory operand 5418 weight = CW_Memory; 5419 break; 5420 case 'r': // general register. 5421 case 'g': // general register, memory operand or immediate integer. 5422 // note: Clang converts "g" to "imr". 5423 if (CallOperandVal->getType()->isIntegerTy()) 5424 weight = CW_Register; 5425 break; 5426 case 'X': // any operand. 5427 default: 5428 weight = CW_Default; 5429 break; 5430 } 5431 return weight; 5432 } 5433 5434 /// If there are multiple different constraints that we could pick for this 5435 /// operand (e.g. "imr") try to pick the 'best' one. 5436 /// This is somewhat tricky: constraints fall into four classes: 5437 /// Other -> immediates and magic values 5438 /// Register -> one specific register 5439 /// RegisterClass -> a group of regs 5440 /// Memory -> memory 5441 /// Ideally, we would pick the most specific constraint possible: if we have 5442 /// something that fits into a register, we would pick it. The problem here 5443 /// is that if we have something that could either be in a register or in 5444 /// memory that use of the register could cause selection of *other* 5445 /// operands to fail: they might only succeed if we pick memory. Because of 5446 /// this the heuristic we use is: 5447 /// 5448 /// 1) If there is an 'other' constraint, and if the operand is valid for 5449 /// that constraint, use it. This makes us take advantage of 'i' 5450 /// constraints when available. 5451 /// 2) Otherwise, pick the most general constraint present. This prefers 5452 /// 'm' over 'r', for example. 5453 /// 5454 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 5455 const TargetLowering &TLI, 5456 SDValue Op, SelectionDAG *DAG) { 5457 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 5458 unsigned BestIdx = 0; 5459 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 5460 int BestGenerality = -1; 5461 5462 // Loop over the options, keeping track of the most general one. 5463 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 5464 TargetLowering::ConstraintType CType = 5465 TLI.getConstraintType(OpInfo.Codes[i]); 5466 5467 // Indirect 'other' or 'immediate' constraints are not allowed. 5468 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 5469 CType == TargetLowering::C_Register || 5470 CType == TargetLowering::C_RegisterClass)) 5471 continue; 5472 5473 // If this is an 'other' or 'immediate' constraint, see if the operand is 5474 // valid for it. For example, on X86 we might have an 'rI' constraint. If 5475 // the operand is an integer in the range [0..31] we want to use I (saving a 5476 // load of a register), otherwise we must use 'r'. 5477 if ((CType == TargetLowering::C_Other || 5478 CType == TargetLowering::C_Immediate) && Op.getNode()) { 5479 assert(OpInfo.Codes[i].size() == 1 && 5480 "Unhandled multi-letter 'other' constraint"); 5481 std::vector<SDValue> ResultOps; 5482 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 5483 ResultOps, *DAG); 5484 if (!ResultOps.empty()) { 5485 BestType = CType; 5486 BestIdx = i; 5487 break; 5488 } 5489 } 5490 5491 // Things with matching constraints can only be registers, per gcc 5492 // documentation. This mainly affects "g" constraints. 5493 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 5494 continue; 5495 5496 // This constraint letter is more general than the previous one, use it. 5497 int Generality = getConstraintGenerality(CType); 5498 if (Generality > BestGenerality) { 5499 BestType = CType; 5500 BestIdx = i; 5501 BestGenerality = Generality; 5502 } 5503 } 5504 5505 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 5506 OpInfo.ConstraintType = BestType; 5507 } 5508 5509 /// Determines the constraint code and constraint type to use for the specific 5510 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 5511 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 5512 SDValue Op, 5513 SelectionDAG *DAG) const { 5514 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 5515 5516 // Single-letter constraints ('r') are very common. 5517 if (OpInfo.Codes.size() == 1) { 5518 OpInfo.ConstraintCode = OpInfo.Codes[0]; 5519 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5520 } else { 5521 ChooseConstraint(OpInfo, *this, Op, DAG); 5522 } 5523 5524 // 'X' matches anything. 5525 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 5526 // Constants are handled elsewhere. For Functions, the type here is the 5527 // type of the result, which is not what we want to look at; leave them 5528 // alone. 5529 Value *v = OpInfo.CallOperandVal; 5530 if (isa<ConstantInt>(v) || isa<Function>(v)) { 5531 return; 5532 } 5533 5534 if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) { 5535 OpInfo.ConstraintCode = "i"; 5536 return; 5537 } 5538 5539 // Otherwise, try to resolve it to something we know about by looking at 5540 // the actual operand type. 5541 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 5542 OpInfo.ConstraintCode = Repl; 5543 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5544 } 5545 } 5546 } 5547 5548 /// Given an exact SDIV by a constant, create a multiplication 5549 /// with the multiplicative inverse of the constant. 5550 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 5551 const SDLoc &dl, SelectionDAG &DAG, 5552 SmallVectorImpl<SDNode *> &Created) { 5553 SDValue Op0 = N->getOperand(0); 5554 SDValue Op1 = N->getOperand(1); 5555 EVT VT = N->getValueType(0); 5556 EVT SVT = VT.getScalarType(); 5557 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5558 EVT ShSVT = ShVT.getScalarType(); 5559 5560 bool UseSRA = false; 5561 SmallVector<SDValue, 16> Shifts, Factors; 5562 5563 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5564 if (C->isZero()) 5565 return false; 5566 APInt Divisor = C->getAPIntValue(); 5567 unsigned Shift = Divisor.countTrailingZeros(); 5568 if (Shift) { 5569 Divisor.ashrInPlace(Shift); 5570 UseSRA = true; 5571 } 5572 // Calculate the multiplicative inverse, using Newton's method. 5573 APInt t; 5574 APInt Factor = Divisor; 5575 while ((t = Divisor * Factor) != 1) 5576 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5577 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5578 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5579 return true; 5580 }; 5581 5582 // Collect all magic values from the build vector. 5583 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5584 return SDValue(); 5585 5586 SDValue Shift, Factor; 5587 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 5588 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5589 Factor = DAG.getBuildVector(VT, dl, Factors); 5590 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 5591 assert(Shifts.size() == 1 && Factors.size() == 1 && 5592 "Expected matchUnaryPredicate to return one element for scalable " 5593 "vectors"); 5594 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5595 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5596 } else { 5597 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 5598 Shift = Shifts[0]; 5599 Factor = Factors[0]; 5600 } 5601 5602 SDValue Res = Op0; 5603 5604 // Shift the value upfront if it is even, so the LSB is one. 5605 if (UseSRA) { 5606 // TODO: For UDIV use SRL instead of SRA. 5607 SDNodeFlags Flags; 5608 Flags.setExact(true); 5609 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5610 Created.push_back(Res.getNode()); 5611 } 5612 5613 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5614 } 5615 5616 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5617 SelectionDAG &DAG, 5618 SmallVectorImpl<SDNode *> &Created) const { 5619 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5620 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5621 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5622 return SDValue(N, 0); // Lower SDIV as SDIV 5623 return SDValue(); 5624 } 5625 5626 SDValue 5627 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor, 5628 SelectionDAG &DAG, 5629 SmallVectorImpl<SDNode *> &Created) const { 5630 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5631 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5632 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5633 return SDValue(N, 0); // Lower SREM as SREM 5634 return SDValue(); 5635 } 5636 5637 /// Given an ISD::SDIV node expressing a divide by constant, 5638 /// return a DAG expression to select that will generate the same value by 5639 /// multiplying by a magic number. 5640 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5641 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5642 bool IsAfterLegalization, 5643 SmallVectorImpl<SDNode *> &Created) const { 5644 SDLoc dl(N); 5645 EVT VT = N->getValueType(0); 5646 EVT SVT = VT.getScalarType(); 5647 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5648 EVT ShSVT = ShVT.getScalarType(); 5649 unsigned EltBits = VT.getScalarSizeInBits(); 5650 EVT MulVT; 5651 5652 // Check to see if we can do this. 5653 // FIXME: We should be more aggressive here. 5654 if (!isTypeLegal(VT)) { 5655 // Limit this to simple scalars for now. 5656 if (VT.isVector() || !VT.isSimple()) 5657 return SDValue(); 5658 5659 // If this type will be promoted to a large enough type with a legal 5660 // multiply operation, we can go ahead and do this transform. 5661 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5662 return SDValue(); 5663 5664 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5665 if (MulVT.getSizeInBits() < (2 * EltBits) || 5666 !isOperationLegal(ISD::MUL, MulVT)) 5667 return SDValue(); 5668 } 5669 5670 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5671 if (N->getFlags().hasExact()) 5672 return BuildExactSDIV(*this, N, dl, DAG, Created); 5673 5674 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5675 5676 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5677 if (C->isZero()) 5678 return false; 5679 5680 const APInt &Divisor = C->getAPIntValue(); 5681 SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor); 5682 int NumeratorFactor = 0; 5683 int ShiftMask = -1; 5684 5685 if (Divisor.isOne() || Divisor.isAllOnes()) { 5686 // If d is +1/-1, we just multiply the numerator by +1/-1. 5687 NumeratorFactor = Divisor.getSExtValue(); 5688 magics.Magic = 0; 5689 magics.ShiftAmount = 0; 5690 ShiftMask = 0; 5691 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) { 5692 // If d > 0 and m < 0, add the numerator. 5693 NumeratorFactor = 1; 5694 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) { 5695 // If d < 0 and m > 0, subtract the numerator. 5696 NumeratorFactor = -1; 5697 } 5698 5699 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT)); 5700 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5701 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT)); 5702 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5703 return true; 5704 }; 5705 5706 SDValue N0 = N->getOperand(0); 5707 SDValue N1 = N->getOperand(1); 5708 5709 // Collect the shifts / magic values from each element. 5710 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5711 return SDValue(); 5712 5713 SDValue MagicFactor, Factor, Shift, ShiftMask; 5714 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5715 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5716 Factor = DAG.getBuildVector(VT, dl, Factors); 5717 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5718 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5719 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5720 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 5721 Shifts.size() == 1 && ShiftMasks.size() == 1 && 5722 "Expected matchUnaryPredicate to return one element for scalable " 5723 "vectors"); 5724 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5725 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5726 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5727 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 5728 } else { 5729 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5730 MagicFactor = MagicFactors[0]; 5731 Factor = Factors[0]; 5732 Shift = Shifts[0]; 5733 ShiftMask = ShiftMasks[0]; 5734 } 5735 5736 // Multiply the numerator (operand 0) by the magic value. 5737 // FIXME: We should support doing a MUL in a wider type. 5738 auto GetMULHS = [&](SDValue X, SDValue Y) { 5739 // If the type isn't legal, use a wider mul of the the type calculated 5740 // earlier. 5741 if (!isTypeLegal(VT)) { 5742 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 5743 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 5744 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5745 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5746 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5747 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5748 } 5749 5750 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 5751 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 5752 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 5753 SDValue LoHi = 5754 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5755 return SDValue(LoHi.getNode(), 1); 5756 } 5757 return SDValue(); 5758 }; 5759 5760 SDValue Q = GetMULHS(N0, MagicFactor); 5761 if (!Q) 5762 return SDValue(); 5763 5764 Created.push_back(Q.getNode()); 5765 5766 // (Optionally) Add/subtract the numerator using Factor. 5767 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5768 Created.push_back(Factor.getNode()); 5769 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5770 Created.push_back(Q.getNode()); 5771 5772 // Shift right algebraic by shift value. 5773 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5774 Created.push_back(Q.getNode()); 5775 5776 // Extract the sign bit, mask it and add it to the quotient. 5777 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5778 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5779 Created.push_back(T.getNode()); 5780 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5781 Created.push_back(T.getNode()); 5782 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5783 } 5784 5785 /// Given an ISD::UDIV node expressing a divide by constant, 5786 /// return a DAG expression to select that will generate the same value by 5787 /// multiplying by a magic number. 5788 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5789 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5790 bool IsAfterLegalization, 5791 SmallVectorImpl<SDNode *> &Created) const { 5792 SDLoc dl(N); 5793 EVT VT = N->getValueType(0); 5794 EVT SVT = VT.getScalarType(); 5795 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5796 EVT ShSVT = ShVT.getScalarType(); 5797 unsigned EltBits = VT.getScalarSizeInBits(); 5798 EVT MulVT; 5799 5800 // Check to see if we can do this. 5801 // FIXME: We should be more aggressive here. 5802 if (!isTypeLegal(VT)) { 5803 // Limit this to simple scalars for now. 5804 if (VT.isVector() || !VT.isSimple()) 5805 return SDValue(); 5806 5807 // If this type will be promoted to a large enough type with a legal 5808 // multiply operation, we can go ahead and do this transform. 5809 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5810 return SDValue(); 5811 5812 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5813 if (MulVT.getSizeInBits() < (2 * EltBits) || 5814 !isOperationLegal(ISD::MUL, MulVT)) 5815 return SDValue(); 5816 } 5817 5818 bool UseNPQ = false; 5819 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5820 5821 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5822 if (C->isZero()) 5823 return false; 5824 // FIXME: We should use a narrower constant when the upper 5825 // bits are known to be zero. 5826 const APInt& Divisor = C->getAPIntValue(); 5827 UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor); 5828 unsigned PreShift = 0, PostShift = 0; 5829 5830 // If the divisor is even, we can avoid using the expensive fixup by 5831 // shifting the divided value upfront. 5832 if (magics.IsAdd != 0 && !Divisor[0]) { 5833 PreShift = Divisor.countTrailingZeros(); 5834 // Get magic number for the shifted divisor. 5835 magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift); 5836 assert(magics.IsAdd == 0 && "Should use cheap fixup now"); 5837 } 5838 5839 APInt Magic = magics.Magic; 5840 5841 unsigned SelNPQ; 5842 if (magics.IsAdd == 0 || Divisor.isOne()) { 5843 assert(magics.ShiftAmount < Divisor.getBitWidth() && 5844 "We shouldn't generate an undefined shift!"); 5845 PostShift = magics.ShiftAmount; 5846 SelNPQ = false; 5847 } else { 5848 PostShift = magics.ShiftAmount - 1; 5849 SelNPQ = true; 5850 } 5851 5852 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5853 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5854 NPQFactors.push_back( 5855 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5856 : APInt::getZero(EltBits), 5857 dl, SVT)); 5858 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5859 UseNPQ |= SelNPQ; 5860 return true; 5861 }; 5862 5863 SDValue N0 = N->getOperand(0); 5864 SDValue N1 = N->getOperand(1); 5865 5866 // Collect the shifts/magic values from each element. 5867 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5868 return SDValue(); 5869 5870 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5871 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5872 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5873 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5874 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5875 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5876 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5877 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 5878 NPQFactors.size() == 1 && PostShifts.size() == 1 && 5879 "Expected matchUnaryPredicate to return one for scalable vectors"); 5880 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 5881 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5882 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 5883 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 5884 } else { 5885 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5886 PreShift = PreShifts[0]; 5887 MagicFactor = MagicFactors[0]; 5888 PostShift = PostShifts[0]; 5889 } 5890 5891 SDValue Q = N0; 5892 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5893 Created.push_back(Q.getNode()); 5894 5895 // FIXME: We should support doing a MUL in a wider type. 5896 auto GetMULHU = [&](SDValue X, SDValue Y) { 5897 // If the type isn't legal, use a wider mul of the the type calculated 5898 // earlier. 5899 if (!isTypeLegal(VT)) { 5900 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 5901 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 5902 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5903 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5904 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5905 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5906 } 5907 5908 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 5909 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5910 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 5911 SDValue LoHi = 5912 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5913 return SDValue(LoHi.getNode(), 1); 5914 } 5915 return SDValue(); // No mulhu or equivalent 5916 }; 5917 5918 // Multiply the numerator (operand 0) by the magic value. 5919 Q = GetMULHU(Q, MagicFactor); 5920 if (!Q) 5921 return SDValue(); 5922 5923 Created.push_back(Q.getNode()); 5924 5925 if (UseNPQ) { 5926 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5927 Created.push_back(NPQ.getNode()); 5928 5929 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5930 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5931 if (VT.isVector()) 5932 NPQ = GetMULHU(NPQ, NPQFactor); 5933 else 5934 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5935 5936 Created.push_back(NPQ.getNode()); 5937 5938 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5939 Created.push_back(Q.getNode()); 5940 } 5941 5942 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5943 Created.push_back(Q.getNode()); 5944 5945 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5946 5947 SDValue One = DAG.getConstant(1, dl, VT); 5948 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 5949 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5950 } 5951 5952 /// If all values in Values that *don't* match the predicate are same 'splat' 5953 /// value, then replace all values with that splat value. 5954 /// Else, if AlternativeReplacement was provided, then replace all values that 5955 /// do match predicate with AlternativeReplacement value. 5956 static void 5957 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5958 std::function<bool(SDValue)> Predicate, 5959 SDValue AlternativeReplacement = SDValue()) { 5960 SDValue Replacement; 5961 // Is there a value for which the Predicate does *NOT* match? What is it? 5962 auto SplatValue = llvm::find_if_not(Values, Predicate); 5963 if (SplatValue != Values.end()) { 5964 // Does Values consist only of SplatValue's and values matching Predicate? 5965 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5966 return Value == *SplatValue || Predicate(Value); 5967 })) // Then we shall replace values matching predicate with SplatValue. 5968 Replacement = *SplatValue; 5969 } 5970 if (!Replacement) { 5971 // Oops, we did not find the "baseline" splat value. 5972 if (!AlternativeReplacement) 5973 return; // Nothing to do. 5974 // Let's replace with provided value then. 5975 Replacement = AlternativeReplacement; 5976 } 5977 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5978 } 5979 5980 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5981 /// where the divisor is constant and the comparison target is zero, 5982 /// return a DAG expression that will generate the same comparison result 5983 /// using only multiplications, additions and shifts/rotations. 5984 /// Ref: "Hacker's Delight" 10-17. 5985 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5986 SDValue CompTargetNode, 5987 ISD::CondCode Cond, 5988 DAGCombinerInfo &DCI, 5989 const SDLoc &DL) const { 5990 SmallVector<SDNode *, 5> Built; 5991 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5992 DCI, DL, Built)) { 5993 for (SDNode *N : Built) 5994 DCI.AddToWorklist(N); 5995 return Folded; 5996 } 5997 5998 return SDValue(); 5999 } 6000 6001 SDValue 6002 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 6003 SDValue CompTargetNode, ISD::CondCode Cond, 6004 DAGCombinerInfo &DCI, const SDLoc &DL, 6005 SmallVectorImpl<SDNode *> &Created) const { 6006 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 6007 // - D must be constant, with D = D0 * 2^K where D0 is odd 6008 // - P is the multiplicative inverse of D0 modulo 2^W 6009 // - Q = floor(((2^W) - 1) / D) 6010 // where W is the width of the common type of N and D. 6011 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 6012 "Only applicable for (in)equality comparisons."); 6013 6014 SelectionDAG &DAG = DCI.DAG; 6015 6016 EVT VT = REMNode.getValueType(); 6017 EVT SVT = VT.getScalarType(); 6018 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 6019 EVT ShSVT = ShVT.getScalarType(); 6020 6021 // If MUL is unavailable, we cannot proceed in any case. 6022 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6023 return SDValue(); 6024 6025 bool ComparingWithAllZeros = true; 6026 bool AllComparisonsWithNonZerosAreTautological = true; 6027 bool HadTautologicalLanes = false; 6028 bool AllLanesAreTautological = true; 6029 bool HadEvenDivisor = false; 6030 bool AllDivisorsArePowerOfTwo = true; 6031 bool HadTautologicalInvertedLanes = false; 6032 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 6033 6034 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 6035 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6036 if (CDiv->isZero()) 6037 return false; 6038 6039 const APInt &D = CDiv->getAPIntValue(); 6040 const APInt &Cmp = CCmp->getAPIntValue(); 6041 6042 ComparingWithAllZeros &= Cmp.isZero(); 6043 6044 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6045 // if C2 is not less than C1, the comparison is always false. 6046 // But we will only be able to produce the comparison that will give the 6047 // opposive tautological answer. So this lane would need to be fixed up. 6048 bool TautologicalInvertedLane = D.ule(Cmp); 6049 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 6050 6051 // If all lanes are tautological (either all divisors are ones, or divisor 6052 // is not greater than the constant we are comparing with), 6053 // we will prefer to avoid the fold. 6054 bool TautologicalLane = D.isOne() || TautologicalInvertedLane; 6055 HadTautologicalLanes |= TautologicalLane; 6056 AllLanesAreTautological &= TautologicalLane; 6057 6058 // If we are comparing with non-zero, we need'll need to subtract said 6059 // comparison value from the LHS. But there is no point in doing that if 6060 // every lane where we are comparing with non-zero is tautological.. 6061 if (!Cmp.isZero()) 6062 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 6063 6064 // Decompose D into D0 * 2^K 6065 unsigned K = D.countTrailingZeros(); 6066 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 6067 APInt D0 = D.lshr(K); 6068 6069 // D is even if it has trailing zeros. 6070 HadEvenDivisor |= (K != 0); 6071 // D is a power-of-two if D0 is one. 6072 // If all divisors are power-of-two, we will prefer to avoid the fold. 6073 AllDivisorsArePowerOfTwo &= D0.isOne(); 6074 6075 // P = inv(D0, 2^W) 6076 // 2^W requires W + 1 bits, so we have to extend and then truncate. 6077 unsigned W = D.getBitWidth(); 6078 APInt P = D0.zext(W + 1) 6079 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 6080 .trunc(W); 6081 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 6082 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 6083 6084 // Q = floor((2^W - 1) u/ D) 6085 // R = ((2^W - 1) u% D) 6086 APInt Q, R; 6087 APInt::udivrem(APInt::getAllOnes(W), D, Q, R); 6088 6089 // If we are comparing with zero, then that comparison constant is okay, 6090 // else it may need to be one less than that. 6091 if (Cmp.ugt(R)) 6092 Q -= 1; 6093 6094 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 6095 "We are expecting that K is always less than all-ones for ShSVT"); 6096 6097 // If the lane is tautological the result can be constant-folded. 6098 if (TautologicalLane) { 6099 // Set P and K amount to a bogus values so we can try to splat them. 6100 P = 0; 6101 K = -1; 6102 // And ensure that comparison constant is tautological, 6103 // it will always compare true/false. 6104 Q = -1; 6105 } 6106 6107 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 6108 KAmts.push_back( 6109 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 6110 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 6111 return true; 6112 }; 6113 6114 SDValue N = REMNode.getOperand(0); 6115 SDValue D = REMNode.getOperand(1); 6116 6117 // Collect the values from each element. 6118 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 6119 return SDValue(); 6120 6121 // If all lanes are tautological, the result can be constant-folded. 6122 if (AllLanesAreTautological) 6123 return SDValue(); 6124 6125 // If this is a urem by a powers-of-two, avoid the fold since it can be 6126 // best implemented as a bit test. 6127 if (AllDivisorsArePowerOfTwo) 6128 return SDValue(); 6129 6130 SDValue PVal, KVal, QVal; 6131 if (D.getOpcode() == ISD::BUILD_VECTOR) { 6132 if (HadTautologicalLanes) { 6133 // Try to turn PAmts into a splat, since we don't care about the values 6134 // that are currently '0'. If we can't, just keep '0'`s. 6135 turnVectorIntoSplatVector(PAmts, isNullConstant); 6136 // Try to turn KAmts into a splat, since we don't care about the values 6137 // that are currently '-1'. If we can't, change them to '0'`s. 6138 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 6139 DAG.getConstant(0, DL, ShSVT)); 6140 } 6141 6142 PVal = DAG.getBuildVector(VT, DL, PAmts); 6143 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6144 QVal = DAG.getBuildVector(VT, DL, QAmts); 6145 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6146 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 6147 "Expected matchBinaryPredicate to return one element for " 6148 "SPLAT_VECTORs"); 6149 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6150 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6151 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6152 } else { 6153 PVal = PAmts[0]; 6154 KVal = KAmts[0]; 6155 QVal = QAmts[0]; 6156 } 6157 6158 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 6159 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 6160 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 6161 assert(CompTargetNode.getValueType() == N.getValueType() && 6162 "Expecting that the types on LHS and RHS of comparisons match."); 6163 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 6164 } 6165 6166 // (mul N, P) 6167 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6168 Created.push_back(Op0.getNode()); 6169 6170 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6171 // divisors as a performance improvement, since rotating by 0 is a no-op. 6172 if (HadEvenDivisor) { 6173 // We need ROTR to do this. 6174 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6175 return SDValue(); 6176 // UREM: (rotr (mul N, P), K) 6177 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6178 Created.push_back(Op0.getNode()); 6179 } 6180 6181 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 6182 SDValue NewCC = 6183 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6184 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6185 if (!HadTautologicalInvertedLanes) 6186 return NewCC; 6187 6188 // If any lanes previously compared always-false, the NewCC will give 6189 // always-true result for them, so we need to fixup those lanes. 6190 // Or the other way around for inequality predicate. 6191 assert(VT.isVector() && "Can/should only get here for vectors."); 6192 Created.push_back(NewCC.getNode()); 6193 6194 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6195 // if C2 is not less than C1, the comparison is always false. 6196 // But we have produced the comparison that will give the 6197 // opposive tautological answer. So these lanes would need to be fixed up. 6198 SDValue TautologicalInvertedChannels = 6199 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 6200 Created.push_back(TautologicalInvertedChannels.getNode()); 6201 6202 // NOTE: we avoid letting illegal types through even if we're before legalize 6203 // ops – legalization has a hard time producing good code for this. 6204 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 6205 // If we have a vector select, let's replace the comparison results in the 6206 // affected lanes with the correct tautological result. 6207 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 6208 DL, SETCCVT, SETCCVT); 6209 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 6210 Replacement, NewCC); 6211 } 6212 6213 // Else, we can just invert the comparison result in the appropriate lanes. 6214 // 6215 // NOTE: see the note above VSELECT above. 6216 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 6217 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 6218 TautologicalInvertedChannels); 6219 6220 return SDValue(); // Don't know how to lower. 6221 } 6222 6223 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 6224 /// where the divisor is constant and the comparison target is zero, 6225 /// return a DAG expression that will generate the same comparison result 6226 /// using only multiplications, additions and shifts/rotations. 6227 /// Ref: "Hacker's Delight" 10-17. 6228 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 6229 SDValue CompTargetNode, 6230 ISD::CondCode Cond, 6231 DAGCombinerInfo &DCI, 6232 const SDLoc &DL) const { 6233 SmallVector<SDNode *, 7> Built; 6234 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 6235 DCI, DL, Built)) { 6236 assert(Built.size() <= 7 && "Max size prediction failed."); 6237 for (SDNode *N : Built) 6238 DCI.AddToWorklist(N); 6239 return Folded; 6240 } 6241 6242 return SDValue(); 6243 } 6244 6245 SDValue 6246 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 6247 SDValue CompTargetNode, ISD::CondCode Cond, 6248 DAGCombinerInfo &DCI, const SDLoc &DL, 6249 SmallVectorImpl<SDNode *> &Created) const { 6250 // Fold: 6251 // (seteq/ne (srem N, D), 0) 6252 // To: 6253 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 6254 // 6255 // - D must be constant, with D = D0 * 2^K where D0 is odd 6256 // - P is the multiplicative inverse of D0 modulo 2^W 6257 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 6258 // - Q = floor((2 * A) / (2^K)) 6259 // where W is the width of the common type of N and D. 6260 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 6261 "Only applicable for (in)equality comparisons."); 6262 6263 SelectionDAG &DAG = DCI.DAG; 6264 6265 EVT VT = REMNode.getValueType(); 6266 EVT SVT = VT.getScalarType(); 6267 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 6268 EVT ShSVT = ShVT.getScalarType(); 6269 6270 // If we are after ops legalization, and MUL is unavailable, we can not 6271 // proceed. 6272 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6273 return SDValue(); 6274 6275 // TODO: Could support comparing with non-zero too. 6276 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 6277 if (!CompTarget || !CompTarget->isZero()) 6278 return SDValue(); 6279 6280 bool HadIntMinDivisor = false; 6281 bool HadOneDivisor = false; 6282 bool AllDivisorsAreOnes = true; 6283 bool HadEvenDivisor = false; 6284 bool NeedToApplyOffset = false; 6285 bool AllDivisorsArePowerOfTwo = true; 6286 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 6287 6288 auto BuildSREMPattern = [&](ConstantSDNode *C) { 6289 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6290 if (C->isZero()) 6291 return false; 6292 6293 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 6294 6295 // WARNING: this fold is only valid for positive divisors! 6296 APInt D = C->getAPIntValue(); 6297 if (D.isNegative()) 6298 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 6299 6300 HadIntMinDivisor |= D.isMinSignedValue(); 6301 6302 // If all divisors are ones, we will prefer to avoid the fold. 6303 HadOneDivisor |= D.isOne(); 6304 AllDivisorsAreOnes &= D.isOne(); 6305 6306 // Decompose D into D0 * 2^K 6307 unsigned K = D.countTrailingZeros(); 6308 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 6309 APInt D0 = D.lshr(K); 6310 6311 if (!D.isMinSignedValue()) { 6312 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 6313 // we don't care about this lane in this fold, we'll special-handle it. 6314 HadEvenDivisor |= (K != 0); 6315 } 6316 6317 // D is a power-of-two if D0 is one. This includes INT_MIN. 6318 // If all divisors are power-of-two, we will prefer to avoid the fold. 6319 AllDivisorsArePowerOfTwo &= D0.isOne(); 6320 6321 // P = inv(D0, 2^W) 6322 // 2^W requires W + 1 bits, so we have to extend and then truncate. 6323 unsigned W = D.getBitWidth(); 6324 APInt P = D0.zext(W + 1) 6325 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 6326 .trunc(W); 6327 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 6328 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 6329 6330 // A = floor((2^(W - 1) - 1) / D0) & -2^K 6331 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 6332 A.clearLowBits(K); 6333 6334 if (!D.isMinSignedValue()) { 6335 // If divisor INT_MIN, then we don't care about this lane in this fold, 6336 // we'll special-handle it. 6337 NeedToApplyOffset |= A != 0; 6338 } 6339 6340 // Q = floor((2 * A) / (2^K)) 6341 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 6342 6343 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && 6344 "We are expecting that A is always less than all-ones for SVT"); 6345 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 6346 "We are expecting that K is always less than all-ones for ShSVT"); 6347 6348 // If the divisor is 1 the result can be constant-folded. Likewise, we 6349 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 6350 if (D.isOne()) { 6351 // Set P, A and K to a bogus values so we can try to splat them. 6352 P = 0; 6353 A = -1; 6354 K = -1; 6355 6356 // x ?% 1 == 0 <--> true <--> x u<= -1 6357 Q = -1; 6358 } 6359 6360 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 6361 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 6362 KAmts.push_back( 6363 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 6364 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 6365 return true; 6366 }; 6367 6368 SDValue N = REMNode.getOperand(0); 6369 SDValue D = REMNode.getOperand(1); 6370 6371 // Collect the values from each element. 6372 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 6373 return SDValue(); 6374 6375 // If this is a srem by a one, avoid the fold since it can be constant-folded. 6376 if (AllDivisorsAreOnes) 6377 return SDValue(); 6378 6379 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 6380 // since it can be best implemented as a bit test. 6381 if (AllDivisorsArePowerOfTwo) 6382 return SDValue(); 6383 6384 SDValue PVal, AVal, KVal, QVal; 6385 if (D.getOpcode() == ISD::BUILD_VECTOR) { 6386 if (HadOneDivisor) { 6387 // Try to turn PAmts into a splat, since we don't care about the values 6388 // that are currently '0'. If we can't, just keep '0'`s. 6389 turnVectorIntoSplatVector(PAmts, isNullConstant); 6390 // Try to turn AAmts into a splat, since we don't care about the 6391 // values that are currently '-1'. If we can't, change them to '0'`s. 6392 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 6393 DAG.getConstant(0, DL, SVT)); 6394 // Try to turn KAmts into a splat, since we don't care about the values 6395 // that are currently '-1'. If we can't, change them to '0'`s. 6396 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 6397 DAG.getConstant(0, DL, ShSVT)); 6398 } 6399 6400 PVal = DAG.getBuildVector(VT, DL, PAmts); 6401 AVal = DAG.getBuildVector(VT, DL, AAmts); 6402 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6403 QVal = DAG.getBuildVector(VT, DL, QAmts); 6404 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6405 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 6406 QAmts.size() == 1 && 6407 "Expected matchUnaryPredicate to return one element for scalable " 6408 "vectors"); 6409 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6410 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 6411 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6412 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6413 } else { 6414 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 6415 PVal = PAmts[0]; 6416 AVal = AAmts[0]; 6417 KVal = KAmts[0]; 6418 QVal = QAmts[0]; 6419 } 6420 6421 // (mul N, P) 6422 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6423 Created.push_back(Op0.getNode()); 6424 6425 if (NeedToApplyOffset) { 6426 // We need ADD to do this. 6427 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 6428 return SDValue(); 6429 6430 // (add (mul N, P), A) 6431 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 6432 Created.push_back(Op0.getNode()); 6433 } 6434 6435 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6436 // divisors as a performance improvement, since rotating by 0 is a no-op. 6437 if (HadEvenDivisor) { 6438 // We need ROTR to do this. 6439 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6440 return SDValue(); 6441 // SREM: (rotr (add (mul N, P), A), K) 6442 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6443 Created.push_back(Op0.getNode()); 6444 } 6445 6446 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 6447 SDValue Fold = 6448 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6449 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6450 6451 // If we didn't have lanes with INT_MIN divisor, then we're done. 6452 if (!HadIntMinDivisor) 6453 return Fold; 6454 6455 // That fold is only valid for positive divisors. Which effectively means, 6456 // it is invalid for INT_MIN divisors. So if we have such a lane, 6457 // we must fix-up results for said lanes. 6458 assert(VT.isVector() && "Can/should only get here for vectors."); 6459 6460 // NOTE: we avoid letting illegal types through even if we're before legalize 6461 // ops – legalization has a hard time producing good code for the code that 6462 // follows. 6463 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 6464 !isOperationLegalOrCustom(ISD::AND, VT) || 6465 !isOperationLegalOrCustom(Cond, VT) || 6466 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 6467 return SDValue(); 6468 6469 Created.push_back(Fold.getNode()); 6470 6471 SDValue IntMin = DAG.getConstant( 6472 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 6473 SDValue IntMax = DAG.getConstant( 6474 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 6475 SDValue Zero = 6476 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT); 6477 6478 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 6479 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 6480 Created.push_back(DivisorIsIntMin.getNode()); 6481 6482 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 6483 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 6484 Created.push_back(Masked.getNode()); 6485 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 6486 Created.push_back(MaskedIsZero.getNode()); 6487 6488 // To produce final result we need to blend 2 vectors: 'SetCC' and 6489 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 6490 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 6491 // constant-folded, select can get lowered to a shuffle with constant mask. 6492 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 6493 MaskedIsZero, Fold); 6494 6495 return Blended; 6496 } 6497 6498 bool TargetLowering:: 6499 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 6500 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 6501 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 6502 "be a constant integer"); 6503 return true; 6504 } 6505 6506 return false; 6507 } 6508 6509 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 6510 const DenormalMode &Mode) const { 6511 SDLoc DL(Op); 6512 EVT VT = Op.getValueType(); 6513 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6514 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 6515 // Testing it with denormal inputs to avoid wrong estimate. 6516 if (Mode.Input == DenormalMode::IEEE) { 6517 // This is specifically a check for the handling of denormal inputs, 6518 // not the result. 6519 6520 // Test = fabs(X) < SmallestNormal 6521 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 6522 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 6523 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 6524 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 6525 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 6526 } 6527 // Test = X == 0.0 6528 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 6529 } 6530 6531 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 6532 bool LegalOps, bool OptForSize, 6533 NegatibleCost &Cost, 6534 unsigned Depth) const { 6535 // fneg is removable even if it has multiple uses. 6536 if (Op.getOpcode() == ISD::FNEG) { 6537 Cost = NegatibleCost::Cheaper; 6538 return Op.getOperand(0); 6539 } 6540 6541 // Don't recurse exponentially. 6542 if (Depth > SelectionDAG::MaxRecursionDepth) 6543 return SDValue(); 6544 6545 // Pre-increment recursion depth for use in recursive calls. 6546 ++Depth; 6547 const SDNodeFlags Flags = Op->getFlags(); 6548 const TargetOptions &Options = DAG.getTarget().Options; 6549 EVT VT = Op.getValueType(); 6550 unsigned Opcode = Op.getOpcode(); 6551 6552 // Don't allow anything with multiple uses unless we know it is free. 6553 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 6554 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 6555 isFPExtFree(VT, Op.getOperand(0).getValueType()); 6556 if (!IsFreeExtend) 6557 return SDValue(); 6558 } 6559 6560 auto RemoveDeadNode = [&](SDValue N) { 6561 if (N && N.getNode()->use_empty()) 6562 DAG.RemoveDeadNode(N.getNode()); 6563 }; 6564 6565 SDLoc DL(Op); 6566 6567 // Because getNegatedExpression can delete nodes we need a handle to keep 6568 // temporary nodes alive in case the recursion manages to create an identical 6569 // node. 6570 std::list<HandleSDNode> Handles; 6571 6572 switch (Opcode) { 6573 case ISD::ConstantFP: { 6574 // Don't invert constant FP values after legalization unless the target says 6575 // the negated constant is legal. 6576 bool IsOpLegal = 6577 isOperationLegal(ISD::ConstantFP, VT) || 6578 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 6579 OptForSize); 6580 6581 if (LegalOps && !IsOpLegal) 6582 break; 6583 6584 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 6585 V.changeSign(); 6586 SDValue CFP = DAG.getConstantFP(V, DL, VT); 6587 6588 // If we already have the use of the negated floating constant, it is free 6589 // to negate it even it has multiple uses. 6590 if (!Op.hasOneUse() && CFP.use_empty()) 6591 break; 6592 Cost = NegatibleCost::Neutral; 6593 return CFP; 6594 } 6595 case ISD::BUILD_VECTOR: { 6596 // Only permit BUILD_VECTOR of constants. 6597 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 6598 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 6599 })) 6600 break; 6601 6602 bool IsOpLegal = 6603 (isOperationLegal(ISD::ConstantFP, VT) && 6604 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 6605 llvm::all_of(Op->op_values(), [&](SDValue N) { 6606 return N.isUndef() || 6607 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 6608 OptForSize); 6609 }); 6610 6611 if (LegalOps && !IsOpLegal) 6612 break; 6613 6614 SmallVector<SDValue, 4> Ops; 6615 for (SDValue C : Op->op_values()) { 6616 if (C.isUndef()) { 6617 Ops.push_back(C); 6618 continue; 6619 } 6620 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 6621 V.changeSign(); 6622 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 6623 } 6624 Cost = NegatibleCost::Neutral; 6625 return DAG.getBuildVector(VT, DL, Ops); 6626 } 6627 case ISD::FADD: { 6628 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6629 break; 6630 6631 // After operation legalization, it might not be legal to create new FSUBs. 6632 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 6633 break; 6634 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6635 6636 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 6637 NegatibleCost CostX = NegatibleCost::Expensive; 6638 SDValue NegX = 6639 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6640 // Prevent this node from being deleted by the next call. 6641 if (NegX) 6642 Handles.emplace_back(NegX); 6643 6644 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 6645 NegatibleCost CostY = NegatibleCost::Expensive; 6646 SDValue NegY = 6647 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6648 6649 // We're done with the handles. 6650 Handles.clear(); 6651 6652 // Negate the X if its cost is less or equal than Y. 6653 if (NegX && (CostX <= CostY)) { 6654 Cost = CostX; 6655 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 6656 if (NegY != N) 6657 RemoveDeadNode(NegY); 6658 return N; 6659 } 6660 6661 // Negate the Y if it is not expensive. 6662 if (NegY) { 6663 Cost = CostY; 6664 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 6665 if (NegX != N) 6666 RemoveDeadNode(NegX); 6667 return N; 6668 } 6669 break; 6670 } 6671 case ISD::FSUB: { 6672 // We can't turn -(A-B) into B-A when we honor signed zeros. 6673 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6674 break; 6675 6676 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6677 // fold (fneg (fsub 0, Y)) -> Y 6678 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 6679 if (C->isZero()) { 6680 Cost = NegatibleCost::Cheaper; 6681 return Y; 6682 } 6683 6684 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 6685 Cost = NegatibleCost::Neutral; 6686 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 6687 } 6688 case ISD::FMUL: 6689 case ISD::FDIV: { 6690 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6691 6692 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 6693 NegatibleCost CostX = NegatibleCost::Expensive; 6694 SDValue NegX = 6695 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6696 // Prevent this node from being deleted by the next call. 6697 if (NegX) 6698 Handles.emplace_back(NegX); 6699 6700 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 6701 NegatibleCost CostY = NegatibleCost::Expensive; 6702 SDValue NegY = 6703 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6704 6705 // We're done with the handles. 6706 Handles.clear(); 6707 6708 // Negate the X if its cost is less or equal than Y. 6709 if (NegX && (CostX <= CostY)) { 6710 Cost = CostX; 6711 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6712 if (NegY != N) 6713 RemoveDeadNode(NegY); 6714 return N; 6715 } 6716 6717 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6718 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6719 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6720 break; 6721 6722 // Negate the Y if it is not expensive. 6723 if (NegY) { 6724 Cost = CostY; 6725 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6726 if (NegX != N) 6727 RemoveDeadNode(NegX); 6728 return N; 6729 } 6730 break; 6731 } 6732 case ISD::FMA: 6733 case ISD::FMAD: { 6734 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6735 break; 6736 6737 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6738 NegatibleCost CostZ = NegatibleCost::Expensive; 6739 SDValue NegZ = 6740 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6741 // Give up if fail to negate the Z. 6742 if (!NegZ) 6743 break; 6744 6745 // Prevent this node from being deleted by the next two calls. 6746 Handles.emplace_back(NegZ); 6747 6748 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6749 NegatibleCost CostX = NegatibleCost::Expensive; 6750 SDValue NegX = 6751 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6752 // Prevent this node from being deleted by the next call. 6753 if (NegX) 6754 Handles.emplace_back(NegX); 6755 6756 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6757 NegatibleCost CostY = NegatibleCost::Expensive; 6758 SDValue NegY = 6759 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6760 6761 // We're done with the handles. 6762 Handles.clear(); 6763 6764 // Negate the X if its cost is less or equal than Y. 6765 if (NegX && (CostX <= CostY)) { 6766 Cost = std::min(CostX, CostZ); 6767 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 6768 if (NegY != N) 6769 RemoveDeadNode(NegY); 6770 return N; 6771 } 6772 6773 // Negate the Y if it is not expensive. 6774 if (NegY) { 6775 Cost = std::min(CostY, CostZ); 6776 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 6777 if (NegX != N) 6778 RemoveDeadNode(NegX); 6779 return N; 6780 } 6781 break; 6782 } 6783 6784 case ISD::FP_EXTEND: 6785 case ISD::FSIN: 6786 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6787 OptForSize, Cost, Depth)) 6788 return DAG.getNode(Opcode, DL, VT, NegV); 6789 break; 6790 case ISD::FP_ROUND: 6791 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6792 OptForSize, Cost, Depth)) 6793 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 6794 break; 6795 } 6796 6797 return SDValue(); 6798 } 6799 6800 //===----------------------------------------------------------------------===// 6801 // Legalization Utilities 6802 //===----------------------------------------------------------------------===// 6803 6804 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 6805 SDValue LHS, SDValue RHS, 6806 SmallVectorImpl<SDValue> &Result, 6807 EVT HiLoVT, SelectionDAG &DAG, 6808 MulExpansionKind Kind, SDValue LL, 6809 SDValue LH, SDValue RL, SDValue RH) const { 6810 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 6811 Opcode == ISD::SMUL_LOHI); 6812 6813 bool HasMULHS = (Kind == MulExpansionKind::Always) || 6814 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 6815 bool HasMULHU = (Kind == MulExpansionKind::Always) || 6816 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 6817 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 6818 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 6819 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 6820 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 6821 6822 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 6823 return false; 6824 6825 unsigned OuterBitSize = VT.getScalarSizeInBits(); 6826 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6827 6828 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6829 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6830 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6831 6832 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6833 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6834 bool Signed) -> bool { 6835 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6836 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6837 Hi = SDValue(Lo.getNode(), 1); 6838 return true; 6839 } 6840 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6841 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6842 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6843 return true; 6844 } 6845 return false; 6846 }; 6847 6848 SDValue Lo, Hi; 6849 6850 if (!LL.getNode() && !RL.getNode() && 6851 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6852 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6853 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6854 } 6855 6856 if (!LL.getNode()) 6857 return false; 6858 6859 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6860 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6861 DAG.MaskedValueIsZero(RHS, HighMask)) { 6862 // The inputs are both zero-extended. 6863 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6864 Result.push_back(Lo); 6865 Result.push_back(Hi); 6866 if (Opcode != ISD::MUL) { 6867 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6868 Result.push_back(Zero); 6869 Result.push_back(Zero); 6870 } 6871 return true; 6872 } 6873 } 6874 6875 if (!VT.isVector() && Opcode == ISD::MUL && 6876 DAG.ComputeNumSignBits(LHS) > InnerBitSize && 6877 DAG.ComputeNumSignBits(RHS) > InnerBitSize) { 6878 // The input values are both sign-extended. 6879 // TODO non-MUL case? 6880 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6881 Result.push_back(Lo); 6882 Result.push_back(Hi); 6883 return true; 6884 } 6885 } 6886 6887 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6888 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6889 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6890 6891 if (!LH.getNode() && !RH.getNode() && 6892 isOperationLegalOrCustom(ISD::SRL, VT) && 6893 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6894 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6895 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6896 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6897 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6898 } 6899 6900 if (!LH.getNode()) 6901 return false; 6902 6903 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6904 return false; 6905 6906 Result.push_back(Lo); 6907 6908 if (Opcode == ISD::MUL) { 6909 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6910 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6911 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6912 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6913 Result.push_back(Hi); 6914 return true; 6915 } 6916 6917 // Compute the full width result. 6918 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6919 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6920 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6921 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6922 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6923 }; 6924 6925 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6926 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6927 return false; 6928 6929 // This is effectively the add part of a multiply-add of half-sized operands, 6930 // so it cannot overflow. 6931 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6932 6933 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6934 return false; 6935 6936 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6937 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6938 6939 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6940 isOperationLegalOrCustom(ISD::ADDE, VT)); 6941 if (UseGlue) 6942 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6943 Merge(Lo, Hi)); 6944 else 6945 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6946 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6947 6948 SDValue Carry = Next.getValue(1); 6949 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6950 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6951 6952 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6953 return false; 6954 6955 if (UseGlue) 6956 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6957 Carry); 6958 else 6959 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6960 Zero, Carry); 6961 6962 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6963 6964 if (Opcode == ISD::SMUL_LOHI) { 6965 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6966 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6967 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6968 6969 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6970 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6971 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6972 } 6973 6974 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6975 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6976 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6977 return true; 6978 } 6979 6980 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6981 SelectionDAG &DAG, MulExpansionKind Kind, 6982 SDValue LL, SDValue LH, SDValue RL, 6983 SDValue RH) const { 6984 SmallVector<SDValue, 2> Result; 6985 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 6986 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6987 DAG, Kind, LL, LH, RL, RH); 6988 if (Ok) { 6989 assert(Result.size() == 2); 6990 Lo = Result[0]; 6991 Hi = Result[1]; 6992 } 6993 return Ok; 6994 } 6995 6996 // Check that (every element of) Z is undef or not an exact multiple of BW. 6997 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 6998 return ISD::matchUnaryPredicate( 6999 Z, 7000 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 7001 true); 7002 } 7003 7004 SDValue TargetLowering::expandFunnelShift(SDNode *Node, 7005 SelectionDAG &DAG) const { 7006 EVT VT = Node->getValueType(0); 7007 7008 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 7009 !isOperationLegalOrCustom(ISD::SRL, VT) || 7010 !isOperationLegalOrCustom(ISD::SUB, VT) || 7011 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7012 return SDValue(); 7013 7014 SDValue X = Node->getOperand(0); 7015 SDValue Y = Node->getOperand(1); 7016 SDValue Z = Node->getOperand(2); 7017 7018 unsigned BW = VT.getScalarSizeInBits(); 7019 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 7020 SDLoc DL(SDValue(Node, 0)); 7021 7022 EVT ShVT = Z.getValueType(); 7023 7024 // If a funnel shift in the other direction is more supported, use it. 7025 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 7026 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 7027 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 7028 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 7029 // fshl X, Y, Z -> fshr X, Y, -Z 7030 // fshr X, Y, Z -> fshl X, Y, -Z 7031 SDValue Zero = DAG.getConstant(0, DL, ShVT); 7032 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 7033 } else { 7034 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 7035 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 7036 SDValue One = DAG.getConstant(1, DL, ShVT); 7037 if (IsFSHL) { 7038 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 7039 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 7040 } else { 7041 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 7042 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 7043 } 7044 Z = DAG.getNOT(DL, Z, ShVT); 7045 } 7046 return DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 7047 } 7048 7049 SDValue ShX, ShY; 7050 SDValue ShAmt, InvShAmt; 7051 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 7052 // fshl: X << C | Y >> (BW - C) 7053 // fshr: X << (BW - C) | Y >> C 7054 // where C = Z % BW is not zero 7055 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7056 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 7057 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 7058 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 7059 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 7060 } else { 7061 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 7062 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 7063 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 7064 if (isPowerOf2_32(BW)) { 7065 // Z % BW -> Z & (BW - 1) 7066 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 7067 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 7068 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 7069 } else { 7070 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7071 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 7072 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 7073 } 7074 7075 SDValue One = DAG.getConstant(1, DL, ShVT); 7076 if (IsFSHL) { 7077 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 7078 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 7079 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 7080 } else { 7081 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 7082 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 7083 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 7084 } 7085 } 7086 return DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 7087 } 7088 7089 // TODO: Merge with expandFunnelShift. 7090 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 7091 SelectionDAG &DAG) const { 7092 EVT VT = Node->getValueType(0); 7093 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 7094 bool IsLeft = Node->getOpcode() == ISD::ROTL; 7095 SDValue Op0 = Node->getOperand(0); 7096 SDValue Op1 = Node->getOperand(1); 7097 SDLoc DL(SDValue(Node, 0)); 7098 7099 EVT ShVT = Op1.getValueType(); 7100 SDValue Zero = DAG.getConstant(0, DL, ShVT); 7101 7102 // If a rotate in the other direction is more supported, use it. 7103 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 7104 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 7105 isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 7106 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 7107 return DAG.getNode(RevRot, DL, VT, Op0, Sub); 7108 } 7109 7110 if (!AllowVectorOps && VT.isVector() && 7111 (!isOperationLegalOrCustom(ISD::SHL, VT) || 7112 !isOperationLegalOrCustom(ISD::SRL, VT) || 7113 !isOperationLegalOrCustom(ISD::SUB, VT) || 7114 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 7115 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 7116 return SDValue(); 7117 7118 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 7119 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 7120 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 7121 SDValue ShVal; 7122 SDValue HsVal; 7123 if (isPowerOf2_32(EltSizeInBits)) { 7124 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 7125 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 7126 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 7127 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 7128 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 7129 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 7130 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 7131 } else { 7132 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 7133 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 7134 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 7135 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 7136 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 7137 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 7138 SDValue One = DAG.getConstant(1, DL, ShVT); 7139 HsVal = 7140 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 7141 } 7142 return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 7143 } 7144 7145 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 7146 SelectionDAG &DAG) const { 7147 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 7148 EVT VT = Node->getValueType(0); 7149 unsigned VTBits = VT.getScalarSizeInBits(); 7150 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 7151 7152 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 7153 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 7154 SDValue ShOpLo = Node->getOperand(0); 7155 SDValue ShOpHi = Node->getOperand(1); 7156 SDValue ShAmt = Node->getOperand(2); 7157 EVT ShAmtVT = ShAmt.getValueType(); 7158 EVT ShAmtCCVT = 7159 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 7160 SDLoc dl(Node); 7161 7162 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 7163 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 7164 // away during isel. 7165 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 7166 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 7167 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 7168 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 7169 : DAG.getConstant(0, dl, VT); 7170 7171 SDValue Tmp2, Tmp3; 7172 if (IsSHL) { 7173 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 7174 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 7175 } else { 7176 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 7177 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 7178 } 7179 7180 // If the shift amount is larger or equal than the width of a part we don't 7181 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 7182 // values for large shift amounts. 7183 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 7184 DAG.getConstant(VTBits, dl, ShAmtVT)); 7185 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 7186 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 7187 7188 if (IsSHL) { 7189 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 7190 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 7191 } else { 7192 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 7193 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 7194 } 7195 } 7196 7197 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 7198 SelectionDAG &DAG) const { 7199 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 7200 SDValue Src = Node->getOperand(OpNo); 7201 EVT SrcVT = Src.getValueType(); 7202 EVT DstVT = Node->getValueType(0); 7203 SDLoc dl(SDValue(Node, 0)); 7204 7205 // FIXME: Only f32 to i64 conversions are supported. 7206 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 7207 return false; 7208 7209 if (Node->isStrictFPOpcode()) 7210 // When a NaN is converted to an integer a trap is allowed. We can't 7211 // use this expansion here because it would eliminate that trap. Other 7212 // traps are also allowed and cannot be eliminated. See 7213 // IEEE 754-2008 sec 5.8. 7214 return false; 7215 7216 // Expand f32 -> i64 conversion 7217 // This algorithm comes from compiler-rt's implementation of fixsfdi: 7218 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 7219 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 7220 EVT IntVT = SrcVT.changeTypeToInteger(); 7221 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 7222 7223 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 7224 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 7225 SDValue Bias = DAG.getConstant(127, dl, IntVT); 7226 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 7227 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 7228 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 7229 7230 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 7231 7232 SDValue ExponentBits = DAG.getNode( 7233 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 7234 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 7235 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 7236 7237 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 7238 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 7239 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 7240 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 7241 7242 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 7243 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 7244 DAG.getConstant(0x00800000, dl, IntVT)); 7245 7246 R = DAG.getZExtOrTrunc(R, dl, DstVT); 7247 7248 R = DAG.getSelectCC( 7249 dl, Exponent, ExponentLoBit, 7250 DAG.getNode(ISD::SHL, dl, DstVT, R, 7251 DAG.getZExtOrTrunc( 7252 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 7253 dl, IntShVT)), 7254 DAG.getNode(ISD::SRL, dl, DstVT, R, 7255 DAG.getZExtOrTrunc( 7256 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 7257 dl, IntShVT)), 7258 ISD::SETGT); 7259 7260 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 7261 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 7262 7263 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 7264 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 7265 return true; 7266 } 7267 7268 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 7269 SDValue &Chain, 7270 SelectionDAG &DAG) const { 7271 SDLoc dl(SDValue(Node, 0)); 7272 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 7273 SDValue Src = Node->getOperand(OpNo); 7274 7275 EVT SrcVT = Src.getValueType(); 7276 EVT DstVT = Node->getValueType(0); 7277 EVT SetCCVT = 7278 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 7279 EVT DstSetCCVT = 7280 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 7281 7282 // Only expand vector types if we have the appropriate vector bit operations. 7283 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 7284 ISD::FP_TO_SINT; 7285 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 7286 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 7287 return false; 7288 7289 // If the maximum float value is smaller then the signed integer range, 7290 // the destination signmask can't be represented by the float, so we can 7291 // just use FP_TO_SINT directly. 7292 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 7293 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits())); 7294 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 7295 if (APFloat::opOverflow & 7296 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 7297 if (Node->isStrictFPOpcode()) { 7298 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 7299 { Node->getOperand(0), Src }); 7300 Chain = Result.getValue(1); 7301 } else 7302 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 7303 return true; 7304 } 7305 7306 // Don't expand it if there isn't cheap fsub instruction. 7307 if (!isOperationLegalOrCustom( 7308 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 7309 return false; 7310 7311 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 7312 SDValue Sel; 7313 7314 if (Node->isStrictFPOpcode()) { 7315 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 7316 Node->getOperand(0), /*IsSignaling*/ true); 7317 Chain = Sel.getValue(1); 7318 } else { 7319 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 7320 } 7321 7322 bool Strict = Node->isStrictFPOpcode() || 7323 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 7324 7325 if (Strict) { 7326 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 7327 // signmask then offset (the result of which should be fully representable). 7328 // Sel = Src < 0x8000000000000000 7329 // FltOfs = select Sel, 0, 0x8000000000000000 7330 // IntOfs = select Sel, 0, 0x8000000000000000 7331 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 7332 7333 // TODO: Should any fast-math-flags be set for the FSUB? 7334 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 7335 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 7336 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 7337 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 7338 DAG.getConstant(0, dl, DstVT), 7339 DAG.getConstant(SignMask, dl, DstVT)); 7340 SDValue SInt; 7341 if (Node->isStrictFPOpcode()) { 7342 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 7343 { Chain, Src, FltOfs }); 7344 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 7345 { Val.getValue(1), Val }); 7346 Chain = SInt.getValue(1); 7347 } else { 7348 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 7349 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 7350 } 7351 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 7352 } else { 7353 // Expand based on maximum range of FP_TO_SINT: 7354 // True = fp_to_sint(Src) 7355 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 7356 // Result = select (Src < 0x8000000000000000), True, False 7357 7358 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 7359 // TODO: Should any fast-math-flags be set for the FSUB? 7360 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 7361 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 7362 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 7363 DAG.getConstant(SignMask, dl, DstVT)); 7364 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 7365 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 7366 } 7367 return true; 7368 } 7369 7370 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 7371 SDValue &Chain, 7372 SelectionDAG &DAG) const { 7373 // This transform is not correct for converting 0 when rounding mode is set 7374 // to round toward negative infinity which will produce -0.0. So disable under 7375 // strictfp. 7376 if (Node->isStrictFPOpcode()) 7377 return false; 7378 7379 SDValue Src = Node->getOperand(0); 7380 EVT SrcVT = Src.getValueType(); 7381 EVT DstVT = Node->getValueType(0); 7382 7383 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 7384 return false; 7385 7386 // Only expand vector types if we have the appropriate vector bit operations. 7387 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 7388 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 7389 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 7390 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 7391 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 7392 return false; 7393 7394 SDLoc dl(SDValue(Node, 0)); 7395 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 7396 7397 // Implementation of unsigned i64 to f64 following the algorithm in 7398 // __floatundidf in compiler_rt. This implementation performs rounding 7399 // correctly in all rounding modes with the exception of converting 0 7400 // when rounding toward negative infinity. In that case the fsub will produce 7401 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 7402 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 7403 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 7404 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 7405 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 7406 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 7407 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 7408 7409 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 7410 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 7411 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 7412 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 7413 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 7414 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 7415 SDValue HiSub = 7416 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 7417 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 7418 return true; 7419 } 7420 7421 SDValue 7422 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node, 7423 SelectionDAG &DAG) const { 7424 unsigned Opcode = Node->getOpcode(); 7425 assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM || 7426 Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) && 7427 "Wrong opcode"); 7428 7429 if (Node->getFlags().hasNoNaNs()) { 7430 ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 7431 SDValue Op1 = Node->getOperand(0); 7432 SDValue Op2 = Node->getOperand(1); 7433 SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred); 7434 // Copy FMF flags, but always set the no-signed-zeros flag 7435 // as this is implied by the FMINNUM/FMAXNUM semantics. 7436 SDNodeFlags Flags = Node->getFlags(); 7437 Flags.setNoSignedZeros(true); 7438 SelCC->setFlags(Flags); 7439 return SelCC; 7440 } 7441 7442 return SDValue(); 7443 } 7444 7445 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 7446 SelectionDAG &DAG) const { 7447 SDLoc dl(Node); 7448 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 7449 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 7450 EVT VT = Node->getValueType(0); 7451 7452 if (VT.isScalableVector()) 7453 report_fatal_error( 7454 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 7455 7456 if (isOperationLegalOrCustom(NewOp, VT)) { 7457 SDValue Quiet0 = Node->getOperand(0); 7458 SDValue Quiet1 = Node->getOperand(1); 7459 7460 if (!Node->getFlags().hasNoNaNs()) { 7461 // Insert canonicalizes if it's possible we need to quiet to get correct 7462 // sNaN behavior. 7463 if (!DAG.isKnownNeverSNaN(Quiet0)) { 7464 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 7465 Node->getFlags()); 7466 } 7467 if (!DAG.isKnownNeverSNaN(Quiet1)) { 7468 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 7469 Node->getFlags()); 7470 } 7471 } 7472 7473 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 7474 } 7475 7476 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 7477 // instead if there are no NaNs. 7478 if (Node->getFlags().hasNoNaNs()) { 7479 unsigned IEEE2018Op = 7480 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 7481 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 7482 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 7483 Node->getOperand(1), Node->getFlags()); 7484 } 7485 } 7486 7487 if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG)) 7488 return SelCC; 7489 7490 return SDValue(); 7491 } 7492 7493 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op, 7494 unsigned Test, SDNodeFlags Flags, 7495 const SDLoc &DL, 7496 SelectionDAG &DAG) const { 7497 EVT OperandVT = Op.getValueType(); 7498 assert(OperandVT.isFloatingPoint()); 7499 7500 // Degenerated cases. 7501 if (Test == 0) 7502 return DAG.getBoolConstant(false, DL, ResultVT, OperandVT); 7503 if ((Test & fcAllFlags) == fcAllFlags) 7504 return DAG.getBoolConstant(true, DL, ResultVT, OperandVT); 7505 7506 // PPC double double is a pair of doubles, of which the higher part determines 7507 // the value class. 7508 if (OperandVT == MVT::ppcf128) { 7509 Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op, 7510 DAG.getConstant(1, DL, MVT::i32)); 7511 OperandVT = MVT::f64; 7512 } 7513 7514 // Some checks may be represented as inversion of simpler check, for example 7515 // "inf|normal|subnormal|zero" => !"nan". 7516 bool IsInverted = false; 7517 if (unsigned InvertedCheck = getInvertedFPClassTest(Test)) { 7518 IsInverted = true; 7519 Test = InvertedCheck; 7520 } 7521 7522 // Floating-point type properties. 7523 EVT ScalarFloatVT = OperandVT.getScalarType(); 7524 const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext()); 7525 const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics(); 7526 bool IsF80 = (ScalarFloatVT == MVT::f80); 7527 7528 // Some checks can be implemented using float comparisons, if floating point 7529 // exceptions are ignored. 7530 if (Flags.hasNoFPExcept() && 7531 isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) { 7532 if (Test == fcZero) 7533 return DAG.getSetCC(DL, ResultVT, Op, 7534 DAG.getConstantFP(0.0, DL, OperandVT), 7535 IsInverted ? ISD::SETUNE : ISD::SETOEQ); 7536 if (Test == fcNan) 7537 return DAG.getSetCC(DL, ResultVT, Op, Op, 7538 IsInverted ? ISD::SETO : ISD::SETUO); 7539 } 7540 7541 // In the general case use integer operations. 7542 unsigned BitSize = OperandVT.getScalarSizeInBits(); 7543 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize); 7544 if (OperandVT.isVector()) 7545 IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT, 7546 OperandVT.getVectorElementCount()); 7547 SDValue OpAsInt = DAG.getBitcast(IntVT, Op); 7548 7549 // Various masks. 7550 APInt SignBit = APInt::getSignMask(BitSize); 7551 APInt ValueMask = APInt::getSignedMaxValue(BitSize); // All bits but sign. 7552 APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit. 7553 const unsigned ExplicitIntBitInF80 = 63; 7554 APInt ExpMask = Inf; 7555 if (IsF80) 7556 ExpMask.clearBit(ExplicitIntBitInF80); 7557 APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf; 7558 APInt QNaNBitMask = 7559 APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1); 7560 APInt InvertionMask = APInt::getAllOnesValue(ResultVT.getScalarSizeInBits()); 7561 7562 SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT); 7563 SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT); 7564 SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT); 7565 SDValue ZeroV = DAG.getConstant(0, DL, IntVT); 7566 SDValue InfV = DAG.getConstant(Inf, DL, IntVT); 7567 SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT); 7568 7569 SDValue Res; 7570 const auto appendResult = [&](SDValue PartialRes) { 7571 if (PartialRes) { 7572 if (Res) 7573 Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes); 7574 else 7575 Res = PartialRes; 7576 } 7577 }; 7578 7579 SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set. 7580 const auto getIntBitIsSet = [&]() -> SDValue { 7581 if (!IntBitIsSetV) { 7582 APInt IntBitMask(BitSize, 0); 7583 IntBitMask.setBit(ExplicitIntBitInF80); 7584 SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT); 7585 SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV); 7586 IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE); 7587 } 7588 return IntBitIsSetV; 7589 }; 7590 7591 // Split the value into sign bit and absolute value. 7592 SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV); 7593 SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt, 7594 DAG.getConstant(0.0, DL, IntVT), ISD::SETLT); 7595 7596 // Tests that involve more than one class should be processed first. 7597 SDValue PartialRes; 7598 7599 if (IsF80) 7600 ; // Detect finite numbers of f80 by checking individual classes because 7601 // they have different settings of the explicit integer bit. 7602 else if ((Test & fcFinite) == fcFinite) { 7603 // finite(V) ==> abs(V) < exp_mask 7604 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT); 7605 Test &= ~fcFinite; 7606 } else if ((Test & fcFinite) == fcPosFinite) { 7607 // finite(V) && V > 0 ==> V < exp_mask 7608 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT); 7609 Test &= ~fcPosFinite; 7610 } else if ((Test & fcFinite) == fcNegFinite) { 7611 // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1 7612 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT); 7613 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 7614 Test &= ~fcNegFinite; 7615 } 7616 appendResult(PartialRes); 7617 7618 // Check for individual classes. 7619 7620 if (unsigned PartialCheck = Test & fcZero) { 7621 if (PartialCheck == fcPosZero) 7622 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ); 7623 else if (PartialCheck == fcZero) 7624 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ); 7625 else // ISD::fcNegZero 7626 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ); 7627 appendResult(PartialRes); 7628 } 7629 7630 if (unsigned PartialCheck = Test & fcInf) { 7631 if (PartialCheck == fcPosInf) 7632 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ); 7633 else if (PartialCheck == fcInf) 7634 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ); 7635 else { // ISD::fcNegInf 7636 APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt(); 7637 SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT); 7638 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ); 7639 } 7640 appendResult(PartialRes); 7641 } 7642 7643 if (unsigned PartialCheck = Test & fcNan) { 7644 APInt InfWithQnanBit = Inf | QNaNBitMask; 7645 SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT); 7646 if (PartialCheck == fcNan) { 7647 // isnan(V) ==> abs(V) > int(inf) 7648 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT); 7649 if (IsF80) { 7650 // Recognize unsupported values as NaNs for compatibility with glibc. 7651 // In them (exp(V)==0) == int_bit. 7652 SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV); 7653 SDValue ExpIsZero = 7654 DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ); 7655 SDValue IsPseudo = 7656 DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ); 7657 PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo); 7658 } 7659 } else if (PartialCheck == fcQNan) { 7660 // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit) 7661 PartialRes = 7662 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE); 7663 } else { // ISD::fcSNan 7664 // issignaling(V) ==> abs(V) > unsigned(Inf) && 7665 // abs(V) < (unsigned(Inf) | quiet_bit) 7666 SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT); 7667 SDValue IsNotQnan = 7668 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT); 7669 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan); 7670 } 7671 appendResult(PartialRes); 7672 } 7673 7674 if (unsigned PartialCheck = Test & fcSubnormal) { 7675 // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set) 7676 // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set) 7677 SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV; 7678 SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT); 7679 SDValue VMinusOneV = 7680 DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT)); 7681 PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT); 7682 if (PartialCheck == fcNegSubnormal) 7683 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 7684 appendResult(PartialRes); 7685 } 7686 7687 if (unsigned PartialCheck = Test & fcNormal) { 7688 // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1)) 7689 APInt ExpLSB = ExpMask & ~(ExpMask.shl(1)); 7690 SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT); 7691 SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV); 7692 APInt ExpLimit = ExpMask - ExpLSB; 7693 SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT); 7694 PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT); 7695 if (PartialCheck == fcNegNormal) 7696 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 7697 else if (PartialCheck == fcPosNormal) { 7698 SDValue PosSignV = 7699 DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask); 7700 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV); 7701 } 7702 if (IsF80) 7703 PartialRes = 7704 DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet()); 7705 appendResult(PartialRes); 7706 } 7707 7708 if (!Res) 7709 return DAG.getConstant(IsInverted, DL, ResultVT); 7710 if (IsInverted) 7711 Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask); 7712 return Res; 7713 } 7714 7715 // Only expand vector types if we have the appropriate vector bit operations. 7716 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) { 7717 assert(VT.isVector() && "Expected vector type"); 7718 unsigned Len = VT.getScalarSizeInBits(); 7719 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 7720 TLI.isOperationLegalOrCustom(ISD::SUB, VT) && 7721 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 7722 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) && 7723 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT); 7724 } 7725 7726 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const { 7727 SDLoc dl(Node); 7728 EVT VT = Node->getValueType(0); 7729 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7730 SDValue Op = Node->getOperand(0); 7731 unsigned Len = VT.getScalarSizeInBits(); 7732 assert(VT.isInteger() && "CTPOP not implemented for this type."); 7733 7734 // TODO: Add support for irregular type lengths. 7735 if (!(Len <= 128 && Len % 8 == 0)) 7736 return SDValue(); 7737 7738 // Only expand vector types if we have the appropriate vector bit operations. 7739 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT)) 7740 return SDValue(); 7741 7742 // This is the "best" algorithm from 7743 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 7744 SDValue Mask55 = 7745 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 7746 SDValue Mask33 = 7747 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 7748 SDValue Mask0F = 7749 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 7750 7751 // v = v - ((v >> 1) & 0x55555555...) 7752 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 7753 DAG.getNode(ISD::AND, dl, VT, 7754 DAG.getNode(ISD::SRL, dl, VT, Op, 7755 DAG.getConstant(1, dl, ShVT)), 7756 Mask55)); 7757 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 7758 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 7759 DAG.getNode(ISD::AND, dl, VT, 7760 DAG.getNode(ISD::SRL, dl, VT, Op, 7761 DAG.getConstant(2, dl, ShVT)), 7762 Mask33)); 7763 // v = (v + (v >> 4)) & 0x0F0F0F0F... 7764 Op = DAG.getNode(ISD::AND, dl, VT, 7765 DAG.getNode(ISD::ADD, dl, VT, Op, 7766 DAG.getNode(ISD::SRL, dl, VT, Op, 7767 DAG.getConstant(4, dl, ShVT))), 7768 Mask0F); 7769 7770 if (Len <= 8) 7771 return Op; 7772 7773 // Avoid the multiply if we only have 2 bytes to add. 7774 // TODO: Only doing this for scalars because vectors weren't as obviously 7775 // improved. 7776 if (Len == 16 && !VT.isVector()) { 7777 // v = (v + (v >> 8)) & 0x00FF; 7778 return DAG.getNode(ISD::AND, dl, VT, 7779 DAG.getNode(ISD::ADD, dl, VT, Op, 7780 DAG.getNode(ISD::SRL, dl, VT, Op, 7781 DAG.getConstant(8, dl, ShVT))), 7782 DAG.getConstant(0xFF, dl, VT)); 7783 } 7784 7785 // v = (v * 0x01010101...) >> (Len - 8) 7786 SDValue Mask01 = 7787 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 7788 return DAG.getNode(ISD::SRL, dl, VT, 7789 DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 7790 DAG.getConstant(Len - 8, dl, ShVT)); 7791 } 7792 7793 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const { 7794 SDLoc dl(Node); 7795 EVT VT = Node->getValueType(0); 7796 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7797 SDValue Op = Node->getOperand(0); 7798 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7799 7800 // If the non-ZERO_UNDEF version is supported we can use that instead. 7801 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 7802 isOperationLegalOrCustom(ISD::CTLZ, VT)) 7803 return DAG.getNode(ISD::CTLZ, dl, VT, Op); 7804 7805 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7806 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 7807 EVT SetCCVT = 7808 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7809 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 7810 SDValue Zero = DAG.getConstant(0, dl, VT); 7811 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7812 return DAG.getSelect(dl, VT, SrcIsZero, 7813 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 7814 } 7815 7816 // Only expand vector types if we have the appropriate vector bit operations. 7817 // This includes the operations needed to expand CTPOP if it isn't supported. 7818 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7819 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7820 !canExpandVectorCTPOP(*this, VT)) || 7821 !isOperationLegalOrCustom(ISD::SRL, VT) || 7822 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7823 return SDValue(); 7824 7825 // for now, we do this: 7826 // x = x | (x >> 1); 7827 // x = x | (x >> 2); 7828 // ... 7829 // x = x | (x >>16); 7830 // x = x | (x >>32); // for 64-bit input 7831 // return popcount(~x); 7832 // 7833 // Ref: "Hacker's Delight" by Henry Warren 7834 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 7835 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 7836 Op = DAG.getNode(ISD::OR, dl, VT, Op, 7837 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 7838 } 7839 Op = DAG.getNOT(dl, Op, VT); 7840 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 7841 } 7842 7843 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const { 7844 SDLoc dl(Node); 7845 EVT VT = Node->getValueType(0); 7846 SDValue Op = Node->getOperand(0); 7847 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7848 7849 // If the non-ZERO_UNDEF version is supported we can use that instead. 7850 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 7851 isOperationLegalOrCustom(ISD::CTTZ, VT)) 7852 return DAG.getNode(ISD::CTTZ, dl, VT, Op); 7853 7854 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7855 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 7856 EVT SetCCVT = 7857 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7858 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 7859 SDValue Zero = DAG.getConstant(0, dl, VT); 7860 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7861 return DAG.getSelect(dl, VT, SrcIsZero, 7862 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 7863 } 7864 7865 // Only expand vector types if we have the appropriate vector bit operations. 7866 // This includes the operations needed to expand CTPOP if it isn't supported. 7867 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7868 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7869 !isOperationLegalOrCustom(ISD::CTLZ, VT) && 7870 !canExpandVectorCTPOP(*this, VT)) || 7871 !isOperationLegalOrCustom(ISD::SUB, VT) || 7872 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 7873 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7874 return SDValue(); 7875 7876 // for now, we use: { return popcount(~x & (x - 1)); } 7877 // unless the target has ctlz but not ctpop, in which case we use: 7878 // { return 32 - nlz(~x & (x-1)); } 7879 // Ref: "Hacker's Delight" by Henry Warren 7880 SDValue Tmp = DAG.getNode( 7881 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 7882 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 7883 7884 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 7885 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 7886 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 7887 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 7888 } 7889 7890 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 7891 } 7892 7893 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG, 7894 bool IsNegative) const { 7895 SDLoc dl(N); 7896 EVT VT = N->getValueType(0); 7897 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7898 SDValue Op = N->getOperand(0); 7899 7900 // abs(x) -> smax(x,sub(0,x)) 7901 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7902 isOperationLegal(ISD::SMAX, VT)) { 7903 SDValue Zero = DAG.getConstant(0, dl, VT); 7904 return DAG.getNode(ISD::SMAX, dl, VT, Op, 7905 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7906 } 7907 7908 // abs(x) -> umin(x,sub(0,x)) 7909 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7910 isOperationLegal(ISD::UMIN, VT)) { 7911 SDValue Zero = DAG.getConstant(0, dl, VT); 7912 Op = DAG.getFreeze(Op); 7913 return DAG.getNode(ISD::UMIN, dl, VT, Op, 7914 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7915 } 7916 7917 // 0 - abs(x) -> smin(x, sub(0,x)) 7918 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 7919 isOperationLegal(ISD::SMIN, VT)) { 7920 Op = DAG.getFreeze(Op); 7921 SDValue Zero = DAG.getConstant(0, dl, VT); 7922 return DAG.getNode(ISD::SMIN, dl, VT, Op, 7923 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7924 } 7925 7926 // Only expand vector types if we have the appropriate vector operations. 7927 if (VT.isVector() && 7928 (!isOperationLegalOrCustom(ISD::SRA, VT) || 7929 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 7930 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 7931 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7932 return SDValue(); 7933 7934 Op = DAG.getFreeze(Op); 7935 SDValue Shift = 7936 DAG.getNode(ISD::SRA, dl, VT, Op, 7937 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 7938 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 7939 7940 // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y) 7941 if (!IsNegative) 7942 return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift); 7943 7944 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 7945 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 7946 } 7947 7948 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 7949 SDLoc dl(N); 7950 EVT VT = N->getValueType(0); 7951 SDValue Op = N->getOperand(0); 7952 7953 if (!VT.isSimple()) 7954 return SDValue(); 7955 7956 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7957 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 7958 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 7959 default: 7960 return SDValue(); 7961 case MVT::i16: 7962 // Use a rotate by 8. This can be further expanded if necessary. 7963 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7964 case MVT::i32: 7965 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7966 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7967 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7968 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7969 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7970 DAG.getConstant(0xFF0000, dl, VT)); 7971 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 7972 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7973 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7974 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7975 case MVT::i64: 7976 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7977 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7978 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7979 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7980 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7981 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7982 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7983 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7984 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 7985 DAG.getConstant(255ULL<<48, dl, VT)); 7986 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 7987 DAG.getConstant(255ULL<<40, dl, VT)); 7988 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 7989 DAG.getConstant(255ULL<<32, dl, VT)); 7990 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 7991 DAG.getConstant(255ULL<<24, dl, VT)); 7992 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7993 DAG.getConstant(255ULL<<16, dl, VT)); 7994 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 7995 DAG.getConstant(255ULL<<8 , dl, VT)); 7996 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 7997 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 7998 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7999 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 8000 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 8001 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 8002 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 8003 } 8004 } 8005 8006 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 8007 SDLoc dl(N); 8008 EVT VT = N->getValueType(0); 8009 SDValue Op = N->getOperand(0); 8010 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8011 unsigned Sz = VT.getScalarSizeInBits(); 8012 8013 SDValue Tmp, Tmp2, Tmp3; 8014 8015 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 8016 // and finally the i1 pairs. 8017 // TODO: We can easily support i4/i2 legal types if any target ever does. 8018 if (Sz >= 8 && isPowerOf2_32(Sz)) { 8019 // Create the masks - repeating the pattern every byte. 8020 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 8021 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 8022 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 8023 8024 // BSWAP if the type is wider than a single byte. 8025 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 8026 8027 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 8028 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); 8029 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); 8030 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); 8031 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 8032 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8033 8034 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 8035 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); 8036 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); 8037 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); 8038 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 8039 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8040 8041 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 8042 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); 8043 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); 8044 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); 8045 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 8046 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8047 return Tmp; 8048 } 8049 8050 Tmp = DAG.getConstant(0, dl, VT); 8051 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 8052 if (I < J) 8053 Tmp2 = 8054 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 8055 else 8056 Tmp2 = 8057 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 8058 8059 APInt Shift(Sz, 1); 8060 Shift <<= J; 8061 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 8062 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 8063 } 8064 8065 return Tmp; 8066 } 8067 8068 std::pair<SDValue, SDValue> 8069 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 8070 SelectionDAG &DAG) const { 8071 SDLoc SL(LD); 8072 SDValue Chain = LD->getChain(); 8073 SDValue BasePTR = LD->getBasePtr(); 8074 EVT SrcVT = LD->getMemoryVT(); 8075 EVT DstVT = LD->getValueType(0); 8076 ISD::LoadExtType ExtType = LD->getExtensionType(); 8077 8078 if (SrcVT.isScalableVector()) 8079 report_fatal_error("Cannot scalarize scalable vector loads"); 8080 8081 unsigned NumElem = SrcVT.getVectorNumElements(); 8082 8083 EVT SrcEltVT = SrcVT.getScalarType(); 8084 EVT DstEltVT = DstVT.getScalarType(); 8085 8086 // A vector must always be stored in memory as-is, i.e. without any padding 8087 // between the elements, since various code depend on it, e.g. in the 8088 // handling of a bitcast of a vector type to int, which may be done with a 8089 // vector store followed by an integer load. A vector that does not have 8090 // elements that are byte-sized must therefore be stored as an integer 8091 // built out of the extracted vector elements. 8092 if (!SrcEltVT.isByteSized()) { 8093 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 8094 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 8095 8096 unsigned NumSrcBits = SrcVT.getSizeInBits(); 8097 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 8098 8099 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 8100 SDValue SrcEltBitMask = DAG.getConstant( 8101 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 8102 8103 // Load the whole vector and avoid masking off the top bits as it makes 8104 // the codegen worse. 8105 SDValue Load = 8106 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 8107 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 8108 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 8109 8110 SmallVector<SDValue, 8> Vals; 8111 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 8112 unsigned ShiftIntoIdx = 8113 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 8114 SDValue ShiftAmount = 8115 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 8116 LoadVT, SL, /*LegalTypes=*/false); 8117 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 8118 SDValue Elt = 8119 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 8120 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 8121 8122 if (ExtType != ISD::NON_EXTLOAD) { 8123 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 8124 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 8125 } 8126 8127 Vals.push_back(Scalar); 8128 } 8129 8130 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 8131 return std::make_pair(Value, Load.getValue(1)); 8132 } 8133 8134 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 8135 assert(SrcEltVT.isByteSized()); 8136 8137 SmallVector<SDValue, 8> Vals; 8138 SmallVector<SDValue, 8> LoadChains; 8139 8140 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 8141 SDValue ScalarLoad = 8142 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 8143 LD->getPointerInfo().getWithOffset(Idx * Stride), 8144 SrcEltVT, LD->getOriginalAlign(), 8145 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 8146 8147 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 8148 8149 Vals.push_back(ScalarLoad.getValue(0)); 8150 LoadChains.push_back(ScalarLoad.getValue(1)); 8151 } 8152 8153 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 8154 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 8155 8156 return std::make_pair(Value, NewChain); 8157 } 8158 8159 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 8160 SelectionDAG &DAG) const { 8161 SDLoc SL(ST); 8162 8163 SDValue Chain = ST->getChain(); 8164 SDValue BasePtr = ST->getBasePtr(); 8165 SDValue Value = ST->getValue(); 8166 EVT StVT = ST->getMemoryVT(); 8167 8168 if (StVT.isScalableVector()) 8169 report_fatal_error("Cannot scalarize scalable vector stores"); 8170 8171 // The type of the data we want to save 8172 EVT RegVT = Value.getValueType(); 8173 EVT RegSclVT = RegVT.getScalarType(); 8174 8175 // The type of data as saved in memory. 8176 EVT MemSclVT = StVT.getScalarType(); 8177 8178 unsigned NumElem = StVT.getVectorNumElements(); 8179 8180 // A vector must always be stored in memory as-is, i.e. without any padding 8181 // between the elements, since various code depend on it, e.g. in the 8182 // handling of a bitcast of a vector type to int, which may be done with a 8183 // vector store followed by an integer load. A vector that does not have 8184 // elements that are byte-sized must therefore be stored as an integer 8185 // built out of the extracted vector elements. 8186 if (!MemSclVT.isByteSized()) { 8187 unsigned NumBits = StVT.getSizeInBits(); 8188 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 8189 8190 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 8191 8192 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 8193 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 8194 DAG.getVectorIdxConstant(Idx, SL)); 8195 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 8196 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 8197 unsigned ShiftIntoIdx = 8198 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 8199 SDValue ShiftAmount = 8200 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 8201 SDValue ShiftedElt = 8202 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 8203 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 8204 } 8205 8206 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 8207 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 8208 ST->getAAInfo()); 8209 } 8210 8211 // Store Stride in bytes 8212 unsigned Stride = MemSclVT.getSizeInBits() / 8; 8213 assert(Stride && "Zero stride!"); 8214 // Extract each of the elements from the original vector and save them into 8215 // memory individually. 8216 SmallVector<SDValue, 8> Stores; 8217 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 8218 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 8219 DAG.getVectorIdxConstant(Idx, SL)); 8220 8221 SDValue Ptr = 8222 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 8223 8224 // This scalar TruncStore may be illegal, but we legalize it later. 8225 SDValue Store = DAG.getTruncStore( 8226 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 8227 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 8228 ST->getAAInfo()); 8229 8230 Stores.push_back(Store); 8231 } 8232 8233 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 8234 } 8235 8236 std::pair<SDValue, SDValue> 8237 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 8238 assert(LD->getAddressingMode() == ISD::UNINDEXED && 8239 "unaligned indexed loads not implemented!"); 8240 SDValue Chain = LD->getChain(); 8241 SDValue Ptr = LD->getBasePtr(); 8242 EVT VT = LD->getValueType(0); 8243 EVT LoadedVT = LD->getMemoryVT(); 8244 SDLoc dl(LD); 8245 auto &MF = DAG.getMachineFunction(); 8246 8247 if (VT.isFloatingPoint() || VT.isVector()) { 8248 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 8249 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 8250 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 8251 LoadedVT.isVector()) { 8252 // Scalarize the load and let the individual components be handled. 8253 return scalarizeVectorLoad(LD, DAG); 8254 } 8255 8256 // Expand to a (misaligned) integer load of the same size, 8257 // then bitconvert to floating point or vector. 8258 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 8259 LD->getMemOperand()); 8260 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 8261 if (LoadedVT != VT) 8262 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 8263 ISD::ANY_EXTEND, dl, VT, Result); 8264 8265 return std::make_pair(Result, newLoad.getValue(1)); 8266 } 8267 8268 // Copy the value to a (aligned) stack slot using (unaligned) integer 8269 // loads and stores, then do a (aligned) load from the stack slot. 8270 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 8271 unsigned LoadedBytes = LoadedVT.getStoreSize(); 8272 unsigned RegBytes = RegVT.getSizeInBits() / 8; 8273 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 8274 8275 // Make sure the stack slot is also aligned for the register type. 8276 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 8277 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 8278 SmallVector<SDValue, 8> Stores; 8279 SDValue StackPtr = StackBase; 8280 unsigned Offset = 0; 8281 8282 EVT PtrVT = Ptr.getValueType(); 8283 EVT StackPtrVT = StackPtr.getValueType(); 8284 8285 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 8286 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 8287 8288 // Do all but one copies using the full register width. 8289 for (unsigned i = 1; i < NumRegs; i++) { 8290 // Load one integer register's worth from the original location. 8291 SDValue Load = DAG.getLoad( 8292 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 8293 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 8294 LD->getAAInfo()); 8295 // Follow the load with a store to the stack slot. Remember the store. 8296 Stores.push_back(DAG.getStore( 8297 Load.getValue(1), dl, Load, StackPtr, 8298 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 8299 // Increment the pointers. 8300 Offset += RegBytes; 8301 8302 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 8303 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 8304 } 8305 8306 // The last copy may be partial. Do an extending load. 8307 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8308 8 * (LoadedBytes - Offset)); 8309 SDValue Load = 8310 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 8311 LD->getPointerInfo().getWithOffset(Offset), MemVT, 8312 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 8313 LD->getAAInfo()); 8314 // Follow the load with a store to the stack slot. Remember the store. 8315 // On big-endian machines this requires a truncating store to ensure 8316 // that the bits end up in the right place. 8317 Stores.push_back(DAG.getTruncStore( 8318 Load.getValue(1), dl, Load, StackPtr, 8319 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 8320 8321 // The order of the stores doesn't matter - say it with a TokenFactor. 8322 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8323 8324 // Finally, perform the original load only redirected to the stack slot. 8325 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 8326 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 8327 LoadedVT); 8328 8329 // Callers expect a MERGE_VALUES node. 8330 return std::make_pair(Load, TF); 8331 } 8332 8333 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 8334 "Unaligned load of unsupported type."); 8335 8336 // Compute the new VT that is half the size of the old one. This is an 8337 // integer MVT. 8338 unsigned NumBits = LoadedVT.getSizeInBits(); 8339 EVT NewLoadedVT; 8340 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 8341 NumBits >>= 1; 8342 8343 Align Alignment = LD->getOriginalAlign(); 8344 unsigned IncrementSize = NumBits / 8; 8345 ISD::LoadExtType HiExtType = LD->getExtensionType(); 8346 8347 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 8348 if (HiExtType == ISD::NON_EXTLOAD) 8349 HiExtType = ISD::ZEXTLOAD; 8350 8351 // Load the value in two parts 8352 SDValue Lo, Hi; 8353 if (DAG.getDataLayout().isLittleEndian()) { 8354 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 8355 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 8356 LD->getAAInfo()); 8357 8358 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 8359 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 8360 LD->getPointerInfo().getWithOffset(IncrementSize), 8361 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 8362 LD->getAAInfo()); 8363 } else { 8364 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 8365 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 8366 LD->getAAInfo()); 8367 8368 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 8369 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 8370 LD->getPointerInfo().getWithOffset(IncrementSize), 8371 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 8372 LD->getAAInfo()); 8373 } 8374 8375 // aggregate the two parts 8376 SDValue ShiftAmount = 8377 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 8378 DAG.getDataLayout())); 8379 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 8380 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 8381 8382 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 8383 Hi.getValue(1)); 8384 8385 return std::make_pair(Result, TF); 8386 } 8387 8388 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 8389 SelectionDAG &DAG) const { 8390 assert(ST->getAddressingMode() == ISD::UNINDEXED && 8391 "unaligned indexed stores not implemented!"); 8392 SDValue Chain = ST->getChain(); 8393 SDValue Ptr = ST->getBasePtr(); 8394 SDValue Val = ST->getValue(); 8395 EVT VT = Val.getValueType(); 8396 Align Alignment = ST->getOriginalAlign(); 8397 auto &MF = DAG.getMachineFunction(); 8398 EVT StoreMemVT = ST->getMemoryVT(); 8399 8400 SDLoc dl(ST); 8401 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 8402 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 8403 if (isTypeLegal(intVT)) { 8404 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 8405 StoreMemVT.isVector()) { 8406 // Scalarize the store and let the individual components be handled. 8407 SDValue Result = scalarizeVectorStore(ST, DAG); 8408 return Result; 8409 } 8410 // Expand to a bitconvert of the value to the integer type of the 8411 // same size, then a (misaligned) int store. 8412 // FIXME: Does not handle truncating floating point stores! 8413 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 8414 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 8415 Alignment, ST->getMemOperand()->getFlags()); 8416 return Result; 8417 } 8418 // Do a (aligned) store to a stack slot, then copy from the stack slot 8419 // to the final destination using (unaligned) integer loads and stores. 8420 MVT RegVT = getRegisterType( 8421 *DAG.getContext(), 8422 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 8423 EVT PtrVT = Ptr.getValueType(); 8424 unsigned StoredBytes = StoreMemVT.getStoreSize(); 8425 unsigned RegBytes = RegVT.getSizeInBits() / 8; 8426 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 8427 8428 // Make sure the stack slot is also aligned for the register type. 8429 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 8430 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 8431 8432 // Perform the original store, only redirected to the stack slot. 8433 SDValue Store = DAG.getTruncStore( 8434 Chain, dl, Val, StackPtr, 8435 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 8436 8437 EVT StackPtrVT = StackPtr.getValueType(); 8438 8439 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 8440 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 8441 SmallVector<SDValue, 8> Stores; 8442 unsigned Offset = 0; 8443 8444 // Do all but one copies using the full register width. 8445 for (unsigned i = 1; i < NumRegs; i++) { 8446 // Load one integer register's worth from the stack slot. 8447 SDValue Load = DAG.getLoad( 8448 RegVT, dl, Store, StackPtr, 8449 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 8450 // Store it to the final location. Remember the store. 8451 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 8452 ST->getPointerInfo().getWithOffset(Offset), 8453 ST->getOriginalAlign(), 8454 ST->getMemOperand()->getFlags())); 8455 // Increment the pointers. 8456 Offset += RegBytes; 8457 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 8458 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 8459 } 8460 8461 // The last store may be partial. Do a truncating store. On big-endian 8462 // machines this requires an extending load from the stack slot to ensure 8463 // that the bits are in the right place. 8464 EVT LoadMemVT = 8465 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 8466 8467 // Load from the stack slot. 8468 SDValue Load = DAG.getExtLoad( 8469 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 8470 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 8471 8472 Stores.push_back( 8473 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 8474 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 8475 ST->getOriginalAlign(), 8476 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 8477 // The order of the stores doesn't matter - say it with a TokenFactor. 8478 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8479 return Result; 8480 } 8481 8482 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 8483 "Unaligned store of unknown type."); 8484 // Get the half-size VT 8485 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 8486 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 8487 unsigned IncrementSize = NumBits / 8; 8488 8489 // Divide the stored value in two parts. 8490 SDValue ShiftAmount = DAG.getConstant( 8491 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 8492 SDValue Lo = Val; 8493 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 8494 8495 // Store the two parts 8496 SDValue Store1, Store2; 8497 Store1 = DAG.getTruncStore(Chain, dl, 8498 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 8499 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 8500 ST->getMemOperand()->getFlags()); 8501 8502 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 8503 Store2 = DAG.getTruncStore( 8504 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 8505 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 8506 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 8507 8508 SDValue Result = 8509 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 8510 return Result; 8511 } 8512 8513 SDValue 8514 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 8515 const SDLoc &DL, EVT DataVT, 8516 SelectionDAG &DAG, 8517 bool IsCompressedMemory) const { 8518 SDValue Increment; 8519 EVT AddrVT = Addr.getValueType(); 8520 EVT MaskVT = Mask.getValueType(); 8521 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 8522 "Incompatible types of Data and Mask"); 8523 if (IsCompressedMemory) { 8524 if (DataVT.isScalableVector()) 8525 report_fatal_error( 8526 "Cannot currently handle compressed memory with scalable vectors"); 8527 // Incrementing the pointer according to number of '1's in the mask. 8528 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 8529 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 8530 if (MaskIntVT.getSizeInBits() < 32) { 8531 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 8532 MaskIntVT = MVT::i32; 8533 } 8534 8535 // Count '1's with POPCNT. 8536 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 8537 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 8538 // Scale is an element size in bytes. 8539 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 8540 AddrVT); 8541 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 8542 } else if (DataVT.isScalableVector()) { 8543 Increment = DAG.getVScale(DL, AddrVT, 8544 APInt(AddrVT.getFixedSizeInBits(), 8545 DataVT.getStoreSize().getKnownMinSize())); 8546 } else 8547 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 8548 8549 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 8550 } 8551 8552 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 8553 EVT VecVT, const SDLoc &dl, 8554 ElementCount SubEC) { 8555 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) && 8556 "Cannot index a scalable vector within a fixed-width vector"); 8557 8558 unsigned NElts = VecVT.getVectorMinNumElements(); 8559 unsigned NumSubElts = SubEC.getKnownMinValue(); 8560 EVT IdxVT = Idx.getValueType(); 8561 8562 if (VecVT.isScalableVector() && !SubEC.isScalable()) { 8563 // If this is a constant index and we know the value plus the number of the 8564 // elements in the subvector minus one is less than the minimum number of 8565 // elements then it's safe to return Idx. 8566 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 8567 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 8568 return Idx; 8569 SDValue VS = 8570 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 8571 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 8572 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 8573 DAG.getConstant(NumSubElts, dl, IdxVT)); 8574 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 8575 } 8576 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 8577 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 8578 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 8579 DAG.getConstant(Imm, dl, IdxVT)); 8580 } 8581 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 8582 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 8583 DAG.getConstant(MaxIndex, dl, IdxVT)); 8584 } 8585 8586 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 8587 SDValue VecPtr, EVT VecVT, 8588 SDValue Index) const { 8589 return getVectorSubVecPointer( 8590 DAG, VecPtr, VecVT, 8591 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 8592 Index); 8593 } 8594 8595 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 8596 SDValue VecPtr, EVT VecVT, 8597 EVT SubVecVT, 8598 SDValue Index) const { 8599 SDLoc dl(Index); 8600 // Make sure the index type is big enough to compute in. 8601 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 8602 8603 EVT EltVT = VecVT.getVectorElementType(); 8604 8605 // Calculate the element offset and add it to the pointer. 8606 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 8607 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 8608 "Converting bits to bytes lost precision"); 8609 assert(SubVecVT.getVectorElementType() == EltVT && 8610 "Sub-vector must be a vector with matching element type"); 8611 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 8612 SubVecVT.getVectorElementCount()); 8613 8614 EVT IdxVT = Index.getValueType(); 8615 if (SubVecVT.isScalableVector()) 8616 Index = 8617 DAG.getNode(ISD::MUL, dl, IdxVT, Index, 8618 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1))); 8619 8620 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 8621 DAG.getConstant(EltSize, dl, IdxVT)); 8622 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 8623 } 8624 8625 //===----------------------------------------------------------------------===// 8626 // Implementation of Emulated TLS Model 8627 //===----------------------------------------------------------------------===// 8628 8629 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 8630 SelectionDAG &DAG) const { 8631 // Access to address of TLS varialbe xyz is lowered to a function call: 8632 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 8633 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8634 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 8635 SDLoc dl(GA); 8636 8637 ArgListTy Args; 8638 ArgListEntry Entry; 8639 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 8640 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 8641 StringRef EmuTlsVarName(NameString); 8642 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 8643 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 8644 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 8645 Entry.Ty = VoidPtrType; 8646 Args.push_back(Entry); 8647 8648 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 8649 8650 TargetLowering::CallLoweringInfo CLI(DAG); 8651 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 8652 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 8653 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 8654 8655 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 8656 // At last for X86 targets, maybe good for other targets too? 8657 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8658 MFI.setAdjustsStack(true); // Is this only for X86 target? 8659 MFI.setHasCalls(true); 8660 8661 assert((GA->getOffset() == 0) && 8662 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 8663 return CallResult.first; 8664 } 8665 8666 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 8667 SelectionDAG &DAG) const { 8668 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 8669 if (!isCtlzFast()) 8670 return SDValue(); 8671 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 8672 SDLoc dl(Op); 8673 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 8674 if (C->isZero() && CC == ISD::SETEQ) { 8675 EVT VT = Op.getOperand(0).getValueType(); 8676 SDValue Zext = Op.getOperand(0); 8677 if (VT.bitsLT(MVT::i32)) { 8678 VT = MVT::i32; 8679 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 8680 } 8681 unsigned Log2b = Log2_32(VT.getSizeInBits()); 8682 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 8683 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 8684 DAG.getConstant(Log2b, dl, MVT::i32)); 8685 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 8686 } 8687 } 8688 return SDValue(); 8689 } 8690 8691 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 8692 SDValue Op0 = Node->getOperand(0); 8693 SDValue Op1 = Node->getOperand(1); 8694 EVT VT = Op0.getValueType(); 8695 unsigned Opcode = Node->getOpcode(); 8696 SDLoc DL(Node); 8697 8698 // umin(x,y) -> sub(x,usubsat(x,y)) 8699 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 8700 isOperationLegal(ISD::USUBSAT, VT)) { 8701 return DAG.getNode(ISD::SUB, DL, VT, Op0, 8702 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 8703 } 8704 8705 // umax(x,y) -> add(x,usubsat(y,x)) 8706 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 8707 isOperationLegal(ISD::USUBSAT, VT)) { 8708 return DAG.getNode(ISD::ADD, DL, VT, Op0, 8709 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 8710 } 8711 8712 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 8713 ISD::CondCode CC; 8714 switch (Opcode) { 8715 default: llvm_unreachable("How did we get here?"); 8716 case ISD::SMAX: CC = ISD::SETGT; break; 8717 case ISD::SMIN: CC = ISD::SETLT; break; 8718 case ISD::UMAX: CC = ISD::SETUGT; break; 8719 case ISD::UMIN: CC = ISD::SETULT; break; 8720 } 8721 8722 // FIXME: Should really try to split the vector in case it's legal on a 8723 // subvector. 8724 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8725 return DAG.UnrollVectorOp(Node); 8726 8727 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8728 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 8729 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 8730 } 8731 8732 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 8733 unsigned Opcode = Node->getOpcode(); 8734 SDValue LHS = Node->getOperand(0); 8735 SDValue RHS = Node->getOperand(1); 8736 EVT VT = LHS.getValueType(); 8737 SDLoc dl(Node); 8738 8739 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8740 assert(VT.isInteger() && "Expected operands to be integers"); 8741 8742 // usub.sat(a, b) -> umax(a, b) - b 8743 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 8744 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 8745 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 8746 } 8747 8748 // uadd.sat(a, b) -> umin(a, ~b) + b 8749 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 8750 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 8751 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 8752 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 8753 } 8754 8755 unsigned OverflowOp; 8756 switch (Opcode) { 8757 case ISD::SADDSAT: 8758 OverflowOp = ISD::SADDO; 8759 break; 8760 case ISD::UADDSAT: 8761 OverflowOp = ISD::UADDO; 8762 break; 8763 case ISD::SSUBSAT: 8764 OverflowOp = ISD::SSUBO; 8765 break; 8766 case ISD::USUBSAT: 8767 OverflowOp = ISD::USUBO; 8768 break; 8769 default: 8770 llvm_unreachable("Expected method to receive signed or unsigned saturation " 8771 "addition or subtraction node."); 8772 } 8773 8774 // FIXME: Should really try to split the vector in case it's legal on a 8775 // subvector. 8776 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8777 return DAG.UnrollVectorOp(Node); 8778 8779 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 8780 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8781 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8782 SDValue SumDiff = Result.getValue(0); 8783 SDValue Overflow = Result.getValue(1); 8784 SDValue Zero = DAG.getConstant(0, dl, VT); 8785 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 8786 8787 if (Opcode == ISD::UADDSAT) { 8788 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8789 // (LHS + RHS) | OverflowMask 8790 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8791 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 8792 } 8793 // Overflow ? 0xffff.... : (LHS + RHS) 8794 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 8795 } 8796 8797 if (Opcode == ISD::USUBSAT) { 8798 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8799 // (LHS - RHS) & ~OverflowMask 8800 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8801 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 8802 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 8803 } 8804 // Overflow ? 0 : (LHS - RHS) 8805 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 8806 } 8807 8808 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff 8809 APInt MinVal = APInt::getSignedMinValue(BitWidth); 8810 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8811 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, 8812 DAG.getConstant(BitWidth - 1, dl, VT)); 8813 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); 8814 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 8815 } 8816 8817 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 8818 unsigned Opcode = Node->getOpcode(); 8819 bool IsSigned = Opcode == ISD::SSHLSAT; 8820 SDValue LHS = Node->getOperand(0); 8821 SDValue RHS = Node->getOperand(1); 8822 EVT VT = LHS.getValueType(); 8823 SDLoc dl(Node); 8824 8825 assert((Node->getOpcode() == ISD::SSHLSAT || 8826 Node->getOpcode() == ISD::USHLSAT) && 8827 "Expected a SHLSAT opcode"); 8828 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8829 assert(VT.isInteger() && "Expected operands to be integers"); 8830 8831 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 8832 8833 unsigned BW = VT.getScalarSizeInBits(); 8834 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 8835 SDValue Orig = 8836 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 8837 8838 SDValue SatVal; 8839 if (IsSigned) { 8840 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 8841 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 8842 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 8843 SatMin, SatMax, ISD::SETLT); 8844 } else { 8845 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 8846 } 8847 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 8848 8849 return Result; 8850 } 8851 8852 SDValue 8853 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 8854 assert((Node->getOpcode() == ISD::SMULFIX || 8855 Node->getOpcode() == ISD::UMULFIX || 8856 Node->getOpcode() == ISD::SMULFIXSAT || 8857 Node->getOpcode() == ISD::UMULFIXSAT) && 8858 "Expected a fixed point multiplication opcode"); 8859 8860 SDLoc dl(Node); 8861 SDValue LHS = Node->getOperand(0); 8862 SDValue RHS = Node->getOperand(1); 8863 EVT VT = LHS.getValueType(); 8864 unsigned Scale = Node->getConstantOperandVal(2); 8865 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 8866 Node->getOpcode() == ISD::UMULFIXSAT); 8867 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 8868 Node->getOpcode() == ISD::SMULFIXSAT); 8869 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8870 unsigned VTSize = VT.getScalarSizeInBits(); 8871 8872 if (!Scale) { 8873 // [us]mul.fix(a, b, 0) -> mul(a, b) 8874 if (!Saturating) { 8875 if (isOperationLegalOrCustom(ISD::MUL, VT)) 8876 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8877 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 8878 SDValue Result = 8879 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8880 SDValue Product = Result.getValue(0); 8881 SDValue Overflow = Result.getValue(1); 8882 SDValue Zero = DAG.getConstant(0, dl, VT); 8883 8884 APInt MinVal = APInt::getSignedMinValue(VTSize); 8885 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 8886 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8887 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8888 // Xor the inputs, if resulting sign bit is 0 the product will be 8889 // positive, else negative. 8890 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 8891 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); 8892 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); 8893 return DAG.getSelect(dl, VT, Overflow, Result, Product); 8894 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 8895 SDValue Result = 8896 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8897 SDValue Product = Result.getValue(0); 8898 SDValue Overflow = Result.getValue(1); 8899 8900 APInt MaxVal = APInt::getMaxValue(VTSize); 8901 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8902 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 8903 } 8904 } 8905 8906 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 8907 "Expected scale to be less than the number of bits if signed or at " 8908 "most the number of bits if unsigned."); 8909 assert(LHS.getValueType() == RHS.getValueType() && 8910 "Expected both operands to be the same type"); 8911 8912 // Get the upper and lower bits of the result. 8913 SDValue Lo, Hi; 8914 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 8915 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 8916 if (isOperationLegalOrCustom(LoHiOp, VT)) { 8917 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 8918 Lo = Result.getValue(0); 8919 Hi = Result.getValue(1); 8920 } else if (isOperationLegalOrCustom(HiOp, VT)) { 8921 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8922 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 8923 } else if (VT.isVector()) { 8924 return SDValue(); 8925 } else { 8926 report_fatal_error("Unable to expand fixed point multiplication."); 8927 } 8928 8929 if (Scale == VTSize) 8930 // Result is just the top half since we'd be shifting by the width of the 8931 // operand. Overflow impossible so this works for both UMULFIX and 8932 // UMULFIXSAT. 8933 return Hi; 8934 8935 // The result will need to be shifted right by the scale since both operands 8936 // are scaled. The result is given to us in 2 halves, so we only want part of 8937 // both in the result. 8938 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8939 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 8940 DAG.getConstant(Scale, dl, ShiftTy)); 8941 if (!Saturating) 8942 return Result; 8943 8944 if (!Signed) { 8945 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 8946 // widened multiplication) aren't all zeroes. 8947 8948 // Saturate to max if ((Hi >> Scale) != 0), 8949 // which is the same as if (Hi > ((1 << Scale) - 1)) 8950 APInt MaxVal = APInt::getMaxValue(VTSize); 8951 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 8952 dl, VT); 8953 Result = DAG.getSelectCC(dl, Hi, LowMask, 8954 DAG.getConstant(MaxVal, dl, VT), Result, 8955 ISD::SETUGT); 8956 8957 return Result; 8958 } 8959 8960 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 8961 // widened multiplication) aren't all ones or all zeroes. 8962 8963 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 8964 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 8965 8966 if (Scale == 0) { 8967 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 8968 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 8969 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 8970 // Saturated to SatMin if wide product is negative, and SatMax if wide 8971 // product is positive ... 8972 SDValue Zero = DAG.getConstant(0, dl, VT); 8973 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 8974 ISD::SETLT); 8975 // ... but only if we overflowed. 8976 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 8977 } 8978 8979 // We handled Scale==0 above so all the bits to examine is in Hi. 8980 8981 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 8982 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 8983 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 8984 dl, VT); 8985 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 8986 // Saturate to min if (Hi >> (Scale - 1)) < -1), 8987 // which is the same as if (HI < (-1 << (Scale - 1)) 8988 SDValue HighMask = 8989 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 8990 dl, VT); 8991 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 8992 return Result; 8993 } 8994 8995 SDValue 8996 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 8997 SDValue LHS, SDValue RHS, 8998 unsigned Scale, SelectionDAG &DAG) const { 8999 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 9000 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 9001 "Expected a fixed point division opcode"); 9002 9003 EVT VT = LHS.getValueType(); 9004 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 9005 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 9006 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9007 9008 // If there is enough room in the type to upscale the LHS or downscale the 9009 // RHS before the division, we can perform it in this type without having to 9010 // resize. For signed operations, the LHS headroom is the number of 9011 // redundant sign bits, and for unsigned ones it is the number of zeroes. 9012 // The headroom for the RHS is the number of trailing zeroes. 9013 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 9014 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 9015 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 9016 9017 // For signed saturating operations, we need to be able to detect true integer 9018 // division overflow; that is, when you have MIN / -EPS. However, this 9019 // is undefined behavior and if we emit divisions that could take such 9020 // values it may cause undesired behavior (arithmetic exceptions on x86, for 9021 // example). 9022 // Avoid this by requiring an extra bit so that we never get this case. 9023 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 9024 // signed saturating division, we need to emit a whopping 32-bit division. 9025 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 9026 return SDValue(); 9027 9028 unsigned LHSShift = std::min(LHSLead, Scale); 9029 unsigned RHSShift = Scale - LHSShift; 9030 9031 // At this point, we know that if we shift the LHS up by LHSShift and the 9032 // RHS down by RHSShift, we can emit a regular division with a final scaling 9033 // factor of Scale. 9034 9035 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 9036 if (LHSShift) 9037 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 9038 DAG.getConstant(LHSShift, dl, ShiftTy)); 9039 if (RHSShift) 9040 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 9041 DAG.getConstant(RHSShift, dl, ShiftTy)); 9042 9043 SDValue Quot; 9044 if (Signed) { 9045 // For signed operations, if the resulting quotient is negative and the 9046 // remainder is nonzero, subtract 1 from the quotient to round towards 9047 // negative infinity. 9048 SDValue Rem; 9049 // FIXME: Ideally we would always produce an SDIVREM here, but if the 9050 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 9051 // we couldn't just form a libcall, but the type legalizer doesn't do it. 9052 if (isTypeLegal(VT) && 9053 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 9054 Quot = DAG.getNode(ISD::SDIVREM, dl, 9055 DAG.getVTList(VT, VT), 9056 LHS, RHS); 9057 Rem = Quot.getValue(1); 9058 Quot = Quot.getValue(0); 9059 } else { 9060 Quot = DAG.getNode(ISD::SDIV, dl, VT, 9061 LHS, RHS); 9062 Rem = DAG.getNode(ISD::SREM, dl, VT, 9063 LHS, RHS); 9064 } 9065 SDValue Zero = DAG.getConstant(0, dl, VT); 9066 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 9067 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 9068 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 9069 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 9070 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 9071 DAG.getConstant(1, dl, VT)); 9072 Quot = DAG.getSelect(dl, VT, 9073 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 9074 Sub1, Quot); 9075 } else 9076 Quot = DAG.getNode(ISD::UDIV, dl, VT, 9077 LHS, RHS); 9078 9079 return Quot; 9080 } 9081 9082 void TargetLowering::expandUADDSUBO( 9083 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 9084 SDLoc dl(Node); 9085 SDValue LHS = Node->getOperand(0); 9086 SDValue RHS = Node->getOperand(1); 9087 bool IsAdd = Node->getOpcode() == ISD::UADDO; 9088 9089 // If ADD/SUBCARRY is legal, use that instead. 9090 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 9091 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 9092 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 9093 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 9094 { LHS, RHS, CarryIn }); 9095 Result = SDValue(NodeCarry.getNode(), 0); 9096 Overflow = SDValue(NodeCarry.getNode(), 1); 9097 return; 9098 } 9099 9100 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 9101 LHS.getValueType(), LHS, RHS); 9102 9103 EVT ResultType = Node->getValueType(1); 9104 EVT SetCCType = getSetCCResultType( 9105 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 9106 SDValue SetCC; 9107 if (IsAdd && isOneConstant(RHS)) { 9108 // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces 9109 // the live range of X. We assume comparing with 0 is cheap. 9110 // The general case (X + C) < C is not necessarily beneficial. Although we 9111 // reduce the live range of X, we may introduce the materialization of 9112 // constant C. 9113 SetCC = 9114 DAG.getSetCC(dl, SetCCType, Result, 9115 DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ); 9116 } else { 9117 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 9118 SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 9119 } 9120 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 9121 } 9122 9123 void TargetLowering::expandSADDSUBO( 9124 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 9125 SDLoc dl(Node); 9126 SDValue LHS = Node->getOperand(0); 9127 SDValue RHS = Node->getOperand(1); 9128 bool IsAdd = Node->getOpcode() == ISD::SADDO; 9129 9130 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 9131 LHS.getValueType(), LHS, RHS); 9132 9133 EVT ResultType = Node->getValueType(1); 9134 EVT OType = getSetCCResultType( 9135 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 9136 9137 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 9138 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 9139 if (isOperationLegal(OpcSat, LHS.getValueType())) { 9140 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 9141 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 9142 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 9143 return; 9144 } 9145 9146 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 9147 9148 // For an addition, the result should be less than one of the operands (LHS) 9149 // if and only if the other operand (RHS) is negative, otherwise there will 9150 // be overflow. 9151 // For a subtraction, the result should be less than one of the operands 9152 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 9153 // otherwise there will be overflow. 9154 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 9155 SDValue ConditionRHS = 9156 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 9157 9158 Overflow = DAG.getBoolExtOrTrunc( 9159 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 9160 ResultType, ResultType); 9161 } 9162 9163 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 9164 SDValue &Overflow, SelectionDAG &DAG) const { 9165 SDLoc dl(Node); 9166 EVT VT = Node->getValueType(0); 9167 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9168 SDValue LHS = Node->getOperand(0); 9169 SDValue RHS = Node->getOperand(1); 9170 bool isSigned = Node->getOpcode() == ISD::SMULO; 9171 9172 // For power-of-two multiplications we can use a simpler shift expansion. 9173 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 9174 const APInt &C = RHSC->getAPIntValue(); 9175 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 9176 if (C.isPowerOf2()) { 9177 // smulo(x, signed_min) is same as umulo(x, signed_min). 9178 bool UseArithShift = isSigned && !C.isMinSignedValue(); 9179 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 9180 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 9181 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 9182 Overflow = DAG.getSetCC(dl, SetCCVT, 9183 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 9184 dl, VT, Result, ShiftAmt), 9185 LHS, ISD::SETNE); 9186 return true; 9187 } 9188 } 9189 9190 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 9191 if (VT.isVector()) 9192 WideVT = 9193 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 9194 9195 SDValue BottomHalf; 9196 SDValue TopHalf; 9197 static const unsigned Ops[2][3] = 9198 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 9199 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 9200 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 9201 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 9202 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 9203 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 9204 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 9205 RHS); 9206 TopHalf = BottomHalf.getValue(1); 9207 } else if (isTypeLegal(WideVT)) { 9208 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 9209 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 9210 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 9211 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 9212 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 9213 getShiftAmountTy(WideVT, DAG.getDataLayout())); 9214 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 9215 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 9216 } else { 9217 if (VT.isVector()) 9218 return false; 9219 9220 // We can fall back to a libcall with an illegal type for the MUL if we 9221 // have a libcall big enough. 9222 // Also, we can fall back to a division in some cases, but that's a big 9223 // performance hit in the general case. 9224 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 9225 if (WideVT == MVT::i16) 9226 LC = RTLIB::MUL_I16; 9227 else if (WideVT == MVT::i32) 9228 LC = RTLIB::MUL_I32; 9229 else if (WideVT == MVT::i64) 9230 LC = RTLIB::MUL_I64; 9231 else if (WideVT == MVT::i128) 9232 LC = RTLIB::MUL_I128; 9233 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 9234 9235 SDValue HiLHS; 9236 SDValue HiRHS; 9237 if (isSigned) { 9238 // The high part is obtained by SRA'ing all but one of the bits of low 9239 // part. 9240 unsigned LoSize = VT.getFixedSizeInBits(); 9241 HiLHS = 9242 DAG.getNode(ISD::SRA, dl, VT, LHS, 9243 DAG.getConstant(LoSize - 1, dl, 9244 getPointerTy(DAG.getDataLayout()))); 9245 HiRHS = 9246 DAG.getNode(ISD::SRA, dl, VT, RHS, 9247 DAG.getConstant(LoSize - 1, dl, 9248 getPointerTy(DAG.getDataLayout()))); 9249 } else { 9250 HiLHS = DAG.getConstant(0, dl, VT); 9251 HiRHS = DAG.getConstant(0, dl, VT); 9252 } 9253 9254 // Here we're passing the 2 arguments explicitly as 4 arguments that are 9255 // pre-lowered to the correct types. This all depends upon WideVT not 9256 // being a legal type for the architecture and thus has to be split to 9257 // two arguments. 9258 SDValue Ret; 9259 TargetLowering::MakeLibCallOptions CallOptions; 9260 CallOptions.setSExt(isSigned); 9261 CallOptions.setIsPostTypeLegalization(true); 9262 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 9263 // Halves of WideVT are packed into registers in different order 9264 // depending on platform endianness. This is usually handled by 9265 // the C calling convention, but we can't defer to it in 9266 // the legalizer. 9267 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 9268 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 9269 } else { 9270 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 9271 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 9272 } 9273 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 9274 "Ret value is a collection of constituent nodes holding result."); 9275 if (DAG.getDataLayout().isLittleEndian()) { 9276 // Same as above. 9277 BottomHalf = Ret.getOperand(0); 9278 TopHalf = Ret.getOperand(1); 9279 } else { 9280 BottomHalf = Ret.getOperand(1); 9281 TopHalf = Ret.getOperand(0); 9282 } 9283 } 9284 9285 Result = BottomHalf; 9286 if (isSigned) { 9287 SDValue ShiftAmt = DAG.getConstant( 9288 VT.getScalarSizeInBits() - 1, dl, 9289 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 9290 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 9291 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 9292 } else { 9293 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 9294 DAG.getConstant(0, dl, VT), ISD::SETNE); 9295 } 9296 9297 // Truncate the result if SetCC returns a larger type than needed. 9298 EVT RType = Node->getValueType(1); 9299 if (RType.bitsLT(Overflow.getValueType())) 9300 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 9301 9302 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 9303 "Unexpected result type for S/UMULO legalization"); 9304 return true; 9305 } 9306 9307 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 9308 SDLoc dl(Node); 9309 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 9310 SDValue Op = Node->getOperand(0); 9311 EVT VT = Op.getValueType(); 9312 9313 if (VT.isScalableVector()) 9314 report_fatal_error( 9315 "Expanding reductions for scalable vectors is undefined."); 9316 9317 // Try to use a shuffle reduction for power of two vectors. 9318 if (VT.isPow2VectorType()) { 9319 while (VT.getVectorNumElements() > 1) { 9320 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 9321 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 9322 break; 9323 9324 SDValue Lo, Hi; 9325 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 9326 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 9327 VT = HalfVT; 9328 } 9329 } 9330 9331 EVT EltVT = VT.getVectorElementType(); 9332 unsigned NumElts = VT.getVectorNumElements(); 9333 9334 SmallVector<SDValue, 8> Ops; 9335 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 9336 9337 SDValue Res = Ops[0]; 9338 for (unsigned i = 1; i < NumElts; i++) 9339 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 9340 9341 // Result type may be wider than element type. 9342 if (EltVT != Node->getValueType(0)) 9343 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 9344 return Res; 9345 } 9346 9347 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 9348 SDLoc dl(Node); 9349 SDValue AccOp = Node->getOperand(0); 9350 SDValue VecOp = Node->getOperand(1); 9351 SDNodeFlags Flags = Node->getFlags(); 9352 9353 EVT VT = VecOp.getValueType(); 9354 EVT EltVT = VT.getVectorElementType(); 9355 9356 if (VT.isScalableVector()) 9357 report_fatal_error( 9358 "Expanding reductions for scalable vectors is undefined."); 9359 9360 unsigned NumElts = VT.getVectorNumElements(); 9361 9362 SmallVector<SDValue, 8> Ops; 9363 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 9364 9365 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 9366 9367 SDValue Res = AccOp; 9368 for (unsigned i = 0; i < NumElts; i++) 9369 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 9370 9371 return Res; 9372 } 9373 9374 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 9375 SelectionDAG &DAG) const { 9376 EVT VT = Node->getValueType(0); 9377 SDLoc dl(Node); 9378 bool isSigned = Node->getOpcode() == ISD::SREM; 9379 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 9380 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 9381 SDValue Dividend = Node->getOperand(0); 9382 SDValue Divisor = Node->getOperand(1); 9383 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 9384 SDVTList VTs = DAG.getVTList(VT, VT); 9385 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 9386 return true; 9387 } 9388 if (isOperationLegalOrCustom(DivOpc, VT)) { 9389 // X % Y -> X-X/Y*Y 9390 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 9391 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 9392 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 9393 return true; 9394 } 9395 return false; 9396 } 9397 9398 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 9399 SelectionDAG &DAG) const { 9400 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 9401 SDLoc dl(SDValue(Node, 0)); 9402 SDValue Src = Node->getOperand(0); 9403 9404 // DstVT is the result type, while SatVT is the size to which we saturate 9405 EVT SrcVT = Src.getValueType(); 9406 EVT DstVT = Node->getValueType(0); 9407 9408 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 9409 unsigned SatWidth = SatVT.getScalarSizeInBits(); 9410 unsigned DstWidth = DstVT.getScalarSizeInBits(); 9411 assert(SatWidth <= DstWidth && 9412 "Expected saturation width smaller than result width"); 9413 9414 // Determine minimum and maximum integer values and their corresponding 9415 // floating-point values. 9416 APInt MinInt, MaxInt; 9417 if (IsSigned) { 9418 MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth); 9419 MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth); 9420 } else { 9421 MinInt = APInt::getMinValue(SatWidth).zext(DstWidth); 9422 MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth); 9423 } 9424 9425 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 9426 // libcall emission cannot handle this. Large result types will fail. 9427 if (SrcVT == MVT::f16) { 9428 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 9429 SrcVT = Src.getValueType(); 9430 } 9431 9432 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 9433 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 9434 9435 APFloat::opStatus MinStatus = 9436 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 9437 APFloat::opStatus MaxStatus = 9438 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 9439 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 9440 !(MaxStatus & APFloat::opStatus::opInexact); 9441 9442 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 9443 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 9444 9445 // If the integer bounds are exactly representable as floats and min/max are 9446 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 9447 // of comparisons and selects. 9448 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 9449 isOperationLegal(ISD::FMAXNUM, SrcVT); 9450 if (AreExactFloatBounds && MinMaxLegal) { 9451 SDValue Clamped = Src; 9452 9453 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 9454 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 9455 // Clamp by MaxFloat from above. NaN cannot occur. 9456 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 9457 // Convert clamped value to integer. 9458 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 9459 dl, DstVT, Clamped); 9460 9461 // In the unsigned case we're done, because we mapped NaN to MinFloat, 9462 // which will cast to zero. 9463 if (!IsSigned) 9464 return FpToInt; 9465 9466 // Otherwise, select 0 if Src is NaN. 9467 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 9468 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 9469 ISD::CondCode::SETUO); 9470 } 9471 9472 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 9473 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 9474 9475 // Result of direct conversion. The assumption here is that the operation is 9476 // non-trapping and it's fine to apply it to an out-of-range value if we 9477 // select it away later. 9478 SDValue FpToInt = 9479 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 9480 9481 SDValue Select = FpToInt; 9482 9483 // If Src ULT MinFloat, select MinInt. In particular, this also selects 9484 // MinInt if Src is NaN. 9485 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 9486 ISD::CondCode::SETULT); 9487 // If Src OGT MaxFloat, select MaxInt. 9488 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 9489 ISD::CondCode::SETOGT); 9490 9491 // In the unsigned case we are done, because we mapped NaN to MinInt, which 9492 // is already zero. 9493 if (!IsSigned) 9494 return Select; 9495 9496 // Otherwise, select 0 if Src is NaN. 9497 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 9498 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 9499 } 9500 9501 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 9502 SelectionDAG &DAG) const { 9503 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 9504 assert(Node->getValueType(0).isScalableVector() && 9505 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 9506 9507 EVT VT = Node->getValueType(0); 9508 SDValue V1 = Node->getOperand(0); 9509 SDValue V2 = Node->getOperand(1); 9510 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 9511 SDLoc DL(Node); 9512 9513 // Expand through memory thusly: 9514 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 9515 // Store V1, Ptr 9516 // Store V2, Ptr + sizeof(V1) 9517 // If (Imm < 0) 9518 // TrailingElts = -Imm 9519 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 9520 // else 9521 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 9522 // Res = Load Ptr 9523 9524 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 9525 9526 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 9527 VT.getVectorElementCount() * 2); 9528 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 9529 EVT PtrVT = StackPtr.getValueType(); 9530 auto &MF = DAG.getMachineFunction(); 9531 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 9532 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 9533 9534 // Store the lo part of CONCAT_VECTORS(V1, V2) 9535 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 9536 // Store the hi part of CONCAT_VECTORS(V1, V2) 9537 SDValue OffsetToV2 = DAG.getVScale( 9538 DL, PtrVT, 9539 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 9540 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 9541 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 9542 9543 if (Imm >= 0) { 9544 // Load back the required element. getVectorElementPointer takes care of 9545 // clamping the index if it's out-of-bounds. 9546 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 9547 // Load the spliced result 9548 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 9549 MachinePointerInfo::getUnknownStack(MF)); 9550 } 9551 9552 uint64_t TrailingElts = -Imm; 9553 9554 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 9555 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 9556 SDValue TrailingBytes = 9557 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 9558 9559 if (TrailingElts > VT.getVectorMinNumElements()) { 9560 SDValue VLBytes = DAG.getVScale( 9561 DL, PtrVT, 9562 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 9563 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 9564 } 9565 9566 // Calculate the start address of the spliced result. 9567 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 9568 9569 // Load the spliced result 9570 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 9571 MachinePointerInfo::getUnknownStack(MF)); 9572 } 9573 9574 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 9575 SDValue &LHS, SDValue &RHS, 9576 SDValue &CC, SDValue Mask, 9577 SDValue EVL, bool &NeedInvert, 9578 const SDLoc &dl, SDValue &Chain, 9579 bool IsSignaling) const { 9580 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9581 MVT OpVT = LHS.getSimpleValueType(); 9582 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 9583 NeedInvert = false; 9584 assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset"); 9585 bool IsNonVP = !EVL; 9586 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 9587 default: 9588 llvm_unreachable("Unknown condition code action!"); 9589 case TargetLowering::Legal: 9590 // Nothing to do. 9591 break; 9592 case TargetLowering::Expand: { 9593 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 9594 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9595 std::swap(LHS, RHS); 9596 CC = DAG.getCondCode(InvCC); 9597 return true; 9598 } 9599 // Swapping operands didn't work. Try inverting the condition. 9600 bool NeedSwap = false; 9601 InvCC = getSetCCInverse(CCCode, OpVT); 9602 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9603 // If inverting the condition is not enough, try swapping operands 9604 // on top of it. 9605 InvCC = ISD::getSetCCSwappedOperands(InvCC); 9606 NeedSwap = true; 9607 } 9608 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9609 CC = DAG.getCondCode(InvCC); 9610 NeedInvert = true; 9611 if (NeedSwap) 9612 std::swap(LHS, RHS); 9613 return true; 9614 } 9615 9616 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 9617 unsigned Opc = 0; 9618 switch (CCCode) { 9619 default: 9620 llvm_unreachable("Don't know how to expand this condition!"); 9621 case ISD::SETUO: 9622 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 9623 CC1 = ISD::SETUNE; 9624 CC2 = ISD::SETUNE; 9625 Opc = ISD::OR; 9626 break; 9627 } 9628 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 9629 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 9630 NeedInvert = true; 9631 LLVM_FALLTHROUGH; 9632 case ISD::SETO: 9633 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 9634 "If SETO is expanded, SETOEQ must be legal!"); 9635 CC1 = ISD::SETOEQ; 9636 CC2 = ISD::SETOEQ; 9637 Opc = ISD::AND; 9638 break; 9639 case ISD::SETONE: 9640 case ISD::SETUEQ: 9641 // If the SETUO or SETO CC isn't legal, we might be able to use 9642 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 9643 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 9644 // the operands. 9645 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9646 if (!TLI.isCondCodeLegal(CC2, OpVT) && 9647 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 9648 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 9649 CC1 = ISD::SETOGT; 9650 CC2 = ISD::SETOLT; 9651 Opc = ISD::OR; 9652 NeedInvert = ((unsigned)CCCode & 0x8U); 9653 break; 9654 } 9655 LLVM_FALLTHROUGH; 9656 case ISD::SETOEQ: 9657 case ISD::SETOGT: 9658 case ISD::SETOGE: 9659 case ISD::SETOLT: 9660 case ISD::SETOLE: 9661 case ISD::SETUNE: 9662 case ISD::SETUGT: 9663 case ISD::SETUGE: 9664 case ISD::SETULT: 9665 case ISD::SETULE: 9666 // If we are floating point, assign and break, otherwise fall through. 9667 if (!OpVT.isInteger()) { 9668 // We can use the 4th bit to tell if we are the unordered 9669 // or ordered version of the opcode. 9670 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9671 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 9672 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 9673 break; 9674 } 9675 // Fallthrough if we are unsigned integer. 9676 LLVM_FALLTHROUGH; 9677 case ISD::SETLE: 9678 case ISD::SETGT: 9679 case ISD::SETGE: 9680 case ISD::SETLT: 9681 case ISD::SETNE: 9682 case ISD::SETEQ: 9683 // If all combinations of inverting the condition and swapping operands 9684 // didn't work then we have no means to expand the condition. 9685 llvm_unreachable("Don't know how to expand this condition!"); 9686 } 9687 9688 SDValue SetCC1, SetCC2; 9689 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 9690 // If we aren't the ordered or unorder operation, 9691 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 9692 if (IsNonVP) { 9693 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 9694 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 9695 } else { 9696 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL); 9697 SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL); 9698 } 9699 } else { 9700 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 9701 if (IsNonVP) { 9702 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 9703 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 9704 } else { 9705 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL); 9706 SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL); 9707 } 9708 } 9709 if (Chain) 9710 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 9711 SetCC2.getValue(1)); 9712 if (IsNonVP) 9713 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 9714 else { 9715 // Transform the binary opcode to the VP equivalent. 9716 assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode"); 9717 Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND; 9718 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL); 9719 } 9720 RHS = SDValue(); 9721 CC = SDValue(); 9722 return true; 9723 } 9724 } 9725 return false; 9726 } 9727