1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore following attributes because they don't affect the 61 // call sequence. 62 AttrBuilder CallerAttrs(F.getAttributes(), AttributeList::ReturnIndex); 63 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 64 Attribute::DereferenceableOrNull, Attribute::NoAlias, 65 Attribute::NonNull}) 66 CallerAttrs.removeAttribute(Attr); 67 68 if (CallerAttrs.hasAttributes()) 69 return false; 70 71 // It's not safe to eliminate the sign / zero extension of the return value. 72 if (CallerAttrs.contains(Attribute::ZExt) || 73 CallerAttrs.contains(Attribute::SExt)) 74 return false; 75 76 // Check if the only use is a function return node. 77 return isUsedByReturnOnly(Node, Chain); 78 } 79 80 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 81 const uint32_t *CallerPreservedMask, 82 const SmallVectorImpl<CCValAssign> &ArgLocs, 83 const SmallVectorImpl<SDValue> &OutVals) const { 84 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 85 const CCValAssign &ArgLoc = ArgLocs[I]; 86 if (!ArgLoc.isRegLoc()) 87 continue; 88 MCRegister Reg = ArgLoc.getLocReg(); 89 // Only look at callee saved registers. 90 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 91 continue; 92 // Check that we pass the value used for the caller. 93 // (We look for a CopyFromReg reading a virtual register that is used 94 // for the function live-in value of register Reg) 95 SDValue Value = OutVals[I]; 96 if (Value->getOpcode() != ISD::CopyFromReg) 97 return false; 98 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 99 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 100 return false; 101 } 102 return true; 103 } 104 105 /// Set CallLoweringInfo attribute flags based on a call instruction 106 /// and called function attributes. 107 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 108 unsigned ArgIdx) { 109 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 110 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 111 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 112 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 113 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 114 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 115 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 116 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 117 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 118 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 119 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 120 Alignment = Call->getParamStackAlign(ArgIdx); 121 ByValType = nullptr; 122 if (IsByVal) { 123 ByValType = Call->getParamByValType(ArgIdx); 124 if (!Alignment) 125 Alignment = Call->getParamAlign(ArgIdx); 126 } 127 PreallocatedType = nullptr; 128 if (IsPreallocated) 129 PreallocatedType = Call->getParamPreallocatedType(ArgIdx); 130 } 131 132 /// Generate a libcall taking the given operands as arguments and returning a 133 /// result of type RetVT. 134 std::pair<SDValue, SDValue> 135 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 136 ArrayRef<SDValue> Ops, 137 MakeLibCallOptions CallOptions, 138 const SDLoc &dl, 139 SDValue InChain) const { 140 if (!InChain) 141 InChain = DAG.getEntryNode(); 142 143 TargetLowering::ArgListTy Args; 144 Args.reserve(Ops.size()); 145 146 TargetLowering::ArgListEntry Entry; 147 for (unsigned i = 0; i < Ops.size(); ++i) { 148 SDValue NewOp = Ops[i]; 149 Entry.Node = NewOp; 150 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 151 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 152 CallOptions.IsSExt); 153 Entry.IsZExt = !Entry.IsSExt; 154 155 if (CallOptions.IsSoften && 156 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 157 Entry.IsSExt = Entry.IsZExt = false; 158 } 159 Args.push_back(Entry); 160 } 161 162 if (LC == RTLIB::UNKNOWN_LIBCALL) 163 report_fatal_error("Unsupported library call operation!"); 164 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 165 getPointerTy(DAG.getDataLayout())); 166 167 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 168 TargetLowering::CallLoweringInfo CLI(DAG); 169 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 170 bool zeroExtend = !signExtend; 171 172 if (CallOptions.IsSoften && 173 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 174 signExtend = zeroExtend = false; 175 } 176 177 CLI.setDebugLoc(dl) 178 .setChain(InChain) 179 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 180 .setNoReturn(CallOptions.DoesNotReturn) 181 .setDiscardResult(!CallOptions.IsReturnValueUsed) 182 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 183 .setSExtResult(signExtend) 184 .setZExtResult(zeroExtend); 185 return LowerCallTo(CLI); 186 } 187 188 bool TargetLowering::findOptimalMemOpLowering( 189 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 190 unsigned SrcAS, const AttributeList &FuncAttributes) const { 191 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 192 return false; 193 194 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 195 196 if (VT == MVT::Other) { 197 // Use the largest integer type whose alignment constraints are satisfied. 198 // We only need to check DstAlign here as SrcAlign is always greater or 199 // equal to DstAlign (or zero). 200 VT = MVT::i64; 201 if (Op.isFixedDstAlign()) 202 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 203 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 204 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 205 assert(VT.isInteger()); 206 207 // Find the largest legal integer type. 208 MVT LVT = MVT::i64; 209 while (!isTypeLegal(LVT)) 210 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 211 assert(LVT.isInteger()); 212 213 // If the type we've chosen is larger than the largest legal integer type 214 // then use that instead. 215 if (VT.bitsGT(LVT)) 216 VT = LVT; 217 } 218 219 unsigned NumMemOps = 0; 220 uint64_t Size = Op.size(); 221 while (Size) { 222 unsigned VTSize = VT.getSizeInBits() / 8; 223 while (VTSize > Size) { 224 // For now, only use non-vector load / store's for the left-over pieces. 225 EVT NewVT = VT; 226 unsigned NewVTSize; 227 228 bool Found = false; 229 if (VT.isVector() || VT.isFloatingPoint()) { 230 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 231 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 232 isSafeMemOpType(NewVT.getSimpleVT())) 233 Found = true; 234 else if (NewVT == MVT::i64 && 235 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 236 isSafeMemOpType(MVT::f64)) { 237 // i64 is usually not legal on 32-bit targets, but f64 may be. 238 NewVT = MVT::f64; 239 Found = true; 240 } 241 } 242 243 if (!Found) { 244 do { 245 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 246 if (NewVT == MVT::i8) 247 break; 248 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 249 } 250 NewVTSize = NewVT.getSizeInBits() / 8; 251 252 // If the new VT cannot cover all of the remaining bits, then consider 253 // issuing a (or a pair of) unaligned and overlapping load / store. 254 bool Fast; 255 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 256 allowsMisalignedMemoryAccesses( 257 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 258 MachineMemOperand::MONone, &Fast) && 259 Fast) 260 VTSize = Size; 261 else { 262 VT = NewVT; 263 VTSize = NewVTSize; 264 } 265 } 266 267 if (++NumMemOps > Limit) 268 return false; 269 270 MemOps.push_back(VT); 271 Size -= VTSize; 272 } 273 274 return true; 275 } 276 277 /// Soften the operands of a comparison. This code is shared among BR_CC, 278 /// SELECT_CC, and SETCC handlers. 279 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 280 SDValue &NewLHS, SDValue &NewRHS, 281 ISD::CondCode &CCCode, 282 const SDLoc &dl, const SDValue OldLHS, 283 const SDValue OldRHS) const { 284 SDValue Chain; 285 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 286 OldRHS, Chain); 287 } 288 289 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 290 SDValue &NewLHS, SDValue &NewRHS, 291 ISD::CondCode &CCCode, 292 const SDLoc &dl, const SDValue OldLHS, 293 const SDValue OldRHS, 294 SDValue &Chain, 295 bool IsSignaling) const { 296 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 297 // not supporting it. We can update this code when libgcc provides such 298 // functions. 299 300 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 301 && "Unsupported setcc type!"); 302 303 // Expand into one or more soft-fp libcall(s). 304 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 305 bool ShouldInvertCC = false; 306 switch (CCCode) { 307 case ISD::SETEQ: 308 case ISD::SETOEQ: 309 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 310 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 311 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 312 break; 313 case ISD::SETNE: 314 case ISD::SETUNE: 315 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 316 (VT == MVT::f64) ? RTLIB::UNE_F64 : 317 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 318 break; 319 case ISD::SETGE: 320 case ISD::SETOGE: 321 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 322 (VT == MVT::f64) ? RTLIB::OGE_F64 : 323 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 324 break; 325 case ISD::SETLT: 326 case ISD::SETOLT: 327 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 328 (VT == MVT::f64) ? RTLIB::OLT_F64 : 329 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 330 break; 331 case ISD::SETLE: 332 case ISD::SETOLE: 333 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 334 (VT == MVT::f64) ? RTLIB::OLE_F64 : 335 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 336 break; 337 case ISD::SETGT: 338 case ISD::SETOGT: 339 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 340 (VT == MVT::f64) ? RTLIB::OGT_F64 : 341 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 342 break; 343 case ISD::SETO: 344 ShouldInvertCC = true; 345 LLVM_FALLTHROUGH; 346 case ISD::SETUO: 347 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 348 (VT == MVT::f64) ? RTLIB::UO_F64 : 349 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 350 break; 351 case ISD::SETONE: 352 // SETONE = O && UNE 353 ShouldInvertCC = true; 354 LLVM_FALLTHROUGH; 355 case ISD::SETUEQ: 356 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 357 (VT == MVT::f64) ? RTLIB::UO_F64 : 358 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 359 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 360 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 361 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 362 break; 363 default: 364 // Invert CC for unordered comparisons 365 ShouldInvertCC = true; 366 switch (CCCode) { 367 case ISD::SETULT: 368 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 369 (VT == MVT::f64) ? RTLIB::OGE_F64 : 370 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 371 break; 372 case ISD::SETULE: 373 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 374 (VT == MVT::f64) ? RTLIB::OGT_F64 : 375 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 376 break; 377 case ISD::SETUGT: 378 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 379 (VT == MVT::f64) ? RTLIB::OLE_F64 : 380 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 381 break; 382 case ISD::SETUGE: 383 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 384 (VT == MVT::f64) ? RTLIB::OLT_F64 : 385 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 386 break; 387 default: llvm_unreachable("Do not know how to soften this setcc!"); 388 } 389 } 390 391 // Use the target specific return value for comparions lib calls. 392 EVT RetVT = getCmpLibcallReturnType(); 393 SDValue Ops[2] = {NewLHS, NewRHS}; 394 TargetLowering::MakeLibCallOptions CallOptions; 395 EVT OpsVT[2] = { OldLHS.getValueType(), 396 OldRHS.getValueType() }; 397 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 398 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 399 NewLHS = Call.first; 400 NewRHS = DAG.getConstant(0, dl, RetVT); 401 402 CCCode = getCmpLibcallCC(LC1); 403 if (ShouldInvertCC) { 404 assert(RetVT.isInteger()); 405 CCCode = getSetCCInverse(CCCode, RetVT); 406 } 407 408 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 409 // Update Chain. 410 Chain = Call.second; 411 } else { 412 EVT SetCCVT = 413 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 414 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 415 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 416 CCCode = getCmpLibcallCC(LC2); 417 if (ShouldInvertCC) 418 CCCode = getSetCCInverse(CCCode, RetVT); 419 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 420 if (Chain) 421 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 422 Call2.second); 423 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 424 Tmp.getValueType(), Tmp, NewLHS); 425 NewRHS = SDValue(); 426 } 427 } 428 429 /// Return the entry encoding for a jump table in the current function. The 430 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 431 unsigned TargetLowering::getJumpTableEncoding() const { 432 // In non-pic modes, just use the address of a block. 433 if (!isPositionIndependent()) 434 return MachineJumpTableInfo::EK_BlockAddress; 435 436 // In PIC mode, if the target supports a GPRel32 directive, use it. 437 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 438 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 439 440 // Otherwise, use a label difference. 441 return MachineJumpTableInfo::EK_LabelDifference32; 442 } 443 444 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 445 SelectionDAG &DAG) const { 446 // If our PIC model is GP relative, use the global offset table as the base. 447 unsigned JTEncoding = getJumpTableEncoding(); 448 449 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 450 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 451 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 452 453 return Table; 454 } 455 456 /// This returns the relocation base for the given PIC jumptable, the same as 457 /// getPICJumpTableRelocBase, but as an MCExpr. 458 const MCExpr * 459 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 460 unsigned JTI,MCContext &Ctx) const{ 461 // The normal PIC reloc base is the label at the start of the jump table. 462 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 463 } 464 465 bool 466 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 467 const TargetMachine &TM = getTargetMachine(); 468 const GlobalValue *GV = GA->getGlobal(); 469 470 // If the address is not even local to this DSO we will have to load it from 471 // a got and then add the offset. 472 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 473 return false; 474 475 // If the code is position independent we will have to add a base register. 476 if (isPositionIndependent()) 477 return false; 478 479 // Otherwise we can do it. 480 return true; 481 } 482 483 //===----------------------------------------------------------------------===// 484 // Optimization Methods 485 //===----------------------------------------------------------------------===// 486 487 /// If the specified instruction has a constant integer operand and there are 488 /// bits set in that constant that are not demanded, then clear those bits and 489 /// return true. 490 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 491 const APInt &DemandedBits, 492 const APInt &DemandedElts, 493 TargetLoweringOpt &TLO) const { 494 SDLoc DL(Op); 495 unsigned Opcode = Op.getOpcode(); 496 497 // Do target-specific constant optimization. 498 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 499 return TLO.New.getNode(); 500 501 // FIXME: ISD::SELECT, ISD::SELECT_CC 502 switch (Opcode) { 503 default: 504 break; 505 case ISD::XOR: 506 case ISD::AND: 507 case ISD::OR: { 508 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 509 if (!Op1C) 510 return false; 511 512 // If this is a 'not' op, don't touch it because that's a canonical form. 513 const APInt &C = Op1C->getAPIntValue(); 514 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 515 return false; 516 517 if (!C.isSubsetOf(DemandedBits)) { 518 EVT VT = Op.getValueType(); 519 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 520 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 521 return TLO.CombineTo(Op, NewOp); 522 } 523 524 break; 525 } 526 } 527 528 return false; 529 } 530 531 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 532 const APInt &DemandedBits, 533 TargetLoweringOpt &TLO) const { 534 EVT VT = Op.getValueType(); 535 APInt DemandedElts = VT.isVector() 536 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 537 : APInt(1, 1); 538 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 539 } 540 541 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 542 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 543 /// generalized for targets with other types of implicit widening casts. 544 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 545 const APInt &Demanded, 546 TargetLoweringOpt &TLO) const { 547 assert(Op.getNumOperands() == 2 && 548 "ShrinkDemandedOp only supports binary operators!"); 549 assert(Op.getNode()->getNumValues() == 1 && 550 "ShrinkDemandedOp only supports nodes with one result!"); 551 552 SelectionDAG &DAG = TLO.DAG; 553 SDLoc dl(Op); 554 555 // Early return, as this function cannot handle vector types. 556 if (Op.getValueType().isVector()) 557 return false; 558 559 // Don't do this if the node has another user, which may require the 560 // full value. 561 if (!Op.getNode()->hasOneUse()) 562 return false; 563 564 // Search for the smallest integer type with free casts to and from 565 // Op's type. For expedience, just check power-of-2 integer types. 566 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 567 unsigned DemandedSize = Demanded.getActiveBits(); 568 unsigned SmallVTBits = DemandedSize; 569 if (!isPowerOf2_32(SmallVTBits)) 570 SmallVTBits = NextPowerOf2(SmallVTBits); 571 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 572 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 573 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 574 TLI.isZExtFree(SmallVT, Op.getValueType())) { 575 // We found a type with free casts. 576 SDValue X = DAG.getNode( 577 Op.getOpcode(), dl, SmallVT, 578 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 579 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 580 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 581 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 582 return TLO.CombineTo(Op, Z); 583 } 584 } 585 return false; 586 } 587 588 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 589 DAGCombinerInfo &DCI) const { 590 SelectionDAG &DAG = DCI.DAG; 591 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 592 !DCI.isBeforeLegalizeOps()); 593 KnownBits Known; 594 595 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 596 if (Simplified) { 597 DCI.AddToWorklist(Op.getNode()); 598 DCI.CommitTargetLoweringOpt(TLO); 599 } 600 return Simplified; 601 } 602 603 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 604 KnownBits &Known, 605 TargetLoweringOpt &TLO, 606 unsigned Depth, 607 bool AssumeSingleUse) const { 608 EVT VT = Op.getValueType(); 609 610 // TODO: We can probably do more work on calculating the known bits and 611 // simplifying the operations for scalable vectors, but for now we just 612 // bail out. 613 if (VT.isScalableVector()) { 614 // Pretend we don't know anything for now. 615 Known = KnownBits(DemandedBits.getBitWidth()); 616 return false; 617 } 618 619 APInt DemandedElts = VT.isVector() 620 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 621 : APInt(1, 1); 622 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 623 AssumeSingleUse); 624 } 625 626 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 627 // TODO: Under what circumstances can we create nodes? Constant folding? 628 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 629 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 630 SelectionDAG &DAG, unsigned Depth) const { 631 // Limit search depth. 632 if (Depth >= SelectionDAG::MaxRecursionDepth) 633 return SDValue(); 634 635 // Ignore UNDEFs. 636 if (Op.isUndef()) 637 return SDValue(); 638 639 // Not demanding any bits/elts from Op. 640 if (DemandedBits == 0 || DemandedElts == 0) 641 return DAG.getUNDEF(Op.getValueType()); 642 643 unsigned NumElts = DemandedElts.getBitWidth(); 644 unsigned BitWidth = DemandedBits.getBitWidth(); 645 KnownBits LHSKnown, RHSKnown; 646 switch (Op.getOpcode()) { 647 case ISD::BITCAST: { 648 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 649 EVT SrcVT = Src.getValueType(); 650 EVT DstVT = Op.getValueType(); 651 if (SrcVT == DstVT) 652 return Src; 653 654 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 655 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 656 if (NumSrcEltBits == NumDstEltBits) 657 if (SDValue V = SimplifyMultipleUseDemandedBits( 658 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 659 return DAG.getBitcast(DstVT, V); 660 661 // TODO - bigendian once we have test coverage. 662 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 663 DAG.getDataLayout().isLittleEndian()) { 664 unsigned Scale = NumDstEltBits / NumSrcEltBits; 665 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 666 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 667 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 668 for (unsigned i = 0; i != Scale; ++i) { 669 unsigned Offset = i * NumSrcEltBits; 670 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 671 if (!Sub.isNullValue()) { 672 DemandedSrcBits |= Sub; 673 for (unsigned j = 0; j != NumElts; ++j) 674 if (DemandedElts[j]) 675 DemandedSrcElts.setBit((j * Scale) + i); 676 } 677 } 678 679 if (SDValue V = SimplifyMultipleUseDemandedBits( 680 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 681 return DAG.getBitcast(DstVT, V); 682 } 683 684 // TODO - bigendian once we have test coverage. 685 if ((NumSrcEltBits % NumDstEltBits) == 0 && 686 DAG.getDataLayout().isLittleEndian()) { 687 unsigned Scale = NumSrcEltBits / NumDstEltBits; 688 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 689 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 690 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 691 for (unsigned i = 0; i != NumElts; ++i) 692 if (DemandedElts[i]) { 693 unsigned Offset = (i % Scale) * NumDstEltBits; 694 DemandedSrcBits.insertBits(DemandedBits, Offset); 695 DemandedSrcElts.setBit(i / Scale); 696 } 697 698 if (SDValue V = SimplifyMultipleUseDemandedBits( 699 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 700 return DAG.getBitcast(DstVT, V); 701 } 702 703 break; 704 } 705 case ISD::AND: { 706 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 707 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 708 709 // If all of the demanded bits are known 1 on one side, return the other. 710 // These bits cannot contribute to the result of the 'and' in this 711 // context. 712 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 713 return Op.getOperand(0); 714 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 715 return Op.getOperand(1); 716 break; 717 } 718 case ISD::OR: { 719 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 720 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 721 722 // If all of the demanded bits are known zero on one side, return the 723 // other. These bits cannot contribute to the result of the 'or' in this 724 // context. 725 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 726 return Op.getOperand(0); 727 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 728 return Op.getOperand(1); 729 break; 730 } 731 case ISD::XOR: { 732 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 733 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 734 735 // If all of the demanded bits are known zero on one side, return the 736 // other. 737 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 738 return Op.getOperand(0); 739 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 740 return Op.getOperand(1); 741 break; 742 } 743 case ISD::SHL: { 744 // If we are only demanding sign bits then we can use the shift source 745 // directly. 746 if (const APInt *MaxSA = 747 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 748 SDValue Op0 = Op.getOperand(0); 749 unsigned ShAmt = MaxSA->getZExtValue(); 750 unsigned NumSignBits = 751 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 752 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 753 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 754 return Op0; 755 } 756 break; 757 } 758 case ISD::SETCC: { 759 SDValue Op0 = Op.getOperand(0); 760 SDValue Op1 = Op.getOperand(1); 761 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 762 // If (1) we only need the sign-bit, (2) the setcc operands are the same 763 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 764 // -1, we may be able to bypass the setcc. 765 if (DemandedBits.isSignMask() && 766 Op0.getScalarValueSizeInBits() == BitWidth && 767 getBooleanContents(Op0.getValueType()) == 768 BooleanContent::ZeroOrNegativeOneBooleanContent) { 769 // If we're testing X < 0, then this compare isn't needed - just use X! 770 // FIXME: We're limiting to integer types here, but this should also work 771 // if we don't care about FP signed-zero. The use of SETLT with FP means 772 // that we don't care about NaNs. 773 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 774 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 775 return Op0; 776 } 777 break; 778 } 779 case ISD::SIGN_EXTEND_INREG: { 780 // If none of the extended bits are demanded, eliminate the sextinreg. 781 SDValue Op0 = Op.getOperand(0); 782 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 783 unsigned ExBits = ExVT.getScalarSizeInBits(); 784 if (DemandedBits.getActiveBits() <= ExBits) 785 return Op0; 786 // If the input is already sign extended, just drop the extension. 787 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 788 if (NumSignBits >= (BitWidth - ExBits + 1)) 789 return Op0; 790 break; 791 } 792 case ISD::ANY_EXTEND_VECTOR_INREG: 793 case ISD::SIGN_EXTEND_VECTOR_INREG: 794 case ISD::ZERO_EXTEND_VECTOR_INREG: { 795 // If we only want the lowest element and none of extended bits, then we can 796 // return the bitcasted source vector. 797 SDValue Src = Op.getOperand(0); 798 EVT SrcVT = Src.getValueType(); 799 EVT DstVT = Op.getValueType(); 800 if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 801 DAG.getDataLayout().isLittleEndian() && 802 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 803 return DAG.getBitcast(DstVT, Src); 804 } 805 break; 806 } 807 case ISD::INSERT_VECTOR_ELT: { 808 // If we don't demand the inserted element, return the base vector. 809 SDValue Vec = Op.getOperand(0); 810 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 811 EVT VecVT = Vec.getValueType(); 812 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 813 !DemandedElts[CIdx->getZExtValue()]) 814 return Vec; 815 break; 816 } 817 case ISD::INSERT_SUBVECTOR: { 818 // If we don't demand the inserted subvector, return the base vector. 819 SDValue Vec = Op.getOperand(0); 820 SDValue Sub = Op.getOperand(1); 821 uint64_t Idx = Op.getConstantOperandVal(2); 822 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 823 if (DemandedElts.extractBits(NumSubElts, Idx) == 0) 824 return Vec; 825 break; 826 } 827 case ISD::VECTOR_SHUFFLE: { 828 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 829 830 // If all the demanded elts are from one operand and are inline, 831 // then we can use the operand directly. 832 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 833 for (unsigned i = 0; i != NumElts; ++i) { 834 int M = ShuffleMask[i]; 835 if (M < 0 || !DemandedElts[i]) 836 continue; 837 AllUndef = false; 838 IdentityLHS &= (M == (int)i); 839 IdentityRHS &= ((M - NumElts) == i); 840 } 841 842 if (AllUndef) 843 return DAG.getUNDEF(Op.getValueType()); 844 if (IdentityLHS) 845 return Op.getOperand(0); 846 if (IdentityRHS) 847 return Op.getOperand(1); 848 break; 849 } 850 default: 851 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 852 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 853 Op, DemandedBits, DemandedElts, DAG, Depth)) 854 return V; 855 break; 856 } 857 return SDValue(); 858 } 859 860 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 861 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 862 unsigned Depth) const { 863 EVT VT = Op.getValueType(); 864 APInt DemandedElts = VT.isVector() 865 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 866 : APInt(1, 1); 867 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 868 Depth); 869 } 870 871 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 872 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 873 unsigned Depth) const { 874 APInt DemandedBits = APInt::getAllOnesValue(Op.getScalarValueSizeInBits()); 875 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 876 Depth); 877 } 878 879 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 880 /// result of Op are ever used downstream. If we can use this information to 881 /// simplify Op, create a new simplified DAG node and return true, returning the 882 /// original and new nodes in Old and New. Otherwise, analyze the expression and 883 /// return a mask of Known bits for the expression (used to simplify the 884 /// caller). The Known bits may only be accurate for those bits in the 885 /// OriginalDemandedBits and OriginalDemandedElts. 886 bool TargetLowering::SimplifyDemandedBits( 887 SDValue Op, const APInt &OriginalDemandedBits, 888 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 889 unsigned Depth, bool AssumeSingleUse) const { 890 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 891 assert(Op.getScalarValueSizeInBits() == BitWidth && 892 "Mask size mismatches value type size!"); 893 894 // Don't know anything. 895 Known = KnownBits(BitWidth); 896 897 // TODO: We can probably do more work on calculating the known bits and 898 // simplifying the operations for scalable vectors, but for now we just 899 // bail out. 900 if (Op.getValueType().isScalableVector()) 901 return false; 902 903 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 904 assert((!Op.getValueType().isVector() || 905 NumElts == Op.getValueType().getVectorNumElements()) && 906 "Unexpected vector size"); 907 908 APInt DemandedBits = OriginalDemandedBits; 909 APInt DemandedElts = OriginalDemandedElts; 910 SDLoc dl(Op); 911 auto &DL = TLO.DAG.getDataLayout(); 912 913 // Undef operand. 914 if (Op.isUndef()) 915 return false; 916 917 if (Op.getOpcode() == ISD::Constant) { 918 // We know all of the bits for a constant! 919 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 920 return false; 921 } 922 923 if (Op.getOpcode() == ISD::ConstantFP) { 924 // We know all of the bits for a floating point constant! 925 Known = KnownBits::makeConstant( 926 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 927 return false; 928 } 929 930 // Other users may use these bits. 931 EVT VT = Op.getValueType(); 932 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 933 if (Depth != 0) { 934 // If not at the root, Just compute the Known bits to 935 // simplify things downstream. 936 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 937 return false; 938 } 939 // If this is the root being simplified, allow it to have multiple uses, 940 // just set the DemandedBits/Elts to all bits. 941 DemandedBits = APInt::getAllOnesValue(BitWidth); 942 DemandedElts = APInt::getAllOnesValue(NumElts); 943 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 944 // Not demanding any bits/elts from Op. 945 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 946 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 947 // Limit search depth. 948 return false; 949 } 950 951 KnownBits Known2; 952 switch (Op.getOpcode()) { 953 case ISD::TargetConstant: 954 llvm_unreachable("Can't simplify this node"); 955 case ISD::SCALAR_TO_VECTOR: { 956 if (!DemandedElts[0]) 957 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 958 959 KnownBits SrcKnown; 960 SDValue Src = Op.getOperand(0); 961 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 962 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 963 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 964 return true; 965 966 // Upper elements are undef, so only get the knownbits if we just demand 967 // the bottom element. 968 if (DemandedElts == 1) 969 Known = SrcKnown.anyextOrTrunc(BitWidth); 970 break; 971 } 972 case ISD::BUILD_VECTOR: 973 // Collect the known bits that are shared by every demanded element. 974 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 975 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 976 return false; // Don't fall through, will infinitely loop. 977 case ISD::LOAD: { 978 auto *LD = cast<LoadSDNode>(Op); 979 if (getTargetConstantFromLoad(LD)) { 980 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 981 return false; // Don't fall through, will infinitely loop. 982 } 983 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 984 // If this is a ZEXTLoad and we are looking at the loaded value. 985 EVT MemVT = LD->getMemoryVT(); 986 unsigned MemBits = MemVT.getScalarSizeInBits(); 987 Known.Zero.setBitsFrom(MemBits); 988 return false; // Don't fall through, will infinitely loop. 989 } 990 break; 991 } 992 case ISD::INSERT_VECTOR_ELT: { 993 SDValue Vec = Op.getOperand(0); 994 SDValue Scl = Op.getOperand(1); 995 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 996 EVT VecVT = Vec.getValueType(); 997 998 // If index isn't constant, assume we need all vector elements AND the 999 // inserted element. 1000 APInt DemandedVecElts(DemandedElts); 1001 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1002 unsigned Idx = CIdx->getZExtValue(); 1003 DemandedVecElts.clearBit(Idx); 1004 1005 // Inserted element is not required. 1006 if (!DemandedElts[Idx]) 1007 return TLO.CombineTo(Op, Vec); 1008 } 1009 1010 KnownBits KnownScl; 1011 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1012 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1013 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1014 return true; 1015 1016 Known = KnownScl.anyextOrTrunc(BitWidth); 1017 1018 KnownBits KnownVec; 1019 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1020 Depth + 1)) 1021 return true; 1022 1023 if (!!DemandedVecElts) 1024 Known = KnownBits::commonBits(Known, KnownVec); 1025 1026 return false; 1027 } 1028 case ISD::INSERT_SUBVECTOR: { 1029 // Demand any elements from the subvector and the remainder from the src its 1030 // inserted into. 1031 SDValue Src = Op.getOperand(0); 1032 SDValue Sub = Op.getOperand(1); 1033 uint64_t Idx = Op.getConstantOperandVal(2); 1034 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1035 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1036 APInt DemandedSrcElts = DemandedElts; 1037 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 1038 1039 KnownBits KnownSub, KnownSrc; 1040 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1041 Depth + 1)) 1042 return true; 1043 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1044 Depth + 1)) 1045 return true; 1046 1047 Known.Zero.setAllBits(); 1048 Known.One.setAllBits(); 1049 if (!!DemandedSubElts) 1050 Known = KnownBits::commonBits(Known, KnownSub); 1051 if (!!DemandedSrcElts) 1052 Known = KnownBits::commonBits(Known, KnownSrc); 1053 1054 // Attempt to avoid multi-use src if we don't need anything from it. 1055 if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() || 1056 !DemandedSrcElts.isAllOnesValue()) { 1057 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1058 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1059 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1060 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1061 if (NewSub || NewSrc) { 1062 NewSub = NewSub ? NewSub : Sub; 1063 NewSrc = NewSrc ? NewSrc : Src; 1064 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1065 Op.getOperand(2)); 1066 return TLO.CombineTo(Op, NewOp); 1067 } 1068 } 1069 break; 1070 } 1071 case ISD::EXTRACT_SUBVECTOR: { 1072 // Offset the demanded elts by the subvector index. 1073 SDValue Src = Op.getOperand(0); 1074 if (Src.getValueType().isScalableVector()) 1075 break; 1076 uint64_t Idx = Op.getConstantOperandVal(1); 1077 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1078 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1079 1080 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1081 Depth + 1)) 1082 return true; 1083 1084 // Attempt to avoid multi-use src if we don't need anything from it. 1085 if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) { 1086 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1087 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1088 if (DemandedSrc) { 1089 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1090 Op.getOperand(1)); 1091 return TLO.CombineTo(Op, NewOp); 1092 } 1093 } 1094 break; 1095 } 1096 case ISD::CONCAT_VECTORS: { 1097 Known.Zero.setAllBits(); 1098 Known.One.setAllBits(); 1099 EVT SubVT = Op.getOperand(0).getValueType(); 1100 unsigned NumSubVecs = Op.getNumOperands(); 1101 unsigned NumSubElts = SubVT.getVectorNumElements(); 1102 for (unsigned i = 0; i != NumSubVecs; ++i) { 1103 APInt DemandedSubElts = 1104 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1105 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1106 Known2, TLO, Depth + 1)) 1107 return true; 1108 // Known bits are shared by every demanded subvector element. 1109 if (!!DemandedSubElts) 1110 Known = KnownBits::commonBits(Known, Known2); 1111 } 1112 break; 1113 } 1114 case ISD::VECTOR_SHUFFLE: { 1115 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1116 1117 // Collect demanded elements from shuffle operands.. 1118 APInt DemandedLHS(NumElts, 0); 1119 APInt DemandedRHS(NumElts, 0); 1120 for (unsigned i = 0; i != NumElts; ++i) { 1121 if (!DemandedElts[i]) 1122 continue; 1123 int M = ShuffleMask[i]; 1124 if (M < 0) { 1125 // For UNDEF elements, we don't know anything about the common state of 1126 // the shuffle result. 1127 DemandedLHS.clearAllBits(); 1128 DemandedRHS.clearAllBits(); 1129 break; 1130 } 1131 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1132 if (M < (int)NumElts) 1133 DemandedLHS.setBit(M); 1134 else 1135 DemandedRHS.setBit(M - NumElts); 1136 } 1137 1138 if (!!DemandedLHS || !!DemandedRHS) { 1139 SDValue Op0 = Op.getOperand(0); 1140 SDValue Op1 = Op.getOperand(1); 1141 1142 Known.Zero.setAllBits(); 1143 Known.One.setAllBits(); 1144 if (!!DemandedLHS) { 1145 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1146 Depth + 1)) 1147 return true; 1148 Known = KnownBits::commonBits(Known, Known2); 1149 } 1150 if (!!DemandedRHS) { 1151 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1152 Depth + 1)) 1153 return true; 1154 Known = KnownBits::commonBits(Known, Known2); 1155 } 1156 1157 // Attempt to avoid multi-use ops if we don't need anything from them. 1158 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1159 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1160 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1161 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1162 if (DemandedOp0 || DemandedOp1) { 1163 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1164 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1165 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1166 return TLO.CombineTo(Op, NewOp); 1167 } 1168 } 1169 break; 1170 } 1171 case ISD::AND: { 1172 SDValue Op0 = Op.getOperand(0); 1173 SDValue Op1 = Op.getOperand(1); 1174 1175 // If the RHS is a constant, check to see if the LHS would be zero without 1176 // using the bits from the RHS. Below, we use knowledge about the RHS to 1177 // simplify the LHS, here we're using information from the LHS to simplify 1178 // the RHS. 1179 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1180 // Do not increment Depth here; that can cause an infinite loop. 1181 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1182 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1183 if ((LHSKnown.Zero & DemandedBits) == 1184 (~RHSC->getAPIntValue() & DemandedBits)) 1185 return TLO.CombineTo(Op, Op0); 1186 1187 // If any of the set bits in the RHS are known zero on the LHS, shrink 1188 // the constant. 1189 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1190 DemandedElts, TLO)) 1191 return true; 1192 1193 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1194 // constant, but if this 'and' is only clearing bits that were just set by 1195 // the xor, then this 'and' can be eliminated by shrinking the mask of 1196 // the xor. For example, for a 32-bit X: 1197 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1198 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1199 LHSKnown.One == ~RHSC->getAPIntValue()) { 1200 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1201 return TLO.CombineTo(Op, Xor); 1202 } 1203 } 1204 1205 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1206 Depth + 1)) 1207 return true; 1208 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1209 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1210 Known2, TLO, Depth + 1)) 1211 return true; 1212 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1213 1214 // Attempt to avoid multi-use ops if we don't need anything from them. 1215 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1216 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1217 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1218 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1219 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1220 if (DemandedOp0 || DemandedOp1) { 1221 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1222 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1223 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1224 return TLO.CombineTo(Op, NewOp); 1225 } 1226 } 1227 1228 // If all of the demanded bits are known one on one side, return the other. 1229 // These bits cannot contribute to the result of the 'and'. 1230 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1231 return TLO.CombineTo(Op, Op0); 1232 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1233 return TLO.CombineTo(Op, Op1); 1234 // If all of the demanded bits in the inputs are known zeros, return zero. 1235 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1236 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1237 // If the RHS is a constant, see if we can simplify it. 1238 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1239 TLO)) 1240 return true; 1241 // If the operation can be done in a smaller type, do so. 1242 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1243 return true; 1244 1245 Known &= Known2; 1246 break; 1247 } 1248 case ISD::OR: { 1249 SDValue Op0 = Op.getOperand(0); 1250 SDValue Op1 = Op.getOperand(1); 1251 1252 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1253 Depth + 1)) 1254 return true; 1255 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1256 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1257 Known2, TLO, Depth + 1)) 1258 return true; 1259 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1260 1261 // Attempt to avoid multi-use ops if we don't need anything from them. 1262 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1263 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1264 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1265 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1266 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1267 if (DemandedOp0 || DemandedOp1) { 1268 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1269 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1270 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1271 return TLO.CombineTo(Op, NewOp); 1272 } 1273 } 1274 1275 // If all of the demanded bits are known zero on one side, return the other. 1276 // These bits cannot contribute to the result of the 'or'. 1277 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1278 return TLO.CombineTo(Op, Op0); 1279 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1280 return TLO.CombineTo(Op, Op1); 1281 // If the RHS is a constant, see if we can simplify it. 1282 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1283 return true; 1284 // If the operation can be done in a smaller type, do so. 1285 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1286 return true; 1287 1288 Known |= Known2; 1289 break; 1290 } 1291 case ISD::XOR: { 1292 SDValue Op0 = Op.getOperand(0); 1293 SDValue Op1 = Op.getOperand(1); 1294 1295 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1296 Depth + 1)) 1297 return true; 1298 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1299 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1300 Depth + 1)) 1301 return true; 1302 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1303 1304 // Attempt to avoid multi-use ops if we don't need anything from them. 1305 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1306 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1307 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1308 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1309 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1310 if (DemandedOp0 || DemandedOp1) { 1311 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1312 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1313 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1314 return TLO.CombineTo(Op, NewOp); 1315 } 1316 } 1317 1318 // If all of the demanded bits are known zero on one side, return the other. 1319 // These bits cannot contribute to the result of the 'xor'. 1320 if (DemandedBits.isSubsetOf(Known.Zero)) 1321 return TLO.CombineTo(Op, Op0); 1322 if (DemandedBits.isSubsetOf(Known2.Zero)) 1323 return TLO.CombineTo(Op, Op1); 1324 // If the operation can be done in a smaller type, do so. 1325 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1326 return true; 1327 1328 // If all of the unknown bits are known to be zero on one side or the other 1329 // turn this into an *inclusive* or. 1330 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1331 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1332 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1333 1334 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1335 if (C) { 1336 // If one side is a constant, and all of the set bits in the constant are 1337 // also known set on the other side, turn this into an AND, as we know 1338 // the bits will be cleared. 1339 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1340 // NB: it is okay if more bits are known than are requested 1341 if (C->getAPIntValue() == Known2.One) { 1342 SDValue ANDC = 1343 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1344 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1345 } 1346 1347 // If the RHS is a constant, see if we can change it. Don't alter a -1 1348 // constant because that's a 'not' op, and that is better for combining 1349 // and codegen. 1350 if (!C->isAllOnesValue() && 1351 DemandedBits.isSubsetOf(C->getAPIntValue())) { 1352 // We're flipping all demanded bits. Flip the undemanded bits too. 1353 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1354 return TLO.CombineTo(Op, New); 1355 } 1356 } 1357 1358 // If we can't turn this into a 'not', try to shrink the constant. 1359 if (!C || !C->isAllOnesValue()) 1360 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1361 return true; 1362 1363 Known ^= Known2; 1364 break; 1365 } 1366 case ISD::SELECT: 1367 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1368 Depth + 1)) 1369 return true; 1370 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1371 Depth + 1)) 1372 return true; 1373 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1374 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1375 1376 // If the operands are constants, see if we can simplify them. 1377 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1378 return true; 1379 1380 // Only known if known in both the LHS and RHS. 1381 Known = KnownBits::commonBits(Known, Known2); 1382 break; 1383 case ISD::SELECT_CC: 1384 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1385 Depth + 1)) 1386 return true; 1387 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1388 Depth + 1)) 1389 return true; 1390 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1391 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1392 1393 // If the operands are constants, see if we can simplify them. 1394 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1395 return true; 1396 1397 // Only known if known in both the LHS and RHS. 1398 Known = KnownBits::commonBits(Known, Known2); 1399 break; 1400 case ISD::SETCC: { 1401 SDValue Op0 = Op.getOperand(0); 1402 SDValue Op1 = Op.getOperand(1); 1403 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1404 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1405 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1406 // -1, we may be able to bypass the setcc. 1407 if (DemandedBits.isSignMask() && 1408 Op0.getScalarValueSizeInBits() == BitWidth && 1409 getBooleanContents(Op0.getValueType()) == 1410 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1411 // If we're testing X < 0, then this compare isn't needed - just use X! 1412 // FIXME: We're limiting to integer types here, but this should also work 1413 // if we don't care about FP signed-zero. The use of SETLT with FP means 1414 // that we don't care about NaNs. 1415 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1416 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1417 return TLO.CombineTo(Op, Op0); 1418 1419 // TODO: Should we check for other forms of sign-bit comparisons? 1420 // Examples: X <= -1, X >= 0 1421 } 1422 if (getBooleanContents(Op0.getValueType()) == 1423 TargetLowering::ZeroOrOneBooleanContent && 1424 BitWidth > 1) 1425 Known.Zero.setBitsFrom(1); 1426 break; 1427 } 1428 case ISD::SHL: { 1429 SDValue Op0 = Op.getOperand(0); 1430 SDValue Op1 = Op.getOperand(1); 1431 EVT ShiftVT = Op1.getValueType(); 1432 1433 if (const APInt *SA = 1434 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1435 unsigned ShAmt = SA->getZExtValue(); 1436 if (ShAmt == 0) 1437 return TLO.CombineTo(Op, Op0); 1438 1439 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1440 // single shift. We can do this if the bottom bits (which are shifted 1441 // out) are never demanded. 1442 // TODO - support non-uniform vector amounts. 1443 if (Op0.getOpcode() == ISD::SRL) { 1444 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1445 if (const APInt *SA2 = 1446 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1447 unsigned C1 = SA2->getZExtValue(); 1448 unsigned Opc = ISD::SHL; 1449 int Diff = ShAmt - C1; 1450 if (Diff < 0) { 1451 Diff = -Diff; 1452 Opc = ISD::SRL; 1453 } 1454 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1455 return TLO.CombineTo( 1456 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1457 } 1458 } 1459 } 1460 1461 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1462 // are not demanded. This will likely allow the anyext to be folded away. 1463 // TODO - support non-uniform vector amounts. 1464 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1465 SDValue InnerOp = Op0.getOperand(0); 1466 EVT InnerVT = InnerOp.getValueType(); 1467 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1468 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1469 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1470 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1471 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1472 ShTy = InnerVT; 1473 SDValue NarrowShl = 1474 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1475 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1476 return TLO.CombineTo( 1477 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1478 } 1479 1480 // Repeat the SHL optimization above in cases where an extension 1481 // intervenes: (shl (anyext (shr x, c1)), c2) to 1482 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1483 // aren't demanded (as above) and that the shifted upper c1 bits of 1484 // x aren't demanded. 1485 // TODO - support non-uniform vector amounts. 1486 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1487 InnerOp.hasOneUse()) { 1488 if (const APInt *SA2 = 1489 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1490 unsigned InnerShAmt = SA2->getZExtValue(); 1491 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1492 DemandedBits.getActiveBits() <= 1493 (InnerBits - InnerShAmt + ShAmt) && 1494 DemandedBits.countTrailingZeros() >= ShAmt) { 1495 SDValue NewSA = 1496 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1497 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1498 InnerOp.getOperand(0)); 1499 return TLO.CombineTo( 1500 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1501 } 1502 } 1503 } 1504 } 1505 1506 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1507 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1508 Depth + 1)) 1509 return true; 1510 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1511 Known.Zero <<= ShAmt; 1512 Known.One <<= ShAmt; 1513 // low bits known zero. 1514 Known.Zero.setLowBits(ShAmt); 1515 1516 // Try shrinking the operation as long as the shift amount will still be 1517 // in range. 1518 if ((ShAmt < DemandedBits.getActiveBits()) && 1519 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1520 return true; 1521 } 1522 1523 // If we are only demanding sign bits then we can use the shift source 1524 // directly. 1525 if (const APInt *MaxSA = 1526 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1527 unsigned ShAmt = MaxSA->getZExtValue(); 1528 unsigned NumSignBits = 1529 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1530 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1531 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1532 return TLO.CombineTo(Op, Op0); 1533 } 1534 break; 1535 } 1536 case ISD::SRL: { 1537 SDValue Op0 = Op.getOperand(0); 1538 SDValue Op1 = Op.getOperand(1); 1539 EVT ShiftVT = Op1.getValueType(); 1540 1541 if (const APInt *SA = 1542 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1543 unsigned ShAmt = SA->getZExtValue(); 1544 if (ShAmt == 0) 1545 return TLO.CombineTo(Op, Op0); 1546 1547 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1548 // single shift. We can do this if the top bits (which are shifted out) 1549 // are never demanded. 1550 // TODO - support non-uniform vector amounts. 1551 if (Op0.getOpcode() == ISD::SHL) { 1552 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1553 if (const APInt *SA2 = 1554 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1555 unsigned C1 = SA2->getZExtValue(); 1556 unsigned Opc = ISD::SRL; 1557 int Diff = ShAmt - C1; 1558 if (Diff < 0) { 1559 Diff = -Diff; 1560 Opc = ISD::SHL; 1561 } 1562 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1563 return TLO.CombineTo( 1564 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1565 } 1566 } 1567 } 1568 1569 APInt InDemandedMask = (DemandedBits << ShAmt); 1570 1571 // If the shift is exact, then it does demand the low bits (and knows that 1572 // they are zero). 1573 if (Op->getFlags().hasExact()) 1574 InDemandedMask.setLowBits(ShAmt); 1575 1576 // Compute the new bits that are at the top now. 1577 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1578 Depth + 1)) 1579 return true; 1580 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1581 Known.Zero.lshrInPlace(ShAmt); 1582 Known.One.lshrInPlace(ShAmt); 1583 // High bits known zero. 1584 Known.Zero.setHighBits(ShAmt); 1585 } 1586 break; 1587 } 1588 case ISD::SRA: { 1589 SDValue Op0 = Op.getOperand(0); 1590 SDValue Op1 = Op.getOperand(1); 1591 EVT ShiftVT = Op1.getValueType(); 1592 1593 // If we only want bits that already match the signbit then we don't need 1594 // to shift. 1595 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1596 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1597 NumHiDemandedBits) 1598 return TLO.CombineTo(Op, Op0); 1599 1600 // If this is an arithmetic shift right and only the low-bit is set, we can 1601 // always convert this into a logical shr, even if the shift amount is 1602 // variable. The low bit of the shift cannot be an input sign bit unless 1603 // the shift amount is >= the size of the datatype, which is undefined. 1604 if (DemandedBits.isOneValue()) 1605 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1606 1607 if (const APInt *SA = 1608 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1609 unsigned ShAmt = SA->getZExtValue(); 1610 if (ShAmt == 0) 1611 return TLO.CombineTo(Op, Op0); 1612 1613 APInt InDemandedMask = (DemandedBits << ShAmt); 1614 1615 // If the shift is exact, then it does demand the low bits (and knows that 1616 // they are zero). 1617 if (Op->getFlags().hasExact()) 1618 InDemandedMask.setLowBits(ShAmt); 1619 1620 // If any of the demanded bits are produced by the sign extension, we also 1621 // demand the input sign bit. 1622 if (DemandedBits.countLeadingZeros() < ShAmt) 1623 InDemandedMask.setSignBit(); 1624 1625 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1626 Depth + 1)) 1627 return true; 1628 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1629 Known.Zero.lshrInPlace(ShAmt); 1630 Known.One.lshrInPlace(ShAmt); 1631 1632 // If the input sign bit is known to be zero, or if none of the top bits 1633 // are demanded, turn this into an unsigned shift right. 1634 if (Known.Zero[BitWidth - ShAmt - 1] || 1635 DemandedBits.countLeadingZeros() >= ShAmt) { 1636 SDNodeFlags Flags; 1637 Flags.setExact(Op->getFlags().hasExact()); 1638 return TLO.CombineTo( 1639 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1640 } 1641 1642 int Log2 = DemandedBits.exactLogBase2(); 1643 if (Log2 >= 0) { 1644 // The bit must come from the sign. 1645 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1646 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1647 } 1648 1649 if (Known.One[BitWidth - ShAmt - 1]) 1650 // New bits are known one. 1651 Known.One.setHighBits(ShAmt); 1652 1653 // Attempt to avoid multi-use ops if we don't need anything from them. 1654 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1655 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1656 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1657 if (DemandedOp0) { 1658 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1659 return TLO.CombineTo(Op, NewOp); 1660 } 1661 } 1662 } 1663 break; 1664 } 1665 case ISD::FSHL: 1666 case ISD::FSHR: { 1667 SDValue Op0 = Op.getOperand(0); 1668 SDValue Op1 = Op.getOperand(1); 1669 SDValue Op2 = Op.getOperand(2); 1670 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1671 1672 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1673 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1674 1675 // For fshl, 0-shift returns the 1st arg. 1676 // For fshr, 0-shift returns the 2nd arg. 1677 if (Amt == 0) { 1678 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1679 Known, TLO, Depth + 1)) 1680 return true; 1681 break; 1682 } 1683 1684 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1685 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1686 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1687 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1688 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1689 Depth + 1)) 1690 return true; 1691 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1692 Depth + 1)) 1693 return true; 1694 1695 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1696 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1697 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1698 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1699 Known.One |= Known2.One; 1700 Known.Zero |= Known2.Zero; 1701 } 1702 1703 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1704 if (isPowerOf2_32(BitWidth)) { 1705 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1706 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1707 Known2, TLO, Depth + 1)) 1708 return true; 1709 } 1710 break; 1711 } 1712 case ISD::ROTL: 1713 case ISD::ROTR: { 1714 SDValue Op0 = Op.getOperand(0); 1715 SDValue Op1 = Op.getOperand(1); 1716 1717 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1718 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1719 return TLO.CombineTo(Op, Op0); 1720 1721 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1722 if (isPowerOf2_32(BitWidth)) { 1723 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1724 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1725 Depth + 1)) 1726 return true; 1727 } 1728 break; 1729 } 1730 case ISD::UMIN: { 1731 // Check if one arg is always less than (or equal) to the other arg. 1732 SDValue Op0 = Op.getOperand(0); 1733 SDValue Op1 = Op.getOperand(1); 1734 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1735 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1736 Known = KnownBits::umin(Known0, Known1); 1737 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 1738 return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1); 1739 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 1740 return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1); 1741 break; 1742 } 1743 case ISD::UMAX: { 1744 // Check if one arg is always greater than (or equal) to the other arg. 1745 SDValue Op0 = Op.getOperand(0); 1746 SDValue Op1 = Op.getOperand(1); 1747 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1748 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1749 Known = KnownBits::umax(Known0, Known1); 1750 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 1751 return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1); 1752 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 1753 return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1); 1754 break; 1755 } 1756 case ISD::BITREVERSE: { 1757 SDValue Src = Op.getOperand(0); 1758 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1759 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1760 Depth + 1)) 1761 return true; 1762 Known.One = Known2.One.reverseBits(); 1763 Known.Zero = Known2.Zero.reverseBits(); 1764 break; 1765 } 1766 case ISD::BSWAP: { 1767 SDValue Src = Op.getOperand(0); 1768 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1769 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1770 Depth + 1)) 1771 return true; 1772 Known.One = Known2.One.byteSwap(); 1773 Known.Zero = Known2.Zero.byteSwap(); 1774 break; 1775 } 1776 case ISD::CTPOP: { 1777 // If only 1 bit is demanded, replace with PARITY as long as we're before 1778 // op legalization. 1779 // FIXME: Limit to scalars for now. 1780 if (DemandedBits.isOneValue() && !TLO.LegalOps && !VT.isVector()) 1781 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 1782 Op.getOperand(0))); 1783 1784 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1785 break; 1786 } 1787 case ISD::SIGN_EXTEND_INREG: { 1788 SDValue Op0 = Op.getOperand(0); 1789 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1790 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1791 1792 // If we only care about the highest bit, don't bother shifting right. 1793 if (DemandedBits.isSignMask()) { 1794 unsigned NumSignBits = 1795 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1796 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1797 // However if the input is already sign extended we expect the sign 1798 // extension to be dropped altogether later and do not simplify. 1799 if (!AlreadySignExtended) { 1800 // Compute the correct shift amount type, which must be getShiftAmountTy 1801 // for scalar types after legalization. 1802 EVT ShiftAmtTy = VT; 1803 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1804 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1805 1806 SDValue ShiftAmt = 1807 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1808 return TLO.CombineTo(Op, 1809 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1810 } 1811 } 1812 1813 // If none of the extended bits are demanded, eliminate the sextinreg. 1814 if (DemandedBits.getActiveBits() <= ExVTBits) 1815 return TLO.CombineTo(Op, Op0); 1816 1817 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1818 1819 // Since the sign extended bits are demanded, we know that the sign 1820 // bit is demanded. 1821 InputDemandedBits.setBit(ExVTBits - 1); 1822 1823 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1824 return true; 1825 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1826 1827 // If the sign bit of the input is known set or clear, then we know the 1828 // top bits of the result. 1829 1830 // If the input sign bit is known zero, convert this into a zero extension. 1831 if (Known.Zero[ExVTBits - 1]) 1832 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 1833 1834 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1835 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1836 Known.One.setBitsFrom(ExVTBits); 1837 Known.Zero &= Mask; 1838 } else { // Input sign bit unknown 1839 Known.Zero &= Mask; 1840 Known.One &= Mask; 1841 } 1842 break; 1843 } 1844 case ISD::BUILD_PAIR: { 1845 EVT HalfVT = Op.getOperand(0).getValueType(); 1846 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1847 1848 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1849 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1850 1851 KnownBits KnownLo, KnownHi; 1852 1853 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1854 return true; 1855 1856 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1857 return true; 1858 1859 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1860 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1861 1862 Known.One = KnownLo.One.zext(BitWidth) | 1863 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1864 break; 1865 } 1866 case ISD::ZERO_EXTEND: 1867 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1868 SDValue Src = Op.getOperand(0); 1869 EVT SrcVT = Src.getValueType(); 1870 unsigned InBits = SrcVT.getScalarSizeInBits(); 1871 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1872 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1873 1874 // If none of the top bits are demanded, convert this into an any_extend. 1875 if (DemandedBits.getActiveBits() <= InBits) { 1876 // If we only need the non-extended bits of the bottom element 1877 // then we can just bitcast to the result. 1878 if (IsVecInReg && DemandedElts == 1 && 1879 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1880 TLO.DAG.getDataLayout().isLittleEndian()) 1881 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1882 1883 unsigned Opc = 1884 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1885 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1886 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1887 } 1888 1889 APInt InDemandedBits = DemandedBits.trunc(InBits); 1890 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1891 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1892 Depth + 1)) 1893 return true; 1894 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1895 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1896 Known = Known.zext(BitWidth); 1897 1898 // Attempt to avoid multi-use ops if we don't need anything from them. 1899 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1900 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1901 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1902 break; 1903 } 1904 case ISD::SIGN_EXTEND: 1905 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1906 SDValue Src = Op.getOperand(0); 1907 EVT SrcVT = Src.getValueType(); 1908 unsigned InBits = SrcVT.getScalarSizeInBits(); 1909 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1910 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1911 1912 // If none of the top bits are demanded, convert this into an any_extend. 1913 if (DemandedBits.getActiveBits() <= InBits) { 1914 // If we only need the non-extended bits of the bottom element 1915 // then we can just bitcast to the result. 1916 if (IsVecInReg && DemandedElts == 1 && 1917 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1918 TLO.DAG.getDataLayout().isLittleEndian()) 1919 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1920 1921 unsigned Opc = 1922 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1923 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1924 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1925 } 1926 1927 APInt InDemandedBits = DemandedBits.trunc(InBits); 1928 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1929 1930 // Since some of the sign extended bits are demanded, we know that the sign 1931 // bit is demanded. 1932 InDemandedBits.setBit(InBits - 1); 1933 1934 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1935 Depth + 1)) 1936 return true; 1937 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1938 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1939 1940 // If the sign bit is known one, the top bits match. 1941 Known = Known.sext(BitWidth); 1942 1943 // If the sign bit is known zero, convert this to a zero extend. 1944 if (Known.isNonNegative()) { 1945 unsigned Opc = 1946 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1947 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1948 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1949 } 1950 1951 // Attempt to avoid multi-use ops if we don't need anything from them. 1952 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1953 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1954 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1955 break; 1956 } 1957 case ISD::ANY_EXTEND: 1958 case ISD::ANY_EXTEND_VECTOR_INREG: { 1959 SDValue Src = Op.getOperand(0); 1960 EVT SrcVT = Src.getValueType(); 1961 unsigned InBits = SrcVT.getScalarSizeInBits(); 1962 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1963 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1964 1965 // If we only need the bottom element then we can just bitcast. 1966 // TODO: Handle ANY_EXTEND? 1967 if (IsVecInReg && DemandedElts == 1 && 1968 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1969 TLO.DAG.getDataLayout().isLittleEndian()) 1970 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1971 1972 APInt InDemandedBits = DemandedBits.trunc(InBits); 1973 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1974 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1975 Depth + 1)) 1976 return true; 1977 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1978 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1979 Known = Known.anyext(BitWidth); 1980 1981 // Attempt to avoid multi-use ops if we don't need anything from them. 1982 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1983 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1984 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1985 break; 1986 } 1987 case ISD::TRUNCATE: { 1988 SDValue Src = Op.getOperand(0); 1989 1990 // Simplify the input, using demanded bit information, and compute the known 1991 // zero/one bits live out. 1992 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1993 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1994 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 1995 Depth + 1)) 1996 return true; 1997 Known = Known.trunc(BitWidth); 1998 1999 // Attempt to avoid multi-use ops if we don't need anything from them. 2000 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2001 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2002 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2003 2004 // If the input is only used by this truncate, see if we can shrink it based 2005 // on the known demanded bits. 2006 if (Src.getNode()->hasOneUse()) { 2007 switch (Src.getOpcode()) { 2008 default: 2009 break; 2010 case ISD::SRL: 2011 // Shrink SRL by a constant if none of the high bits shifted in are 2012 // demanded. 2013 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2014 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2015 // undesirable. 2016 break; 2017 2018 const APInt *ShAmtC = 2019 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2020 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2021 break; 2022 uint64_t ShVal = ShAmtC->getZExtValue(); 2023 2024 APInt HighBits = 2025 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2026 HighBits.lshrInPlace(ShVal); 2027 HighBits = HighBits.trunc(BitWidth); 2028 2029 if (!(HighBits & DemandedBits)) { 2030 // None of the shifted in bits are needed. Add a truncate of the 2031 // shift input, then shift it. 2032 SDValue NewShAmt = TLO.DAG.getConstant( 2033 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2034 SDValue NewTrunc = 2035 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2036 return TLO.CombineTo( 2037 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2038 } 2039 break; 2040 } 2041 } 2042 2043 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2044 break; 2045 } 2046 case ISD::AssertZext: { 2047 // AssertZext demands all of the high bits, plus any of the low bits 2048 // demanded by its users. 2049 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2050 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2051 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2052 TLO, Depth + 1)) 2053 return true; 2054 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2055 2056 Known.Zero |= ~InMask; 2057 break; 2058 } 2059 case ISD::EXTRACT_VECTOR_ELT: { 2060 SDValue Src = Op.getOperand(0); 2061 SDValue Idx = Op.getOperand(1); 2062 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2063 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2064 2065 if (SrcEltCnt.isScalable()) 2066 return false; 2067 2068 // Demand the bits from every vector element without a constant index. 2069 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2070 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 2071 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2072 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2073 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2074 2075 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2076 // anything about the extended bits. 2077 APInt DemandedSrcBits = DemandedBits; 2078 if (BitWidth > EltBitWidth) 2079 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2080 2081 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2082 Depth + 1)) 2083 return true; 2084 2085 // Attempt to avoid multi-use ops if we don't need anything from them. 2086 if (!DemandedSrcBits.isAllOnesValue() || 2087 !DemandedSrcElts.isAllOnesValue()) { 2088 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2089 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2090 SDValue NewOp = 2091 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2092 return TLO.CombineTo(Op, NewOp); 2093 } 2094 } 2095 2096 Known = Known2; 2097 if (BitWidth > EltBitWidth) 2098 Known = Known.anyext(BitWidth); 2099 break; 2100 } 2101 case ISD::BITCAST: { 2102 SDValue Src = Op.getOperand(0); 2103 EVT SrcVT = Src.getValueType(); 2104 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2105 2106 // If this is an FP->Int bitcast and if the sign bit is the only 2107 // thing demanded, turn this into a FGETSIGN. 2108 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2109 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2110 SrcVT.isFloatingPoint()) { 2111 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2112 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2113 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2114 SrcVT != MVT::f128) { 2115 // Cannot eliminate/lower SHL for f128 yet. 2116 EVT Ty = OpVTLegal ? VT : MVT::i32; 2117 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2118 // place. We expect the SHL to be eliminated by other optimizations. 2119 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2120 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2121 if (!OpVTLegal && OpVTSizeInBits > 32) 2122 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2123 unsigned ShVal = Op.getValueSizeInBits() - 1; 2124 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2125 return TLO.CombineTo(Op, 2126 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2127 } 2128 } 2129 2130 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2131 // Demand the elt/bit if any of the original elts/bits are demanded. 2132 // TODO - bigendian once we have test coverage. 2133 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 2134 TLO.DAG.getDataLayout().isLittleEndian()) { 2135 unsigned Scale = BitWidth / NumSrcEltBits; 2136 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2137 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2138 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2139 for (unsigned i = 0; i != Scale; ++i) { 2140 unsigned Offset = i * NumSrcEltBits; 2141 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 2142 if (!Sub.isNullValue()) { 2143 DemandedSrcBits |= Sub; 2144 for (unsigned j = 0; j != NumElts; ++j) 2145 if (DemandedElts[j]) 2146 DemandedSrcElts.setBit((j * Scale) + i); 2147 } 2148 } 2149 2150 APInt KnownSrcUndef, KnownSrcZero; 2151 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2152 KnownSrcZero, TLO, Depth + 1)) 2153 return true; 2154 2155 KnownBits KnownSrcBits; 2156 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2157 KnownSrcBits, TLO, Depth + 1)) 2158 return true; 2159 } else if ((NumSrcEltBits % BitWidth) == 0 && 2160 TLO.DAG.getDataLayout().isLittleEndian()) { 2161 unsigned Scale = NumSrcEltBits / BitWidth; 2162 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2163 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2164 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2165 for (unsigned i = 0; i != NumElts; ++i) 2166 if (DemandedElts[i]) { 2167 unsigned Offset = (i % Scale) * BitWidth; 2168 DemandedSrcBits.insertBits(DemandedBits, Offset); 2169 DemandedSrcElts.setBit(i / Scale); 2170 } 2171 2172 if (SrcVT.isVector()) { 2173 APInt KnownSrcUndef, KnownSrcZero; 2174 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2175 KnownSrcZero, TLO, Depth + 1)) 2176 return true; 2177 } 2178 2179 KnownBits KnownSrcBits; 2180 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2181 KnownSrcBits, TLO, Depth + 1)) 2182 return true; 2183 } 2184 2185 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2186 // recursive call where Known may be useful to the caller. 2187 if (Depth > 0) { 2188 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2189 return false; 2190 } 2191 break; 2192 } 2193 case ISD::ADD: 2194 case ISD::MUL: 2195 case ISD::SUB: { 2196 // Add, Sub, and Mul don't demand any bits in positions beyond that 2197 // of the highest bit demanded of them. 2198 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2199 SDNodeFlags Flags = Op.getNode()->getFlags(); 2200 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2201 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2202 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2203 Depth + 1) || 2204 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2205 Depth + 1) || 2206 // See if the operation should be performed at a smaller bit width. 2207 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2208 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2209 // Disable the nsw and nuw flags. We can no longer guarantee that we 2210 // won't wrap after simplification. 2211 Flags.setNoSignedWrap(false); 2212 Flags.setNoUnsignedWrap(false); 2213 SDValue NewOp = 2214 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2215 return TLO.CombineTo(Op, NewOp); 2216 } 2217 return true; 2218 } 2219 2220 // Attempt to avoid multi-use ops if we don't need anything from them. 2221 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 2222 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2223 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2224 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2225 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2226 if (DemandedOp0 || DemandedOp1) { 2227 Flags.setNoSignedWrap(false); 2228 Flags.setNoUnsignedWrap(false); 2229 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2230 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2231 SDValue NewOp = 2232 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2233 return TLO.CombineTo(Op, NewOp); 2234 } 2235 } 2236 2237 // If we have a constant operand, we may be able to turn it into -1 if we 2238 // do not demand the high bits. This can make the constant smaller to 2239 // encode, allow more general folding, or match specialized instruction 2240 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2241 // is probably not useful (and could be detrimental). 2242 ConstantSDNode *C = isConstOrConstSplat(Op1); 2243 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2244 if (C && !C->isAllOnesValue() && !C->isOne() && 2245 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 2246 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2247 // Disable the nsw and nuw flags. We can no longer guarantee that we 2248 // won't wrap after simplification. 2249 Flags.setNoSignedWrap(false); 2250 Flags.setNoUnsignedWrap(false); 2251 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2252 return TLO.CombineTo(Op, NewOp); 2253 } 2254 2255 LLVM_FALLTHROUGH; 2256 } 2257 default: 2258 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2259 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2260 Known, TLO, Depth)) 2261 return true; 2262 break; 2263 } 2264 2265 // Just use computeKnownBits to compute output bits. 2266 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2267 break; 2268 } 2269 2270 // If we know the value of all of the demanded bits, return this as a 2271 // constant. 2272 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2273 // Avoid folding to a constant if any OpaqueConstant is involved. 2274 const SDNode *N = Op.getNode(); 2275 for (SDNode *Op : 2276 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2277 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2278 if (C->isOpaque()) 2279 return false; 2280 } 2281 if (VT.isInteger()) 2282 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2283 if (VT.isFloatingPoint()) 2284 return TLO.CombineTo( 2285 Op, 2286 TLO.DAG.getConstantFP( 2287 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2288 } 2289 2290 return false; 2291 } 2292 2293 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2294 const APInt &DemandedElts, 2295 APInt &KnownUndef, 2296 APInt &KnownZero, 2297 DAGCombinerInfo &DCI) const { 2298 SelectionDAG &DAG = DCI.DAG; 2299 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2300 !DCI.isBeforeLegalizeOps()); 2301 2302 bool Simplified = 2303 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2304 if (Simplified) { 2305 DCI.AddToWorklist(Op.getNode()); 2306 DCI.CommitTargetLoweringOpt(TLO); 2307 } 2308 2309 return Simplified; 2310 } 2311 2312 /// Given a vector binary operation and known undefined elements for each input 2313 /// operand, compute whether each element of the output is undefined. 2314 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2315 const APInt &UndefOp0, 2316 const APInt &UndefOp1) { 2317 EVT VT = BO.getValueType(); 2318 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2319 "Vector binop only"); 2320 2321 EVT EltVT = VT.getVectorElementType(); 2322 unsigned NumElts = VT.getVectorNumElements(); 2323 assert(UndefOp0.getBitWidth() == NumElts && 2324 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2325 2326 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2327 const APInt &UndefVals) { 2328 if (UndefVals[Index]) 2329 return DAG.getUNDEF(EltVT); 2330 2331 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2332 // Try hard to make sure that the getNode() call is not creating temporary 2333 // nodes. Ignore opaque integers because they do not constant fold. 2334 SDValue Elt = BV->getOperand(Index); 2335 auto *C = dyn_cast<ConstantSDNode>(Elt); 2336 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2337 return Elt; 2338 } 2339 2340 return SDValue(); 2341 }; 2342 2343 APInt KnownUndef = APInt::getNullValue(NumElts); 2344 for (unsigned i = 0; i != NumElts; ++i) { 2345 // If both inputs for this element are either constant or undef and match 2346 // the element type, compute the constant/undef result for this element of 2347 // the vector. 2348 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2349 // not handle FP constants. The code within getNode() should be refactored 2350 // to avoid the danger of creating a bogus temporary node here. 2351 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2352 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2353 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2354 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2355 KnownUndef.setBit(i); 2356 } 2357 return KnownUndef; 2358 } 2359 2360 bool TargetLowering::SimplifyDemandedVectorElts( 2361 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2362 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2363 bool AssumeSingleUse) const { 2364 EVT VT = Op.getValueType(); 2365 unsigned Opcode = Op.getOpcode(); 2366 APInt DemandedElts = OriginalDemandedElts; 2367 unsigned NumElts = DemandedElts.getBitWidth(); 2368 assert(VT.isVector() && "Expected vector op"); 2369 2370 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2371 2372 // TODO: For now we assume we know nothing about scalable vectors. 2373 if (VT.isScalableVector()) 2374 return false; 2375 2376 assert(VT.getVectorNumElements() == NumElts && 2377 "Mask size mismatches value type element count!"); 2378 2379 // Undef operand. 2380 if (Op.isUndef()) { 2381 KnownUndef.setAllBits(); 2382 return false; 2383 } 2384 2385 // If Op has other users, assume that all elements are needed. 2386 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2387 DemandedElts.setAllBits(); 2388 2389 // Not demanding any elements from Op. 2390 if (DemandedElts == 0) { 2391 KnownUndef.setAllBits(); 2392 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2393 } 2394 2395 // Limit search depth. 2396 if (Depth >= SelectionDAG::MaxRecursionDepth) 2397 return false; 2398 2399 SDLoc DL(Op); 2400 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2401 2402 // Helper for demanding the specified elements and all the bits of both binary 2403 // operands. 2404 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2405 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2406 TLO.DAG, Depth + 1); 2407 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2408 TLO.DAG, Depth + 1); 2409 if (NewOp0 || NewOp1) { 2410 SDValue NewOp = TLO.DAG.getNode( 2411 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2412 return TLO.CombineTo(Op, NewOp); 2413 } 2414 return false; 2415 }; 2416 2417 switch (Opcode) { 2418 case ISD::SCALAR_TO_VECTOR: { 2419 if (!DemandedElts[0]) { 2420 KnownUndef.setAllBits(); 2421 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2422 } 2423 KnownUndef.setHighBits(NumElts - 1); 2424 break; 2425 } 2426 case ISD::BITCAST: { 2427 SDValue Src = Op.getOperand(0); 2428 EVT SrcVT = Src.getValueType(); 2429 2430 // We only handle vectors here. 2431 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2432 if (!SrcVT.isVector()) 2433 break; 2434 2435 // Fast handling of 'identity' bitcasts. 2436 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2437 if (NumSrcElts == NumElts) 2438 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2439 KnownZero, TLO, Depth + 1); 2440 2441 APInt SrcZero, SrcUndef; 2442 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2443 2444 // Bitcast from 'large element' src vector to 'small element' vector, we 2445 // must demand a source element if any DemandedElt maps to it. 2446 if ((NumElts % NumSrcElts) == 0) { 2447 unsigned Scale = NumElts / NumSrcElts; 2448 for (unsigned i = 0; i != NumElts; ++i) 2449 if (DemandedElts[i]) 2450 SrcDemandedElts.setBit(i / Scale); 2451 2452 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2453 TLO, Depth + 1)) 2454 return true; 2455 2456 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2457 // of the large element. 2458 // TODO - bigendian once we have test coverage. 2459 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2460 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2461 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2462 for (unsigned i = 0; i != NumElts; ++i) 2463 if (DemandedElts[i]) { 2464 unsigned Ofs = (i % Scale) * EltSizeInBits; 2465 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2466 } 2467 2468 KnownBits Known; 2469 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2470 TLO, Depth + 1)) 2471 return true; 2472 } 2473 2474 // If the src element is zero/undef then all the output elements will be - 2475 // only demanded elements are guaranteed to be correct. 2476 for (unsigned i = 0; i != NumSrcElts; ++i) { 2477 if (SrcDemandedElts[i]) { 2478 if (SrcZero[i]) 2479 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2480 if (SrcUndef[i]) 2481 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2482 } 2483 } 2484 } 2485 2486 // Bitcast from 'small element' src vector to 'large element' vector, we 2487 // demand all smaller source elements covered by the larger demanded element 2488 // of this vector. 2489 if ((NumSrcElts % NumElts) == 0) { 2490 unsigned Scale = NumSrcElts / NumElts; 2491 for (unsigned i = 0; i != NumElts; ++i) 2492 if (DemandedElts[i]) 2493 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2494 2495 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2496 TLO, Depth + 1)) 2497 return true; 2498 2499 // If all the src elements covering an output element are zero/undef, then 2500 // the output element will be as well, assuming it was demanded. 2501 for (unsigned i = 0; i != NumElts; ++i) { 2502 if (DemandedElts[i]) { 2503 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2504 KnownZero.setBit(i); 2505 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2506 KnownUndef.setBit(i); 2507 } 2508 } 2509 } 2510 break; 2511 } 2512 case ISD::BUILD_VECTOR: { 2513 // Check all elements and simplify any unused elements with UNDEF. 2514 if (!DemandedElts.isAllOnesValue()) { 2515 // Don't simplify BROADCASTS. 2516 if (llvm::any_of(Op->op_values(), 2517 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2518 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2519 bool Updated = false; 2520 for (unsigned i = 0; i != NumElts; ++i) { 2521 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2522 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2523 KnownUndef.setBit(i); 2524 Updated = true; 2525 } 2526 } 2527 if (Updated) 2528 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2529 } 2530 } 2531 for (unsigned i = 0; i != NumElts; ++i) { 2532 SDValue SrcOp = Op.getOperand(i); 2533 if (SrcOp.isUndef()) { 2534 KnownUndef.setBit(i); 2535 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2536 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2537 KnownZero.setBit(i); 2538 } 2539 } 2540 break; 2541 } 2542 case ISD::CONCAT_VECTORS: { 2543 EVT SubVT = Op.getOperand(0).getValueType(); 2544 unsigned NumSubVecs = Op.getNumOperands(); 2545 unsigned NumSubElts = SubVT.getVectorNumElements(); 2546 for (unsigned i = 0; i != NumSubVecs; ++i) { 2547 SDValue SubOp = Op.getOperand(i); 2548 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2549 APInt SubUndef, SubZero; 2550 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2551 Depth + 1)) 2552 return true; 2553 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2554 KnownZero.insertBits(SubZero, i * NumSubElts); 2555 } 2556 break; 2557 } 2558 case ISD::INSERT_SUBVECTOR: { 2559 // Demand any elements from the subvector and the remainder from the src its 2560 // inserted into. 2561 SDValue Src = Op.getOperand(0); 2562 SDValue Sub = Op.getOperand(1); 2563 uint64_t Idx = Op.getConstantOperandVal(2); 2564 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2565 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2566 APInt DemandedSrcElts = DemandedElts; 2567 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2568 2569 APInt SubUndef, SubZero; 2570 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2571 Depth + 1)) 2572 return true; 2573 2574 // If none of the src operand elements are demanded, replace it with undef. 2575 if (!DemandedSrcElts && !Src.isUndef()) 2576 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2577 TLO.DAG.getUNDEF(VT), Sub, 2578 Op.getOperand(2))); 2579 2580 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2581 TLO, Depth + 1)) 2582 return true; 2583 KnownUndef.insertBits(SubUndef, Idx); 2584 KnownZero.insertBits(SubZero, Idx); 2585 2586 // Attempt to avoid multi-use ops if we don't need anything from them. 2587 if (!DemandedSrcElts.isAllOnesValue() || 2588 !DemandedSubElts.isAllOnesValue()) { 2589 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2590 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2591 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2592 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2593 if (NewSrc || NewSub) { 2594 NewSrc = NewSrc ? NewSrc : Src; 2595 NewSub = NewSub ? NewSub : Sub; 2596 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2597 NewSub, Op.getOperand(2)); 2598 return TLO.CombineTo(Op, NewOp); 2599 } 2600 } 2601 break; 2602 } 2603 case ISD::EXTRACT_SUBVECTOR: { 2604 // Offset the demanded elts by the subvector index. 2605 SDValue Src = Op.getOperand(0); 2606 if (Src.getValueType().isScalableVector()) 2607 break; 2608 uint64_t Idx = Op.getConstantOperandVal(1); 2609 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2610 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2611 2612 APInt SrcUndef, SrcZero; 2613 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2614 Depth + 1)) 2615 return true; 2616 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2617 KnownZero = SrcZero.extractBits(NumElts, Idx); 2618 2619 // Attempt to avoid multi-use ops if we don't need anything from them. 2620 if (!DemandedElts.isAllOnesValue()) { 2621 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2622 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2623 if (NewSrc) { 2624 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2625 Op.getOperand(1)); 2626 return TLO.CombineTo(Op, NewOp); 2627 } 2628 } 2629 break; 2630 } 2631 case ISD::INSERT_VECTOR_ELT: { 2632 SDValue Vec = Op.getOperand(0); 2633 SDValue Scl = Op.getOperand(1); 2634 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2635 2636 // For a legal, constant insertion index, if we don't need this insertion 2637 // then strip it, else remove it from the demanded elts. 2638 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2639 unsigned Idx = CIdx->getZExtValue(); 2640 if (!DemandedElts[Idx]) 2641 return TLO.CombineTo(Op, Vec); 2642 2643 APInt DemandedVecElts(DemandedElts); 2644 DemandedVecElts.clearBit(Idx); 2645 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2646 KnownZero, TLO, Depth + 1)) 2647 return true; 2648 2649 KnownUndef.setBitVal(Idx, Scl.isUndef()); 2650 2651 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 2652 break; 2653 } 2654 2655 APInt VecUndef, VecZero; 2656 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2657 Depth + 1)) 2658 return true; 2659 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2660 break; 2661 } 2662 case ISD::VSELECT: { 2663 // Try to transform the select condition based on the current demanded 2664 // elements. 2665 // TODO: If a condition element is undef, we can choose from one arm of the 2666 // select (and if one arm is undef, then we can propagate that to the 2667 // result). 2668 // TODO - add support for constant vselect masks (see IR version of this). 2669 APInt UnusedUndef, UnusedZero; 2670 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2671 UnusedZero, TLO, Depth + 1)) 2672 return true; 2673 2674 // See if we can simplify either vselect operand. 2675 APInt DemandedLHS(DemandedElts); 2676 APInt DemandedRHS(DemandedElts); 2677 APInt UndefLHS, ZeroLHS; 2678 APInt UndefRHS, ZeroRHS; 2679 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2680 ZeroLHS, TLO, Depth + 1)) 2681 return true; 2682 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2683 ZeroRHS, TLO, Depth + 1)) 2684 return true; 2685 2686 KnownUndef = UndefLHS & UndefRHS; 2687 KnownZero = ZeroLHS & ZeroRHS; 2688 break; 2689 } 2690 case ISD::VECTOR_SHUFFLE: { 2691 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2692 2693 // Collect demanded elements from shuffle operands.. 2694 APInt DemandedLHS(NumElts, 0); 2695 APInt DemandedRHS(NumElts, 0); 2696 for (unsigned i = 0; i != NumElts; ++i) { 2697 int M = ShuffleMask[i]; 2698 if (M < 0 || !DemandedElts[i]) 2699 continue; 2700 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2701 if (M < (int)NumElts) 2702 DemandedLHS.setBit(M); 2703 else 2704 DemandedRHS.setBit(M - NumElts); 2705 } 2706 2707 // See if we can simplify either shuffle operand. 2708 APInt UndefLHS, ZeroLHS; 2709 APInt UndefRHS, ZeroRHS; 2710 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2711 ZeroLHS, TLO, Depth + 1)) 2712 return true; 2713 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2714 ZeroRHS, TLO, Depth + 1)) 2715 return true; 2716 2717 // Simplify mask using undef elements from LHS/RHS. 2718 bool Updated = false; 2719 bool IdentityLHS = true, IdentityRHS = true; 2720 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2721 for (unsigned i = 0; i != NumElts; ++i) { 2722 int &M = NewMask[i]; 2723 if (M < 0) 2724 continue; 2725 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2726 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2727 Updated = true; 2728 M = -1; 2729 } 2730 IdentityLHS &= (M < 0) || (M == (int)i); 2731 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2732 } 2733 2734 // Update legal shuffle masks based on demanded elements if it won't reduce 2735 // to Identity which can cause premature removal of the shuffle mask. 2736 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2737 SDValue LegalShuffle = 2738 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2739 NewMask, TLO.DAG); 2740 if (LegalShuffle) 2741 return TLO.CombineTo(Op, LegalShuffle); 2742 } 2743 2744 // Propagate undef/zero elements from LHS/RHS. 2745 for (unsigned i = 0; i != NumElts; ++i) { 2746 int M = ShuffleMask[i]; 2747 if (M < 0) { 2748 KnownUndef.setBit(i); 2749 } else if (M < (int)NumElts) { 2750 if (UndefLHS[M]) 2751 KnownUndef.setBit(i); 2752 if (ZeroLHS[M]) 2753 KnownZero.setBit(i); 2754 } else { 2755 if (UndefRHS[M - NumElts]) 2756 KnownUndef.setBit(i); 2757 if (ZeroRHS[M - NumElts]) 2758 KnownZero.setBit(i); 2759 } 2760 } 2761 break; 2762 } 2763 case ISD::ANY_EXTEND_VECTOR_INREG: 2764 case ISD::SIGN_EXTEND_VECTOR_INREG: 2765 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2766 APInt SrcUndef, SrcZero; 2767 SDValue Src = Op.getOperand(0); 2768 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2769 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2770 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2771 Depth + 1)) 2772 return true; 2773 KnownZero = SrcZero.zextOrTrunc(NumElts); 2774 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2775 2776 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2777 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2778 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2779 // aext - if we just need the bottom element then we can bitcast. 2780 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2781 } 2782 2783 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2784 // zext(undef) upper bits are guaranteed to be zero. 2785 if (DemandedElts.isSubsetOf(KnownUndef)) 2786 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2787 KnownUndef.clearAllBits(); 2788 } 2789 break; 2790 } 2791 2792 // TODO: There are more binop opcodes that could be handled here - MIN, 2793 // MAX, saturated math, etc. 2794 case ISD::OR: 2795 case ISD::XOR: 2796 case ISD::ADD: 2797 case ISD::SUB: 2798 case ISD::FADD: 2799 case ISD::FSUB: 2800 case ISD::FMUL: 2801 case ISD::FDIV: 2802 case ISD::FREM: { 2803 SDValue Op0 = Op.getOperand(0); 2804 SDValue Op1 = Op.getOperand(1); 2805 2806 APInt UndefRHS, ZeroRHS; 2807 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2808 Depth + 1)) 2809 return true; 2810 APInt UndefLHS, ZeroLHS; 2811 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2812 Depth + 1)) 2813 return true; 2814 2815 KnownZero = ZeroLHS & ZeroRHS; 2816 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2817 2818 // Attempt to avoid multi-use ops if we don't need anything from them. 2819 // TODO - use KnownUndef to relax the demandedelts? 2820 if (!DemandedElts.isAllOnesValue()) 2821 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2822 return true; 2823 break; 2824 } 2825 case ISD::SHL: 2826 case ISD::SRL: 2827 case ISD::SRA: 2828 case ISD::ROTL: 2829 case ISD::ROTR: { 2830 SDValue Op0 = Op.getOperand(0); 2831 SDValue Op1 = Op.getOperand(1); 2832 2833 APInt UndefRHS, ZeroRHS; 2834 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2835 Depth + 1)) 2836 return true; 2837 APInt UndefLHS, ZeroLHS; 2838 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2839 Depth + 1)) 2840 return true; 2841 2842 KnownZero = ZeroLHS; 2843 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2844 2845 // Attempt to avoid multi-use ops if we don't need anything from them. 2846 // TODO - use KnownUndef to relax the demandedelts? 2847 if (!DemandedElts.isAllOnesValue()) 2848 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2849 return true; 2850 break; 2851 } 2852 case ISD::MUL: 2853 case ISD::AND: { 2854 SDValue Op0 = Op.getOperand(0); 2855 SDValue Op1 = Op.getOperand(1); 2856 2857 APInt SrcUndef, SrcZero; 2858 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 2859 Depth + 1)) 2860 return true; 2861 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 2862 TLO, Depth + 1)) 2863 return true; 2864 2865 // If either side has a zero element, then the result element is zero, even 2866 // if the other is an UNDEF. 2867 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2868 // and then handle 'and' nodes with the rest of the binop opcodes. 2869 KnownZero |= SrcZero; 2870 KnownUndef &= SrcUndef; 2871 KnownUndef &= ~KnownZero; 2872 2873 // Attempt to avoid multi-use ops if we don't need anything from them. 2874 // TODO - use KnownUndef to relax the demandedelts? 2875 if (!DemandedElts.isAllOnesValue()) 2876 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2877 return true; 2878 break; 2879 } 2880 case ISD::TRUNCATE: 2881 case ISD::SIGN_EXTEND: 2882 case ISD::ZERO_EXTEND: 2883 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2884 KnownZero, TLO, Depth + 1)) 2885 return true; 2886 2887 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2888 // zext(undef) upper bits are guaranteed to be zero. 2889 if (DemandedElts.isSubsetOf(KnownUndef)) 2890 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2891 KnownUndef.clearAllBits(); 2892 } 2893 break; 2894 default: { 2895 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2896 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2897 KnownZero, TLO, Depth)) 2898 return true; 2899 } else { 2900 KnownBits Known; 2901 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2902 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2903 TLO, Depth, AssumeSingleUse)) 2904 return true; 2905 } 2906 break; 2907 } 2908 } 2909 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2910 2911 // Constant fold all undef cases. 2912 // TODO: Handle zero cases as well. 2913 if (DemandedElts.isSubsetOf(KnownUndef)) 2914 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2915 2916 return false; 2917 } 2918 2919 /// Determine which of the bits specified in Mask are known to be either zero or 2920 /// one and return them in the Known. 2921 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2922 KnownBits &Known, 2923 const APInt &DemandedElts, 2924 const SelectionDAG &DAG, 2925 unsigned Depth) const { 2926 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2927 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2928 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2929 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2930 "Should use MaskedValueIsZero if you don't know whether Op" 2931 " is a target node!"); 2932 Known.resetAll(); 2933 } 2934 2935 void TargetLowering::computeKnownBitsForTargetInstr( 2936 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2937 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2938 unsigned Depth) const { 2939 Known.resetAll(); 2940 } 2941 2942 void TargetLowering::computeKnownBitsForFrameIndex( 2943 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 2944 // The low bits are known zero if the pointer is aligned. 2945 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 2946 } 2947 2948 Align TargetLowering::computeKnownAlignForTargetInstr( 2949 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 2950 unsigned Depth) const { 2951 return Align(1); 2952 } 2953 2954 /// This method can be implemented by targets that want to expose additional 2955 /// information about sign bits to the DAG Combiner. 2956 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2957 const APInt &, 2958 const SelectionDAG &, 2959 unsigned Depth) const { 2960 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2961 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2962 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2963 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2964 "Should use ComputeNumSignBits if you don't know whether Op" 2965 " is a target node!"); 2966 return 1; 2967 } 2968 2969 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 2970 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 2971 const MachineRegisterInfo &MRI, unsigned Depth) const { 2972 return 1; 2973 } 2974 2975 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2976 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2977 TargetLoweringOpt &TLO, unsigned Depth) const { 2978 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2979 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2980 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2981 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2982 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2983 " is a target node!"); 2984 return false; 2985 } 2986 2987 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2988 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2989 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2990 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2991 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2992 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2993 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2994 "Should use SimplifyDemandedBits if you don't know whether Op" 2995 " is a target node!"); 2996 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2997 return false; 2998 } 2999 3000 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3001 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3002 SelectionDAG &DAG, unsigned Depth) const { 3003 assert( 3004 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3005 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3006 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3007 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3008 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3009 " is a target node!"); 3010 return SDValue(); 3011 } 3012 3013 SDValue 3014 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3015 SDValue N1, MutableArrayRef<int> Mask, 3016 SelectionDAG &DAG) const { 3017 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3018 if (!LegalMask) { 3019 std::swap(N0, N1); 3020 ShuffleVectorSDNode::commuteMask(Mask); 3021 LegalMask = isShuffleMaskLegal(Mask, VT); 3022 } 3023 3024 if (!LegalMask) 3025 return SDValue(); 3026 3027 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3028 } 3029 3030 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3031 return nullptr; 3032 } 3033 3034 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3035 const SelectionDAG &DAG, 3036 bool SNaN, 3037 unsigned Depth) const { 3038 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3039 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3040 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3041 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3042 "Should use isKnownNeverNaN if you don't know whether Op" 3043 " is a target node!"); 3044 return false; 3045 } 3046 3047 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3048 // work with truncating build vectors and vectors with elements of less than 3049 // 8 bits. 3050 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 3051 if (!N) 3052 return false; 3053 3054 APInt CVal; 3055 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 3056 CVal = CN->getAPIntValue(); 3057 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 3058 auto *CN = BV->getConstantSplatNode(); 3059 if (!CN) 3060 return false; 3061 3062 // If this is a truncating build vector, truncate the splat value. 3063 // Otherwise, we may fail to match the expected values below. 3064 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 3065 CVal = CN->getAPIntValue(); 3066 if (BVEltWidth < CVal.getBitWidth()) 3067 CVal = CVal.trunc(BVEltWidth); 3068 } else { 3069 return false; 3070 } 3071 3072 switch (getBooleanContents(N->getValueType(0))) { 3073 case UndefinedBooleanContent: 3074 return CVal[0]; 3075 case ZeroOrOneBooleanContent: 3076 return CVal.isOneValue(); 3077 case ZeroOrNegativeOneBooleanContent: 3078 return CVal.isAllOnesValue(); 3079 } 3080 3081 llvm_unreachable("Invalid boolean contents"); 3082 } 3083 3084 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 3085 if (!N) 3086 return false; 3087 3088 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3089 if (!CN) { 3090 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3091 if (!BV) 3092 return false; 3093 3094 // Only interested in constant splats, we don't care about undef 3095 // elements in identifying boolean constants and getConstantSplatNode 3096 // returns NULL if all ops are undef; 3097 CN = BV->getConstantSplatNode(); 3098 if (!CN) 3099 return false; 3100 } 3101 3102 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3103 return !CN->getAPIntValue()[0]; 3104 3105 return CN->isNullValue(); 3106 } 3107 3108 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3109 bool SExt) const { 3110 if (VT == MVT::i1) 3111 return N->isOne(); 3112 3113 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3114 switch (Cnt) { 3115 case TargetLowering::ZeroOrOneBooleanContent: 3116 // An extended value of 1 is always true, unless its original type is i1, 3117 // in which case it will be sign extended to -1. 3118 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3119 case TargetLowering::UndefinedBooleanContent: 3120 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3121 return N->isAllOnesValue() && SExt; 3122 } 3123 llvm_unreachable("Unexpected enumeration."); 3124 } 3125 3126 /// This helper function of SimplifySetCC tries to optimize the comparison when 3127 /// either operand of the SetCC node is a bitwise-and instruction. 3128 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3129 ISD::CondCode Cond, const SDLoc &DL, 3130 DAGCombinerInfo &DCI) const { 3131 // Match these patterns in any of their permutations: 3132 // (X & Y) == Y 3133 // (X & Y) != Y 3134 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3135 std::swap(N0, N1); 3136 3137 EVT OpVT = N0.getValueType(); 3138 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3139 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3140 return SDValue(); 3141 3142 SDValue X, Y; 3143 if (N0.getOperand(0) == N1) { 3144 X = N0.getOperand(1); 3145 Y = N0.getOperand(0); 3146 } else if (N0.getOperand(1) == N1) { 3147 X = N0.getOperand(0); 3148 Y = N0.getOperand(1); 3149 } else { 3150 return SDValue(); 3151 } 3152 3153 SelectionDAG &DAG = DCI.DAG; 3154 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3155 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3156 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3157 // Note that where Y is variable and is known to have at most one bit set 3158 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3159 // equivalent when Y == 0. 3160 assert(OpVT.isInteger()); 3161 Cond = ISD::getSetCCInverse(Cond, OpVT); 3162 if (DCI.isBeforeLegalizeOps() || 3163 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3164 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3165 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3166 // If the target supports an 'and-not' or 'and-complement' logic operation, 3167 // try to use that to make a comparison operation more efficient. 3168 // But don't do this transform if the mask is a single bit because there are 3169 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3170 // 'rlwinm' on PPC). 3171 3172 // Bail out if the compare operand that we want to turn into a zero is 3173 // already a zero (otherwise, infinite loop). 3174 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3175 if (YConst && YConst->isNullValue()) 3176 return SDValue(); 3177 3178 // Transform this into: ~X & Y == 0. 3179 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3180 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3181 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3182 } 3183 3184 return SDValue(); 3185 } 3186 3187 /// There are multiple IR patterns that could be checking whether certain 3188 /// truncation of a signed number would be lossy or not. The pattern which is 3189 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3190 /// We are looking for the following pattern: (KeptBits is a constant) 3191 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3192 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3193 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3194 /// We will unfold it into the natural trunc+sext pattern: 3195 /// ((%x << C) a>> C) dstcond %x 3196 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3197 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3198 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3199 const SDLoc &DL) const { 3200 // We must be comparing with a constant. 3201 ConstantSDNode *C1; 3202 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3203 return SDValue(); 3204 3205 // N0 should be: add %x, (1 << (KeptBits-1)) 3206 if (N0->getOpcode() != ISD::ADD) 3207 return SDValue(); 3208 3209 // And we must be 'add'ing a constant. 3210 ConstantSDNode *C01; 3211 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3212 return SDValue(); 3213 3214 SDValue X = N0->getOperand(0); 3215 EVT XVT = X.getValueType(); 3216 3217 // Validate constants ... 3218 3219 APInt I1 = C1->getAPIntValue(); 3220 3221 ISD::CondCode NewCond; 3222 if (Cond == ISD::CondCode::SETULT) { 3223 NewCond = ISD::CondCode::SETEQ; 3224 } else if (Cond == ISD::CondCode::SETULE) { 3225 NewCond = ISD::CondCode::SETEQ; 3226 // But need to 'canonicalize' the constant. 3227 I1 += 1; 3228 } else if (Cond == ISD::CondCode::SETUGT) { 3229 NewCond = ISD::CondCode::SETNE; 3230 // But need to 'canonicalize' the constant. 3231 I1 += 1; 3232 } else if (Cond == ISD::CondCode::SETUGE) { 3233 NewCond = ISD::CondCode::SETNE; 3234 } else 3235 return SDValue(); 3236 3237 APInt I01 = C01->getAPIntValue(); 3238 3239 auto checkConstants = [&I1, &I01]() -> bool { 3240 // Both of them must be power-of-two, and the constant from setcc is bigger. 3241 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3242 }; 3243 3244 if (checkConstants()) { 3245 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3246 } else { 3247 // What if we invert constants? (and the target predicate) 3248 I1.negate(); 3249 I01.negate(); 3250 assert(XVT.isInteger()); 3251 NewCond = getSetCCInverse(NewCond, XVT); 3252 if (!checkConstants()) 3253 return SDValue(); 3254 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3255 } 3256 3257 // They are power-of-two, so which bit is set? 3258 const unsigned KeptBits = I1.logBase2(); 3259 const unsigned KeptBitsMinusOne = I01.logBase2(); 3260 3261 // Magic! 3262 if (KeptBits != (KeptBitsMinusOne + 1)) 3263 return SDValue(); 3264 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3265 3266 // We don't want to do this in every single case. 3267 SelectionDAG &DAG = DCI.DAG; 3268 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3269 XVT, KeptBits)) 3270 return SDValue(); 3271 3272 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3273 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3274 3275 // Unfold into: ((%x << C) a>> C) cond %x 3276 // Where 'cond' will be either 'eq' or 'ne'. 3277 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3278 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3279 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3280 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3281 3282 return T2; 3283 } 3284 3285 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3286 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3287 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3288 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3289 assert(isConstOrConstSplat(N1C) && 3290 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 3291 "Should be a comparison with 0."); 3292 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3293 "Valid only for [in]equality comparisons."); 3294 3295 unsigned NewShiftOpcode; 3296 SDValue X, C, Y; 3297 3298 SelectionDAG &DAG = DCI.DAG; 3299 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3300 3301 // Look for '(C l>>/<< Y)'. 3302 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3303 // The shift should be one-use. 3304 if (!V.hasOneUse()) 3305 return false; 3306 unsigned OldShiftOpcode = V.getOpcode(); 3307 switch (OldShiftOpcode) { 3308 case ISD::SHL: 3309 NewShiftOpcode = ISD::SRL; 3310 break; 3311 case ISD::SRL: 3312 NewShiftOpcode = ISD::SHL; 3313 break; 3314 default: 3315 return false; // must be a logical shift. 3316 } 3317 // We should be shifting a constant. 3318 // FIXME: best to use isConstantOrConstantVector(). 3319 C = V.getOperand(0); 3320 ConstantSDNode *CC = 3321 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3322 if (!CC) 3323 return false; 3324 Y = V.getOperand(1); 3325 3326 ConstantSDNode *XC = 3327 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3328 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3329 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3330 }; 3331 3332 // LHS of comparison should be an one-use 'and'. 3333 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3334 return SDValue(); 3335 3336 X = N0.getOperand(0); 3337 SDValue Mask = N0.getOperand(1); 3338 3339 // 'and' is commutative! 3340 if (!Match(Mask)) { 3341 std::swap(X, Mask); 3342 if (!Match(Mask)) 3343 return SDValue(); 3344 } 3345 3346 EVT VT = X.getValueType(); 3347 3348 // Produce: 3349 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3350 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3351 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3352 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3353 return T2; 3354 } 3355 3356 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3357 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3358 /// handle the commuted versions of these patterns. 3359 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3360 ISD::CondCode Cond, const SDLoc &DL, 3361 DAGCombinerInfo &DCI) const { 3362 unsigned BOpcode = N0.getOpcode(); 3363 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3364 "Unexpected binop"); 3365 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3366 3367 // (X + Y) == X --> Y == 0 3368 // (X - Y) == X --> Y == 0 3369 // (X ^ Y) == X --> Y == 0 3370 SelectionDAG &DAG = DCI.DAG; 3371 EVT OpVT = N0.getValueType(); 3372 SDValue X = N0.getOperand(0); 3373 SDValue Y = N0.getOperand(1); 3374 if (X == N1) 3375 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3376 3377 if (Y != N1) 3378 return SDValue(); 3379 3380 // (X + Y) == Y --> X == 0 3381 // (X ^ Y) == Y --> X == 0 3382 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3383 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3384 3385 // The shift would not be valid if the operands are boolean (i1). 3386 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3387 return SDValue(); 3388 3389 // (X - Y) == Y --> X == Y << 1 3390 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3391 !DCI.isBeforeLegalize()); 3392 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3393 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3394 if (!DCI.isCalledByLegalizer()) 3395 DCI.AddToWorklist(YShl1.getNode()); 3396 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3397 } 3398 3399 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 3400 SDValue N0, const APInt &C1, 3401 ISD::CondCode Cond, const SDLoc &dl, 3402 SelectionDAG &DAG) { 3403 // Look through truncs that don't change the value of a ctpop. 3404 // FIXME: Add vector support? Need to be careful with setcc result type below. 3405 SDValue CTPOP = N0; 3406 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 3407 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 3408 CTPOP = N0.getOperand(0); 3409 3410 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 3411 return SDValue(); 3412 3413 EVT CTVT = CTPOP.getValueType(); 3414 SDValue CTOp = CTPOP.getOperand(0); 3415 3416 // If this is a vector CTPOP, keep the CTPOP if it is legal. 3417 // TODO: Should we check if CTPOP is legal(or custom) for scalars? 3418 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 3419 return SDValue(); 3420 3421 // (ctpop x) u< 2 -> (x & x-1) == 0 3422 // (ctpop x) u> 1 -> (x & x-1) != 0 3423 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 3424 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 3425 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 3426 return SDValue(); 3427 if (C1 == 0 && (Cond == ISD::SETULT)) 3428 return SDValue(); // This is handled elsewhere. 3429 3430 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 3431 3432 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3433 SDValue Result = CTOp; 3434 for (unsigned i = 0; i < Passes; i++) { 3435 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 3436 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 3437 } 3438 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3439 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 3440 } 3441 3442 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3443 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 3444 // For scalars, keep CTPOP if it is legal or custom. 3445 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT)) 3446 return SDValue(); 3447 // This is based on X86's custom lowering for CTPOP which produces more 3448 // instructions than the expansion here. 3449 3450 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3451 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3452 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3453 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3454 assert(CTVT.isInteger()); 3455 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3456 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3457 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3458 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3459 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3460 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3461 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3462 } 3463 3464 return SDValue(); 3465 } 3466 3467 /// Try to simplify a setcc built with the specified operands and cc. If it is 3468 /// unable to simplify it, return a null SDValue. 3469 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3470 ISD::CondCode Cond, bool foldBooleans, 3471 DAGCombinerInfo &DCI, 3472 const SDLoc &dl) const { 3473 SelectionDAG &DAG = DCI.DAG; 3474 const DataLayout &Layout = DAG.getDataLayout(); 3475 EVT OpVT = N0.getValueType(); 3476 3477 // Constant fold or commute setcc. 3478 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3479 return Fold; 3480 3481 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3482 // TODO: Handle non-splat vector constants. All undef causes trouble. 3483 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 3484 // infinite loop here when we encounter one. 3485 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3486 if (isConstOrConstSplat(N0) && 3487 (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) && 3488 (DCI.isBeforeLegalizeOps() || 3489 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3490 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3491 3492 // If we have a subtract with the same 2 non-constant operands as this setcc 3493 // -- but in reverse order -- then try to commute the operands of this setcc 3494 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3495 // instruction on some targets. 3496 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3497 (DCI.isBeforeLegalizeOps() || 3498 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3499 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 3500 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 3501 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3502 3503 if (auto *N1C = isConstOrConstSplat(N1)) { 3504 const APInt &C1 = N1C->getAPIntValue(); 3505 3506 // Optimize some CTPOP cases. 3507 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 3508 return V; 3509 3510 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3511 // equality comparison, then we're just comparing whether X itself is 3512 // zero. 3513 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3514 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3515 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 3516 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 3517 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3518 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 3519 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3520 // (srl (ctlz x), 5) == 0 -> X != 0 3521 // (srl (ctlz x), 5) != 1 -> X != 0 3522 Cond = ISD::SETNE; 3523 } else { 3524 // (srl (ctlz x), 5) != 0 -> X == 0 3525 // (srl (ctlz x), 5) == 1 -> X == 0 3526 Cond = ISD::SETEQ; 3527 } 3528 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3529 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 3530 Cond); 3531 } 3532 } 3533 } 3534 } 3535 3536 // FIXME: Support vectors. 3537 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3538 const APInt &C1 = N1C->getAPIntValue(); 3539 3540 // (zext x) == C --> x == (trunc C) 3541 // (sext x) == C --> x == (trunc C) 3542 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3543 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3544 unsigned MinBits = N0.getValueSizeInBits(); 3545 SDValue PreExt; 3546 bool Signed = false; 3547 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3548 // ZExt 3549 MinBits = N0->getOperand(0).getValueSizeInBits(); 3550 PreExt = N0->getOperand(0); 3551 } else if (N0->getOpcode() == ISD::AND) { 3552 // DAGCombine turns costly ZExts into ANDs 3553 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3554 if ((C->getAPIntValue()+1).isPowerOf2()) { 3555 MinBits = C->getAPIntValue().countTrailingOnes(); 3556 PreExt = N0->getOperand(0); 3557 } 3558 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3559 // SExt 3560 MinBits = N0->getOperand(0).getValueSizeInBits(); 3561 PreExt = N0->getOperand(0); 3562 Signed = true; 3563 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3564 // ZEXTLOAD / SEXTLOAD 3565 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3566 MinBits = LN0->getMemoryVT().getSizeInBits(); 3567 PreExt = N0; 3568 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3569 Signed = true; 3570 MinBits = LN0->getMemoryVT().getSizeInBits(); 3571 PreExt = N0; 3572 } 3573 } 3574 3575 // Figure out how many bits we need to preserve this constant. 3576 unsigned ReqdBits = Signed ? 3577 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3578 C1.getActiveBits(); 3579 3580 // Make sure we're not losing bits from the constant. 3581 if (MinBits > 0 && 3582 MinBits < C1.getBitWidth() && 3583 MinBits >= ReqdBits) { 3584 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3585 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3586 // Will get folded away. 3587 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3588 if (MinBits == 1 && C1 == 1) 3589 // Invert the condition. 3590 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3591 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3592 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3593 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3594 } 3595 3596 // If truncating the setcc operands is not desirable, we can still 3597 // simplify the expression in some cases: 3598 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3599 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3600 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3601 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3602 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3603 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3604 SDValue TopSetCC = N0->getOperand(0); 3605 unsigned N0Opc = N0->getOpcode(); 3606 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3607 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3608 TopSetCC.getOpcode() == ISD::SETCC && 3609 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3610 (isConstFalseVal(N1C) || 3611 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3612 3613 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3614 (!N1C->isNullValue() && Cond == ISD::SETNE); 3615 3616 if (!Inverse) 3617 return TopSetCC; 3618 3619 ISD::CondCode InvCond = ISD::getSetCCInverse( 3620 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3621 TopSetCC.getOperand(0).getValueType()); 3622 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3623 TopSetCC.getOperand(1), 3624 InvCond); 3625 } 3626 } 3627 } 3628 3629 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3630 // equality or unsigned, and all 1 bits of the const are in the same 3631 // partial word, see if we can shorten the load. 3632 if (DCI.isBeforeLegalize() && 3633 !ISD::isSignedIntSetCC(Cond) && 3634 N0.getOpcode() == ISD::AND && C1 == 0 && 3635 N0.getNode()->hasOneUse() && 3636 isa<LoadSDNode>(N0.getOperand(0)) && 3637 N0.getOperand(0).getNode()->hasOneUse() && 3638 isa<ConstantSDNode>(N0.getOperand(1))) { 3639 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3640 APInt bestMask; 3641 unsigned bestWidth = 0, bestOffset = 0; 3642 if (Lod->isSimple() && Lod->isUnindexed()) { 3643 unsigned origWidth = N0.getValueSizeInBits(); 3644 unsigned maskWidth = origWidth; 3645 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3646 // 8 bits, but have to be careful... 3647 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3648 origWidth = Lod->getMemoryVT().getSizeInBits(); 3649 const APInt &Mask = N0.getConstantOperandAPInt(1); 3650 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3651 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3652 for (unsigned offset=0; offset<origWidth/width; offset++) { 3653 if (Mask.isSubsetOf(newMask)) { 3654 if (Layout.isLittleEndian()) 3655 bestOffset = (uint64_t)offset * (width/8); 3656 else 3657 bestOffset = (origWidth/width - offset - 1) * (width/8); 3658 bestMask = Mask.lshr(offset * (width/8) * 8); 3659 bestWidth = width; 3660 break; 3661 } 3662 newMask <<= width; 3663 } 3664 } 3665 } 3666 if (bestWidth) { 3667 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3668 if (newVT.isRound() && 3669 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3670 SDValue Ptr = Lod->getBasePtr(); 3671 if (bestOffset != 0) 3672 Ptr = 3673 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 3674 SDValue NewLoad = 3675 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 3676 Lod->getPointerInfo().getWithOffset(bestOffset), 3677 Lod->getOriginalAlign()); 3678 return DAG.getSetCC(dl, VT, 3679 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3680 DAG.getConstant(bestMask.trunc(bestWidth), 3681 dl, newVT)), 3682 DAG.getConstant(0LL, dl, newVT), Cond); 3683 } 3684 } 3685 } 3686 3687 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3688 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3689 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3690 3691 // If the comparison constant has bits in the upper part, the 3692 // zero-extended value could never match. 3693 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3694 C1.getBitWidth() - InSize))) { 3695 switch (Cond) { 3696 case ISD::SETUGT: 3697 case ISD::SETUGE: 3698 case ISD::SETEQ: 3699 return DAG.getConstant(0, dl, VT); 3700 case ISD::SETULT: 3701 case ISD::SETULE: 3702 case ISD::SETNE: 3703 return DAG.getConstant(1, dl, VT); 3704 case ISD::SETGT: 3705 case ISD::SETGE: 3706 // True if the sign bit of C1 is set. 3707 return DAG.getConstant(C1.isNegative(), dl, VT); 3708 case ISD::SETLT: 3709 case ISD::SETLE: 3710 // True if the sign bit of C1 isn't set. 3711 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3712 default: 3713 break; 3714 } 3715 } 3716 3717 // Otherwise, we can perform the comparison with the low bits. 3718 switch (Cond) { 3719 case ISD::SETEQ: 3720 case ISD::SETNE: 3721 case ISD::SETUGT: 3722 case ISD::SETUGE: 3723 case ISD::SETULT: 3724 case ISD::SETULE: { 3725 EVT newVT = N0.getOperand(0).getValueType(); 3726 if (DCI.isBeforeLegalizeOps() || 3727 (isOperationLegal(ISD::SETCC, newVT) && 3728 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3729 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3730 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3731 3732 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3733 NewConst, Cond); 3734 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3735 } 3736 break; 3737 } 3738 default: 3739 break; // todo, be more careful with signed comparisons 3740 } 3741 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3742 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3743 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 3744 OpVT)) { 3745 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3746 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3747 EVT ExtDstTy = N0.getValueType(); 3748 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3749 3750 // If the constant doesn't fit into the number of bits for the source of 3751 // the sign extension, it is impossible for both sides to be equal. 3752 if (C1.getMinSignedBits() > ExtSrcTyBits) 3753 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 3754 3755 assert(ExtDstTy == N0.getOperand(0).getValueType() && 3756 ExtDstTy != ExtSrcTy && "Unexpected types!"); 3757 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3758 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 3759 DAG.getConstant(Imm, dl, ExtDstTy)); 3760 if (!DCI.isCalledByLegalizer()) 3761 DCI.AddToWorklist(ZextOp.getNode()); 3762 // Otherwise, make this a use of a zext. 3763 return DAG.getSetCC(dl, VT, ZextOp, 3764 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 3765 } else if ((N1C->isNullValue() || N1C->isOne()) && 3766 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3767 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3768 if (N0.getOpcode() == ISD::SETCC && 3769 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3770 (N0.getValueType() == MVT::i1 || 3771 getBooleanContents(N0.getOperand(0).getValueType()) == 3772 ZeroOrOneBooleanContent)) { 3773 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3774 if (TrueWhenTrue) 3775 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3776 // Invert the condition. 3777 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3778 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3779 if (DCI.isBeforeLegalizeOps() || 3780 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3781 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3782 } 3783 3784 if ((N0.getOpcode() == ISD::XOR || 3785 (N0.getOpcode() == ISD::AND && 3786 N0.getOperand(0).getOpcode() == ISD::XOR && 3787 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3788 isOneConstant(N0.getOperand(1))) { 3789 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3790 // can only do this if the top bits are known zero. 3791 unsigned BitWidth = N0.getValueSizeInBits(); 3792 if (DAG.MaskedValueIsZero(N0, 3793 APInt::getHighBitsSet(BitWidth, 3794 BitWidth-1))) { 3795 // Okay, get the un-inverted input value. 3796 SDValue Val; 3797 if (N0.getOpcode() == ISD::XOR) { 3798 Val = N0.getOperand(0); 3799 } else { 3800 assert(N0.getOpcode() == ISD::AND && 3801 N0.getOperand(0).getOpcode() == ISD::XOR); 3802 // ((X^1)&1)^1 -> X & 1 3803 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3804 N0.getOperand(0).getOperand(0), 3805 N0.getOperand(1)); 3806 } 3807 3808 return DAG.getSetCC(dl, VT, Val, N1, 3809 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3810 } 3811 } else if (N1C->isOne()) { 3812 SDValue Op0 = N0; 3813 if (Op0.getOpcode() == ISD::TRUNCATE) 3814 Op0 = Op0.getOperand(0); 3815 3816 if ((Op0.getOpcode() == ISD::XOR) && 3817 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3818 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3819 SDValue XorLHS = Op0.getOperand(0); 3820 SDValue XorRHS = Op0.getOperand(1); 3821 // Ensure that the input setccs return an i1 type or 0/1 value. 3822 if (Op0.getValueType() == MVT::i1 || 3823 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3824 ZeroOrOneBooleanContent && 3825 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3826 ZeroOrOneBooleanContent)) { 3827 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3828 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3829 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3830 } 3831 } 3832 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 3833 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3834 if (Op0.getValueType().bitsGT(VT)) 3835 Op0 = DAG.getNode(ISD::AND, dl, VT, 3836 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3837 DAG.getConstant(1, dl, VT)); 3838 else if (Op0.getValueType().bitsLT(VT)) 3839 Op0 = DAG.getNode(ISD::AND, dl, VT, 3840 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3841 DAG.getConstant(1, dl, VT)); 3842 3843 return DAG.getSetCC(dl, VT, Op0, 3844 DAG.getConstant(0, dl, Op0.getValueType()), 3845 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3846 } 3847 if (Op0.getOpcode() == ISD::AssertZext && 3848 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3849 return DAG.getSetCC(dl, VT, Op0, 3850 DAG.getConstant(0, dl, Op0.getValueType()), 3851 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3852 } 3853 } 3854 3855 // Given: 3856 // icmp eq/ne (urem %x, %y), 0 3857 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3858 // icmp eq/ne %x, 0 3859 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3860 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3861 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3862 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3863 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3864 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3865 } 3866 3867 if (SDValue V = 3868 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3869 return V; 3870 } 3871 3872 // These simplifications apply to splat vectors as well. 3873 // TODO: Handle more splat vector cases. 3874 if (auto *N1C = isConstOrConstSplat(N1)) { 3875 const APInt &C1 = N1C->getAPIntValue(); 3876 3877 APInt MinVal, MaxVal; 3878 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3879 if (ISD::isSignedIntSetCC(Cond)) { 3880 MinVal = APInt::getSignedMinValue(OperandBitSize); 3881 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3882 } else { 3883 MinVal = APInt::getMinValue(OperandBitSize); 3884 MaxVal = APInt::getMaxValue(OperandBitSize); 3885 } 3886 3887 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3888 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3889 // X >= MIN --> true 3890 if (C1 == MinVal) 3891 return DAG.getBoolConstant(true, dl, VT, OpVT); 3892 3893 if (!VT.isVector()) { // TODO: Support this for vectors. 3894 // X >= C0 --> X > (C0 - 1) 3895 APInt C = C1 - 1; 3896 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3897 if ((DCI.isBeforeLegalizeOps() || 3898 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3899 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3900 isLegalICmpImmediate(C.getSExtValue())))) { 3901 return DAG.getSetCC(dl, VT, N0, 3902 DAG.getConstant(C, dl, N1.getValueType()), 3903 NewCC); 3904 } 3905 } 3906 } 3907 3908 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3909 // X <= MAX --> true 3910 if (C1 == MaxVal) 3911 return DAG.getBoolConstant(true, dl, VT, OpVT); 3912 3913 // X <= C0 --> X < (C0 + 1) 3914 if (!VT.isVector()) { // TODO: Support this for vectors. 3915 APInt C = C1 + 1; 3916 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3917 if ((DCI.isBeforeLegalizeOps() || 3918 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3919 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3920 isLegalICmpImmediate(C.getSExtValue())))) { 3921 return DAG.getSetCC(dl, VT, N0, 3922 DAG.getConstant(C, dl, N1.getValueType()), 3923 NewCC); 3924 } 3925 } 3926 } 3927 3928 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3929 if (C1 == MinVal) 3930 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3931 3932 // TODO: Support this for vectors after legalize ops. 3933 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3934 // Canonicalize setlt X, Max --> setne X, Max 3935 if (C1 == MaxVal) 3936 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3937 3938 // If we have setult X, 1, turn it into seteq X, 0 3939 if (C1 == MinVal+1) 3940 return DAG.getSetCC(dl, VT, N0, 3941 DAG.getConstant(MinVal, dl, N0.getValueType()), 3942 ISD::SETEQ); 3943 } 3944 } 3945 3946 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3947 if (C1 == MaxVal) 3948 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3949 3950 // TODO: Support this for vectors after legalize ops. 3951 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3952 // Canonicalize setgt X, Min --> setne X, Min 3953 if (C1 == MinVal) 3954 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3955 3956 // If we have setugt X, Max-1, turn it into seteq X, Max 3957 if (C1 == MaxVal-1) 3958 return DAG.getSetCC(dl, VT, N0, 3959 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3960 ISD::SETEQ); 3961 } 3962 } 3963 3964 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3965 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3966 if (C1.isNullValue()) 3967 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3968 VT, N0, N1, Cond, DCI, dl)) 3969 return CC; 3970 3971 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 3972 // For example, when high 32-bits of i64 X are known clear: 3973 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 3974 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 3975 bool CmpZero = N1C->getAPIntValue().isNullValue(); 3976 bool CmpNegOne = N1C->getAPIntValue().isAllOnesValue(); 3977 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 3978 // Match or(lo,shl(hi,bw/2)) pattern. 3979 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 3980 unsigned EltBits = V.getScalarValueSizeInBits(); 3981 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 3982 return false; 3983 SDValue LHS = V.getOperand(0); 3984 SDValue RHS = V.getOperand(1); 3985 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 3986 // Unshifted element must have zero upperbits. 3987 if (RHS.getOpcode() == ISD::SHL && 3988 isa<ConstantSDNode>(RHS.getOperand(1)) && 3989 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 3990 DAG.MaskedValueIsZero(LHS, HiBits)) { 3991 Lo = LHS; 3992 Hi = RHS.getOperand(0); 3993 return true; 3994 } 3995 if (LHS.getOpcode() == ISD::SHL && 3996 isa<ConstantSDNode>(LHS.getOperand(1)) && 3997 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 3998 DAG.MaskedValueIsZero(RHS, HiBits)) { 3999 Lo = RHS; 4000 Hi = LHS.getOperand(0); 4001 return true; 4002 } 4003 return false; 4004 }; 4005 4006 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4007 unsigned EltBits = N0.getScalarValueSizeInBits(); 4008 unsigned HalfBits = EltBits / 2; 4009 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4010 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4011 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4012 SDValue NewN0 = 4013 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4014 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4015 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4016 }; 4017 4018 SDValue Lo, Hi; 4019 if (IsConcat(N0, Lo, Hi)) 4020 return MergeConcat(Lo, Hi); 4021 4022 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4023 SDValue Lo0, Lo1, Hi0, Hi1; 4024 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4025 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4026 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4027 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4028 } 4029 } 4030 } 4031 } 4032 4033 // If we have "setcc X, C0", check to see if we can shrink the immediate 4034 // by changing cc. 4035 // TODO: Support this for vectors after legalize ops. 4036 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4037 // SETUGT X, SINTMAX -> SETLT X, 0 4038 // SETUGE X, SINTMIN -> SETLT X, 0 4039 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4040 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4041 return DAG.getSetCC(dl, VT, N0, 4042 DAG.getConstant(0, dl, N1.getValueType()), 4043 ISD::SETLT); 4044 4045 // SETULT X, SINTMIN -> SETGT X, -1 4046 // SETULE X, SINTMAX -> SETGT X, -1 4047 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4048 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4049 return DAG.getSetCC(dl, VT, N0, 4050 DAG.getAllOnesConstant(dl, N1.getValueType()), 4051 ISD::SETGT); 4052 } 4053 } 4054 4055 // Back to non-vector simplifications. 4056 // TODO: Can we do these for vector splats? 4057 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4058 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4059 const APInt &C1 = N1C->getAPIntValue(); 4060 EVT ShValTy = N0.getValueType(); 4061 4062 // Fold bit comparisons when we can. This will result in an 4063 // incorrect value when boolean false is negative one, unless 4064 // the bitsize is 1 in which case the false value is the same 4065 // in practice regardless of the representation. 4066 if ((VT.getSizeInBits() == 1 || 4067 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4068 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4069 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4070 N0.getOpcode() == ISD::AND) { 4071 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4072 EVT ShiftTy = 4073 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4074 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4075 // Perform the xform if the AND RHS is a single bit. 4076 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4077 if (AndRHS->getAPIntValue().isPowerOf2() && 4078 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4079 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4080 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4081 DAG.getConstant(ShCt, dl, ShiftTy))); 4082 } 4083 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4084 // (X & 8) == 8 --> (X & 8) >> 3 4085 // Perform the xform if C1 is a single bit. 4086 unsigned ShCt = C1.logBase2(); 4087 if (C1.isPowerOf2() && 4088 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4089 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4090 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4091 DAG.getConstant(ShCt, dl, ShiftTy))); 4092 } 4093 } 4094 } 4095 } 4096 4097 if (C1.getMinSignedBits() <= 64 && 4098 !isLegalICmpImmediate(C1.getSExtValue())) { 4099 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4100 // (X & -256) == 256 -> (X >> 8) == 1 4101 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4102 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4103 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4104 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4105 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 4106 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4107 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4108 SDValue Shift = 4109 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4110 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4111 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4112 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4113 } 4114 } 4115 } 4116 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4117 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4118 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4119 // X < 0x100000000 -> (X >> 32) < 1 4120 // X >= 0x100000000 -> (X >> 32) >= 1 4121 // X <= 0x0ffffffff -> (X >> 32) < 1 4122 // X > 0x0ffffffff -> (X >> 32) >= 1 4123 unsigned ShiftBits; 4124 APInt NewC = C1; 4125 ISD::CondCode NewCond = Cond; 4126 if (AdjOne) { 4127 ShiftBits = C1.countTrailingOnes(); 4128 NewC = NewC + 1; 4129 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4130 } else { 4131 ShiftBits = C1.countTrailingZeros(); 4132 } 4133 NewC.lshrInPlace(ShiftBits); 4134 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4135 isLegalICmpImmediate(NewC.getSExtValue()) && 4136 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4137 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4138 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4139 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4140 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4141 } 4142 } 4143 } 4144 } 4145 4146 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4147 auto *CFP = cast<ConstantFPSDNode>(N1); 4148 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4149 4150 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4151 // constant if knowing that the operand is non-nan is enough. We prefer to 4152 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4153 // materialize 0.0. 4154 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4155 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4156 4157 // setcc (fneg x), C -> setcc swap(pred) x, -C 4158 if (N0.getOpcode() == ISD::FNEG) { 4159 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4160 if (DCI.isBeforeLegalizeOps() || 4161 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4162 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4163 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4164 } 4165 } 4166 4167 // If the condition is not legal, see if we can find an equivalent one 4168 // which is legal. 4169 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4170 // If the comparison was an awkward floating-point == or != and one of 4171 // the comparison operands is infinity or negative infinity, convert the 4172 // condition to a less-awkward <= or >=. 4173 if (CFP->getValueAPF().isInfinity()) { 4174 bool IsNegInf = CFP->getValueAPF().isNegative(); 4175 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4176 switch (Cond) { 4177 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4178 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4179 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4180 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4181 default: break; 4182 } 4183 if (NewCond != ISD::SETCC_INVALID && 4184 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4185 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4186 } 4187 } 4188 } 4189 4190 if (N0 == N1) { 4191 // The sext(setcc()) => setcc() optimization relies on the appropriate 4192 // constant being emitted. 4193 assert(!N0.getValueType().isInteger() && 4194 "Integer types should be handled by FoldSetCC"); 4195 4196 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4197 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4198 if (UOF == 2) // FP operators that are undefined on NaNs. 4199 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4200 if (UOF == unsigned(EqTrue)) 4201 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4202 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4203 // if it is not already. 4204 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4205 if (NewCond != Cond && 4206 (DCI.isBeforeLegalizeOps() || 4207 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4208 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4209 } 4210 4211 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4212 N0.getValueType().isInteger()) { 4213 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4214 N0.getOpcode() == ISD::XOR) { 4215 // Simplify (X+Y) == (X+Z) --> Y == Z 4216 if (N0.getOpcode() == N1.getOpcode()) { 4217 if (N0.getOperand(0) == N1.getOperand(0)) 4218 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4219 if (N0.getOperand(1) == N1.getOperand(1)) 4220 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4221 if (isCommutativeBinOp(N0.getOpcode())) { 4222 // If X op Y == Y op X, try other combinations. 4223 if (N0.getOperand(0) == N1.getOperand(1)) 4224 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4225 Cond); 4226 if (N0.getOperand(1) == N1.getOperand(0)) 4227 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4228 Cond); 4229 } 4230 } 4231 4232 // If RHS is a legal immediate value for a compare instruction, we need 4233 // to be careful about increasing register pressure needlessly. 4234 bool LegalRHSImm = false; 4235 4236 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4237 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4238 // Turn (X+C1) == C2 --> X == C2-C1 4239 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 4240 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4241 DAG.getConstant(RHSC->getAPIntValue()- 4242 LHSR->getAPIntValue(), 4243 dl, N0.getValueType()), Cond); 4244 } 4245 4246 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 4247 if (N0.getOpcode() == ISD::XOR) 4248 // If we know that all of the inverted bits are zero, don't bother 4249 // performing the inversion. 4250 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 4251 return 4252 DAG.getSetCC(dl, VT, N0.getOperand(0), 4253 DAG.getConstant(LHSR->getAPIntValue() ^ 4254 RHSC->getAPIntValue(), 4255 dl, N0.getValueType()), 4256 Cond); 4257 } 4258 4259 // Turn (C1-X) == C2 --> X == C1-C2 4260 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 4261 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 4262 return 4263 DAG.getSetCC(dl, VT, N0.getOperand(1), 4264 DAG.getConstant(SUBC->getAPIntValue() - 4265 RHSC->getAPIntValue(), 4266 dl, N0.getValueType()), 4267 Cond); 4268 } 4269 } 4270 4271 // Could RHSC fold directly into a compare? 4272 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4273 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4274 } 4275 4276 // (X+Y) == X --> Y == 0 and similar folds. 4277 // Don't do this if X is an immediate that can fold into a cmp 4278 // instruction and X+Y has other uses. It could be an induction variable 4279 // chain, and the transform would increase register pressure. 4280 if (!LegalRHSImm || N0.hasOneUse()) 4281 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4282 return V; 4283 } 4284 4285 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4286 N1.getOpcode() == ISD::XOR) 4287 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4288 return V; 4289 4290 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4291 return V; 4292 } 4293 4294 // Fold remainder of division by a constant. 4295 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4296 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4297 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4298 4299 // When division is cheap or optimizing for minimum size, 4300 // fall through to DIVREM creation by skipping this fold. 4301 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 4302 if (N0.getOpcode() == ISD::UREM) { 4303 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4304 return Folded; 4305 } else if (N0.getOpcode() == ISD::SREM) { 4306 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4307 return Folded; 4308 } 4309 } 4310 } 4311 4312 // Fold away ALL boolean setcc's. 4313 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4314 SDValue Temp; 4315 switch (Cond) { 4316 default: llvm_unreachable("Unknown integer setcc!"); 4317 case ISD::SETEQ: // X == Y -> ~(X^Y) 4318 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4319 N0 = DAG.getNOT(dl, Temp, OpVT); 4320 if (!DCI.isCalledByLegalizer()) 4321 DCI.AddToWorklist(Temp.getNode()); 4322 break; 4323 case ISD::SETNE: // X != Y --> (X^Y) 4324 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4325 break; 4326 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4327 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4328 Temp = DAG.getNOT(dl, N0, OpVT); 4329 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4330 if (!DCI.isCalledByLegalizer()) 4331 DCI.AddToWorklist(Temp.getNode()); 4332 break; 4333 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4334 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4335 Temp = DAG.getNOT(dl, N1, OpVT); 4336 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4337 if (!DCI.isCalledByLegalizer()) 4338 DCI.AddToWorklist(Temp.getNode()); 4339 break; 4340 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4341 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4342 Temp = DAG.getNOT(dl, N0, OpVT); 4343 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4344 if (!DCI.isCalledByLegalizer()) 4345 DCI.AddToWorklist(Temp.getNode()); 4346 break; 4347 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4348 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4349 Temp = DAG.getNOT(dl, N1, OpVT); 4350 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4351 break; 4352 } 4353 if (VT.getScalarType() != MVT::i1) { 4354 if (!DCI.isCalledByLegalizer()) 4355 DCI.AddToWorklist(N0.getNode()); 4356 // FIXME: If running after legalize, we probably can't do this. 4357 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4358 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4359 } 4360 return N0; 4361 } 4362 4363 // Could not fold it. 4364 return SDValue(); 4365 } 4366 4367 /// Returns true (and the GlobalValue and the offset) if the node is a 4368 /// GlobalAddress + offset. 4369 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4370 int64_t &Offset) const { 4371 4372 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4373 4374 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4375 GA = GASD->getGlobal(); 4376 Offset += GASD->getOffset(); 4377 return true; 4378 } 4379 4380 if (N->getOpcode() == ISD::ADD) { 4381 SDValue N1 = N->getOperand(0); 4382 SDValue N2 = N->getOperand(1); 4383 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4384 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4385 Offset += V->getSExtValue(); 4386 return true; 4387 } 4388 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4389 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4390 Offset += V->getSExtValue(); 4391 return true; 4392 } 4393 } 4394 } 4395 4396 return false; 4397 } 4398 4399 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4400 DAGCombinerInfo &DCI) const { 4401 // Default implementation: no optimization. 4402 return SDValue(); 4403 } 4404 4405 //===----------------------------------------------------------------------===// 4406 // Inline Assembler Implementation Methods 4407 //===----------------------------------------------------------------------===// 4408 4409 TargetLowering::ConstraintType 4410 TargetLowering::getConstraintType(StringRef Constraint) const { 4411 unsigned S = Constraint.size(); 4412 4413 if (S == 1) { 4414 switch (Constraint[0]) { 4415 default: break; 4416 case 'r': 4417 return C_RegisterClass; 4418 case 'm': // memory 4419 case 'o': // offsetable 4420 case 'V': // not offsetable 4421 return C_Memory; 4422 case 'n': // Simple Integer 4423 case 'E': // Floating Point Constant 4424 case 'F': // Floating Point Constant 4425 return C_Immediate; 4426 case 'i': // Simple Integer or Relocatable Constant 4427 case 's': // Relocatable Constant 4428 case 'p': // Address. 4429 case 'X': // Allow ANY value. 4430 case 'I': // Target registers. 4431 case 'J': 4432 case 'K': 4433 case 'L': 4434 case 'M': 4435 case 'N': 4436 case 'O': 4437 case 'P': 4438 case '<': 4439 case '>': 4440 return C_Other; 4441 } 4442 } 4443 4444 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4445 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4446 return C_Memory; 4447 return C_Register; 4448 } 4449 return C_Unknown; 4450 } 4451 4452 /// Try to replace an X constraint, which matches anything, with another that 4453 /// has more specific requirements based on the type of the corresponding 4454 /// operand. 4455 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4456 if (ConstraintVT.isInteger()) 4457 return "r"; 4458 if (ConstraintVT.isFloatingPoint()) 4459 return "f"; // works for many targets 4460 return nullptr; 4461 } 4462 4463 SDValue TargetLowering::LowerAsmOutputForConstraint( 4464 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 4465 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 4466 return SDValue(); 4467 } 4468 4469 /// Lower the specified operand into the Ops vector. 4470 /// If it is invalid, don't add anything to Ops. 4471 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4472 std::string &Constraint, 4473 std::vector<SDValue> &Ops, 4474 SelectionDAG &DAG) const { 4475 4476 if (Constraint.length() > 1) return; 4477 4478 char ConstraintLetter = Constraint[0]; 4479 switch (ConstraintLetter) { 4480 default: break; 4481 case 'X': // Allows any operand; labels (basic block) use this. 4482 if (Op.getOpcode() == ISD::BasicBlock || 4483 Op.getOpcode() == ISD::TargetBlockAddress) { 4484 Ops.push_back(Op); 4485 return; 4486 } 4487 LLVM_FALLTHROUGH; 4488 case 'i': // Simple Integer or Relocatable Constant 4489 case 'n': // Simple Integer 4490 case 's': { // Relocatable Constant 4491 4492 GlobalAddressSDNode *GA; 4493 ConstantSDNode *C; 4494 BlockAddressSDNode *BA; 4495 uint64_t Offset = 0; 4496 4497 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4498 // etc., since getelementpointer is variadic. We can't use 4499 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4500 // while in this case the GA may be furthest from the root node which is 4501 // likely an ISD::ADD. 4502 while (1) { 4503 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4504 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4505 GA->getValueType(0), 4506 Offset + GA->getOffset())); 4507 return; 4508 } 4509 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 4510 // gcc prints these as sign extended. Sign extend value to 64 bits 4511 // now; without this it would get ZExt'd later in 4512 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4513 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4514 BooleanContent BCont = getBooleanContents(MVT::i64); 4515 ISD::NodeType ExtOpc = 4516 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 4517 int64_t ExtVal = 4518 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 4519 Ops.push_back( 4520 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 4521 return; 4522 } 4523 if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4524 Ops.push_back(DAG.getTargetBlockAddress( 4525 BA->getBlockAddress(), BA->getValueType(0), 4526 Offset + BA->getOffset(), BA->getTargetFlags())); 4527 return; 4528 } 4529 const unsigned OpCode = Op.getOpcode(); 4530 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4531 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4532 Op = Op.getOperand(1); 4533 // Subtraction is not commutative. 4534 else if (OpCode == ISD::ADD && 4535 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4536 Op = Op.getOperand(0); 4537 else 4538 return; 4539 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4540 continue; 4541 } 4542 return; 4543 } 4544 break; 4545 } 4546 } 4547 } 4548 4549 std::pair<unsigned, const TargetRegisterClass *> 4550 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4551 StringRef Constraint, 4552 MVT VT) const { 4553 if (Constraint.empty() || Constraint[0] != '{') 4554 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4555 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4556 4557 // Remove the braces from around the name. 4558 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4559 4560 std::pair<unsigned, const TargetRegisterClass *> R = 4561 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4562 4563 // Figure out which register class contains this reg. 4564 for (const TargetRegisterClass *RC : RI->regclasses()) { 4565 // If none of the value types for this register class are valid, we 4566 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4567 if (!isLegalRC(*RI, *RC)) 4568 continue; 4569 4570 for (const MCPhysReg &PR : *RC) { 4571 if (RegName.equals_lower(RI->getRegAsmName(PR))) { 4572 std::pair<unsigned, const TargetRegisterClass *> S = 4573 std::make_pair(PR, RC); 4574 4575 // If this register class has the requested value type, return it, 4576 // otherwise keep searching and return the first class found 4577 // if no other is found which explicitly has the requested type. 4578 if (RI->isTypeLegalForClass(*RC, VT)) 4579 return S; 4580 if (!R.second) 4581 R = S; 4582 } 4583 } 4584 } 4585 4586 return R; 4587 } 4588 4589 //===----------------------------------------------------------------------===// 4590 // Constraint Selection. 4591 4592 /// Return true of this is an input operand that is a matching constraint like 4593 /// "4". 4594 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4595 assert(!ConstraintCode.empty() && "No known constraint!"); 4596 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4597 } 4598 4599 /// If this is an input matching constraint, this method returns the output 4600 /// operand it matches. 4601 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4602 assert(!ConstraintCode.empty() && "No known constraint!"); 4603 return atoi(ConstraintCode.c_str()); 4604 } 4605 4606 /// Split up the constraint string from the inline assembly value into the 4607 /// specific constraints and their prefixes, and also tie in the associated 4608 /// operand values. 4609 /// If this returns an empty vector, and if the constraint string itself 4610 /// isn't empty, there was an error parsing. 4611 TargetLowering::AsmOperandInfoVector 4612 TargetLowering::ParseConstraints(const DataLayout &DL, 4613 const TargetRegisterInfo *TRI, 4614 const CallBase &Call) const { 4615 /// Information about all of the constraints. 4616 AsmOperandInfoVector ConstraintOperands; 4617 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 4618 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4619 4620 // Do a prepass over the constraints, canonicalizing them, and building up the 4621 // ConstraintOperands list. 4622 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4623 unsigned ResNo = 0; // ResNo - The result number of the next output. 4624 4625 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4626 ConstraintOperands.emplace_back(std::move(CI)); 4627 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4628 4629 // Update multiple alternative constraint count. 4630 if (OpInfo.multipleAlternatives.size() > maCount) 4631 maCount = OpInfo.multipleAlternatives.size(); 4632 4633 OpInfo.ConstraintVT = MVT::Other; 4634 4635 // Compute the value type for each operand. 4636 switch (OpInfo.Type) { 4637 case InlineAsm::isOutput: 4638 // Indirect outputs just consume an argument. 4639 if (OpInfo.isIndirect) { 4640 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4641 break; 4642 } 4643 4644 // The return value of the call is this value. As such, there is no 4645 // corresponding argument. 4646 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 4647 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 4648 OpInfo.ConstraintVT = 4649 getSimpleValueType(DL, STy->getElementType(ResNo)); 4650 } else { 4651 assert(ResNo == 0 && "Asm only has one result!"); 4652 OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType()); 4653 } 4654 ++ResNo; 4655 break; 4656 case InlineAsm::isInput: 4657 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4658 break; 4659 case InlineAsm::isClobber: 4660 // Nothing to do. 4661 break; 4662 } 4663 4664 if (OpInfo.CallOperandVal) { 4665 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4666 if (OpInfo.isIndirect) { 4667 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4668 if (!PtrTy) 4669 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4670 OpTy = PtrTy->getElementType(); 4671 } 4672 4673 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4674 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4675 if (STy->getNumElements() == 1) 4676 OpTy = STy->getElementType(0); 4677 4678 // If OpTy is not a single value, it may be a struct/union that we 4679 // can tile with integers. 4680 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4681 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4682 switch (BitSize) { 4683 default: break; 4684 case 1: 4685 case 8: 4686 case 16: 4687 case 32: 4688 case 64: 4689 case 128: 4690 OpInfo.ConstraintVT = 4691 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4692 break; 4693 } 4694 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4695 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4696 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4697 } else { 4698 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4699 } 4700 } 4701 } 4702 4703 // If we have multiple alternative constraints, select the best alternative. 4704 if (!ConstraintOperands.empty()) { 4705 if (maCount) { 4706 unsigned bestMAIndex = 0; 4707 int bestWeight = -1; 4708 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4709 int weight = -1; 4710 unsigned maIndex; 4711 // Compute the sums of the weights for each alternative, keeping track 4712 // of the best (highest weight) one so far. 4713 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4714 int weightSum = 0; 4715 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4716 cIndex != eIndex; ++cIndex) { 4717 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4718 if (OpInfo.Type == InlineAsm::isClobber) 4719 continue; 4720 4721 // If this is an output operand with a matching input operand, 4722 // look up the matching input. If their types mismatch, e.g. one 4723 // is an integer, the other is floating point, or their sizes are 4724 // different, flag it as an maCantMatch. 4725 if (OpInfo.hasMatchingInput()) { 4726 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4727 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4728 if ((OpInfo.ConstraintVT.isInteger() != 4729 Input.ConstraintVT.isInteger()) || 4730 (OpInfo.ConstraintVT.getSizeInBits() != 4731 Input.ConstraintVT.getSizeInBits())) { 4732 weightSum = -1; // Can't match. 4733 break; 4734 } 4735 } 4736 } 4737 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4738 if (weight == -1) { 4739 weightSum = -1; 4740 break; 4741 } 4742 weightSum += weight; 4743 } 4744 // Update best. 4745 if (weightSum > bestWeight) { 4746 bestWeight = weightSum; 4747 bestMAIndex = maIndex; 4748 } 4749 } 4750 4751 // Now select chosen alternative in each constraint. 4752 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4753 cIndex != eIndex; ++cIndex) { 4754 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4755 if (cInfo.Type == InlineAsm::isClobber) 4756 continue; 4757 cInfo.selectAlternative(bestMAIndex); 4758 } 4759 } 4760 } 4761 4762 // Check and hook up tied operands, choose constraint code to use. 4763 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4764 cIndex != eIndex; ++cIndex) { 4765 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4766 4767 // If this is an output operand with a matching input operand, look up the 4768 // matching input. If their types mismatch, e.g. one is an integer, the 4769 // other is floating point, or their sizes are different, flag it as an 4770 // error. 4771 if (OpInfo.hasMatchingInput()) { 4772 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4773 4774 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4775 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4776 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4777 OpInfo.ConstraintVT); 4778 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4779 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4780 Input.ConstraintVT); 4781 if ((OpInfo.ConstraintVT.isInteger() != 4782 Input.ConstraintVT.isInteger()) || 4783 (MatchRC.second != InputRC.second)) { 4784 report_fatal_error("Unsupported asm: input constraint" 4785 " with a matching output constraint of" 4786 " incompatible type!"); 4787 } 4788 } 4789 } 4790 } 4791 4792 return ConstraintOperands; 4793 } 4794 4795 /// Return an integer indicating how general CT is. 4796 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4797 switch (CT) { 4798 case TargetLowering::C_Immediate: 4799 case TargetLowering::C_Other: 4800 case TargetLowering::C_Unknown: 4801 return 0; 4802 case TargetLowering::C_Register: 4803 return 1; 4804 case TargetLowering::C_RegisterClass: 4805 return 2; 4806 case TargetLowering::C_Memory: 4807 return 3; 4808 } 4809 llvm_unreachable("Invalid constraint type"); 4810 } 4811 4812 /// Examine constraint type and operand type and determine a weight value. 4813 /// This object must already have been set up with the operand type 4814 /// and the current alternative constraint selected. 4815 TargetLowering::ConstraintWeight 4816 TargetLowering::getMultipleConstraintMatchWeight( 4817 AsmOperandInfo &info, int maIndex) const { 4818 InlineAsm::ConstraintCodeVector *rCodes; 4819 if (maIndex >= (int)info.multipleAlternatives.size()) 4820 rCodes = &info.Codes; 4821 else 4822 rCodes = &info.multipleAlternatives[maIndex].Codes; 4823 ConstraintWeight BestWeight = CW_Invalid; 4824 4825 // Loop over the options, keeping track of the most general one. 4826 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4827 ConstraintWeight weight = 4828 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4829 if (weight > BestWeight) 4830 BestWeight = weight; 4831 } 4832 4833 return BestWeight; 4834 } 4835 4836 /// Examine constraint type and operand type and determine a weight value. 4837 /// This object must already have been set up with the operand type 4838 /// and the current alternative constraint selected. 4839 TargetLowering::ConstraintWeight 4840 TargetLowering::getSingleConstraintMatchWeight( 4841 AsmOperandInfo &info, const char *constraint) const { 4842 ConstraintWeight weight = CW_Invalid; 4843 Value *CallOperandVal = info.CallOperandVal; 4844 // If we don't have a value, we can't do a match, 4845 // but allow it at the lowest weight. 4846 if (!CallOperandVal) 4847 return CW_Default; 4848 // Look at the constraint type. 4849 switch (*constraint) { 4850 case 'i': // immediate integer. 4851 case 'n': // immediate integer with a known value. 4852 if (isa<ConstantInt>(CallOperandVal)) 4853 weight = CW_Constant; 4854 break; 4855 case 's': // non-explicit intregal immediate. 4856 if (isa<GlobalValue>(CallOperandVal)) 4857 weight = CW_Constant; 4858 break; 4859 case 'E': // immediate float if host format. 4860 case 'F': // immediate float. 4861 if (isa<ConstantFP>(CallOperandVal)) 4862 weight = CW_Constant; 4863 break; 4864 case '<': // memory operand with autodecrement. 4865 case '>': // memory operand with autoincrement. 4866 case 'm': // memory operand. 4867 case 'o': // offsettable memory operand 4868 case 'V': // non-offsettable memory operand 4869 weight = CW_Memory; 4870 break; 4871 case 'r': // general register. 4872 case 'g': // general register, memory operand or immediate integer. 4873 // note: Clang converts "g" to "imr". 4874 if (CallOperandVal->getType()->isIntegerTy()) 4875 weight = CW_Register; 4876 break; 4877 case 'X': // any operand. 4878 default: 4879 weight = CW_Default; 4880 break; 4881 } 4882 return weight; 4883 } 4884 4885 /// If there are multiple different constraints that we could pick for this 4886 /// operand (e.g. "imr") try to pick the 'best' one. 4887 /// This is somewhat tricky: constraints fall into four classes: 4888 /// Other -> immediates and magic values 4889 /// Register -> one specific register 4890 /// RegisterClass -> a group of regs 4891 /// Memory -> memory 4892 /// Ideally, we would pick the most specific constraint possible: if we have 4893 /// something that fits into a register, we would pick it. The problem here 4894 /// is that if we have something that could either be in a register or in 4895 /// memory that use of the register could cause selection of *other* 4896 /// operands to fail: they might only succeed if we pick memory. Because of 4897 /// this the heuristic we use is: 4898 /// 4899 /// 1) If there is an 'other' constraint, and if the operand is valid for 4900 /// that constraint, use it. This makes us take advantage of 'i' 4901 /// constraints when available. 4902 /// 2) Otherwise, pick the most general constraint present. This prefers 4903 /// 'm' over 'r', for example. 4904 /// 4905 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4906 const TargetLowering &TLI, 4907 SDValue Op, SelectionDAG *DAG) { 4908 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4909 unsigned BestIdx = 0; 4910 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4911 int BestGenerality = -1; 4912 4913 // Loop over the options, keeping track of the most general one. 4914 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4915 TargetLowering::ConstraintType CType = 4916 TLI.getConstraintType(OpInfo.Codes[i]); 4917 4918 // Indirect 'other' or 'immediate' constraints are not allowed. 4919 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 4920 CType == TargetLowering::C_Register || 4921 CType == TargetLowering::C_RegisterClass)) 4922 continue; 4923 4924 // If this is an 'other' or 'immediate' constraint, see if the operand is 4925 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4926 // the operand is an integer in the range [0..31] we want to use I (saving a 4927 // load of a register), otherwise we must use 'r'. 4928 if ((CType == TargetLowering::C_Other || 4929 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4930 assert(OpInfo.Codes[i].size() == 1 && 4931 "Unhandled multi-letter 'other' constraint"); 4932 std::vector<SDValue> ResultOps; 4933 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4934 ResultOps, *DAG); 4935 if (!ResultOps.empty()) { 4936 BestType = CType; 4937 BestIdx = i; 4938 break; 4939 } 4940 } 4941 4942 // Things with matching constraints can only be registers, per gcc 4943 // documentation. This mainly affects "g" constraints. 4944 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4945 continue; 4946 4947 // This constraint letter is more general than the previous one, use it. 4948 int Generality = getConstraintGenerality(CType); 4949 if (Generality > BestGenerality) { 4950 BestType = CType; 4951 BestIdx = i; 4952 BestGenerality = Generality; 4953 } 4954 } 4955 4956 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4957 OpInfo.ConstraintType = BestType; 4958 } 4959 4960 /// Determines the constraint code and constraint type to use for the specific 4961 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4962 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4963 SDValue Op, 4964 SelectionDAG *DAG) const { 4965 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4966 4967 // Single-letter constraints ('r') are very common. 4968 if (OpInfo.Codes.size() == 1) { 4969 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4970 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4971 } else { 4972 ChooseConstraint(OpInfo, *this, Op, DAG); 4973 } 4974 4975 // 'X' matches anything. 4976 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4977 // Labels and constants are handled elsewhere ('X' is the only thing 4978 // that matches labels). For Functions, the type here is the type of 4979 // the result, which is not what we want to look at; leave them alone. 4980 Value *v = OpInfo.CallOperandVal; 4981 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4982 OpInfo.CallOperandVal = v; 4983 return; 4984 } 4985 4986 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4987 return; 4988 4989 // Otherwise, try to resolve it to something we know about by looking at 4990 // the actual operand type. 4991 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4992 OpInfo.ConstraintCode = Repl; 4993 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4994 } 4995 } 4996 } 4997 4998 /// Given an exact SDIV by a constant, create a multiplication 4999 /// with the multiplicative inverse of the constant. 5000 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 5001 const SDLoc &dl, SelectionDAG &DAG, 5002 SmallVectorImpl<SDNode *> &Created) { 5003 SDValue Op0 = N->getOperand(0); 5004 SDValue Op1 = N->getOperand(1); 5005 EVT VT = N->getValueType(0); 5006 EVT SVT = VT.getScalarType(); 5007 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5008 EVT ShSVT = ShVT.getScalarType(); 5009 5010 bool UseSRA = false; 5011 SmallVector<SDValue, 16> Shifts, Factors; 5012 5013 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5014 if (C->isNullValue()) 5015 return false; 5016 APInt Divisor = C->getAPIntValue(); 5017 unsigned Shift = Divisor.countTrailingZeros(); 5018 if (Shift) { 5019 Divisor.ashrInPlace(Shift); 5020 UseSRA = true; 5021 } 5022 // Calculate the multiplicative inverse, using Newton's method. 5023 APInt t; 5024 APInt Factor = Divisor; 5025 while ((t = Divisor * Factor) != 1) 5026 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5027 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5028 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5029 return true; 5030 }; 5031 5032 // Collect all magic values from the build vector. 5033 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5034 return SDValue(); 5035 5036 SDValue Shift, Factor; 5037 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 5038 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5039 Factor = DAG.getBuildVector(VT, dl, Factors); 5040 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 5041 assert(Shifts.size() == 1 && Factors.size() == 1 && 5042 "Expected matchUnaryPredicate to return one element for scalable " 5043 "vectors"); 5044 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5045 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5046 } else { 5047 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 5048 Shift = Shifts[0]; 5049 Factor = Factors[0]; 5050 } 5051 5052 SDValue Res = Op0; 5053 5054 // Shift the value upfront if it is even, so the LSB is one. 5055 if (UseSRA) { 5056 // TODO: For UDIV use SRL instead of SRA. 5057 SDNodeFlags Flags; 5058 Flags.setExact(true); 5059 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5060 Created.push_back(Res.getNode()); 5061 } 5062 5063 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5064 } 5065 5066 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5067 SelectionDAG &DAG, 5068 SmallVectorImpl<SDNode *> &Created) const { 5069 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5070 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5071 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5072 return SDValue(N, 0); // Lower SDIV as SDIV 5073 return SDValue(); 5074 } 5075 5076 /// Given an ISD::SDIV node expressing a divide by constant, 5077 /// return a DAG expression to select that will generate the same value by 5078 /// multiplying by a magic number. 5079 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5080 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5081 bool IsAfterLegalization, 5082 SmallVectorImpl<SDNode *> &Created) const { 5083 SDLoc dl(N); 5084 EVT VT = N->getValueType(0); 5085 EVT SVT = VT.getScalarType(); 5086 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5087 EVT ShSVT = ShVT.getScalarType(); 5088 unsigned EltBits = VT.getScalarSizeInBits(); 5089 EVT MulVT; 5090 5091 // Check to see if we can do this. 5092 // FIXME: We should be more aggressive here. 5093 if (!isTypeLegal(VT)) { 5094 // Limit this to simple scalars for now. 5095 if (VT.isVector() || !VT.isSimple()) 5096 return SDValue(); 5097 5098 // If this type will be promoted to a large enough type with a legal 5099 // multiply operation, we can go ahead and do this transform. 5100 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5101 return SDValue(); 5102 5103 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5104 if (MulVT.getSizeInBits() < (2 * EltBits) || 5105 !isOperationLegal(ISD::MUL, MulVT)) 5106 return SDValue(); 5107 } 5108 5109 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5110 if (N->getFlags().hasExact()) 5111 return BuildExactSDIV(*this, N, dl, DAG, Created); 5112 5113 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5114 5115 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5116 if (C->isNullValue()) 5117 return false; 5118 5119 const APInt &Divisor = C->getAPIntValue(); 5120 APInt::ms magics = Divisor.magic(); 5121 int NumeratorFactor = 0; 5122 int ShiftMask = -1; 5123 5124 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 5125 // If d is +1/-1, we just multiply the numerator by +1/-1. 5126 NumeratorFactor = Divisor.getSExtValue(); 5127 magics.m = 0; 5128 magics.s = 0; 5129 ShiftMask = 0; 5130 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 5131 // If d > 0 and m < 0, add the numerator. 5132 NumeratorFactor = 1; 5133 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 5134 // If d < 0 and m > 0, subtract the numerator. 5135 NumeratorFactor = -1; 5136 } 5137 5138 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 5139 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5140 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 5141 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5142 return true; 5143 }; 5144 5145 SDValue N0 = N->getOperand(0); 5146 SDValue N1 = N->getOperand(1); 5147 5148 // Collect the shifts / magic values from each element. 5149 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5150 return SDValue(); 5151 5152 SDValue MagicFactor, Factor, Shift, ShiftMask; 5153 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5154 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5155 Factor = DAG.getBuildVector(VT, dl, Factors); 5156 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5157 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5158 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5159 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 5160 Shifts.size() == 1 && ShiftMasks.size() == 1 && 5161 "Expected matchUnaryPredicate to return one element for scalable " 5162 "vectors"); 5163 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5164 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5165 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5166 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 5167 } else { 5168 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5169 MagicFactor = MagicFactors[0]; 5170 Factor = Factors[0]; 5171 Shift = Shifts[0]; 5172 ShiftMask = ShiftMasks[0]; 5173 } 5174 5175 // Multiply the numerator (operand 0) by the magic value. 5176 // FIXME: We should support doing a MUL in a wider type. 5177 auto GetMULHS = [&](SDValue X, SDValue Y) { 5178 // If the type isn't legal, use a wider mul of the the type calculated 5179 // earlier. 5180 if (!isTypeLegal(VT)) { 5181 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 5182 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 5183 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5184 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5185 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5186 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5187 } 5188 5189 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 5190 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 5191 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 5192 SDValue LoHi = 5193 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5194 return SDValue(LoHi.getNode(), 1); 5195 } 5196 return SDValue(); 5197 }; 5198 5199 SDValue Q = GetMULHS(N0, MagicFactor); 5200 if (!Q) 5201 return SDValue(); 5202 5203 Created.push_back(Q.getNode()); 5204 5205 // (Optionally) Add/subtract the numerator using Factor. 5206 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5207 Created.push_back(Factor.getNode()); 5208 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5209 Created.push_back(Q.getNode()); 5210 5211 // Shift right algebraic by shift value. 5212 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5213 Created.push_back(Q.getNode()); 5214 5215 // Extract the sign bit, mask it and add it to the quotient. 5216 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5217 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5218 Created.push_back(T.getNode()); 5219 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5220 Created.push_back(T.getNode()); 5221 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5222 } 5223 5224 /// Given an ISD::UDIV node expressing a divide by constant, 5225 /// return a DAG expression to select that will generate the same value by 5226 /// multiplying by a magic number. 5227 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5228 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5229 bool IsAfterLegalization, 5230 SmallVectorImpl<SDNode *> &Created) const { 5231 SDLoc dl(N); 5232 EVT VT = N->getValueType(0); 5233 EVT SVT = VT.getScalarType(); 5234 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5235 EVT ShSVT = ShVT.getScalarType(); 5236 unsigned EltBits = VT.getScalarSizeInBits(); 5237 EVT MulVT; 5238 5239 // Check to see if we can do this. 5240 // FIXME: We should be more aggressive here. 5241 if (!isTypeLegal(VT)) { 5242 // Limit this to simple scalars for now. 5243 if (VT.isVector() || !VT.isSimple()) 5244 return SDValue(); 5245 5246 // If this type will be promoted to a large enough type with a legal 5247 // multiply operation, we can go ahead and do this transform. 5248 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5249 return SDValue(); 5250 5251 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5252 if (MulVT.getSizeInBits() < (2 * EltBits) || 5253 !isOperationLegal(ISD::MUL, MulVT)) 5254 return SDValue(); 5255 } 5256 5257 bool UseNPQ = false; 5258 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5259 5260 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5261 if (C->isNullValue()) 5262 return false; 5263 // FIXME: We should use a narrower constant when the upper 5264 // bits are known to be zero. 5265 const APInt& Divisor = C->getAPIntValue(); 5266 APInt::mu magics = Divisor.magicu(); 5267 unsigned PreShift = 0, PostShift = 0; 5268 5269 // If the divisor is even, we can avoid using the expensive fixup by 5270 // shifting the divided value upfront. 5271 if (magics.a != 0 && !Divisor[0]) { 5272 PreShift = Divisor.countTrailingZeros(); 5273 // Get magic number for the shifted divisor. 5274 magics = Divisor.lshr(PreShift).magicu(PreShift); 5275 assert(magics.a == 0 && "Should use cheap fixup now"); 5276 } 5277 5278 APInt Magic = magics.m; 5279 5280 unsigned SelNPQ; 5281 if (magics.a == 0 || Divisor.isOneValue()) { 5282 assert(magics.s < Divisor.getBitWidth() && 5283 "We shouldn't generate an undefined shift!"); 5284 PostShift = magics.s; 5285 SelNPQ = false; 5286 } else { 5287 PostShift = magics.s - 1; 5288 SelNPQ = true; 5289 } 5290 5291 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5292 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5293 NPQFactors.push_back( 5294 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5295 : APInt::getNullValue(EltBits), 5296 dl, SVT)); 5297 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5298 UseNPQ |= SelNPQ; 5299 return true; 5300 }; 5301 5302 SDValue N0 = N->getOperand(0); 5303 SDValue N1 = N->getOperand(1); 5304 5305 // Collect the shifts/magic values from each element. 5306 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5307 return SDValue(); 5308 5309 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5310 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5311 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5312 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5313 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5314 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5315 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5316 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 5317 NPQFactors.size() == 1 && PostShifts.size() == 1 && 5318 "Expected matchUnaryPredicate to return one for scalable vectors"); 5319 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 5320 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5321 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 5322 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 5323 } else { 5324 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5325 PreShift = PreShifts[0]; 5326 MagicFactor = MagicFactors[0]; 5327 PostShift = PostShifts[0]; 5328 } 5329 5330 SDValue Q = N0; 5331 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5332 Created.push_back(Q.getNode()); 5333 5334 // FIXME: We should support doing a MUL in a wider type. 5335 auto GetMULHU = [&](SDValue X, SDValue Y) { 5336 // If the type isn't legal, use a wider mul of the the type calculated 5337 // earlier. 5338 if (!isTypeLegal(VT)) { 5339 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 5340 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 5341 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5342 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5343 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5344 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5345 } 5346 5347 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 5348 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5349 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 5350 SDValue LoHi = 5351 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5352 return SDValue(LoHi.getNode(), 1); 5353 } 5354 return SDValue(); // No mulhu or equivalent 5355 }; 5356 5357 // Multiply the numerator (operand 0) by the magic value. 5358 Q = GetMULHU(Q, MagicFactor); 5359 if (!Q) 5360 return SDValue(); 5361 5362 Created.push_back(Q.getNode()); 5363 5364 if (UseNPQ) { 5365 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5366 Created.push_back(NPQ.getNode()); 5367 5368 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5369 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5370 if (VT.isVector()) 5371 NPQ = GetMULHU(NPQ, NPQFactor); 5372 else 5373 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5374 5375 Created.push_back(NPQ.getNode()); 5376 5377 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5378 Created.push_back(Q.getNode()); 5379 } 5380 5381 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5382 Created.push_back(Q.getNode()); 5383 5384 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5385 5386 SDValue One = DAG.getConstant(1, dl, VT); 5387 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 5388 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5389 } 5390 5391 /// If all values in Values that *don't* match the predicate are same 'splat' 5392 /// value, then replace all values with that splat value. 5393 /// Else, if AlternativeReplacement was provided, then replace all values that 5394 /// do match predicate with AlternativeReplacement value. 5395 static void 5396 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5397 std::function<bool(SDValue)> Predicate, 5398 SDValue AlternativeReplacement = SDValue()) { 5399 SDValue Replacement; 5400 // Is there a value for which the Predicate does *NOT* match? What is it? 5401 auto SplatValue = llvm::find_if_not(Values, Predicate); 5402 if (SplatValue != Values.end()) { 5403 // Does Values consist only of SplatValue's and values matching Predicate? 5404 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5405 return Value == *SplatValue || Predicate(Value); 5406 })) // Then we shall replace values matching predicate with SplatValue. 5407 Replacement = *SplatValue; 5408 } 5409 if (!Replacement) { 5410 // Oops, we did not find the "baseline" splat value. 5411 if (!AlternativeReplacement) 5412 return; // Nothing to do. 5413 // Let's replace with provided value then. 5414 Replacement = AlternativeReplacement; 5415 } 5416 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5417 } 5418 5419 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5420 /// where the divisor is constant and the comparison target is zero, 5421 /// return a DAG expression that will generate the same comparison result 5422 /// using only multiplications, additions and shifts/rotations. 5423 /// Ref: "Hacker's Delight" 10-17. 5424 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5425 SDValue CompTargetNode, 5426 ISD::CondCode Cond, 5427 DAGCombinerInfo &DCI, 5428 const SDLoc &DL) const { 5429 SmallVector<SDNode *, 5> Built; 5430 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5431 DCI, DL, Built)) { 5432 for (SDNode *N : Built) 5433 DCI.AddToWorklist(N); 5434 return Folded; 5435 } 5436 5437 return SDValue(); 5438 } 5439 5440 SDValue 5441 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5442 SDValue CompTargetNode, ISD::CondCode Cond, 5443 DAGCombinerInfo &DCI, const SDLoc &DL, 5444 SmallVectorImpl<SDNode *> &Created) const { 5445 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5446 // - D must be constant, with D = D0 * 2^K where D0 is odd 5447 // - P is the multiplicative inverse of D0 modulo 2^W 5448 // - Q = floor(((2^W) - 1) / D) 5449 // where W is the width of the common type of N and D. 5450 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5451 "Only applicable for (in)equality comparisons."); 5452 5453 SelectionDAG &DAG = DCI.DAG; 5454 5455 EVT VT = REMNode.getValueType(); 5456 EVT SVT = VT.getScalarType(); 5457 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5458 EVT ShSVT = ShVT.getScalarType(); 5459 5460 // If MUL is unavailable, we cannot proceed in any case. 5461 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5462 return SDValue(); 5463 5464 bool ComparingWithAllZeros = true; 5465 bool AllComparisonsWithNonZerosAreTautological = true; 5466 bool HadTautologicalLanes = false; 5467 bool AllLanesAreTautological = true; 5468 bool HadEvenDivisor = false; 5469 bool AllDivisorsArePowerOfTwo = true; 5470 bool HadTautologicalInvertedLanes = false; 5471 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5472 5473 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5474 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5475 if (CDiv->isNullValue()) 5476 return false; 5477 5478 const APInt &D = CDiv->getAPIntValue(); 5479 const APInt &Cmp = CCmp->getAPIntValue(); 5480 5481 ComparingWithAllZeros &= Cmp.isNullValue(); 5482 5483 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5484 // if C2 is not less than C1, the comparison is always false. 5485 // But we will only be able to produce the comparison that will give the 5486 // opposive tautological answer. So this lane would need to be fixed up. 5487 bool TautologicalInvertedLane = D.ule(Cmp); 5488 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5489 5490 // If all lanes are tautological (either all divisors are ones, or divisor 5491 // is not greater than the constant we are comparing with), 5492 // we will prefer to avoid the fold. 5493 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; 5494 HadTautologicalLanes |= TautologicalLane; 5495 AllLanesAreTautological &= TautologicalLane; 5496 5497 // If we are comparing with non-zero, we need'll need to subtract said 5498 // comparison value from the LHS. But there is no point in doing that if 5499 // every lane where we are comparing with non-zero is tautological.. 5500 if (!Cmp.isNullValue()) 5501 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5502 5503 // Decompose D into D0 * 2^K 5504 unsigned K = D.countTrailingZeros(); 5505 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5506 APInt D0 = D.lshr(K); 5507 5508 // D is even if it has trailing zeros. 5509 HadEvenDivisor |= (K != 0); 5510 // D is a power-of-two if D0 is one. 5511 // If all divisors are power-of-two, we will prefer to avoid the fold. 5512 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5513 5514 // P = inv(D0, 2^W) 5515 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5516 unsigned W = D.getBitWidth(); 5517 APInt P = D0.zext(W + 1) 5518 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5519 .trunc(W); 5520 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5521 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5522 5523 // Q = floor((2^W - 1) u/ D) 5524 // R = ((2^W - 1) u% D) 5525 APInt Q, R; 5526 APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R); 5527 5528 // If we are comparing with zero, then that comparison constant is okay, 5529 // else it may need to be one less than that. 5530 if (Cmp.ugt(R)) 5531 Q -= 1; 5532 5533 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5534 "We are expecting that K is always less than all-ones for ShSVT"); 5535 5536 // If the lane is tautological the result can be constant-folded. 5537 if (TautologicalLane) { 5538 // Set P and K amount to a bogus values so we can try to splat them. 5539 P = 0; 5540 K = -1; 5541 // And ensure that comparison constant is tautological, 5542 // it will always compare true/false. 5543 Q = -1; 5544 } 5545 5546 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5547 KAmts.push_back( 5548 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5549 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5550 return true; 5551 }; 5552 5553 SDValue N = REMNode.getOperand(0); 5554 SDValue D = REMNode.getOperand(1); 5555 5556 // Collect the values from each element. 5557 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5558 return SDValue(); 5559 5560 // If all lanes are tautological, the result can be constant-folded. 5561 if (AllLanesAreTautological) 5562 return SDValue(); 5563 5564 // If this is a urem by a powers-of-two, avoid the fold since it can be 5565 // best implemented as a bit test. 5566 if (AllDivisorsArePowerOfTwo) 5567 return SDValue(); 5568 5569 SDValue PVal, KVal, QVal; 5570 if (VT.isVector()) { 5571 if (HadTautologicalLanes) { 5572 // Try to turn PAmts into a splat, since we don't care about the values 5573 // that are currently '0'. If we can't, just keep '0'`s. 5574 turnVectorIntoSplatVector(PAmts, isNullConstant); 5575 // Try to turn KAmts into a splat, since we don't care about the values 5576 // that are currently '-1'. If we can't, change them to '0'`s. 5577 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5578 DAG.getConstant(0, DL, ShSVT)); 5579 } 5580 5581 PVal = DAG.getBuildVector(VT, DL, PAmts); 5582 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5583 QVal = DAG.getBuildVector(VT, DL, QAmts); 5584 } else { 5585 PVal = PAmts[0]; 5586 KVal = KAmts[0]; 5587 QVal = QAmts[0]; 5588 } 5589 5590 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5591 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 5592 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5593 assert(CompTargetNode.getValueType() == N.getValueType() && 5594 "Expecting that the types on LHS and RHS of comparisons match."); 5595 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5596 } 5597 5598 // (mul N, P) 5599 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5600 Created.push_back(Op0.getNode()); 5601 5602 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5603 // divisors as a performance improvement, since rotating by 0 is a no-op. 5604 if (HadEvenDivisor) { 5605 // We need ROTR to do this. 5606 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 5607 return SDValue(); 5608 SDNodeFlags Flags; 5609 Flags.setExact(true); 5610 // UREM: (rotr (mul N, P), K) 5611 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5612 Created.push_back(Op0.getNode()); 5613 } 5614 5615 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5616 SDValue NewCC = 5617 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5618 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5619 if (!HadTautologicalInvertedLanes) 5620 return NewCC; 5621 5622 // If any lanes previously compared always-false, the NewCC will give 5623 // always-true result for them, so we need to fixup those lanes. 5624 // Or the other way around for inequality predicate. 5625 assert(VT.isVector() && "Can/should only get here for vectors."); 5626 Created.push_back(NewCC.getNode()); 5627 5628 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5629 // if C2 is not less than C1, the comparison is always false. 5630 // But we have produced the comparison that will give the 5631 // opposive tautological answer. So these lanes would need to be fixed up. 5632 SDValue TautologicalInvertedChannels = 5633 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5634 Created.push_back(TautologicalInvertedChannels.getNode()); 5635 5636 // NOTE: we avoid letting illegal types through even if we're before legalize 5637 // ops – legalization has a hard time producing good code for this. 5638 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5639 // If we have a vector select, let's replace the comparison results in the 5640 // affected lanes with the correct tautological result. 5641 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5642 DL, SETCCVT, SETCCVT); 5643 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5644 Replacement, NewCC); 5645 } 5646 5647 // Else, we can just invert the comparison result in the appropriate lanes. 5648 // 5649 // NOTE: see the note above VSELECT above. 5650 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5651 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5652 TautologicalInvertedChannels); 5653 5654 return SDValue(); // Don't know how to lower. 5655 } 5656 5657 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5658 /// where the divisor is constant and the comparison target is zero, 5659 /// return a DAG expression that will generate the same comparison result 5660 /// using only multiplications, additions and shifts/rotations. 5661 /// Ref: "Hacker's Delight" 10-17. 5662 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5663 SDValue CompTargetNode, 5664 ISD::CondCode Cond, 5665 DAGCombinerInfo &DCI, 5666 const SDLoc &DL) const { 5667 SmallVector<SDNode *, 7> Built; 5668 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5669 DCI, DL, Built)) { 5670 assert(Built.size() <= 7 && "Max size prediction failed."); 5671 for (SDNode *N : Built) 5672 DCI.AddToWorklist(N); 5673 return Folded; 5674 } 5675 5676 return SDValue(); 5677 } 5678 5679 SDValue 5680 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5681 SDValue CompTargetNode, ISD::CondCode Cond, 5682 DAGCombinerInfo &DCI, const SDLoc &DL, 5683 SmallVectorImpl<SDNode *> &Created) const { 5684 // Fold: 5685 // (seteq/ne (srem N, D), 0) 5686 // To: 5687 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5688 // 5689 // - D must be constant, with D = D0 * 2^K where D0 is odd 5690 // - P is the multiplicative inverse of D0 modulo 2^W 5691 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5692 // - Q = floor((2 * A) / (2^K)) 5693 // where W is the width of the common type of N and D. 5694 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5695 "Only applicable for (in)equality comparisons."); 5696 5697 SelectionDAG &DAG = DCI.DAG; 5698 5699 EVT VT = REMNode.getValueType(); 5700 EVT SVT = VT.getScalarType(); 5701 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5702 EVT ShSVT = ShVT.getScalarType(); 5703 5704 // If we are after ops legalization, and MUL is unavailable, we can not 5705 // proceed. 5706 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5707 return SDValue(); 5708 5709 // TODO: Could support comparing with non-zero too. 5710 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5711 if (!CompTarget || !CompTarget->isNullValue()) 5712 return SDValue(); 5713 5714 bool HadIntMinDivisor = false; 5715 bool HadOneDivisor = false; 5716 bool AllDivisorsAreOnes = true; 5717 bool HadEvenDivisor = false; 5718 bool NeedToApplyOffset = false; 5719 bool AllDivisorsArePowerOfTwo = true; 5720 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5721 5722 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5723 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5724 if (C->isNullValue()) 5725 return false; 5726 5727 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5728 5729 // WARNING: this fold is only valid for positive divisors! 5730 APInt D = C->getAPIntValue(); 5731 if (D.isNegative()) 5732 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5733 5734 HadIntMinDivisor |= D.isMinSignedValue(); 5735 5736 // If all divisors are ones, we will prefer to avoid the fold. 5737 HadOneDivisor |= D.isOneValue(); 5738 AllDivisorsAreOnes &= D.isOneValue(); 5739 5740 // Decompose D into D0 * 2^K 5741 unsigned K = D.countTrailingZeros(); 5742 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5743 APInt D0 = D.lshr(K); 5744 5745 if (!D.isMinSignedValue()) { 5746 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5747 // we don't care about this lane in this fold, we'll special-handle it. 5748 HadEvenDivisor |= (K != 0); 5749 } 5750 5751 // D is a power-of-two if D0 is one. This includes INT_MIN. 5752 // If all divisors are power-of-two, we will prefer to avoid the fold. 5753 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5754 5755 // P = inv(D0, 2^W) 5756 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5757 unsigned W = D.getBitWidth(); 5758 APInt P = D0.zext(W + 1) 5759 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5760 .trunc(W); 5761 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5762 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5763 5764 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5765 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5766 A.clearLowBits(K); 5767 5768 if (!D.isMinSignedValue()) { 5769 // If divisor INT_MIN, then we don't care about this lane in this fold, 5770 // we'll special-handle it. 5771 NeedToApplyOffset |= A != 0; 5772 } 5773 5774 // Q = floor((2 * A) / (2^K)) 5775 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5776 5777 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5778 "We are expecting that A is always less than all-ones for SVT"); 5779 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5780 "We are expecting that K is always less than all-ones for ShSVT"); 5781 5782 // If the divisor is 1 the result can be constant-folded. Likewise, we 5783 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5784 if (D.isOneValue()) { 5785 // Set P, A and K to a bogus values so we can try to splat them. 5786 P = 0; 5787 A = -1; 5788 K = -1; 5789 5790 // x ?% 1 == 0 <--> true <--> x u<= -1 5791 Q = -1; 5792 } 5793 5794 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5795 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5796 KAmts.push_back( 5797 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5798 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5799 return true; 5800 }; 5801 5802 SDValue N = REMNode.getOperand(0); 5803 SDValue D = REMNode.getOperand(1); 5804 5805 // Collect the values from each element. 5806 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5807 return SDValue(); 5808 5809 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5810 if (AllDivisorsAreOnes) 5811 return SDValue(); 5812 5813 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5814 // since it can be best implemented as a bit test. 5815 if (AllDivisorsArePowerOfTwo) 5816 return SDValue(); 5817 5818 SDValue PVal, AVal, KVal, QVal; 5819 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5820 if (HadOneDivisor) { 5821 // Try to turn PAmts into a splat, since we don't care about the values 5822 // that are currently '0'. If we can't, just keep '0'`s. 5823 turnVectorIntoSplatVector(PAmts, isNullConstant); 5824 // Try to turn AAmts into a splat, since we don't care about the 5825 // values that are currently '-1'. If we can't, change them to '0'`s. 5826 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5827 DAG.getConstant(0, DL, SVT)); 5828 // Try to turn KAmts into a splat, since we don't care about the values 5829 // that are currently '-1'. If we can't, change them to '0'`s. 5830 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5831 DAG.getConstant(0, DL, ShSVT)); 5832 } 5833 5834 PVal = DAG.getBuildVector(VT, DL, PAmts); 5835 AVal = DAG.getBuildVector(VT, DL, AAmts); 5836 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5837 QVal = DAG.getBuildVector(VT, DL, QAmts); 5838 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 5839 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 5840 QAmts.size() == 1 && 5841 "Expected matchUnaryPredicate to return one element for scalable " 5842 "vectors"); 5843 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 5844 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 5845 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 5846 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 5847 } else { 5848 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 5849 PVal = PAmts[0]; 5850 AVal = AAmts[0]; 5851 KVal = KAmts[0]; 5852 QVal = QAmts[0]; 5853 } 5854 5855 // (mul N, P) 5856 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5857 Created.push_back(Op0.getNode()); 5858 5859 if (NeedToApplyOffset) { 5860 // We need ADD to do this. 5861 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 5862 return SDValue(); 5863 5864 // (add (mul N, P), A) 5865 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5866 Created.push_back(Op0.getNode()); 5867 } 5868 5869 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5870 // divisors as a performance improvement, since rotating by 0 is a no-op. 5871 if (HadEvenDivisor) { 5872 // We need ROTR to do this. 5873 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 5874 return SDValue(); 5875 SDNodeFlags Flags; 5876 Flags.setExact(true); 5877 // SREM: (rotr (add (mul N, P), A), K) 5878 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5879 Created.push_back(Op0.getNode()); 5880 } 5881 5882 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5883 SDValue Fold = 5884 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5885 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5886 5887 // If we didn't have lanes with INT_MIN divisor, then we're done. 5888 if (!HadIntMinDivisor) 5889 return Fold; 5890 5891 // That fold is only valid for positive divisors. Which effectively means, 5892 // it is invalid for INT_MIN divisors. So if we have such a lane, 5893 // we must fix-up results for said lanes. 5894 assert(VT.isVector() && "Can/should only get here for vectors."); 5895 5896 // NOTE: we avoid letting illegal types through even if we're before legalize 5897 // ops – legalization has a hard time producing good code for the code that 5898 // follows. 5899 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5900 !isOperationLegalOrCustom(ISD::AND, VT) || 5901 !isOperationLegalOrCustom(Cond, VT) || 5902 !isOperationLegalOrCustom(ISD::VSELECT, VT)) 5903 return SDValue(); 5904 5905 Created.push_back(Fold.getNode()); 5906 5907 SDValue IntMin = DAG.getConstant( 5908 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5909 SDValue IntMax = DAG.getConstant( 5910 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5911 SDValue Zero = 5912 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5913 5914 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5915 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5916 Created.push_back(DivisorIsIntMin.getNode()); 5917 5918 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5919 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5920 Created.push_back(Masked.getNode()); 5921 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5922 Created.push_back(MaskedIsZero.getNode()); 5923 5924 // To produce final result we need to blend 2 vectors: 'SetCC' and 5925 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5926 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5927 // constant-folded, select can get lowered to a shuffle with constant mask. 5928 SDValue Blended = 5929 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); 5930 5931 return Blended; 5932 } 5933 5934 bool TargetLowering:: 5935 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5936 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5937 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5938 "be a constant integer"); 5939 return true; 5940 } 5941 5942 return false; 5943 } 5944 5945 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 5946 const DenormalMode &Mode) const { 5947 SDLoc DL(Op); 5948 EVT VT = Op.getValueType(); 5949 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5950 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 5951 // Testing it with denormal inputs to avoid wrong estimate. 5952 if (Mode.Input == DenormalMode::IEEE) { 5953 // This is specifically a check for the handling of denormal inputs, 5954 // not the result. 5955 5956 // Test = fabs(X) < SmallestNormal 5957 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 5958 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 5959 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 5960 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 5961 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 5962 } 5963 // Test = X == 0.0 5964 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 5965 } 5966 5967 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 5968 bool LegalOps, bool OptForSize, 5969 NegatibleCost &Cost, 5970 unsigned Depth) const { 5971 // fneg is removable even if it has multiple uses. 5972 if (Op.getOpcode() == ISD::FNEG) { 5973 Cost = NegatibleCost::Cheaper; 5974 return Op.getOperand(0); 5975 } 5976 5977 // Don't recurse exponentially. 5978 if (Depth > SelectionDAG::MaxRecursionDepth) 5979 return SDValue(); 5980 5981 // Pre-increment recursion depth for use in recursive calls. 5982 ++Depth; 5983 const SDNodeFlags Flags = Op->getFlags(); 5984 const TargetOptions &Options = DAG.getTarget().Options; 5985 EVT VT = Op.getValueType(); 5986 unsigned Opcode = Op.getOpcode(); 5987 5988 // Don't allow anything with multiple uses unless we know it is free. 5989 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 5990 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 5991 isFPExtFree(VT, Op.getOperand(0).getValueType()); 5992 if (!IsFreeExtend) 5993 return SDValue(); 5994 } 5995 5996 auto RemoveDeadNode = [&](SDValue N) { 5997 if (N && N.getNode()->use_empty()) 5998 DAG.RemoveDeadNode(N.getNode()); 5999 }; 6000 6001 SDLoc DL(Op); 6002 6003 // Because getNegatedExpression can delete nodes we need a handle to keep 6004 // temporary nodes alive in case the recursion manages to create an identical 6005 // node. 6006 std::list<HandleSDNode> Handles; 6007 6008 switch (Opcode) { 6009 case ISD::ConstantFP: { 6010 // Don't invert constant FP values after legalization unless the target says 6011 // the negated constant is legal. 6012 bool IsOpLegal = 6013 isOperationLegal(ISD::ConstantFP, VT) || 6014 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 6015 OptForSize); 6016 6017 if (LegalOps && !IsOpLegal) 6018 break; 6019 6020 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 6021 V.changeSign(); 6022 SDValue CFP = DAG.getConstantFP(V, DL, VT); 6023 6024 // If we already have the use of the negated floating constant, it is free 6025 // to negate it even it has multiple uses. 6026 if (!Op.hasOneUse() && CFP.use_empty()) 6027 break; 6028 Cost = NegatibleCost::Neutral; 6029 return CFP; 6030 } 6031 case ISD::BUILD_VECTOR: { 6032 // Only permit BUILD_VECTOR of constants. 6033 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 6034 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 6035 })) 6036 break; 6037 6038 bool IsOpLegal = 6039 (isOperationLegal(ISD::ConstantFP, VT) && 6040 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 6041 llvm::all_of(Op->op_values(), [&](SDValue N) { 6042 return N.isUndef() || 6043 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 6044 OptForSize); 6045 }); 6046 6047 if (LegalOps && !IsOpLegal) 6048 break; 6049 6050 SmallVector<SDValue, 4> Ops; 6051 for (SDValue C : Op->op_values()) { 6052 if (C.isUndef()) { 6053 Ops.push_back(C); 6054 continue; 6055 } 6056 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 6057 V.changeSign(); 6058 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 6059 } 6060 Cost = NegatibleCost::Neutral; 6061 return DAG.getBuildVector(VT, DL, Ops); 6062 } 6063 case ISD::FADD: { 6064 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6065 break; 6066 6067 // After operation legalization, it might not be legal to create new FSUBs. 6068 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 6069 break; 6070 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6071 6072 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 6073 NegatibleCost CostX = NegatibleCost::Expensive; 6074 SDValue NegX = 6075 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6076 // Prevent this node from being deleted by the next call. 6077 if (NegX) 6078 Handles.emplace_back(NegX); 6079 6080 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 6081 NegatibleCost CostY = NegatibleCost::Expensive; 6082 SDValue NegY = 6083 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6084 6085 // We're done with the handles. 6086 Handles.clear(); 6087 6088 // Negate the X if its cost is less or equal than Y. 6089 if (NegX && (CostX <= CostY)) { 6090 Cost = CostX; 6091 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 6092 if (NegY != N) 6093 RemoveDeadNode(NegY); 6094 return N; 6095 } 6096 6097 // Negate the Y if it is not expensive. 6098 if (NegY) { 6099 Cost = CostY; 6100 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 6101 if (NegX != N) 6102 RemoveDeadNode(NegX); 6103 return N; 6104 } 6105 break; 6106 } 6107 case ISD::FSUB: { 6108 // We can't turn -(A-B) into B-A when we honor signed zeros. 6109 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6110 break; 6111 6112 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6113 // fold (fneg (fsub 0, Y)) -> Y 6114 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 6115 if (C->isZero()) { 6116 Cost = NegatibleCost::Cheaper; 6117 return Y; 6118 } 6119 6120 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 6121 Cost = NegatibleCost::Neutral; 6122 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 6123 } 6124 case ISD::FMUL: 6125 case ISD::FDIV: { 6126 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6127 6128 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 6129 NegatibleCost CostX = NegatibleCost::Expensive; 6130 SDValue NegX = 6131 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6132 // Prevent this node from being deleted by the next call. 6133 if (NegX) 6134 Handles.emplace_back(NegX); 6135 6136 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 6137 NegatibleCost CostY = NegatibleCost::Expensive; 6138 SDValue NegY = 6139 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6140 6141 // We're done with the handles. 6142 Handles.clear(); 6143 6144 // Negate the X if its cost is less or equal than Y. 6145 if (NegX && (CostX <= CostY)) { 6146 Cost = CostX; 6147 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6148 if (NegY != N) 6149 RemoveDeadNode(NegY); 6150 return N; 6151 } 6152 6153 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6154 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6155 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6156 break; 6157 6158 // Negate the Y if it is not expensive. 6159 if (NegY) { 6160 Cost = CostY; 6161 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6162 if (NegX != N) 6163 RemoveDeadNode(NegX); 6164 return N; 6165 } 6166 break; 6167 } 6168 case ISD::FMA: 6169 case ISD::FMAD: { 6170 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6171 break; 6172 6173 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6174 NegatibleCost CostZ = NegatibleCost::Expensive; 6175 SDValue NegZ = 6176 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6177 // Give up if fail to negate the Z. 6178 if (!NegZ) 6179 break; 6180 6181 // Prevent this node from being deleted by the next two calls. 6182 Handles.emplace_back(NegZ); 6183 6184 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6185 NegatibleCost CostX = NegatibleCost::Expensive; 6186 SDValue NegX = 6187 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6188 // Prevent this node from being deleted by the next call. 6189 if (NegX) 6190 Handles.emplace_back(NegX); 6191 6192 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6193 NegatibleCost CostY = NegatibleCost::Expensive; 6194 SDValue NegY = 6195 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6196 6197 // We're done with the handles. 6198 Handles.clear(); 6199 6200 // Negate the X if its cost is less or equal than Y. 6201 if (NegX && (CostX <= CostY)) { 6202 Cost = std::min(CostX, CostZ); 6203 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 6204 if (NegY != N) 6205 RemoveDeadNode(NegY); 6206 return N; 6207 } 6208 6209 // Negate the Y if it is not expensive. 6210 if (NegY) { 6211 Cost = std::min(CostY, CostZ); 6212 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 6213 if (NegX != N) 6214 RemoveDeadNode(NegX); 6215 return N; 6216 } 6217 break; 6218 } 6219 6220 case ISD::FP_EXTEND: 6221 case ISD::FSIN: 6222 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6223 OptForSize, Cost, Depth)) 6224 return DAG.getNode(Opcode, DL, VT, NegV); 6225 break; 6226 case ISD::FP_ROUND: 6227 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6228 OptForSize, Cost, Depth)) 6229 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 6230 break; 6231 } 6232 6233 return SDValue(); 6234 } 6235 6236 //===----------------------------------------------------------------------===// 6237 // Legalization Utilities 6238 //===----------------------------------------------------------------------===// 6239 6240 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 6241 SDValue LHS, SDValue RHS, 6242 SmallVectorImpl<SDValue> &Result, 6243 EVT HiLoVT, SelectionDAG &DAG, 6244 MulExpansionKind Kind, SDValue LL, 6245 SDValue LH, SDValue RL, SDValue RH) const { 6246 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 6247 Opcode == ISD::SMUL_LOHI); 6248 6249 bool HasMULHS = (Kind == MulExpansionKind::Always) || 6250 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 6251 bool HasMULHU = (Kind == MulExpansionKind::Always) || 6252 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 6253 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 6254 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 6255 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 6256 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 6257 6258 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 6259 return false; 6260 6261 unsigned OuterBitSize = VT.getScalarSizeInBits(); 6262 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6263 6264 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6265 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6266 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6267 6268 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6269 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6270 bool Signed) -> bool { 6271 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6272 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6273 Hi = SDValue(Lo.getNode(), 1); 6274 return true; 6275 } 6276 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6277 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6278 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6279 return true; 6280 } 6281 return false; 6282 }; 6283 6284 SDValue Lo, Hi; 6285 6286 if (!LL.getNode() && !RL.getNode() && 6287 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6288 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6289 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6290 } 6291 6292 if (!LL.getNode()) 6293 return false; 6294 6295 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6296 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6297 DAG.MaskedValueIsZero(RHS, HighMask)) { 6298 // The inputs are both zero-extended. 6299 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6300 Result.push_back(Lo); 6301 Result.push_back(Hi); 6302 if (Opcode != ISD::MUL) { 6303 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6304 Result.push_back(Zero); 6305 Result.push_back(Zero); 6306 } 6307 return true; 6308 } 6309 } 6310 6311 if (!VT.isVector() && Opcode == ISD::MUL && 6312 DAG.ComputeNumSignBits(LHS) > InnerBitSize && 6313 DAG.ComputeNumSignBits(RHS) > InnerBitSize) { 6314 // The input values are both sign-extended. 6315 // TODO non-MUL case? 6316 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6317 Result.push_back(Lo); 6318 Result.push_back(Hi); 6319 return true; 6320 } 6321 } 6322 6323 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6324 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6325 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 6326 // FIXME getShiftAmountTy does not always return a sensible result when VT 6327 // is an illegal type, and so the type may be too small to fit the shift 6328 // amount. Override it with i32. The shift will have to be legalized. 6329 ShiftAmountTy = MVT::i32; 6330 } 6331 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6332 6333 if (!LH.getNode() && !RH.getNode() && 6334 isOperationLegalOrCustom(ISD::SRL, VT) && 6335 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6336 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6337 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6338 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6339 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6340 } 6341 6342 if (!LH.getNode()) 6343 return false; 6344 6345 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6346 return false; 6347 6348 Result.push_back(Lo); 6349 6350 if (Opcode == ISD::MUL) { 6351 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6352 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6353 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6354 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6355 Result.push_back(Hi); 6356 return true; 6357 } 6358 6359 // Compute the full width result. 6360 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6361 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6362 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6363 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6364 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6365 }; 6366 6367 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6368 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6369 return false; 6370 6371 // This is effectively the add part of a multiply-add of half-sized operands, 6372 // so it cannot overflow. 6373 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6374 6375 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6376 return false; 6377 6378 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6379 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6380 6381 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6382 isOperationLegalOrCustom(ISD::ADDE, VT)); 6383 if (UseGlue) 6384 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6385 Merge(Lo, Hi)); 6386 else 6387 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6388 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6389 6390 SDValue Carry = Next.getValue(1); 6391 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6392 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6393 6394 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6395 return false; 6396 6397 if (UseGlue) 6398 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6399 Carry); 6400 else 6401 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6402 Zero, Carry); 6403 6404 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6405 6406 if (Opcode == ISD::SMUL_LOHI) { 6407 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6408 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6409 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6410 6411 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6412 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6413 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6414 } 6415 6416 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6417 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6418 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6419 return true; 6420 } 6421 6422 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6423 SelectionDAG &DAG, MulExpansionKind Kind, 6424 SDValue LL, SDValue LH, SDValue RL, 6425 SDValue RH) const { 6426 SmallVector<SDValue, 2> Result; 6427 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 6428 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6429 DAG, Kind, LL, LH, RL, RH); 6430 if (Ok) { 6431 assert(Result.size() == 2); 6432 Lo = Result[0]; 6433 Hi = Result[1]; 6434 } 6435 return Ok; 6436 } 6437 6438 // Check that (every element of) Z is undef or not an exact multiple of BW. 6439 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 6440 return ISD::matchUnaryPredicate( 6441 Z, 6442 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 6443 true); 6444 } 6445 6446 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 6447 SelectionDAG &DAG) const { 6448 EVT VT = Node->getValueType(0); 6449 6450 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6451 !isOperationLegalOrCustom(ISD::SRL, VT) || 6452 !isOperationLegalOrCustom(ISD::SUB, VT) || 6453 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6454 return false; 6455 6456 SDValue X = Node->getOperand(0); 6457 SDValue Y = Node->getOperand(1); 6458 SDValue Z = Node->getOperand(2); 6459 6460 unsigned BW = VT.getScalarSizeInBits(); 6461 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6462 SDLoc DL(SDValue(Node, 0)); 6463 6464 EVT ShVT = Z.getValueType(); 6465 6466 // If a funnel shift in the other direction is more supported, use it. 6467 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 6468 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6469 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 6470 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6471 // fshl X, Y, Z -> fshr X, Y, -Z 6472 // fshr X, Y, Z -> fshl X, Y, -Z 6473 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6474 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 6475 } else { 6476 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 6477 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 6478 SDValue One = DAG.getConstant(1, DL, ShVT); 6479 if (IsFSHL) { 6480 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6481 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 6482 } else { 6483 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6484 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 6485 } 6486 Z = DAG.getNOT(DL, Z, ShVT); 6487 } 6488 Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 6489 return true; 6490 } 6491 6492 SDValue ShX, ShY; 6493 SDValue ShAmt, InvShAmt; 6494 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6495 // fshl: X << C | Y >> (BW - C) 6496 // fshr: X << (BW - C) | Y >> C 6497 // where C = Z % BW is not zero 6498 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6499 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6500 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6501 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6502 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6503 } else { 6504 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6505 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6506 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 6507 if (isPowerOf2_32(BW)) { 6508 // Z % BW -> Z & (BW - 1) 6509 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6510 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6511 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 6512 } else { 6513 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6514 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6515 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 6516 } 6517 6518 SDValue One = DAG.getConstant(1, DL, ShVT); 6519 if (IsFSHL) { 6520 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 6521 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 6522 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 6523 } else { 6524 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 6525 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 6526 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 6527 } 6528 } 6529 Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6530 return true; 6531 } 6532 6533 // TODO: Merge with expandFunnelShift. 6534 bool TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 6535 SDValue &Result, SelectionDAG &DAG) const { 6536 EVT VT = Node->getValueType(0); 6537 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6538 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6539 SDValue Op0 = Node->getOperand(0); 6540 SDValue Op1 = Node->getOperand(1); 6541 SDLoc DL(SDValue(Node, 0)); 6542 6543 EVT ShVT = Op1.getValueType(); 6544 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6545 6546 // If a rotate in the other direction is supported, use it. 6547 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6548 if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 6549 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6550 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 6551 return true; 6552 } 6553 6554 if (!AllowVectorOps && VT.isVector() && 6555 (!isOperationLegalOrCustom(ISD::SHL, VT) || 6556 !isOperationLegalOrCustom(ISD::SRL, VT) || 6557 !isOperationLegalOrCustom(ISD::SUB, VT) || 6558 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6559 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6560 return false; 6561 6562 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6563 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6564 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6565 SDValue ShVal; 6566 SDValue HsVal; 6567 if (isPowerOf2_32(EltSizeInBits)) { 6568 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 6569 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 6570 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6571 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6572 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6573 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6574 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 6575 } else { 6576 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 6577 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 6578 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6579 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 6580 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6581 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 6582 SDValue One = DAG.getConstant(1, DL, ShVT); 6583 HsVal = 6584 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 6585 } 6586 Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 6587 return true; 6588 } 6589 6590 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6591 SelectionDAG &DAG) const { 6592 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6593 SDValue Src = Node->getOperand(OpNo); 6594 EVT SrcVT = Src.getValueType(); 6595 EVT DstVT = Node->getValueType(0); 6596 SDLoc dl(SDValue(Node, 0)); 6597 6598 // FIXME: Only f32 to i64 conversions are supported. 6599 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6600 return false; 6601 6602 if (Node->isStrictFPOpcode()) 6603 // When a NaN is converted to an integer a trap is allowed. We can't 6604 // use this expansion here because it would eliminate that trap. Other 6605 // traps are also allowed and cannot be eliminated. See 6606 // IEEE 754-2008 sec 5.8. 6607 return false; 6608 6609 // Expand f32 -> i64 conversion 6610 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6611 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 6612 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6613 EVT IntVT = SrcVT.changeTypeToInteger(); 6614 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6615 6616 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6617 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6618 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6619 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6620 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6621 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6622 6623 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6624 6625 SDValue ExponentBits = DAG.getNode( 6626 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6627 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6628 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6629 6630 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6631 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6632 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6633 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6634 6635 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6636 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6637 DAG.getConstant(0x00800000, dl, IntVT)); 6638 6639 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6640 6641 R = DAG.getSelectCC( 6642 dl, Exponent, ExponentLoBit, 6643 DAG.getNode(ISD::SHL, dl, DstVT, R, 6644 DAG.getZExtOrTrunc( 6645 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6646 dl, IntShVT)), 6647 DAG.getNode(ISD::SRL, dl, DstVT, R, 6648 DAG.getZExtOrTrunc( 6649 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6650 dl, IntShVT)), 6651 ISD::SETGT); 6652 6653 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6654 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6655 6656 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6657 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6658 return true; 6659 } 6660 6661 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6662 SDValue &Chain, 6663 SelectionDAG &DAG) const { 6664 SDLoc dl(SDValue(Node, 0)); 6665 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6666 SDValue Src = Node->getOperand(OpNo); 6667 6668 EVT SrcVT = Src.getValueType(); 6669 EVT DstVT = Node->getValueType(0); 6670 EVT SetCCVT = 6671 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6672 EVT DstSetCCVT = 6673 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6674 6675 // Only expand vector types if we have the appropriate vector bit operations. 6676 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6677 ISD::FP_TO_SINT; 6678 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6679 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6680 return false; 6681 6682 // If the maximum float value is smaller then the signed integer range, 6683 // the destination signmask can't be represented by the float, so we can 6684 // just use FP_TO_SINT directly. 6685 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6686 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 6687 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6688 if (APFloat::opOverflow & 6689 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6690 if (Node->isStrictFPOpcode()) { 6691 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6692 { Node->getOperand(0), Src }); 6693 Chain = Result.getValue(1); 6694 } else 6695 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6696 return true; 6697 } 6698 6699 // Don't expand it if there isn't cheap fsub instruction. 6700 if (!isOperationLegalOrCustom( 6701 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 6702 return false; 6703 6704 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6705 SDValue Sel; 6706 6707 if (Node->isStrictFPOpcode()) { 6708 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6709 Node->getOperand(0), /*IsSignaling*/ true); 6710 Chain = Sel.getValue(1); 6711 } else { 6712 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6713 } 6714 6715 bool Strict = Node->isStrictFPOpcode() || 6716 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6717 6718 if (Strict) { 6719 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6720 // signmask then offset (the result of which should be fully representable). 6721 // Sel = Src < 0x8000000000000000 6722 // FltOfs = select Sel, 0, 0x8000000000000000 6723 // IntOfs = select Sel, 0, 0x8000000000000000 6724 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6725 6726 // TODO: Should any fast-math-flags be set for the FSUB? 6727 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6728 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6729 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6730 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6731 DAG.getConstant(0, dl, DstVT), 6732 DAG.getConstant(SignMask, dl, DstVT)); 6733 SDValue SInt; 6734 if (Node->isStrictFPOpcode()) { 6735 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6736 { Chain, Src, FltOfs }); 6737 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6738 { Val.getValue(1), Val }); 6739 Chain = SInt.getValue(1); 6740 } else { 6741 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6742 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6743 } 6744 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6745 } else { 6746 // Expand based on maximum range of FP_TO_SINT: 6747 // True = fp_to_sint(Src) 6748 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6749 // Result = select (Src < 0x8000000000000000), True, False 6750 6751 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6752 // TODO: Should any fast-math-flags be set for the FSUB? 6753 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6754 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6755 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6756 DAG.getConstant(SignMask, dl, DstVT)); 6757 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6758 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6759 } 6760 return true; 6761 } 6762 6763 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6764 SDValue &Chain, 6765 SelectionDAG &DAG) const { 6766 // This transform is not correct for converting 0 when rounding mode is set 6767 // to round toward negative infinity which will produce -0.0. So disable under 6768 // strictfp. 6769 if (Node->isStrictFPOpcode()) 6770 return false; 6771 6772 SDValue Src = Node->getOperand(0); 6773 EVT SrcVT = Src.getValueType(); 6774 EVT DstVT = Node->getValueType(0); 6775 6776 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6777 return false; 6778 6779 // Only expand vector types if we have the appropriate vector bit operations. 6780 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6781 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6782 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6783 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6784 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6785 return false; 6786 6787 SDLoc dl(SDValue(Node, 0)); 6788 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6789 6790 // Implementation of unsigned i64 to f64 following the algorithm in 6791 // __floatundidf in compiler_rt. This implementation performs rounding 6792 // correctly in all rounding modes with the exception of converting 0 6793 // when rounding toward negative infinity. In that case the fsub will produce 6794 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 6795 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6796 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6797 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6798 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6799 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6800 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6801 6802 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6803 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6804 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6805 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6806 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6807 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6808 SDValue HiSub = 6809 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6810 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6811 return true; 6812 } 6813 6814 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6815 SelectionDAG &DAG) const { 6816 SDLoc dl(Node); 6817 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6818 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6819 EVT VT = Node->getValueType(0); 6820 6821 if (VT.isScalableVector()) 6822 report_fatal_error( 6823 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 6824 6825 if (isOperationLegalOrCustom(NewOp, VT)) { 6826 SDValue Quiet0 = Node->getOperand(0); 6827 SDValue Quiet1 = Node->getOperand(1); 6828 6829 if (!Node->getFlags().hasNoNaNs()) { 6830 // Insert canonicalizes if it's possible we need to quiet to get correct 6831 // sNaN behavior. 6832 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6833 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6834 Node->getFlags()); 6835 } 6836 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6837 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6838 Node->getFlags()); 6839 } 6840 } 6841 6842 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6843 } 6844 6845 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6846 // instead if there are no NaNs. 6847 if (Node->getFlags().hasNoNaNs()) { 6848 unsigned IEEE2018Op = 6849 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6850 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6851 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6852 Node->getOperand(1), Node->getFlags()); 6853 } 6854 } 6855 6856 // If none of the above worked, but there are no NaNs, then expand to 6857 // a compare/select sequence. This is required for correctness since 6858 // InstCombine might have canonicalized a fcmp+select sequence to a 6859 // FMINNUM/FMAXNUM node. If we were to fall through to the default 6860 // expansion to libcall, we might introduce a link-time dependency 6861 // on libm into a file that originally did not have one. 6862 if (Node->getFlags().hasNoNaNs()) { 6863 ISD::CondCode Pred = 6864 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 6865 SDValue Op1 = Node->getOperand(0); 6866 SDValue Op2 = Node->getOperand(1); 6867 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 6868 // Copy FMF flags, but always set the no-signed-zeros flag 6869 // as this is implied by the FMINNUM/FMAXNUM semantics. 6870 SDNodeFlags Flags = Node->getFlags(); 6871 Flags.setNoSignedZeros(true); 6872 SelCC->setFlags(Flags); 6873 return SelCC; 6874 } 6875 6876 return SDValue(); 6877 } 6878 6879 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 6880 SelectionDAG &DAG) const { 6881 SDLoc dl(Node); 6882 EVT VT = Node->getValueType(0); 6883 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6884 SDValue Op = Node->getOperand(0); 6885 unsigned Len = VT.getScalarSizeInBits(); 6886 assert(VT.isInteger() && "CTPOP not implemented for this type."); 6887 6888 // TODO: Add support for irregular type lengths. 6889 if (!(Len <= 128 && Len % 8 == 0)) 6890 return false; 6891 6892 // Only expand vector types if we have the appropriate vector bit operations. 6893 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 6894 !isOperationLegalOrCustom(ISD::SUB, VT) || 6895 !isOperationLegalOrCustom(ISD::SRL, VT) || 6896 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 6897 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6898 return false; 6899 6900 // This is the "best" algorithm from 6901 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 6902 SDValue Mask55 = 6903 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 6904 SDValue Mask33 = 6905 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 6906 SDValue Mask0F = 6907 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 6908 SDValue Mask01 = 6909 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 6910 6911 // v = v - ((v >> 1) & 0x55555555...) 6912 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 6913 DAG.getNode(ISD::AND, dl, VT, 6914 DAG.getNode(ISD::SRL, dl, VT, Op, 6915 DAG.getConstant(1, dl, ShVT)), 6916 Mask55)); 6917 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 6918 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 6919 DAG.getNode(ISD::AND, dl, VT, 6920 DAG.getNode(ISD::SRL, dl, VT, Op, 6921 DAG.getConstant(2, dl, ShVT)), 6922 Mask33)); 6923 // v = (v + (v >> 4)) & 0x0F0F0F0F... 6924 Op = DAG.getNode(ISD::AND, dl, VT, 6925 DAG.getNode(ISD::ADD, dl, VT, Op, 6926 DAG.getNode(ISD::SRL, dl, VT, Op, 6927 DAG.getConstant(4, dl, ShVT))), 6928 Mask0F); 6929 // v = (v * 0x01010101...) >> (Len - 8) 6930 if (Len > 8) 6931 Op = 6932 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 6933 DAG.getConstant(Len - 8, dl, ShVT)); 6934 6935 Result = Op; 6936 return true; 6937 } 6938 6939 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 6940 SelectionDAG &DAG) const { 6941 SDLoc dl(Node); 6942 EVT VT = Node->getValueType(0); 6943 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6944 SDValue Op = Node->getOperand(0); 6945 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6946 6947 // If the non-ZERO_UNDEF version is supported we can use that instead. 6948 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 6949 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 6950 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 6951 return true; 6952 } 6953 6954 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6955 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 6956 EVT SetCCVT = 6957 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6958 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 6959 SDValue Zero = DAG.getConstant(0, dl, VT); 6960 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6961 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6962 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 6963 return true; 6964 } 6965 6966 // Only expand vector types if we have the appropriate vector bit operations. 6967 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6968 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 6969 !isOperationLegalOrCustom(ISD::SRL, VT) || 6970 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6971 return false; 6972 6973 // for now, we do this: 6974 // x = x | (x >> 1); 6975 // x = x | (x >> 2); 6976 // ... 6977 // x = x | (x >>16); 6978 // x = x | (x >>32); // for 64-bit input 6979 // return popcount(~x); 6980 // 6981 // Ref: "Hacker's Delight" by Henry Warren 6982 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 6983 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 6984 Op = DAG.getNode(ISD::OR, dl, VT, Op, 6985 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 6986 } 6987 Op = DAG.getNOT(dl, Op, VT); 6988 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 6989 return true; 6990 } 6991 6992 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 6993 SelectionDAG &DAG) const { 6994 SDLoc dl(Node); 6995 EVT VT = Node->getValueType(0); 6996 SDValue Op = Node->getOperand(0); 6997 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6998 6999 // If the non-ZERO_UNDEF version is supported we can use that instead. 7000 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 7001 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 7002 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 7003 return true; 7004 } 7005 7006 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7007 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 7008 EVT SetCCVT = 7009 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7010 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 7011 SDValue Zero = DAG.getConstant(0, dl, VT); 7012 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7013 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 7014 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 7015 return true; 7016 } 7017 7018 // Only expand vector types if we have the appropriate vector bit operations. 7019 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7020 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7021 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 7022 !isOperationLegalOrCustom(ISD::SUB, VT) || 7023 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 7024 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7025 return false; 7026 7027 // for now, we use: { return popcount(~x & (x - 1)); } 7028 // unless the target has ctlz but not ctpop, in which case we use: 7029 // { return 32 - nlz(~x & (x-1)); } 7030 // Ref: "Hacker's Delight" by Henry Warren 7031 SDValue Tmp = DAG.getNode( 7032 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 7033 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 7034 7035 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 7036 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 7037 Result = 7038 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 7039 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 7040 return true; 7041 } 7042 7043 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 7044 return true; 7045 } 7046 7047 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 7048 SelectionDAG &DAG, bool IsNegative) const { 7049 SDLoc dl(N); 7050 EVT VT = N->getValueType(0); 7051 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7052 SDValue Op = N->getOperand(0); 7053 7054 // abs(x) -> smax(x,sub(0,x)) 7055 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7056 isOperationLegal(ISD::SMAX, VT)) { 7057 SDValue Zero = DAG.getConstant(0, dl, VT); 7058 Result = DAG.getNode(ISD::SMAX, dl, VT, Op, 7059 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7060 return true; 7061 } 7062 7063 // abs(x) -> umin(x,sub(0,x)) 7064 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7065 isOperationLegal(ISD::UMIN, VT)) { 7066 SDValue Zero = DAG.getConstant(0, dl, VT); 7067 Result = DAG.getNode(ISD::UMIN, dl, VT, Op, 7068 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7069 return true; 7070 } 7071 7072 // 0 - abs(x) -> smin(x, sub(0,x)) 7073 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 7074 isOperationLegal(ISD::SMIN, VT)) { 7075 SDValue Zero = DAG.getConstant(0, dl, VT); 7076 Result = DAG.getNode(ISD::SMIN, dl, VT, Op, 7077 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7078 return true; 7079 } 7080 7081 // Only expand vector types if we have the appropriate vector operations. 7082 if (VT.isVector() && 7083 (!isOperationLegalOrCustom(ISD::SRA, VT) || 7084 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 7085 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 7086 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7087 return false; 7088 7089 SDValue Shift = 7090 DAG.getNode(ISD::SRA, dl, VT, Op, 7091 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 7092 if (!IsNegative) { 7093 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 7094 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 7095 } else { 7096 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 7097 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 7098 Result = DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 7099 } 7100 return true; 7101 } 7102 7103 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 7104 SDLoc dl(N); 7105 EVT VT = N->getValueType(0); 7106 SDValue Op = N->getOperand(0); 7107 7108 if (!VT.isSimple()) 7109 return SDValue(); 7110 7111 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7112 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 7113 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 7114 default: 7115 return SDValue(); 7116 case MVT::i16: 7117 // Use a rotate by 8. This can be further expanded if necessary. 7118 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7119 case MVT::i32: 7120 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7121 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7122 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7123 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7124 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7125 DAG.getConstant(0xFF0000, dl, VT)); 7126 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 7127 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7128 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7129 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7130 case MVT::i64: 7131 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7132 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7133 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7134 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7135 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7136 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7137 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7138 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7139 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 7140 DAG.getConstant(255ULL<<48, dl, VT)); 7141 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 7142 DAG.getConstant(255ULL<<40, dl, VT)); 7143 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 7144 DAG.getConstant(255ULL<<32, dl, VT)); 7145 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 7146 DAG.getConstant(255ULL<<24, dl, VT)); 7147 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7148 DAG.getConstant(255ULL<<16, dl, VT)); 7149 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 7150 DAG.getConstant(255ULL<<8 , dl, VT)); 7151 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 7152 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 7153 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7154 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7155 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 7156 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7157 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 7158 } 7159 } 7160 7161 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 7162 SDLoc dl(N); 7163 EVT VT = N->getValueType(0); 7164 SDValue Op = N->getOperand(0); 7165 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7166 unsigned Sz = VT.getScalarSizeInBits(); 7167 7168 SDValue Tmp, Tmp2, Tmp3; 7169 7170 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 7171 // and finally the i1 pairs. 7172 // TODO: We can easily support i4/i2 legal types if any target ever does. 7173 if (Sz >= 8 && isPowerOf2_32(Sz)) { 7174 // Create the masks - repeating the pattern every byte. 7175 APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0)); 7176 APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC)); 7177 APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA)); 7178 APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 7179 APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33)); 7180 APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55)); 7181 7182 // BSWAP if the type is wider than a single byte. 7183 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 7184 7185 // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4) 7186 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT)); 7187 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT)); 7188 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT)); 7189 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 7190 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7191 7192 // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2) 7193 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT)); 7194 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT)); 7195 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT)); 7196 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 7197 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7198 7199 // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1) 7200 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT)); 7201 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT)); 7202 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT)); 7203 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 7204 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7205 return Tmp; 7206 } 7207 7208 Tmp = DAG.getConstant(0, dl, VT); 7209 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 7210 if (I < J) 7211 Tmp2 = 7212 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 7213 else 7214 Tmp2 = 7215 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 7216 7217 APInt Shift(Sz, 1); 7218 Shift <<= J; 7219 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 7220 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 7221 } 7222 7223 return Tmp; 7224 } 7225 7226 std::pair<SDValue, SDValue> 7227 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 7228 SelectionDAG &DAG) const { 7229 SDLoc SL(LD); 7230 SDValue Chain = LD->getChain(); 7231 SDValue BasePTR = LD->getBasePtr(); 7232 EVT SrcVT = LD->getMemoryVT(); 7233 EVT DstVT = LD->getValueType(0); 7234 ISD::LoadExtType ExtType = LD->getExtensionType(); 7235 7236 if (SrcVT.isScalableVector()) 7237 report_fatal_error("Cannot scalarize scalable vector loads"); 7238 7239 unsigned NumElem = SrcVT.getVectorNumElements(); 7240 7241 EVT SrcEltVT = SrcVT.getScalarType(); 7242 EVT DstEltVT = DstVT.getScalarType(); 7243 7244 // A vector must always be stored in memory as-is, i.e. without any padding 7245 // between the elements, since various code depend on it, e.g. in the 7246 // handling of a bitcast of a vector type to int, which may be done with a 7247 // vector store followed by an integer load. A vector that does not have 7248 // elements that are byte-sized must therefore be stored as an integer 7249 // built out of the extracted vector elements. 7250 if (!SrcEltVT.isByteSized()) { 7251 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 7252 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 7253 7254 unsigned NumSrcBits = SrcVT.getSizeInBits(); 7255 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 7256 7257 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 7258 SDValue SrcEltBitMask = DAG.getConstant( 7259 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 7260 7261 // Load the whole vector and avoid masking off the top bits as it makes 7262 // the codegen worse. 7263 SDValue Load = 7264 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 7265 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 7266 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7267 7268 SmallVector<SDValue, 8> Vals; 7269 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7270 unsigned ShiftIntoIdx = 7271 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7272 SDValue ShiftAmount = 7273 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 7274 LoadVT, SL, /*LegalTypes=*/false); 7275 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 7276 SDValue Elt = 7277 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 7278 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 7279 7280 if (ExtType != ISD::NON_EXTLOAD) { 7281 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 7282 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 7283 } 7284 7285 Vals.push_back(Scalar); 7286 } 7287 7288 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7289 return std::make_pair(Value, Load.getValue(1)); 7290 } 7291 7292 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 7293 assert(SrcEltVT.isByteSized()); 7294 7295 SmallVector<SDValue, 8> Vals; 7296 SmallVector<SDValue, 8> LoadChains; 7297 7298 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7299 SDValue ScalarLoad = 7300 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 7301 LD->getPointerInfo().getWithOffset(Idx * Stride), 7302 SrcEltVT, LD->getOriginalAlign(), 7303 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7304 7305 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 7306 7307 Vals.push_back(ScalarLoad.getValue(0)); 7308 LoadChains.push_back(ScalarLoad.getValue(1)); 7309 } 7310 7311 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 7312 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7313 7314 return std::make_pair(Value, NewChain); 7315 } 7316 7317 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 7318 SelectionDAG &DAG) const { 7319 SDLoc SL(ST); 7320 7321 SDValue Chain = ST->getChain(); 7322 SDValue BasePtr = ST->getBasePtr(); 7323 SDValue Value = ST->getValue(); 7324 EVT StVT = ST->getMemoryVT(); 7325 7326 if (StVT.isScalableVector()) 7327 report_fatal_error("Cannot scalarize scalable vector stores"); 7328 7329 // The type of the data we want to save 7330 EVT RegVT = Value.getValueType(); 7331 EVT RegSclVT = RegVT.getScalarType(); 7332 7333 // The type of data as saved in memory. 7334 EVT MemSclVT = StVT.getScalarType(); 7335 7336 unsigned NumElem = StVT.getVectorNumElements(); 7337 7338 // A vector must always be stored in memory as-is, i.e. without any padding 7339 // between the elements, since various code depend on it, e.g. in the 7340 // handling of a bitcast of a vector type to int, which may be done with a 7341 // vector store followed by an integer load. A vector that does not have 7342 // elements that are byte-sized must therefore be stored as an integer 7343 // built out of the extracted vector elements. 7344 if (!MemSclVT.isByteSized()) { 7345 unsigned NumBits = StVT.getSizeInBits(); 7346 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 7347 7348 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 7349 7350 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7351 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7352 DAG.getVectorIdxConstant(Idx, SL)); 7353 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 7354 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 7355 unsigned ShiftIntoIdx = 7356 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7357 SDValue ShiftAmount = 7358 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 7359 SDValue ShiftedElt = 7360 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 7361 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 7362 } 7363 7364 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 7365 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7366 ST->getAAInfo()); 7367 } 7368 7369 // Store Stride in bytes 7370 unsigned Stride = MemSclVT.getSizeInBits() / 8; 7371 assert(Stride && "Zero stride!"); 7372 // Extract each of the elements from the original vector and save them into 7373 // memory individually. 7374 SmallVector<SDValue, 8> Stores; 7375 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7376 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7377 DAG.getVectorIdxConstant(Idx, SL)); 7378 7379 SDValue Ptr = 7380 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 7381 7382 // This scalar TruncStore may be illegal, but we legalize it later. 7383 SDValue Store = DAG.getTruncStore( 7384 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 7385 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7386 ST->getAAInfo()); 7387 7388 Stores.push_back(Store); 7389 } 7390 7391 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 7392 } 7393 7394 std::pair<SDValue, SDValue> 7395 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 7396 assert(LD->getAddressingMode() == ISD::UNINDEXED && 7397 "unaligned indexed loads not implemented!"); 7398 SDValue Chain = LD->getChain(); 7399 SDValue Ptr = LD->getBasePtr(); 7400 EVT VT = LD->getValueType(0); 7401 EVT LoadedVT = LD->getMemoryVT(); 7402 SDLoc dl(LD); 7403 auto &MF = DAG.getMachineFunction(); 7404 7405 if (VT.isFloatingPoint() || VT.isVector()) { 7406 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 7407 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 7408 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 7409 LoadedVT.isVector()) { 7410 // Scalarize the load and let the individual components be handled. 7411 return scalarizeVectorLoad(LD, DAG); 7412 } 7413 7414 // Expand to a (misaligned) integer load of the same size, 7415 // then bitconvert to floating point or vector. 7416 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 7417 LD->getMemOperand()); 7418 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 7419 if (LoadedVT != VT) 7420 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 7421 ISD::ANY_EXTEND, dl, VT, Result); 7422 7423 return std::make_pair(Result, newLoad.getValue(1)); 7424 } 7425 7426 // Copy the value to a (aligned) stack slot using (unaligned) integer 7427 // loads and stores, then do a (aligned) load from the stack slot. 7428 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 7429 unsigned LoadedBytes = LoadedVT.getStoreSize(); 7430 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7431 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 7432 7433 // Make sure the stack slot is also aligned for the register type. 7434 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 7435 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 7436 SmallVector<SDValue, 8> Stores; 7437 SDValue StackPtr = StackBase; 7438 unsigned Offset = 0; 7439 7440 EVT PtrVT = Ptr.getValueType(); 7441 EVT StackPtrVT = StackPtr.getValueType(); 7442 7443 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7444 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7445 7446 // Do all but one copies using the full register width. 7447 for (unsigned i = 1; i < NumRegs; i++) { 7448 // Load one integer register's worth from the original location. 7449 SDValue Load = DAG.getLoad( 7450 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 7451 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7452 LD->getAAInfo()); 7453 // Follow the load with a store to the stack slot. Remember the store. 7454 Stores.push_back(DAG.getStore( 7455 Load.getValue(1), dl, Load, StackPtr, 7456 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 7457 // Increment the pointers. 7458 Offset += RegBytes; 7459 7460 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7461 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7462 } 7463 7464 // The last copy may be partial. Do an extending load. 7465 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 7466 8 * (LoadedBytes - Offset)); 7467 SDValue Load = 7468 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 7469 LD->getPointerInfo().getWithOffset(Offset), MemVT, 7470 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7471 LD->getAAInfo()); 7472 // Follow the load with a store to the stack slot. Remember the store. 7473 // On big-endian machines this requires a truncating store to ensure 7474 // that the bits end up in the right place. 7475 Stores.push_back(DAG.getTruncStore( 7476 Load.getValue(1), dl, Load, StackPtr, 7477 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 7478 7479 // The order of the stores doesn't matter - say it with a TokenFactor. 7480 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7481 7482 // Finally, perform the original load only redirected to the stack slot. 7483 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 7484 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 7485 LoadedVT); 7486 7487 // Callers expect a MERGE_VALUES node. 7488 return std::make_pair(Load, TF); 7489 } 7490 7491 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 7492 "Unaligned load of unsupported type."); 7493 7494 // Compute the new VT that is half the size of the old one. This is an 7495 // integer MVT. 7496 unsigned NumBits = LoadedVT.getSizeInBits(); 7497 EVT NewLoadedVT; 7498 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 7499 NumBits >>= 1; 7500 7501 Align Alignment = LD->getOriginalAlign(); 7502 unsigned IncrementSize = NumBits / 8; 7503 ISD::LoadExtType HiExtType = LD->getExtensionType(); 7504 7505 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 7506 if (HiExtType == ISD::NON_EXTLOAD) 7507 HiExtType = ISD::ZEXTLOAD; 7508 7509 // Load the value in two parts 7510 SDValue Lo, Hi; 7511 if (DAG.getDataLayout().isLittleEndian()) { 7512 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7513 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7514 LD->getAAInfo()); 7515 7516 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7517 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 7518 LD->getPointerInfo().getWithOffset(IncrementSize), 7519 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7520 LD->getAAInfo()); 7521 } else { 7522 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7523 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7524 LD->getAAInfo()); 7525 7526 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7527 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 7528 LD->getPointerInfo().getWithOffset(IncrementSize), 7529 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7530 LD->getAAInfo()); 7531 } 7532 7533 // aggregate the two parts 7534 SDValue ShiftAmount = 7535 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 7536 DAG.getDataLayout())); 7537 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 7538 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 7539 7540 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 7541 Hi.getValue(1)); 7542 7543 return std::make_pair(Result, TF); 7544 } 7545 7546 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 7547 SelectionDAG &DAG) const { 7548 assert(ST->getAddressingMode() == ISD::UNINDEXED && 7549 "unaligned indexed stores not implemented!"); 7550 SDValue Chain = ST->getChain(); 7551 SDValue Ptr = ST->getBasePtr(); 7552 SDValue Val = ST->getValue(); 7553 EVT VT = Val.getValueType(); 7554 Align Alignment = ST->getOriginalAlign(); 7555 auto &MF = DAG.getMachineFunction(); 7556 EVT StoreMemVT = ST->getMemoryVT(); 7557 7558 SDLoc dl(ST); 7559 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 7560 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 7561 if (isTypeLegal(intVT)) { 7562 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 7563 StoreMemVT.isVector()) { 7564 // Scalarize the store and let the individual components be handled. 7565 SDValue Result = scalarizeVectorStore(ST, DAG); 7566 return Result; 7567 } 7568 // Expand to a bitconvert of the value to the integer type of the 7569 // same size, then a (misaligned) int store. 7570 // FIXME: Does not handle truncating floating point stores! 7571 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 7572 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 7573 Alignment, ST->getMemOperand()->getFlags()); 7574 return Result; 7575 } 7576 // Do a (aligned) store to a stack slot, then copy from the stack slot 7577 // to the final destination using (unaligned) integer loads and stores. 7578 MVT RegVT = getRegisterType( 7579 *DAG.getContext(), 7580 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 7581 EVT PtrVT = Ptr.getValueType(); 7582 unsigned StoredBytes = StoreMemVT.getStoreSize(); 7583 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7584 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 7585 7586 // Make sure the stack slot is also aligned for the register type. 7587 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 7588 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 7589 7590 // Perform the original store, only redirected to the stack slot. 7591 SDValue Store = DAG.getTruncStore( 7592 Chain, dl, Val, StackPtr, 7593 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 7594 7595 EVT StackPtrVT = StackPtr.getValueType(); 7596 7597 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7598 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7599 SmallVector<SDValue, 8> Stores; 7600 unsigned Offset = 0; 7601 7602 // Do all but one copies using the full register width. 7603 for (unsigned i = 1; i < NumRegs; i++) { 7604 // Load one integer register's worth from the stack slot. 7605 SDValue Load = DAG.getLoad( 7606 RegVT, dl, Store, StackPtr, 7607 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 7608 // Store it to the final location. Remember the store. 7609 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 7610 ST->getPointerInfo().getWithOffset(Offset), 7611 ST->getOriginalAlign(), 7612 ST->getMemOperand()->getFlags())); 7613 // Increment the pointers. 7614 Offset += RegBytes; 7615 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7616 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7617 } 7618 7619 // The last store may be partial. Do a truncating store. On big-endian 7620 // machines this requires an extending load from the stack slot to ensure 7621 // that the bits are in the right place. 7622 EVT LoadMemVT = 7623 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 7624 7625 // Load from the stack slot. 7626 SDValue Load = DAG.getExtLoad( 7627 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 7628 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 7629 7630 Stores.push_back( 7631 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 7632 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 7633 ST->getOriginalAlign(), 7634 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 7635 // The order of the stores doesn't matter - say it with a TokenFactor. 7636 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7637 return Result; 7638 } 7639 7640 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 7641 "Unaligned store of unknown type."); 7642 // Get the half-size VT 7643 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 7644 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 7645 unsigned IncrementSize = NumBits / 8; 7646 7647 // Divide the stored value in two parts. 7648 SDValue ShiftAmount = DAG.getConstant( 7649 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 7650 SDValue Lo = Val; 7651 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 7652 7653 // Store the two parts 7654 SDValue Store1, Store2; 7655 Store1 = DAG.getTruncStore(Chain, dl, 7656 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 7657 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 7658 ST->getMemOperand()->getFlags()); 7659 7660 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7661 Store2 = DAG.getTruncStore( 7662 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 7663 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 7664 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 7665 7666 SDValue Result = 7667 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 7668 return Result; 7669 } 7670 7671 SDValue 7672 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7673 const SDLoc &DL, EVT DataVT, 7674 SelectionDAG &DAG, 7675 bool IsCompressedMemory) const { 7676 SDValue Increment; 7677 EVT AddrVT = Addr.getValueType(); 7678 EVT MaskVT = Mask.getValueType(); 7679 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 7680 "Incompatible types of Data and Mask"); 7681 if (IsCompressedMemory) { 7682 if (DataVT.isScalableVector()) 7683 report_fatal_error( 7684 "Cannot currently handle compressed memory with scalable vectors"); 7685 // Incrementing the pointer according to number of '1's in the mask. 7686 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7687 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7688 if (MaskIntVT.getSizeInBits() < 32) { 7689 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7690 MaskIntVT = MVT::i32; 7691 } 7692 7693 // Count '1's with POPCNT. 7694 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7695 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7696 // Scale is an element size in bytes. 7697 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7698 AddrVT); 7699 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7700 } else if (DataVT.isScalableVector()) { 7701 Increment = DAG.getVScale(DL, AddrVT, 7702 APInt(AddrVT.getFixedSizeInBits(), 7703 DataVT.getStoreSize().getKnownMinSize())); 7704 } else 7705 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7706 7707 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7708 } 7709 7710 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 7711 SDValue Idx, 7712 EVT VecVT, 7713 const SDLoc &dl) { 7714 if (!VecVT.isScalableVector() && isa<ConstantSDNode>(Idx)) 7715 return Idx; 7716 7717 EVT IdxVT = Idx.getValueType(); 7718 unsigned NElts = VecVT.getVectorMinNumElements(); 7719 if (VecVT.isScalableVector()) { 7720 // If this is a constant index and we know the value is less than the 7721 // minimum number of elements then it's safe to return Idx. 7722 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 7723 if (IdxCst->getZExtValue() < NElts) 7724 return Idx; 7725 SDValue VS = 7726 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 7727 SDValue Sub = 7728 DAG.getNode(ISD::SUB, dl, IdxVT, VS, DAG.getConstant(1, dl, IdxVT)); 7729 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 7730 } 7731 if (isPowerOf2_32(NElts)) { 7732 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 7733 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7734 DAG.getConstant(Imm, dl, IdxVT)); 7735 } 7736 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7737 DAG.getConstant(NElts - 1, dl, IdxVT)); 7738 } 7739 7740 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7741 SDValue VecPtr, EVT VecVT, 7742 SDValue Index) const { 7743 SDLoc dl(Index); 7744 // Make sure the index type is big enough to compute in. 7745 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7746 7747 EVT EltVT = VecVT.getVectorElementType(); 7748 7749 // Calculate the element offset and add it to the pointer. 7750 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 7751 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 7752 "Converting bits to bytes lost precision"); 7753 7754 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 7755 7756 EVT IdxVT = Index.getValueType(); 7757 7758 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7759 DAG.getConstant(EltSize, dl, IdxVT)); 7760 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7761 } 7762 7763 //===----------------------------------------------------------------------===// 7764 // Implementation of Emulated TLS Model 7765 //===----------------------------------------------------------------------===// 7766 7767 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7768 SelectionDAG &DAG) const { 7769 // Access to address of TLS varialbe xyz is lowered to a function call: 7770 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7771 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7772 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7773 SDLoc dl(GA); 7774 7775 ArgListTy Args; 7776 ArgListEntry Entry; 7777 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7778 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7779 StringRef EmuTlsVarName(NameString); 7780 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7781 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7782 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7783 Entry.Ty = VoidPtrType; 7784 Args.push_back(Entry); 7785 7786 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7787 7788 TargetLowering::CallLoweringInfo CLI(DAG); 7789 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7790 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7791 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7792 7793 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7794 // At last for X86 targets, maybe good for other targets too? 7795 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7796 MFI.setAdjustsStack(true); // Is this only for X86 target? 7797 MFI.setHasCalls(true); 7798 7799 assert((GA->getOffset() == 0) && 7800 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7801 return CallResult.first; 7802 } 7803 7804 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7805 SelectionDAG &DAG) const { 7806 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7807 if (!isCtlzFast()) 7808 return SDValue(); 7809 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7810 SDLoc dl(Op); 7811 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7812 if (C->isNullValue() && CC == ISD::SETEQ) { 7813 EVT VT = Op.getOperand(0).getValueType(); 7814 SDValue Zext = Op.getOperand(0); 7815 if (VT.bitsLT(MVT::i32)) { 7816 VT = MVT::i32; 7817 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7818 } 7819 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7820 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7821 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7822 DAG.getConstant(Log2b, dl, MVT::i32)); 7823 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7824 } 7825 } 7826 return SDValue(); 7827 } 7828 7829 // Convert redundant addressing modes (e.g. scaling is redundant 7830 // when accessing bytes). 7831 ISD::MemIndexType 7832 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT, 7833 SDValue Offsets) const { 7834 bool IsScaledIndex = 7835 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED); 7836 bool IsSignedIndex = 7837 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED); 7838 7839 // Scaling is unimportant for bytes, canonicalize to unscaled. 7840 if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) { 7841 IsScaledIndex = false; 7842 IndexType = IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED; 7843 } 7844 7845 return IndexType; 7846 } 7847 7848 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 7849 SDValue Op0 = Node->getOperand(0); 7850 SDValue Op1 = Node->getOperand(1); 7851 EVT VT = Op0.getValueType(); 7852 unsigned Opcode = Node->getOpcode(); 7853 SDLoc DL(Node); 7854 7855 // umin(x,y) -> sub(x,usubsat(x,y)) 7856 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 7857 isOperationLegal(ISD::USUBSAT, VT)) { 7858 return DAG.getNode(ISD::SUB, DL, VT, Op0, 7859 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 7860 } 7861 7862 // umax(x,y) -> add(x,usubsat(y,x)) 7863 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 7864 isOperationLegal(ISD::USUBSAT, VT)) { 7865 return DAG.getNode(ISD::ADD, DL, VT, Op0, 7866 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 7867 } 7868 7869 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 7870 ISD::CondCode CC; 7871 switch (Opcode) { 7872 default: llvm_unreachable("How did we get here?"); 7873 case ISD::SMAX: CC = ISD::SETGT; break; 7874 case ISD::SMIN: CC = ISD::SETLT; break; 7875 case ISD::UMAX: CC = ISD::SETUGT; break; 7876 case ISD::UMIN: CC = ISD::SETULT; break; 7877 } 7878 7879 // FIXME: Should really try to split the vector in case it's legal on a 7880 // subvector. 7881 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 7882 return DAG.UnrollVectorOp(Node); 7883 7884 SDValue Cond = DAG.getSetCC(DL, VT, Op0, Op1, CC); 7885 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 7886 } 7887 7888 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 7889 unsigned Opcode = Node->getOpcode(); 7890 SDValue LHS = Node->getOperand(0); 7891 SDValue RHS = Node->getOperand(1); 7892 EVT VT = LHS.getValueType(); 7893 SDLoc dl(Node); 7894 7895 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7896 assert(VT.isInteger() && "Expected operands to be integers"); 7897 7898 // usub.sat(a, b) -> umax(a, b) - b 7899 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 7900 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 7901 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 7902 } 7903 7904 // uadd.sat(a, b) -> umin(a, ~b) + b 7905 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 7906 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 7907 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 7908 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 7909 } 7910 7911 unsigned OverflowOp; 7912 switch (Opcode) { 7913 case ISD::SADDSAT: 7914 OverflowOp = ISD::SADDO; 7915 break; 7916 case ISD::UADDSAT: 7917 OverflowOp = ISD::UADDO; 7918 break; 7919 case ISD::SSUBSAT: 7920 OverflowOp = ISD::SSUBO; 7921 break; 7922 case ISD::USUBSAT: 7923 OverflowOp = ISD::USUBO; 7924 break; 7925 default: 7926 llvm_unreachable("Expected method to receive signed or unsigned saturation " 7927 "addition or subtraction node."); 7928 } 7929 7930 // FIXME: Should really try to split the vector in case it's legal on a 7931 // subvector. 7932 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 7933 return DAG.UnrollVectorOp(Node); 7934 7935 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 7936 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7937 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7938 SDValue SumDiff = Result.getValue(0); 7939 SDValue Overflow = Result.getValue(1); 7940 SDValue Zero = DAG.getConstant(0, dl, VT); 7941 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 7942 7943 if (Opcode == ISD::UADDSAT) { 7944 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7945 // (LHS + RHS) | OverflowMask 7946 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7947 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 7948 } 7949 // Overflow ? 0xffff.... : (LHS + RHS) 7950 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 7951 } 7952 7953 if (Opcode == ISD::USUBSAT) { 7954 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7955 // (LHS - RHS) & ~OverflowMask 7956 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7957 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 7958 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 7959 } 7960 // Overflow ? 0 : (LHS - RHS) 7961 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 7962 } 7963 7964 // SatMax -> Overflow && SumDiff < 0 7965 // SatMin -> Overflow && SumDiff >= 0 7966 APInt MinVal = APInt::getSignedMinValue(BitWidth); 7967 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 7968 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7969 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7970 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 7971 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 7972 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 7973 } 7974 7975 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 7976 unsigned Opcode = Node->getOpcode(); 7977 bool IsSigned = Opcode == ISD::SSHLSAT; 7978 SDValue LHS = Node->getOperand(0); 7979 SDValue RHS = Node->getOperand(1); 7980 EVT VT = LHS.getValueType(); 7981 SDLoc dl(Node); 7982 7983 assert((Node->getOpcode() == ISD::SSHLSAT || 7984 Node->getOpcode() == ISD::USHLSAT) && 7985 "Expected a SHLSAT opcode"); 7986 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7987 assert(VT.isInteger() && "Expected operands to be integers"); 7988 7989 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 7990 7991 unsigned BW = VT.getScalarSizeInBits(); 7992 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 7993 SDValue Orig = 7994 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 7995 7996 SDValue SatVal; 7997 if (IsSigned) { 7998 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 7999 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 8000 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 8001 SatMin, SatMax, ISD::SETLT); 8002 } else { 8003 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 8004 } 8005 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 8006 8007 return Result; 8008 } 8009 8010 SDValue 8011 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 8012 assert((Node->getOpcode() == ISD::SMULFIX || 8013 Node->getOpcode() == ISD::UMULFIX || 8014 Node->getOpcode() == ISD::SMULFIXSAT || 8015 Node->getOpcode() == ISD::UMULFIXSAT) && 8016 "Expected a fixed point multiplication opcode"); 8017 8018 SDLoc dl(Node); 8019 SDValue LHS = Node->getOperand(0); 8020 SDValue RHS = Node->getOperand(1); 8021 EVT VT = LHS.getValueType(); 8022 unsigned Scale = Node->getConstantOperandVal(2); 8023 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 8024 Node->getOpcode() == ISD::UMULFIXSAT); 8025 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 8026 Node->getOpcode() == ISD::SMULFIXSAT); 8027 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8028 unsigned VTSize = VT.getScalarSizeInBits(); 8029 8030 if (!Scale) { 8031 // [us]mul.fix(a, b, 0) -> mul(a, b) 8032 if (!Saturating) { 8033 if (isOperationLegalOrCustom(ISD::MUL, VT)) 8034 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8035 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 8036 SDValue Result = 8037 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8038 SDValue Product = Result.getValue(0); 8039 SDValue Overflow = Result.getValue(1); 8040 SDValue Zero = DAG.getConstant(0, dl, VT); 8041 8042 APInt MinVal = APInt::getSignedMinValue(VTSize); 8043 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 8044 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8045 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8046 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 8047 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 8048 return DAG.getSelect(dl, VT, Overflow, Result, Product); 8049 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 8050 SDValue Result = 8051 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8052 SDValue Product = Result.getValue(0); 8053 SDValue Overflow = Result.getValue(1); 8054 8055 APInt MaxVal = APInt::getMaxValue(VTSize); 8056 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8057 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 8058 } 8059 } 8060 8061 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 8062 "Expected scale to be less than the number of bits if signed or at " 8063 "most the number of bits if unsigned."); 8064 assert(LHS.getValueType() == RHS.getValueType() && 8065 "Expected both operands to be the same type"); 8066 8067 // Get the upper and lower bits of the result. 8068 SDValue Lo, Hi; 8069 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 8070 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 8071 if (isOperationLegalOrCustom(LoHiOp, VT)) { 8072 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 8073 Lo = Result.getValue(0); 8074 Hi = Result.getValue(1); 8075 } else if (isOperationLegalOrCustom(HiOp, VT)) { 8076 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8077 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 8078 } else if (VT.isVector()) { 8079 return SDValue(); 8080 } else { 8081 report_fatal_error("Unable to expand fixed point multiplication."); 8082 } 8083 8084 if (Scale == VTSize) 8085 // Result is just the top half since we'd be shifting by the width of the 8086 // operand. Overflow impossible so this works for both UMULFIX and 8087 // UMULFIXSAT. 8088 return Hi; 8089 8090 // The result will need to be shifted right by the scale since both operands 8091 // are scaled. The result is given to us in 2 halves, so we only want part of 8092 // both in the result. 8093 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8094 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 8095 DAG.getConstant(Scale, dl, ShiftTy)); 8096 if (!Saturating) 8097 return Result; 8098 8099 if (!Signed) { 8100 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 8101 // widened multiplication) aren't all zeroes. 8102 8103 // Saturate to max if ((Hi >> Scale) != 0), 8104 // which is the same as if (Hi > ((1 << Scale) - 1)) 8105 APInt MaxVal = APInt::getMaxValue(VTSize); 8106 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 8107 dl, VT); 8108 Result = DAG.getSelectCC(dl, Hi, LowMask, 8109 DAG.getConstant(MaxVal, dl, VT), Result, 8110 ISD::SETUGT); 8111 8112 return Result; 8113 } 8114 8115 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 8116 // widened multiplication) aren't all ones or all zeroes. 8117 8118 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 8119 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 8120 8121 if (Scale == 0) { 8122 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 8123 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 8124 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 8125 // Saturated to SatMin if wide product is negative, and SatMax if wide 8126 // product is positive ... 8127 SDValue Zero = DAG.getConstant(0, dl, VT); 8128 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 8129 ISD::SETLT); 8130 // ... but only if we overflowed. 8131 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 8132 } 8133 8134 // We handled Scale==0 above so all the bits to examine is in Hi. 8135 8136 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 8137 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 8138 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 8139 dl, VT); 8140 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 8141 // Saturate to min if (Hi >> (Scale - 1)) < -1), 8142 // which is the same as if (HI < (-1 << (Scale - 1)) 8143 SDValue HighMask = 8144 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 8145 dl, VT); 8146 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 8147 return Result; 8148 } 8149 8150 SDValue 8151 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 8152 SDValue LHS, SDValue RHS, 8153 unsigned Scale, SelectionDAG &DAG) const { 8154 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 8155 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 8156 "Expected a fixed point division opcode"); 8157 8158 EVT VT = LHS.getValueType(); 8159 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 8160 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 8161 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8162 8163 // If there is enough room in the type to upscale the LHS or downscale the 8164 // RHS before the division, we can perform it in this type without having to 8165 // resize. For signed operations, the LHS headroom is the number of 8166 // redundant sign bits, and for unsigned ones it is the number of zeroes. 8167 // The headroom for the RHS is the number of trailing zeroes. 8168 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 8169 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 8170 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 8171 8172 // For signed saturating operations, we need to be able to detect true integer 8173 // division overflow; that is, when you have MIN / -EPS. However, this 8174 // is undefined behavior and if we emit divisions that could take such 8175 // values it may cause undesired behavior (arithmetic exceptions on x86, for 8176 // example). 8177 // Avoid this by requiring an extra bit so that we never get this case. 8178 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 8179 // signed saturating division, we need to emit a whopping 32-bit division. 8180 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 8181 return SDValue(); 8182 8183 unsigned LHSShift = std::min(LHSLead, Scale); 8184 unsigned RHSShift = Scale - LHSShift; 8185 8186 // At this point, we know that if we shift the LHS up by LHSShift and the 8187 // RHS down by RHSShift, we can emit a regular division with a final scaling 8188 // factor of Scale. 8189 8190 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8191 if (LHSShift) 8192 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 8193 DAG.getConstant(LHSShift, dl, ShiftTy)); 8194 if (RHSShift) 8195 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 8196 DAG.getConstant(RHSShift, dl, ShiftTy)); 8197 8198 SDValue Quot; 8199 if (Signed) { 8200 // For signed operations, if the resulting quotient is negative and the 8201 // remainder is nonzero, subtract 1 from the quotient to round towards 8202 // negative infinity. 8203 SDValue Rem; 8204 // FIXME: Ideally we would always produce an SDIVREM here, but if the 8205 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 8206 // we couldn't just form a libcall, but the type legalizer doesn't do it. 8207 if (isTypeLegal(VT) && 8208 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 8209 Quot = DAG.getNode(ISD::SDIVREM, dl, 8210 DAG.getVTList(VT, VT), 8211 LHS, RHS); 8212 Rem = Quot.getValue(1); 8213 Quot = Quot.getValue(0); 8214 } else { 8215 Quot = DAG.getNode(ISD::SDIV, dl, VT, 8216 LHS, RHS); 8217 Rem = DAG.getNode(ISD::SREM, dl, VT, 8218 LHS, RHS); 8219 } 8220 SDValue Zero = DAG.getConstant(0, dl, VT); 8221 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 8222 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 8223 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 8224 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 8225 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 8226 DAG.getConstant(1, dl, VT)); 8227 Quot = DAG.getSelect(dl, VT, 8228 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 8229 Sub1, Quot); 8230 } else 8231 Quot = DAG.getNode(ISD::UDIV, dl, VT, 8232 LHS, RHS); 8233 8234 return Quot; 8235 } 8236 8237 void TargetLowering::expandUADDSUBO( 8238 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8239 SDLoc dl(Node); 8240 SDValue LHS = Node->getOperand(0); 8241 SDValue RHS = Node->getOperand(1); 8242 bool IsAdd = Node->getOpcode() == ISD::UADDO; 8243 8244 // If ADD/SUBCARRY is legal, use that instead. 8245 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 8246 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 8247 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 8248 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 8249 { LHS, RHS, CarryIn }); 8250 Result = SDValue(NodeCarry.getNode(), 0); 8251 Overflow = SDValue(NodeCarry.getNode(), 1); 8252 return; 8253 } 8254 8255 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8256 LHS.getValueType(), LHS, RHS); 8257 8258 EVT ResultType = Node->getValueType(1); 8259 EVT SetCCType = getSetCCResultType( 8260 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8261 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 8262 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 8263 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8264 } 8265 8266 void TargetLowering::expandSADDSUBO( 8267 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8268 SDLoc dl(Node); 8269 SDValue LHS = Node->getOperand(0); 8270 SDValue RHS = Node->getOperand(1); 8271 bool IsAdd = Node->getOpcode() == ISD::SADDO; 8272 8273 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8274 LHS.getValueType(), LHS, RHS); 8275 8276 EVT ResultType = Node->getValueType(1); 8277 EVT OType = getSetCCResultType( 8278 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8279 8280 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 8281 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 8282 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 8283 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 8284 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 8285 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8286 return; 8287 } 8288 8289 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 8290 8291 // For an addition, the result should be less than one of the operands (LHS) 8292 // if and only if the other operand (RHS) is negative, otherwise there will 8293 // be overflow. 8294 // For a subtraction, the result should be less than one of the operands 8295 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 8296 // otherwise there will be overflow. 8297 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 8298 SDValue ConditionRHS = 8299 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 8300 8301 Overflow = DAG.getBoolExtOrTrunc( 8302 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 8303 ResultType, ResultType); 8304 } 8305 8306 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 8307 SDValue &Overflow, SelectionDAG &DAG) const { 8308 SDLoc dl(Node); 8309 EVT VT = Node->getValueType(0); 8310 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8311 SDValue LHS = Node->getOperand(0); 8312 SDValue RHS = Node->getOperand(1); 8313 bool isSigned = Node->getOpcode() == ISD::SMULO; 8314 8315 // For power-of-two multiplications we can use a simpler shift expansion. 8316 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 8317 const APInt &C = RHSC->getAPIntValue(); 8318 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 8319 if (C.isPowerOf2()) { 8320 // smulo(x, signed_min) is same as umulo(x, signed_min). 8321 bool UseArithShift = isSigned && !C.isMinSignedValue(); 8322 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8323 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 8324 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 8325 Overflow = DAG.getSetCC(dl, SetCCVT, 8326 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 8327 dl, VT, Result, ShiftAmt), 8328 LHS, ISD::SETNE); 8329 return true; 8330 } 8331 } 8332 8333 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 8334 if (VT.isVector()) 8335 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 8336 VT.getVectorNumElements()); 8337 8338 SDValue BottomHalf; 8339 SDValue TopHalf; 8340 static const unsigned Ops[2][3] = 8341 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 8342 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 8343 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 8344 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8345 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 8346 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 8347 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 8348 RHS); 8349 TopHalf = BottomHalf.getValue(1); 8350 } else if (isTypeLegal(WideVT)) { 8351 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 8352 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 8353 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 8354 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 8355 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 8356 getShiftAmountTy(WideVT, DAG.getDataLayout())); 8357 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 8358 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 8359 } else { 8360 if (VT.isVector()) 8361 return false; 8362 8363 // We can fall back to a libcall with an illegal type for the MUL if we 8364 // have a libcall big enough. 8365 // Also, we can fall back to a division in some cases, but that's a big 8366 // performance hit in the general case. 8367 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 8368 if (WideVT == MVT::i16) 8369 LC = RTLIB::MUL_I16; 8370 else if (WideVT == MVT::i32) 8371 LC = RTLIB::MUL_I32; 8372 else if (WideVT == MVT::i64) 8373 LC = RTLIB::MUL_I64; 8374 else if (WideVT == MVT::i128) 8375 LC = RTLIB::MUL_I128; 8376 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 8377 8378 SDValue HiLHS; 8379 SDValue HiRHS; 8380 if (isSigned) { 8381 // The high part is obtained by SRA'ing all but one of the bits of low 8382 // part. 8383 unsigned LoSize = VT.getFixedSizeInBits(); 8384 HiLHS = 8385 DAG.getNode(ISD::SRA, dl, VT, LHS, 8386 DAG.getConstant(LoSize - 1, dl, 8387 getPointerTy(DAG.getDataLayout()))); 8388 HiRHS = 8389 DAG.getNode(ISD::SRA, dl, VT, RHS, 8390 DAG.getConstant(LoSize - 1, dl, 8391 getPointerTy(DAG.getDataLayout()))); 8392 } else { 8393 HiLHS = DAG.getConstant(0, dl, VT); 8394 HiRHS = DAG.getConstant(0, dl, VT); 8395 } 8396 8397 // Here we're passing the 2 arguments explicitly as 4 arguments that are 8398 // pre-lowered to the correct types. This all depends upon WideVT not 8399 // being a legal type for the architecture and thus has to be split to 8400 // two arguments. 8401 SDValue Ret; 8402 TargetLowering::MakeLibCallOptions CallOptions; 8403 CallOptions.setSExt(isSigned); 8404 CallOptions.setIsPostTypeLegalization(true); 8405 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 8406 // Halves of WideVT are packed into registers in different order 8407 // depending on platform endianness. This is usually handled by 8408 // the C calling convention, but we can't defer to it in 8409 // the legalizer. 8410 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 8411 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8412 } else { 8413 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 8414 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8415 } 8416 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 8417 "Ret value is a collection of constituent nodes holding result."); 8418 if (DAG.getDataLayout().isLittleEndian()) { 8419 // Same as above. 8420 BottomHalf = Ret.getOperand(0); 8421 TopHalf = Ret.getOperand(1); 8422 } else { 8423 BottomHalf = Ret.getOperand(1); 8424 TopHalf = Ret.getOperand(0); 8425 } 8426 } 8427 8428 Result = BottomHalf; 8429 if (isSigned) { 8430 SDValue ShiftAmt = DAG.getConstant( 8431 VT.getScalarSizeInBits() - 1, dl, 8432 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 8433 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 8434 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 8435 } else { 8436 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 8437 DAG.getConstant(0, dl, VT), ISD::SETNE); 8438 } 8439 8440 // Truncate the result if SetCC returns a larger type than needed. 8441 EVT RType = Node->getValueType(1); 8442 if (RType.bitsLT(Overflow.getValueType())) 8443 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 8444 8445 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 8446 "Unexpected result type for S/UMULO legalization"); 8447 return true; 8448 } 8449 8450 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 8451 SDLoc dl(Node); 8452 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8453 SDValue Op = Node->getOperand(0); 8454 EVT VT = Op.getValueType(); 8455 8456 if (VT.isScalableVector()) 8457 report_fatal_error( 8458 "Expanding reductions for scalable vectors is undefined."); 8459 8460 // Try to use a shuffle reduction for power of two vectors. 8461 if (VT.isPow2VectorType()) { 8462 while (VT.getVectorNumElements() > 1) { 8463 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 8464 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 8465 break; 8466 8467 SDValue Lo, Hi; 8468 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 8469 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 8470 VT = HalfVT; 8471 } 8472 } 8473 8474 EVT EltVT = VT.getVectorElementType(); 8475 unsigned NumElts = VT.getVectorNumElements(); 8476 8477 SmallVector<SDValue, 8> Ops; 8478 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 8479 8480 SDValue Res = Ops[0]; 8481 for (unsigned i = 1; i < NumElts; i++) 8482 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 8483 8484 // Result type may be wider than element type. 8485 if (EltVT != Node->getValueType(0)) 8486 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 8487 return Res; 8488 } 8489 8490 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 8491 SDLoc dl(Node); 8492 SDValue AccOp = Node->getOperand(0); 8493 SDValue VecOp = Node->getOperand(1); 8494 SDNodeFlags Flags = Node->getFlags(); 8495 8496 EVT VT = VecOp.getValueType(); 8497 EVT EltVT = VT.getVectorElementType(); 8498 8499 if (VT.isScalableVector()) 8500 report_fatal_error( 8501 "Expanding reductions for scalable vectors is undefined."); 8502 8503 unsigned NumElts = VT.getVectorNumElements(); 8504 8505 SmallVector<SDValue, 8> Ops; 8506 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 8507 8508 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8509 8510 SDValue Res = AccOp; 8511 for (unsigned i = 0; i < NumElts; i++) 8512 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 8513 8514 return Res; 8515 } 8516 8517 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 8518 SelectionDAG &DAG) const { 8519 EVT VT = Node->getValueType(0); 8520 SDLoc dl(Node); 8521 bool isSigned = Node->getOpcode() == ISD::SREM; 8522 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 8523 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 8524 SDValue Dividend = Node->getOperand(0); 8525 SDValue Divisor = Node->getOperand(1); 8526 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 8527 SDVTList VTs = DAG.getVTList(VT, VT); 8528 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 8529 return true; 8530 } 8531 if (isOperationLegalOrCustom(DivOpc, VT)) { 8532 // X % Y -> X-X/Y*Y 8533 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 8534 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 8535 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 8536 return true; 8537 } 8538 return false; 8539 } 8540 8541 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 8542 SelectionDAG &DAG) const { 8543 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 8544 SDLoc dl(SDValue(Node, 0)); 8545 SDValue Src = Node->getOperand(0); 8546 8547 // DstVT is the result type, while SatVT is the size to which we saturate 8548 EVT SrcVT = Src.getValueType(); 8549 EVT DstVT = Node->getValueType(0); 8550 8551 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 8552 unsigned SatWidth = SatVT.getScalarSizeInBits(); 8553 unsigned DstWidth = DstVT.getScalarSizeInBits(); 8554 assert(SatWidth <= DstWidth && 8555 "Expected saturation width smaller than result width"); 8556 8557 // Determine minimum and maximum integer values and their corresponding 8558 // floating-point values. 8559 APInt MinInt, MaxInt; 8560 if (IsSigned) { 8561 MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth); 8562 MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth); 8563 } else { 8564 MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth); 8565 MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth); 8566 } 8567 8568 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 8569 // libcall emission cannot handle this. Large result types will fail. 8570 if (SrcVT == MVT::f16) { 8571 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 8572 SrcVT = Src.getValueType(); 8573 } 8574 8575 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8576 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8577 8578 APFloat::opStatus MinStatus = 8579 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 8580 APFloat::opStatus MaxStatus = 8581 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 8582 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 8583 !(MaxStatus & APFloat::opStatus::opInexact); 8584 8585 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 8586 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 8587 8588 // If the integer bounds are exactly representable as floats and min/max are 8589 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 8590 // of comparisons and selects. 8591 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 8592 isOperationLegal(ISD::FMAXNUM, SrcVT); 8593 if (AreExactFloatBounds && MinMaxLegal) { 8594 SDValue Clamped = Src; 8595 8596 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 8597 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 8598 // Clamp by MaxFloat from above. NaN cannot occur. 8599 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 8600 // Convert clamped value to integer. 8601 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 8602 dl, DstVT, Clamped); 8603 8604 // In the unsigned case we're done, because we mapped NaN to MinFloat, 8605 // which will cast to zero. 8606 if (!IsSigned) 8607 return FpToInt; 8608 8609 // Otherwise, select 0 if Src is NaN. 8610 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8611 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 8612 ISD::CondCode::SETUO); 8613 } 8614 8615 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 8616 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 8617 8618 // Result of direct conversion. The assumption here is that the operation is 8619 // non-trapping and it's fine to apply it to an out-of-range value if we 8620 // select it away later. 8621 SDValue FpToInt = 8622 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 8623 8624 SDValue Select = FpToInt; 8625 8626 // If Src ULT MinFloat, select MinInt. In particular, this also selects 8627 // MinInt if Src is NaN. 8628 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 8629 ISD::CondCode::SETULT); 8630 // If Src OGT MaxFloat, select MaxInt. 8631 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 8632 ISD::CondCode::SETOGT); 8633 8634 // In the unsigned case we are done, because we mapped NaN to MinInt, which 8635 // is already zero. 8636 if (!IsSigned) 8637 return Select; 8638 8639 // Otherwise, select 0 if Src is NaN. 8640 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8641 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 8642 } 8643 8644 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 8645 SelectionDAG &DAG) const { 8646 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 8647 assert(Node->getValueType(0).isScalableVector() && 8648 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 8649 8650 EVT VT = Node->getValueType(0); 8651 SDValue V1 = Node->getOperand(0); 8652 SDValue V2 = Node->getOperand(1); 8653 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 8654 SDLoc DL(Node); 8655 8656 // Expand through memory thusly: 8657 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 8658 // Store V1, Ptr 8659 // Store V2, Ptr + sizeof(V1) 8660 // If (Imm < 0) 8661 // TrailingElts = -Imm 8662 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 8663 // else 8664 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 8665 // Res = Load Ptr 8666 8667 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 8668 8669 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 8670 VT.getVectorElementCount() * 2); 8671 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 8672 EVT PtrVT = StackPtr.getValueType(); 8673 auto &MF = DAG.getMachineFunction(); 8674 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 8675 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 8676 8677 // Store the lo part of CONCAT_VECTORS(V1, V2) 8678 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 8679 // Store the hi part of CONCAT_VECTORS(V1, V2) 8680 SDValue OffsetToV2 = DAG.getVScale( 8681 DL, PtrVT, 8682 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8683 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 8684 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 8685 8686 if (Imm >= 0) { 8687 // Load back the required element. getVectorElementPointer takes care of 8688 // clamping the index if it's out-of-bounds. 8689 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 8690 // Load the spliced result 8691 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 8692 MachinePointerInfo::getUnknownStack(MF)); 8693 } 8694 8695 uint64_t TrailingElts = -Imm; 8696 8697 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 8698 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 8699 SDValue TrailingBytes = 8700 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 8701 8702 if (TrailingElts > VT.getVectorMinNumElements()) { 8703 SDValue VLBytes = DAG.getVScale( 8704 DL, PtrVT, 8705 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8706 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 8707 } 8708 8709 // Calculate the start address of the spliced result. 8710 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 8711 8712 // Load the spliced result 8713 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 8714 MachinePointerInfo::getUnknownStack(MF)); 8715 } 8716 8717 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 8718 SDValue &LHS, SDValue &RHS, 8719 SDValue &CC, bool &NeedInvert, 8720 const SDLoc &dl, SDValue &Chain, 8721 bool IsSignaling) const { 8722 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8723 MVT OpVT = LHS.getSimpleValueType(); 8724 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 8725 NeedInvert = false; 8726 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 8727 default: 8728 llvm_unreachable("Unknown condition code action!"); 8729 case TargetLowering::Legal: 8730 // Nothing to do. 8731 break; 8732 case TargetLowering::Expand: { 8733 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 8734 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8735 std::swap(LHS, RHS); 8736 CC = DAG.getCondCode(InvCC); 8737 return true; 8738 } 8739 // Swapping operands didn't work. Try inverting the condition. 8740 bool NeedSwap = false; 8741 InvCC = getSetCCInverse(CCCode, OpVT); 8742 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8743 // If inverting the condition is not enough, try swapping operands 8744 // on top of it. 8745 InvCC = ISD::getSetCCSwappedOperands(InvCC); 8746 NeedSwap = true; 8747 } 8748 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8749 CC = DAG.getCondCode(InvCC); 8750 NeedInvert = true; 8751 if (NeedSwap) 8752 std::swap(LHS, RHS); 8753 return true; 8754 } 8755 8756 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 8757 unsigned Opc = 0; 8758 switch (CCCode) { 8759 default: 8760 llvm_unreachable("Don't know how to expand this condition!"); 8761 case ISD::SETUO: 8762 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 8763 CC1 = ISD::SETUNE; 8764 CC2 = ISD::SETUNE; 8765 Opc = ISD::OR; 8766 break; 8767 } 8768 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 8769 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 8770 NeedInvert = true; 8771 LLVM_FALLTHROUGH; 8772 case ISD::SETO: 8773 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 8774 "If SETO is expanded, SETOEQ must be legal!"); 8775 CC1 = ISD::SETOEQ; 8776 CC2 = ISD::SETOEQ; 8777 Opc = ISD::AND; 8778 break; 8779 case ISD::SETONE: 8780 case ISD::SETUEQ: 8781 // If the SETUO or SETO CC isn't legal, we might be able to use 8782 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 8783 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 8784 // the operands. 8785 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 8786 if (!TLI.isCondCodeLegal(CC2, OpVT) && 8787 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 8788 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 8789 CC1 = ISD::SETOGT; 8790 CC2 = ISD::SETOLT; 8791 Opc = ISD::OR; 8792 NeedInvert = ((unsigned)CCCode & 0x8U); 8793 break; 8794 } 8795 LLVM_FALLTHROUGH; 8796 case ISD::SETOEQ: 8797 case ISD::SETOGT: 8798 case ISD::SETOGE: 8799 case ISD::SETOLT: 8800 case ISD::SETOLE: 8801 case ISD::SETUNE: 8802 case ISD::SETUGT: 8803 case ISD::SETUGE: 8804 case ISD::SETULT: 8805 case ISD::SETULE: 8806 // If we are floating point, assign and break, otherwise fall through. 8807 if (!OpVT.isInteger()) { 8808 // We can use the 4th bit to tell if we are the unordered 8809 // or ordered version of the opcode. 8810 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 8811 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 8812 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 8813 break; 8814 } 8815 // Fallthrough if we are unsigned integer. 8816 LLVM_FALLTHROUGH; 8817 case ISD::SETLE: 8818 case ISD::SETGT: 8819 case ISD::SETGE: 8820 case ISD::SETLT: 8821 case ISD::SETNE: 8822 case ISD::SETEQ: 8823 // If all combinations of inverting the condition and swapping operands 8824 // didn't work then we have no means to expand the condition. 8825 llvm_unreachable("Don't know how to expand this condition!"); 8826 } 8827 8828 SDValue SetCC1, SetCC2; 8829 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 8830 // If we aren't the ordered or unorder operation, 8831 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 8832 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 8833 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 8834 } else { 8835 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 8836 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 8837 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 8838 } 8839 if (Chain) 8840 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 8841 SetCC2.getValue(1)); 8842 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 8843 RHS = SDValue(); 8844 CC = SDValue(); 8845 return true; 8846 } 8847 } 8848 return false; 8849 } 8850