1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/CodeGenCommonISel.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineJumpTableInfo.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/TargetRegisterInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/DivisionByConstantInfo.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore following attributes because they don't affect the
61   // call sequence.
62   AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
63   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
64                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
65                            Attribute::NonNull, Attribute::NoUndef})
66     CallerAttrs.removeAttribute(Attr);
67 
68   if (CallerAttrs.hasAttributes())
69     return false;
70 
71   // It's not safe to eliminate the sign / zero extension of the return value.
72   if (CallerAttrs.contains(Attribute::ZExt) ||
73       CallerAttrs.contains(Attribute::SExt))
74     return false;
75 
76   // Check if the only use is a function return node.
77   return isUsedByReturnOnly(Node, Chain);
78 }
79 
80 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
81     const uint32_t *CallerPreservedMask,
82     const SmallVectorImpl<CCValAssign> &ArgLocs,
83     const SmallVectorImpl<SDValue> &OutVals) const {
84   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
85     const CCValAssign &ArgLoc = ArgLocs[I];
86     if (!ArgLoc.isRegLoc())
87       continue;
88     MCRegister Reg = ArgLoc.getLocReg();
89     // Only look at callee saved registers.
90     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
91       continue;
92     // Check that we pass the value used for the caller.
93     // (We look for a CopyFromReg reading a virtual register that is used
94     //  for the function live-in value of register Reg)
95     SDValue Value = OutVals[I];
96     if (Value->getOpcode() == ISD::AssertZext)
97       Value = Value.getOperand(0);
98     if (Value->getOpcode() != ISD::CopyFromReg)
99       return false;
100     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
101     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
102       return false;
103   }
104   return true;
105 }
106 
107 /// Set CallLoweringInfo attribute flags based on a call instruction
108 /// and called function attributes.
109 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
110                                                      unsigned ArgIdx) {
111   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
112   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
113   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
114   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
115   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
116   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
117   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
118   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
119   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
120   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
121   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
122   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
123   Alignment = Call->getParamStackAlign(ArgIdx);
124   IndirectType = nullptr;
125   assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 &&
126          "multiple ABI attributes?");
127   if (IsByVal) {
128     IndirectType = Call->getParamByValType(ArgIdx);
129     if (!Alignment)
130       Alignment = Call->getParamAlign(ArgIdx);
131   }
132   if (IsPreallocated)
133     IndirectType = Call->getParamPreallocatedType(ArgIdx);
134   if (IsInAlloca)
135     IndirectType = Call->getParamInAllocaType(ArgIdx);
136   if (IsSRet)
137     IndirectType = Call->getParamStructRetType(ArgIdx);
138 }
139 
140 /// Generate a libcall taking the given operands as arguments and returning a
141 /// result of type RetVT.
142 std::pair<SDValue, SDValue>
143 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
144                             ArrayRef<SDValue> Ops,
145                             MakeLibCallOptions CallOptions,
146                             const SDLoc &dl,
147                             SDValue InChain) const {
148   if (!InChain)
149     InChain = DAG.getEntryNode();
150 
151   TargetLowering::ArgListTy Args;
152   Args.reserve(Ops.size());
153 
154   TargetLowering::ArgListEntry Entry;
155   for (unsigned i = 0; i < Ops.size(); ++i) {
156     SDValue NewOp = Ops[i];
157     Entry.Node = NewOp;
158     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
159     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
160                                                  CallOptions.IsSExt);
161     Entry.IsZExt = !Entry.IsSExt;
162 
163     if (CallOptions.IsSoften &&
164         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
165       Entry.IsSExt = Entry.IsZExt = false;
166     }
167     Args.push_back(Entry);
168   }
169 
170   if (LC == RTLIB::UNKNOWN_LIBCALL)
171     report_fatal_error("Unsupported library call operation!");
172   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
173                                          getPointerTy(DAG.getDataLayout()));
174 
175   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
176   TargetLowering::CallLoweringInfo CLI(DAG);
177   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
178   bool zeroExtend = !signExtend;
179 
180   if (CallOptions.IsSoften &&
181       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
182     signExtend = zeroExtend = false;
183   }
184 
185   CLI.setDebugLoc(dl)
186       .setChain(InChain)
187       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
188       .setNoReturn(CallOptions.DoesNotReturn)
189       .setDiscardResult(!CallOptions.IsReturnValueUsed)
190       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
191       .setSExtResult(signExtend)
192       .setZExtResult(zeroExtend);
193   return LowerCallTo(CLI);
194 }
195 
196 bool TargetLowering::findOptimalMemOpLowering(
197     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
198     unsigned SrcAS, const AttributeList &FuncAttributes) const {
199   if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() &&
200       Op.getSrcAlign() < Op.getDstAlign())
201     return false;
202 
203   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
204 
205   if (VT == MVT::Other) {
206     // Use the largest integer type whose alignment constraints are satisfied.
207     // We only need to check DstAlign here as SrcAlign is always greater or
208     // equal to DstAlign (or zero).
209     VT = MVT::i64;
210     if (Op.isFixedDstAlign())
211       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
212              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
213         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
214     assert(VT.isInteger());
215 
216     // Find the largest legal integer type.
217     MVT LVT = MVT::i64;
218     while (!isTypeLegal(LVT))
219       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
220     assert(LVT.isInteger());
221 
222     // If the type we've chosen is larger than the largest legal integer type
223     // then use that instead.
224     if (VT.bitsGT(LVT))
225       VT = LVT;
226   }
227 
228   unsigned NumMemOps = 0;
229   uint64_t Size = Op.size();
230   while (Size) {
231     unsigned VTSize = VT.getSizeInBits() / 8;
232     while (VTSize > Size) {
233       // For now, only use non-vector load / store's for the left-over pieces.
234       EVT NewVT = VT;
235       unsigned NewVTSize;
236 
237       bool Found = false;
238       if (VT.isVector() || VT.isFloatingPoint()) {
239         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
240         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
241             isSafeMemOpType(NewVT.getSimpleVT()))
242           Found = true;
243         else if (NewVT == MVT::i64 &&
244                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
245                  isSafeMemOpType(MVT::f64)) {
246           // i64 is usually not legal on 32-bit targets, but f64 may be.
247           NewVT = MVT::f64;
248           Found = true;
249         }
250       }
251 
252       if (!Found) {
253         do {
254           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
255           if (NewVT == MVT::i8)
256             break;
257         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
258       }
259       NewVTSize = NewVT.getSizeInBits() / 8;
260 
261       // If the new VT cannot cover all of the remaining bits, then consider
262       // issuing a (or a pair of) unaligned and overlapping load / store.
263       bool Fast;
264       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
265           allowsMisalignedMemoryAccesses(
266               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
267               MachineMemOperand::MONone, &Fast) &&
268           Fast)
269         VTSize = Size;
270       else {
271         VT = NewVT;
272         VTSize = NewVTSize;
273       }
274     }
275 
276     if (++NumMemOps > Limit)
277       return false;
278 
279     MemOps.push_back(VT);
280     Size -= VTSize;
281   }
282 
283   return true;
284 }
285 
286 /// Soften the operands of a comparison. This code is shared among BR_CC,
287 /// SELECT_CC, and SETCC handlers.
288 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
289                                          SDValue &NewLHS, SDValue &NewRHS,
290                                          ISD::CondCode &CCCode,
291                                          const SDLoc &dl, const SDValue OldLHS,
292                                          const SDValue OldRHS) const {
293   SDValue Chain;
294   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
295                              OldRHS, Chain);
296 }
297 
298 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
299                                          SDValue &NewLHS, SDValue &NewRHS,
300                                          ISD::CondCode &CCCode,
301                                          const SDLoc &dl, const SDValue OldLHS,
302                                          const SDValue OldRHS,
303                                          SDValue &Chain,
304                                          bool IsSignaling) const {
305   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
306   // not supporting it. We can update this code when libgcc provides such
307   // functions.
308 
309   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
310          && "Unsupported setcc type!");
311 
312   // Expand into one or more soft-fp libcall(s).
313   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
314   bool ShouldInvertCC = false;
315   switch (CCCode) {
316   case ISD::SETEQ:
317   case ISD::SETOEQ:
318     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
319           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
320           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
321     break;
322   case ISD::SETNE:
323   case ISD::SETUNE:
324     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
325           (VT == MVT::f64) ? RTLIB::UNE_F64 :
326           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
327     break;
328   case ISD::SETGE:
329   case ISD::SETOGE:
330     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
331           (VT == MVT::f64) ? RTLIB::OGE_F64 :
332           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
333     break;
334   case ISD::SETLT:
335   case ISD::SETOLT:
336     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
337           (VT == MVT::f64) ? RTLIB::OLT_F64 :
338           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
339     break;
340   case ISD::SETLE:
341   case ISD::SETOLE:
342     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
343           (VT == MVT::f64) ? RTLIB::OLE_F64 :
344           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
345     break;
346   case ISD::SETGT:
347   case ISD::SETOGT:
348     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
349           (VT == MVT::f64) ? RTLIB::OGT_F64 :
350           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
351     break;
352   case ISD::SETO:
353     ShouldInvertCC = true;
354     LLVM_FALLTHROUGH;
355   case ISD::SETUO:
356     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
357           (VT == MVT::f64) ? RTLIB::UO_F64 :
358           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
359     break;
360   case ISD::SETONE:
361     // SETONE = O && UNE
362     ShouldInvertCC = true;
363     LLVM_FALLTHROUGH;
364   case ISD::SETUEQ:
365     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
366           (VT == MVT::f64) ? RTLIB::UO_F64 :
367           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
368     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
369           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
370           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
371     break;
372   default:
373     // Invert CC for unordered comparisons
374     ShouldInvertCC = true;
375     switch (CCCode) {
376     case ISD::SETULT:
377       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
378             (VT == MVT::f64) ? RTLIB::OGE_F64 :
379             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
380       break;
381     case ISD::SETULE:
382       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
383             (VT == MVT::f64) ? RTLIB::OGT_F64 :
384             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
385       break;
386     case ISD::SETUGT:
387       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
388             (VT == MVT::f64) ? RTLIB::OLE_F64 :
389             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
390       break;
391     case ISD::SETUGE:
392       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
393             (VT == MVT::f64) ? RTLIB::OLT_F64 :
394             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
395       break;
396     default: llvm_unreachable("Do not know how to soften this setcc!");
397     }
398   }
399 
400   // Use the target specific return value for comparions lib calls.
401   EVT RetVT = getCmpLibcallReturnType();
402   SDValue Ops[2] = {NewLHS, NewRHS};
403   TargetLowering::MakeLibCallOptions CallOptions;
404   EVT OpsVT[2] = { OldLHS.getValueType(),
405                    OldRHS.getValueType() };
406   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
407   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
408   NewLHS = Call.first;
409   NewRHS = DAG.getConstant(0, dl, RetVT);
410 
411   CCCode = getCmpLibcallCC(LC1);
412   if (ShouldInvertCC) {
413     assert(RetVT.isInteger());
414     CCCode = getSetCCInverse(CCCode, RetVT);
415   }
416 
417   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
418     // Update Chain.
419     Chain = Call.second;
420   } else {
421     EVT SetCCVT =
422         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
423     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
424     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
425     CCCode = getCmpLibcallCC(LC2);
426     if (ShouldInvertCC)
427       CCCode = getSetCCInverse(CCCode, RetVT);
428     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
429     if (Chain)
430       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
431                           Call2.second);
432     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
433                          Tmp.getValueType(), Tmp, NewLHS);
434     NewRHS = SDValue();
435   }
436 }
437 
438 /// Return the entry encoding for a jump table in the current function. The
439 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
440 unsigned TargetLowering::getJumpTableEncoding() const {
441   // In non-pic modes, just use the address of a block.
442   if (!isPositionIndependent())
443     return MachineJumpTableInfo::EK_BlockAddress;
444 
445   // In PIC mode, if the target supports a GPRel32 directive, use it.
446   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
447     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
448 
449   // Otherwise, use a label difference.
450   return MachineJumpTableInfo::EK_LabelDifference32;
451 }
452 
453 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
454                                                  SelectionDAG &DAG) const {
455   // If our PIC model is GP relative, use the global offset table as the base.
456   unsigned JTEncoding = getJumpTableEncoding();
457 
458   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
459       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
460     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
461 
462   return Table;
463 }
464 
465 /// This returns the relocation base for the given PIC jumptable, the same as
466 /// getPICJumpTableRelocBase, but as an MCExpr.
467 const MCExpr *
468 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
469                                              unsigned JTI,MCContext &Ctx) const{
470   // The normal PIC reloc base is the label at the start of the jump table.
471   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
472 }
473 
474 bool
475 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
476   const TargetMachine &TM = getTargetMachine();
477   const GlobalValue *GV = GA->getGlobal();
478 
479   // If the address is not even local to this DSO we will have to load it from
480   // a got and then add the offset.
481   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
482     return false;
483 
484   // If the code is position independent we will have to add a base register.
485   if (isPositionIndependent())
486     return false;
487 
488   // Otherwise we can do it.
489   return true;
490 }
491 
492 //===----------------------------------------------------------------------===//
493 //  Optimization Methods
494 //===----------------------------------------------------------------------===//
495 
496 /// If the specified instruction has a constant integer operand and there are
497 /// bits set in that constant that are not demanded, then clear those bits and
498 /// return true.
499 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
500                                             const APInt &DemandedBits,
501                                             const APInt &DemandedElts,
502                                             TargetLoweringOpt &TLO) const {
503   SDLoc DL(Op);
504   unsigned Opcode = Op.getOpcode();
505 
506   // Do target-specific constant optimization.
507   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
508     return TLO.New.getNode();
509 
510   // FIXME: ISD::SELECT, ISD::SELECT_CC
511   switch (Opcode) {
512   default:
513     break;
514   case ISD::XOR:
515   case ISD::AND:
516   case ISD::OR: {
517     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
518     if (!Op1C || Op1C->isOpaque())
519       return false;
520 
521     // If this is a 'not' op, don't touch it because that's a canonical form.
522     const APInt &C = Op1C->getAPIntValue();
523     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
524       return false;
525 
526     if (!C.isSubsetOf(DemandedBits)) {
527       EVT VT = Op.getValueType();
528       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
529       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
530       return TLO.CombineTo(Op, NewOp);
531     }
532 
533     break;
534   }
535   }
536 
537   return false;
538 }
539 
540 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
541                                             const APInt &DemandedBits,
542                                             TargetLoweringOpt &TLO) const {
543   EVT VT = Op.getValueType();
544   APInt DemandedElts = VT.isVector()
545                            ? APInt::getAllOnes(VT.getVectorNumElements())
546                            : APInt(1, 1);
547   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
548 }
549 
550 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
551 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
552 /// generalized for targets with other types of implicit widening casts.
553 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
554                                       const APInt &Demanded,
555                                       TargetLoweringOpt &TLO) const {
556   assert(Op.getNumOperands() == 2 &&
557          "ShrinkDemandedOp only supports binary operators!");
558   assert(Op.getNode()->getNumValues() == 1 &&
559          "ShrinkDemandedOp only supports nodes with one result!");
560 
561   SelectionDAG &DAG = TLO.DAG;
562   SDLoc dl(Op);
563 
564   // Early return, as this function cannot handle vector types.
565   if (Op.getValueType().isVector())
566     return false;
567 
568   // Don't do this if the node has another user, which may require the
569   // full value.
570   if (!Op.getNode()->hasOneUse())
571     return false;
572 
573   // Search for the smallest integer type with free casts to and from
574   // Op's type. For expedience, just check power-of-2 integer types.
575   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
576   unsigned DemandedSize = Demanded.getActiveBits();
577   unsigned SmallVTBits = DemandedSize;
578   if (!isPowerOf2_32(SmallVTBits))
579     SmallVTBits = NextPowerOf2(SmallVTBits);
580   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
581     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
582     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
583         TLI.isZExtFree(SmallVT, Op.getValueType())) {
584       // We found a type with free casts.
585       SDValue X = DAG.getNode(
586           Op.getOpcode(), dl, SmallVT,
587           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
588           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
589       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
590       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
591       return TLO.CombineTo(Op, Z);
592     }
593   }
594   return false;
595 }
596 
597 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
598                                           DAGCombinerInfo &DCI) const {
599   SelectionDAG &DAG = DCI.DAG;
600   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
601                         !DCI.isBeforeLegalizeOps());
602   KnownBits Known;
603 
604   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
605   if (Simplified) {
606     DCI.AddToWorklist(Op.getNode());
607     DCI.CommitTargetLoweringOpt(TLO);
608   }
609   return Simplified;
610 }
611 
612 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
613                                           const APInt &DemandedElts,
614                                           DAGCombinerInfo &DCI) const {
615   SelectionDAG &DAG = DCI.DAG;
616   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
617                         !DCI.isBeforeLegalizeOps());
618   KnownBits Known;
619 
620   bool Simplified =
621       SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO);
622   if (Simplified) {
623     DCI.AddToWorklist(Op.getNode());
624     DCI.CommitTargetLoweringOpt(TLO);
625   }
626   return Simplified;
627 }
628 
629 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
630                                           KnownBits &Known,
631                                           TargetLoweringOpt &TLO,
632                                           unsigned Depth,
633                                           bool AssumeSingleUse) const {
634   EVT VT = Op.getValueType();
635 
636   // TODO: We can probably do more work on calculating the known bits and
637   // simplifying the operations for scalable vectors, but for now we just
638   // bail out.
639   if (VT.isScalableVector()) {
640     // Pretend we don't know anything for now.
641     Known = KnownBits(DemandedBits.getBitWidth());
642     return false;
643   }
644 
645   APInt DemandedElts = VT.isVector()
646                            ? APInt::getAllOnes(VT.getVectorNumElements())
647                            : APInt(1, 1);
648   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
649                               AssumeSingleUse);
650 }
651 
652 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
653 // TODO: Under what circumstances can we create nodes? Constant folding?
654 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
655     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
656     SelectionDAG &DAG, unsigned Depth) const {
657   // Limit search depth.
658   if (Depth >= SelectionDAG::MaxRecursionDepth)
659     return SDValue();
660 
661   // Ignore UNDEFs.
662   if (Op.isUndef())
663     return SDValue();
664 
665   // Not demanding any bits/elts from Op.
666   if (DemandedBits == 0 || DemandedElts == 0)
667     return DAG.getUNDEF(Op.getValueType());
668 
669   bool IsLE = DAG.getDataLayout().isLittleEndian();
670   unsigned NumElts = DemandedElts.getBitWidth();
671   unsigned BitWidth = DemandedBits.getBitWidth();
672   KnownBits LHSKnown, RHSKnown;
673   switch (Op.getOpcode()) {
674   case ISD::BITCAST: {
675     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
676     EVT SrcVT = Src.getValueType();
677     EVT DstVT = Op.getValueType();
678     if (SrcVT == DstVT)
679       return Src;
680 
681     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
682     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
683     if (NumSrcEltBits == NumDstEltBits)
684       if (SDValue V = SimplifyMultipleUseDemandedBits(
685               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
686         return DAG.getBitcast(DstVT, V);
687 
688     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
689       unsigned Scale = NumDstEltBits / NumSrcEltBits;
690       unsigned NumSrcElts = SrcVT.getVectorNumElements();
691       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
692       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
693       for (unsigned i = 0; i != Scale; ++i) {
694         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
695         unsigned BitOffset = EltOffset * NumSrcEltBits;
696         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
697         if (!Sub.isZero()) {
698           DemandedSrcBits |= Sub;
699           for (unsigned j = 0; j != NumElts; ++j)
700             if (DemandedElts[j])
701               DemandedSrcElts.setBit((j * Scale) + i);
702         }
703       }
704 
705       if (SDValue V = SimplifyMultipleUseDemandedBits(
706               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
707         return DAG.getBitcast(DstVT, V);
708     }
709 
710     // TODO - bigendian once we have test coverage.
711     if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
712       unsigned Scale = NumSrcEltBits / NumDstEltBits;
713       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
714       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
715       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
716       for (unsigned i = 0; i != NumElts; ++i)
717         if (DemandedElts[i]) {
718           unsigned Offset = (i % Scale) * NumDstEltBits;
719           DemandedSrcBits.insertBits(DemandedBits, Offset);
720           DemandedSrcElts.setBit(i / Scale);
721         }
722 
723       if (SDValue V = SimplifyMultipleUseDemandedBits(
724               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
725         return DAG.getBitcast(DstVT, V);
726     }
727 
728     break;
729   }
730   case ISD::AND: {
731     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
732     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
733 
734     // If all of the demanded bits are known 1 on one side, return the other.
735     // These bits cannot contribute to the result of the 'and' in this
736     // context.
737     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
738       return Op.getOperand(0);
739     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
740       return Op.getOperand(1);
741     break;
742   }
743   case ISD::OR: {
744     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
745     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
746 
747     // If all of the demanded bits are known zero on one side, return the
748     // other.  These bits cannot contribute to the result of the 'or' in this
749     // context.
750     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
751       return Op.getOperand(0);
752     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
753       return Op.getOperand(1);
754     break;
755   }
756   case ISD::XOR: {
757     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
758     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
759 
760     // If all of the demanded bits are known zero on one side, return the
761     // other.
762     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
763       return Op.getOperand(0);
764     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
765       return Op.getOperand(1);
766     break;
767   }
768   case ISD::SHL: {
769     // If we are only demanding sign bits then we can use the shift source
770     // directly.
771     if (const APInt *MaxSA =
772             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
773       SDValue Op0 = Op.getOperand(0);
774       unsigned ShAmt = MaxSA->getZExtValue();
775       unsigned NumSignBits =
776           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
777       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
778       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
779         return Op0;
780     }
781     break;
782   }
783   case ISD::SETCC: {
784     SDValue Op0 = Op.getOperand(0);
785     SDValue Op1 = Op.getOperand(1);
786     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
787     // If (1) we only need the sign-bit, (2) the setcc operands are the same
788     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
789     // -1, we may be able to bypass the setcc.
790     if (DemandedBits.isSignMask() &&
791         Op0.getScalarValueSizeInBits() == BitWidth &&
792         getBooleanContents(Op0.getValueType()) ==
793             BooleanContent::ZeroOrNegativeOneBooleanContent) {
794       // If we're testing X < 0, then this compare isn't needed - just use X!
795       // FIXME: We're limiting to integer types here, but this should also work
796       // if we don't care about FP signed-zero. The use of SETLT with FP means
797       // that we don't care about NaNs.
798       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
799           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
800         return Op0;
801     }
802     break;
803   }
804   case ISD::SIGN_EXTEND_INREG: {
805     // If none of the extended bits are demanded, eliminate the sextinreg.
806     SDValue Op0 = Op.getOperand(0);
807     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
808     unsigned ExBits = ExVT.getScalarSizeInBits();
809     if (DemandedBits.getActiveBits() <= ExBits)
810       return Op0;
811     // If the input is already sign extended, just drop the extension.
812     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
813     if (NumSignBits >= (BitWidth - ExBits + 1))
814       return Op0;
815     break;
816   }
817   case ISD::ANY_EXTEND_VECTOR_INREG:
818   case ISD::SIGN_EXTEND_VECTOR_INREG:
819   case ISD::ZERO_EXTEND_VECTOR_INREG: {
820     // If we only want the lowest element and none of extended bits, then we can
821     // return the bitcasted source vector.
822     SDValue Src = Op.getOperand(0);
823     EVT SrcVT = Src.getValueType();
824     EVT DstVT = Op.getValueType();
825     if (IsLE && DemandedElts == 1 &&
826         DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
827         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
828       return DAG.getBitcast(DstVT, Src);
829     }
830     break;
831   }
832   case ISD::INSERT_VECTOR_ELT: {
833     // If we don't demand the inserted element, return the base vector.
834     SDValue Vec = Op.getOperand(0);
835     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
836     EVT VecVT = Vec.getValueType();
837     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
838         !DemandedElts[CIdx->getZExtValue()])
839       return Vec;
840     break;
841   }
842   case ISD::INSERT_SUBVECTOR: {
843     SDValue Vec = Op.getOperand(0);
844     SDValue Sub = Op.getOperand(1);
845     uint64_t Idx = Op.getConstantOperandVal(2);
846     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
847     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
848     // If we don't demand the inserted subvector, return the base vector.
849     if (DemandedSubElts == 0)
850       return Vec;
851     // If this simply widens the lowest subvector, see if we can do it earlier.
852     if (Idx == 0 && Vec.isUndef()) {
853       if (SDValue NewSub = SimplifyMultipleUseDemandedBits(
854               Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1))
855         return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
856                            Op.getOperand(0), NewSub, Op.getOperand(2));
857     }
858     break;
859   }
860   case ISD::VECTOR_SHUFFLE: {
861     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
862 
863     // If all the demanded elts are from one operand and are inline,
864     // then we can use the operand directly.
865     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
866     for (unsigned i = 0; i != NumElts; ++i) {
867       int M = ShuffleMask[i];
868       if (M < 0 || !DemandedElts[i])
869         continue;
870       AllUndef = false;
871       IdentityLHS &= (M == (int)i);
872       IdentityRHS &= ((M - NumElts) == i);
873     }
874 
875     if (AllUndef)
876       return DAG.getUNDEF(Op.getValueType());
877     if (IdentityLHS)
878       return Op.getOperand(0);
879     if (IdentityRHS)
880       return Op.getOperand(1);
881     break;
882   }
883   default:
884     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
885       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
886               Op, DemandedBits, DemandedElts, DAG, Depth))
887         return V;
888     break;
889   }
890   return SDValue();
891 }
892 
893 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
894     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
895     unsigned Depth) const {
896   EVT VT = Op.getValueType();
897   APInt DemandedElts = VT.isVector()
898                            ? APInt::getAllOnes(VT.getVectorNumElements())
899                            : APInt(1, 1);
900   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
901                                          Depth);
902 }
903 
904 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
905     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
906     unsigned Depth) const {
907   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
908   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
909                                          Depth);
910 }
911 
912 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1).
913 //      or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1).
914 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG,
915                                  const TargetLowering &TLI,
916                                  const APInt &DemandedBits,
917                                  const APInt &DemandedElts,
918                                  unsigned Depth) {
919   assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) &&
920          "SRL or SRA node is required here!");
921   // Is the right shift using an immediate value of 1?
922   ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
923   if (!N1C || !N1C->isOne())
924     return SDValue();
925 
926   // We are looking for an avgfloor
927   // add(ext, ext)
928   // or one of these as a avgceil
929   // add(add(ext, ext), 1)
930   // add(add(ext, 1), ext)
931   // add(ext, add(ext, 1))
932   SDValue Add = Op.getOperand(0);
933   if (Add.getOpcode() != ISD::ADD)
934     return SDValue();
935 
936   SDValue ExtOpA = Add.getOperand(0);
937   SDValue ExtOpB = Add.getOperand(1);
938   auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) {
939     ConstantSDNode *ConstOp;
940     if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) &&
941         ConstOp->isOne()) {
942       ExtOpA = Op2;
943       ExtOpB = Op3;
944       return true;
945     }
946     if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) &&
947         ConstOp->isOne()) {
948       ExtOpA = Op1;
949       ExtOpB = Op3;
950       return true;
951     }
952     if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) &&
953         ConstOp->isOne()) {
954       ExtOpA = Op1;
955       ExtOpB = Op2;
956       return true;
957     }
958     return false;
959   };
960   bool IsCeil =
961       (ExtOpA.getOpcode() == ISD::ADD &&
962        MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) ||
963       (ExtOpB.getOpcode() == ISD::ADD &&
964        MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA));
965 
966   // If the shift is signed (sra):
967   //  - Needs >= 2 sign bit for both operands.
968   //  - Needs >= 2 zero bits.
969   // If the shift is unsigned (srl):
970   //  - Needs >= 1 zero bit for both operands.
971   //  - Needs 1 demanded bit zero and >= 2 sign bits.
972   unsigned ShiftOpc = Op.getOpcode();
973   bool IsSigned = false;
974   unsigned KnownBits;
975   unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth);
976   unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth);
977   unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
978   unsigned NumZeroA =
979       DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros();
980   unsigned NumZeroB =
981       DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros();
982   unsigned NumZero = std::min(NumZeroA, NumZeroB);
983 
984   switch (ShiftOpc) {
985   default:
986     llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG");
987   case ISD::SRA: {
988     if (NumZero >= 2 && NumSigned < NumZero) {
989       IsSigned = false;
990       KnownBits = NumZero;
991       break;
992     }
993     if (NumSigned >= 1) {
994       IsSigned = true;
995       KnownBits = NumSigned;
996       break;
997     }
998     return SDValue();
999   }
1000   case ISD::SRL: {
1001     if (NumZero >= 1 && NumSigned < NumZero) {
1002       IsSigned = false;
1003       KnownBits = NumZero;
1004       break;
1005     }
1006     if (NumSigned >= 1 && DemandedBits.isSignBitClear()) {
1007       IsSigned = true;
1008       KnownBits = NumSigned;
1009       break;
1010     }
1011     return SDValue();
1012   }
1013   }
1014 
1015   unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU)
1016                            : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU);
1017 
1018   // Find the smallest power-2 type that is legal for this vector size and
1019   // operation, given the original type size and the number of known sign/zero
1020   // bits.
1021   EVT VT = Op.getValueType();
1022   unsigned MinWidth =
1023       std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8);
1024   EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth));
1025   if (VT.isVector())
1026     NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
1027   if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT))
1028     return SDValue();
1029 
1030   SDLoc DL(Op);
1031   SDValue ResultAVG =
1032       DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA),
1033                   DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB));
1034   return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT,
1035                      ResultAVG);
1036 }
1037 
1038 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
1039 /// result of Op are ever used downstream. If we can use this information to
1040 /// simplify Op, create a new simplified DAG node and return true, returning the
1041 /// original and new nodes in Old and New. Otherwise, analyze the expression and
1042 /// return a mask of Known bits for the expression (used to simplify the
1043 /// caller).  The Known bits may only be accurate for those bits in the
1044 /// OriginalDemandedBits and OriginalDemandedElts.
1045 bool TargetLowering::SimplifyDemandedBits(
1046     SDValue Op, const APInt &OriginalDemandedBits,
1047     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
1048     unsigned Depth, bool AssumeSingleUse) const {
1049   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
1050   assert(Op.getScalarValueSizeInBits() == BitWidth &&
1051          "Mask size mismatches value type size!");
1052 
1053   // Don't know anything.
1054   Known = KnownBits(BitWidth);
1055 
1056   // TODO: We can probably do more work on calculating the known bits and
1057   // simplifying the operations for scalable vectors, but for now we just
1058   // bail out.
1059   if (Op.getValueType().isScalableVector())
1060     return false;
1061 
1062   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
1063   unsigned NumElts = OriginalDemandedElts.getBitWidth();
1064   assert((!Op.getValueType().isVector() ||
1065           NumElts == Op.getValueType().getVectorNumElements()) &&
1066          "Unexpected vector size");
1067 
1068   APInt DemandedBits = OriginalDemandedBits;
1069   APInt DemandedElts = OriginalDemandedElts;
1070   SDLoc dl(Op);
1071   auto &DL = TLO.DAG.getDataLayout();
1072 
1073   // Undef operand.
1074   if (Op.isUndef())
1075     return false;
1076 
1077   if (Op.getOpcode() == ISD::Constant) {
1078     // We know all of the bits for a constant!
1079     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
1080     return false;
1081   }
1082 
1083   if (Op.getOpcode() == ISD::ConstantFP) {
1084     // We know all of the bits for a floating point constant!
1085     Known = KnownBits::makeConstant(
1086         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
1087     return false;
1088   }
1089 
1090   // Other users may use these bits.
1091   EVT VT = Op.getValueType();
1092   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
1093     if (Depth != 0) {
1094       // If not at the root, Just compute the Known bits to
1095       // simplify things downstream.
1096       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1097       return false;
1098     }
1099     // If this is the root being simplified, allow it to have multiple uses,
1100     // just set the DemandedBits/Elts to all bits.
1101     DemandedBits = APInt::getAllOnes(BitWidth);
1102     DemandedElts = APInt::getAllOnes(NumElts);
1103   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
1104     // Not demanding any bits/elts from Op.
1105     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1106   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
1107     // Limit search depth.
1108     return false;
1109   }
1110 
1111   KnownBits Known2;
1112   switch (Op.getOpcode()) {
1113   case ISD::TargetConstant:
1114     llvm_unreachable("Can't simplify this node");
1115   case ISD::SCALAR_TO_VECTOR: {
1116     if (!DemandedElts[0])
1117       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1118 
1119     KnownBits SrcKnown;
1120     SDValue Src = Op.getOperand(0);
1121     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
1122     APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth);
1123     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
1124       return true;
1125 
1126     // Upper elements are undef, so only get the knownbits if we just demand
1127     // the bottom element.
1128     if (DemandedElts == 1)
1129       Known = SrcKnown.anyextOrTrunc(BitWidth);
1130     break;
1131   }
1132   case ISD::BUILD_VECTOR:
1133     // Collect the known bits that are shared by every demanded element.
1134     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
1135     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1136     return false; // Don't fall through, will infinitely loop.
1137   case ISD::LOAD: {
1138     auto *LD = cast<LoadSDNode>(Op);
1139     if (getTargetConstantFromLoad(LD)) {
1140       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1141       return false; // Don't fall through, will infinitely loop.
1142     }
1143     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
1144       // If this is a ZEXTLoad and we are looking at the loaded value.
1145       EVT MemVT = LD->getMemoryVT();
1146       unsigned MemBits = MemVT.getScalarSizeInBits();
1147       Known.Zero.setBitsFrom(MemBits);
1148       return false; // Don't fall through, will infinitely loop.
1149     }
1150     break;
1151   }
1152   case ISD::INSERT_VECTOR_ELT: {
1153     SDValue Vec = Op.getOperand(0);
1154     SDValue Scl = Op.getOperand(1);
1155     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1156     EVT VecVT = Vec.getValueType();
1157 
1158     // If index isn't constant, assume we need all vector elements AND the
1159     // inserted element.
1160     APInt DemandedVecElts(DemandedElts);
1161     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1162       unsigned Idx = CIdx->getZExtValue();
1163       DemandedVecElts.clearBit(Idx);
1164 
1165       // Inserted element is not required.
1166       if (!DemandedElts[Idx])
1167         return TLO.CombineTo(Op, Vec);
1168     }
1169 
1170     KnownBits KnownScl;
1171     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1172     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1173     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1174       return true;
1175 
1176     Known = KnownScl.anyextOrTrunc(BitWidth);
1177 
1178     KnownBits KnownVec;
1179     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1180                              Depth + 1))
1181       return true;
1182 
1183     if (!!DemandedVecElts)
1184       Known = KnownBits::commonBits(Known, KnownVec);
1185 
1186     return false;
1187   }
1188   case ISD::INSERT_SUBVECTOR: {
1189     // Demand any elements from the subvector and the remainder from the src its
1190     // inserted into.
1191     SDValue Src = Op.getOperand(0);
1192     SDValue Sub = Op.getOperand(1);
1193     uint64_t Idx = Op.getConstantOperandVal(2);
1194     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1195     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1196     APInt DemandedSrcElts = DemandedElts;
1197     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1198 
1199     KnownBits KnownSub, KnownSrc;
1200     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1201                              Depth + 1))
1202       return true;
1203     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1204                              Depth + 1))
1205       return true;
1206 
1207     Known.Zero.setAllBits();
1208     Known.One.setAllBits();
1209     if (!!DemandedSubElts)
1210       Known = KnownBits::commonBits(Known, KnownSub);
1211     if (!!DemandedSrcElts)
1212       Known = KnownBits::commonBits(Known, KnownSrc);
1213 
1214     // Attempt to avoid multi-use src if we don't need anything from it.
1215     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1216         !DemandedSrcElts.isAllOnes()) {
1217       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1218           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1219       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1220           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1221       if (NewSub || NewSrc) {
1222         NewSub = NewSub ? NewSub : Sub;
1223         NewSrc = NewSrc ? NewSrc : Src;
1224         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1225                                         Op.getOperand(2));
1226         return TLO.CombineTo(Op, NewOp);
1227       }
1228     }
1229     break;
1230   }
1231   case ISD::EXTRACT_SUBVECTOR: {
1232     // Offset the demanded elts by the subvector index.
1233     SDValue Src = Op.getOperand(0);
1234     if (Src.getValueType().isScalableVector())
1235       break;
1236     uint64_t Idx = Op.getConstantOperandVal(1);
1237     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1238     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
1239 
1240     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1241                              Depth + 1))
1242       return true;
1243 
1244     // Attempt to avoid multi-use src if we don't need anything from it.
1245     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1246       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1247           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1248       if (DemandedSrc) {
1249         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1250                                         Op.getOperand(1));
1251         return TLO.CombineTo(Op, NewOp);
1252       }
1253     }
1254     break;
1255   }
1256   case ISD::CONCAT_VECTORS: {
1257     Known.Zero.setAllBits();
1258     Known.One.setAllBits();
1259     EVT SubVT = Op.getOperand(0).getValueType();
1260     unsigned NumSubVecs = Op.getNumOperands();
1261     unsigned NumSubElts = SubVT.getVectorNumElements();
1262     for (unsigned i = 0; i != NumSubVecs; ++i) {
1263       APInt DemandedSubElts =
1264           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1265       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1266                                Known2, TLO, Depth + 1))
1267         return true;
1268       // Known bits are shared by every demanded subvector element.
1269       if (!!DemandedSubElts)
1270         Known = KnownBits::commonBits(Known, Known2);
1271     }
1272     break;
1273   }
1274   case ISD::VECTOR_SHUFFLE: {
1275     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1276 
1277     // Collect demanded elements from shuffle operands..
1278     APInt DemandedLHS(NumElts, 0);
1279     APInt DemandedRHS(NumElts, 0);
1280     for (unsigned i = 0; i != NumElts; ++i) {
1281       if (!DemandedElts[i])
1282         continue;
1283       int M = ShuffleMask[i];
1284       if (M < 0) {
1285         // For UNDEF elements, we don't know anything about the common state of
1286         // the shuffle result.
1287         DemandedLHS.clearAllBits();
1288         DemandedRHS.clearAllBits();
1289         break;
1290       }
1291       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1292       if (M < (int)NumElts)
1293         DemandedLHS.setBit(M);
1294       else
1295         DemandedRHS.setBit(M - NumElts);
1296     }
1297 
1298     if (!!DemandedLHS || !!DemandedRHS) {
1299       SDValue Op0 = Op.getOperand(0);
1300       SDValue Op1 = Op.getOperand(1);
1301 
1302       Known.Zero.setAllBits();
1303       Known.One.setAllBits();
1304       if (!!DemandedLHS) {
1305         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1306                                  Depth + 1))
1307           return true;
1308         Known = KnownBits::commonBits(Known, Known2);
1309       }
1310       if (!!DemandedRHS) {
1311         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1312                                  Depth + 1))
1313           return true;
1314         Known = KnownBits::commonBits(Known, Known2);
1315       }
1316 
1317       // Attempt to avoid multi-use ops if we don't need anything from them.
1318       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1319           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1320       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1321           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1322       if (DemandedOp0 || DemandedOp1) {
1323         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1324         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1325         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1326         return TLO.CombineTo(Op, NewOp);
1327       }
1328     }
1329     break;
1330   }
1331   case ISD::AND: {
1332     SDValue Op0 = Op.getOperand(0);
1333     SDValue Op1 = Op.getOperand(1);
1334 
1335     // If the RHS is a constant, check to see if the LHS would be zero without
1336     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1337     // simplify the LHS, here we're using information from the LHS to simplify
1338     // the RHS.
1339     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1340       // Do not increment Depth here; that can cause an infinite loop.
1341       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1342       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1343       if ((LHSKnown.Zero & DemandedBits) ==
1344           (~RHSC->getAPIntValue() & DemandedBits))
1345         return TLO.CombineTo(Op, Op0);
1346 
1347       // If any of the set bits in the RHS are known zero on the LHS, shrink
1348       // the constant.
1349       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1350                                  DemandedElts, TLO))
1351         return true;
1352 
1353       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1354       // constant, but if this 'and' is only clearing bits that were just set by
1355       // the xor, then this 'and' can be eliminated by shrinking the mask of
1356       // the xor. For example, for a 32-bit X:
1357       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1358       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1359           LHSKnown.One == ~RHSC->getAPIntValue()) {
1360         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1361         return TLO.CombineTo(Op, Xor);
1362       }
1363     }
1364 
1365     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1366                              Depth + 1))
1367       return true;
1368     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1369     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1370                              Known2, TLO, Depth + 1))
1371       return true;
1372     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1373 
1374     // Attempt to avoid multi-use ops if we don't need anything from them.
1375     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1376       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1377           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1378       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1379           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1380       if (DemandedOp0 || DemandedOp1) {
1381         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1382         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1383         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1384         return TLO.CombineTo(Op, NewOp);
1385       }
1386     }
1387 
1388     // If all of the demanded bits are known one on one side, return the other.
1389     // These bits cannot contribute to the result of the 'and'.
1390     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1391       return TLO.CombineTo(Op, Op0);
1392     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1393       return TLO.CombineTo(Op, Op1);
1394     // If all of the demanded bits in the inputs are known zeros, return zero.
1395     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1396       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1397     // If the RHS is a constant, see if we can simplify it.
1398     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1399                                TLO))
1400       return true;
1401     // If the operation can be done in a smaller type, do so.
1402     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1403       return true;
1404 
1405     Known &= Known2;
1406     break;
1407   }
1408   case ISD::OR: {
1409     SDValue Op0 = Op.getOperand(0);
1410     SDValue Op1 = Op.getOperand(1);
1411 
1412     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1413                              Depth + 1))
1414       return true;
1415     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1416     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1417                              Known2, TLO, Depth + 1))
1418       return true;
1419     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1420 
1421     // Attempt to avoid multi-use ops if we don't need anything from them.
1422     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1423       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1424           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1425       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1426           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1427       if (DemandedOp0 || DemandedOp1) {
1428         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1429         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1430         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1431         return TLO.CombineTo(Op, NewOp);
1432       }
1433     }
1434 
1435     // If all of the demanded bits are known zero on one side, return the other.
1436     // These bits cannot contribute to the result of the 'or'.
1437     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1438       return TLO.CombineTo(Op, Op0);
1439     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1440       return TLO.CombineTo(Op, Op1);
1441     // If the RHS is a constant, see if we can simplify it.
1442     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1443       return true;
1444     // If the operation can be done in a smaller type, do so.
1445     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1446       return true;
1447 
1448     Known |= Known2;
1449     break;
1450   }
1451   case ISD::XOR: {
1452     SDValue Op0 = Op.getOperand(0);
1453     SDValue Op1 = Op.getOperand(1);
1454 
1455     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1456                              Depth + 1))
1457       return true;
1458     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1459     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1460                              Depth + 1))
1461       return true;
1462     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1463 
1464     // Attempt to avoid multi-use ops if we don't need anything from them.
1465     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1466       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1467           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1468       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1469           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1470       if (DemandedOp0 || DemandedOp1) {
1471         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1472         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1473         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1474         return TLO.CombineTo(Op, NewOp);
1475       }
1476     }
1477 
1478     // If all of the demanded bits are known zero on one side, return the other.
1479     // These bits cannot contribute to the result of the 'xor'.
1480     if (DemandedBits.isSubsetOf(Known.Zero))
1481       return TLO.CombineTo(Op, Op0);
1482     if (DemandedBits.isSubsetOf(Known2.Zero))
1483       return TLO.CombineTo(Op, Op1);
1484     // If the operation can be done in a smaller type, do so.
1485     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1486       return true;
1487 
1488     // If all of the unknown bits are known to be zero on one side or the other
1489     // turn this into an *inclusive* or.
1490     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1491     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1492       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1493 
1494     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1495     if (C) {
1496       // If one side is a constant, and all of the set bits in the constant are
1497       // also known set on the other side, turn this into an AND, as we know
1498       // the bits will be cleared.
1499       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1500       // NB: it is okay if more bits are known than are requested
1501       if (C->getAPIntValue() == Known2.One) {
1502         SDValue ANDC =
1503             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1504         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1505       }
1506 
1507       // If the RHS is a constant, see if we can change it. Don't alter a -1
1508       // constant because that's a 'not' op, and that is better for combining
1509       // and codegen.
1510       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1511         // We're flipping all demanded bits. Flip the undemanded bits too.
1512         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1513         return TLO.CombineTo(Op, New);
1514       }
1515     }
1516 
1517     // If we can't turn this into a 'not', try to shrink the constant.
1518     if (!C || !C->isAllOnes())
1519       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1520         return true;
1521 
1522     Known ^= Known2;
1523     break;
1524   }
1525   case ISD::SELECT:
1526     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1527                              Depth + 1))
1528       return true;
1529     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1530                              Depth + 1))
1531       return true;
1532     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1533     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1534 
1535     // If the operands are constants, see if we can simplify them.
1536     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1537       return true;
1538 
1539     // Only known if known in both the LHS and RHS.
1540     Known = KnownBits::commonBits(Known, Known2);
1541     break;
1542   case ISD::VSELECT:
1543     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1544                              Known, TLO, Depth + 1))
1545       return true;
1546     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts,
1547                              Known2, TLO, Depth + 1))
1548       return true;
1549     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1550     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1551 
1552     // Only known if known in both the LHS and RHS.
1553     Known = KnownBits::commonBits(Known, Known2);
1554     break;
1555   case ISD::SELECT_CC:
1556     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1557                              Depth + 1))
1558       return true;
1559     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1560                              Depth + 1))
1561       return true;
1562     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1563     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1564 
1565     // If the operands are constants, see if we can simplify them.
1566     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1567       return true;
1568 
1569     // Only known if known in both the LHS and RHS.
1570     Known = KnownBits::commonBits(Known, Known2);
1571     break;
1572   case ISD::SETCC: {
1573     SDValue Op0 = Op.getOperand(0);
1574     SDValue Op1 = Op.getOperand(1);
1575     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1576     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1577     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1578     // -1, we may be able to bypass the setcc.
1579     if (DemandedBits.isSignMask() &&
1580         Op0.getScalarValueSizeInBits() == BitWidth &&
1581         getBooleanContents(Op0.getValueType()) ==
1582             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1583       // If we're testing X < 0, then this compare isn't needed - just use X!
1584       // FIXME: We're limiting to integer types here, but this should also work
1585       // if we don't care about FP signed-zero. The use of SETLT with FP means
1586       // that we don't care about NaNs.
1587       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1588           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1589         return TLO.CombineTo(Op, Op0);
1590 
1591       // TODO: Should we check for other forms of sign-bit comparisons?
1592       // Examples: X <= -1, X >= 0
1593     }
1594     if (getBooleanContents(Op0.getValueType()) ==
1595             TargetLowering::ZeroOrOneBooleanContent &&
1596         BitWidth > 1)
1597       Known.Zero.setBitsFrom(1);
1598     break;
1599   }
1600   case ISD::SHL: {
1601     SDValue Op0 = Op.getOperand(0);
1602     SDValue Op1 = Op.getOperand(1);
1603     EVT ShiftVT = Op1.getValueType();
1604 
1605     if (const APInt *SA =
1606             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1607       unsigned ShAmt = SA->getZExtValue();
1608       if (ShAmt == 0)
1609         return TLO.CombineTo(Op, Op0);
1610 
1611       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1612       // single shift.  We can do this if the bottom bits (which are shifted
1613       // out) are never demanded.
1614       // TODO - support non-uniform vector amounts.
1615       if (Op0.getOpcode() == ISD::SRL) {
1616         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1617           if (const APInt *SA2 =
1618                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1619             unsigned C1 = SA2->getZExtValue();
1620             unsigned Opc = ISD::SHL;
1621             int Diff = ShAmt - C1;
1622             if (Diff < 0) {
1623               Diff = -Diff;
1624               Opc = ISD::SRL;
1625             }
1626             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1627             return TLO.CombineTo(
1628                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1629           }
1630         }
1631       }
1632 
1633       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1634       // are not demanded. This will likely allow the anyext to be folded away.
1635       // TODO - support non-uniform vector amounts.
1636       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1637         SDValue InnerOp = Op0.getOperand(0);
1638         EVT InnerVT = InnerOp.getValueType();
1639         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1640         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1641             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1642           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1643           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1644             ShTy = InnerVT;
1645           SDValue NarrowShl =
1646               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1647                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1648           return TLO.CombineTo(
1649               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1650         }
1651 
1652         // Repeat the SHL optimization above in cases where an extension
1653         // intervenes: (shl (anyext (shr x, c1)), c2) to
1654         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1655         // aren't demanded (as above) and that the shifted upper c1 bits of
1656         // x aren't demanded.
1657         // TODO - support non-uniform vector amounts.
1658         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1659             InnerOp.hasOneUse()) {
1660           if (const APInt *SA2 =
1661                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1662             unsigned InnerShAmt = SA2->getZExtValue();
1663             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1664                 DemandedBits.getActiveBits() <=
1665                     (InnerBits - InnerShAmt + ShAmt) &&
1666                 DemandedBits.countTrailingZeros() >= ShAmt) {
1667               SDValue NewSA =
1668                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1669               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1670                                                InnerOp.getOperand(0));
1671               return TLO.CombineTo(
1672                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1673             }
1674           }
1675         }
1676       }
1677 
1678       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1679       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1680                                Depth + 1))
1681         return true;
1682       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1683       Known.Zero <<= ShAmt;
1684       Known.One <<= ShAmt;
1685       // low bits known zero.
1686       Known.Zero.setLowBits(ShAmt);
1687 
1688       // Attempt to avoid multi-use ops if we don't need anything from them.
1689       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1690         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1691             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1692         if (DemandedOp0) {
1693           SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1);
1694           return TLO.CombineTo(Op, NewOp);
1695         }
1696       }
1697 
1698       // Try shrinking the operation as long as the shift amount will still be
1699       // in range.
1700       if ((ShAmt < DemandedBits.getActiveBits()) &&
1701           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1702         return true;
1703     }
1704 
1705     // If we are only demanding sign bits then we can use the shift source
1706     // directly.
1707     if (const APInt *MaxSA =
1708             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1709       unsigned ShAmt = MaxSA->getZExtValue();
1710       unsigned NumSignBits =
1711           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1712       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1713       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1714         return TLO.CombineTo(Op, Op0);
1715     }
1716     break;
1717   }
1718   case ISD::SRL: {
1719     SDValue Op0 = Op.getOperand(0);
1720     SDValue Op1 = Op.getOperand(1);
1721     EVT ShiftVT = Op1.getValueType();
1722 
1723     // Try to match AVG patterns.
1724     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1725                                         DemandedElts, Depth + 1))
1726       return TLO.CombineTo(Op, AVG);
1727 
1728     if (const APInt *SA =
1729             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1730       unsigned ShAmt = SA->getZExtValue();
1731       if (ShAmt == 0)
1732         return TLO.CombineTo(Op, Op0);
1733 
1734       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1735       // single shift.  We can do this if the top bits (which are shifted out)
1736       // are never demanded.
1737       // TODO - support non-uniform vector amounts.
1738       if (Op0.getOpcode() == ISD::SHL) {
1739         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1740           if (const APInt *SA2 =
1741                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1742             unsigned C1 = SA2->getZExtValue();
1743             unsigned Opc = ISD::SRL;
1744             int Diff = ShAmt - C1;
1745             if (Diff < 0) {
1746               Diff = -Diff;
1747               Opc = ISD::SHL;
1748             }
1749             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1750             return TLO.CombineTo(
1751                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1752           }
1753         }
1754       }
1755 
1756       APInt InDemandedMask = (DemandedBits << ShAmt);
1757 
1758       // If the shift is exact, then it does demand the low bits (and knows that
1759       // they are zero).
1760       if (Op->getFlags().hasExact())
1761         InDemandedMask.setLowBits(ShAmt);
1762 
1763       // Compute the new bits that are at the top now.
1764       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1765                                Depth + 1))
1766         return true;
1767       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1768       Known.Zero.lshrInPlace(ShAmt);
1769       Known.One.lshrInPlace(ShAmt);
1770       // High bits known zero.
1771       Known.Zero.setHighBits(ShAmt);
1772     }
1773     break;
1774   }
1775   case ISD::SRA: {
1776     SDValue Op0 = Op.getOperand(0);
1777     SDValue Op1 = Op.getOperand(1);
1778     EVT ShiftVT = Op1.getValueType();
1779 
1780     // If we only want bits that already match the signbit then we don't need
1781     // to shift.
1782     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1783     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1784         NumHiDemandedBits)
1785       return TLO.CombineTo(Op, Op0);
1786 
1787     // If this is an arithmetic shift right and only the low-bit is set, we can
1788     // always convert this into a logical shr, even if the shift amount is
1789     // variable.  The low bit of the shift cannot be an input sign bit unless
1790     // the shift amount is >= the size of the datatype, which is undefined.
1791     if (DemandedBits.isOne())
1792       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1793 
1794     // Try to match AVG patterns.
1795     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1796                                         DemandedElts, Depth + 1))
1797       return TLO.CombineTo(Op, AVG);
1798 
1799     if (const APInt *SA =
1800             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1801       unsigned ShAmt = SA->getZExtValue();
1802       if (ShAmt == 0)
1803         return TLO.CombineTo(Op, Op0);
1804 
1805       APInt InDemandedMask = (DemandedBits << ShAmt);
1806 
1807       // If the shift is exact, then it does demand the low bits (and knows that
1808       // they are zero).
1809       if (Op->getFlags().hasExact())
1810         InDemandedMask.setLowBits(ShAmt);
1811 
1812       // If any of the demanded bits are produced by the sign extension, we also
1813       // demand the input sign bit.
1814       if (DemandedBits.countLeadingZeros() < ShAmt)
1815         InDemandedMask.setSignBit();
1816 
1817       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1818                                Depth + 1))
1819         return true;
1820       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1821       Known.Zero.lshrInPlace(ShAmt);
1822       Known.One.lshrInPlace(ShAmt);
1823 
1824       // If the input sign bit is known to be zero, or if none of the top bits
1825       // are demanded, turn this into an unsigned shift right.
1826       if (Known.Zero[BitWidth - ShAmt - 1] ||
1827           DemandedBits.countLeadingZeros() >= ShAmt) {
1828         SDNodeFlags Flags;
1829         Flags.setExact(Op->getFlags().hasExact());
1830         return TLO.CombineTo(
1831             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1832       }
1833 
1834       int Log2 = DemandedBits.exactLogBase2();
1835       if (Log2 >= 0) {
1836         // The bit must come from the sign.
1837         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1838         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1839       }
1840 
1841       if (Known.One[BitWidth - ShAmt - 1])
1842         // New bits are known one.
1843         Known.One.setHighBits(ShAmt);
1844 
1845       // Attempt to avoid multi-use ops if we don't need anything from them.
1846       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1847         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1848             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1849         if (DemandedOp0) {
1850           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1851           return TLO.CombineTo(Op, NewOp);
1852         }
1853       }
1854     }
1855     break;
1856   }
1857   case ISD::FSHL:
1858   case ISD::FSHR: {
1859     SDValue Op0 = Op.getOperand(0);
1860     SDValue Op1 = Op.getOperand(1);
1861     SDValue Op2 = Op.getOperand(2);
1862     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1863 
1864     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1865       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1866 
1867       // For fshl, 0-shift returns the 1st arg.
1868       // For fshr, 0-shift returns the 2nd arg.
1869       if (Amt == 0) {
1870         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1871                                  Known, TLO, Depth + 1))
1872           return true;
1873         break;
1874       }
1875 
1876       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1877       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1878       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1879       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1880       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1881                                Depth + 1))
1882         return true;
1883       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1884                                Depth + 1))
1885         return true;
1886 
1887       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1888       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1889       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1890       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1891       Known.One |= Known2.One;
1892       Known.Zero |= Known2.Zero;
1893 
1894       // Attempt to avoid multi-use ops if we don't need anything from them.
1895       if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() ||
1896           !DemandedElts.isAllOnes()) {
1897         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1898             Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1);
1899         SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1900             Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1);
1901         if (DemandedOp0 || DemandedOp1) {
1902           DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0;
1903           DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1;
1904           SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0,
1905                                           DemandedOp1, Op2);
1906           return TLO.CombineTo(Op, NewOp);
1907         }
1908       }
1909     }
1910 
1911     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1912     if (isPowerOf2_32(BitWidth)) {
1913       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1914       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1915                                Known2, TLO, Depth + 1))
1916         return true;
1917     }
1918     break;
1919   }
1920   case ISD::ROTL:
1921   case ISD::ROTR: {
1922     SDValue Op0 = Op.getOperand(0);
1923     SDValue Op1 = Op.getOperand(1);
1924     bool IsROTL = (Op.getOpcode() == ISD::ROTL);
1925 
1926     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1927     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1928       return TLO.CombineTo(Op, Op0);
1929 
1930     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1931       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1932       unsigned RevAmt = BitWidth - Amt;
1933 
1934       // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
1935       // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
1936       APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
1937       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1938                                Depth + 1))
1939         return true;
1940 
1941       // rot*(x, 0) --> x
1942       if (Amt == 0)
1943         return TLO.CombineTo(Op, Op0);
1944 
1945       // See if we don't demand either half of the rotated bits.
1946       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
1947           DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) {
1948         Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
1949         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
1950       }
1951       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
1952           DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) {
1953         Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
1954         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1955       }
1956     }
1957 
1958     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1959     if (isPowerOf2_32(BitWidth)) {
1960       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1961       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1962                                Depth + 1))
1963         return true;
1964     }
1965     break;
1966   }
1967   case ISD::UMIN: {
1968     // Check if one arg is always less than (or equal) to the other arg.
1969     SDValue Op0 = Op.getOperand(0);
1970     SDValue Op1 = Op.getOperand(1);
1971     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1972     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1973     Known = KnownBits::umin(Known0, Known1);
1974     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
1975       return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1);
1976     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
1977       return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1);
1978     break;
1979   }
1980   case ISD::UMAX: {
1981     // Check if one arg is always greater than (or equal) to the other arg.
1982     SDValue Op0 = Op.getOperand(0);
1983     SDValue Op1 = Op.getOperand(1);
1984     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1985     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1986     Known = KnownBits::umax(Known0, Known1);
1987     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
1988       return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1);
1989     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
1990       return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1);
1991     break;
1992   }
1993   case ISD::BITREVERSE: {
1994     SDValue Src = Op.getOperand(0);
1995     APInt DemandedSrcBits = DemandedBits.reverseBits();
1996     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1997                              Depth + 1))
1998       return true;
1999     Known.One = Known2.One.reverseBits();
2000     Known.Zero = Known2.Zero.reverseBits();
2001     break;
2002   }
2003   case ISD::BSWAP: {
2004     SDValue Src = Op.getOperand(0);
2005 
2006     // If the only bits demanded come from one byte of the bswap result,
2007     // just shift the input byte into position to eliminate the bswap.
2008     unsigned NLZ = DemandedBits.countLeadingZeros();
2009     unsigned NTZ = DemandedBits.countTrailingZeros();
2010 
2011     // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
2012     // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
2013     // have 14 leading zeros, round to 8.
2014     NLZ = alignDown(NLZ, 8);
2015     NTZ = alignDown(NTZ, 8);
2016     // If we need exactly one byte, we can do this transformation.
2017     if (BitWidth - NLZ - NTZ == 8) {
2018       // Replace this with either a left or right shift to get the byte into
2019       // the right place.
2020       unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL;
2021       if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
2022         EVT ShiftAmtTy = getShiftAmountTy(VT, DL);
2023         unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
2024         SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy);
2025         SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
2026         return TLO.CombineTo(Op, NewOp);
2027       }
2028     }
2029 
2030     APInt DemandedSrcBits = DemandedBits.byteSwap();
2031     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2032                              Depth + 1))
2033       return true;
2034     Known.One = Known2.One.byteSwap();
2035     Known.Zero = Known2.Zero.byteSwap();
2036     break;
2037   }
2038   case ISD::CTPOP: {
2039     // If only 1 bit is demanded, replace with PARITY as long as we're before
2040     // op legalization.
2041     // FIXME: Limit to scalars for now.
2042     if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
2043       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
2044                                                Op.getOperand(0)));
2045 
2046     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2047     break;
2048   }
2049   case ISD::SIGN_EXTEND_INREG: {
2050     SDValue Op0 = Op.getOperand(0);
2051     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2052     unsigned ExVTBits = ExVT.getScalarSizeInBits();
2053 
2054     // If we only care about the highest bit, don't bother shifting right.
2055     if (DemandedBits.isSignMask()) {
2056       unsigned MinSignedBits =
2057           TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
2058       bool AlreadySignExtended = ExVTBits >= MinSignedBits;
2059       // However if the input is already sign extended we expect the sign
2060       // extension to be dropped altogether later and do not simplify.
2061       if (!AlreadySignExtended) {
2062         // Compute the correct shift amount type, which must be getShiftAmountTy
2063         // for scalar types after legalization.
2064         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl,
2065                                                getShiftAmountTy(VT, DL));
2066         return TLO.CombineTo(Op,
2067                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
2068       }
2069     }
2070 
2071     // If none of the extended bits are demanded, eliminate the sextinreg.
2072     if (DemandedBits.getActiveBits() <= ExVTBits)
2073       return TLO.CombineTo(Op, Op0);
2074 
2075     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
2076 
2077     // Since the sign extended bits are demanded, we know that the sign
2078     // bit is demanded.
2079     InputDemandedBits.setBit(ExVTBits - 1);
2080 
2081     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
2082       return true;
2083     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2084 
2085     // If the sign bit of the input is known set or clear, then we know the
2086     // top bits of the result.
2087 
2088     // If the input sign bit is known zero, convert this into a zero extension.
2089     if (Known.Zero[ExVTBits - 1])
2090       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
2091 
2092     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
2093     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
2094       Known.One.setBitsFrom(ExVTBits);
2095       Known.Zero &= Mask;
2096     } else { // Input sign bit unknown
2097       Known.Zero &= Mask;
2098       Known.One &= Mask;
2099     }
2100     break;
2101   }
2102   case ISD::BUILD_PAIR: {
2103     EVT HalfVT = Op.getOperand(0).getValueType();
2104     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
2105 
2106     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
2107     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
2108 
2109     KnownBits KnownLo, KnownHi;
2110 
2111     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
2112       return true;
2113 
2114     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
2115       return true;
2116 
2117     Known.Zero = KnownLo.Zero.zext(BitWidth) |
2118                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
2119 
2120     Known.One = KnownLo.One.zext(BitWidth) |
2121                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
2122     break;
2123   }
2124   case ISD::ZERO_EXTEND:
2125   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2126     SDValue Src = Op.getOperand(0);
2127     EVT SrcVT = Src.getValueType();
2128     unsigned InBits = SrcVT.getScalarSizeInBits();
2129     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2130     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
2131 
2132     // If none of the top bits are demanded, convert this into an any_extend.
2133     if (DemandedBits.getActiveBits() <= InBits) {
2134       // If we only need the non-extended bits of the bottom element
2135       // then we can just bitcast to the result.
2136       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2137           VT.getSizeInBits() == SrcVT.getSizeInBits())
2138         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2139 
2140       unsigned Opc =
2141           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2142       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2143         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2144     }
2145 
2146     APInt InDemandedBits = DemandedBits.trunc(InBits);
2147     APInt InDemandedElts = DemandedElts.zext(InElts);
2148     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2149                              Depth + 1))
2150       return true;
2151     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2152     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2153     Known = Known.zext(BitWidth);
2154 
2155     // Attempt to avoid multi-use ops if we don't need anything from them.
2156     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2157             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2158       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2159     break;
2160   }
2161   case ISD::SIGN_EXTEND:
2162   case ISD::SIGN_EXTEND_VECTOR_INREG: {
2163     SDValue Src = Op.getOperand(0);
2164     EVT SrcVT = Src.getValueType();
2165     unsigned InBits = SrcVT.getScalarSizeInBits();
2166     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2167     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
2168 
2169     // If none of the top bits are demanded, convert this into an any_extend.
2170     if (DemandedBits.getActiveBits() <= InBits) {
2171       // If we only need the non-extended bits of the bottom element
2172       // then we can just bitcast to the result.
2173       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2174           VT.getSizeInBits() == SrcVT.getSizeInBits())
2175         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2176 
2177       unsigned Opc =
2178           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2179       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2180         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2181     }
2182 
2183     APInt InDemandedBits = DemandedBits.trunc(InBits);
2184     APInt InDemandedElts = DemandedElts.zext(InElts);
2185 
2186     // Since some of the sign extended bits are demanded, we know that the sign
2187     // bit is demanded.
2188     InDemandedBits.setBit(InBits - 1);
2189 
2190     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2191                              Depth + 1))
2192       return true;
2193     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2194     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2195 
2196     // If the sign bit is known one, the top bits match.
2197     Known = Known.sext(BitWidth);
2198 
2199     // If the sign bit is known zero, convert this to a zero extend.
2200     if (Known.isNonNegative()) {
2201       unsigned Opc =
2202           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
2203       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2204         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2205     }
2206 
2207     // Attempt to avoid multi-use ops if we don't need anything from them.
2208     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2209             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2210       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2211     break;
2212   }
2213   case ISD::ANY_EXTEND:
2214   case ISD::ANY_EXTEND_VECTOR_INREG: {
2215     SDValue Src = Op.getOperand(0);
2216     EVT SrcVT = Src.getValueType();
2217     unsigned InBits = SrcVT.getScalarSizeInBits();
2218     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2219     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2220 
2221     // If we only need the bottom element then we can just bitcast.
2222     // TODO: Handle ANY_EXTEND?
2223     if (IsLE && IsVecInReg && DemandedElts == 1 &&
2224         VT.getSizeInBits() == SrcVT.getSizeInBits())
2225       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2226 
2227     APInt InDemandedBits = DemandedBits.trunc(InBits);
2228     APInt InDemandedElts = DemandedElts.zext(InElts);
2229     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2230                              Depth + 1))
2231       return true;
2232     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2233     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2234     Known = Known.anyext(BitWidth);
2235 
2236     // Attempt to avoid multi-use ops if we don't need anything from them.
2237     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2238             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2239       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2240     break;
2241   }
2242   case ISD::TRUNCATE: {
2243     SDValue Src = Op.getOperand(0);
2244 
2245     // Simplify the input, using demanded bit information, and compute the known
2246     // zero/one bits live out.
2247     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2248     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2249     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2250                              Depth + 1))
2251       return true;
2252     Known = Known.trunc(BitWidth);
2253 
2254     // Attempt to avoid multi-use ops if we don't need anything from them.
2255     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2256             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2257       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2258 
2259     // If the input is only used by this truncate, see if we can shrink it based
2260     // on the known demanded bits.
2261     if (Src.getNode()->hasOneUse()) {
2262       switch (Src.getOpcode()) {
2263       default:
2264         break;
2265       case ISD::SRL:
2266         // Shrink SRL by a constant if none of the high bits shifted in are
2267         // demanded.
2268         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2269           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2270           // undesirable.
2271           break;
2272 
2273         const APInt *ShAmtC =
2274             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2275         if (!ShAmtC || ShAmtC->uge(BitWidth))
2276           break;
2277         uint64_t ShVal = ShAmtC->getZExtValue();
2278 
2279         APInt HighBits =
2280             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2281         HighBits.lshrInPlace(ShVal);
2282         HighBits = HighBits.trunc(BitWidth);
2283 
2284         if (!(HighBits & DemandedBits)) {
2285           // None of the shifted in bits are needed.  Add a truncate of the
2286           // shift input, then shift it.
2287           SDValue NewShAmt = TLO.DAG.getConstant(
2288               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2289           SDValue NewTrunc =
2290               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2291           return TLO.CombineTo(
2292               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2293         }
2294         break;
2295       }
2296     }
2297 
2298     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2299     break;
2300   }
2301   case ISD::AssertZext: {
2302     // AssertZext demands all of the high bits, plus any of the low bits
2303     // demanded by its users.
2304     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2305     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2306     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2307                              TLO, Depth + 1))
2308       return true;
2309     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2310 
2311     Known.Zero |= ~InMask;
2312     break;
2313   }
2314   case ISD::EXTRACT_VECTOR_ELT: {
2315     SDValue Src = Op.getOperand(0);
2316     SDValue Idx = Op.getOperand(1);
2317     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2318     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2319 
2320     if (SrcEltCnt.isScalable())
2321       return false;
2322 
2323     // Demand the bits from every vector element without a constant index.
2324     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2325     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2326     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2327       if (CIdx->getAPIntValue().ult(NumSrcElts))
2328         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2329 
2330     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2331     // anything about the extended bits.
2332     APInt DemandedSrcBits = DemandedBits;
2333     if (BitWidth > EltBitWidth)
2334       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2335 
2336     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2337                              Depth + 1))
2338       return true;
2339 
2340     // Attempt to avoid multi-use ops if we don't need anything from them.
2341     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2342       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2343               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2344         SDValue NewOp =
2345             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2346         return TLO.CombineTo(Op, NewOp);
2347       }
2348     }
2349 
2350     Known = Known2;
2351     if (BitWidth > EltBitWidth)
2352       Known = Known.anyext(BitWidth);
2353     break;
2354   }
2355   case ISD::BITCAST: {
2356     SDValue Src = Op.getOperand(0);
2357     EVT SrcVT = Src.getValueType();
2358     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2359 
2360     // If this is an FP->Int bitcast and if the sign bit is the only
2361     // thing demanded, turn this into a FGETSIGN.
2362     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2363         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2364         SrcVT.isFloatingPoint()) {
2365       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2366       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2367       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2368           SrcVT != MVT::f128) {
2369         // Cannot eliminate/lower SHL for f128 yet.
2370         EVT Ty = OpVTLegal ? VT : MVT::i32;
2371         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2372         // place.  We expect the SHL to be eliminated by other optimizations.
2373         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2374         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2375         if (!OpVTLegal && OpVTSizeInBits > 32)
2376           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2377         unsigned ShVal = Op.getValueSizeInBits() - 1;
2378         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2379         return TLO.CombineTo(Op,
2380                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2381       }
2382     }
2383 
2384     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2385     // Demand the elt/bit if any of the original elts/bits are demanded.
2386     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2387       unsigned Scale = BitWidth / NumSrcEltBits;
2388       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2389       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2390       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2391       for (unsigned i = 0; i != Scale; ++i) {
2392         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2393         unsigned BitOffset = EltOffset * NumSrcEltBits;
2394         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2395         if (!Sub.isZero()) {
2396           DemandedSrcBits |= Sub;
2397           for (unsigned j = 0; j != NumElts; ++j)
2398             if (DemandedElts[j])
2399               DemandedSrcElts.setBit((j * Scale) + i);
2400         }
2401       }
2402 
2403       APInt KnownSrcUndef, KnownSrcZero;
2404       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2405                                      KnownSrcZero, TLO, Depth + 1))
2406         return true;
2407 
2408       KnownBits KnownSrcBits;
2409       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2410                                KnownSrcBits, TLO, Depth + 1))
2411         return true;
2412     } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2413       // TODO - bigendian once we have test coverage.
2414       unsigned Scale = NumSrcEltBits / BitWidth;
2415       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2416       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2417       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2418       for (unsigned i = 0; i != NumElts; ++i)
2419         if (DemandedElts[i]) {
2420           unsigned Offset = (i % Scale) * BitWidth;
2421           DemandedSrcBits.insertBits(DemandedBits, Offset);
2422           DemandedSrcElts.setBit(i / Scale);
2423         }
2424 
2425       if (SrcVT.isVector()) {
2426         APInt KnownSrcUndef, KnownSrcZero;
2427         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2428                                        KnownSrcZero, TLO, Depth + 1))
2429           return true;
2430       }
2431 
2432       KnownBits KnownSrcBits;
2433       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2434                                KnownSrcBits, TLO, Depth + 1))
2435         return true;
2436     }
2437 
2438     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2439     // recursive call where Known may be useful to the caller.
2440     if (Depth > 0) {
2441       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2442       return false;
2443     }
2444     break;
2445   }
2446   case ISD::MUL:
2447     if (DemandedBits.isPowerOf2()) {
2448       // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
2449       // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
2450       // odd (has LSB set), then the left-shifted low bit of X is the answer.
2451       unsigned CTZ = DemandedBits.countTrailingZeros();
2452       ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
2453       if (C && C->getAPIntValue().countTrailingZeros() == CTZ) {
2454         EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2455         SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy);
2456         SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC);
2457         return TLO.CombineTo(Op, Shl);
2458       }
2459     }
2460     // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
2461     // X * X is odd iff X is odd.
2462     // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
2463     if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) {
2464       SDValue One = TLO.DAG.getConstant(1, dl, VT);
2465       SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One);
2466       return TLO.CombineTo(Op, And1);
2467     }
2468     LLVM_FALLTHROUGH;
2469   case ISD::ADD:
2470   case ISD::SUB: {
2471     // Add, Sub, and Mul don't demand any bits in positions beyond that
2472     // of the highest bit demanded of them.
2473     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2474     SDNodeFlags Flags = Op.getNode()->getFlags();
2475     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2476     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2477     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2478                              Depth + 1) ||
2479         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2480                              Depth + 1) ||
2481         // See if the operation should be performed at a smaller bit width.
2482         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2483       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2484         // Disable the nsw and nuw flags. We can no longer guarantee that we
2485         // won't wrap after simplification.
2486         Flags.setNoSignedWrap(false);
2487         Flags.setNoUnsignedWrap(false);
2488         SDValue NewOp =
2489             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2490         return TLO.CombineTo(Op, NewOp);
2491       }
2492       return true;
2493     }
2494 
2495     // Attempt to avoid multi-use ops if we don't need anything from them.
2496     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2497       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2498           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2499       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2500           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2501       if (DemandedOp0 || DemandedOp1) {
2502         Flags.setNoSignedWrap(false);
2503         Flags.setNoUnsignedWrap(false);
2504         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2505         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2506         SDValue NewOp =
2507             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2508         return TLO.CombineTo(Op, NewOp);
2509       }
2510     }
2511 
2512     // If we have a constant operand, we may be able to turn it into -1 if we
2513     // do not demand the high bits. This can make the constant smaller to
2514     // encode, allow more general folding, or match specialized instruction
2515     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2516     // is probably not useful (and could be detrimental).
2517     ConstantSDNode *C = isConstOrConstSplat(Op1);
2518     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2519     if (C && !C->isAllOnes() && !C->isOne() &&
2520         (C->getAPIntValue() | HighMask).isAllOnes()) {
2521       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2522       // Disable the nsw and nuw flags. We can no longer guarantee that we
2523       // won't wrap after simplification.
2524       Flags.setNoSignedWrap(false);
2525       Flags.setNoUnsignedWrap(false);
2526       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2527       return TLO.CombineTo(Op, NewOp);
2528     }
2529 
2530     // Match a multiply with a disguised negated-power-of-2 and convert to a
2531     // an equivalent shift-left amount.
2532     // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2533     auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned {
2534       if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse())
2535         return 0;
2536 
2537       // Don't touch opaque constants. Also, ignore zero and power-of-2
2538       // multiplies. Those will get folded later.
2539       ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1));
2540       if (MulC && !MulC->isOpaque() && !MulC->isZero() &&
2541           !MulC->getAPIntValue().isPowerOf2()) {
2542         APInt UnmaskedC = MulC->getAPIntValue() | HighMask;
2543         if (UnmaskedC.isNegatedPowerOf2())
2544           return (-UnmaskedC).logBase2();
2545       }
2546       return 0;
2547     };
2548 
2549     auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y, unsigned ShlAmt) {
2550       EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2551       SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy);
2552       SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC);
2553       SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl);
2554       return TLO.CombineTo(Op, Res);
2555     };
2556 
2557     if (isOperationLegalOrCustom(ISD::SHL, VT)) {
2558       if (Op.getOpcode() == ISD::ADD) {
2559         // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2560         if (unsigned ShAmt = getShiftLeftAmt(Op0))
2561           return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt);
2562         // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC))
2563         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2564           return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt);
2565       }
2566       if (Op.getOpcode() == ISD::SUB) {
2567         // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC))
2568         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2569           return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt);
2570       }
2571     }
2572 
2573     LLVM_FALLTHROUGH;
2574   }
2575   default:
2576     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2577       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2578                                             Known, TLO, Depth))
2579         return true;
2580       break;
2581     }
2582 
2583     // Just use computeKnownBits to compute output bits.
2584     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2585     break;
2586   }
2587 
2588   // If we know the value of all of the demanded bits, return this as a
2589   // constant.
2590   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2591     // Avoid folding to a constant if any OpaqueConstant is involved.
2592     const SDNode *N = Op.getNode();
2593     for (SDNode *Op :
2594          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2595       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2596         if (C->isOpaque())
2597           return false;
2598     }
2599     if (VT.isInteger())
2600       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2601     if (VT.isFloatingPoint())
2602       return TLO.CombineTo(
2603           Op,
2604           TLO.DAG.getConstantFP(
2605               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2606   }
2607 
2608   return false;
2609 }
2610 
2611 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2612                                                 const APInt &DemandedElts,
2613                                                 DAGCombinerInfo &DCI) const {
2614   SelectionDAG &DAG = DCI.DAG;
2615   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2616                         !DCI.isBeforeLegalizeOps());
2617 
2618   APInt KnownUndef, KnownZero;
2619   bool Simplified =
2620       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2621   if (Simplified) {
2622     DCI.AddToWorklist(Op.getNode());
2623     DCI.CommitTargetLoweringOpt(TLO);
2624   }
2625 
2626   return Simplified;
2627 }
2628 
2629 /// Given a vector binary operation and known undefined elements for each input
2630 /// operand, compute whether each element of the output is undefined.
2631 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2632                                          const APInt &UndefOp0,
2633                                          const APInt &UndefOp1) {
2634   EVT VT = BO.getValueType();
2635   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2636          "Vector binop only");
2637 
2638   EVT EltVT = VT.getVectorElementType();
2639   unsigned NumElts = VT.getVectorNumElements();
2640   assert(UndefOp0.getBitWidth() == NumElts &&
2641          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2642 
2643   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2644                                    const APInt &UndefVals) {
2645     if (UndefVals[Index])
2646       return DAG.getUNDEF(EltVT);
2647 
2648     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2649       // Try hard to make sure that the getNode() call is not creating temporary
2650       // nodes. Ignore opaque integers because they do not constant fold.
2651       SDValue Elt = BV->getOperand(Index);
2652       auto *C = dyn_cast<ConstantSDNode>(Elt);
2653       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2654         return Elt;
2655     }
2656 
2657     return SDValue();
2658   };
2659 
2660   APInt KnownUndef = APInt::getZero(NumElts);
2661   for (unsigned i = 0; i != NumElts; ++i) {
2662     // If both inputs for this element are either constant or undef and match
2663     // the element type, compute the constant/undef result for this element of
2664     // the vector.
2665     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2666     // not handle FP constants. The code within getNode() should be refactored
2667     // to avoid the danger of creating a bogus temporary node here.
2668     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2669     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2670     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2671       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2672         KnownUndef.setBit(i);
2673   }
2674   return KnownUndef;
2675 }
2676 
2677 bool TargetLowering::SimplifyDemandedVectorElts(
2678     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2679     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2680     bool AssumeSingleUse) const {
2681   EVT VT = Op.getValueType();
2682   unsigned Opcode = Op.getOpcode();
2683   APInt DemandedElts = OriginalDemandedElts;
2684   unsigned NumElts = DemandedElts.getBitWidth();
2685   assert(VT.isVector() && "Expected vector op");
2686 
2687   KnownUndef = KnownZero = APInt::getZero(NumElts);
2688 
2689   const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo();
2690   if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO))
2691     return false;
2692 
2693   // TODO: For now we assume we know nothing about scalable vectors.
2694   if (VT.isScalableVector())
2695     return false;
2696 
2697   assert(VT.getVectorNumElements() == NumElts &&
2698          "Mask size mismatches value type element count!");
2699 
2700   // Undef operand.
2701   if (Op.isUndef()) {
2702     KnownUndef.setAllBits();
2703     return false;
2704   }
2705 
2706   // If Op has other users, assume that all elements are needed.
2707   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2708     DemandedElts.setAllBits();
2709 
2710   // Not demanding any elements from Op.
2711   if (DemandedElts == 0) {
2712     KnownUndef.setAllBits();
2713     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2714   }
2715 
2716   // Limit search depth.
2717   if (Depth >= SelectionDAG::MaxRecursionDepth)
2718     return false;
2719 
2720   SDLoc DL(Op);
2721   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2722   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
2723 
2724   // Helper for demanding the specified elements and all the bits of both binary
2725   // operands.
2726   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2727     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2728                                                            TLO.DAG, Depth + 1);
2729     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2730                                                            TLO.DAG, Depth + 1);
2731     if (NewOp0 || NewOp1) {
2732       SDValue NewOp = TLO.DAG.getNode(
2733           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2734       return TLO.CombineTo(Op, NewOp);
2735     }
2736     return false;
2737   };
2738 
2739   switch (Opcode) {
2740   case ISD::SCALAR_TO_VECTOR: {
2741     if (!DemandedElts[0]) {
2742       KnownUndef.setAllBits();
2743       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2744     }
2745     SDValue ScalarSrc = Op.getOperand(0);
2746     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2747       SDValue Src = ScalarSrc.getOperand(0);
2748       SDValue Idx = ScalarSrc.getOperand(1);
2749       EVT SrcVT = Src.getValueType();
2750 
2751       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
2752 
2753       if (SrcEltCnt.isScalable())
2754         return false;
2755 
2756       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2757       if (isNullConstant(Idx)) {
2758         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
2759         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
2760         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
2761         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2762                                        TLO, Depth + 1))
2763           return true;
2764       }
2765     }
2766     KnownUndef.setHighBits(NumElts - 1);
2767     break;
2768   }
2769   case ISD::BITCAST: {
2770     SDValue Src = Op.getOperand(0);
2771     EVT SrcVT = Src.getValueType();
2772 
2773     // We only handle vectors here.
2774     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2775     if (!SrcVT.isVector())
2776       break;
2777 
2778     // Fast handling of 'identity' bitcasts.
2779     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2780     if (NumSrcElts == NumElts)
2781       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2782                                         KnownZero, TLO, Depth + 1);
2783 
2784     APInt SrcDemandedElts, SrcZero, SrcUndef;
2785 
2786     // Bitcast from 'large element' src vector to 'small element' vector, we
2787     // must demand a source element if any DemandedElt maps to it.
2788     if ((NumElts % NumSrcElts) == 0) {
2789       unsigned Scale = NumElts / NumSrcElts;
2790       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2791       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2792                                      TLO, Depth + 1))
2793         return true;
2794 
2795       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2796       // of the large element.
2797       // TODO - bigendian once we have test coverage.
2798       if (IsLE) {
2799         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2800         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
2801         for (unsigned i = 0; i != NumElts; ++i)
2802           if (DemandedElts[i]) {
2803             unsigned Ofs = (i % Scale) * EltSizeInBits;
2804             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2805           }
2806 
2807         KnownBits Known;
2808         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2809                                  TLO, Depth + 1))
2810           return true;
2811 
2812         // The bitcast has split each wide element into a number of
2813         // narrow subelements. We have just computed the Known bits
2814         // for wide elements. See if element splitting results in
2815         // some subelements being zero. Only for demanded elements!
2816         for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) {
2817           if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits)
2818                    .isAllOnes())
2819             continue;
2820           for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) {
2821             unsigned Elt = Scale * SrcElt + SubElt;
2822             if (DemandedElts[Elt])
2823               KnownZero.setBit(Elt);
2824           }
2825         }
2826       }
2827 
2828       // If the src element is zero/undef then all the output elements will be -
2829       // only demanded elements are guaranteed to be correct.
2830       for (unsigned i = 0; i != NumSrcElts; ++i) {
2831         if (SrcDemandedElts[i]) {
2832           if (SrcZero[i])
2833             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2834           if (SrcUndef[i])
2835             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2836         }
2837       }
2838     }
2839 
2840     // Bitcast from 'small element' src vector to 'large element' vector, we
2841     // demand all smaller source elements covered by the larger demanded element
2842     // of this vector.
2843     if ((NumSrcElts % NumElts) == 0) {
2844       unsigned Scale = NumSrcElts / NumElts;
2845       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2846       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2847                                      TLO, Depth + 1))
2848         return true;
2849 
2850       // If all the src elements covering an output element are zero/undef, then
2851       // the output element will be as well, assuming it was demanded.
2852       for (unsigned i = 0; i != NumElts; ++i) {
2853         if (DemandedElts[i]) {
2854           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
2855             KnownZero.setBit(i);
2856           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
2857             KnownUndef.setBit(i);
2858         }
2859       }
2860     }
2861     break;
2862   }
2863   case ISD::BUILD_VECTOR: {
2864     // Check all elements and simplify any unused elements with UNDEF.
2865     if (!DemandedElts.isAllOnes()) {
2866       // Don't simplify BROADCASTS.
2867       if (llvm::any_of(Op->op_values(),
2868                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2869         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2870         bool Updated = false;
2871         for (unsigned i = 0; i != NumElts; ++i) {
2872           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2873             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2874             KnownUndef.setBit(i);
2875             Updated = true;
2876           }
2877         }
2878         if (Updated)
2879           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2880       }
2881     }
2882     for (unsigned i = 0; i != NumElts; ++i) {
2883       SDValue SrcOp = Op.getOperand(i);
2884       if (SrcOp.isUndef()) {
2885         KnownUndef.setBit(i);
2886       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2887                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2888         KnownZero.setBit(i);
2889       }
2890     }
2891     break;
2892   }
2893   case ISD::CONCAT_VECTORS: {
2894     EVT SubVT = Op.getOperand(0).getValueType();
2895     unsigned NumSubVecs = Op.getNumOperands();
2896     unsigned NumSubElts = SubVT.getVectorNumElements();
2897     for (unsigned i = 0; i != NumSubVecs; ++i) {
2898       SDValue SubOp = Op.getOperand(i);
2899       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2900       APInt SubUndef, SubZero;
2901       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2902                                      Depth + 1))
2903         return true;
2904       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2905       KnownZero.insertBits(SubZero, i * NumSubElts);
2906     }
2907 
2908     // Attempt to avoid multi-use ops if we don't need anything from them.
2909     if (!DemandedElts.isAllOnes()) {
2910       bool FoundNewSub = false;
2911       SmallVector<SDValue, 2> DemandedSubOps;
2912       for (unsigned i = 0; i != NumSubVecs; ++i) {
2913         SDValue SubOp = Op.getOperand(i);
2914         APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2915         SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts(
2916             SubOp, SubElts, TLO.DAG, Depth + 1);
2917         DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp);
2918         FoundNewSub = NewSubOp ? true : FoundNewSub;
2919       }
2920       if (FoundNewSub) {
2921         SDValue NewOp =
2922             TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps);
2923         return TLO.CombineTo(Op, NewOp);
2924       }
2925     }
2926     break;
2927   }
2928   case ISD::INSERT_SUBVECTOR: {
2929     // Demand any elements from the subvector and the remainder from the src its
2930     // inserted into.
2931     SDValue Src = Op.getOperand(0);
2932     SDValue Sub = Op.getOperand(1);
2933     uint64_t Idx = Op.getConstantOperandVal(2);
2934     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2935     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2936     APInt DemandedSrcElts = DemandedElts;
2937     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2938 
2939     APInt SubUndef, SubZero;
2940     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2941                                    Depth + 1))
2942       return true;
2943 
2944     // If none of the src operand elements are demanded, replace it with undef.
2945     if (!DemandedSrcElts && !Src.isUndef())
2946       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2947                                                TLO.DAG.getUNDEF(VT), Sub,
2948                                                Op.getOperand(2)));
2949 
2950     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2951                                    TLO, Depth + 1))
2952       return true;
2953     KnownUndef.insertBits(SubUndef, Idx);
2954     KnownZero.insertBits(SubZero, Idx);
2955 
2956     // Attempt to avoid multi-use ops if we don't need anything from them.
2957     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
2958       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2959           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2960       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2961           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2962       if (NewSrc || NewSub) {
2963         NewSrc = NewSrc ? NewSrc : Src;
2964         NewSub = NewSub ? NewSub : Sub;
2965         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2966                                         NewSub, Op.getOperand(2));
2967         return TLO.CombineTo(Op, NewOp);
2968       }
2969     }
2970     break;
2971   }
2972   case ISD::EXTRACT_SUBVECTOR: {
2973     // Offset the demanded elts by the subvector index.
2974     SDValue Src = Op.getOperand(0);
2975     if (Src.getValueType().isScalableVector())
2976       break;
2977     uint64_t Idx = Op.getConstantOperandVal(1);
2978     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2979     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
2980 
2981     APInt SrcUndef, SrcZero;
2982     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2983                                    Depth + 1))
2984       return true;
2985     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2986     KnownZero = SrcZero.extractBits(NumElts, Idx);
2987 
2988     // Attempt to avoid multi-use ops if we don't need anything from them.
2989     if (!DemandedElts.isAllOnes()) {
2990       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2991           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2992       if (NewSrc) {
2993         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2994                                         Op.getOperand(1));
2995         return TLO.CombineTo(Op, NewOp);
2996       }
2997     }
2998     break;
2999   }
3000   case ISD::INSERT_VECTOR_ELT: {
3001     SDValue Vec = Op.getOperand(0);
3002     SDValue Scl = Op.getOperand(1);
3003     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3004 
3005     // For a legal, constant insertion index, if we don't need this insertion
3006     // then strip it, else remove it from the demanded elts.
3007     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
3008       unsigned Idx = CIdx->getZExtValue();
3009       if (!DemandedElts[Idx])
3010         return TLO.CombineTo(Op, Vec);
3011 
3012       APInt DemandedVecElts(DemandedElts);
3013       DemandedVecElts.clearBit(Idx);
3014       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
3015                                      KnownZero, TLO, Depth + 1))
3016         return true;
3017 
3018       KnownUndef.setBitVal(Idx, Scl.isUndef());
3019 
3020       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
3021       break;
3022     }
3023 
3024     APInt VecUndef, VecZero;
3025     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
3026                                    Depth + 1))
3027       return true;
3028     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
3029     break;
3030   }
3031   case ISD::VSELECT: {
3032     // Try to transform the select condition based on the current demanded
3033     // elements.
3034     // TODO: If a condition element is undef, we can choose from one arm of the
3035     //       select (and if one arm is undef, then we can propagate that to the
3036     //       result).
3037     // TODO - add support for constant vselect masks (see IR version of this).
3038     APInt UnusedUndef, UnusedZero;
3039     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
3040                                    UnusedZero, TLO, Depth + 1))
3041       return true;
3042 
3043     // See if we can simplify either vselect operand.
3044     APInt DemandedLHS(DemandedElts);
3045     APInt DemandedRHS(DemandedElts);
3046     APInt UndefLHS, ZeroLHS;
3047     APInt UndefRHS, ZeroRHS;
3048     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
3049                                    ZeroLHS, TLO, Depth + 1))
3050       return true;
3051     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
3052                                    ZeroRHS, TLO, Depth + 1))
3053       return true;
3054 
3055     KnownUndef = UndefLHS & UndefRHS;
3056     KnownZero = ZeroLHS & ZeroRHS;
3057     break;
3058   }
3059   case ISD::VECTOR_SHUFFLE: {
3060     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
3061 
3062     // Collect demanded elements from shuffle operands..
3063     APInt DemandedLHS(NumElts, 0);
3064     APInt DemandedRHS(NumElts, 0);
3065     for (unsigned i = 0; i != NumElts; ++i) {
3066       int M = ShuffleMask[i];
3067       if (M < 0 || !DemandedElts[i])
3068         continue;
3069       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
3070       if (M < (int)NumElts)
3071         DemandedLHS.setBit(M);
3072       else
3073         DemandedRHS.setBit(M - NumElts);
3074     }
3075 
3076     // See if we can simplify either shuffle operand.
3077     APInt UndefLHS, ZeroLHS;
3078     APInt UndefRHS, ZeroRHS;
3079     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
3080                                    ZeroLHS, TLO, Depth + 1))
3081       return true;
3082     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
3083                                    ZeroRHS, TLO, Depth + 1))
3084       return true;
3085 
3086     // Simplify mask using undef elements from LHS/RHS.
3087     bool Updated = false;
3088     bool IdentityLHS = true, IdentityRHS = true;
3089     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
3090     for (unsigned i = 0; i != NumElts; ++i) {
3091       int &M = NewMask[i];
3092       if (M < 0)
3093         continue;
3094       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
3095           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
3096         Updated = true;
3097         M = -1;
3098       }
3099       IdentityLHS &= (M < 0) || (M == (int)i);
3100       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
3101     }
3102 
3103     // Update legal shuffle masks based on demanded elements if it won't reduce
3104     // to Identity which can cause premature removal of the shuffle mask.
3105     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
3106       SDValue LegalShuffle =
3107           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
3108                                   NewMask, TLO.DAG);
3109       if (LegalShuffle)
3110         return TLO.CombineTo(Op, LegalShuffle);
3111     }
3112 
3113     // Propagate undef/zero elements from LHS/RHS.
3114     for (unsigned i = 0; i != NumElts; ++i) {
3115       int M = ShuffleMask[i];
3116       if (M < 0) {
3117         KnownUndef.setBit(i);
3118       } else if (M < (int)NumElts) {
3119         if (UndefLHS[M])
3120           KnownUndef.setBit(i);
3121         if (ZeroLHS[M])
3122           KnownZero.setBit(i);
3123       } else {
3124         if (UndefRHS[M - NumElts])
3125           KnownUndef.setBit(i);
3126         if (ZeroRHS[M - NumElts])
3127           KnownZero.setBit(i);
3128       }
3129     }
3130     break;
3131   }
3132   case ISD::ANY_EXTEND_VECTOR_INREG:
3133   case ISD::SIGN_EXTEND_VECTOR_INREG:
3134   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3135     APInt SrcUndef, SrcZero;
3136     SDValue Src = Op.getOperand(0);
3137     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3138     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
3139     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3140                                    Depth + 1))
3141       return true;
3142     KnownZero = SrcZero.zextOrTrunc(NumElts);
3143     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
3144 
3145     if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
3146         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
3147         DemandedSrcElts == 1) {
3148       // aext - if we just need the bottom element then we can bitcast.
3149       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
3150     }
3151 
3152     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
3153       // zext(undef) upper bits are guaranteed to be zero.
3154       if (DemandedElts.isSubsetOf(KnownUndef))
3155         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3156       KnownUndef.clearAllBits();
3157 
3158       // zext - if we just need the bottom element then we can mask:
3159       // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
3160       if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
3161           Op->isOnlyUserOf(Src.getNode()) &&
3162           Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
3163         SDLoc DL(Op);
3164         EVT SrcVT = Src.getValueType();
3165         EVT SrcSVT = SrcVT.getScalarType();
3166         SmallVector<SDValue> MaskElts;
3167         MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
3168         MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
3169         SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
3170         if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
3171                 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
3172           Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
3173           return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
3174         }
3175       }
3176     }
3177     break;
3178   }
3179 
3180   // TODO: There are more binop opcodes that could be handled here - MIN,
3181   // MAX, saturated math, etc.
3182   case ISD::ADD: {
3183     SDValue Op0 = Op.getOperand(0);
3184     SDValue Op1 = Op.getOperand(1);
3185     if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
3186       APInt UndefLHS, ZeroLHS;
3187       if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3188                                      Depth + 1, /*AssumeSingleUse*/ true))
3189         return true;
3190     }
3191     LLVM_FALLTHROUGH;
3192   }
3193   case ISD::OR:
3194   case ISD::XOR:
3195   case ISD::SUB:
3196   case ISD::FADD:
3197   case ISD::FSUB:
3198   case ISD::FMUL:
3199   case ISD::FDIV:
3200   case ISD::FREM: {
3201     SDValue Op0 = Op.getOperand(0);
3202     SDValue Op1 = Op.getOperand(1);
3203 
3204     APInt UndefRHS, ZeroRHS;
3205     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3206                                    Depth + 1))
3207       return true;
3208     APInt UndefLHS, ZeroLHS;
3209     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3210                                    Depth + 1))
3211       return true;
3212 
3213     KnownZero = ZeroLHS & ZeroRHS;
3214     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
3215 
3216     // Attempt to avoid multi-use ops if we don't need anything from them.
3217     // TODO - use KnownUndef to relax the demandedelts?
3218     if (!DemandedElts.isAllOnes())
3219       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3220         return true;
3221     break;
3222   }
3223   case ISD::SHL:
3224   case ISD::SRL:
3225   case ISD::SRA:
3226   case ISD::ROTL:
3227   case ISD::ROTR: {
3228     SDValue Op0 = Op.getOperand(0);
3229     SDValue Op1 = Op.getOperand(1);
3230 
3231     APInt UndefRHS, ZeroRHS;
3232     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3233                                    Depth + 1))
3234       return true;
3235     APInt UndefLHS, ZeroLHS;
3236     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3237                                    Depth + 1))
3238       return true;
3239 
3240     KnownZero = ZeroLHS;
3241     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
3242 
3243     // Attempt to avoid multi-use ops if we don't need anything from them.
3244     // TODO - use KnownUndef to relax the demandedelts?
3245     if (!DemandedElts.isAllOnes())
3246       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3247         return true;
3248     break;
3249   }
3250   case ISD::MUL:
3251   case ISD::AND: {
3252     SDValue Op0 = Op.getOperand(0);
3253     SDValue Op1 = Op.getOperand(1);
3254 
3255     APInt SrcUndef, SrcZero;
3256     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
3257                                    Depth + 1))
3258       return true;
3259     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
3260                                    TLO, Depth + 1))
3261       return true;
3262 
3263     // If either side has a zero element, then the result element is zero, even
3264     // if the other is an UNDEF.
3265     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
3266     // and then handle 'and' nodes with the rest of the binop opcodes.
3267     KnownZero |= SrcZero;
3268     KnownUndef &= SrcUndef;
3269     KnownUndef &= ~KnownZero;
3270 
3271     // Attempt to avoid multi-use ops if we don't need anything from them.
3272     // TODO - use KnownUndef to relax the demandedelts?
3273     if (!DemandedElts.isAllOnes())
3274       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3275         return true;
3276     break;
3277   }
3278   case ISD::TRUNCATE:
3279   case ISD::SIGN_EXTEND:
3280   case ISD::ZERO_EXTEND:
3281     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
3282                                    KnownZero, TLO, Depth + 1))
3283       return true;
3284 
3285     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
3286       // zext(undef) upper bits are guaranteed to be zero.
3287       if (DemandedElts.isSubsetOf(KnownUndef))
3288         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3289       KnownUndef.clearAllBits();
3290     }
3291     break;
3292   default: {
3293     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
3294       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
3295                                                   KnownZero, TLO, Depth))
3296         return true;
3297     } else {
3298       KnownBits Known;
3299       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
3300       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
3301                                TLO, Depth, AssumeSingleUse))
3302         return true;
3303     }
3304     break;
3305   }
3306   }
3307   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
3308 
3309   // Constant fold all undef cases.
3310   // TODO: Handle zero cases as well.
3311   if (DemandedElts.isSubsetOf(KnownUndef))
3312     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3313 
3314   return false;
3315 }
3316 
3317 /// Determine which of the bits specified in Mask are known to be either zero or
3318 /// one and return them in the Known.
3319 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
3320                                                    KnownBits &Known,
3321                                                    const APInt &DemandedElts,
3322                                                    const SelectionDAG &DAG,
3323                                                    unsigned Depth) const {
3324   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3325           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3326           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3327           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3328          "Should use MaskedValueIsZero if you don't know whether Op"
3329          " is a target node!");
3330   Known.resetAll();
3331 }
3332 
3333 void TargetLowering::computeKnownBitsForTargetInstr(
3334     GISelKnownBits &Analysis, Register R, KnownBits &Known,
3335     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3336     unsigned Depth) const {
3337   Known.resetAll();
3338 }
3339 
3340 void TargetLowering::computeKnownBitsForFrameIndex(
3341   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3342   // The low bits are known zero if the pointer is aligned.
3343   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3344 }
3345 
3346 Align TargetLowering::computeKnownAlignForTargetInstr(
3347   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
3348   unsigned Depth) const {
3349   return Align(1);
3350 }
3351 
3352 /// This method can be implemented by targets that want to expose additional
3353 /// information about sign bits to the DAG Combiner.
3354 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
3355                                                          const APInt &,
3356                                                          const SelectionDAG &,
3357                                                          unsigned Depth) const {
3358   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3359           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3360           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3361           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3362          "Should use ComputeNumSignBits if you don't know whether Op"
3363          " is a target node!");
3364   return 1;
3365 }
3366 
3367 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3368   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3369   const MachineRegisterInfo &MRI, unsigned Depth) const {
3370   return 1;
3371 }
3372 
3373 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3374     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3375     TargetLoweringOpt &TLO, unsigned Depth) const {
3376   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3377           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3378           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3379           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3380          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3381          " is a target node!");
3382   return false;
3383 }
3384 
3385 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3386     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3387     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3388   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3389           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3390           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3391           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3392          "Should use SimplifyDemandedBits if you don't know whether Op"
3393          " is a target node!");
3394   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3395   return false;
3396 }
3397 
3398 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3399     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3400     SelectionDAG &DAG, unsigned Depth) const {
3401   assert(
3402       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3403        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3404        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3405        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3406       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3407       " is a target node!");
3408   return SDValue();
3409 }
3410 
3411 SDValue
3412 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3413                                         SDValue N1, MutableArrayRef<int> Mask,
3414                                         SelectionDAG &DAG) const {
3415   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3416   if (!LegalMask) {
3417     std::swap(N0, N1);
3418     ShuffleVectorSDNode::commuteMask(Mask);
3419     LegalMask = isShuffleMaskLegal(Mask, VT);
3420   }
3421 
3422   if (!LegalMask)
3423     return SDValue();
3424 
3425   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3426 }
3427 
3428 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3429   return nullptr;
3430 }
3431 
3432 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3433     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3434     bool PoisonOnly, unsigned Depth) const {
3435   assert(
3436       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3437        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3438        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3439        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3440       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3441       " is a target node!");
3442   return false;
3443 }
3444 
3445 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3446                                                   const SelectionDAG &DAG,
3447                                                   bool SNaN,
3448                                                   unsigned Depth) const {
3449   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3450           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3451           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3452           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3453          "Should use isKnownNeverNaN if you don't know whether Op"
3454          " is a target node!");
3455   return false;
3456 }
3457 
3458 bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
3459                                                const APInt &DemandedElts,
3460                                                APInt &UndefElts,
3461                                                unsigned Depth) const {
3462   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3463           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3464           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3465           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3466          "Should use isSplatValue if you don't know whether Op"
3467          " is a target node!");
3468   return false;
3469 }
3470 
3471 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3472 // work with truncating build vectors and vectors with elements of less than
3473 // 8 bits.
3474 bool TargetLowering::isConstTrueVal(SDValue N) const {
3475   if (!N)
3476     return false;
3477 
3478   unsigned EltWidth;
3479   APInt CVal;
3480   if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false,
3481                                                /*AllowTruncation=*/true)) {
3482     CVal = CN->getAPIntValue();
3483     EltWidth = N.getValueType().getScalarSizeInBits();
3484   } else
3485     return false;
3486 
3487   // If this is a truncating splat, truncate the splat value.
3488   // Otherwise, we may fail to match the expected values below.
3489   if (EltWidth < CVal.getBitWidth())
3490     CVal = CVal.trunc(EltWidth);
3491 
3492   switch (getBooleanContents(N.getValueType())) {
3493   case UndefinedBooleanContent:
3494     return CVal[0];
3495   case ZeroOrOneBooleanContent:
3496     return CVal.isOne();
3497   case ZeroOrNegativeOneBooleanContent:
3498     return CVal.isAllOnes();
3499   }
3500 
3501   llvm_unreachable("Invalid boolean contents");
3502 }
3503 
3504 bool TargetLowering::isConstFalseVal(SDValue N) const {
3505   if (!N)
3506     return false;
3507 
3508   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3509   if (!CN) {
3510     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3511     if (!BV)
3512       return false;
3513 
3514     // Only interested in constant splats, we don't care about undef
3515     // elements in identifying boolean constants and getConstantSplatNode
3516     // returns NULL if all ops are undef;
3517     CN = BV->getConstantSplatNode();
3518     if (!CN)
3519       return false;
3520   }
3521 
3522   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3523     return !CN->getAPIntValue()[0];
3524 
3525   return CN->isZero();
3526 }
3527 
3528 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3529                                        bool SExt) const {
3530   if (VT == MVT::i1)
3531     return N->isOne();
3532 
3533   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3534   switch (Cnt) {
3535   case TargetLowering::ZeroOrOneBooleanContent:
3536     // An extended value of 1 is always true, unless its original type is i1,
3537     // in which case it will be sign extended to -1.
3538     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3539   case TargetLowering::UndefinedBooleanContent:
3540   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3541     return N->isAllOnes() && SExt;
3542   }
3543   llvm_unreachable("Unexpected enumeration.");
3544 }
3545 
3546 /// This helper function of SimplifySetCC tries to optimize the comparison when
3547 /// either operand of the SetCC node is a bitwise-and instruction.
3548 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3549                                          ISD::CondCode Cond, const SDLoc &DL,
3550                                          DAGCombinerInfo &DCI) const {
3551   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3552     std::swap(N0, N1);
3553 
3554   SelectionDAG &DAG = DCI.DAG;
3555   EVT OpVT = N0.getValueType();
3556   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3557       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3558     return SDValue();
3559 
3560   // (X & Y) != 0 --> zextOrTrunc(X & Y)
3561   // iff everything but LSB is known zero:
3562   if (Cond == ISD::SETNE && isNullConstant(N1) &&
3563       (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent ||
3564        getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) {
3565     unsigned NumEltBits = OpVT.getScalarSizeInBits();
3566     APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1);
3567     if (DAG.MaskedValueIsZero(N0, UpperBits))
3568       return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT);
3569   }
3570 
3571   // Match these patterns in any of their permutations:
3572   // (X & Y) == Y
3573   // (X & Y) != Y
3574   SDValue X, Y;
3575   if (N0.getOperand(0) == N1) {
3576     X = N0.getOperand(1);
3577     Y = N0.getOperand(0);
3578   } else if (N0.getOperand(1) == N1) {
3579     X = N0.getOperand(0);
3580     Y = N0.getOperand(1);
3581   } else {
3582     return SDValue();
3583   }
3584 
3585   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3586   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3587     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3588     // Note that where Y is variable and is known to have at most one bit set
3589     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3590     // equivalent when Y == 0.
3591     assert(OpVT.isInteger());
3592     Cond = ISD::getSetCCInverse(Cond, OpVT);
3593     if (DCI.isBeforeLegalizeOps() ||
3594         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3595       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3596   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3597     // If the target supports an 'and-not' or 'and-complement' logic operation,
3598     // try to use that to make a comparison operation more efficient.
3599     // But don't do this transform if the mask is a single bit because there are
3600     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3601     // 'rlwinm' on PPC).
3602 
3603     // Bail out if the compare operand that we want to turn into a zero is
3604     // already a zero (otherwise, infinite loop).
3605     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3606     if (YConst && YConst->isZero())
3607       return SDValue();
3608 
3609     // Transform this into: ~X & Y == 0.
3610     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3611     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3612     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3613   }
3614 
3615   return SDValue();
3616 }
3617 
3618 /// There are multiple IR patterns that could be checking whether certain
3619 /// truncation of a signed number would be lossy or not. The pattern which is
3620 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3621 /// We are looking for the following pattern: (KeptBits is a constant)
3622 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3623 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3624 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3625 /// We will unfold it into the natural trunc+sext pattern:
3626 ///   ((%x << C) a>> C) dstcond %x
3627 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3628 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3629     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3630     const SDLoc &DL) const {
3631   // We must be comparing with a constant.
3632   ConstantSDNode *C1;
3633   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3634     return SDValue();
3635 
3636   // N0 should be:  add %x, (1 << (KeptBits-1))
3637   if (N0->getOpcode() != ISD::ADD)
3638     return SDValue();
3639 
3640   // And we must be 'add'ing a constant.
3641   ConstantSDNode *C01;
3642   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3643     return SDValue();
3644 
3645   SDValue X = N0->getOperand(0);
3646   EVT XVT = X.getValueType();
3647 
3648   // Validate constants ...
3649 
3650   APInt I1 = C1->getAPIntValue();
3651 
3652   ISD::CondCode NewCond;
3653   if (Cond == ISD::CondCode::SETULT) {
3654     NewCond = ISD::CondCode::SETEQ;
3655   } else if (Cond == ISD::CondCode::SETULE) {
3656     NewCond = ISD::CondCode::SETEQ;
3657     // But need to 'canonicalize' the constant.
3658     I1 += 1;
3659   } else if (Cond == ISD::CondCode::SETUGT) {
3660     NewCond = ISD::CondCode::SETNE;
3661     // But need to 'canonicalize' the constant.
3662     I1 += 1;
3663   } else if (Cond == ISD::CondCode::SETUGE) {
3664     NewCond = ISD::CondCode::SETNE;
3665   } else
3666     return SDValue();
3667 
3668   APInt I01 = C01->getAPIntValue();
3669 
3670   auto checkConstants = [&I1, &I01]() -> bool {
3671     // Both of them must be power-of-two, and the constant from setcc is bigger.
3672     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3673   };
3674 
3675   if (checkConstants()) {
3676     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3677   } else {
3678     // What if we invert constants? (and the target predicate)
3679     I1.negate();
3680     I01.negate();
3681     assert(XVT.isInteger());
3682     NewCond = getSetCCInverse(NewCond, XVT);
3683     if (!checkConstants())
3684       return SDValue();
3685     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3686   }
3687 
3688   // They are power-of-two, so which bit is set?
3689   const unsigned KeptBits = I1.logBase2();
3690   const unsigned KeptBitsMinusOne = I01.logBase2();
3691 
3692   // Magic!
3693   if (KeptBits != (KeptBitsMinusOne + 1))
3694     return SDValue();
3695   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3696 
3697   // We don't want to do this in every single case.
3698   SelectionDAG &DAG = DCI.DAG;
3699   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3700           XVT, KeptBits))
3701     return SDValue();
3702 
3703   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3704   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3705 
3706   // Unfold into:  ((%x << C) a>> C) cond %x
3707   // Where 'cond' will be either 'eq' or 'ne'.
3708   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3709   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3710   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3711   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3712 
3713   return T2;
3714 }
3715 
3716 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3717 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3718     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3719     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3720   assert(isConstOrConstSplat(N1C) &&
3721          isConstOrConstSplat(N1C)->getAPIntValue().isZero() &&
3722          "Should be a comparison with 0.");
3723   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3724          "Valid only for [in]equality comparisons.");
3725 
3726   unsigned NewShiftOpcode;
3727   SDValue X, C, Y;
3728 
3729   SelectionDAG &DAG = DCI.DAG;
3730   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3731 
3732   // Look for '(C l>>/<< Y)'.
3733   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3734     // The shift should be one-use.
3735     if (!V.hasOneUse())
3736       return false;
3737     unsigned OldShiftOpcode = V.getOpcode();
3738     switch (OldShiftOpcode) {
3739     case ISD::SHL:
3740       NewShiftOpcode = ISD::SRL;
3741       break;
3742     case ISD::SRL:
3743       NewShiftOpcode = ISD::SHL;
3744       break;
3745     default:
3746       return false; // must be a logical shift.
3747     }
3748     // We should be shifting a constant.
3749     // FIXME: best to use isConstantOrConstantVector().
3750     C = V.getOperand(0);
3751     ConstantSDNode *CC =
3752         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3753     if (!CC)
3754       return false;
3755     Y = V.getOperand(1);
3756 
3757     ConstantSDNode *XC =
3758         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3759     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3760         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3761   };
3762 
3763   // LHS of comparison should be an one-use 'and'.
3764   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3765     return SDValue();
3766 
3767   X = N0.getOperand(0);
3768   SDValue Mask = N0.getOperand(1);
3769 
3770   // 'and' is commutative!
3771   if (!Match(Mask)) {
3772     std::swap(X, Mask);
3773     if (!Match(Mask))
3774       return SDValue();
3775   }
3776 
3777   EVT VT = X.getValueType();
3778 
3779   // Produce:
3780   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3781   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3782   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3783   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3784   return T2;
3785 }
3786 
3787 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3788 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3789 /// handle the commuted versions of these patterns.
3790 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3791                                            ISD::CondCode Cond, const SDLoc &DL,
3792                                            DAGCombinerInfo &DCI) const {
3793   unsigned BOpcode = N0.getOpcode();
3794   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3795          "Unexpected binop");
3796   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3797 
3798   // (X + Y) == X --> Y == 0
3799   // (X - Y) == X --> Y == 0
3800   // (X ^ Y) == X --> Y == 0
3801   SelectionDAG &DAG = DCI.DAG;
3802   EVT OpVT = N0.getValueType();
3803   SDValue X = N0.getOperand(0);
3804   SDValue Y = N0.getOperand(1);
3805   if (X == N1)
3806     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3807 
3808   if (Y != N1)
3809     return SDValue();
3810 
3811   // (X + Y) == Y --> X == 0
3812   // (X ^ Y) == Y --> X == 0
3813   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3814     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3815 
3816   // The shift would not be valid if the operands are boolean (i1).
3817   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3818     return SDValue();
3819 
3820   // (X - Y) == Y --> X == Y << 1
3821   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3822                                  !DCI.isBeforeLegalize());
3823   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3824   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3825   if (!DCI.isCalledByLegalizer())
3826     DCI.AddToWorklist(YShl1.getNode());
3827   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3828 }
3829 
3830 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3831                                       SDValue N0, const APInt &C1,
3832                                       ISD::CondCode Cond, const SDLoc &dl,
3833                                       SelectionDAG &DAG) {
3834   // Look through truncs that don't change the value of a ctpop.
3835   // FIXME: Add vector support? Need to be careful with setcc result type below.
3836   SDValue CTPOP = N0;
3837   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3838       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3839     CTPOP = N0.getOperand(0);
3840 
3841   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3842     return SDValue();
3843 
3844   EVT CTVT = CTPOP.getValueType();
3845   SDValue CTOp = CTPOP.getOperand(0);
3846 
3847   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3848   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3849   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3850     return SDValue();
3851 
3852   // (ctpop x) u< 2 -> (x & x-1) == 0
3853   // (ctpop x) u> 1 -> (x & x-1) != 0
3854   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3855     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3856     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3857       return SDValue();
3858     if (C1 == 0 && (Cond == ISD::SETULT))
3859       return SDValue(); // This is handled elsewhere.
3860 
3861     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3862 
3863     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3864     SDValue Result = CTOp;
3865     for (unsigned i = 0; i < Passes; i++) {
3866       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3867       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3868     }
3869     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3870     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3871   }
3872 
3873   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3874   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3875     // For scalars, keep CTPOP if it is legal or custom.
3876     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3877       return SDValue();
3878     // This is based on X86's custom lowering for CTPOP which produces more
3879     // instructions than the expansion here.
3880 
3881     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3882     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3883     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3884     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3885     assert(CTVT.isInteger());
3886     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3887     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3888     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3889     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3890     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3891     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3892     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3893   }
3894 
3895   return SDValue();
3896 }
3897 
3898 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1,
3899                                    ISD::CondCode Cond, const SDLoc &dl,
3900                                    SelectionDAG &DAG) {
3901   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
3902     return SDValue();
3903 
3904   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
3905   if (!C1 || !(C1->isZero() || C1->isAllOnes()))
3906     return SDValue();
3907 
3908   auto getRotateSource = [](SDValue X) {
3909     if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR)
3910       return X.getOperand(0);
3911     return SDValue();
3912   };
3913 
3914   // Peek through a rotated value compared against 0 or -1:
3915   // (rot X, Y) == 0/-1 --> X == 0/-1
3916   // (rot X, Y) != 0/-1 --> X != 0/-1
3917   if (SDValue R = getRotateSource(N0))
3918     return DAG.getSetCC(dl, VT, R, N1, Cond);
3919 
3920   // Peek through an 'or' of a rotated value compared against 0:
3921   // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0
3922   // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0
3923   //
3924   // TODO: Add the 'and' with -1 sibling.
3925   // TODO: Recurse through a series of 'or' ops to find the rotate.
3926   EVT OpVT = N0.getValueType();
3927   if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) {
3928     if (SDValue R = getRotateSource(N0.getOperand(0))) {
3929       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1));
3930       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
3931     }
3932     if (SDValue R = getRotateSource(N0.getOperand(1))) {
3933       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0));
3934       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
3935     }
3936   }
3937 
3938   return SDValue();
3939 }
3940 
3941 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1,
3942                                         ISD::CondCode Cond, const SDLoc &dl,
3943                                         SelectionDAG &DAG) {
3944   // If we are testing for all-bits-clear, we might be able to do that with
3945   // less shifting since bit-order does not matter.
3946   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
3947     return SDValue();
3948 
3949   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
3950   if (!C1 || !C1->isZero())
3951     return SDValue();
3952 
3953   if (!N0.hasOneUse() ||
3954       (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR))
3955     return SDValue();
3956 
3957   unsigned BitWidth = N0.getScalarValueSizeInBits();
3958   auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2));
3959   if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
3960     return SDValue();
3961 
3962   // Canonicalize fshr as fshl to reduce pattern-matching.
3963   unsigned ShAmt = ShAmtC->getZExtValue();
3964   if (N0.getOpcode() == ISD::FSHR)
3965     ShAmt = BitWidth - ShAmt;
3966 
3967   // Match an 'or' with a specific operand 'Other' in either commuted variant.
3968   SDValue X, Y;
3969   auto matchOr = [&X, &Y](SDValue Or, SDValue Other) {
3970     if (Or.getOpcode() != ISD::OR || !Or.hasOneUse())
3971       return false;
3972     if (Or.getOperand(0) == Other) {
3973       X = Or.getOperand(0);
3974       Y = Or.getOperand(1);
3975       return true;
3976     }
3977     if (Or.getOperand(1) == Other) {
3978       X = Or.getOperand(1);
3979       Y = Or.getOperand(0);
3980       return true;
3981     }
3982     return false;
3983   };
3984 
3985   EVT OpVT = N0.getValueType();
3986   EVT ShAmtVT = N0.getOperand(2).getValueType();
3987   SDValue F0 = N0.getOperand(0);
3988   SDValue F1 = N0.getOperand(1);
3989   if (matchOr(F0, F1)) {
3990     // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0
3991     SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT);
3992     SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt);
3993     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
3994     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
3995   }
3996   if (matchOr(F1, F0)) {
3997     // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0
3998     SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT);
3999     SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt);
4000     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4001     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4002   }
4003 
4004   return SDValue();
4005 }
4006 
4007 /// Try to simplify a setcc built with the specified operands and cc. If it is
4008 /// unable to simplify it, return a null SDValue.
4009 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
4010                                       ISD::CondCode Cond, bool foldBooleans,
4011                                       DAGCombinerInfo &DCI,
4012                                       const SDLoc &dl) const {
4013   SelectionDAG &DAG = DCI.DAG;
4014   const DataLayout &Layout = DAG.getDataLayout();
4015   EVT OpVT = N0.getValueType();
4016 
4017   // Constant fold or commute setcc.
4018   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
4019     return Fold;
4020 
4021   bool N0ConstOrSplat =
4022       isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4023   bool N1ConstOrSplat =
4024       isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4025 
4026   // Ensure that the constant occurs on the RHS and fold constant comparisons.
4027   // TODO: Handle non-splat vector constants. All undef causes trouble.
4028   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
4029   // infinite loop here when we encounter one.
4030   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
4031   if (N0ConstOrSplat && (!OpVT.isScalableVector() || !N1ConstOrSplat) &&
4032       (DCI.isBeforeLegalizeOps() ||
4033        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
4034     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4035 
4036   // If we have a subtract with the same 2 non-constant operands as this setcc
4037   // -- but in reverse order -- then try to commute the operands of this setcc
4038   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
4039   // instruction on some targets.
4040   if (!N0ConstOrSplat && !N1ConstOrSplat &&
4041       (DCI.isBeforeLegalizeOps() ||
4042        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
4043       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
4044       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
4045     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4046 
4047   if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG))
4048     return V;
4049 
4050   if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG))
4051     return V;
4052 
4053   if (auto *N1C = isConstOrConstSplat(N1)) {
4054     const APInt &C1 = N1C->getAPIntValue();
4055 
4056     // Optimize some CTPOP cases.
4057     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
4058       return V;
4059 
4060     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
4061     // equality comparison, then we're just comparing whether X itself is
4062     // zero.
4063     if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
4064         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
4065         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
4066       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
4067         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4068             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
4069           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
4070             // (srl (ctlz x), 5) == 0  -> X != 0
4071             // (srl (ctlz x), 5) != 1  -> X != 0
4072             Cond = ISD::SETNE;
4073           } else {
4074             // (srl (ctlz x), 5) != 0  -> X == 0
4075             // (srl (ctlz x), 5) == 1  -> X == 0
4076             Cond = ISD::SETEQ;
4077           }
4078           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
4079           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
4080                               Cond);
4081         }
4082       }
4083     }
4084   }
4085 
4086   // FIXME: Support vectors.
4087   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4088     const APInt &C1 = N1C->getAPIntValue();
4089 
4090     // (zext x) == C --> x == (trunc C)
4091     // (sext x) == C --> x == (trunc C)
4092     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4093         DCI.isBeforeLegalize() && N0->hasOneUse()) {
4094       unsigned MinBits = N0.getValueSizeInBits();
4095       SDValue PreExt;
4096       bool Signed = false;
4097       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
4098         // ZExt
4099         MinBits = N0->getOperand(0).getValueSizeInBits();
4100         PreExt = N0->getOperand(0);
4101       } else if (N0->getOpcode() == ISD::AND) {
4102         // DAGCombine turns costly ZExts into ANDs
4103         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
4104           if ((C->getAPIntValue()+1).isPowerOf2()) {
4105             MinBits = C->getAPIntValue().countTrailingOnes();
4106             PreExt = N0->getOperand(0);
4107           }
4108       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
4109         // SExt
4110         MinBits = N0->getOperand(0).getValueSizeInBits();
4111         PreExt = N0->getOperand(0);
4112         Signed = true;
4113       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
4114         // ZEXTLOAD / SEXTLOAD
4115         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
4116           MinBits = LN0->getMemoryVT().getSizeInBits();
4117           PreExt = N0;
4118         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
4119           Signed = true;
4120           MinBits = LN0->getMemoryVT().getSizeInBits();
4121           PreExt = N0;
4122         }
4123       }
4124 
4125       // Figure out how many bits we need to preserve this constant.
4126       unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits();
4127 
4128       // Make sure we're not losing bits from the constant.
4129       if (MinBits > 0 &&
4130           MinBits < C1.getBitWidth() &&
4131           MinBits >= ReqdBits) {
4132         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
4133         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
4134           // Will get folded away.
4135           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
4136           if (MinBits == 1 && C1 == 1)
4137             // Invert the condition.
4138             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
4139                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4140           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
4141           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
4142         }
4143 
4144         // If truncating the setcc operands is not desirable, we can still
4145         // simplify the expression in some cases:
4146         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
4147         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
4148         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
4149         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
4150         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
4151         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
4152         SDValue TopSetCC = N0->getOperand(0);
4153         unsigned N0Opc = N0->getOpcode();
4154         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
4155         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
4156             TopSetCC.getOpcode() == ISD::SETCC &&
4157             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
4158             (isConstFalseVal(N1) ||
4159              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
4160 
4161           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
4162                          (!N1C->isZero() && Cond == ISD::SETNE);
4163 
4164           if (!Inverse)
4165             return TopSetCC;
4166 
4167           ISD::CondCode InvCond = ISD::getSetCCInverse(
4168               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
4169               TopSetCC.getOperand(0).getValueType());
4170           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
4171                                       TopSetCC.getOperand(1),
4172                                       InvCond);
4173         }
4174       }
4175     }
4176 
4177     // If the LHS is '(and load, const)', the RHS is 0, the test is for
4178     // equality or unsigned, and all 1 bits of the const are in the same
4179     // partial word, see if we can shorten the load.
4180     if (DCI.isBeforeLegalize() &&
4181         !ISD::isSignedIntSetCC(Cond) &&
4182         N0.getOpcode() == ISD::AND && C1 == 0 &&
4183         N0.getNode()->hasOneUse() &&
4184         isa<LoadSDNode>(N0.getOperand(0)) &&
4185         N0.getOperand(0).getNode()->hasOneUse() &&
4186         isa<ConstantSDNode>(N0.getOperand(1))) {
4187       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
4188       APInt bestMask;
4189       unsigned bestWidth = 0, bestOffset = 0;
4190       if (Lod->isSimple() && Lod->isUnindexed()) {
4191         unsigned origWidth = N0.getValueSizeInBits();
4192         unsigned maskWidth = origWidth;
4193         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
4194         // 8 bits, but have to be careful...
4195         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
4196           origWidth = Lod->getMemoryVT().getSizeInBits();
4197         const APInt &Mask = N0.getConstantOperandAPInt(1);
4198         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
4199           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
4200           for (unsigned offset=0; offset<origWidth/width; offset++) {
4201             if (Mask.isSubsetOf(newMask)) {
4202               if (Layout.isLittleEndian())
4203                 bestOffset = (uint64_t)offset * (width/8);
4204               else
4205                 bestOffset = (origWidth/width - offset - 1) * (width/8);
4206               bestMask = Mask.lshr(offset * (width/8) * 8);
4207               bestWidth = width;
4208               break;
4209             }
4210             newMask <<= width;
4211           }
4212         }
4213       }
4214       if (bestWidth) {
4215         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
4216         if (newVT.isRound() &&
4217             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
4218           SDValue Ptr = Lod->getBasePtr();
4219           if (bestOffset != 0)
4220             Ptr =
4221                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
4222           SDValue NewLoad =
4223               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
4224                           Lod->getPointerInfo().getWithOffset(bestOffset),
4225                           Lod->getOriginalAlign());
4226           return DAG.getSetCC(dl, VT,
4227                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
4228                                       DAG.getConstant(bestMask.trunc(bestWidth),
4229                                                       dl, newVT)),
4230                               DAG.getConstant(0LL, dl, newVT), Cond);
4231         }
4232       }
4233     }
4234 
4235     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
4236     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
4237       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
4238 
4239       // If the comparison constant has bits in the upper part, the
4240       // zero-extended value could never match.
4241       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
4242                                               C1.getBitWidth() - InSize))) {
4243         switch (Cond) {
4244         case ISD::SETUGT:
4245         case ISD::SETUGE:
4246         case ISD::SETEQ:
4247           return DAG.getConstant(0, dl, VT);
4248         case ISD::SETULT:
4249         case ISD::SETULE:
4250         case ISD::SETNE:
4251           return DAG.getConstant(1, dl, VT);
4252         case ISD::SETGT:
4253         case ISD::SETGE:
4254           // True if the sign bit of C1 is set.
4255           return DAG.getConstant(C1.isNegative(), dl, VT);
4256         case ISD::SETLT:
4257         case ISD::SETLE:
4258           // True if the sign bit of C1 isn't set.
4259           return DAG.getConstant(C1.isNonNegative(), dl, VT);
4260         default:
4261           break;
4262         }
4263       }
4264 
4265       // Otherwise, we can perform the comparison with the low bits.
4266       switch (Cond) {
4267       case ISD::SETEQ:
4268       case ISD::SETNE:
4269       case ISD::SETUGT:
4270       case ISD::SETUGE:
4271       case ISD::SETULT:
4272       case ISD::SETULE: {
4273         EVT newVT = N0.getOperand(0).getValueType();
4274         if (DCI.isBeforeLegalizeOps() ||
4275             (isOperationLegal(ISD::SETCC, newVT) &&
4276              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
4277           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
4278           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
4279 
4280           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
4281                                           NewConst, Cond);
4282           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
4283         }
4284         break;
4285       }
4286       default:
4287         break; // todo, be more careful with signed comparisons
4288       }
4289     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4290                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4291                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
4292                                       OpVT)) {
4293       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
4294       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
4295       EVT ExtDstTy = N0.getValueType();
4296       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
4297 
4298       // If the constant doesn't fit into the number of bits for the source of
4299       // the sign extension, it is impossible for both sides to be equal.
4300       if (C1.getMinSignedBits() > ExtSrcTyBits)
4301         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
4302 
4303       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
4304              ExtDstTy != ExtSrcTy && "Unexpected types!");
4305       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
4306       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
4307                                    DAG.getConstant(Imm, dl, ExtDstTy));
4308       if (!DCI.isCalledByLegalizer())
4309         DCI.AddToWorklist(ZextOp.getNode());
4310       // Otherwise, make this a use of a zext.
4311       return DAG.getSetCC(dl, VT, ZextOp,
4312                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
4313     } else if ((N1C->isZero() || N1C->isOne()) &&
4314                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4315       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
4316       if (N0.getOpcode() == ISD::SETCC &&
4317           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
4318           (N0.getValueType() == MVT::i1 ||
4319            getBooleanContents(N0.getOperand(0).getValueType()) ==
4320                        ZeroOrOneBooleanContent)) {
4321         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
4322         if (TrueWhenTrue)
4323           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
4324         // Invert the condition.
4325         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4326         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
4327         if (DCI.isBeforeLegalizeOps() ||
4328             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
4329           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
4330       }
4331 
4332       if ((N0.getOpcode() == ISD::XOR ||
4333            (N0.getOpcode() == ISD::AND &&
4334             N0.getOperand(0).getOpcode() == ISD::XOR &&
4335             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
4336           isOneConstant(N0.getOperand(1))) {
4337         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
4338         // can only do this if the top bits are known zero.
4339         unsigned BitWidth = N0.getValueSizeInBits();
4340         if (DAG.MaskedValueIsZero(N0,
4341                                   APInt::getHighBitsSet(BitWidth,
4342                                                         BitWidth-1))) {
4343           // Okay, get the un-inverted input value.
4344           SDValue Val;
4345           if (N0.getOpcode() == ISD::XOR) {
4346             Val = N0.getOperand(0);
4347           } else {
4348             assert(N0.getOpcode() == ISD::AND &&
4349                     N0.getOperand(0).getOpcode() == ISD::XOR);
4350             // ((X^1)&1)^1 -> X & 1
4351             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
4352                               N0.getOperand(0).getOperand(0),
4353                               N0.getOperand(1));
4354           }
4355 
4356           return DAG.getSetCC(dl, VT, Val, N1,
4357                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4358         }
4359       } else if (N1C->isOne()) {
4360         SDValue Op0 = N0;
4361         if (Op0.getOpcode() == ISD::TRUNCATE)
4362           Op0 = Op0.getOperand(0);
4363 
4364         if ((Op0.getOpcode() == ISD::XOR) &&
4365             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
4366             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
4367           SDValue XorLHS = Op0.getOperand(0);
4368           SDValue XorRHS = Op0.getOperand(1);
4369           // Ensure that the input setccs return an i1 type or 0/1 value.
4370           if (Op0.getValueType() == MVT::i1 ||
4371               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
4372                       ZeroOrOneBooleanContent &&
4373                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
4374                         ZeroOrOneBooleanContent)) {
4375             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
4376             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
4377             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
4378           }
4379         }
4380         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
4381           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
4382           if (Op0.getValueType().bitsGT(VT))
4383             Op0 = DAG.getNode(ISD::AND, dl, VT,
4384                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
4385                           DAG.getConstant(1, dl, VT));
4386           else if (Op0.getValueType().bitsLT(VT))
4387             Op0 = DAG.getNode(ISD::AND, dl, VT,
4388                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
4389                         DAG.getConstant(1, dl, VT));
4390 
4391           return DAG.getSetCC(dl, VT, Op0,
4392                               DAG.getConstant(0, dl, Op0.getValueType()),
4393                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4394         }
4395         if (Op0.getOpcode() == ISD::AssertZext &&
4396             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
4397           return DAG.getSetCC(dl, VT, Op0,
4398                               DAG.getConstant(0, dl, Op0.getValueType()),
4399                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4400       }
4401     }
4402 
4403     // Given:
4404     //   icmp eq/ne (urem %x, %y), 0
4405     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
4406     //   icmp eq/ne %x, 0
4407     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
4408         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4409       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
4410       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
4411       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
4412         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4413     }
4414 
4415     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
4416     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
4417     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4418         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
4419         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
4420         N1C && N1C->isAllOnes()) {
4421       return DAG.getSetCC(dl, VT, N0.getOperand(0),
4422                           DAG.getConstant(0, dl, OpVT),
4423                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
4424     }
4425 
4426     if (SDValue V =
4427             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
4428       return V;
4429   }
4430 
4431   // These simplifications apply to splat vectors as well.
4432   // TODO: Handle more splat vector cases.
4433   if (auto *N1C = isConstOrConstSplat(N1)) {
4434     const APInt &C1 = N1C->getAPIntValue();
4435 
4436     APInt MinVal, MaxVal;
4437     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
4438     if (ISD::isSignedIntSetCC(Cond)) {
4439       MinVal = APInt::getSignedMinValue(OperandBitSize);
4440       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
4441     } else {
4442       MinVal = APInt::getMinValue(OperandBitSize);
4443       MaxVal = APInt::getMaxValue(OperandBitSize);
4444     }
4445 
4446     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
4447     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
4448       // X >= MIN --> true
4449       if (C1 == MinVal)
4450         return DAG.getBoolConstant(true, dl, VT, OpVT);
4451 
4452       if (!VT.isVector()) { // TODO: Support this for vectors.
4453         // X >= C0 --> X > (C0 - 1)
4454         APInt C = C1 - 1;
4455         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
4456         if ((DCI.isBeforeLegalizeOps() ||
4457              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4458             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4459                                   isLegalICmpImmediate(C.getSExtValue())))) {
4460           return DAG.getSetCC(dl, VT, N0,
4461                               DAG.getConstant(C, dl, N1.getValueType()),
4462                               NewCC);
4463         }
4464       }
4465     }
4466 
4467     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
4468       // X <= MAX --> true
4469       if (C1 == MaxVal)
4470         return DAG.getBoolConstant(true, dl, VT, OpVT);
4471 
4472       // X <= C0 --> X < (C0 + 1)
4473       if (!VT.isVector()) { // TODO: Support this for vectors.
4474         APInt C = C1 + 1;
4475         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
4476         if ((DCI.isBeforeLegalizeOps() ||
4477              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4478             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4479                                   isLegalICmpImmediate(C.getSExtValue())))) {
4480           return DAG.getSetCC(dl, VT, N0,
4481                               DAG.getConstant(C, dl, N1.getValueType()),
4482                               NewCC);
4483         }
4484       }
4485     }
4486 
4487     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
4488       if (C1 == MinVal)
4489         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
4490 
4491       // TODO: Support this for vectors after legalize ops.
4492       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4493         // Canonicalize setlt X, Max --> setne X, Max
4494         if (C1 == MaxVal)
4495           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4496 
4497         // If we have setult X, 1, turn it into seteq X, 0
4498         if (C1 == MinVal+1)
4499           return DAG.getSetCC(dl, VT, N0,
4500                               DAG.getConstant(MinVal, dl, N0.getValueType()),
4501                               ISD::SETEQ);
4502       }
4503     }
4504 
4505     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
4506       if (C1 == MaxVal)
4507         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
4508 
4509       // TODO: Support this for vectors after legalize ops.
4510       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4511         // Canonicalize setgt X, Min --> setne X, Min
4512         if (C1 == MinVal)
4513           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4514 
4515         // If we have setugt X, Max-1, turn it into seteq X, Max
4516         if (C1 == MaxVal-1)
4517           return DAG.getSetCC(dl, VT, N0,
4518                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
4519                               ISD::SETEQ);
4520       }
4521     }
4522 
4523     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
4524       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4525       if (C1.isZero())
4526         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
4527                 VT, N0, N1, Cond, DCI, dl))
4528           return CC;
4529 
4530       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
4531       // For example, when high 32-bits of i64 X are known clear:
4532       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
4533       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
4534       bool CmpZero = N1C->getAPIntValue().isZero();
4535       bool CmpNegOne = N1C->getAPIntValue().isAllOnes();
4536       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
4537         // Match or(lo,shl(hi,bw/2)) pattern.
4538         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
4539           unsigned EltBits = V.getScalarValueSizeInBits();
4540           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
4541             return false;
4542           SDValue LHS = V.getOperand(0);
4543           SDValue RHS = V.getOperand(1);
4544           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
4545           // Unshifted element must have zero upperbits.
4546           if (RHS.getOpcode() == ISD::SHL &&
4547               isa<ConstantSDNode>(RHS.getOperand(1)) &&
4548               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4549               DAG.MaskedValueIsZero(LHS, HiBits)) {
4550             Lo = LHS;
4551             Hi = RHS.getOperand(0);
4552             return true;
4553           }
4554           if (LHS.getOpcode() == ISD::SHL &&
4555               isa<ConstantSDNode>(LHS.getOperand(1)) &&
4556               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4557               DAG.MaskedValueIsZero(RHS, HiBits)) {
4558             Lo = RHS;
4559             Hi = LHS.getOperand(0);
4560             return true;
4561           }
4562           return false;
4563         };
4564 
4565         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4566           unsigned EltBits = N0.getScalarValueSizeInBits();
4567           unsigned HalfBits = EltBits / 2;
4568           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4569           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4570           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4571           SDValue NewN0 =
4572               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4573           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4574           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4575         };
4576 
4577         SDValue Lo, Hi;
4578         if (IsConcat(N0, Lo, Hi))
4579           return MergeConcat(Lo, Hi);
4580 
4581         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4582           SDValue Lo0, Lo1, Hi0, Hi1;
4583           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4584               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4585             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4586                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4587           }
4588         }
4589       }
4590     }
4591 
4592     // If we have "setcc X, C0", check to see if we can shrink the immediate
4593     // by changing cc.
4594     // TODO: Support this for vectors after legalize ops.
4595     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4596       // SETUGT X, SINTMAX  -> SETLT X, 0
4597       // SETUGE X, SINTMIN -> SETLT X, 0
4598       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4599           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4600         return DAG.getSetCC(dl, VT, N0,
4601                             DAG.getConstant(0, dl, N1.getValueType()),
4602                             ISD::SETLT);
4603 
4604       // SETULT X, SINTMIN  -> SETGT X, -1
4605       // SETULE X, SINTMAX  -> SETGT X, -1
4606       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4607           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4608         return DAG.getSetCC(dl, VT, N0,
4609                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4610                             ISD::SETGT);
4611     }
4612   }
4613 
4614   // Back to non-vector simplifications.
4615   // TODO: Can we do these for vector splats?
4616   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4617     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4618     const APInt &C1 = N1C->getAPIntValue();
4619     EVT ShValTy = N0.getValueType();
4620 
4621     // Fold bit comparisons when we can. This will result in an
4622     // incorrect value when boolean false is negative one, unless
4623     // the bitsize is 1 in which case the false value is the same
4624     // in practice regardless of the representation.
4625     if ((VT.getSizeInBits() == 1 ||
4626          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4627         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4628         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4629         N0.getOpcode() == ISD::AND) {
4630       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4631         EVT ShiftTy =
4632             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4633         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4634           // Perform the xform if the AND RHS is a single bit.
4635           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4636           if (AndRHS->getAPIntValue().isPowerOf2() &&
4637               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4638             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4639                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4640                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4641           }
4642         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4643           // (X & 8) == 8  -->  (X & 8) >> 3
4644           // Perform the xform if C1 is a single bit.
4645           unsigned ShCt = C1.logBase2();
4646           if (C1.isPowerOf2() &&
4647               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4648             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4649                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4650                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4651           }
4652         }
4653       }
4654     }
4655 
4656     if (C1.getMinSignedBits() <= 64 &&
4657         !isLegalICmpImmediate(C1.getSExtValue())) {
4658       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4659       // (X & -256) == 256 -> (X >> 8) == 1
4660       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4661           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4662         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4663           const APInt &AndRHSC = AndRHS->getAPIntValue();
4664           if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) {
4665             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4666             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4667               SDValue Shift =
4668                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4669                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4670               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4671               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4672             }
4673           }
4674         }
4675       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4676                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4677         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4678         // X <  0x100000000 -> (X >> 32) <  1
4679         // X >= 0x100000000 -> (X >> 32) >= 1
4680         // X <= 0x0ffffffff -> (X >> 32) <  1
4681         // X >  0x0ffffffff -> (X >> 32) >= 1
4682         unsigned ShiftBits;
4683         APInt NewC = C1;
4684         ISD::CondCode NewCond = Cond;
4685         if (AdjOne) {
4686           ShiftBits = C1.countTrailingOnes();
4687           NewC = NewC + 1;
4688           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4689         } else {
4690           ShiftBits = C1.countTrailingZeros();
4691         }
4692         NewC.lshrInPlace(ShiftBits);
4693         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4694             isLegalICmpImmediate(NewC.getSExtValue()) &&
4695             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4696           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4697                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4698           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4699           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4700         }
4701       }
4702     }
4703   }
4704 
4705   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4706     auto *CFP = cast<ConstantFPSDNode>(N1);
4707     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4708 
4709     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4710     // constant if knowing that the operand is non-nan is enough.  We prefer to
4711     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4712     // materialize 0.0.
4713     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4714       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4715 
4716     // setcc (fneg x), C -> setcc swap(pred) x, -C
4717     if (N0.getOpcode() == ISD::FNEG) {
4718       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4719       if (DCI.isBeforeLegalizeOps() ||
4720           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4721         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4722         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4723       }
4724     }
4725 
4726     // If the condition is not legal, see if we can find an equivalent one
4727     // which is legal.
4728     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4729       // If the comparison was an awkward floating-point == or != and one of
4730       // the comparison operands is infinity or negative infinity, convert the
4731       // condition to a less-awkward <= or >=.
4732       if (CFP->getValueAPF().isInfinity()) {
4733         bool IsNegInf = CFP->getValueAPF().isNegative();
4734         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4735         switch (Cond) {
4736         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4737         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4738         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4739         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4740         default: break;
4741         }
4742         if (NewCond != ISD::SETCC_INVALID &&
4743             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4744           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4745       }
4746     }
4747   }
4748 
4749   if (N0 == N1) {
4750     // The sext(setcc()) => setcc() optimization relies on the appropriate
4751     // constant being emitted.
4752     assert(!N0.getValueType().isInteger() &&
4753            "Integer types should be handled by FoldSetCC");
4754 
4755     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4756     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4757     if (UOF == 2) // FP operators that are undefined on NaNs.
4758       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4759     if (UOF == unsigned(EqTrue))
4760       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4761     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4762     // if it is not already.
4763     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4764     if (NewCond != Cond &&
4765         (DCI.isBeforeLegalizeOps() ||
4766                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4767       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4768   }
4769 
4770   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4771       N0.getValueType().isInteger()) {
4772     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4773         N0.getOpcode() == ISD::XOR) {
4774       // Simplify (X+Y) == (X+Z) -->  Y == Z
4775       if (N0.getOpcode() == N1.getOpcode()) {
4776         if (N0.getOperand(0) == N1.getOperand(0))
4777           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4778         if (N0.getOperand(1) == N1.getOperand(1))
4779           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4780         if (isCommutativeBinOp(N0.getOpcode())) {
4781           // If X op Y == Y op X, try other combinations.
4782           if (N0.getOperand(0) == N1.getOperand(1))
4783             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4784                                 Cond);
4785           if (N0.getOperand(1) == N1.getOperand(0))
4786             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4787                                 Cond);
4788         }
4789       }
4790 
4791       // If RHS is a legal immediate value for a compare instruction, we need
4792       // to be careful about increasing register pressure needlessly.
4793       bool LegalRHSImm = false;
4794 
4795       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4796         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4797           // Turn (X+C1) == C2 --> X == C2-C1
4798           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse())
4799             return DAG.getSetCC(
4800                 dl, VT, N0.getOperand(0),
4801                 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(),
4802                                 dl, N0.getValueType()),
4803                 Cond);
4804 
4805           // Turn (X^C1) == C2 --> X == C1^C2
4806           if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse())
4807             return DAG.getSetCC(
4808                 dl, VT, N0.getOperand(0),
4809                 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(),
4810                                 dl, N0.getValueType()),
4811                 Cond);
4812         }
4813 
4814         // Turn (C1-X) == C2 --> X == C1-C2
4815         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
4816           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse())
4817             return DAG.getSetCC(
4818                 dl, VT, N0.getOperand(1),
4819                 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(),
4820                                 dl, N0.getValueType()),
4821                 Cond);
4822 
4823         // Could RHSC fold directly into a compare?
4824         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4825           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4826       }
4827 
4828       // (X+Y) == X --> Y == 0 and similar folds.
4829       // Don't do this if X is an immediate that can fold into a cmp
4830       // instruction and X+Y has other uses. It could be an induction variable
4831       // chain, and the transform would increase register pressure.
4832       if (!LegalRHSImm || N0.hasOneUse())
4833         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4834           return V;
4835     }
4836 
4837     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4838         N1.getOpcode() == ISD::XOR)
4839       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4840         return V;
4841 
4842     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4843       return V;
4844   }
4845 
4846   // Fold remainder of division by a constant.
4847   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4848       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4849     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4850 
4851     // When division is cheap or optimizing for minimum size,
4852     // fall through to DIVREM creation by skipping this fold.
4853     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
4854       if (N0.getOpcode() == ISD::UREM) {
4855         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4856           return Folded;
4857       } else if (N0.getOpcode() == ISD::SREM) {
4858         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4859           return Folded;
4860       }
4861     }
4862   }
4863 
4864   // Fold away ALL boolean setcc's.
4865   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4866     SDValue Temp;
4867     switch (Cond) {
4868     default: llvm_unreachable("Unknown integer setcc!");
4869     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4870       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4871       N0 = DAG.getNOT(dl, Temp, OpVT);
4872       if (!DCI.isCalledByLegalizer())
4873         DCI.AddToWorklist(Temp.getNode());
4874       break;
4875     case ISD::SETNE:  // X != Y   -->  (X^Y)
4876       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4877       break;
4878     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4879     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4880       Temp = DAG.getNOT(dl, N0, OpVT);
4881       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4882       if (!DCI.isCalledByLegalizer())
4883         DCI.AddToWorklist(Temp.getNode());
4884       break;
4885     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4886     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4887       Temp = DAG.getNOT(dl, N1, OpVT);
4888       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4889       if (!DCI.isCalledByLegalizer())
4890         DCI.AddToWorklist(Temp.getNode());
4891       break;
4892     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4893     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4894       Temp = DAG.getNOT(dl, N0, OpVT);
4895       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4896       if (!DCI.isCalledByLegalizer())
4897         DCI.AddToWorklist(Temp.getNode());
4898       break;
4899     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4900     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4901       Temp = DAG.getNOT(dl, N1, OpVT);
4902       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4903       break;
4904     }
4905     if (VT.getScalarType() != MVT::i1) {
4906       if (!DCI.isCalledByLegalizer())
4907         DCI.AddToWorklist(N0.getNode());
4908       // FIXME: If running after legalize, we probably can't do this.
4909       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4910       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4911     }
4912     return N0;
4913   }
4914 
4915   // Could not fold it.
4916   return SDValue();
4917 }
4918 
4919 /// Returns true (and the GlobalValue and the offset) if the node is a
4920 /// GlobalAddress + offset.
4921 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4922                                     int64_t &Offset) const {
4923 
4924   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4925 
4926   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4927     GA = GASD->getGlobal();
4928     Offset += GASD->getOffset();
4929     return true;
4930   }
4931 
4932   if (N->getOpcode() == ISD::ADD) {
4933     SDValue N1 = N->getOperand(0);
4934     SDValue N2 = N->getOperand(1);
4935     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4936       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4937         Offset += V->getSExtValue();
4938         return true;
4939       }
4940     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4941       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4942         Offset += V->getSExtValue();
4943         return true;
4944       }
4945     }
4946   }
4947 
4948   return false;
4949 }
4950 
4951 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4952                                           DAGCombinerInfo &DCI) const {
4953   // Default implementation: no optimization.
4954   return SDValue();
4955 }
4956 
4957 //===----------------------------------------------------------------------===//
4958 //  Inline Assembler Implementation Methods
4959 //===----------------------------------------------------------------------===//
4960 
4961 TargetLowering::ConstraintType
4962 TargetLowering::getConstraintType(StringRef Constraint) const {
4963   unsigned S = Constraint.size();
4964 
4965   if (S == 1) {
4966     switch (Constraint[0]) {
4967     default: break;
4968     case 'r':
4969       return C_RegisterClass;
4970     case 'm': // memory
4971     case 'o': // offsetable
4972     case 'V': // not offsetable
4973       return C_Memory;
4974     case 'p': // Address.
4975       return C_Address;
4976     case 'n': // Simple Integer
4977     case 'E': // Floating Point Constant
4978     case 'F': // Floating Point Constant
4979       return C_Immediate;
4980     case 'i': // Simple Integer or Relocatable Constant
4981     case 's': // Relocatable Constant
4982     case 'X': // Allow ANY value.
4983     case 'I': // Target registers.
4984     case 'J':
4985     case 'K':
4986     case 'L':
4987     case 'M':
4988     case 'N':
4989     case 'O':
4990     case 'P':
4991     case '<':
4992     case '>':
4993       return C_Other;
4994     }
4995   }
4996 
4997   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4998     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4999       return C_Memory;
5000     return C_Register;
5001   }
5002   return C_Unknown;
5003 }
5004 
5005 /// Try to replace an X constraint, which matches anything, with another that
5006 /// has more specific requirements based on the type of the corresponding
5007 /// operand.
5008 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
5009   if (ConstraintVT.isInteger())
5010     return "r";
5011   if (ConstraintVT.isFloatingPoint())
5012     return "f"; // works for many targets
5013   return nullptr;
5014 }
5015 
5016 SDValue TargetLowering::LowerAsmOutputForConstraint(
5017     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
5018     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
5019   return SDValue();
5020 }
5021 
5022 /// Lower the specified operand into the Ops vector.
5023 /// If it is invalid, don't add anything to Ops.
5024 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5025                                                   std::string &Constraint,
5026                                                   std::vector<SDValue> &Ops,
5027                                                   SelectionDAG &DAG) const {
5028 
5029   if (Constraint.length() > 1) return;
5030 
5031   char ConstraintLetter = Constraint[0];
5032   switch (ConstraintLetter) {
5033   default: break;
5034   case 'X':    // Allows any operand
5035   case 'i':    // Simple Integer or Relocatable Constant
5036   case 'n':    // Simple Integer
5037   case 's': {  // Relocatable Constant
5038 
5039     ConstantSDNode *C;
5040     uint64_t Offset = 0;
5041 
5042     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
5043     // etc., since getelementpointer is variadic. We can't use
5044     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
5045     // while in this case the GA may be furthest from the root node which is
5046     // likely an ISD::ADD.
5047     while (true) {
5048       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
5049         // gcc prints these as sign extended.  Sign extend value to 64 bits
5050         // now; without this it would get ZExt'd later in
5051         // ScheduleDAGSDNodes::EmitNode, which is very generic.
5052         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
5053         BooleanContent BCont = getBooleanContents(MVT::i64);
5054         ISD::NodeType ExtOpc =
5055             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
5056         int64_t ExtVal =
5057             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
5058         Ops.push_back(
5059             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
5060         return;
5061       }
5062       if (ConstraintLetter != 'n') {
5063         if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5064           Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
5065                                                    GA->getValueType(0),
5066                                                    Offset + GA->getOffset()));
5067           return;
5068         }
5069         if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
5070           Ops.push_back(DAG.getTargetBlockAddress(
5071               BA->getBlockAddress(), BA->getValueType(0),
5072               Offset + BA->getOffset(), BA->getTargetFlags()));
5073           return;
5074         }
5075         if (isa<BasicBlockSDNode>(Op)) {
5076           Ops.push_back(Op);
5077           return;
5078         }
5079       }
5080       const unsigned OpCode = Op.getOpcode();
5081       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
5082         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
5083           Op = Op.getOperand(1);
5084         // Subtraction is not commutative.
5085         else if (OpCode == ISD::ADD &&
5086                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
5087           Op = Op.getOperand(0);
5088         else
5089           return;
5090         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
5091         continue;
5092       }
5093       return;
5094     }
5095     break;
5096   }
5097   }
5098 }
5099 
5100 std::pair<unsigned, const TargetRegisterClass *>
5101 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
5102                                              StringRef Constraint,
5103                                              MVT VT) const {
5104   if (Constraint.empty() || Constraint[0] != '{')
5105     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
5106   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
5107 
5108   // Remove the braces from around the name.
5109   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
5110 
5111   std::pair<unsigned, const TargetRegisterClass *> R =
5112       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
5113 
5114   // Figure out which register class contains this reg.
5115   for (const TargetRegisterClass *RC : RI->regclasses()) {
5116     // If none of the value types for this register class are valid, we
5117     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5118     if (!isLegalRC(*RI, *RC))
5119       continue;
5120 
5121     for (const MCPhysReg &PR : *RC) {
5122       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
5123         std::pair<unsigned, const TargetRegisterClass *> S =
5124             std::make_pair(PR, RC);
5125 
5126         // If this register class has the requested value type, return it,
5127         // otherwise keep searching and return the first class found
5128         // if no other is found which explicitly has the requested type.
5129         if (RI->isTypeLegalForClass(*RC, VT))
5130           return S;
5131         if (!R.second)
5132           R = S;
5133       }
5134     }
5135   }
5136 
5137   return R;
5138 }
5139 
5140 //===----------------------------------------------------------------------===//
5141 // Constraint Selection.
5142 
5143 /// Return true of this is an input operand that is a matching constraint like
5144 /// "4".
5145 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
5146   assert(!ConstraintCode.empty() && "No known constraint!");
5147   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
5148 }
5149 
5150 /// If this is an input matching constraint, this method returns the output
5151 /// operand it matches.
5152 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
5153   assert(!ConstraintCode.empty() && "No known constraint!");
5154   return atoi(ConstraintCode.c_str());
5155 }
5156 
5157 /// Split up the constraint string from the inline assembly value into the
5158 /// specific constraints and their prefixes, and also tie in the associated
5159 /// operand values.
5160 /// If this returns an empty vector, and if the constraint string itself
5161 /// isn't empty, there was an error parsing.
5162 TargetLowering::AsmOperandInfoVector
5163 TargetLowering::ParseConstraints(const DataLayout &DL,
5164                                  const TargetRegisterInfo *TRI,
5165                                  const CallBase &Call) const {
5166   /// Information about all of the constraints.
5167   AsmOperandInfoVector ConstraintOperands;
5168   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
5169   unsigned maCount = 0; // Largest number of multiple alternative constraints.
5170 
5171   // Do a prepass over the constraints, canonicalizing them, and building up the
5172   // ConstraintOperands list.
5173   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
5174   unsigned ResNo = 0; // ResNo - The result number of the next output.
5175 
5176   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
5177     ConstraintOperands.emplace_back(std::move(CI));
5178     AsmOperandInfo &OpInfo = ConstraintOperands.back();
5179 
5180     // Update multiple alternative constraint count.
5181     if (OpInfo.multipleAlternatives.size() > maCount)
5182       maCount = OpInfo.multipleAlternatives.size();
5183 
5184     OpInfo.ConstraintVT = MVT::Other;
5185 
5186     // Compute the value type for each operand.
5187     switch (OpInfo.Type) {
5188     case InlineAsm::isOutput:
5189       // Indirect outputs just consume an argument.
5190       if (OpInfo.isIndirect) {
5191         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5192         break;
5193       }
5194 
5195       // The return value of the call is this value.  As such, there is no
5196       // corresponding argument.
5197       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
5198       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
5199         OpInfo.ConstraintVT =
5200             getSimpleValueType(DL, STy->getElementType(ResNo));
5201       } else {
5202         assert(ResNo == 0 && "Asm only has one result!");
5203         OpInfo.ConstraintVT =
5204             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
5205       }
5206       ++ResNo;
5207       break;
5208     case InlineAsm::isInput:
5209       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5210       break;
5211     case InlineAsm::isClobber:
5212       // Nothing to do.
5213       break;
5214     }
5215 
5216     if (OpInfo.CallOperandVal) {
5217       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
5218       if (OpInfo.isIndirect) {
5219         OpTy = Call.getParamElementType(ArgNo);
5220         assert(OpTy && "Indirect operand must have elementtype attribute");
5221       }
5222 
5223       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5224       if (StructType *STy = dyn_cast<StructType>(OpTy))
5225         if (STy->getNumElements() == 1)
5226           OpTy = STy->getElementType(0);
5227 
5228       // If OpTy is not a single value, it may be a struct/union that we
5229       // can tile with integers.
5230       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5231         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
5232         switch (BitSize) {
5233         default: break;
5234         case 1:
5235         case 8:
5236         case 16:
5237         case 32:
5238         case 64:
5239         case 128:
5240           OpInfo.ConstraintVT =
5241               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
5242           break;
5243         }
5244       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
5245         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
5246         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
5247       } else {
5248         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
5249       }
5250 
5251       ArgNo++;
5252     }
5253   }
5254 
5255   // If we have multiple alternative constraints, select the best alternative.
5256   if (!ConstraintOperands.empty()) {
5257     if (maCount) {
5258       unsigned bestMAIndex = 0;
5259       int bestWeight = -1;
5260       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
5261       int weight = -1;
5262       unsigned maIndex;
5263       // Compute the sums of the weights for each alternative, keeping track
5264       // of the best (highest weight) one so far.
5265       for (maIndex = 0; maIndex < maCount; ++maIndex) {
5266         int weightSum = 0;
5267         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5268              cIndex != eIndex; ++cIndex) {
5269           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5270           if (OpInfo.Type == InlineAsm::isClobber)
5271             continue;
5272 
5273           // If this is an output operand with a matching input operand,
5274           // look up the matching input. If their types mismatch, e.g. one
5275           // is an integer, the other is floating point, or their sizes are
5276           // different, flag it as an maCantMatch.
5277           if (OpInfo.hasMatchingInput()) {
5278             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5279             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5280               if ((OpInfo.ConstraintVT.isInteger() !=
5281                    Input.ConstraintVT.isInteger()) ||
5282                   (OpInfo.ConstraintVT.getSizeInBits() !=
5283                    Input.ConstraintVT.getSizeInBits())) {
5284                 weightSum = -1; // Can't match.
5285                 break;
5286               }
5287             }
5288           }
5289           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
5290           if (weight == -1) {
5291             weightSum = -1;
5292             break;
5293           }
5294           weightSum += weight;
5295         }
5296         // Update best.
5297         if (weightSum > bestWeight) {
5298           bestWeight = weightSum;
5299           bestMAIndex = maIndex;
5300         }
5301       }
5302 
5303       // Now select chosen alternative in each constraint.
5304       for (AsmOperandInfo &cInfo : ConstraintOperands)
5305         if (cInfo.Type != InlineAsm::isClobber)
5306           cInfo.selectAlternative(bestMAIndex);
5307     }
5308   }
5309 
5310   // Check and hook up tied operands, choose constraint code to use.
5311   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5312        cIndex != eIndex; ++cIndex) {
5313     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5314 
5315     // If this is an output operand with a matching input operand, look up the
5316     // matching input. If their types mismatch, e.g. one is an integer, the
5317     // other is floating point, or their sizes are different, flag it as an
5318     // error.
5319     if (OpInfo.hasMatchingInput()) {
5320       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5321 
5322       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5323         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
5324             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
5325                                          OpInfo.ConstraintVT);
5326         std::pair<unsigned, const TargetRegisterClass *> InputRC =
5327             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
5328                                          Input.ConstraintVT);
5329         if ((OpInfo.ConstraintVT.isInteger() !=
5330              Input.ConstraintVT.isInteger()) ||
5331             (MatchRC.second != InputRC.second)) {
5332           report_fatal_error("Unsupported asm: input constraint"
5333                              " with a matching output constraint of"
5334                              " incompatible type!");
5335         }
5336       }
5337     }
5338   }
5339 
5340   return ConstraintOperands;
5341 }
5342 
5343 /// Return an integer indicating how general CT is.
5344 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
5345   switch (CT) {
5346   case TargetLowering::C_Immediate:
5347   case TargetLowering::C_Other:
5348   case TargetLowering::C_Unknown:
5349     return 0;
5350   case TargetLowering::C_Register:
5351     return 1;
5352   case TargetLowering::C_RegisterClass:
5353     return 2;
5354   case TargetLowering::C_Memory:
5355   case TargetLowering::C_Address:
5356     return 3;
5357   }
5358   llvm_unreachable("Invalid constraint type");
5359 }
5360 
5361 /// Examine constraint type and operand type and determine a weight value.
5362 /// This object must already have been set up with the operand type
5363 /// and the current alternative constraint selected.
5364 TargetLowering::ConstraintWeight
5365   TargetLowering::getMultipleConstraintMatchWeight(
5366     AsmOperandInfo &info, int maIndex) const {
5367   InlineAsm::ConstraintCodeVector *rCodes;
5368   if (maIndex >= (int)info.multipleAlternatives.size())
5369     rCodes = &info.Codes;
5370   else
5371     rCodes = &info.multipleAlternatives[maIndex].Codes;
5372   ConstraintWeight BestWeight = CW_Invalid;
5373 
5374   // Loop over the options, keeping track of the most general one.
5375   for (const std::string &rCode : *rCodes) {
5376     ConstraintWeight weight =
5377         getSingleConstraintMatchWeight(info, rCode.c_str());
5378     if (weight > BestWeight)
5379       BestWeight = weight;
5380   }
5381 
5382   return BestWeight;
5383 }
5384 
5385 /// Examine constraint type and operand type and determine a weight value.
5386 /// This object must already have been set up with the operand type
5387 /// and the current alternative constraint selected.
5388 TargetLowering::ConstraintWeight
5389   TargetLowering::getSingleConstraintMatchWeight(
5390     AsmOperandInfo &info, const char *constraint) const {
5391   ConstraintWeight weight = CW_Invalid;
5392   Value *CallOperandVal = info.CallOperandVal;
5393     // If we don't have a value, we can't do a match,
5394     // but allow it at the lowest weight.
5395   if (!CallOperandVal)
5396     return CW_Default;
5397   // Look at the constraint type.
5398   switch (*constraint) {
5399     case 'i': // immediate integer.
5400     case 'n': // immediate integer with a known value.
5401       if (isa<ConstantInt>(CallOperandVal))
5402         weight = CW_Constant;
5403       break;
5404     case 's': // non-explicit intregal immediate.
5405       if (isa<GlobalValue>(CallOperandVal))
5406         weight = CW_Constant;
5407       break;
5408     case 'E': // immediate float if host format.
5409     case 'F': // immediate float.
5410       if (isa<ConstantFP>(CallOperandVal))
5411         weight = CW_Constant;
5412       break;
5413     case '<': // memory operand with autodecrement.
5414     case '>': // memory operand with autoincrement.
5415     case 'm': // memory operand.
5416     case 'o': // offsettable memory operand
5417     case 'V': // non-offsettable memory operand
5418       weight = CW_Memory;
5419       break;
5420     case 'r': // general register.
5421     case 'g': // general register, memory operand or immediate integer.
5422               // note: Clang converts "g" to "imr".
5423       if (CallOperandVal->getType()->isIntegerTy())
5424         weight = CW_Register;
5425       break;
5426     case 'X': // any operand.
5427   default:
5428     weight = CW_Default;
5429     break;
5430   }
5431   return weight;
5432 }
5433 
5434 /// If there are multiple different constraints that we could pick for this
5435 /// operand (e.g. "imr") try to pick the 'best' one.
5436 /// This is somewhat tricky: constraints fall into four classes:
5437 ///    Other         -> immediates and magic values
5438 ///    Register      -> one specific register
5439 ///    RegisterClass -> a group of regs
5440 ///    Memory        -> memory
5441 /// Ideally, we would pick the most specific constraint possible: if we have
5442 /// something that fits into a register, we would pick it.  The problem here
5443 /// is that if we have something that could either be in a register or in
5444 /// memory that use of the register could cause selection of *other*
5445 /// operands to fail: they might only succeed if we pick memory.  Because of
5446 /// this the heuristic we use is:
5447 ///
5448 ///  1) If there is an 'other' constraint, and if the operand is valid for
5449 ///     that constraint, use it.  This makes us take advantage of 'i'
5450 ///     constraints when available.
5451 ///  2) Otherwise, pick the most general constraint present.  This prefers
5452 ///     'm' over 'r', for example.
5453 ///
5454 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
5455                              const TargetLowering &TLI,
5456                              SDValue Op, SelectionDAG *DAG) {
5457   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
5458   unsigned BestIdx = 0;
5459   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
5460   int BestGenerality = -1;
5461 
5462   // Loop over the options, keeping track of the most general one.
5463   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
5464     TargetLowering::ConstraintType CType =
5465       TLI.getConstraintType(OpInfo.Codes[i]);
5466 
5467     // Indirect 'other' or 'immediate' constraints are not allowed.
5468     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
5469                                CType == TargetLowering::C_Register ||
5470                                CType == TargetLowering::C_RegisterClass))
5471       continue;
5472 
5473     // If this is an 'other' or 'immediate' constraint, see if the operand is
5474     // valid for it. For example, on X86 we might have an 'rI' constraint. If
5475     // the operand is an integer in the range [0..31] we want to use I (saving a
5476     // load of a register), otherwise we must use 'r'.
5477     if ((CType == TargetLowering::C_Other ||
5478          CType == TargetLowering::C_Immediate) && Op.getNode()) {
5479       assert(OpInfo.Codes[i].size() == 1 &&
5480              "Unhandled multi-letter 'other' constraint");
5481       std::vector<SDValue> ResultOps;
5482       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
5483                                        ResultOps, *DAG);
5484       if (!ResultOps.empty()) {
5485         BestType = CType;
5486         BestIdx = i;
5487         break;
5488       }
5489     }
5490 
5491     // Things with matching constraints can only be registers, per gcc
5492     // documentation.  This mainly affects "g" constraints.
5493     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
5494       continue;
5495 
5496     // This constraint letter is more general than the previous one, use it.
5497     int Generality = getConstraintGenerality(CType);
5498     if (Generality > BestGenerality) {
5499       BestType = CType;
5500       BestIdx = i;
5501       BestGenerality = Generality;
5502     }
5503   }
5504 
5505   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
5506   OpInfo.ConstraintType = BestType;
5507 }
5508 
5509 /// Determines the constraint code and constraint type to use for the specific
5510 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5511 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5512                                             SDValue Op,
5513                                             SelectionDAG *DAG) const {
5514   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
5515 
5516   // Single-letter constraints ('r') are very common.
5517   if (OpInfo.Codes.size() == 1) {
5518     OpInfo.ConstraintCode = OpInfo.Codes[0];
5519     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5520   } else {
5521     ChooseConstraint(OpInfo, *this, Op, DAG);
5522   }
5523 
5524   // 'X' matches anything.
5525   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
5526     // Constants are handled elsewhere.  For Functions, the type here is the
5527     // type of the result, which is not what we want to look at; leave them
5528     // alone.
5529     Value *v = OpInfo.CallOperandVal;
5530     if (isa<ConstantInt>(v) || isa<Function>(v)) {
5531       return;
5532     }
5533 
5534     if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
5535       OpInfo.ConstraintCode = "i";
5536       return;
5537     }
5538 
5539     // Otherwise, try to resolve it to something we know about by looking at
5540     // the actual operand type.
5541     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5542       OpInfo.ConstraintCode = Repl;
5543       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5544     }
5545   }
5546 }
5547 
5548 /// Given an exact SDIV by a constant, create a multiplication
5549 /// with the multiplicative inverse of the constant.
5550 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5551                               const SDLoc &dl, SelectionDAG &DAG,
5552                               SmallVectorImpl<SDNode *> &Created) {
5553   SDValue Op0 = N->getOperand(0);
5554   SDValue Op1 = N->getOperand(1);
5555   EVT VT = N->getValueType(0);
5556   EVT SVT = VT.getScalarType();
5557   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5558   EVT ShSVT = ShVT.getScalarType();
5559 
5560   bool UseSRA = false;
5561   SmallVector<SDValue, 16> Shifts, Factors;
5562 
5563   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5564     if (C->isZero())
5565       return false;
5566     APInt Divisor = C->getAPIntValue();
5567     unsigned Shift = Divisor.countTrailingZeros();
5568     if (Shift) {
5569       Divisor.ashrInPlace(Shift);
5570       UseSRA = true;
5571     }
5572     // Calculate the multiplicative inverse, using Newton's method.
5573     APInt t;
5574     APInt Factor = Divisor;
5575     while ((t = Divisor * Factor) != 1)
5576       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5577     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5578     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5579     return true;
5580   };
5581 
5582   // Collect all magic values from the build vector.
5583   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5584     return SDValue();
5585 
5586   SDValue Shift, Factor;
5587   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5588     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5589     Factor = DAG.getBuildVector(VT, dl, Factors);
5590   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5591     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5592            "Expected matchUnaryPredicate to return one element for scalable "
5593            "vectors");
5594     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5595     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5596   } else {
5597     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5598     Shift = Shifts[0];
5599     Factor = Factors[0];
5600   }
5601 
5602   SDValue Res = Op0;
5603 
5604   // Shift the value upfront if it is even, so the LSB is one.
5605   if (UseSRA) {
5606     // TODO: For UDIV use SRL instead of SRA.
5607     SDNodeFlags Flags;
5608     Flags.setExact(true);
5609     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5610     Created.push_back(Res.getNode());
5611   }
5612 
5613   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5614 }
5615 
5616 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5617                               SelectionDAG &DAG,
5618                               SmallVectorImpl<SDNode *> &Created) const {
5619   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5620   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5621   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5622     return SDValue(N, 0); // Lower SDIV as SDIV
5623   return SDValue();
5624 }
5625 
5626 SDValue
5627 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor,
5628                               SelectionDAG &DAG,
5629                               SmallVectorImpl<SDNode *> &Created) const {
5630   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5631   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5632   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5633     return SDValue(N, 0); // Lower SREM as SREM
5634   return SDValue();
5635 }
5636 
5637 /// Given an ISD::SDIV node expressing a divide by constant,
5638 /// return a DAG expression to select that will generate the same value by
5639 /// multiplying by a magic number.
5640 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5641 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5642                                   bool IsAfterLegalization,
5643                                   SmallVectorImpl<SDNode *> &Created) const {
5644   SDLoc dl(N);
5645   EVT VT = N->getValueType(0);
5646   EVT SVT = VT.getScalarType();
5647   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5648   EVT ShSVT = ShVT.getScalarType();
5649   unsigned EltBits = VT.getScalarSizeInBits();
5650   EVT MulVT;
5651 
5652   // Check to see if we can do this.
5653   // FIXME: We should be more aggressive here.
5654   if (!isTypeLegal(VT)) {
5655     // Limit this to simple scalars for now.
5656     if (VT.isVector() || !VT.isSimple())
5657       return SDValue();
5658 
5659     // If this type will be promoted to a large enough type with a legal
5660     // multiply operation, we can go ahead and do this transform.
5661     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5662       return SDValue();
5663 
5664     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5665     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5666         !isOperationLegal(ISD::MUL, MulVT))
5667       return SDValue();
5668   }
5669 
5670   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5671   if (N->getFlags().hasExact())
5672     return BuildExactSDIV(*this, N, dl, DAG, Created);
5673 
5674   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5675 
5676   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5677     if (C->isZero())
5678       return false;
5679 
5680     const APInt &Divisor = C->getAPIntValue();
5681     SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
5682     int NumeratorFactor = 0;
5683     int ShiftMask = -1;
5684 
5685     if (Divisor.isOne() || Divisor.isAllOnes()) {
5686       // If d is +1/-1, we just multiply the numerator by +1/-1.
5687       NumeratorFactor = Divisor.getSExtValue();
5688       magics.Magic = 0;
5689       magics.ShiftAmount = 0;
5690       ShiftMask = 0;
5691     } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
5692       // If d > 0 and m < 0, add the numerator.
5693       NumeratorFactor = 1;
5694     } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
5695       // If d < 0 and m > 0, subtract the numerator.
5696       NumeratorFactor = -1;
5697     }
5698 
5699     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
5700     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5701     Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
5702     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5703     return true;
5704   };
5705 
5706   SDValue N0 = N->getOperand(0);
5707   SDValue N1 = N->getOperand(1);
5708 
5709   // Collect the shifts / magic values from each element.
5710   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5711     return SDValue();
5712 
5713   SDValue MagicFactor, Factor, Shift, ShiftMask;
5714   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5715     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5716     Factor = DAG.getBuildVector(VT, dl, Factors);
5717     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5718     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5719   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5720     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5721            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5722            "Expected matchUnaryPredicate to return one element for scalable "
5723            "vectors");
5724     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5725     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5726     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5727     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5728   } else {
5729     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5730     MagicFactor = MagicFactors[0];
5731     Factor = Factors[0];
5732     Shift = Shifts[0];
5733     ShiftMask = ShiftMasks[0];
5734   }
5735 
5736   // Multiply the numerator (operand 0) by the magic value.
5737   // FIXME: We should support doing a MUL in a wider type.
5738   auto GetMULHS = [&](SDValue X, SDValue Y) {
5739     // If the type isn't legal, use a wider mul of the the type calculated
5740     // earlier.
5741     if (!isTypeLegal(VT)) {
5742       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5743       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5744       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5745       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5746                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5747       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5748     }
5749 
5750     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5751       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5752     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5753       SDValue LoHi =
5754           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5755       return SDValue(LoHi.getNode(), 1);
5756     }
5757     return SDValue();
5758   };
5759 
5760   SDValue Q = GetMULHS(N0, MagicFactor);
5761   if (!Q)
5762     return SDValue();
5763 
5764   Created.push_back(Q.getNode());
5765 
5766   // (Optionally) Add/subtract the numerator using Factor.
5767   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5768   Created.push_back(Factor.getNode());
5769   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5770   Created.push_back(Q.getNode());
5771 
5772   // Shift right algebraic by shift value.
5773   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5774   Created.push_back(Q.getNode());
5775 
5776   // Extract the sign bit, mask it and add it to the quotient.
5777   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5778   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5779   Created.push_back(T.getNode());
5780   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5781   Created.push_back(T.getNode());
5782   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5783 }
5784 
5785 /// Given an ISD::UDIV node expressing a divide by constant,
5786 /// return a DAG expression to select that will generate the same value by
5787 /// multiplying by a magic number.
5788 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5789 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5790                                   bool IsAfterLegalization,
5791                                   SmallVectorImpl<SDNode *> &Created) const {
5792   SDLoc dl(N);
5793   EVT VT = N->getValueType(0);
5794   EVT SVT = VT.getScalarType();
5795   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5796   EVT ShSVT = ShVT.getScalarType();
5797   unsigned EltBits = VT.getScalarSizeInBits();
5798   EVT MulVT;
5799 
5800   // Check to see if we can do this.
5801   // FIXME: We should be more aggressive here.
5802   if (!isTypeLegal(VT)) {
5803     // Limit this to simple scalars for now.
5804     if (VT.isVector() || !VT.isSimple())
5805       return SDValue();
5806 
5807     // If this type will be promoted to a large enough type with a legal
5808     // multiply operation, we can go ahead and do this transform.
5809     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5810       return SDValue();
5811 
5812     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5813     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5814         !isOperationLegal(ISD::MUL, MulVT))
5815       return SDValue();
5816   }
5817 
5818   bool UseNPQ = false;
5819   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5820 
5821   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5822     if (C->isZero())
5823       return false;
5824     // FIXME: We should use a narrower constant when the upper
5825     // bits are known to be zero.
5826     const APInt& Divisor = C->getAPIntValue();
5827     UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor);
5828     unsigned PreShift = 0, PostShift = 0;
5829 
5830     // If the divisor is even, we can avoid using the expensive fixup by
5831     // shifting the divided value upfront.
5832     if (magics.IsAdd != 0 && !Divisor[0]) {
5833       PreShift = Divisor.countTrailingZeros();
5834       // Get magic number for the shifted divisor.
5835       magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift);
5836       assert(magics.IsAdd == 0 && "Should use cheap fixup now");
5837     }
5838 
5839     APInt Magic = magics.Magic;
5840 
5841     unsigned SelNPQ;
5842     if (magics.IsAdd == 0 || Divisor.isOne()) {
5843       assert(magics.ShiftAmount < Divisor.getBitWidth() &&
5844              "We shouldn't generate an undefined shift!");
5845       PostShift = magics.ShiftAmount;
5846       SelNPQ = false;
5847     } else {
5848       PostShift = magics.ShiftAmount - 1;
5849       SelNPQ = true;
5850     }
5851 
5852     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5853     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5854     NPQFactors.push_back(
5855         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5856                                : APInt::getZero(EltBits),
5857                         dl, SVT));
5858     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5859     UseNPQ |= SelNPQ;
5860     return true;
5861   };
5862 
5863   SDValue N0 = N->getOperand(0);
5864   SDValue N1 = N->getOperand(1);
5865 
5866   // Collect the shifts/magic values from each element.
5867   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5868     return SDValue();
5869 
5870   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5871   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5872     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5873     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5874     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5875     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5876   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5877     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
5878            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
5879            "Expected matchUnaryPredicate to return one for scalable vectors");
5880     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5881     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5882     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5883     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5884   } else {
5885     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5886     PreShift = PreShifts[0];
5887     MagicFactor = MagicFactors[0];
5888     PostShift = PostShifts[0];
5889   }
5890 
5891   SDValue Q = N0;
5892   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5893   Created.push_back(Q.getNode());
5894 
5895   // FIXME: We should support doing a MUL in a wider type.
5896   auto GetMULHU = [&](SDValue X, SDValue Y) {
5897     // If the type isn't legal, use a wider mul of the the type calculated
5898     // earlier.
5899     if (!isTypeLegal(VT)) {
5900       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
5901       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
5902       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5903       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5904                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5905       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5906     }
5907 
5908     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
5909       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5910     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
5911       SDValue LoHi =
5912           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5913       return SDValue(LoHi.getNode(), 1);
5914     }
5915     return SDValue(); // No mulhu or equivalent
5916   };
5917 
5918   // Multiply the numerator (operand 0) by the magic value.
5919   Q = GetMULHU(Q, MagicFactor);
5920   if (!Q)
5921     return SDValue();
5922 
5923   Created.push_back(Q.getNode());
5924 
5925   if (UseNPQ) {
5926     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5927     Created.push_back(NPQ.getNode());
5928 
5929     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5930     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5931     if (VT.isVector())
5932       NPQ = GetMULHU(NPQ, NPQFactor);
5933     else
5934       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5935 
5936     Created.push_back(NPQ.getNode());
5937 
5938     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5939     Created.push_back(Q.getNode());
5940   }
5941 
5942   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5943   Created.push_back(Q.getNode());
5944 
5945   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5946 
5947   SDValue One = DAG.getConstant(1, dl, VT);
5948   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
5949   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5950 }
5951 
5952 /// If all values in Values that *don't* match the predicate are same 'splat'
5953 /// value, then replace all values with that splat value.
5954 /// Else, if AlternativeReplacement was provided, then replace all values that
5955 /// do match predicate with AlternativeReplacement value.
5956 static void
5957 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5958                           std::function<bool(SDValue)> Predicate,
5959                           SDValue AlternativeReplacement = SDValue()) {
5960   SDValue Replacement;
5961   // Is there a value for which the Predicate does *NOT* match? What is it?
5962   auto SplatValue = llvm::find_if_not(Values, Predicate);
5963   if (SplatValue != Values.end()) {
5964     // Does Values consist only of SplatValue's and values matching Predicate?
5965     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5966           return Value == *SplatValue || Predicate(Value);
5967         })) // Then we shall replace values matching predicate with SplatValue.
5968       Replacement = *SplatValue;
5969   }
5970   if (!Replacement) {
5971     // Oops, we did not find the "baseline" splat value.
5972     if (!AlternativeReplacement)
5973       return; // Nothing to do.
5974     // Let's replace with provided value then.
5975     Replacement = AlternativeReplacement;
5976   }
5977   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5978 }
5979 
5980 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5981 /// where the divisor is constant and the comparison target is zero,
5982 /// return a DAG expression that will generate the same comparison result
5983 /// using only multiplications, additions and shifts/rotations.
5984 /// Ref: "Hacker's Delight" 10-17.
5985 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5986                                         SDValue CompTargetNode,
5987                                         ISD::CondCode Cond,
5988                                         DAGCombinerInfo &DCI,
5989                                         const SDLoc &DL) const {
5990   SmallVector<SDNode *, 5> Built;
5991   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5992                                          DCI, DL, Built)) {
5993     for (SDNode *N : Built)
5994       DCI.AddToWorklist(N);
5995     return Folded;
5996   }
5997 
5998   return SDValue();
5999 }
6000 
6001 SDValue
6002 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
6003                                   SDValue CompTargetNode, ISD::CondCode Cond,
6004                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6005                                   SmallVectorImpl<SDNode *> &Created) const {
6006   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
6007   // - D must be constant, with D = D0 * 2^K where D0 is odd
6008   // - P is the multiplicative inverse of D0 modulo 2^W
6009   // - Q = floor(((2^W) - 1) / D)
6010   // where W is the width of the common type of N and D.
6011   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6012          "Only applicable for (in)equality comparisons.");
6013 
6014   SelectionDAG &DAG = DCI.DAG;
6015 
6016   EVT VT = REMNode.getValueType();
6017   EVT SVT = VT.getScalarType();
6018   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
6019   EVT ShSVT = ShVT.getScalarType();
6020 
6021   // If MUL is unavailable, we cannot proceed in any case.
6022   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6023     return SDValue();
6024 
6025   bool ComparingWithAllZeros = true;
6026   bool AllComparisonsWithNonZerosAreTautological = true;
6027   bool HadTautologicalLanes = false;
6028   bool AllLanesAreTautological = true;
6029   bool HadEvenDivisor = false;
6030   bool AllDivisorsArePowerOfTwo = true;
6031   bool HadTautologicalInvertedLanes = false;
6032   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
6033 
6034   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
6035     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6036     if (CDiv->isZero())
6037       return false;
6038 
6039     const APInt &D = CDiv->getAPIntValue();
6040     const APInt &Cmp = CCmp->getAPIntValue();
6041 
6042     ComparingWithAllZeros &= Cmp.isZero();
6043 
6044     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6045     // if C2 is not less than C1, the comparison is always false.
6046     // But we will only be able to produce the comparison that will give the
6047     // opposive tautological answer. So this lane would need to be fixed up.
6048     bool TautologicalInvertedLane = D.ule(Cmp);
6049     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
6050 
6051     // If all lanes are tautological (either all divisors are ones, or divisor
6052     // is not greater than the constant we are comparing with),
6053     // we will prefer to avoid the fold.
6054     bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
6055     HadTautologicalLanes |= TautologicalLane;
6056     AllLanesAreTautological &= TautologicalLane;
6057 
6058     // If we are comparing with non-zero, we need'll need  to subtract said
6059     // comparison value from the LHS. But there is no point in doing that if
6060     // every lane where we are comparing with non-zero is tautological..
6061     if (!Cmp.isZero())
6062       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
6063 
6064     // Decompose D into D0 * 2^K
6065     unsigned K = D.countTrailingZeros();
6066     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6067     APInt D0 = D.lshr(K);
6068 
6069     // D is even if it has trailing zeros.
6070     HadEvenDivisor |= (K != 0);
6071     // D is a power-of-two if D0 is one.
6072     // If all divisors are power-of-two, we will prefer to avoid the fold.
6073     AllDivisorsArePowerOfTwo &= D0.isOne();
6074 
6075     // P = inv(D0, 2^W)
6076     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6077     unsigned W = D.getBitWidth();
6078     APInt P = D0.zext(W + 1)
6079                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6080                   .trunc(W);
6081     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6082     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6083 
6084     // Q = floor((2^W - 1) u/ D)
6085     // R = ((2^W - 1) u% D)
6086     APInt Q, R;
6087     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
6088 
6089     // If we are comparing with zero, then that comparison constant is okay,
6090     // else it may need to be one less than that.
6091     if (Cmp.ugt(R))
6092       Q -= 1;
6093 
6094     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6095            "We are expecting that K is always less than all-ones for ShSVT");
6096 
6097     // If the lane is tautological the result can be constant-folded.
6098     if (TautologicalLane) {
6099       // Set P and K amount to a bogus values so we can try to splat them.
6100       P = 0;
6101       K = -1;
6102       // And ensure that comparison constant is tautological,
6103       // it will always compare true/false.
6104       Q = -1;
6105     }
6106 
6107     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6108     KAmts.push_back(
6109         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6110     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6111     return true;
6112   };
6113 
6114   SDValue N = REMNode.getOperand(0);
6115   SDValue D = REMNode.getOperand(1);
6116 
6117   // Collect the values from each element.
6118   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
6119     return SDValue();
6120 
6121   // If all lanes are tautological, the result can be constant-folded.
6122   if (AllLanesAreTautological)
6123     return SDValue();
6124 
6125   // If this is a urem by a powers-of-two, avoid the fold since it can be
6126   // best implemented as a bit test.
6127   if (AllDivisorsArePowerOfTwo)
6128     return SDValue();
6129 
6130   SDValue PVal, KVal, QVal;
6131   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6132     if (HadTautologicalLanes) {
6133       // Try to turn PAmts into a splat, since we don't care about the values
6134       // that are currently '0'. If we can't, just keep '0'`s.
6135       turnVectorIntoSplatVector(PAmts, isNullConstant);
6136       // Try to turn KAmts into a splat, since we don't care about the values
6137       // that are currently '-1'. If we can't, change them to '0'`s.
6138       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6139                                 DAG.getConstant(0, DL, ShSVT));
6140     }
6141 
6142     PVal = DAG.getBuildVector(VT, DL, PAmts);
6143     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6144     QVal = DAG.getBuildVector(VT, DL, QAmts);
6145   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6146     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
6147            "Expected matchBinaryPredicate to return one element for "
6148            "SPLAT_VECTORs");
6149     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6150     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6151     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6152   } else {
6153     PVal = PAmts[0];
6154     KVal = KAmts[0];
6155     QVal = QAmts[0];
6156   }
6157 
6158   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
6159     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
6160       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
6161     assert(CompTargetNode.getValueType() == N.getValueType() &&
6162            "Expecting that the types on LHS and RHS of comparisons match.");
6163     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
6164   }
6165 
6166   // (mul N, P)
6167   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6168   Created.push_back(Op0.getNode());
6169 
6170   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6171   // divisors as a performance improvement, since rotating by 0 is a no-op.
6172   if (HadEvenDivisor) {
6173     // We need ROTR to do this.
6174     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6175       return SDValue();
6176     // UREM: (rotr (mul N, P), K)
6177     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6178     Created.push_back(Op0.getNode());
6179   }
6180 
6181   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
6182   SDValue NewCC =
6183       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6184                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6185   if (!HadTautologicalInvertedLanes)
6186     return NewCC;
6187 
6188   // If any lanes previously compared always-false, the NewCC will give
6189   // always-true result for them, so we need to fixup those lanes.
6190   // Or the other way around for inequality predicate.
6191   assert(VT.isVector() && "Can/should only get here for vectors.");
6192   Created.push_back(NewCC.getNode());
6193 
6194   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6195   // if C2 is not less than C1, the comparison is always false.
6196   // But we have produced the comparison that will give the
6197   // opposive tautological answer. So these lanes would need to be fixed up.
6198   SDValue TautologicalInvertedChannels =
6199       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
6200   Created.push_back(TautologicalInvertedChannels.getNode());
6201 
6202   // NOTE: we avoid letting illegal types through even if we're before legalize
6203   // ops – legalization has a hard time producing good code for this.
6204   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
6205     // If we have a vector select, let's replace the comparison results in the
6206     // affected lanes with the correct tautological result.
6207     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
6208                                               DL, SETCCVT, SETCCVT);
6209     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
6210                        Replacement, NewCC);
6211   }
6212 
6213   // Else, we can just invert the comparison result in the appropriate lanes.
6214   //
6215   // NOTE: see the note above VSELECT above.
6216   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
6217     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
6218                        TautologicalInvertedChannels);
6219 
6220   return SDValue(); // Don't know how to lower.
6221 }
6222 
6223 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
6224 /// where the divisor is constant and the comparison target is zero,
6225 /// return a DAG expression that will generate the same comparison result
6226 /// using only multiplications, additions and shifts/rotations.
6227 /// Ref: "Hacker's Delight" 10-17.
6228 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
6229                                         SDValue CompTargetNode,
6230                                         ISD::CondCode Cond,
6231                                         DAGCombinerInfo &DCI,
6232                                         const SDLoc &DL) const {
6233   SmallVector<SDNode *, 7> Built;
6234   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6235                                          DCI, DL, Built)) {
6236     assert(Built.size() <= 7 && "Max size prediction failed.");
6237     for (SDNode *N : Built)
6238       DCI.AddToWorklist(N);
6239     return Folded;
6240   }
6241 
6242   return SDValue();
6243 }
6244 
6245 SDValue
6246 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
6247                                   SDValue CompTargetNode, ISD::CondCode Cond,
6248                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6249                                   SmallVectorImpl<SDNode *> &Created) const {
6250   // Fold:
6251   //   (seteq/ne (srem N, D), 0)
6252   // To:
6253   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
6254   //
6255   // - D must be constant, with D = D0 * 2^K where D0 is odd
6256   // - P is the multiplicative inverse of D0 modulo 2^W
6257   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
6258   // - Q = floor((2 * A) / (2^K))
6259   // where W is the width of the common type of N and D.
6260   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6261          "Only applicable for (in)equality comparisons.");
6262 
6263   SelectionDAG &DAG = DCI.DAG;
6264 
6265   EVT VT = REMNode.getValueType();
6266   EVT SVT = VT.getScalarType();
6267   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
6268   EVT ShSVT = ShVT.getScalarType();
6269 
6270   // If we are after ops legalization, and MUL is unavailable, we can not
6271   // proceed.
6272   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6273     return SDValue();
6274 
6275   // TODO: Could support comparing with non-zero too.
6276   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
6277   if (!CompTarget || !CompTarget->isZero())
6278     return SDValue();
6279 
6280   bool HadIntMinDivisor = false;
6281   bool HadOneDivisor = false;
6282   bool AllDivisorsAreOnes = true;
6283   bool HadEvenDivisor = false;
6284   bool NeedToApplyOffset = false;
6285   bool AllDivisorsArePowerOfTwo = true;
6286   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
6287 
6288   auto BuildSREMPattern = [&](ConstantSDNode *C) {
6289     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6290     if (C->isZero())
6291       return false;
6292 
6293     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
6294 
6295     // WARNING: this fold is only valid for positive divisors!
6296     APInt D = C->getAPIntValue();
6297     if (D.isNegative())
6298       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
6299 
6300     HadIntMinDivisor |= D.isMinSignedValue();
6301 
6302     // If all divisors are ones, we will prefer to avoid the fold.
6303     HadOneDivisor |= D.isOne();
6304     AllDivisorsAreOnes &= D.isOne();
6305 
6306     // Decompose D into D0 * 2^K
6307     unsigned K = D.countTrailingZeros();
6308     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6309     APInt D0 = D.lshr(K);
6310 
6311     if (!D.isMinSignedValue()) {
6312       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
6313       // we don't care about this lane in this fold, we'll special-handle it.
6314       HadEvenDivisor |= (K != 0);
6315     }
6316 
6317     // D is a power-of-two if D0 is one. This includes INT_MIN.
6318     // If all divisors are power-of-two, we will prefer to avoid the fold.
6319     AllDivisorsArePowerOfTwo &= D0.isOne();
6320 
6321     // P = inv(D0, 2^W)
6322     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6323     unsigned W = D.getBitWidth();
6324     APInt P = D0.zext(W + 1)
6325                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6326                   .trunc(W);
6327     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6328     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6329 
6330     // A = floor((2^(W - 1) - 1) / D0) & -2^K
6331     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
6332     A.clearLowBits(K);
6333 
6334     if (!D.isMinSignedValue()) {
6335       // If divisor INT_MIN, then we don't care about this lane in this fold,
6336       // we'll special-handle it.
6337       NeedToApplyOffset |= A != 0;
6338     }
6339 
6340     // Q = floor((2 * A) / (2^K))
6341     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
6342 
6343     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
6344            "We are expecting that A is always less than all-ones for SVT");
6345     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6346            "We are expecting that K is always less than all-ones for ShSVT");
6347 
6348     // If the divisor is 1 the result can be constant-folded. Likewise, we
6349     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
6350     if (D.isOne()) {
6351       // Set P, A and K to a bogus values so we can try to splat them.
6352       P = 0;
6353       A = -1;
6354       K = -1;
6355 
6356       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
6357       Q = -1;
6358     }
6359 
6360     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6361     AAmts.push_back(DAG.getConstant(A, DL, SVT));
6362     KAmts.push_back(
6363         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6364     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6365     return true;
6366   };
6367 
6368   SDValue N = REMNode.getOperand(0);
6369   SDValue D = REMNode.getOperand(1);
6370 
6371   // Collect the values from each element.
6372   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
6373     return SDValue();
6374 
6375   // If this is a srem by a one, avoid the fold since it can be constant-folded.
6376   if (AllDivisorsAreOnes)
6377     return SDValue();
6378 
6379   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
6380   // since it can be best implemented as a bit test.
6381   if (AllDivisorsArePowerOfTwo)
6382     return SDValue();
6383 
6384   SDValue PVal, AVal, KVal, QVal;
6385   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6386     if (HadOneDivisor) {
6387       // Try to turn PAmts into a splat, since we don't care about the values
6388       // that are currently '0'. If we can't, just keep '0'`s.
6389       turnVectorIntoSplatVector(PAmts, isNullConstant);
6390       // Try to turn AAmts into a splat, since we don't care about the
6391       // values that are currently '-1'. If we can't, change them to '0'`s.
6392       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
6393                                 DAG.getConstant(0, DL, SVT));
6394       // Try to turn KAmts into a splat, since we don't care about the values
6395       // that are currently '-1'. If we can't, change them to '0'`s.
6396       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6397                                 DAG.getConstant(0, DL, ShSVT));
6398     }
6399 
6400     PVal = DAG.getBuildVector(VT, DL, PAmts);
6401     AVal = DAG.getBuildVector(VT, DL, AAmts);
6402     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6403     QVal = DAG.getBuildVector(VT, DL, QAmts);
6404   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6405     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
6406            QAmts.size() == 1 &&
6407            "Expected matchUnaryPredicate to return one element for scalable "
6408            "vectors");
6409     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6410     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
6411     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6412     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6413   } else {
6414     assert(isa<ConstantSDNode>(D) && "Expected a constant");
6415     PVal = PAmts[0];
6416     AVal = AAmts[0];
6417     KVal = KAmts[0];
6418     QVal = QAmts[0];
6419   }
6420 
6421   // (mul N, P)
6422   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6423   Created.push_back(Op0.getNode());
6424 
6425   if (NeedToApplyOffset) {
6426     // We need ADD to do this.
6427     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
6428       return SDValue();
6429 
6430     // (add (mul N, P), A)
6431     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
6432     Created.push_back(Op0.getNode());
6433   }
6434 
6435   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6436   // divisors as a performance improvement, since rotating by 0 is a no-op.
6437   if (HadEvenDivisor) {
6438     // We need ROTR to do this.
6439     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6440       return SDValue();
6441     // SREM: (rotr (add (mul N, P), A), K)
6442     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6443     Created.push_back(Op0.getNode());
6444   }
6445 
6446   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
6447   SDValue Fold =
6448       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6449                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6450 
6451   // If we didn't have lanes with INT_MIN divisor, then we're done.
6452   if (!HadIntMinDivisor)
6453     return Fold;
6454 
6455   // That fold is only valid for positive divisors. Which effectively means,
6456   // it is invalid for INT_MIN divisors. So if we have such a lane,
6457   // we must fix-up results for said lanes.
6458   assert(VT.isVector() && "Can/should only get here for vectors.");
6459 
6460   // NOTE: we avoid letting illegal types through even if we're before legalize
6461   // ops – legalization has a hard time producing good code for the code that
6462   // follows.
6463   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
6464       !isOperationLegalOrCustom(ISD::AND, VT) ||
6465       !isOperationLegalOrCustom(Cond, VT) ||
6466       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
6467     return SDValue();
6468 
6469   Created.push_back(Fold.getNode());
6470 
6471   SDValue IntMin = DAG.getConstant(
6472       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
6473   SDValue IntMax = DAG.getConstant(
6474       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
6475   SDValue Zero =
6476       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
6477 
6478   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
6479   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
6480   Created.push_back(DivisorIsIntMin.getNode());
6481 
6482   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
6483   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
6484   Created.push_back(Masked.getNode());
6485   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
6486   Created.push_back(MaskedIsZero.getNode());
6487 
6488   // To produce final result we need to blend 2 vectors: 'SetCC' and
6489   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
6490   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
6491   // constant-folded, select can get lowered to a shuffle with constant mask.
6492   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
6493                                 MaskedIsZero, Fold);
6494 
6495   return Blended;
6496 }
6497 
6498 bool TargetLowering::
6499 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
6500   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
6501     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
6502                                 "be a constant integer");
6503     return true;
6504   }
6505 
6506   return false;
6507 }
6508 
6509 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
6510                                          const DenormalMode &Mode) const {
6511   SDLoc DL(Op);
6512   EVT VT = Op.getValueType();
6513   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6514   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
6515   // Testing it with denormal inputs to avoid wrong estimate.
6516   if (Mode.Input == DenormalMode::IEEE) {
6517     // This is specifically a check for the handling of denormal inputs,
6518     // not the result.
6519 
6520     // Test = fabs(X) < SmallestNormal
6521     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
6522     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
6523     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
6524     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
6525     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
6526   }
6527   // Test = X == 0.0
6528   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
6529 }
6530 
6531 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
6532                                              bool LegalOps, bool OptForSize,
6533                                              NegatibleCost &Cost,
6534                                              unsigned Depth) const {
6535   // fneg is removable even if it has multiple uses.
6536   if (Op.getOpcode() == ISD::FNEG) {
6537     Cost = NegatibleCost::Cheaper;
6538     return Op.getOperand(0);
6539   }
6540 
6541   // Don't recurse exponentially.
6542   if (Depth > SelectionDAG::MaxRecursionDepth)
6543     return SDValue();
6544 
6545   // Pre-increment recursion depth for use in recursive calls.
6546   ++Depth;
6547   const SDNodeFlags Flags = Op->getFlags();
6548   const TargetOptions &Options = DAG.getTarget().Options;
6549   EVT VT = Op.getValueType();
6550   unsigned Opcode = Op.getOpcode();
6551 
6552   // Don't allow anything with multiple uses unless we know it is free.
6553   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6554     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6555                         isFPExtFree(VT, Op.getOperand(0).getValueType());
6556     if (!IsFreeExtend)
6557       return SDValue();
6558   }
6559 
6560   auto RemoveDeadNode = [&](SDValue N) {
6561     if (N && N.getNode()->use_empty())
6562       DAG.RemoveDeadNode(N.getNode());
6563   };
6564 
6565   SDLoc DL(Op);
6566 
6567   // Because getNegatedExpression can delete nodes we need a handle to keep
6568   // temporary nodes alive in case the recursion manages to create an identical
6569   // node.
6570   std::list<HandleSDNode> Handles;
6571 
6572   switch (Opcode) {
6573   case ISD::ConstantFP: {
6574     // Don't invert constant FP values after legalization unless the target says
6575     // the negated constant is legal.
6576     bool IsOpLegal =
6577         isOperationLegal(ISD::ConstantFP, VT) ||
6578         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6579                      OptForSize);
6580 
6581     if (LegalOps && !IsOpLegal)
6582       break;
6583 
6584     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6585     V.changeSign();
6586     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6587 
6588     // If we already have the use of the negated floating constant, it is free
6589     // to negate it even it has multiple uses.
6590     if (!Op.hasOneUse() && CFP.use_empty())
6591       break;
6592     Cost = NegatibleCost::Neutral;
6593     return CFP;
6594   }
6595   case ISD::BUILD_VECTOR: {
6596     // Only permit BUILD_VECTOR of constants.
6597     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6598           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6599         }))
6600       break;
6601 
6602     bool IsOpLegal =
6603         (isOperationLegal(ISD::ConstantFP, VT) &&
6604          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6605         llvm::all_of(Op->op_values(), [&](SDValue N) {
6606           return N.isUndef() ||
6607                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6608                               OptForSize);
6609         });
6610 
6611     if (LegalOps && !IsOpLegal)
6612       break;
6613 
6614     SmallVector<SDValue, 4> Ops;
6615     for (SDValue C : Op->op_values()) {
6616       if (C.isUndef()) {
6617         Ops.push_back(C);
6618         continue;
6619       }
6620       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6621       V.changeSign();
6622       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6623     }
6624     Cost = NegatibleCost::Neutral;
6625     return DAG.getBuildVector(VT, DL, Ops);
6626   }
6627   case ISD::FADD: {
6628     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6629       break;
6630 
6631     // After operation legalization, it might not be legal to create new FSUBs.
6632     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6633       break;
6634     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6635 
6636     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6637     NegatibleCost CostX = NegatibleCost::Expensive;
6638     SDValue NegX =
6639         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6640     // Prevent this node from being deleted by the next call.
6641     if (NegX)
6642       Handles.emplace_back(NegX);
6643 
6644     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6645     NegatibleCost CostY = NegatibleCost::Expensive;
6646     SDValue NegY =
6647         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6648 
6649     // We're done with the handles.
6650     Handles.clear();
6651 
6652     // Negate the X if its cost is less or equal than Y.
6653     if (NegX && (CostX <= CostY)) {
6654       Cost = CostX;
6655       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6656       if (NegY != N)
6657         RemoveDeadNode(NegY);
6658       return N;
6659     }
6660 
6661     // Negate the Y if it is not expensive.
6662     if (NegY) {
6663       Cost = CostY;
6664       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6665       if (NegX != N)
6666         RemoveDeadNode(NegX);
6667       return N;
6668     }
6669     break;
6670   }
6671   case ISD::FSUB: {
6672     // We can't turn -(A-B) into B-A when we honor signed zeros.
6673     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6674       break;
6675 
6676     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6677     // fold (fneg (fsub 0, Y)) -> Y
6678     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6679       if (C->isZero()) {
6680         Cost = NegatibleCost::Cheaper;
6681         return Y;
6682       }
6683 
6684     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6685     Cost = NegatibleCost::Neutral;
6686     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6687   }
6688   case ISD::FMUL:
6689   case ISD::FDIV: {
6690     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6691 
6692     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6693     NegatibleCost CostX = NegatibleCost::Expensive;
6694     SDValue NegX =
6695         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6696     // Prevent this node from being deleted by the next call.
6697     if (NegX)
6698       Handles.emplace_back(NegX);
6699 
6700     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6701     NegatibleCost CostY = NegatibleCost::Expensive;
6702     SDValue NegY =
6703         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6704 
6705     // We're done with the handles.
6706     Handles.clear();
6707 
6708     // Negate the X if its cost is less or equal than Y.
6709     if (NegX && (CostX <= CostY)) {
6710       Cost = CostX;
6711       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6712       if (NegY != N)
6713         RemoveDeadNode(NegY);
6714       return N;
6715     }
6716 
6717     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6718     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6719       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6720         break;
6721 
6722     // Negate the Y if it is not expensive.
6723     if (NegY) {
6724       Cost = CostY;
6725       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6726       if (NegX != N)
6727         RemoveDeadNode(NegX);
6728       return N;
6729     }
6730     break;
6731   }
6732   case ISD::FMA:
6733   case ISD::FMAD: {
6734     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6735       break;
6736 
6737     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6738     NegatibleCost CostZ = NegatibleCost::Expensive;
6739     SDValue NegZ =
6740         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6741     // Give up if fail to negate the Z.
6742     if (!NegZ)
6743       break;
6744 
6745     // Prevent this node from being deleted by the next two calls.
6746     Handles.emplace_back(NegZ);
6747 
6748     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6749     NegatibleCost CostX = NegatibleCost::Expensive;
6750     SDValue NegX =
6751         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6752     // Prevent this node from being deleted by the next call.
6753     if (NegX)
6754       Handles.emplace_back(NegX);
6755 
6756     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6757     NegatibleCost CostY = NegatibleCost::Expensive;
6758     SDValue NegY =
6759         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6760 
6761     // We're done with the handles.
6762     Handles.clear();
6763 
6764     // Negate the X if its cost is less or equal than Y.
6765     if (NegX && (CostX <= CostY)) {
6766       Cost = std::min(CostX, CostZ);
6767       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6768       if (NegY != N)
6769         RemoveDeadNode(NegY);
6770       return N;
6771     }
6772 
6773     // Negate the Y if it is not expensive.
6774     if (NegY) {
6775       Cost = std::min(CostY, CostZ);
6776       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6777       if (NegX != N)
6778         RemoveDeadNode(NegX);
6779       return N;
6780     }
6781     break;
6782   }
6783 
6784   case ISD::FP_EXTEND:
6785   case ISD::FSIN:
6786     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6787                                             OptForSize, Cost, Depth))
6788       return DAG.getNode(Opcode, DL, VT, NegV);
6789     break;
6790   case ISD::FP_ROUND:
6791     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6792                                             OptForSize, Cost, Depth))
6793       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6794     break;
6795   }
6796 
6797   return SDValue();
6798 }
6799 
6800 //===----------------------------------------------------------------------===//
6801 // Legalization Utilities
6802 //===----------------------------------------------------------------------===//
6803 
6804 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6805                                     SDValue LHS, SDValue RHS,
6806                                     SmallVectorImpl<SDValue> &Result,
6807                                     EVT HiLoVT, SelectionDAG &DAG,
6808                                     MulExpansionKind Kind, SDValue LL,
6809                                     SDValue LH, SDValue RL, SDValue RH) const {
6810   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6811          Opcode == ISD::SMUL_LOHI);
6812 
6813   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6814                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6815   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6816                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6817   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6818                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6819   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6820                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6821 
6822   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6823     return false;
6824 
6825   unsigned OuterBitSize = VT.getScalarSizeInBits();
6826   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6827 
6828   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6829   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6830          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6831 
6832   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6833   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6834                           bool Signed) -> bool {
6835     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6836       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6837       Hi = SDValue(Lo.getNode(), 1);
6838       return true;
6839     }
6840     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6841       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6842       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6843       return true;
6844     }
6845     return false;
6846   };
6847 
6848   SDValue Lo, Hi;
6849 
6850   if (!LL.getNode() && !RL.getNode() &&
6851       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6852     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6853     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6854   }
6855 
6856   if (!LL.getNode())
6857     return false;
6858 
6859   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6860   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6861       DAG.MaskedValueIsZero(RHS, HighMask)) {
6862     // The inputs are both zero-extended.
6863     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6864       Result.push_back(Lo);
6865       Result.push_back(Hi);
6866       if (Opcode != ISD::MUL) {
6867         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6868         Result.push_back(Zero);
6869         Result.push_back(Zero);
6870       }
6871       return true;
6872     }
6873   }
6874 
6875   if (!VT.isVector() && Opcode == ISD::MUL &&
6876       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6877       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6878     // The input values are both sign-extended.
6879     // TODO non-MUL case?
6880     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6881       Result.push_back(Lo);
6882       Result.push_back(Hi);
6883       return true;
6884     }
6885   }
6886 
6887   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6888   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6889   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6890 
6891   if (!LH.getNode() && !RH.getNode() &&
6892       isOperationLegalOrCustom(ISD::SRL, VT) &&
6893       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6894     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6895     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6896     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6897     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6898   }
6899 
6900   if (!LH.getNode())
6901     return false;
6902 
6903   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6904     return false;
6905 
6906   Result.push_back(Lo);
6907 
6908   if (Opcode == ISD::MUL) {
6909     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6910     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6911     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6912     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6913     Result.push_back(Hi);
6914     return true;
6915   }
6916 
6917   // Compute the full width result.
6918   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6919     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6920     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6921     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6922     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6923   };
6924 
6925   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6926   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6927     return false;
6928 
6929   // This is effectively the add part of a multiply-add of half-sized operands,
6930   // so it cannot overflow.
6931   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6932 
6933   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6934     return false;
6935 
6936   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6937   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6938 
6939   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6940                   isOperationLegalOrCustom(ISD::ADDE, VT));
6941   if (UseGlue)
6942     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6943                        Merge(Lo, Hi));
6944   else
6945     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6946                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6947 
6948   SDValue Carry = Next.getValue(1);
6949   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6950   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6951 
6952   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6953     return false;
6954 
6955   if (UseGlue)
6956     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6957                      Carry);
6958   else
6959     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6960                      Zero, Carry);
6961 
6962   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6963 
6964   if (Opcode == ISD::SMUL_LOHI) {
6965     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6966                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6967     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6968 
6969     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6970                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6971     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6972   }
6973 
6974   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6975   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6976   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6977   return true;
6978 }
6979 
6980 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6981                                SelectionDAG &DAG, MulExpansionKind Kind,
6982                                SDValue LL, SDValue LH, SDValue RL,
6983                                SDValue RH) const {
6984   SmallVector<SDValue, 2> Result;
6985   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6986                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6987                            DAG, Kind, LL, LH, RL, RH);
6988   if (Ok) {
6989     assert(Result.size() == 2);
6990     Lo = Result[0];
6991     Hi = Result[1];
6992   }
6993   return Ok;
6994 }
6995 
6996 // Check that (every element of) Z is undef or not an exact multiple of BW.
6997 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
6998   return ISD::matchUnaryPredicate(
6999       Z,
7000       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
7001       true);
7002 }
7003 
7004 SDValue TargetLowering::expandFunnelShift(SDNode *Node,
7005                                           SelectionDAG &DAG) const {
7006   EVT VT = Node->getValueType(0);
7007 
7008   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
7009                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7010                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7011                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7012     return SDValue();
7013 
7014   SDValue X = Node->getOperand(0);
7015   SDValue Y = Node->getOperand(1);
7016   SDValue Z = Node->getOperand(2);
7017 
7018   unsigned BW = VT.getScalarSizeInBits();
7019   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
7020   SDLoc DL(SDValue(Node, 0));
7021 
7022   EVT ShVT = Z.getValueType();
7023 
7024   // If a funnel shift in the other direction is more supported, use it.
7025   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
7026   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
7027       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
7028     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7029       // fshl X, Y, Z -> fshr X, Y, -Z
7030       // fshr X, Y, Z -> fshl X, Y, -Z
7031       SDValue Zero = DAG.getConstant(0, DL, ShVT);
7032       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
7033     } else {
7034       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
7035       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
7036       SDValue One = DAG.getConstant(1, DL, ShVT);
7037       if (IsFSHL) {
7038         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
7039         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
7040       } else {
7041         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
7042         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
7043       }
7044       Z = DAG.getNOT(DL, Z, ShVT);
7045     }
7046     return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
7047   }
7048 
7049   SDValue ShX, ShY;
7050   SDValue ShAmt, InvShAmt;
7051   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7052     // fshl: X << C | Y >> (BW - C)
7053     // fshr: X << (BW - C) | Y >> C
7054     // where C = Z % BW is not zero
7055     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7056     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
7057     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
7058     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
7059     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
7060   } else {
7061     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
7062     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
7063     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
7064     if (isPowerOf2_32(BW)) {
7065       // Z % BW -> Z & (BW - 1)
7066       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
7067       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
7068       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
7069     } else {
7070       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7071       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
7072       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
7073     }
7074 
7075     SDValue One = DAG.getConstant(1, DL, ShVT);
7076     if (IsFSHL) {
7077       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
7078       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
7079       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
7080     } else {
7081       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
7082       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
7083       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
7084     }
7085   }
7086   return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
7087 }
7088 
7089 // TODO: Merge with expandFunnelShift.
7090 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
7091                                   SelectionDAG &DAG) const {
7092   EVT VT = Node->getValueType(0);
7093   unsigned EltSizeInBits = VT.getScalarSizeInBits();
7094   bool IsLeft = Node->getOpcode() == ISD::ROTL;
7095   SDValue Op0 = Node->getOperand(0);
7096   SDValue Op1 = Node->getOperand(1);
7097   SDLoc DL(SDValue(Node, 0));
7098 
7099   EVT ShVT = Op1.getValueType();
7100   SDValue Zero = DAG.getConstant(0, DL, ShVT);
7101 
7102   // If a rotate in the other direction is more supported, use it.
7103   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
7104   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
7105       isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
7106     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
7107     return DAG.getNode(RevRot, DL, VT, Op0, Sub);
7108   }
7109 
7110   if (!AllowVectorOps && VT.isVector() &&
7111       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
7112        !isOperationLegalOrCustom(ISD::SRL, VT) ||
7113        !isOperationLegalOrCustom(ISD::SUB, VT) ||
7114        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
7115        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
7116     return SDValue();
7117 
7118   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
7119   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
7120   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
7121   SDValue ShVal;
7122   SDValue HsVal;
7123   if (isPowerOf2_32(EltSizeInBits)) {
7124     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
7125     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
7126     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
7127     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
7128     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
7129     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
7130     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
7131   } else {
7132     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
7133     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
7134     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
7135     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
7136     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
7137     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
7138     SDValue One = DAG.getConstant(1, DL, ShVT);
7139     HsVal =
7140         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
7141   }
7142   return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
7143 }
7144 
7145 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
7146                                       SelectionDAG &DAG) const {
7147   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
7148   EVT VT = Node->getValueType(0);
7149   unsigned VTBits = VT.getScalarSizeInBits();
7150   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
7151 
7152   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
7153   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
7154   SDValue ShOpLo = Node->getOperand(0);
7155   SDValue ShOpHi = Node->getOperand(1);
7156   SDValue ShAmt = Node->getOperand(2);
7157   EVT ShAmtVT = ShAmt.getValueType();
7158   EVT ShAmtCCVT =
7159       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
7160   SDLoc dl(Node);
7161 
7162   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
7163   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
7164   // away during isel.
7165   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
7166                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
7167   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7168                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
7169                        : DAG.getConstant(0, dl, VT);
7170 
7171   SDValue Tmp2, Tmp3;
7172   if (IsSHL) {
7173     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
7174     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
7175   } else {
7176     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
7177     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
7178   }
7179 
7180   // If the shift amount is larger or equal than the width of a part we don't
7181   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
7182   // values for large shift amounts.
7183   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
7184                                 DAG.getConstant(VTBits, dl, ShAmtVT));
7185   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
7186                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
7187 
7188   if (IsSHL) {
7189     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7190     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7191   } else {
7192     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7193     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7194   }
7195 }
7196 
7197 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
7198                                       SelectionDAG &DAG) const {
7199   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7200   SDValue Src = Node->getOperand(OpNo);
7201   EVT SrcVT = Src.getValueType();
7202   EVT DstVT = Node->getValueType(0);
7203   SDLoc dl(SDValue(Node, 0));
7204 
7205   // FIXME: Only f32 to i64 conversions are supported.
7206   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
7207     return false;
7208 
7209   if (Node->isStrictFPOpcode())
7210     // When a NaN is converted to an integer a trap is allowed. We can't
7211     // use this expansion here because it would eliminate that trap. Other
7212     // traps are also allowed and cannot be eliminated. See
7213     // IEEE 754-2008 sec 5.8.
7214     return false;
7215 
7216   // Expand f32 -> i64 conversion
7217   // This algorithm comes from compiler-rt's implementation of fixsfdi:
7218   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
7219   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
7220   EVT IntVT = SrcVT.changeTypeToInteger();
7221   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
7222 
7223   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
7224   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
7225   SDValue Bias = DAG.getConstant(127, dl, IntVT);
7226   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
7227   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
7228   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
7229 
7230   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
7231 
7232   SDValue ExponentBits = DAG.getNode(
7233       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
7234       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
7235   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
7236 
7237   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
7238                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
7239                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
7240   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
7241 
7242   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
7243                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
7244                           DAG.getConstant(0x00800000, dl, IntVT));
7245 
7246   R = DAG.getZExtOrTrunc(R, dl, DstVT);
7247 
7248   R = DAG.getSelectCC(
7249       dl, Exponent, ExponentLoBit,
7250       DAG.getNode(ISD::SHL, dl, DstVT, R,
7251                   DAG.getZExtOrTrunc(
7252                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
7253                       dl, IntShVT)),
7254       DAG.getNode(ISD::SRL, dl, DstVT, R,
7255                   DAG.getZExtOrTrunc(
7256                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
7257                       dl, IntShVT)),
7258       ISD::SETGT);
7259 
7260   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
7261                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
7262 
7263   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
7264                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
7265   return true;
7266 }
7267 
7268 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
7269                                       SDValue &Chain,
7270                                       SelectionDAG &DAG) const {
7271   SDLoc dl(SDValue(Node, 0));
7272   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7273   SDValue Src = Node->getOperand(OpNo);
7274 
7275   EVT SrcVT = Src.getValueType();
7276   EVT DstVT = Node->getValueType(0);
7277   EVT SetCCVT =
7278       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
7279   EVT DstSetCCVT =
7280       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
7281 
7282   // Only expand vector types if we have the appropriate vector bit operations.
7283   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
7284                                                    ISD::FP_TO_SINT;
7285   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
7286                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
7287     return false;
7288 
7289   // If the maximum float value is smaller then the signed integer range,
7290   // the destination signmask can't be represented by the float, so we can
7291   // just use FP_TO_SINT directly.
7292   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
7293   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
7294   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
7295   if (APFloat::opOverflow &
7296       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
7297     if (Node->isStrictFPOpcode()) {
7298       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7299                            { Node->getOperand(0), Src });
7300       Chain = Result.getValue(1);
7301     } else
7302       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7303     return true;
7304   }
7305 
7306   // Don't expand it if there isn't cheap fsub instruction.
7307   if (!isOperationLegalOrCustom(
7308           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
7309     return false;
7310 
7311   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
7312   SDValue Sel;
7313 
7314   if (Node->isStrictFPOpcode()) {
7315     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
7316                        Node->getOperand(0), /*IsSignaling*/ true);
7317     Chain = Sel.getValue(1);
7318   } else {
7319     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
7320   }
7321 
7322   bool Strict = Node->isStrictFPOpcode() ||
7323                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
7324 
7325   if (Strict) {
7326     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
7327     // signmask then offset (the result of which should be fully representable).
7328     // Sel = Src < 0x8000000000000000
7329     // FltOfs = select Sel, 0, 0x8000000000000000
7330     // IntOfs = select Sel, 0, 0x8000000000000000
7331     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
7332 
7333     // TODO: Should any fast-math-flags be set for the FSUB?
7334     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
7335                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
7336     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7337     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
7338                                    DAG.getConstant(0, dl, DstVT),
7339                                    DAG.getConstant(SignMask, dl, DstVT));
7340     SDValue SInt;
7341     if (Node->isStrictFPOpcode()) {
7342       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
7343                                 { Chain, Src, FltOfs });
7344       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7345                          { Val.getValue(1), Val });
7346       Chain = SInt.getValue(1);
7347     } else {
7348       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
7349       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
7350     }
7351     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
7352   } else {
7353     // Expand based on maximum range of FP_TO_SINT:
7354     // True = fp_to_sint(Src)
7355     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
7356     // Result = select (Src < 0x8000000000000000), True, False
7357 
7358     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7359     // TODO: Should any fast-math-flags be set for the FSUB?
7360     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
7361                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
7362     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
7363                         DAG.getConstant(SignMask, dl, DstVT));
7364     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7365     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
7366   }
7367   return true;
7368 }
7369 
7370 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
7371                                       SDValue &Chain,
7372                                       SelectionDAG &DAG) const {
7373   // This transform is not correct for converting 0 when rounding mode is set
7374   // to round toward negative infinity which will produce -0.0. So disable under
7375   // strictfp.
7376   if (Node->isStrictFPOpcode())
7377     return false;
7378 
7379   SDValue Src = Node->getOperand(0);
7380   EVT SrcVT = Src.getValueType();
7381   EVT DstVT = Node->getValueType(0);
7382 
7383   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
7384     return false;
7385 
7386   // Only expand vector types if we have the appropriate vector bit operations.
7387   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
7388                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
7389                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
7390                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
7391                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
7392     return false;
7393 
7394   SDLoc dl(SDValue(Node, 0));
7395   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
7396 
7397   // Implementation of unsigned i64 to f64 following the algorithm in
7398   // __floatundidf in compiler_rt.  This implementation performs rounding
7399   // correctly in all rounding modes with the exception of converting 0
7400   // when rounding toward negative infinity. In that case the fsub will produce
7401   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
7402   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
7403   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
7404       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
7405   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
7406   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
7407   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
7408 
7409   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
7410   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
7411   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
7412   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
7413   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
7414   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
7415   SDValue HiSub =
7416       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
7417   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
7418   return true;
7419 }
7420 
7421 SDValue
7422 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node,
7423                                                SelectionDAG &DAG) const {
7424   unsigned Opcode = Node->getOpcode();
7425   assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM ||
7426           Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) &&
7427          "Wrong opcode");
7428 
7429   if (Node->getFlags().hasNoNaNs()) {
7430     ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
7431     SDValue Op1 = Node->getOperand(0);
7432     SDValue Op2 = Node->getOperand(1);
7433     SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred);
7434     // Copy FMF flags, but always set the no-signed-zeros flag
7435     // as this is implied by the FMINNUM/FMAXNUM semantics.
7436     SDNodeFlags Flags = Node->getFlags();
7437     Flags.setNoSignedZeros(true);
7438     SelCC->setFlags(Flags);
7439     return SelCC;
7440   }
7441 
7442   return SDValue();
7443 }
7444 
7445 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
7446                                               SelectionDAG &DAG) const {
7447   SDLoc dl(Node);
7448   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
7449     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
7450   EVT VT = Node->getValueType(0);
7451 
7452   if (VT.isScalableVector())
7453     report_fatal_error(
7454         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
7455 
7456   if (isOperationLegalOrCustom(NewOp, VT)) {
7457     SDValue Quiet0 = Node->getOperand(0);
7458     SDValue Quiet1 = Node->getOperand(1);
7459 
7460     if (!Node->getFlags().hasNoNaNs()) {
7461       // Insert canonicalizes if it's possible we need to quiet to get correct
7462       // sNaN behavior.
7463       if (!DAG.isKnownNeverSNaN(Quiet0)) {
7464         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
7465                              Node->getFlags());
7466       }
7467       if (!DAG.isKnownNeverSNaN(Quiet1)) {
7468         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
7469                              Node->getFlags());
7470       }
7471     }
7472 
7473     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
7474   }
7475 
7476   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
7477   // instead if there are no NaNs.
7478   if (Node->getFlags().hasNoNaNs()) {
7479     unsigned IEEE2018Op =
7480         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
7481     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
7482       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
7483                          Node->getOperand(1), Node->getFlags());
7484     }
7485   }
7486 
7487   if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG))
7488     return SelCC;
7489 
7490   return SDValue();
7491 }
7492 
7493 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op,
7494                                          unsigned Test, SDNodeFlags Flags,
7495                                          const SDLoc &DL,
7496                                          SelectionDAG &DAG) const {
7497   EVT OperandVT = Op.getValueType();
7498   assert(OperandVT.isFloatingPoint());
7499 
7500   // Degenerated cases.
7501   if (Test == 0)
7502     return DAG.getBoolConstant(false, DL, ResultVT, OperandVT);
7503   if ((Test & fcAllFlags) == fcAllFlags)
7504     return DAG.getBoolConstant(true, DL, ResultVT, OperandVT);
7505 
7506   // PPC double double is a pair of doubles, of which the higher part determines
7507   // the value class.
7508   if (OperandVT == MVT::ppcf128) {
7509     Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op,
7510                      DAG.getConstant(1, DL, MVT::i32));
7511     OperandVT = MVT::f64;
7512   }
7513 
7514   // Some checks may be represented as inversion of simpler check, for example
7515   // "inf|normal|subnormal|zero" => !"nan".
7516   bool IsInverted = false;
7517   if (unsigned InvertedCheck = getInvertedFPClassTest(Test)) {
7518     IsInverted = true;
7519     Test = InvertedCheck;
7520   }
7521 
7522   // Floating-point type properties.
7523   EVT ScalarFloatVT = OperandVT.getScalarType();
7524   const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext());
7525   const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics();
7526   bool IsF80 = (ScalarFloatVT == MVT::f80);
7527 
7528   // Some checks can be implemented using float comparisons, if floating point
7529   // exceptions are ignored.
7530   if (Flags.hasNoFPExcept() &&
7531       isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) {
7532     if (Test == fcZero)
7533       return DAG.getSetCC(DL, ResultVT, Op,
7534                           DAG.getConstantFP(0.0, DL, OperandVT),
7535                           IsInverted ? ISD::SETUNE : ISD::SETOEQ);
7536     if (Test == fcNan)
7537       return DAG.getSetCC(DL, ResultVT, Op, Op,
7538                           IsInverted ? ISD::SETO : ISD::SETUO);
7539   }
7540 
7541   // In the general case use integer operations.
7542   unsigned BitSize = OperandVT.getScalarSizeInBits();
7543   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize);
7544   if (OperandVT.isVector())
7545     IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT,
7546                              OperandVT.getVectorElementCount());
7547   SDValue OpAsInt = DAG.getBitcast(IntVT, Op);
7548 
7549   // Various masks.
7550   APInt SignBit = APInt::getSignMask(BitSize);
7551   APInt ValueMask = APInt::getSignedMaxValue(BitSize);     // All bits but sign.
7552   APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit.
7553   const unsigned ExplicitIntBitInF80 = 63;
7554   APInt ExpMask = Inf;
7555   if (IsF80)
7556     ExpMask.clearBit(ExplicitIntBitInF80);
7557   APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf;
7558   APInt QNaNBitMask =
7559       APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1);
7560   APInt InvertionMask = APInt::getAllOnesValue(ResultVT.getScalarSizeInBits());
7561 
7562   SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT);
7563   SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT);
7564   SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT);
7565   SDValue ZeroV = DAG.getConstant(0, DL, IntVT);
7566   SDValue InfV = DAG.getConstant(Inf, DL, IntVT);
7567   SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT);
7568 
7569   SDValue Res;
7570   const auto appendResult = [&](SDValue PartialRes) {
7571     if (PartialRes) {
7572       if (Res)
7573         Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes);
7574       else
7575         Res = PartialRes;
7576     }
7577   };
7578 
7579   SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set.
7580   const auto getIntBitIsSet = [&]() -> SDValue {
7581     if (!IntBitIsSetV) {
7582       APInt IntBitMask(BitSize, 0);
7583       IntBitMask.setBit(ExplicitIntBitInF80);
7584       SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT);
7585       SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV);
7586       IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE);
7587     }
7588     return IntBitIsSetV;
7589   };
7590 
7591   // Split the value into sign bit and absolute value.
7592   SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV);
7593   SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt,
7594                                DAG.getConstant(0.0, DL, IntVT), ISD::SETLT);
7595 
7596   // Tests that involve more than one class should be processed first.
7597   SDValue PartialRes;
7598 
7599   if (IsF80)
7600     ; // Detect finite numbers of f80 by checking individual classes because
7601       // they have different settings of the explicit integer bit.
7602   else if ((Test & fcFinite) == fcFinite) {
7603     // finite(V) ==> abs(V) < exp_mask
7604     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
7605     Test &= ~fcFinite;
7606   } else if ((Test & fcFinite) == fcPosFinite) {
7607     // finite(V) && V > 0 ==> V < exp_mask
7608     PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT);
7609     Test &= ~fcPosFinite;
7610   } else if ((Test & fcFinite) == fcNegFinite) {
7611     // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1
7612     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
7613     PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7614     Test &= ~fcNegFinite;
7615   }
7616   appendResult(PartialRes);
7617 
7618   // Check for individual classes.
7619 
7620   if (unsigned PartialCheck = Test & fcZero) {
7621     if (PartialCheck == fcPosZero)
7622       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ);
7623     else if (PartialCheck == fcZero)
7624       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ);
7625     else // ISD::fcNegZero
7626       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ);
7627     appendResult(PartialRes);
7628   }
7629 
7630   if (unsigned PartialCheck = Test & fcInf) {
7631     if (PartialCheck == fcPosInf)
7632       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ);
7633     else if (PartialCheck == fcInf)
7634       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ);
7635     else { // ISD::fcNegInf
7636       APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt();
7637       SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT);
7638       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ);
7639     }
7640     appendResult(PartialRes);
7641   }
7642 
7643   if (unsigned PartialCheck = Test & fcNan) {
7644     APInt InfWithQnanBit = Inf | QNaNBitMask;
7645     SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT);
7646     if (PartialCheck == fcNan) {
7647       // isnan(V) ==> abs(V) > int(inf)
7648       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
7649       if (IsF80) {
7650         // Recognize unsupported values as NaNs for compatibility with glibc.
7651         // In them (exp(V)==0) == int_bit.
7652         SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV);
7653         SDValue ExpIsZero =
7654             DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
7655         SDValue IsPseudo =
7656             DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ);
7657         PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo);
7658       }
7659     } else if (PartialCheck == fcQNan) {
7660       // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit)
7661       PartialRes =
7662           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE);
7663     } else { // ISD::fcSNan
7664       // issignaling(V) ==> abs(V) > unsigned(Inf) &&
7665       //                    abs(V) < (unsigned(Inf) | quiet_bit)
7666       SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
7667       SDValue IsNotQnan =
7668           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT);
7669       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan);
7670     }
7671     appendResult(PartialRes);
7672   }
7673 
7674   if (unsigned PartialCheck = Test & fcSubnormal) {
7675     // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set)
7676     // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set)
7677     SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV;
7678     SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT);
7679     SDValue VMinusOneV =
7680         DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT));
7681     PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT);
7682     if (PartialCheck == fcNegSubnormal)
7683       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7684     appendResult(PartialRes);
7685   }
7686 
7687   if (unsigned PartialCheck = Test & fcNormal) {
7688     // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1))
7689     APInt ExpLSB = ExpMask & ~(ExpMask.shl(1));
7690     SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT);
7691     SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV);
7692     APInt ExpLimit = ExpMask - ExpLSB;
7693     SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT);
7694     PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT);
7695     if (PartialCheck == fcNegNormal)
7696       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7697     else if (PartialCheck == fcPosNormal) {
7698       SDValue PosSignV =
7699           DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask);
7700       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV);
7701     }
7702     if (IsF80)
7703       PartialRes =
7704           DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet());
7705     appendResult(PartialRes);
7706   }
7707 
7708   if (!Res)
7709     return DAG.getConstant(IsInverted, DL, ResultVT);
7710   if (IsInverted)
7711     Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask);
7712   return Res;
7713 }
7714 
7715 // Only expand vector types if we have the appropriate vector bit operations.
7716 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
7717   assert(VT.isVector() && "Expected vector type");
7718   unsigned Len = VT.getScalarSizeInBits();
7719   return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
7720          TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
7721          TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
7722          (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
7723          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
7724 }
7725 
7726 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
7727   SDLoc dl(Node);
7728   EVT VT = Node->getValueType(0);
7729   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7730   SDValue Op = Node->getOperand(0);
7731   unsigned Len = VT.getScalarSizeInBits();
7732   assert(VT.isInteger() && "CTPOP not implemented for this type.");
7733 
7734   // TODO: Add support for irregular type lengths.
7735   if (!(Len <= 128 && Len % 8 == 0))
7736     return SDValue();
7737 
7738   // Only expand vector types if we have the appropriate vector bit operations.
7739   if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
7740     return SDValue();
7741 
7742   // This is the "best" algorithm from
7743   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
7744   SDValue Mask55 =
7745       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
7746   SDValue Mask33 =
7747       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
7748   SDValue Mask0F =
7749       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
7750 
7751   // v = v - ((v >> 1) & 0x55555555...)
7752   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
7753                    DAG.getNode(ISD::AND, dl, VT,
7754                                DAG.getNode(ISD::SRL, dl, VT, Op,
7755                                            DAG.getConstant(1, dl, ShVT)),
7756                                Mask55));
7757   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
7758   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
7759                    DAG.getNode(ISD::AND, dl, VT,
7760                                DAG.getNode(ISD::SRL, dl, VT, Op,
7761                                            DAG.getConstant(2, dl, ShVT)),
7762                                Mask33));
7763   // v = (v + (v >> 4)) & 0x0F0F0F0F...
7764   Op = DAG.getNode(ISD::AND, dl, VT,
7765                    DAG.getNode(ISD::ADD, dl, VT, Op,
7766                                DAG.getNode(ISD::SRL, dl, VT, Op,
7767                                            DAG.getConstant(4, dl, ShVT))),
7768                    Mask0F);
7769 
7770   if (Len <= 8)
7771     return Op;
7772 
7773   // Avoid the multiply if we only have 2 bytes to add.
7774   // TODO: Only doing this for scalars because vectors weren't as obviously
7775   // improved.
7776   if (Len == 16 && !VT.isVector()) {
7777     // v = (v + (v >> 8)) & 0x00FF;
7778     return DAG.getNode(ISD::AND, dl, VT,
7779                      DAG.getNode(ISD::ADD, dl, VT, Op,
7780                                  DAG.getNode(ISD::SRL, dl, VT, Op,
7781                                              DAG.getConstant(8, dl, ShVT))),
7782                      DAG.getConstant(0xFF, dl, VT));
7783   }
7784 
7785   // v = (v * 0x01010101...) >> (Len - 8)
7786   SDValue Mask01 =
7787       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
7788   return DAG.getNode(ISD::SRL, dl, VT,
7789                      DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
7790                      DAG.getConstant(Len - 8, dl, ShVT));
7791 }
7792 
7793 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
7794   SDLoc dl(Node);
7795   EVT VT = Node->getValueType(0);
7796   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7797   SDValue Op = Node->getOperand(0);
7798   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7799 
7800   // If the non-ZERO_UNDEF version is supported we can use that instead.
7801   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
7802       isOperationLegalOrCustom(ISD::CTLZ, VT))
7803     return DAG.getNode(ISD::CTLZ, dl, VT, Op);
7804 
7805   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7806   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
7807     EVT SetCCVT =
7808         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7809     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
7810     SDValue Zero = DAG.getConstant(0, dl, VT);
7811     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7812     return DAG.getSelect(dl, VT, SrcIsZero,
7813                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
7814   }
7815 
7816   // Only expand vector types if we have the appropriate vector bit operations.
7817   // This includes the operations needed to expand CTPOP if it isn't supported.
7818   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7819                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7820                          !canExpandVectorCTPOP(*this, VT)) ||
7821                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7822                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7823     return SDValue();
7824 
7825   // for now, we do this:
7826   // x = x | (x >> 1);
7827   // x = x | (x >> 2);
7828   // ...
7829   // x = x | (x >>16);
7830   // x = x | (x >>32); // for 64-bit input
7831   // return popcount(~x);
7832   //
7833   // Ref: "Hacker's Delight" by Henry Warren
7834   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
7835     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
7836     Op = DAG.getNode(ISD::OR, dl, VT, Op,
7837                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
7838   }
7839   Op = DAG.getNOT(dl, Op, VT);
7840   return DAG.getNode(ISD::CTPOP, dl, VT, Op);
7841 }
7842 
7843 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
7844   SDLoc dl(Node);
7845   EVT VT = Node->getValueType(0);
7846   SDValue Op = Node->getOperand(0);
7847   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7848 
7849   // If the non-ZERO_UNDEF version is supported we can use that instead.
7850   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
7851       isOperationLegalOrCustom(ISD::CTTZ, VT))
7852     return DAG.getNode(ISD::CTTZ, dl, VT, Op);
7853 
7854   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7855   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7856     EVT SetCCVT =
7857         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7858     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7859     SDValue Zero = DAG.getConstant(0, dl, VT);
7860     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7861     return DAG.getSelect(dl, VT, SrcIsZero,
7862                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7863   }
7864 
7865   // Only expand vector types if we have the appropriate vector bit operations.
7866   // This includes the operations needed to expand CTPOP if it isn't supported.
7867   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7868                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7869                          !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
7870                          !canExpandVectorCTPOP(*this, VT)) ||
7871                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7872                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
7873                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7874     return SDValue();
7875 
7876   // for now, we use: { return popcount(~x & (x - 1)); }
7877   // unless the target has ctlz but not ctpop, in which case we use:
7878   // { return 32 - nlz(~x & (x-1)); }
7879   // Ref: "Hacker's Delight" by Henry Warren
7880   SDValue Tmp = DAG.getNode(
7881       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
7882       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
7883 
7884   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
7885   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
7886     return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
7887                        DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
7888   }
7889 
7890   return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
7891 }
7892 
7893 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
7894                                   bool IsNegative) const {
7895   SDLoc dl(N);
7896   EVT VT = N->getValueType(0);
7897   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7898   SDValue Op = N->getOperand(0);
7899 
7900   // abs(x) -> smax(x,sub(0,x))
7901   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7902       isOperationLegal(ISD::SMAX, VT)) {
7903     SDValue Zero = DAG.getConstant(0, dl, VT);
7904     return DAG.getNode(ISD::SMAX, dl, VT, Op,
7905                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7906   }
7907 
7908   // abs(x) -> umin(x,sub(0,x))
7909   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7910       isOperationLegal(ISD::UMIN, VT)) {
7911     SDValue Zero = DAG.getConstant(0, dl, VT);
7912     Op = DAG.getFreeze(Op);
7913     return DAG.getNode(ISD::UMIN, dl, VT, Op,
7914                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7915   }
7916 
7917   // 0 - abs(x) -> smin(x, sub(0,x))
7918   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
7919       isOperationLegal(ISD::SMIN, VT)) {
7920     Op = DAG.getFreeze(Op);
7921     SDValue Zero = DAG.getConstant(0, dl, VT);
7922     return DAG.getNode(ISD::SMIN, dl, VT, Op,
7923                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7924   }
7925 
7926   // Only expand vector types if we have the appropriate vector operations.
7927   if (VT.isVector() &&
7928       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
7929        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
7930        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
7931        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7932     return SDValue();
7933 
7934   Op = DAG.getFreeze(Op);
7935   SDValue Shift =
7936       DAG.getNode(ISD::SRA, dl, VT, Op,
7937                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
7938   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
7939 
7940   // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y)
7941   if (!IsNegative)
7942     return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift);
7943 
7944   // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
7945   return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
7946 }
7947 
7948 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
7949   SDLoc dl(N);
7950   EVT VT = N->getValueType(0);
7951   SDValue Op = N->getOperand(0);
7952 
7953   if (!VT.isSimple())
7954     return SDValue();
7955 
7956   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7957   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
7958   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
7959   default:
7960     return SDValue();
7961   case MVT::i16:
7962     // Use a rotate by 8. This can be further expanded if necessary.
7963     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7964   case MVT::i32:
7965     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7966     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7967     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7968     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7969     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7970                        DAG.getConstant(0xFF0000, dl, VT));
7971     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
7972     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7973     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7974     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7975   case MVT::i64:
7976     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7977     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7978     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7979     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7980     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7981     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7982     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7983     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7984     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
7985                        DAG.getConstant(255ULL<<48, dl, VT));
7986     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
7987                        DAG.getConstant(255ULL<<40, dl, VT));
7988     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
7989                        DAG.getConstant(255ULL<<32, dl, VT));
7990     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
7991                        DAG.getConstant(255ULL<<24, dl, VT));
7992     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7993                        DAG.getConstant(255ULL<<16, dl, VT));
7994     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
7995                        DAG.getConstant(255ULL<<8 , dl, VT));
7996     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
7997     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
7998     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7999     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
8000     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
8001     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
8002     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
8003   }
8004 }
8005 
8006 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
8007   SDLoc dl(N);
8008   EVT VT = N->getValueType(0);
8009   SDValue Op = N->getOperand(0);
8010   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
8011   unsigned Sz = VT.getScalarSizeInBits();
8012 
8013   SDValue Tmp, Tmp2, Tmp3;
8014 
8015   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
8016   // and finally the i1 pairs.
8017   // TODO: We can easily support i4/i2 legal types if any target ever does.
8018   if (Sz >= 8 && isPowerOf2_32(Sz)) {
8019     // Create the masks - repeating the pattern every byte.
8020     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
8021     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
8022     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
8023 
8024     // BSWAP if the type is wider than a single byte.
8025     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
8026 
8027     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
8028     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
8029     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
8030     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
8031     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
8032     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8033 
8034     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
8035     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
8036     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
8037     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
8038     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
8039     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8040 
8041     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
8042     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
8043     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
8044     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
8045     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
8046     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8047     return Tmp;
8048   }
8049 
8050   Tmp = DAG.getConstant(0, dl, VT);
8051   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
8052     if (I < J)
8053       Tmp2 =
8054           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
8055     else
8056       Tmp2 =
8057           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
8058 
8059     APInt Shift(Sz, 1);
8060     Shift <<= J;
8061     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
8062     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
8063   }
8064 
8065   return Tmp;
8066 }
8067 
8068 std::pair<SDValue, SDValue>
8069 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
8070                                     SelectionDAG &DAG) const {
8071   SDLoc SL(LD);
8072   SDValue Chain = LD->getChain();
8073   SDValue BasePTR = LD->getBasePtr();
8074   EVT SrcVT = LD->getMemoryVT();
8075   EVT DstVT = LD->getValueType(0);
8076   ISD::LoadExtType ExtType = LD->getExtensionType();
8077 
8078   if (SrcVT.isScalableVector())
8079     report_fatal_error("Cannot scalarize scalable vector loads");
8080 
8081   unsigned NumElem = SrcVT.getVectorNumElements();
8082 
8083   EVT SrcEltVT = SrcVT.getScalarType();
8084   EVT DstEltVT = DstVT.getScalarType();
8085 
8086   // A vector must always be stored in memory as-is, i.e. without any padding
8087   // between the elements, since various code depend on it, e.g. in the
8088   // handling of a bitcast of a vector type to int, which may be done with a
8089   // vector store followed by an integer load. A vector that does not have
8090   // elements that are byte-sized must therefore be stored as an integer
8091   // built out of the extracted vector elements.
8092   if (!SrcEltVT.isByteSized()) {
8093     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
8094     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
8095 
8096     unsigned NumSrcBits = SrcVT.getSizeInBits();
8097     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
8098 
8099     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
8100     SDValue SrcEltBitMask = DAG.getConstant(
8101         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
8102 
8103     // Load the whole vector and avoid masking off the top bits as it makes
8104     // the codegen worse.
8105     SDValue Load =
8106         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
8107                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
8108                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
8109 
8110     SmallVector<SDValue, 8> Vals;
8111     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8112       unsigned ShiftIntoIdx =
8113           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
8114       SDValue ShiftAmount =
8115           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
8116                                      LoadVT, SL, /*LegalTypes=*/false);
8117       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
8118       SDValue Elt =
8119           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
8120       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
8121 
8122       if (ExtType != ISD::NON_EXTLOAD) {
8123         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
8124         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
8125       }
8126 
8127       Vals.push_back(Scalar);
8128     }
8129 
8130     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
8131     return std::make_pair(Value, Load.getValue(1));
8132   }
8133 
8134   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
8135   assert(SrcEltVT.isByteSized());
8136 
8137   SmallVector<SDValue, 8> Vals;
8138   SmallVector<SDValue, 8> LoadChains;
8139 
8140   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8141     SDValue ScalarLoad =
8142         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
8143                        LD->getPointerInfo().getWithOffset(Idx * Stride),
8144                        SrcEltVT, LD->getOriginalAlign(),
8145                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
8146 
8147     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
8148 
8149     Vals.push_back(ScalarLoad.getValue(0));
8150     LoadChains.push_back(ScalarLoad.getValue(1));
8151   }
8152 
8153   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
8154   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
8155 
8156   return std::make_pair(Value, NewChain);
8157 }
8158 
8159 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
8160                                              SelectionDAG &DAG) const {
8161   SDLoc SL(ST);
8162 
8163   SDValue Chain = ST->getChain();
8164   SDValue BasePtr = ST->getBasePtr();
8165   SDValue Value = ST->getValue();
8166   EVT StVT = ST->getMemoryVT();
8167 
8168   if (StVT.isScalableVector())
8169     report_fatal_error("Cannot scalarize scalable vector stores");
8170 
8171   // The type of the data we want to save
8172   EVT RegVT = Value.getValueType();
8173   EVT RegSclVT = RegVT.getScalarType();
8174 
8175   // The type of data as saved in memory.
8176   EVT MemSclVT = StVT.getScalarType();
8177 
8178   unsigned NumElem = StVT.getVectorNumElements();
8179 
8180   // A vector must always be stored in memory as-is, i.e. without any padding
8181   // between the elements, since various code depend on it, e.g. in the
8182   // handling of a bitcast of a vector type to int, which may be done with a
8183   // vector store followed by an integer load. A vector that does not have
8184   // elements that are byte-sized must therefore be stored as an integer
8185   // built out of the extracted vector elements.
8186   if (!MemSclVT.isByteSized()) {
8187     unsigned NumBits = StVT.getSizeInBits();
8188     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
8189 
8190     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
8191 
8192     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8193       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
8194                                 DAG.getVectorIdxConstant(Idx, SL));
8195       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
8196       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
8197       unsigned ShiftIntoIdx =
8198           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
8199       SDValue ShiftAmount =
8200           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
8201       SDValue ShiftedElt =
8202           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
8203       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
8204     }
8205 
8206     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
8207                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
8208                         ST->getAAInfo());
8209   }
8210 
8211   // Store Stride in bytes
8212   unsigned Stride = MemSclVT.getSizeInBits() / 8;
8213   assert(Stride && "Zero stride!");
8214   // Extract each of the elements from the original vector and save them into
8215   // memory individually.
8216   SmallVector<SDValue, 8> Stores;
8217   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8218     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
8219                               DAG.getVectorIdxConstant(Idx, SL));
8220 
8221     SDValue Ptr =
8222         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
8223 
8224     // This scalar TruncStore may be illegal, but we legalize it later.
8225     SDValue Store = DAG.getTruncStore(
8226         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
8227         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
8228         ST->getAAInfo());
8229 
8230     Stores.push_back(Store);
8231   }
8232 
8233   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
8234 }
8235 
8236 std::pair<SDValue, SDValue>
8237 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
8238   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
8239          "unaligned indexed loads not implemented!");
8240   SDValue Chain = LD->getChain();
8241   SDValue Ptr = LD->getBasePtr();
8242   EVT VT = LD->getValueType(0);
8243   EVT LoadedVT = LD->getMemoryVT();
8244   SDLoc dl(LD);
8245   auto &MF = DAG.getMachineFunction();
8246 
8247   if (VT.isFloatingPoint() || VT.isVector()) {
8248     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
8249     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
8250       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
8251           LoadedVT.isVector()) {
8252         // Scalarize the load and let the individual components be handled.
8253         return scalarizeVectorLoad(LD, DAG);
8254       }
8255 
8256       // Expand to a (misaligned) integer load of the same size,
8257       // then bitconvert to floating point or vector.
8258       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
8259                                     LD->getMemOperand());
8260       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
8261       if (LoadedVT != VT)
8262         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
8263                              ISD::ANY_EXTEND, dl, VT, Result);
8264 
8265       return std::make_pair(Result, newLoad.getValue(1));
8266     }
8267 
8268     // Copy the value to a (aligned) stack slot using (unaligned) integer
8269     // loads and stores, then do a (aligned) load from the stack slot.
8270     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
8271     unsigned LoadedBytes = LoadedVT.getStoreSize();
8272     unsigned RegBytes = RegVT.getSizeInBits() / 8;
8273     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
8274 
8275     // Make sure the stack slot is also aligned for the register type.
8276     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
8277     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
8278     SmallVector<SDValue, 8> Stores;
8279     SDValue StackPtr = StackBase;
8280     unsigned Offset = 0;
8281 
8282     EVT PtrVT = Ptr.getValueType();
8283     EVT StackPtrVT = StackPtr.getValueType();
8284 
8285     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
8286     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
8287 
8288     // Do all but one copies using the full register width.
8289     for (unsigned i = 1; i < NumRegs; i++) {
8290       // Load one integer register's worth from the original location.
8291       SDValue Load = DAG.getLoad(
8292           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
8293           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
8294           LD->getAAInfo());
8295       // Follow the load with a store to the stack slot.  Remember the store.
8296       Stores.push_back(DAG.getStore(
8297           Load.getValue(1), dl, Load, StackPtr,
8298           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
8299       // Increment the pointers.
8300       Offset += RegBytes;
8301 
8302       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
8303       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
8304     }
8305 
8306     // The last copy may be partial.  Do an extending load.
8307     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
8308                                   8 * (LoadedBytes - Offset));
8309     SDValue Load =
8310         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
8311                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
8312                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
8313                        LD->getAAInfo());
8314     // Follow the load with a store to the stack slot.  Remember the store.
8315     // On big-endian machines this requires a truncating store to ensure
8316     // that the bits end up in the right place.
8317     Stores.push_back(DAG.getTruncStore(
8318         Load.getValue(1), dl, Load, StackPtr,
8319         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
8320 
8321     // The order of the stores doesn't matter - say it with a TokenFactor.
8322     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8323 
8324     // Finally, perform the original load only redirected to the stack slot.
8325     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
8326                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
8327                           LoadedVT);
8328 
8329     // Callers expect a MERGE_VALUES node.
8330     return std::make_pair(Load, TF);
8331   }
8332 
8333   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
8334          "Unaligned load of unsupported type.");
8335 
8336   // Compute the new VT that is half the size of the old one.  This is an
8337   // integer MVT.
8338   unsigned NumBits = LoadedVT.getSizeInBits();
8339   EVT NewLoadedVT;
8340   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
8341   NumBits >>= 1;
8342 
8343   Align Alignment = LD->getOriginalAlign();
8344   unsigned IncrementSize = NumBits / 8;
8345   ISD::LoadExtType HiExtType = LD->getExtensionType();
8346 
8347   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
8348   if (HiExtType == ISD::NON_EXTLOAD)
8349     HiExtType = ISD::ZEXTLOAD;
8350 
8351   // Load the value in two parts
8352   SDValue Lo, Hi;
8353   if (DAG.getDataLayout().isLittleEndian()) {
8354     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
8355                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8356                         LD->getAAInfo());
8357 
8358     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8359     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
8360                         LD->getPointerInfo().getWithOffset(IncrementSize),
8361                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8362                         LD->getAAInfo());
8363   } else {
8364     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
8365                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8366                         LD->getAAInfo());
8367 
8368     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8369     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
8370                         LD->getPointerInfo().getWithOffset(IncrementSize),
8371                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8372                         LD->getAAInfo());
8373   }
8374 
8375   // aggregate the two parts
8376   SDValue ShiftAmount =
8377       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
8378                                                     DAG.getDataLayout()));
8379   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
8380   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
8381 
8382   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
8383                              Hi.getValue(1));
8384 
8385   return std::make_pair(Result, TF);
8386 }
8387 
8388 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
8389                                              SelectionDAG &DAG) const {
8390   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
8391          "unaligned indexed stores not implemented!");
8392   SDValue Chain = ST->getChain();
8393   SDValue Ptr = ST->getBasePtr();
8394   SDValue Val = ST->getValue();
8395   EVT VT = Val.getValueType();
8396   Align Alignment = ST->getOriginalAlign();
8397   auto &MF = DAG.getMachineFunction();
8398   EVT StoreMemVT = ST->getMemoryVT();
8399 
8400   SDLoc dl(ST);
8401   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
8402     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
8403     if (isTypeLegal(intVT)) {
8404       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
8405           StoreMemVT.isVector()) {
8406         // Scalarize the store and let the individual components be handled.
8407         SDValue Result = scalarizeVectorStore(ST, DAG);
8408         return Result;
8409       }
8410       // Expand to a bitconvert of the value to the integer type of the
8411       // same size, then a (misaligned) int store.
8412       // FIXME: Does not handle truncating floating point stores!
8413       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
8414       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
8415                             Alignment, ST->getMemOperand()->getFlags());
8416       return Result;
8417     }
8418     // Do a (aligned) store to a stack slot, then copy from the stack slot
8419     // to the final destination using (unaligned) integer loads and stores.
8420     MVT RegVT = getRegisterType(
8421         *DAG.getContext(),
8422         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
8423     EVT PtrVT = Ptr.getValueType();
8424     unsigned StoredBytes = StoreMemVT.getStoreSize();
8425     unsigned RegBytes = RegVT.getSizeInBits() / 8;
8426     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
8427 
8428     // Make sure the stack slot is also aligned for the register type.
8429     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
8430     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
8431 
8432     // Perform the original store, only redirected to the stack slot.
8433     SDValue Store = DAG.getTruncStore(
8434         Chain, dl, Val, StackPtr,
8435         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
8436 
8437     EVT StackPtrVT = StackPtr.getValueType();
8438 
8439     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
8440     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
8441     SmallVector<SDValue, 8> Stores;
8442     unsigned Offset = 0;
8443 
8444     // Do all but one copies using the full register width.
8445     for (unsigned i = 1; i < NumRegs; i++) {
8446       // Load one integer register's worth from the stack slot.
8447       SDValue Load = DAG.getLoad(
8448           RegVT, dl, Store, StackPtr,
8449           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
8450       // Store it to the final location.  Remember the store.
8451       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
8452                                     ST->getPointerInfo().getWithOffset(Offset),
8453                                     ST->getOriginalAlign(),
8454                                     ST->getMemOperand()->getFlags()));
8455       // Increment the pointers.
8456       Offset += RegBytes;
8457       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
8458       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
8459     }
8460 
8461     // The last store may be partial.  Do a truncating store.  On big-endian
8462     // machines this requires an extending load from the stack slot to ensure
8463     // that the bits are in the right place.
8464     EVT LoadMemVT =
8465         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
8466 
8467     // Load from the stack slot.
8468     SDValue Load = DAG.getExtLoad(
8469         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
8470         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
8471 
8472     Stores.push_back(
8473         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
8474                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
8475                           ST->getOriginalAlign(),
8476                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
8477     // The order of the stores doesn't matter - say it with a TokenFactor.
8478     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8479     return Result;
8480   }
8481 
8482   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
8483          "Unaligned store of unknown type.");
8484   // Get the half-size VT
8485   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
8486   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
8487   unsigned IncrementSize = NumBits / 8;
8488 
8489   // Divide the stored value in two parts.
8490   SDValue ShiftAmount = DAG.getConstant(
8491       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
8492   SDValue Lo = Val;
8493   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
8494 
8495   // Store the two parts
8496   SDValue Store1, Store2;
8497   Store1 = DAG.getTruncStore(Chain, dl,
8498                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
8499                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
8500                              ST->getMemOperand()->getFlags());
8501 
8502   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8503   Store2 = DAG.getTruncStore(
8504       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
8505       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
8506       ST->getMemOperand()->getFlags(), ST->getAAInfo());
8507 
8508   SDValue Result =
8509       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
8510   return Result;
8511 }
8512 
8513 SDValue
8514 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
8515                                        const SDLoc &DL, EVT DataVT,
8516                                        SelectionDAG &DAG,
8517                                        bool IsCompressedMemory) const {
8518   SDValue Increment;
8519   EVT AddrVT = Addr.getValueType();
8520   EVT MaskVT = Mask.getValueType();
8521   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
8522          "Incompatible types of Data and Mask");
8523   if (IsCompressedMemory) {
8524     if (DataVT.isScalableVector())
8525       report_fatal_error(
8526           "Cannot currently handle compressed memory with scalable vectors");
8527     // Incrementing the pointer according to number of '1's in the mask.
8528     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
8529     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
8530     if (MaskIntVT.getSizeInBits() < 32) {
8531       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
8532       MaskIntVT = MVT::i32;
8533     }
8534 
8535     // Count '1's with POPCNT.
8536     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
8537     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
8538     // Scale is an element size in bytes.
8539     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
8540                                     AddrVT);
8541     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
8542   } else if (DataVT.isScalableVector()) {
8543     Increment = DAG.getVScale(DL, AddrVT,
8544                               APInt(AddrVT.getFixedSizeInBits(),
8545                                     DataVT.getStoreSize().getKnownMinSize()));
8546   } else
8547     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
8548 
8549   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
8550 }
8551 
8552 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
8553                                        EVT VecVT, const SDLoc &dl,
8554                                        ElementCount SubEC) {
8555   assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
8556          "Cannot index a scalable vector within a fixed-width vector");
8557 
8558   unsigned NElts = VecVT.getVectorMinNumElements();
8559   unsigned NumSubElts = SubEC.getKnownMinValue();
8560   EVT IdxVT = Idx.getValueType();
8561 
8562   if (VecVT.isScalableVector() && !SubEC.isScalable()) {
8563     // If this is a constant index and we know the value plus the number of the
8564     // elements in the subvector minus one is less than the minimum number of
8565     // elements then it's safe to return Idx.
8566     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
8567       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
8568         return Idx;
8569     SDValue VS =
8570         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
8571     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
8572     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
8573                               DAG.getConstant(NumSubElts, dl, IdxVT));
8574     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
8575   }
8576   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
8577     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
8578     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
8579                        DAG.getConstant(Imm, dl, IdxVT));
8580   }
8581   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
8582   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
8583                      DAG.getConstant(MaxIndex, dl, IdxVT));
8584 }
8585 
8586 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
8587                                                 SDValue VecPtr, EVT VecVT,
8588                                                 SDValue Index) const {
8589   return getVectorSubVecPointer(
8590       DAG, VecPtr, VecVT,
8591       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
8592       Index);
8593 }
8594 
8595 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
8596                                                SDValue VecPtr, EVT VecVT,
8597                                                EVT SubVecVT,
8598                                                SDValue Index) const {
8599   SDLoc dl(Index);
8600   // Make sure the index type is big enough to compute in.
8601   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
8602 
8603   EVT EltVT = VecVT.getVectorElementType();
8604 
8605   // Calculate the element offset and add it to the pointer.
8606   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
8607   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
8608          "Converting bits to bytes lost precision");
8609   assert(SubVecVT.getVectorElementType() == EltVT &&
8610          "Sub-vector must be a vector with matching element type");
8611   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
8612                                   SubVecVT.getVectorElementCount());
8613 
8614   EVT IdxVT = Index.getValueType();
8615   if (SubVecVT.isScalableVector())
8616     Index =
8617         DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8618                     DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
8619 
8620   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8621                       DAG.getConstant(EltSize, dl, IdxVT));
8622   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
8623 }
8624 
8625 //===----------------------------------------------------------------------===//
8626 // Implementation of Emulated TLS Model
8627 //===----------------------------------------------------------------------===//
8628 
8629 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
8630                                                 SelectionDAG &DAG) const {
8631   // Access to address of TLS varialbe xyz is lowered to a function call:
8632   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
8633   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8634   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
8635   SDLoc dl(GA);
8636 
8637   ArgListTy Args;
8638   ArgListEntry Entry;
8639   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
8640   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
8641   StringRef EmuTlsVarName(NameString);
8642   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
8643   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
8644   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
8645   Entry.Ty = VoidPtrType;
8646   Args.push_back(Entry);
8647 
8648   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
8649 
8650   TargetLowering::CallLoweringInfo CLI(DAG);
8651   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
8652   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
8653   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
8654 
8655   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
8656   // At last for X86 targets, maybe good for other targets too?
8657   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8658   MFI.setAdjustsStack(true); // Is this only for X86 target?
8659   MFI.setHasCalls(true);
8660 
8661   assert((GA->getOffset() == 0) &&
8662          "Emulated TLS must have zero offset in GlobalAddressSDNode");
8663   return CallResult.first;
8664 }
8665 
8666 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
8667                                                 SelectionDAG &DAG) const {
8668   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
8669   if (!isCtlzFast())
8670     return SDValue();
8671   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8672   SDLoc dl(Op);
8673   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8674     if (C->isZero() && CC == ISD::SETEQ) {
8675       EVT VT = Op.getOperand(0).getValueType();
8676       SDValue Zext = Op.getOperand(0);
8677       if (VT.bitsLT(MVT::i32)) {
8678         VT = MVT::i32;
8679         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
8680       }
8681       unsigned Log2b = Log2_32(VT.getSizeInBits());
8682       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
8683       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
8684                                 DAG.getConstant(Log2b, dl, MVT::i32));
8685       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
8686     }
8687   }
8688   return SDValue();
8689 }
8690 
8691 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
8692   SDValue Op0 = Node->getOperand(0);
8693   SDValue Op1 = Node->getOperand(1);
8694   EVT VT = Op0.getValueType();
8695   unsigned Opcode = Node->getOpcode();
8696   SDLoc DL(Node);
8697 
8698   // umin(x,y) -> sub(x,usubsat(x,y))
8699   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
8700       isOperationLegal(ISD::USUBSAT, VT)) {
8701     return DAG.getNode(ISD::SUB, DL, VT, Op0,
8702                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
8703   }
8704 
8705   // umax(x,y) -> add(x,usubsat(y,x))
8706   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
8707       isOperationLegal(ISD::USUBSAT, VT)) {
8708     return DAG.getNode(ISD::ADD, DL, VT, Op0,
8709                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
8710   }
8711 
8712   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
8713   ISD::CondCode CC;
8714   switch (Opcode) {
8715   default: llvm_unreachable("How did we get here?");
8716   case ISD::SMAX: CC = ISD::SETGT; break;
8717   case ISD::SMIN: CC = ISD::SETLT; break;
8718   case ISD::UMAX: CC = ISD::SETUGT; break;
8719   case ISD::UMIN: CC = ISD::SETULT; break;
8720   }
8721 
8722   // FIXME: Should really try to split the vector in case it's legal on a
8723   // subvector.
8724   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8725     return DAG.UnrollVectorOp(Node);
8726 
8727   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8728   SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
8729   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
8730 }
8731 
8732 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
8733   unsigned Opcode = Node->getOpcode();
8734   SDValue LHS = Node->getOperand(0);
8735   SDValue RHS = Node->getOperand(1);
8736   EVT VT = LHS.getValueType();
8737   SDLoc dl(Node);
8738 
8739   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8740   assert(VT.isInteger() && "Expected operands to be integers");
8741 
8742   // usub.sat(a, b) -> umax(a, b) - b
8743   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
8744     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
8745     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
8746   }
8747 
8748   // uadd.sat(a, b) -> umin(a, ~b) + b
8749   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
8750     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
8751     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
8752     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
8753   }
8754 
8755   unsigned OverflowOp;
8756   switch (Opcode) {
8757   case ISD::SADDSAT:
8758     OverflowOp = ISD::SADDO;
8759     break;
8760   case ISD::UADDSAT:
8761     OverflowOp = ISD::UADDO;
8762     break;
8763   case ISD::SSUBSAT:
8764     OverflowOp = ISD::SSUBO;
8765     break;
8766   case ISD::USUBSAT:
8767     OverflowOp = ISD::USUBO;
8768     break;
8769   default:
8770     llvm_unreachable("Expected method to receive signed or unsigned saturation "
8771                      "addition or subtraction node.");
8772   }
8773 
8774   // FIXME: Should really try to split the vector in case it's legal on a
8775   // subvector.
8776   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8777     return DAG.UnrollVectorOp(Node);
8778 
8779   unsigned BitWidth = LHS.getScalarValueSizeInBits();
8780   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8781   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8782   SDValue SumDiff = Result.getValue(0);
8783   SDValue Overflow = Result.getValue(1);
8784   SDValue Zero = DAG.getConstant(0, dl, VT);
8785   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
8786 
8787   if (Opcode == ISD::UADDSAT) {
8788     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8789       // (LHS + RHS) | OverflowMask
8790       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8791       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
8792     }
8793     // Overflow ? 0xffff.... : (LHS + RHS)
8794     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
8795   }
8796 
8797   if (Opcode == ISD::USUBSAT) {
8798     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8799       // (LHS - RHS) & ~OverflowMask
8800       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8801       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
8802       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
8803     }
8804     // Overflow ? 0 : (LHS - RHS)
8805     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
8806   }
8807 
8808   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
8809   APInt MinVal = APInt::getSignedMinValue(BitWidth);
8810   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8811   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
8812                               DAG.getConstant(BitWidth - 1, dl, VT));
8813   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
8814   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
8815 }
8816 
8817 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
8818   unsigned Opcode = Node->getOpcode();
8819   bool IsSigned = Opcode == ISD::SSHLSAT;
8820   SDValue LHS = Node->getOperand(0);
8821   SDValue RHS = Node->getOperand(1);
8822   EVT VT = LHS.getValueType();
8823   SDLoc dl(Node);
8824 
8825   assert((Node->getOpcode() == ISD::SSHLSAT ||
8826           Node->getOpcode() == ISD::USHLSAT) &&
8827           "Expected a SHLSAT opcode");
8828   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8829   assert(VT.isInteger() && "Expected operands to be integers");
8830 
8831   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
8832 
8833   unsigned BW = VT.getScalarSizeInBits();
8834   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
8835   SDValue Orig =
8836       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
8837 
8838   SDValue SatVal;
8839   if (IsSigned) {
8840     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8841     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8842     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8843                              SatMin, SatMax, ISD::SETLT);
8844   } else {
8845     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8846   }
8847   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8848 
8849   return Result;
8850 }
8851 
8852 SDValue
8853 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8854   assert((Node->getOpcode() == ISD::SMULFIX ||
8855           Node->getOpcode() == ISD::UMULFIX ||
8856           Node->getOpcode() == ISD::SMULFIXSAT ||
8857           Node->getOpcode() == ISD::UMULFIXSAT) &&
8858          "Expected a fixed point multiplication opcode");
8859 
8860   SDLoc dl(Node);
8861   SDValue LHS = Node->getOperand(0);
8862   SDValue RHS = Node->getOperand(1);
8863   EVT VT = LHS.getValueType();
8864   unsigned Scale = Node->getConstantOperandVal(2);
8865   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8866                      Node->getOpcode() == ISD::UMULFIXSAT);
8867   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8868                  Node->getOpcode() == ISD::SMULFIXSAT);
8869   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8870   unsigned VTSize = VT.getScalarSizeInBits();
8871 
8872   if (!Scale) {
8873     // [us]mul.fix(a, b, 0) -> mul(a, b)
8874     if (!Saturating) {
8875       if (isOperationLegalOrCustom(ISD::MUL, VT))
8876         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8877     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
8878       SDValue Result =
8879           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8880       SDValue Product = Result.getValue(0);
8881       SDValue Overflow = Result.getValue(1);
8882       SDValue Zero = DAG.getConstant(0, dl, VT);
8883 
8884       APInt MinVal = APInt::getSignedMinValue(VTSize);
8885       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
8886       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8887       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8888       // Xor the inputs, if resulting sign bit is 0 the product will be
8889       // positive, else negative.
8890       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
8891       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
8892       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
8893       return DAG.getSelect(dl, VT, Overflow, Result, Product);
8894     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
8895       SDValue Result =
8896           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8897       SDValue Product = Result.getValue(0);
8898       SDValue Overflow = Result.getValue(1);
8899 
8900       APInt MaxVal = APInt::getMaxValue(VTSize);
8901       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8902       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
8903     }
8904   }
8905 
8906   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
8907          "Expected scale to be less than the number of bits if signed or at "
8908          "most the number of bits if unsigned.");
8909   assert(LHS.getValueType() == RHS.getValueType() &&
8910          "Expected both operands to be the same type");
8911 
8912   // Get the upper and lower bits of the result.
8913   SDValue Lo, Hi;
8914   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
8915   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
8916   if (isOperationLegalOrCustom(LoHiOp, VT)) {
8917     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
8918     Lo = Result.getValue(0);
8919     Hi = Result.getValue(1);
8920   } else if (isOperationLegalOrCustom(HiOp, VT)) {
8921     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8922     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
8923   } else if (VT.isVector()) {
8924     return SDValue();
8925   } else {
8926     report_fatal_error("Unable to expand fixed point multiplication.");
8927   }
8928 
8929   if (Scale == VTSize)
8930     // Result is just the top half since we'd be shifting by the width of the
8931     // operand. Overflow impossible so this works for both UMULFIX and
8932     // UMULFIXSAT.
8933     return Hi;
8934 
8935   // The result will need to be shifted right by the scale since both operands
8936   // are scaled. The result is given to us in 2 halves, so we only want part of
8937   // both in the result.
8938   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8939   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
8940                                DAG.getConstant(Scale, dl, ShiftTy));
8941   if (!Saturating)
8942     return Result;
8943 
8944   if (!Signed) {
8945     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
8946     // widened multiplication) aren't all zeroes.
8947 
8948     // Saturate to max if ((Hi >> Scale) != 0),
8949     // which is the same as if (Hi > ((1 << Scale) - 1))
8950     APInt MaxVal = APInt::getMaxValue(VTSize);
8951     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
8952                                       dl, VT);
8953     Result = DAG.getSelectCC(dl, Hi, LowMask,
8954                              DAG.getConstant(MaxVal, dl, VT), Result,
8955                              ISD::SETUGT);
8956 
8957     return Result;
8958   }
8959 
8960   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
8961   // widened multiplication) aren't all ones or all zeroes.
8962 
8963   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
8964   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
8965 
8966   if (Scale == 0) {
8967     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
8968                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
8969     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
8970     // Saturated to SatMin if wide product is negative, and SatMax if wide
8971     // product is positive ...
8972     SDValue Zero = DAG.getConstant(0, dl, VT);
8973     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
8974                                                ISD::SETLT);
8975     // ... but only if we overflowed.
8976     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
8977   }
8978 
8979   //  We handled Scale==0 above so all the bits to examine is in Hi.
8980 
8981   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
8982   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
8983   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
8984                                     dl, VT);
8985   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
8986   // Saturate to min if (Hi >> (Scale - 1)) < -1),
8987   // which is the same as if (HI < (-1 << (Scale - 1))
8988   SDValue HighMask =
8989       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
8990                       dl, VT);
8991   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
8992   return Result;
8993 }
8994 
8995 SDValue
8996 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
8997                                     SDValue LHS, SDValue RHS,
8998                                     unsigned Scale, SelectionDAG &DAG) const {
8999   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
9000           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
9001          "Expected a fixed point division opcode");
9002 
9003   EVT VT = LHS.getValueType();
9004   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
9005   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
9006   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9007 
9008   // If there is enough room in the type to upscale the LHS or downscale the
9009   // RHS before the division, we can perform it in this type without having to
9010   // resize. For signed operations, the LHS headroom is the number of
9011   // redundant sign bits, and for unsigned ones it is the number of zeroes.
9012   // The headroom for the RHS is the number of trailing zeroes.
9013   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
9014                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
9015   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
9016 
9017   // For signed saturating operations, we need to be able to detect true integer
9018   // division overflow; that is, when you have MIN / -EPS. However, this
9019   // is undefined behavior and if we emit divisions that could take such
9020   // values it may cause undesired behavior (arithmetic exceptions on x86, for
9021   // example).
9022   // Avoid this by requiring an extra bit so that we never get this case.
9023   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
9024   // signed saturating division, we need to emit a whopping 32-bit division.
9025   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
9026     return SDValue();
9027 
9028   unsigned LHSShift = std::min(LHSLead, Scale);
9029   unsigned RHSShift = Scale - LHSShift;
9030 
9031   // At this point, we know that if we shift the LHS up by LHSShift and the
9032   // RHS down by RHSShift, we can emit a regular division with a final scaling
9033   // factor of Scale.
9034 
9035   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
9036   if (LHSShift)
9037     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
9038                       DAG.getConstant(LHSShift, dl, ShiftTy));
9039   if (RHSShift)
9040     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
9041                       DAG.getConstant(RHSShift, dl, ShiftTy));
9042 
9043   SDValue Quot;
9044   if (Signed) {
9045     // For signed operations, if the resulting quotient is negative and the
9046     // remainder is nonzero, subtract 1 from the quotient to round towards
9047     // negative infinity.
9048     SDValue Rem;
9049     // FIXME: Ideally we would always produce an SDIVREM here, but if the
9050     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
9051     // we couldn't just form a libcall, but the type legalizer doesn't do it.
9052     if (isTypeLegal(VT) &&
9053         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
9054       Quot = DAG.getNode(ISD::SDIVREM, dl,
9055                          DAG.getVTList(VT, VT),
9056                          LHS, RHS);
9057       Rem = Quot.getValue(1);
9058       Quot = Quot.getValue(0);
9059     } else {
9060       Quot = DAG.getNode(ISD::SDIV, dl, VT,
9061                          LHS, RHS);
9062       Rem = DAG.getNode(ISD::SREM, dl, VT,
9063                         LHS, RHS);
9064     }
9065     SDValue Zero = DAG.getConstant(0, dl, VT);
9066     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
9067     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
9068     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
9069     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
9070     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
9071                                DAG.getConstant(1, dl, VT));
9072     Quot = DAG.getSelect(dl, VT,
9073                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
9074                          Sub1, Quot);
9075   } else
9076     Quot = DAG.getNode(ISD::UDIV, dl, VT,
9077                        LHS, RHS);
9078 
9079   return Quot;
9080 }
9081 
9082 void TargetLowering::expandUADDSUBO(
9083     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
9084   SDLoc dl(Node);
9085   SDValue LHS = Node->getOperand(0);
9086   SDValue RHS = Node->getOperand(1);
9087   bool IsAdd = Node->getOpcode() == ISD::UADDO;
9088 
9089   // If ADD/SUBCARRY is legal, use that instead.
9090   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
9091   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
9092     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
9093     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
9094                                     { LHS, RHS, CarryIn });
9095     Result = SDValue(NodeCarry.getNode(), 0);
9096     Overflow = SDValue(NodeCarry.getNode(), 1);
9097     return;
9098   }
9099 
9100   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
9101                             LHS.getValueType(), LHS, RHS);
9102 
9103   EVT ResultType = Node->getValueType(1);
9104   EVT SetCCType = getSetCCResultType(
9105       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
9106   SDValue SetCC;
9107   if (IsAdd && isOneConstant(RHS)) {
9108     // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces
9109     // the live range of X. We assume comparing with 0 is cheap.
9110     // The general case (X + C) < C is not necessarily beneficial. Although we
9111     // reduce the live range of X, we may introduce the materialization of
9112     // constant C.
9113     SetCC =
9114         DAG.getSetCC(dl, SetCCType, Result,
9115                      DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ);
9116   } else {
9117     ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
9118     SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
9119   }
9120   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
9121 }
9122 
9123 void TargetLowering::expandSADDSUBO(
9124     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
9125   SDLoc dl(Node);
9126   SDValue LHS = Node->getOperand(0);
9127   SDValue RHS = Node->getOperand(1);
9128   bool IsAdd = Node->getOpcode() == ISD::SADDO;
9129 
9130   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
9131                             LHS.getValueType(), LHS, RHS);
9132 
9133   EVT ResultType = Node->getValueType(1);
9134   EVT OType = getSetCCResultType(
9135       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
9136 
9137   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
9138   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
9139   if (isOperationLegal(OpcSat, LHS.getValueType())) {
9140     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
9141     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
9142     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
9143     return;
9144   }
9145 
9146   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
9147 
9148   // For an addition, the result should be less than one of the operands (LHS)
9149   // if and only if the other operand (RHS) is negative, otherwise there will
9150   // be overflow.
9151   // For a subtraction, the result should be less than one of the operands
9152   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
9153   // otherwise there will be overflow.
9154   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
9155   SDValue ConditionRHS =
9156       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
9157 
9158   Overflow = DAG.getBoolExtOrTrunc(
9159       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
9160       ResultType, ResultType);
9161 }
9162 
9163 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
9164                                 SDValue &Overflow, SelectionDAG &DAG) const {
9165   SDLoc dl(Node);
9166   EVT VT = Node->getValueType(0);
9167   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9168   SDValue LHS = Node->getOperand(0);
9169   SDValue RHS = Node->getOperand(1);
9170   bool isSigned = Node->getOpcode() == ISD::SMULO;
9171 
9172   // For power-of-two multiplications we can use a simpler shift expansion.
9173   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
9174     const APInt &C = RHSC->getAPIntValue();
9175     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
9176     if (C.isPowerOf2()) {
9177       // smulo(x, signed_min) is same as umulo(x, signed_min).
9178       bool UseArithShift = isSigned && !C.isMinSignedValue();
9179       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
9180       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
9181       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
9182       Overflow = DAG.getSetCC(dl, SetCCVT,
9183           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
9184                       dl, VT, Result, ShiftAmt),
9185           LHS, ISD::SETNE);
9186       return true;
9187     }
9188   }
9189 
9190   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
9191   if (VT.isVector())
9192     WideVT =
9193         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
9194 
9195   SDValue BottomHalf;
9196   SDValue TopHalf;
9197   static const unsigned Ops[2][3] =
9198       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
9199         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
9200   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
9201     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
9202     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
9203   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
9204     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
9205                              RHS);
9206     TopHalf = BottomHalf.getValue(1);
9207   } else if (isTypeLegal(WideVT)) {
9208     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
9209     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
9210     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
9211     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
9212     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
9213         getShiftAmountTy(WideVT, DAG.getDataLayout()));
9214     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
9215                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
9216   } else {
9217     if (VT.isVector())
9218       return false;
9219 
9220     // We can fall back to a libcall with an illegal type for the MUL if we
9221     // have a libcall big enough.
9222     // Also, we can fall back to a division in some cases, but that's a big
9223     // performance hit in the general case.
9224     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
9225     if (WideVT == MVT::i16)
9226       LC = RTLIB::MUL_I16;
9227     else if (WideVT == MVT::i32)
9228       LC = RTLIB::MUL_I32;
9229     else if (WideVT == MVT::i64)
9230       LC = RTLIB::MUL_I64;
9231     else if (WideVT == MVT::i128)
9232       LC = RTLIB::MUL_I128;
9233     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
9234 
9235     SDValue HiLHS;
9236     SDValue HiRHS;
9237     if (isSigned) {
9238       // The high part is obtained by SRA'ing all but one of the bits of low
9239       // part.
9240       unsigned LoSize = VT.getFixedSizeInBits();
9241       HiLHS =
9242           DAG.getNode(ISD::SRA, dl, VT, LHS,
9243                       DAG.getConstant(LoSize - 1, dl,
9244                                       getPointerTy(DAG.getDataLayout())));
9245       HiRHS =
9246           DAG.getNode(ISD::SRA, dl, VT, RHS,
9247                       DAG.getConstant(LoSize - 1, dl,
9248                                       getPointerTy(DAG.getDataLayout())));
9249     } else {
9250         HiLHS = DAG.getConstant(0, dl, VT);
9251         HiRHS = DAG.getConstant(0, dl, VT);
9252     }
9253 
9254     // Here we're passing the 2 arguments explicitly as 4 arguments that are
9255     // pre-lowered to the correct types. This all depends upon WideVT not
9256     // being a legal type for the architecture and thus has to be split to
9257     // two arguments.
9258     SDValue Ret;
9259     TargetLowering::MakeLibCallOptions CallOptions;
9260     CallOptions.setSExt(isSigned);
9261     CallOptions.setIsPostTypeLegalization(true);
9262     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
9263       // Halves of WideVT are packed into registers in different order
9264       // depending on platform endianness. This is usually handled by
9265       // the C calling convention, but we can't defer to it in
9266       // the legalizer.
9267       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
9268       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
9269     } else {
9270       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
9271       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
9272     }
9273     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
9274            "Ret value is a collection of constituent nodes holding result.");
9275     if (DAG.getDataLayout().isLittleEndian()) {
9276       // Same as above.
9277       BottomHalf = Ret.getOperand(0);
9278       TopHalf = Ret.getOperand(1);
9279     } else {
9280       BottomHalf = Ret.getOperand(1);
9281       TopHalf = Ret.getOperand(0);
9282     }
9283   }
9284 
9285   Result = BottomHalf;
9286   if (isSigned) {
9287     SDValue ShiftAmt = DAG.getConstant(
9288         VT.getScalarSizeInBits() - 1, dl,
9289         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
9290     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
9291     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
9292   } else {
9293     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
9294                             DAG.getConstant(0, dl, VT), ISD::SETNE);
9295   }
9296 
9297   // Truncate the result if SetCC returns a larger type than needed.
9298   EVT RType = Node->getValueType(1);
9299   if (RType.bitsLT(Overflow.getValueType()))
9300     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
9301 
9302   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
9303          "Unexpected result type for S/UMULO legalization");
9304   return true;
9305 }
9306 
9307 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
9308   SDLoc dl(Node);
9309   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
9310   SDValue Op = Node->getOperand(0);
9311   EVT VT = Op.getValueType();
9312 
9313   if (VT.isScalableVector())
9314     report_fatal_error(
9315         "Expanding reductions for scalable vectors is undefined.");
9316 
9317   // Try to use a shuffle reduction for power of two vectors.
9318   if (VT.isPow2VectorType()) {
9319     while (VT.getVectorNumElements() > 1) {
9320       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
9321       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
9322         break;
9323 
9324       SDValue Lo, Hi;
9325       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
9326       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
9327       VT = HalfVT;
9328     }
9329   }
9330 
9331   EVT EltVT = VT.getVectorElementType();
9332   unsigned NumElts = VT.getVectorNumElements();
9333 
9334   SmallVector<SDValue, 8> Ops;
9335   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
9336 
9337   SDValue Res = Ops[0];
9338   for (unsigned i = 1; i < NumElts; i++)
9339     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
9340 
9341   // Result type may be wider than element type.
9342   if (EltVT != Node->getValueType(0))
9343     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
9344   return Res;
9345 }
9346 
9347 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
9348   SDLoc dl(Node);
9349   SDValue AccOp = Node->getOperand(0);
9350   SDValue VecOp = Node->getOperand(1);
9351   SDNodeFlags Flags = Node->getFlags();
9352 
9353   EVT VT = VecOp.getValueType();
9354   EVT EltVT = VT.getVectorElementType();
9355 
9356   if (VT.isScalableVector())
9357     report_fatal_error(
9358         "Expanding reductions for scalable vectors is undefined.");
9359 
9360   unsigned NumElts = VT.getVectorNumElements();
9361 
9362   SmallVector<SDValue, 8> Ops;
9363   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
9364 
9365   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
9366 
9367   SDValue Res = AccOp;
9368   for (unsigned i = 0; i < NumElts; i++)
9369     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
9370 
9371   return Res;
9372 }
9373 
9374 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
9375                                SelectionDAG &DAG) const {
9376   EVT VT = Node->getValueType(0);
9377   SDLoc dl(Node);
9378   bool isSigned = Node->getOpcode() == ISD::SREM;
9379   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
9380   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
9381   SDValue Dividend = Node->getOperand(0);
9382   SDValue Divisor = Node->getOperand(1);
9383   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
9384     SDVTList VTs = DAG.getVTList(VT, VT);
9385     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
9386     return true;
9387   }
9388   if (isOperationLegalOrCustom(DivOpc, VT)) {
9389     // X % Y -> X-X/Y*Y
9390     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
9391     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
9392     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
9393     return true;
9394   }
9395   return false;
9396 }
9397 
9398 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
9399                                             SelectionDAG &DAG) const {
9400   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
9401   SDLoc dl(SDValue(Node, 0));
9402   SDValue Src = Node->getOperand(0);
9403 
9404   // DstVT is the result type, while SatVT is the size to which we saturate
9405   EVT SrcVT = Src.getValueType();
9406   EVT DstVT = Node->getValueType(0);
9407 
9408   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
9409   unsigned SatWidth = SatVT.getScalarSizeInBits();
9410   unsigned DstWidth = DstVT.getScalarSizeInBits();
9411   assert(SatWidth <= DstWidth &&
9412          "Expected saturation width smaller than result width");
9413 
9414   // Determine minimum and maximum integer values and their corresponding
9415   // floating-point values.
9416   APInt MinInt, MaxInt;
9417   if (IsSigned) {
9418     MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth);
9419     MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth);
9420   } else {
9421     MinInt = APInt::getMinValue(SatWidth).zext(DstWidth);
9422     MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth);
9423   }
9424 
9425   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
9426   // libcall emission cannot handle this. Large result types will fail.
9427   if (SrcVT == MVT::f16) {
9428     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
9429     SrcVT = Src.getValueType();
9430   }
9431 
9432   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
9433   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
9434 
9435   APFloat::opStatus MinStatus =
9436       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
9437   APFloat::opStatus MaxStatus =
9438       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
9439   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
9440                              !(MaxStatus & APFloat::opStatus::opInexact);
9441 
9442   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
9443   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
9444 
9445   // If the integer bounds are exactly representable as floats and min/max are
9446   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
9447   // of comparisons and selects.
9448   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
9449                      isOperationLegal(ISD::FMAXNUM, SrcVT);
9450   if (AreExactFloatBounds && MinMaxLegal) {
9451     SDValue Clamped = Src;
9452 
9453     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
9454     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
9455     // Clamp by MaxFloat from above. NaN cannot occur.
9456     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
9457     // Convert clamped value to integer.
9458     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
9459                                   dl, DstVT, Clamped);
9460 
9461     // In the unsigned case we're done, because we mapped NaN to MinFloat,
9462     // which will cast to zero.
9463     if (!IsSigned)
9464       return FpToInt;
9465 
9466     // Otherwise, select 0 if Src is NaN.
9467     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9468     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
9469                            ISD::CondCode::SETUO);
9470   }
9471 
9472   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
9473   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
9474 
9475   // Result of direct conversion. The assumption here is that the operation is
9476   // non-trapping and it's fine to apply it to an out-of-range value if we
9477   // select it away later.
9478   SDValue FpToInt =
9479       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
9480 
9481   SDValue Select = FpToInt;
9482 
9483   // If Src ULT MinFloat, select MinInt. In particular, this also selects
9484   // MinInt if Src is NaN.
9485   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
9486                            ISD::CondCode::SETULT);
9487   // If Src OGT MaxFloat, select MaxInt.
9488   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
9489                            ISD::CondCode::SETOGT);
9490 
9491   // In the unsigned case we are done, because we mapped NaN to MinInt, which
9492   // is already zero.
9493   if (!IsSigned)
9494     return Select;
9495 
9496   // Otherwise, select 0 if Src is NaN.
9497   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9498   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
9499 }
9500 
9501 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
9502                                            SelectionDAG &DAG) const {
9503   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
9504   assert(Node->getValueType(0).isScalableVector() &&
9505          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
9506 
9507   EVT VT = Node->getValueType(0);
9508   SDValue V1 = Node->getOperand(0);
9509   SDValue V2 = Node->getOperand(1);
9510   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
9511   SDLoc DL(Node);
9512 
9513   // Expand through memory thusly:
9514   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
9515   //  Store V1, Ptr
9516   //  Store V2, Ptr + sizeof(V1)
9517   //  If (Imm < 0)
9518   //    TrailingElts = -Imm
9519   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
9520   //  else
9521   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
9522   //  Res = Load Ptr
9523 
9524   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
9525 
9526   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
9527                                VT.getVectorElementCount() * 2);
9528   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
9529   EVT PtrVT = StackPtr.getValueType();
9530   auto &MF = DAG.getMachineFunction();
9531   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
9532   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
9533 
9534   // Store the lo part of CONCAT_VECTORS(V1, V2)
9535   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
9536   // Store the hi part of CONCAT_VECTORS(V1, V2)
9537   SDValue OffsetToV2 = DAG.getVScale(
9538       DL, PtrVT,
9539       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9540   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
9541   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
9542 
9543   if (Imm >= 0) {
9544     // Load back the required element. getVectorElementPointer takes care of
9545     // clamping the index if it's out-of-bounds.
9546     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
9547     // Load the spliced result
9548     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
9549                        MachinePointerInfo::getUnknownStack(MF));
9550   }
9551 
9552   uint64_t TrailingElts = -Imm;
9553 
9554   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
9555   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
9556   SDValue TrailingBytes =
9557       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
9558 
9559   if (TrailingElts > VT.getVectorMinNumElements()) {
9560     SDValue VLBytes = DAG.getVScale(
9561         DL, PtrVT,
9562         APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9563     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
9564   }
9565 
9566   // Calculate the start address of the spliced result.
9567   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
9568 
9569   // Load the spliced result
9570   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
9571                      MachinePointerInfo::getUnknownStack(MF));
9572 }
9573 
9574 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
9575                                            SDValue &LHS, SDValue &RHS,
9576                                            SDValue &CC, SDValue Mask,
9577                                            SDValue EVL, bool &NeedInvert,
9578                                            const SDLoc &dl, SDValue &Chain,
9579                                            bool IsSignaling) const {
9580   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9581   MVT OpVT = LHS.getSimpleValueType();
9582   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
9583   NeedInvert = false;
9584   assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset");
9585   bool IsNonVP = !EVL;
9586   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
9587   default:
9588     llvm_unreachable("Unknown condition code action!");
9589   case TargetLowering::Legal:
9590     // Nothing to do.
9591     break;
9592   case TargetLowering::Expand: {
9593     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
9594     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9595       std::swap(LHS, RHS);
9596       CC = DAG.getCondCode(InvCC);
9597       return true;
9598     }
9599     // Swapping operands didn't work. Try inverting the condition.
9600     bool NeedSwap = false;
9601     InvCC = getSetCCInverse(CCCode, OpVT);
9602     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9603       // If inverting the condition is not enough, try swapping operands
9604       // on top of it.
9605       InvCC = ISD::getSetCCSwappedOperands(InvCC);
9606       NeedSwap = true;
9607     }
9608     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9609       CC = DAG.getCondCode(InvCC);
9610       NeedInvert = true;
9611       if (NeedSwap)
9612         std::swap(LHS, RHS);
9613       return true;
9614     }
9615 
9616     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
9617     unsigned Opc = 0;
9618     switch (CCCode) {
9619     default:
9620       llvm_unreachable("Don't know how to expand this condition!");
9621     case ISD::SETUO:
9622       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
9623         CC1 = ISD::SETUNE;
9624         CC2 = ISD::SETUNE;
9625         Opc = ISD::OR;
9626         break;
9627       }
9628       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9629              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
9630       NeedInvert = true;
9631       LLVM_FALLTHROUGH;
9632     case ISD::SETO:
9633       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9634              "If SETO is expanded, SETOEQ must be legal!");
9635       CC1 = ISD::SETOEQ;
9636       CC2 = ISD::SETOEQ;
9637       Opc = ISD::AND;
9638       break;
9639     case ISD::SETONE:
9640     case ISD::SETUEQ:
9641       // If the SETUO or SETO CC isn't legal, we might be able to use
9642       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
9643       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
9644       // the operands.
9645       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9646       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
9647           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
9648            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
9649         CC1 = ISD::SETOGT;
9650         CC2 = ISD::SETOLT;
9651         Opc = ISD::OR;
9652         NeedInvert = ((unsigned)CCCode & 0x8U);
9653         break;
9654       }
9655       LLVM_FALLTHROUGH;
9656     case ISD::SETOEQ:
9657     case ISD::SETOGT:
9658     case ISD::SETOGE:
9659     case ISD::SETOLT:
9660     case ISD::SETOLE:
9661     case ISD::SETUNE:
9662     case ISD::SETUGT:
9663     case ISD::SETUGE:
9664     case ISD::SETULT:
9665     case ISD::SETULE:
9666       // If we are floating point, assign and break, otherwise fall through.
9667       if (!OpVT.isInteger()) {
9668         // We can use the 4th bit to tell if we are the unordered
9669         // or ordered version of the opcode.
9670         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9671         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
9672         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
9673         break;
9674       }
9675       // Fallthrough if we are unsigned integer.
9676       LLVM_FALLTHROUGH;
9677     case ISD::SETLE:
9678     case ISD::SETGT:
9679     case ISD::SETGE:
9680     case ISD::SETLT:
9681     case ISD::SETNE:
9682     case ISD::SETEQ:
9683       // If all combinations of inverting the condition and swapping operands
9684       // didn't work then we have no means to expand the condition.
9685       llvm_unreachable("Don't know how to expand this condition!");
9686     }
9687 
9688     SDValue SetCC1, SetCC2;
9689     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
9690       // If we aren't the ordered or unorder operation,
9691       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
9692       if (IsNonVP) {
9693         SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
9694         SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
9695       } else {
9696         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL);
9697         SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL);
9698       }
9699     } else {
9700       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
9701       if (IsNonVP) {
9702         SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
9703         SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
9704       } else {
9705         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL);
9706         SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL);
9707       }
9708     }
9709     if (Chain)
9710       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
9711                           SetCC2.getValue(1));
9712     if (IsNonVP)
9713       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
9714     else {
9715       // Transform the binary opcode to the VP equivalent.
9716       assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode");
9717       Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND;
9718       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL);
9719     }
9720     RHS = SDValue();
9721     CC = SDValue();
9722     return true;
9723   }
9724   }
9725   return false;
9726 }
9727