1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // Conservatively require the attributes of the call to match those of 56 // the return. Ignore NoAlias and NonNull because they don't affect the 57 // call sequence. 58 AttributeList CallerAttrs = F.getAttributes(); 59 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 60 .removeAttribute(Attribute::NoAlias) 61 .removeAttribute(Attribute::NonNull) 62 .hasAttributes()) 63 return false; 64 65 // It's not safe to eliminate the sign / zero extension of the return value. 66 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 67 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 68 return false; 69 70 // Check if the only use is a function return node. 71 return isUsedByReturnOnly(Node, Chain); 72 } 73 74 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 75 const uint32_t *CallerPreservedMask, 76 const SmallVectorImpl<CCValAssign> &ArgLocs, 77 const SmallVectorImpl<SDValue> &OutVals) const { 78 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 79 const CCValAssign &ArgLoc = ArgLocs[I]; 80 if (!ArgLoc.isRegLoc()) 81 continue; 82 Register Reg = ArgLoc.getLocReg(); 83 // Only look at callee saved registers. 84 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 85 continue; 86 // Check that we pass the value used for the caller. 87 // (We look for a CopyFromReg reading a virtual register that is used 88 // for the function live-in value of register Reg) 89 SDValue Value = OutVals[I]; 90 if (Value->getOpcode() != ISD::CopyFromReg) 91 return false; 92 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 93 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 94 return false; 95 } 96 return true; 97 } 98 99 /// Set CallLoweringInfo attribute flags based on a call instruction 100 /// and called function attributes. 101 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 102 unsigned ArgIdx) { 103 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 104 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 105 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 106 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 107 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 108 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 109 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 110 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 111 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 112 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 113 Alignment = Call->getParamAlignment(ArgIdx); 114 ByValType = nullptr; 115 if (Call->paramHasAttr(ArgIdx, Attribute::ByVal)) 116 ByValType = Call->getParamByValType(ArgIdx); 117 } 118 119 /// Generate a libcall taking the given operands as arguments and returning a 120 /// result of type RetVT. 121 std::pair<SDValue, SDValue> 122 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 123 ArrayRef<SDValue> Ops, 124 MakeLibCallOptions CallOptions, 125 const SDLoc &dl, 126 SDValue InChain) const { 127 if (!InChain) 128 InChain = DAG.getEntryNode(); 129 130 TargetLowering::ArgListTy Args; 131 Args.reserve(Ops.size()); 132 133 TargetLowering::ArgListEntry Entry; 134 for (unsigned i = 0; i < Ops.size(); ++i) { 135 SDValue NewOp = Ops[i]; 136 Entry.Node = NewOp; 137 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 138 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 139 CallOptions.IsSExt); 140 Entry.IsZExt = !Entry.IsSExt; 141 142 if (CallOptions.IsSoften && 143 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 144 Entry.IsSExt = Entry.IsZExt = false; 145 } 146 Args.push_back(Entry); 147 } 148 149 if (LC == RTLIB::UNKNOWN_LIBCALL) 150 report_fatal_error("Unsupported library call operation!"); 151 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 152 getPointerTy(DAG.getDataLayout())); 153 154 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 155 TargetLowering::CallLoweringInfo CLI(DAG); 156 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 157 bool zeroExtend = !signExtend; 158 159 if (CallOptions.IsSoften && 160 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 161 signExtend = zeroExtend = false; 162 } 163 164 CLI.setDebugLoc(dl) 165 .setChain(InChain) 166 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 167 .setNoReturn(CallOptions.DoesNotReturn) 168 .setDiscardResult(!CallOptions.IsReturnValueUsed) 169 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 170 .setSExtResult(signExtend) 171 .setZExtResult(zeroExtend); 172 return LowerCallTo(CLI); 173 } 174 175 bool 176 TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps, 177 unsigned Limit, uint64_t Size, 178 unsigned DstAlign, unsigned SrcAlign, 179 bool IsMemset, 180 bool ZeroMemset, 181 bool MemcpyStrSrc, 182 bool AllowOverlap, 183 unsigned DstAS, unsigned SrcAS, 184 const AttributeList &FuncAttributes) const { 185 // If 'SrcAlign' is zero, that means the memory operation does not need to 186 // load the value, i.e. memset or memcpy from constant string. Otherwise, 187 // it's the inferred alignment of the source. 'DstAlign', on the other hand, 188 // is the specified alignment of the memory operation. If it is zero, that 189 // means it's possible to change the alignment of the destination. 190 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does 191 // not need to be loaded. 192 if (!(SrcAlign == 0 || SrcAlign >= DstAlign)) 193 return false; 194 195 EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign, 196 IsMemset, ZeroMemset, MemcpyStrSrc, 197 FuncAttributes); 198 199 if (VT == MVT::Other) { 200 // Use the largest integer type whose alignment constraints are satisfied. 201 // We only need to check DstAlign here as SrcAlign is always greater or 202 // equal to DstAlign (or zero). 203 VT = MVT::i64; 204 while (DstAlign && DstAlign < VT.getSizeInBits() / 8 && 205 !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) 206 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 207 assert(VT.isInteger()); 208 209 // Find the largest legal integer type. 210 MVT LVT = MVT::i64; 211 while (!isTypeLegal(LVT)) 212 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 213 assert(LVT.isInteger()); 214 215 // If the type we've chosen is larger than the largest legal integer type 216 // then use that instead. 217 if (VT.bitsGT(LVT)) 218 VT = LVT; 219 } 220 221 unsigned NumMemOps = 0; 222 while (Size != 0) { 223 unsigned VTSize = VT.getSizeInBits() / 8; 224 while (VTSize > Size) { 225 // For now, only use non-vector load / store's for the left-over pieces. 226 EVT NewVT = VT; 227 unsigned NewVTSize; 228 229 bool Found = false; 230 if (VT.isVector() || VT.isFloatingPoint()) { 231 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 232 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 233 isSafeMemOpType(NewVT.getSimpleVT())) 234 Found = true; 235 else if (NewVT == MVT::i64 && 236 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 237 isSafeMemOpType(MVT::f64)) { 238 // i64 is usually not legal on 32-bit targets, but f64 may be. 239 NewVT = MVT::f64; 240 Found = true; 241 } 242 } 243 244 if (!Found) { 245 do { 246 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 247 if (NewVT == MVT::i8) 248 break; 249 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 250 } 251 NewVTSize = NewVT.getSizeInBits() / 8; 252 253 // If the new VT cannot cover all of the remaining bits, then consider 254 // issuing a (or a pair of) unaligned and overlapping load / store. 255 bool Fast; 256 if (NumMemOps && AllowOverlap && NewVTSize < Size && 257 allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, 258 MachineMemOperand::MONone, &Fast) && 259 Fast) 260 VTSize = Size; 261 else { 262 VT = NewVT; 263 VTSize = NewVTSize; 264 } 265 } 266 267 if (++NumMemOps > Limit) 268 return false; 269 270 MemOps.push_back(VT); 271 Size -= VTSize; 272 } 273 274 return true; 275 } 276 277 /// Soften the operands of a comparison. This code is shared among BR_CC, 278 /// SELECT_CC, and SETCC handlers. 279 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 280 SDValue &NewLHS, SDValue &NewRHS, 281 ISD::CondCode &CCCode, 282 const SDLoc &dl, const SDValue OldLHS, 283 const SDValue OldRHS) const { 284 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 285 && "Unsupported setcc type!"); 286 287 // Expand into one or more soft-fp libcall(s). 288 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 289 bool ShouldInvertCC = false; 290 switch (CCCode) { 291 case ISD::SETEQ: 292 case ISD::SETOEQ: 293 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 294 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 295 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 296 break; 297 case ISD::SETNE: 298 case ISD::SETUNE: 299 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 300 (VT == MVT::f64) ? RTLIB::UNE_F64 : 301 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 302 break; 303 case ISD::SETGE: 304 case ISD::SETOGE: 305 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 306 (VT == MVT::f64) ? RTLIB::OGE_F64 : 307 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 308 break; 309 case ISD::SETLT: 310 case ISD::SETOLT: 311 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 312 (VT == MVT::f64) ? RTLIB::OLT_F64 : 313 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 314 break; 315 case ISD::SETLE: 316 case ISD::SETOLE: 317 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 318 (VT == MVT::f64) ? RTLIB::OLE_F64 : 319 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 320 break; 321 case ISD::SETGT: 322 case ISD::SETOGT: 323 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 324 (VT == MVT::f64) ? RTLIB::OGT_F64 : 325 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 326 break; 327 case ISD::SETUO: 328 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 329 (VT == MVT::f64) ? RTLIB::UO_F64 : 330 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 331 break; 332 case ISD::SETO: 333 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 334 (VT == MVT::f64) ? RTLIB::O_F64 : 335 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 336 break; 337 case ISD::SETONE: 338 // SETONE = SETOLT | SETOGT 339 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 340 (VT == MVT::f64) ? RTLIB::OLT_F64 : 341 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 342 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 343 (VT == MVT::f64) ? RTLIB::OGT_F64 : 344 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 345 break; 346 case ISD::SETUEQ: 347 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 348 (VT == MVT::f64) ? RTLIB::UO_F64 : 349 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 350 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 351 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 352 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 353 break; 354 default: 355 // Invert CC for unordered comparisons 356 ShouldInvertCC = true; 357 switch (CCCode) { 358 case ISD::SETULT: 359 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 360 (VT == MVT::f64) ? RTLIB::OGE_F64 : 361 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 362 break; 363 case ISD::SETULE: 364 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 365 (VT == MVT::f64) ? RTLIB::OGT_F64 : 366 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 367 break; 368 case ISD::SETUGT: 369 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 370 (VT == MVT::f64) ? RTLIB::OLE_F64 : 371 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 372 break; 373 case ISD::SETUGE: 374 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 375 (VT == MVT::f64) ? RTLIB::OLT_F64 : 376 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 377 break; 378 default: llvm_unreachable("Do not know how to soften this setcc!"); 379 } 380 } 381 382 // Use the target specific return value for comparions lib calls. 383 EVT RetVT = getCmpLibcallReturnType(); 384 SDValue Ops[2] = {NewLHS, NewRHS}; 385 TargetLowering::MakeLibCallOptions CallOptions; 386 EVT OpsVT[2] = { OldLHS.getValueType(), 387 OldRHS.getValueType() }; 388 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 389 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl).first; 390 NewRHS = DAG.getConstant(0, dl, RetVT); 391 392 CCCode = getCmpLibcallCC(LC1); 393 if (ShouldInvertCC) 394 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); 395 396 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 397 SDValue Tmp = DAG.getNode( 398 ISD::SETCC, dl, 399 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 400 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 401 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl).first; 402 NewLHS = DAG.getNode( 403 ISD::SETCC, dl, 404 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 405 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 406 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 407 NewRHS = SDValue(); 408 } 409 } 410 411 /// Return the entry encoding for a jump table in the current function. The 412 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 413 unsigned TargetLowering::getJumpTableEncoding() const { 414 // In non-pic modes, just use the address of a block. 415 if (!isPositionIndependent()) 416 return MachineJumpTableInfo::EK_BlockAddress; 417 418 // In PIC mode, if the target supports a GPRel32 directive, use it. 419 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 420 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 421 422 // Otherwise, use a label difference. 423 return MachineJumpTableInfo::EK_LabelDifference32; 424 } 425 426 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 427 SelectionDAG &DAG) const { 428 // If our PIC model is GP relative, use the global offset table as the base. 429 unsigned JTEncoding = getJumpTableEncoding(); 430 431 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 432 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 433 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 434 435 return Table; 436 } 437 438 /// This returns the relocation base for the given PIC jumptable, the same as 439 /// getPICJumpTableRelocBase, but as an MCExpr. 440 const MCExpr * 441 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 442 unsigned JTI,MCContext &Ctx) const{ 443 // The normal PIC reloc base is the label at the start of the jump table. 444 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 445 } 446 447 bool 448 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 449 const TargetMachine &TM = getTargetMachine(); 450 const GlobalValue *GV = GA->getGlobal(); 451 452 // If the address is not even local to this DSO we will have to load it from 453 // a got and then add the offset. 454 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 455 return false; 456 457 // If the code is position independent we will have to add a base register. 458 if (isPositionIndependent()) 459 return false; 460 461 // Otherwise we can do it. 462 return true; 463 } 464 465 //===----------------------------------------------------------------------===// 466 // Optimization Methods 467 //===----------------------------------------------------------------------===// 468 469 /// If the specified instruction has a constant integer operand and there are 470 /// bits set in that constant that are not demanded, then clear those bits and 471 /// return true. 472 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 473 TargetLoweringOpt &TLO) const { 474 SDLoc DL(Op); 475 unsigned Opcode = Op.getOpcode(); 476 477 // Do target-specific constant optimization. 478 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 479 return TLO.New.getNode(); 480 481 // FIXME: ISD::SELECT, ISD::SELECT_CC 482 switch (Opcode) { 483 default: 484 break; 485 case ISD::XOR: 486 case ISD::AND: 487 case ISD::OR: { 488 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 489 if (!Op1C) 490 return false; 491 492 // If this is a 'not' op, don't touch it because that's a canonical form. 493 const APInt &C = Op1C->getAPIntValue(); 494 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 495 return false; 496 497 if (!C.isSubsetOf(Demanded)) { 498 EVT VT = Op.getValueType(); 499 SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT); 500 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 501 return TLO.CombineTo(Op, NewOp); 502 } 503 504 break; 505 } 506 } 507 508 return false; 509 } 510 511 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 512 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 513 /// generalized for targets with other types of implicit widening casts. 514 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 515 const APInt &Demanded, 516 TargetLoweringOpt &TLO) const { 517 assert(Op.getNumOperands() == 2 && 518 "ShrinkDemandedOp only supports binary operators!"); 519 assert(Op.getNode()->getNumValues() == 1 && 520 "ShrinkDemandedOp only supports nodes with one result!"); 521 522 SelectionDAG &DAG = TLO.DAG; 523 SDLoc dl(Op); 524 525 // Early return, as this function cannot handle vector types. 526 if (Op.getValueType().isVector()) 527 return false; 528 529 // Don't do this if the node has another user, which may require the 530 // full value. 531 if (!Op.getNode()->hasOneUse()) 532 return false; 533 534 // Search for the smallest integer type with free casts to and from 535 // Op's type. For expedience, just check power-of-2 integer types. 536 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 537 unsigned DemandedSize = Demanded.getActiveBits(); 538 unsigned SmallVTBits = DemandedSize; 539 if (!isPowerOf2_32(SmallVTBits)) 540 SmallVTBits = NextPowerOf2(SmallVTBits); 541 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 542 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 543 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 544 TLI.isZExtFree(SmallVT, Op.getValueType())) { 545 // We found a type with free casts. 546 SDValue X = DAG.getNode( 547 Op.getOpcode(), dl, SmallVT, 548 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 549 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 550 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 551 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 552 return TLO.CombineTo(Op, Z); 553 } 554 } 555 return false; 556 } 557 558 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 559 DAGCombinerInfo &DCI) const { 560 SelectionDAG &DAG = DCI.DAG; 561 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 562 !DCI.isBeforeLegalizeOps()); 563 KnownBits Known; 564 565 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 566 if (Simplified) { 567 DCI.AddToWorklist(Op.getNode()); 568 DCI.CommitTargetLoweringOpt(TLO); 569 } 570 return Simplified; 571 } 572 573 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 574 KnownBits &Known, 575 TargetLoweringOpt &TLO, 576 unsigned Depth, 577 bool AssumeSingleUse) const { 578 EVT VT = Op.getValueType(); 579 APInt DemandedElts = VT.isVector() 580 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 581 : APInt(1, 1); 582 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 583 AssumeSingleUse); 584 } 585 586 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 587 // TODO: Under what circumstances can we create nodes? Constant folding? 588 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 589 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 590 SelectionDAG &DAG, unsigned Depth) const { 591 // Limit search depth. 592 if (Depth >= SelectionDAG::MaxRecursionDepth) 593 return SDValue(); 594 595 // Ignore UNDEFs. 596 if (Op.isUndef()) 597 return SDValue(); 598 599 // Not demanding any bits/elts from Op. 600 if (DemandedBits == 0 || DemandedElts == 0) 601 return DAG.getUNDEF(Op.getValueType()); 602 603 unsigned NumElts = DemandedElts.getBitWidth(); 604 KnownBits LHSKnown, RHSKnown; 605 switch (Op.getOpcode()) { 606 case ISD::BITCAST: { 607 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 608 EVT SrcVT = Src.getValueType(); 609 EVT DstVT = Op.getValueType(); 610 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 611 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 612 613 if (NumSrcEltBits == NumDstEltBits) 614 if (SDValue V = SimplifyMultipleUseDemandedBits( 615 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 616 return DAG.getBitcast(DstVT, V); 617 618 // TODO - bigendian once we have test coverage. 619 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 620 DAG.getDataLayout().isLittleEndian()) { 621 unsigned Scale = NumDstEltBits / NumSrcEltBits; 622 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 623 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 624 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 625 for (unsigned i = 0; i != Scale; ++i) { 626 unsigned Offset = i * NumSrcEltBits; 627 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 628 if (!Sub.isNullValue()) { 629 DemandedSrcBits |= Sub; 630 for (unsigned j = 0; j != NumElts; ++j) 631 if (DemandedElts[j]) 632 DemandedSrcElts.setBit((j * Scale) + i); 633 } 634 } 635 636 if (SDValue V = SimplifyMultipleUseDemandedBits( 637 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 638 return DAG.getBitcast(DstVT, V); 639 } 640 641 // TODO - bigendian once we have test coverage. 642 if ((NumSrcEltBits % NumDstEltBits) == 0 && 643 DAG.getDataLayout().isLittleEndian()) { 644 unsigned Scale = NumSrcEltBits / NumDstEltBits; 645 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 646 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 647 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 648 for (unsigned i = 0; i != NumElts; ++i) 649 if (DemandedElts[i]) { 650 unsigned Offset = (i % Scale) * NumDstEltBits; 651 DemandedSrcBits.insertBits(DemandedBits, Offset); 652 DemandedSrcElts.setBit(i / Scale); 653 } 654 655 if (SDValue V = SimplifyMultipleUseDemandedBits( 656 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 657 return DAG.getBitcast(DstVT, V); 658 } 659 660 break; 661 } 662 case ISD::AND: { 663 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 664 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 665 666 // If all of the demanded bits are known 1 on one side, return the other. 667 // These bits cannot contribute to the result of the 'and' in this 668 // context. 669 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 670 return Op.getOperand(0); 671 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 672 return Op.getOperand(1); 673 break; 674 } 675 case ISD::OR: { 676 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 677 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 678 679 // If all of the demanded bits are known zero on one side, return the 680 // other. These bits cannot contribute to the result of the 'or' in this 681 // context. 682 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 683 return Op.getOperand(0); 684 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 685 return Op.getOperand(1); 686 break; 687 } 688 case ISD::XOR: { 689 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 690 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 691 692 // If all of the demanded bits are known zero on one side, return the 693 // other. 694 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 695 return Op.getOperand(0); 696 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 697 return Op.getOperand(1); 698 break; 699 } 700 case ISD::SIGN_EXTEND_INREG: { 701 // If none of the extended bits are demanded, eliminate the sextinreg. 702 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 703 if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits()) 704 return Op.getOperand(0); 705 break; 706 } 707 case ISD::INSERT_VECTOR_ELT: { 708 // If we don't demand the inserted element, return the base vector. 709 SDValue Vec = Op.getOperand(0); 710 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 711 EVT VecVT = Vec.getValueType(); 712 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 713 !DemandedElts[CIdx->getZExtValue()]) 714 return Vec; 715 break; 716 } 717 case ISD::VECTOR_SHUFFLE: { 718 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 719 720 // If all the demanded elts are from one operand and are inline, 721 // then we can use the operand directly. 722 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 723 for (unsigned i = 0; i != NumElts; ++i) { 724 int M = ShuffleMask[i]; 725 if (M < 0 || !DemandedElts[i]) 726 continue; 727 AllUndef = false; 728 IdentityLHS &= (M == (int)i); 729 IdentityRHS &= ((M - NumElts) == i); 730 } 731 732 if (AllUndef) 733 return DAG.getUNDEF(Op.getValueType()); 734 if (IdentityLHS) 735 return Op.getOperand(0); 736 if (IdentityRHS) 737 return Op.getOperand(1); 738 break; 739 } 740 default: 741 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 742 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 743 Op, DemandedBits, DemandedElts, DAG, Depth)) 744 return V; 745 break; 746 } 747 return SDValue(); 748 } 749 750 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 751 /// result of Op are ever used downstream. If we can use this information to 752 /// simplify Op, create a new simplified DAG node and return true, returning the 753 /// original and new nodes in Old and New. Otherwise, analyze the expression and 754 /// return a mask of Known bits for the expression (used to simplify the 755 /// caller). The Known bits may only be accurate for those bits in the 756 /// OriginalDemandedBits and OriginalDemandedElts. 757 bool TargetLowering::SimplifyDemandedBits( 758 SDValue Op, const APInt &OriginalDemandedBits, 759 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 760 unsigned Depth, bool AssumeSingleUse) const { 761 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 762 assert(Op.getScalarValueSizeInBits() == BitWidth && 763 "Mask size mismatches value type size!"); 764 765 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 766 assert((!Op.getValueType().isVector() || 767 NumElts == Op.getValueType().getVectorNumElements()) && 768 "Unexpected vector size"); 769 770 APInt DemandedBits = OriginalDemandedBits; 771 APInt DemandedElts = OriginalDemandedElts; 772 SDLoc dl(Op); 773 auto &DL = TLO.DAG.getDataLayout(); 774 775 // Don't know anything. 776 Known = KnownBits(BitWidth); 777 778 // Undef operand. 779 if (Op.isUndef()) 780 return false; 781 782 if (Op.getOpcode() == ISD::Constant) { 783 // We know all of the bits for a constant! 784 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 785 Known.Zero = ~Known.One; 786 return false; 787 } 788 789 // Other users may use these bits. 790 EVT VT = Op.getValueType(); 791 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 792 if (Depth != 0) { 793 // If not at the root, Just compute the Known bits to 794 // simplify things downstream. 795 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 796 return false; 797 } 798 // If this is the root being simplified, allow it to have multiple uses, 799 // just set the DemandedBits/Elts to all bits. 800 DemandedBits = APInt::getAllOnesValue(BitWidth); 801 DemandedElts = APInt::getAllOnesValue(NumElts); 802 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 803 // Not demanding any bits/elts from Op. 804 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 805 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 806 // Limit search depth. 807 return false; 808 } 809 810 KnownBits Known2, KnownOut; 811 switch (Op.getOpcode()) { 812 case ISD::TargetConstant: 813 llvm_unreachable("Can't simplify this node"); 814 case ISD::SCALAR_TO_VECTOR: { 815 if (!DemandedElts[0]) 816 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 817 818 KnownBits SrcKnown; 819 SDValue Src = Op.getOperand(0); 820 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 821 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 822 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 823 return true; 824 Known = SrcKnown.zextOrTrunc(BitWidth, false); 825 break; 826 } 827 case ISD::BUILD_VECTOR: 828 // Collect the known bits that are shared by every demanded element. 829 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 830 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 831 return false; // Don't fall through, will infinitely loop. 832 case ISD::LOAD: { 833 LoadSDNode *LD = cast<LoadSDNode>(Op); 834 if (getTargetConstantFromLoad(LD)) { 835 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 836 return false; // Don't fall through, will infinitely loop. 837 } 838 break; 839 } 840 case ISD::INSERT_VECTOR_ELT: { 841 SDValue Vec = Op.getOperand(0); 842 SDValue Scl = Op.getOperand(1); 843 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 844 EVT VecVT = Vec.getValueType(); 845 846 // If index isn't constant, assume we need all vector elements AND the 847 // inserted element. 848 APInt DemandedVecElts(DemandedElts); 849 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 850 unsigned Idx = CIdx->getZExtValue(); 851 DemandedVecElts.clearBit(Idx); 852 853 // Inserted element is not required. 854 if (!DemandedElts[Idx]) 855 return TLO.CombineTo(Op, Vec); 856 } 857 858 KnownBits KnownScl; 859 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 860 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 861 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 862 return true; 863 864 Known = KnownScl.zextOrTrunc(BitWidth, false); 865 866 KnownBits KnownVec; 867 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 868 Depth + 1)) 869 return true; 870 871 if (!!DemandedVecElts) { 872 Known.One &= KnownVec.One; 873 Known.Zero &= KnownVec.Zero; 874 } 875 876 return false; 877 } 878 case ISD::INSERT_SUBVECTOR: { 879 SDValue Base = Op.getOperand(0); 880 SDValue Sub = Op.getOperand(1); 881 EVT SubVT = Sub.getValueType(); 882 unsigned NumSubElts = SubVT.getVectorNumElements(); 883 884 // If index isn't constant, assume we need the original demanded base 885 // elements and ALL the inserted subvector elements. 886 APInt BaseElts = DemandedElts; 887 APInt SubElts = APInt::getAllOnesValue(NumSubElts); 888 if (isa<ConstantSDNode>(Op.getOperand(2))) { 889 const APInt &Idx = Op.getConstantOperandAPInt(2); 890 if (Idx.ule(NumElts - NumSubElts)) { 891 unsigned SubIdx = Idx.getZExtValue(); 892 SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 893 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 894 } 895 } 896 897 KnownBits KnownSub, KnownBase; 898 if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO, 899 Depth + 1)) 900 return true; 901 if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO, 902 Depth + 1)) 903 return true; 904 905 Known.Zero.setAllBits(); 906 Known.One.setAllBits(); 907 if (!!SubElts) { 908 Known.One &= KnownSub.One; 909 Known.Zero &= KnownSub.Zero; 910 } 911 if (!!BaseElts) { 912 Known.One &= KnownBase.One; 913 Known.Zero &= KnownBase.Zero; 914 } 915 break; 916 } 917 case ISD::EXTRACT_SUBVECTOR: { 918 // If index isn't constant, assume we need all the source vector elements. 919 SDValue Src = Op.getOperand(0); 920 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 921 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 922 APInt SrcElts = APInt::getAllOnesValue(NumSrcElts); 923 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 924 // Offset the demanded elts by the subvector index. 925 uint64_t Idx = SubIdx->getZExtValue(); 926 SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 927 } 928 if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1)) 929 return true; 930 break; 931 } 932 case ISD::CONCAT_VECTORS: { 933 Known.Zero.setAllBits(); 934 Known.One.setAllBits(); 935 EVT SubVT = Op.getOperand(0).getValueType(); 936 unsigned NumSubVecs = Op.getNumOperands(); 937 unsigned NumSubElts = SubVT.getVectorNumElements(); 938 for (unsigned i = 0; i != NumSubVecs; ++i) { 939 APInt DemandedSubElts = 940 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 941 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 942 Known2, TLO, Depth + 1)) 943 return true; 944 // Known bits are shared by every demanded subvector element. 945 if (!!DemandedSubElts) { 946 Known.One &= Known2.One; 947 Known.Zero &= Known2.Zero; 948 } 949 } 950 break; 951 } 952 case ISD::VECTOR_SHUFFLE: { 953 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 954 955 // Collect demanded elements from shuffle operands.. 956 APInt DemandedLHS(NumElts, 0); 957 APInt DemandedRHS(NumElts, 0); 958 for (unsigned i = 0; i != NumElts; ++i) { 959 if (!DemandedElts[i]) 960 continue; 961 int M = ShuffleMask[i]; 962 if (M < 0) { 963 // For UNDEF elements, we don't know anything about the common state of 964 // the shuffle result. 965 DemandedLHS.clearAllBits(); 966 DemandedRHS.clearAllBits(); 967 break; 968 } 969 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 970 if (M < (int)NumElts) 971 DemandedLHS.setBit(M); 972 else 973 DemandedRHS.setBit(M - NumElts); 974 } 975 976 if (!!DemandedLHS || !!DemandedRHS) { 977 SDValue Op0 = Op.getOperand(0); 978 SDValue Op1 = Op.getOperand(1); 979 980 Known.Zero.setAllBits(); 981 Known.One.setAllBits(); 982 if (!!DemandedLHS) { 983 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 984 Depth + 1)) 985 return true; 986 Known.One &= Known2.One; 987 Known.Zero &= Known2.Zero; 988 } 989 if (!!DemandedRHS) { 990 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 991 Depth + 1)) 992 return true; 993 Known.One &= Known2.One; 994 Known.Zero &= Known2.Zero; 995 } 996 997 // Attempt to avoid multi-use ops if we don't need anything from them. 998 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 999 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1000 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1001 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1002 if (DemandedOp0 || DemandedOp1) { 1003 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1004 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1005 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1006 return TLO.CombineTo(Op, NewOp); 1007 } 1008 } 1009 break; 1010 } 1011 case ISD::AND: { 1012 SDValue Op0 = Op.getOperand(0); 1013 SDValue Op1 = Op.getOperand(1); 1014 1015 // If the RHS is a constant, check to see if the LHS would be zero without 1016 // using the bits from the RHS. Below, we use knowledge about the RHS to 1017 // simplify the LHS, here we're using information from the LHS to simplify 1018 // the RHS. 1019 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1020 // Do not increment Depth here; that can cause an infinite loop. 1021 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1022 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1023 if ((LHSKnown.Zero & DemandedBits) == 1024 (~RHSC->getAPIntValue() & DemandedBits)) 1025 return TLO.CombineTo(Op, Op0); 1026 1027 // If any of the set bits in the RHS are known zero on the LHS, shrink 1028 // the constant. 1029 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 1030 return true; 1031 1032 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1033 // constant, but if this 'and' is only clearing bits that were just set by 1034 // the xor, then this 'and' can be eliminated by shrinking the mask of 1035 // the xor. For example, for a 32-bit X: 1036 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1037 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1038 LHSKnown.One == ~RHSC->getAPIntValue()) { 1039 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1040 return TLO.CombineTo(Op, Xor); 1041 } 1042 } 1043 1044 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1045 Depth + 1)) 1046 return true; 1047 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1048 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1049 Known2, TLO, Depth + 1)) 1050 return true; 1051 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1052 1053 // Attempt to avoid multi-use ops if we don't need anything from them. 1054 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1055 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1056 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1057 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1058 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1059 if (DemandedOp0 || DemandedOp1) { 1060 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1061 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1062 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1063 return TLO.CombineTo(Op, NewOp); 1064 } 1065 } 1066 1067 // If all of the demanded bits are known one on one side, return the other. 1068 // These bits cannot contribute to the result of the 'and'. 1069 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1070 return TLO.CombineTo(Op, Op0); 1071 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1072 return TLO.CombineTo(Op, Op1); 1073 // If all of the demanded bits in the inputs are known zeros, return zero. 1074 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1075 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1076 // If the RHS is a constant, see if we can simplify it. 1077 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 1078 return true; 1079 // If the operation can be done in a smaller type, do so. 1080 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1081 return true; 1082 1083 // Output known-1 bits are only known if set in both the LHS & RHS. 1084 Known.One &= Known2.One; 1085 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1086 Known.Zero |= Known2.Zero; 1087 break; 1088 } 1089 case ISD::OR: { 1090 SDValue Op0 = Op.getOperand(0); 1091 SDValue Op1 = Op.getOperand(1); 1092 1093 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1094 Depth + 1)) 1095 return true; 1096 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1097 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1098 Known2, TLO, Depth + 1)) 1099 return true; 1100 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1101 1102 // Attempt to avoid multi-use ops if we don't need anything from them. 1103 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1104 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1105 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1106 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1107 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1108 if (DemandedOp0 || DemandedOp1) { 1109 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1110 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1111 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1112 return TLO.CombineTo(Op, NewOp); 1113 } 1114 } 1115 1116 // If all of the demanded bits are known zero on one side, return the other. 1117 // These bits cannot contribute to the result of the 'or'. 1118 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1119 return TLO.CombineTo(Op, Op0); 1120 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1121 return TLO.CombineTo(Op, Op1); 1122 // If the RHS is a constant, see if we can simplify it. 1123 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1124 return true; 1125 // If the operation can be done in a smaller type, do so. 1126 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1127 return true; 1128 1129 // Output known-0 bits are only known if clear in both the LHS & RHS. 1130 Known.Zero &= Known2.Zero; 1131 // Output known-1 are known to be set if set in either the LHS | RHS. 1132 Known.One |= Known2.One; 1133 break; 1134 } 1135 case ISD::XOR: { 1136 SDValue Op0 = Op.getOperand(0); 1137 SDValue Op1 = Op.getOperand(1); 1138 1139 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1140 Depth + 1)) 1141 return true; 1142 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1143 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1144 Depth + 1)) 1145 return true; 1146 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1147 1148 // Attempt to avoid multi-use ops if we don't need anything from them. 1149 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1150 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1151 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1152 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1153 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1154 if (DemandedOp0 || DemandedOp1) { 1155 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1156 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1157 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1158 return TLO.CombineTo(Op, NewOp); 1159 } 1160 } 1161 1162 // If all of the demanded bits are known zero on one side, return the other. 1163 // These bits cannot contribute to the result of the 'xor'. 1164 if (DemandedBits.isSubsetOf(Known.Zero)) 1165 return TLO.CombineTo(Op, Op0); 1166 if (DemandedBits.isSubsetOf(Known2.Zero)) 1167 return TLO.CombineTo(Op, Op1); 1168 // If the operation can be done in a smaller type, do so. 1169 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1170 return true; 1171 1172 // If all of the unknown bits are known to be zero on one side or the other 1173 // (but not both) turn this into an *inclusive* or. 1174 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1175 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1176 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1177 1178 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1179 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1180 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1181 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1182 1183 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 1184 // If one side is a constant, and all of the known set bits on the other 1185 // side are also set in the constant, turn this into an AND, as we know 1186 // the bits will be cleared. 1187 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1188 // NB: it is okay if more bits are known than are requested 1189 if (C->getAPIntValue() == Known2.One) { 1190 SDValue ANDC = 1191 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1192 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1193 } 1194 1195 // If the RHS is a constant, see if we can change it. Don't alter a -1 1196 // constant because that's a 'not' op, and that is better for combining 1197 // and codegen. 1198 if (!C->isAllOnesValue()) { 1199 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 1200 // We're flipping all demanded bits. Flip the undemanded bits too. 1201 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1202 return TLO.CombineTo(Op, New); 1203 } 1204 // If we can't turn this into a 'not', try to shrink the constant. 1205 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1206 return true; 1207 } 1208 } 1209 1210 Known = std::move(KnownOut); 1211 break; 1212 } 1213 case ISD::SELECT: 1214 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1215 Depth + 1)) 1216 return true; 1217 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1218 Depth + 1)) 1219 return true; 1220 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1221 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1222 1223 // If the operands are constants, see if we can simplify them. 1224 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1225 return true; 1226 1227 // Only known if known in both the LHS and RHS. 1228 Known.One &= Known2.One; 1229 Known.Zero &= Known2.Zero; 1230 break; 1231 case ISD::SELECT_CC: 1232 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1233 Depth + 1)) 1234 return true; 1235 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1236 Depth + 1)) 1237 return true; 1238 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1239 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1240 1241 // If the operands are constants, see if we can simplify them. 1242 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1243 return true; 1244 1245 // Only known if known in both the LHS and RHS. 1246 Known.One &= Known2.One; 1247 Known.Zero &= Known2.Zero; 1248 break; 1249 case ISD::SETCC: { 1250 SDValue Op0 = Op.getOperand(0); 1251 SDValue Op1 = Op.getOperand(1); 1252 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1253 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1254 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1255 // -1, we may be able to bypass the setcc. 1256 if (DemandedBits.isSignMask() && 1257 Op0.getScalarValueSizeInBits() == BitWidth && 1258 getBooleanContents(VT) == 1259 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1260 // If we're testing X < 0, then this compare isn't needed - just use X! 1261 // FIXME: We're limiting to integer types here, but this should also work 1262 // if we don't care about FP signed-zero. The use of SETLT with FP means 1263 // that we don't care about NaNs. 1264 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1265 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1266 return TLO.CombineTo(Op, Op0); 1267 1268 // TODO: Should we check for other forms of sign-bit comparisons? 1269 // Examples: X <= -1, X >= 0 1270 } 1271 if (getBooleanContents(Op0.getValueType()) == 1272 TargetLowering::ZeroOrOneBooleanContent && 1273 BitWidth > 1) 1274 Known.Zero.setBitsFrom(1); 1275 break; 1276 } 1277 case ISD::SHL: { 1278 SDValue Op0 = Op.getOperand(0); 1279 SDValue Op1 = Op.getOperand(1); 1280 1281 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1282 // If the shift count is an invalid immediate, don't do anything. 1283 if (SA->getAPIntValue().uge(BitWidth)) 1284 break; 1285 1286 unsigned ShAmt = SA->getZExtValue(); 1287 if (ShAmt == 0) 1288 return TLO.CombineTo(Op, Op0); 1289 1290 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1291 // single shift. We can do this if the bottom bits (which are shifted 1292 // out) are never demanded. 1293 // TODO - support non-uniform vector amounts. 1294 if (Op0.getOpcode() == ISD::SRL) { 1295 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1296 if (ConstantSDNode *SA2 = 1297 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1298 if (SA2->getAPIntValue().ult(BitWidth)) { 1299 unsigned C1 = SA2->getZExtValue(); 1300 unsigned Opc = ISD::SHL; 1301 int Diff = ShAmt - C1; 1302 if (Diff < 0) { 1303 Diff = -Diff; 1304 Opc = ISD::SRL; 1305 } 1306 1307 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); 1308 return TLO.CombineTo( 1309 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1310 } 1311 } 1312 } 1313 } 1314 1315 if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts, 1316 Known, TLO, Depth + 1)) 1317 return true; 1318 1319 // Try shrinking the operation as long as the shift amount will still be 1320 // in range. 1321 if ((ShAmt < DemandedBits.getActiveBits()) && 1322 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1323 return true; 1324 1325 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1326 // are not demanded. This will likely allow the anyext to be folded away. 1327 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1328 SDValue InnerOp = Op0.getOperand(0); 1329 EVT InnerVT = InnerOp.getValueType(); 1330 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1331 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1332 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1333 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1334 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1335 ShTy = InnerVT; 1336 SDValue NarrowShl = 1337 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1338 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1339 return TLO.CombineTo( 1340 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1341 } 1342 // Repeat the SHL optimization above in cases where an extension 1343 // intervenes: (shl (anyext (shr x, c1)), c2) to 1344 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1345 // aren't demanded (as above) and that the shifted upper c1 bits of 1346 // x aren't demanded. 1347 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1348 InnerOp.hasOneUse()) { 1349 if (ConstantSDNode *SA2 = 1350 isConstOrConstSplat(InnerOp.getOperand(1))) { 1351 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 1352 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1353 DemandedBits.getActiveBits() <= 1354 (InnerBits - InnerShAmt + ShAmt) && 1355 DemandedBits.countTrailingZeros() >= ShAmt) { 1356 SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 1357 Op1.getValueType()); 1358 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1359 InnerOp.getOperand(0)); 1360 return TLO.CombineTo( 1361 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1362 } 1363 } 1364 } 1365 } 1366 1367 Known.Zero <<= ShAmt; 1368 Known.One <<= ShAmt; 1369 // low bits known zero. 1370 Known.Zero.setLowBits(ShAmt); 1371 } 1372 break; 1373 } 1374 case ISD::SRL: { 1375 SDValue Op0 = Op.getOperand(0); 1376 SDValue Op1 = Op.getOperand(1); 1377 1378 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1379 // If the shift count is an invalid immediate, don't do anything. 1380 if (SA->getAPIntValue().uge(BitWidth)) 1381 break; 1382 1383 unsigned ShAmt = SA->getZExtValue(); 1384 if (ShAmt == 0) 1385 return TLO.CombineTo(Op, Op0); 1386 1387 EVT ShiftVT = Op1.getValueType(); 1388 APInt InDemandedMask = (DemandedBits << ShAmt); 1389 1390 // If the shift is exact, then it does demand the low bits (and knows that 1391 // they are zero). 1392 if (Op->getFlags().hasExact()) 1393 InDemandedMask.setLowBits(ShAmt); 1394 1395 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1396 // single shift. We can do this if the top bits (which are shifted out) 1397 // are never demanded. 1398 // TODO - support non-uniform vector amounts. 1399 if (Op0.getOpcode() == ISD::SHL) { 1400 if (ConstantSDNode *SA2 = 1401 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1402 if (!DemandedBits.intersects( 1403 APInt::getHighBitsSet(BitWidth, ShAmt))) { 1404 if (SA2->getAPIntValue().ult(BitWidth)) { 1405 unsigned C1 = SA2->getZExtValue(); 1406 unsigned Opc = ISD::SRL; 1407 int Diff = ShAmt - C1; 1408 if (Diff < 0) { 1409 Diff = -Diff; 1410 Opc = ISD::SHL; 1411 } 1412 1413 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1414 return TLO.CombineTo( 1415 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1416 } 1417 } 1418 } 1419 } 1420 1421 // Compute the new bits that are at the top now. 1422 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1423 Depth + 1)) 1424 return true; 1425 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1426 Known.Zero.lshrInPlace(ShAmt); 1427 Known.One.lshrInPlace(ShAmt); 1428 1429 Known.Zero.setHighBits(ShAmt); // High bits known zero. 1430 } 1431 break; 1432 } 1433 case ISD::SRA: { 1434 SDValue Op0 = Op.getOperand(0); 1435 SDValue Op1 = Op.getOperand(1); 1436 1437 // If this is an arithmetic shift right and only the low-bit is set, we can 1438 // always convert this into a logical shr, even if the shift amount is 1439 // variable. The low bit of the shift cannot be an input sign bit unless 1440 // the shift amount is >= the size of the datatype, which is undefined. 1441 if (DemandedBits.isOneValue()) 1442 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1443 1444 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1445 // If the shift count is an invalid immediate, don't do anything. 1446 if (SA->getAPIntValue().uge(BitWidth)) 1447 break; 1448 1449 unsigned ShAmt = SA->getZExtValue(); 1450 if (ShAmt == 0) 1451 return TLO.CombineTo(Op, Op0); 1452 1453 APInt InDemandedMask = (DemandedBits << ShAmt); 1454 1455 // If the shift is exact, then it does demand the low bits (and knows that 1456 // they are zero). 1457 if (Op->getFlags().hasExact()) 1458 InDemandedMask.setLowBits(ShAmt); 1459 1460 // If any of the demanded bits are produced by the sign extension, we also 1461 // demand the input sign bit. 1462 if (DemandedBits.countLeadingZeros() < ShAmt) 1463 InDemandedMask.setSignBit(); 1464 1465 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1466 Depth + 1)) 1467 return true; 1468 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1469 Known.Zero.lshrInPlace(ShAmt); 1470 Known.One.lshrInPlace(ShAmt); 1471 1472 // If the input sign bit is known to be zero, or if none of the top bits 1473 // are demanded, turn this into an unsigned shift right. 1474 if (Known.Zero[BitWidth - ShAmt - 1] || 1475 DemandedBits.countLeadingZeros() >= ShAmt) { 1476 SDNodeFlags Flags; 1477 Flags.setExact(Op->getFlags().hasExact()); 1478 return TLO.CombineTo( 1479 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1480 } 1481 1482 int Log2 = DemandedBits.exactLogBase2(); 1483 if (Log2 >= 0) { 1484 // The bit must come from the sign. 1485 SDValue NewSA = 1486 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType()); 1487 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1488 } 1489 1490 if (Known.One[BitWidth - ShAmt - 1]) 1491 // New bits are known one. 1492 Known.One.setHighBits(ShAmt); 1493 } 1494 break; 1495 } 1496 case ISD::FSHL: 1497 case ISD::FSHR: { 1498 SDValue Op0 = Op.getOperand(0); 1499 SDValue Op1 = Op.getOperand(1); 1500 SDValue Op2 = Op.getOperand(2); 1501 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1502 1503 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1504 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1505 1506 // For fshl, 0-shift returns the 1st arg. 1507 // For fshr, 0-shift returns the 2nd arg. 1508 if (Amt == 0) { 1509 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1510 Known, TLO, Depth + 1)) 1511 return true; 1512 break; 1513 } 1514 1515 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1516 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1517 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1518 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1519 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1520 Depth + 1)) 1521 return true; 1522 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1523 Depth + 1)) 1524 return true; 1525 1526 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1527 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1528 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1529 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1530 Known.One |= Known2.One; 1531 Known.Zero |= Known2.Zero; 1532 } 1533 break; 1534 } 1535 case ISD::BITREVERSE: { 1536 SDValue Src = Op.getOperand(0); 1537 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1538 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1539 Depth + 1)) 1540 return true; 1541 Known.One = Known2.One.reverseBits(); 1542 Known.Zero = Known2.Zero.reverseBits(); 1543 break; 1544 } 1545 case ISD::SIGN_EXTEND_INREG: { 1546 SDValue Op0 = Op.getOperand(0); 1547 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1548 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1549 1550 // If we only care about the highest bit, don't bother shifting right. 1551 if (DemandedBits.isSignMask()) { 1552 unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0); 1553 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1554 // However if the input is already sign extended we expect the sign 1555 // extension to be dropped altogether later and do not simplify. 1556 if (!AlreadySignExtended) { 1557 // Compute the correct shift amount type, which must be getShiftAmountTy 1558 // for scalar types after legalization. 1559 EVT ShiftAmtTy = VT; 1560 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1561 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1562 1563 SDValue ShiftAmt = 1564 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1565 return TLO.CombineTo(Op, 1566 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1567 } 1568 } 1569 1570 // If none of the extended bits are demanded, eliminate the sextinreg. 1571 if (DemandedBits.getActiveBits() <= ExVTBits) 1572 return TLO.CombineTo(Op, Op0); 1573 1574 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1575 1576 // Since the sign extended bits are demanded, we know that the sign 1577 // bit is demanded. 1578 InputDemandedBits.setBit(ExVTBits - 1); 1579 1580 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1581 return true; 1582 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1583 1584 // If the sign bit of the input is known set or clear, then we know the 1585 // top bits of the result. 1586 1587 // If the input sign bit is known zero, convert this into a zero extension. 1588 if (Known.Zero[ExVTBits - 1]) 1589 return TLO.CombineTo( 1590 Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType())); 1591 1592 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1593 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1594 Known.One.setBitsFrom(ExVTBits); 1595 Known.Zero &= Mask; 1596 } else { // Input sign bit unknown 1597 Known.Zero &= Mask; 1598 Known.One &= Mask; 1599 } 1600 break; 1601 } 1602 case ISD::BUILD_PAIR: { 1603 EVT HalfVT = Op.getOperand(0).getValueType(); 1604 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1605 1606 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1607 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1608 1609 KnownBits KnownLo, KnownHi; 1610 1611 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1612 return true; 1613 1614 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1615 return true; 1616 1617 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1618 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1619 1620 Known.One = KnownLo.One.zext(BitWidth) | 1621 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1622 break; 1623 } 1624 case ISD::ZERO_EXTEND: 1625 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1626 SDValue Src = Op.getOperand(0); 1627 EVT SrcVT = Src.getValueType(); 1628 unsigned InBits = SrcVT.getScalarSizeInBits(); 1629 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1630 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1631 1632 // If none of the top bits are demanded, convert this into an any_extend. 1633 if (DemandedBits.getActiveBits() <= InBits) { 1634 // If we only need the non-extended bits of the bottom element 1635 // then we can just bitcast to the result. 1636 if (IsVecInReg && DemandedElts == 1 && 1637 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1638 TLO.DAG.getDataLayout().isLittleEndian()) 1639 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1640 1641 unsigned Opc = 1642 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1643 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1644 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1645 } 1646 1647 APInt InDemandedBits = DemandedBits.trunc(InBits); 1648 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1649 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1650 Depth + 1)) 1651 return true; 1652 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1653 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1654 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 1655 break; 1656 } 1657 case ISD::SIGN_EXTEND: 1658 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1659 SDValue Src = Op.getOperand(0); 1660 EVT SrcVT = Src.getValueType(); 1661 unsigned InBits = SrcVT.getScalarSizeInBits(); 1662 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1663 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1664 1665 // If none of the top bits are demanded, convert this into an any_extend. 1666 if (DemandedBits.getActiveBits() <= InBits) { 1667 // If we only need the non-extended bits of the bottom element 1668 // then we can just bitcast to the result. 1669 if (IsVecInReg && DemandedElts == 1 && 1670 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1671 TLO.DAG.getDataLayout().isLittleEndian()) 1672 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1673 1674 unsigned Opc = 1675 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1676 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1677 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1678 } 1679 1680 APInt InDemandedBits = DemandedBits.trunc(InBits); 1681 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1682 1683 // Since some of the sign extended bits are demanded, we know that the sign 1684 // bit is demanded. 1685 InDemandedBits.setBit(InBits - 1); 1686 1687 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1688 Depth + 1)) 1689 return true; 1690 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1691 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1692 1693 // If the sign bit is known one, the top bits match. 1694 Known = Known.sext(BitWidth); 1695 1696 // If the sign bit is known zero, convert this to a zero extend. 1697 if (Known.isNonNegative()) { 1698 unsigned Opc = 1699 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1700 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1701 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1702 } 1703 break; 1704 } 1705 case ISD::ANY_EXTEND: 1706 case ISD::ANY_EXTEND_VECTOR_INREG: { 1707 SDValue Src = Op.getOperand(0); 1708 EVT SrcVT = Src.getValueType(); 1709 unsigned InBits = SrcVT.getScalarSizeInBits(); 1710 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1711 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1712 1713 // If we only need the bottom element then we can just bitcast. 1714 // TODO: Handle ANY_EXTEND? 1715 if (IsVecInReg && DemandedElts == 1 && 1716 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1717 TLO.DAG.getDataLayout().isLittleEndian()) 1718 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1719 1720 APInt InDemandedBits = DemandedBits.trunc(InBits); 1721 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1722 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1723 Depth + 1)) 1724 return true; 1725 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1726 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1727 Known = Known.zext(BitWidth, false /* => any extend */); 1728 break; 1729 } 1730 case ISD::TRUNCATE: { 1731 SDValue Src = Op.getOperand(0); 1732 1733 // Simplify the input, using demanded bit information, and compute the known 1734 // zero/one bits live out. 1735 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1736 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1737 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1738 return true; 1739 Known = Known.trunc(BitWidth); 1740 1741 // Attempt to avoid multi-use ops if we don't need anything from them. 1742 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1743 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 1744 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 1745 1746 // If the input is only used by this truncate, see if we can shrink it based 1747 // on the known demanded bits. 1748 if (Src.getNode()->hasOneUse()) { 1749 switch (Src.getOpcode()) { 1750 default: 1751 break; 1752 case ISD::SRL: 1753 // Shrink SRL by a constant if none of the high bits shifted in are 1754 // demanded. 1755 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1756 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1757 // undesirable. 1758 break; 1759 1760 auto *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); 1761 if (!ShAmt || ShAmt->getAPIntValue().uge(BitWidth)) 1762 break; 1763 1764 SDValue Shift = Src.getOperand(1); 1765 uint64_t ShVal = ShAmt->getZExtValue(); 1766 1767 if (TLO.LegalTypes()) 1768 Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1769 1770 APInt HighBits = 1771 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 1772 HighBits.lshrInPlace(ShVal); 1773 HighBits = HighBits.trunc(BitWidth); 1774 1775 if (!(HighBits & DemandedBits)) { 1776 // None of the shifted in bits are needed. Add a truncate of the 1777 // shift input, then shift it. 1778 SDValue NewTrunc = 1779 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1780 return TLO.CombineTo( 1781 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift)); 1782 } 1783 break; 1784 } 1785 } 1786 1787 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1788 break; 1789 } 1790 case ISD::AssertZext: { 1791 // AssertZext demands all of the high bits, plus any of the low bits 1792 // demanded by its users. 1793 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1794 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1795 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 1796 TLO, Depth + 1)) 1797 return true; 1798 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1799 1800 Known.Zero |= ~InMask; 1801 break; 1802 } 1803 case ISD::EXTRACT_VECTOR_ELT: { 1804 SDValue Src = Op.getOperand(0); 1805 SDValue Idx = Op.getOperand(1); 1806 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1807 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 1808 1809 // Demand the bits from every vector element without a constant index. 1810 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 1811 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 1812 if (CIdx->getAPIntValue().ult(NumSrcElts)) 1813 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 1814 1815 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 1816 // anything about the extended bits. 1817 APInt DemandedSrcBits = DemandedBits; 1818 if (BitWidth > EltBitWidth) 1819 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 1820 1821 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 1822 Depth + 1)) 1823 return true; 1824 1825 Known = Known2; 1826 if (BitWidth > EltBitWidth) 1827 Known = Known.zext(BitWidth, false /* => any extend */); 1828 break; 1829 } 1830 case ISD::BITCAST: { 1831 SDValue Src = Op.getOperand(0); 1832 EVT SrcVT = Src.getValueType(); 1833 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 1834 1835 // If this is an FP->Int bitcast and if the sign bit is the only 1836 // thing demanded, turn this into a FGETSIGN. 1837 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 1838 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 1839 SrcVT.isFloatingPoint()) { 1840 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1841 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1842 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 1843 SrcVT != MVT::f128) { 1844 // Cannot eliminate/lower SHL for f128 yet. 1845 EVT Ty = OpVTLegal ? VT : MVT::i32; 1846 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1847 // place. We expect the SHL to be eliminated by other optimizations. 1848 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 1849 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1850 if (!OpVTLegal && OpVTSizeInBits > 32) 1851 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 1852 unsigned ShVal = Op.getValueSizeInBits() - 1; 1853 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 1854 return TLO.CombineTo(Op, 1855 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 1856 } 1857 } 1858 1859 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 1860 // Demand the elt/bit if any of the original elts/bits are demanded. 1861 // TODO - bigendian once we have test coverage. 1862 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 1863 TLO.DAG.getDataLayout().isLittleEndian()) { 1864 unsigned Scale = BitWidth / NumSrcEltBits; 1865 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1866 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 1867 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 1868 for (unsigned i = 0; i != Scale; ++i) { 1869 unsigned Offset = i * NumSrcEltBits; 1870 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 1871 if (!Sub.isNullValue()) { 1872 DemandedSrcBits |= Sub; 1873 for (unsigned j = 0; j != NumElts; ++j) 1874 if (DemandedElts[j]) 1875 DemandedSrcElts.setBit((j * Scale) + i); 1876 } 1877 } 1878 1879 APInt KnownSrcUndef, KnownSrcZero; 1880 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 1881 KnownSrcZero, TLO, Depth + 1)) 1882 return true; 1883 1884 KnownBits KnownSrcBits; 1885 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 1886 KnownSrcBits, TLO, Depth + 1)) 1887 return true; 1888 } else if ((NumSrcEltBits % BitWidth) == 0 && 1889 TLO.DAG.getDataLayout().isLittleEndian()) { 1890 unsigned Scale = NumSrcEltBits / BitWidth; 1891 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1892 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 1893 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 1894 for (unsigned i = 0; i != NumElts; ++i) 1895 if (DemandedElts[i]) { 1896 unsigned Offset = (i % Scale) * BitWidth; 1897 DemandedSrcBits.insertBits(DemandedBits, Offset); 1898 DemandedSrcElts.setBit(i / Scale); 1899 } 1900 1901 if (SrcVT.isVector()) { 1902 APInt KnownSrcUndef, KnownSrcZero; 1903 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 1904 KnownSrcZero, TLO, Depth + 1)) 1905 return true; 1906 } 1907 1908 KnownBits KnownSrcBits; 1909 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 1910 KnownSrcBits, TLO, Depth + 1)) 1911 return true; 1912 } 1913 1914 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 1915 // recursive call where Known may be useful to the caller. 1916 if (Depth > 0) { 1917 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1918 return false; 1919 } 1920 break; 1921 } 1922 case ISD::ADD: 1923 case ISD::MUL: 1924 case ISD::SUB: { 1925 // Add, Sub, and Mul don't demand any bits in positions beyond that 1926 // of the highest bit demanded of them. 1927 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 1928 SDNodeFlags Flags = Op.getNode()->getFlags(); 1929 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 1930 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 1931 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 1932 Depth + 1) || 1933 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 1934 Depth + 1) || 1935 // See if the operation should be performed at a smaller bit width. 1936 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 1937 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 1938 // Disable the nsw and nuw flags. We can no longer guarantee that we 1939 // won't wrap after simplification. 1940 Flags.setNoSignedWrap(false); 1941 Flags.setNoUnsignedWrap(false); 1942 SDValue NewOp = 1943 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 1944 return TLO.CombineTo(Op, NewOp); 1945 } 1946 return true; 1947 } 1948 1949 // Attempt to avoid multi-use ops if we don't need anything from them. 1950 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1951 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1952 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 1953 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1954 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 1955 if (DemandedOp0 || DemandedOp1) { 1956 Flags.setNoSignedWrap(false); 1957 Flags.setNoUnsignedWrap(false); 1958 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1959 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1960 SDValue NewOp = 1961 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 1962 return TLO.CombineTo(Op, NewOp); 1963 } 1964 } 1965 1966 // If we have a constant operand, we may be able to turn it into -1 if we 1967 // do not demand the high bits. This can make the constant smaller to 1968 // encode, allow more general folding, or match specialized instruction 1969 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 1970 // is probably not useful (and could be detrimental). 1971 ConstantSDNode *C = isConstOrConstSplat(Op1); 1972 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 1973 if (C && !C->isAllOnesValue() && !C->isOne() && 1974 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 1975 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 1976 // Disable the nsw and nuw flags. We can no longer guarantee that we 1977 // won't wrap after simplification. 1978 Flags.setNoSignedWrap(false); 1979 Flags.setNoUnsignedWrap(false); 1980 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 1981 return TLO.CombineTo(Op, NewOp); 1982 } 1983 1984 LLVM_FALLTHROUGH; 1985 } 1986 default: 1987 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 1988 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 1989 Known, TLO, Depth)) 1990 return true; 1991 break; 1992 } 1993 1994 // Just use computeKnownBits to compute output bits. 1995 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1996 break; 1997 } 1998 1999 // If we know the value of all of the demanded bits, return this as a 2000 // constant. 2001 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2002 // Avoid folding to a constant if any OpaqueConstant is involved. 2003 const SDNode *N = Op.getNode(); 2004 for (SDNodeIterator I = SDNodeIterator::begin(N), 2005 E = SDNodeIterator::end(N); 2006 I != E; ++I) { 2007 SDNode *Op = *I; 2008 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2009 if (C->isOpaque()) 2010 return false; 2011 } 2012 // TODO: Handle float bits as well. 2013 if (VT.isInteger()) 2014 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2015 } 2016 2017 return false; 2018 } 2019 2020 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2021 const APInt &DemandedElts, 2022 APInt &KnownUndef, 2023 APInt &KnownZero, 2024 DAGCombinerInfo &DCI) const { 2025 SelectionDAG &DAG = DCI.DAG; 2026 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2027 !DCI.isBeforeLegalizeOps()); 2028 2029 bool Simplified = 2030 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2031 if (Simplified) { 2032 DCI.AddToWorklist(Op.getNode()); 2033 DCI.CommitTargetLoweringOpt(TLO); 2034 } 2035 2036 return Simplified; 2037 } 2038 2039 /// Given a vector binary operation and known undefined elements for each input 2040 /// operand, compute whether each element of the output is undefined. 2041 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2042 const APInt &UndefOp0, 2043 const APInt &UndefOp1) { 2044 EVT VT = BO.getValueType(); 2045 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2046 "Vector binop only"); 2047 2048 EVT EltVT = VT.getVectorElementType(); 2049 unsigned NumElts = VT.getVectorNumElements(); 2050 assert(UndefOp0.getBitWidth() == NumElts && 2051 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2052 2053 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2054 const APInt &UndefVals) { 2055 if (UndefVals[Index]) 2056 return DAG.getUNDEF(EltVT); 2057 2058 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2059 // Try hard to make sure that the getNode() call is not creating temporary 2060 // nodes. Ignore opaque integers because they do not constant fold. 2061 SDValue Elt = BV->getOperand(Index); 2062 auto *C = dyn_cast<ConstantSDNode>(Elt); 2063 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2064 return Elt; 2065 } 2066 2067 return SDValue(); 2068 }; 2069 2070 APInt KnownUndef = APInt::getNullValue(NumElts); 2071 for (unsigned i = 0; i != NumElts; ++i) { 2072 // If both inputs for this element are either constant or undef and match 2073 // the element type, compute the constant/undef result for this element of 2074 // the vector. 2075 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2076 // not handle FP constants. The code within getNode() should be refactored 2077 // to avoid the danger of creating a bogus temporary node here. 2078 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2079 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2080 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2081 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2082 KnownUndef.setBit(i); 2083 } 2084 return KnownUndef; 2085 } 2086 2087 bool TargetLowering::SimplifyDemandedVectorElts( 2088 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2089 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2090 bool AssumeSingleUse) const { 2091 EVT VT = Op.getValueType(); 2092 APInt DemandedElts = OriginalDemandedElts; 2093 unsigned NumElts = DemandedElts.getBitWidth(); 2094 assert(VT.isVector() && "Expected vector op"); 2095 assert(VT.getVectorNumElements() == NumElts && 2096 "Mask size mismatches value type element count!"); 2097 2098 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2099 2100 // Undef operand. 2101 if (Op.isUndef()) { 2102 KnownUndef.setAllBits(); 2103 return false; 2104 } 2105 2106 // If Op has other users, assume that all elements are needed. 2107 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2108 DemandedElts.setAllBits(); 2109 2110 // Not demanding any elements from Op. 2111 if (DemandedElts == 0) { 2112 KnownUndef.setAllBits(); 2113 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2114 } 2115 2116 // Limit search depth. 2117 if (Depth >= SelectionDAG::MaxRecursionDepth) 2118 return false; 2119 2120 SDLoc DL(Op); 2121 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2122 2123 switch (Op.getOpcode()) { 2124 case ISD::SCALAR_TO_VECTOR: { 2125 if (!DemandedElts[0]) { 2126 KnownUndef.setAllBits(); 2127 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2128 } 2129 KnownUndef.setHighBits(NumElts - 1); 2130 break; 2131 } 2132 case ISD::BITCAST: { 2133 SDValue Src = Op.getOperand(0); 2134 EVT SrcVT = Src.getValueType(); 2135 2136 // We only handle vectors here. 2137 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2138 if (!SrcVT.isVector()) 2139 break; 2140 2141 // Fast handling of 'identity' bitcasts. 2142 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2143 if (NumSrcElts == NumElts) 2144 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2145 KnownZero, TLO, Depth + 1); 2146 2147 APInt SrcZero, SrcUndef; 2148 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2149 2150 // Bitcast from 'large element' src vector to 'small element' vector, we 2151 // must demand a source element if any DemandedElt maps to it. 2152 if ((NumElts % NumSrcElts) == 0) { 2153 unsigned Scale = NumElts / NumSrcElts; 2154 for (unsigned i = 0; i != NumElts; ++i) 2155 if (DemandedElts[i]) 2156 SrcDemandedElts.setBit(i / Scale); 2157 2158 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2159 TLO, Depth + 1)) 2160 return true; 2161 2162 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2163 // of the large element. 2164 // TODO - bigendian once we have test coverage. 2165 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2166 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2167 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2168 for (unsigned i = 0; i != NumElts; ++i) 2169 if (DemandedElts[i]) { 2170 unsigned Ofs = (i % Scale) * EltSizeInBits; 2171 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2172 } 2173 2174 KnownBits Known; 2175 if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1)) 2176 return true; 2177 } 2178 2179 // If the src element is zero/undef then all the output elements will be - 2180 // only demanded elements are guaranteed to be correct. 2181 for (unsigned i = 0; i != NumSrcElts; ++i) { 2182 if (SrcDemandedElts[i]) { 2183 if (SrcZero[i]) 2184 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2185 if (SrcUndef[i]) 2186 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2187 } 2188 } 2189 } 2190 2191 // Bitcast from 'small element' src vector to 'large element' vector, we 2192 // demand all smaller source elements covered by the larger demanded element 2193 // of this vector. 2194 if ((NumSrcElts % NumElts) == 0) { 2195 unsigned Scale = NumSrcElts / NumElts; 2196 for (unsigned i = 0; i != NumElts; ++i) 2197 if (DemandedElts[i]) 2198 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2199 2200 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2201 TLO, Depth + 1)) 2202 return true; 2203 2204 // If all the src elements covering an output element are zero/undef, then 2205 // the output element will be as well, assuming it was demanded. 2206 for (unsigned i = 0; i != NumElts; ++i) { 2207 if (DemandedElts[i]) { 2208 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2209 KnownZero.setBit(i); 2210 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2211 KnownUndef.setBit(i); 2212 } 2213 } 2214 } 2215 break; 2216 } 2217 case ISD::BUILD_VECTOR: { 2218 // Check all elements and simplify any unused elements with UNDEF. 2219 if (!DemandedElts.isAllOnesValue()) { 2220 // Don't simplify BROADCASTS. 2221 if (llvm::any_of(Op->op_values(), 2222 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2223 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2224 bool Updated = false; 2225 for (unsigned i = 0; i != NumElts; ++i) { 2226 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2227 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2228 KnownUndef.setBit(i); 2229 Updated = true; 2230 } 2231 } 2232 if (Updated) 2233 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2234 } 2235 } 2236 for (unsigned i = 0; i != NumElts; ++i) { 2237 SDValue SrcOp = Op.getOperand(i); 2238 if (SrcOp.isUndef()) { 2239 KnownUndef.setBit(i); 2240 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2241 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2242 KnownZero.setBit(i); 2243 } 2244 } 2245 break; 2246 } 2247 case ISD::CONCAT_VECTORS: { 2248 EVT SubVT = Op.getOperand(0).getValueType(); 2249 unsigned NumSubVecs = Op.getNumOperands(); 2250 unsigned NumSubElts = SubVT.getVectorNumElements(); 2251 for (unsigned i = 0; i != NumSubVecs; ++i) { 2252 SDValue SubOp = Op.getOperand(i); 2253 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2254 APInt SubUndef, SubZero; 2255 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2256 Depth + 1)) 2257 return true; 2258 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2259 KnownZero.insertBits(SubZero, i * NumSubElts); 2260 } 2261 break; 2262 } 2263 case ISD::INSERT_SUBVECTOR: { 2264 if (!isa<ConstantSDNode>(Op.getOperand(2))) 2265 break; 2266 SDValue Base = Op.getOperand(0); 2267 SDValue Sub = Op.getOperand(1); 2268 EVT SubVT = Sub.getValueType(); 2269 unsigned NumSubElts = SubVT.getVectorNumElements(); 2270 const APInt &Idx = Op.getConstantOperandAPInt(2); 2271 if (Idx.ugt(NumElts - NumSubElts)) 2272 break; 2273 unsigned SubIdx = Idx.getZExtValue(); 2274 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 2275 APInt SubUndef, SubZero; 2276 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 2277 Depth + 1)) 2278 return true; 2279 APInt BaseElts = DemandedElts; 2280 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 2281 2282 // If none of the base operand elements are demanded, replace it with undef. 2283 if (!BaseElts && !Base.isUndef()) 2284 return TLO.CombineTo(Op, 2285 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2286 TLO.DAG.getUNDEF(VT), 2287 Op.getOperand(1), 2288 Op.getOperand(2))); 2289 2290 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 2291 Depth + 1)) 2292 return true; 2293 KnownUndef.insertBits(SubUndef, SubIdx); 2294 KnownZero.insertBits(SubZero, SubIdx); 2295 break; 2296 } 2297 case ISD::EXTRACT_SUBVECTOR: { 2298 SDValue Src = Op.getOperand(0); 2299 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2300 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2301 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2302 // Offset the demanded elts by the subvector index. 2303 uint64_t Idx = SubIdx->getZExtValue(); 2304 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2305 APInt SrcUndef, SrcZero; 2306 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, 2307 Depth + 1)) 2308 return true; 2309 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2310 KnownZero = SrcZero.extractBits(NumElts, Idx); 2311 } 2312 break; 2313 } 2314 case ISD::INSERT_VECTOR_ELT: { 2315 SDValue Vec = Op.getOperand(0); 2316 SDValue Scl = Op.getOperand(1); 2317 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2318 2319 // For a legal, constant insertion index, if we don't need this insertion 2320 // then strip it, else remove it from the demanded elts. 2321 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2322 unsigned Idx = CIdx->getZExtValue(); 2323 if (!DemandedElts[Idx]) 2324 return TLO.CombineTo(Op, Vec); 2325 2326 APInt DemandedVecElts(DemandedElts); 2327 DemandedVecElts.clearBit(Idx); 2328 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2329 KnownZero, TLO, Depth + 1)) 2330 return true; 2331 2332 KnownUndef.clearBit(Idx); 2333 if (Scl.isUndef()) 2334 KnownUndef.setBit(Idx); 2335 2336 KnownZero.clearBit(Idx); 2337 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 2338 KnownZero.setBit(Idx); 2339 break; 2340 } 2341 2342 APInt VecUndef, VecZero; 2343 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2344 Depth + 1)) 2345 return true; 2346 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2347 break; 2348 } 2349 case ISD::VSELECT: { 2350 // Try to transform the select condition based on the current demanded 2351 // elements. 2352 // TODO: If a condition element is undef, we can choose from one arm of the 2353 // select (and if one arm is undef, then we can propagate that to the 2354 // result). 2355 // TODO - add support for constant vselect masks (see IR version of this). 2356 APInt UnusedUndef, UnusedZero; 2357 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2358 UnusedZero, TLO, Depth + 1)) 2359 return true; 2360 2361 // See if we can simplify either vselect operand. 2362 APInt DemandedLHS(DemandedElts); 2363 APInt DemandedRHS(DemandedElts); 2364 APInt UndefLHS, ZeroLHS; 2365 APInt UndefRHS, ZeroRHS; 2366 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2367 ZeroLHS, TLO, Depth + 1)) 2368 return true; 2369 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2370 ZeroRHS, TLO, Depth + 1)) 2371 return true; 2372 2373 KnownUndef = UndefLHS & UndefRHS; 2374 KnownZero = ZeroLHS & ZeroRHS; 2375 break; 2376 } 2377 case ISD::VECTOR_SHUFFLE: { 2378 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2379 2380 // Collect demanded elements from shuffle operands.. 2381 APInt DemandedLHS(NumElts, 0); 2382 APInt DemandedRHS(NumElts, 0); 2383 for (unsigned i = 0; i != NumElts; ++i) { 2384 int M = ShuffleMask[i]; 2385 if (M < 0 || !DemandedElts[i]) 2386 continue; 2387 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2388 if (M < (int)NumElts) 2389 DemandedLHS.setBit(M); 2390 else 2391 DemandedRHS.setBit(M - NumElts); 2392 } 2393 2394 // See if we can simplify either shuffle operand. 2395 APInt UndefLHS, ZeroLHS; 2396 APInt UndefRHS, ZeroRHS; 2397 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2398 ZeroLHS, TLO, Depth + 1)) 2399 return true; 2400 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2401 ZeroRHS, TLO, Depth + 1)) 2402 return true; 2403 2404 // Simplify mask using undef elements from LHS/RHS. 2405 bool Updated = false; 2406 bool IdentityLHS = true, IdentityRHS = true; 2407 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2408 for (unsigned i = 0; i != NumElts; ++i) { 2409 int &M = NewMask[i]; 2410 if (M < 0) 2411 continue; 2412 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2413 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2414 Updated = true; 2415 M = -1; 2416 } 2417 IdentityLHS &= (M < 0) || (M == (int)i); 2418 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2419 } 2420 2421 // Update legal shuffle masks based on demanded elements if it won't reduce 2422 // to Identity which can cause premature removal of the shuffle mask. 2423 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2424 SDValue LegalShuffle = 2425 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2426 NewMask, TLO.DAG); 2427 if (LegalShuffle) 2428 return TLO.CombineTo(Op, LegalShuffle); 2429 } 2430 2431 // Propagate undef/zero elements from LHS/RHS. 2432 for (unsigned i = 0; i != NumElts; ++i) { 2433 int M = ShuffleMask[i]; 2434 if (M < 0) { 2435 KnownUndef.setBit(i); 2436 } else if (M < (int)NumElts) { 2437 if (UndefLHS[M]) 2438 KnownUndef.setBit(i); 2439 if (ZeroLHS[M]) 2440 KnownZero.setBit(i); 2441 } else { 2442 if (UndefRHS[M - NumElts]) 2443 KnownUndef.setBit(i); 2444 if (ZeroRHS[M - NumElts]) 2445 KnownZero.setBit(i); 2446 } 2447 } 2448 break; 2449 } 2450 case ISD::ANY_EXTEND_VECTOR_INREG: 2451 case ISD::SIGN_EXTEND_VECTOR_INREG: 2452 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2453 APInt SrcUndef, SrcZero; 2454 SDValue Src = Op.getOperand(0); 2455 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2456 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2457 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2458 Depth + 1)) 2459 return true; 2460 KnownZero = SrcZero.zextOrTrunc(NumElts); 2461 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2462 2463 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2464 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2465 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2466 // aext - if we just need the bottom element then we can bitcast. 2467 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2468 } 2469 2470 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2471 // zext(undef) upper bits are guaranteed to be zero. 2472 if (DemandedElts.isSubsetOf(KnownUndef)) 2473 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2474 KnownUndef.clearAllBits(); 2475 } 2476 break; 2477 } 2478 2479 // TODO: There are more binop opcodes that could be handled here - MUL, MIN, 2480 // MAX, saturated math, etc. 2481 case ISD::OR: 2482 case ISD::XOR: 2483 case ISD::ADD: 2484 case ISD::SUB: 2485 case ISD::FADD: 2486 case ISD::FSUB: 2487 case ISD::FMUL: 2488 case ISD::FDIV: 2489 case ISD::FREM: { 2490 APInt UndefRHS, ZeroRHS; 2491 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2492 ZeroRHS, TLO, Depth + 1)) 2493 return true; 2494 APInt UndefLHS, ZeroLHS; 2495 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2496 ZeroLHS, TLO, Depth + 1)) 2497 return true; 2498 2499 KnownZero = ZeroLHS & ZeroRHS; 2500 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2501 break; 2502 } 2503 case ISD::SHL: 2504 case ISD::SRL: 2505 case ISD::SRA: 2506 case ISD::ROTL: 2507 case ISD::ROTR: { 2508 APInt UndefRHS, ZeroRHS; 2509 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2510 ZeroRHS, TLO, Depth + 1)) 2511 return true; 2512 APInt UndefLHS, ZeroLHS; 2513 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2514 ZeroLHS, TLO, Depth + 1)) 2515 return true; 2516 2517 KnownZero = ZeroLHS; 2518 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2519 break; 2520 } 2521 case ISD::MUL: 2522 case ISD::AND: { 2523 APInt SrcUndef, SrcZero; 2524 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 2525 SrcZero, TLO, Depth + 1)) 2526 return true; 2527 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2528 KnownZero, TLO, Depth + 1)) 2529 return true; 2530 2531 // If either side has a zero element, then the result element is zero, even 2532 // if the other is an UNDEF. 2533 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2534 // and then handle 'and' nodes with the rest of the binop opcodes. 2535 KnownZero |= SrcZero; 2536 KnownUndef &= SrcUndef; 2537 KnownUndef &= ~KnownZero; 2538 break; 2539 } 2540 case ISD::TRUNCATE: 2541 case ISD::SIGN_EXTEND: 2542 case ISD::ZERO_EXTEND: 2543 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2544 KnownZero, TLO, Depth + 1)) 2545 return true; 2546 2547 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2548 // zext(undef) upper bits are guaranteed to be zero. 2549 if (DemandedElts.isSubsetOf(KnownUndef)) 2550 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2551 KnownUndef.clearAllBits(); 2552 } 2553 break; 2554 default: { 2555 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2556 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2557 KnownZero, TLO, Depth)) 2558 return true; 2559 } else { 2560 KnownBits Known; 2561 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2562 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2563 TLO, Depth, AssumeSingleUse)) 2564 return true; 2565 } 2566 break; 2567 } 2568 } 2569 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2570 2571 // Constant fold all undef cases. 2572 // TODO: Handle zero cases as well. 2573 if (DemandedElts.isSubsetOf(KnownUndef)) 2574 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2575 2576 return false; 2577 } 2578 2579 /// Determine which of the bits specified in Mask are known to be either zero or 2580 /// one and return them in the Known. 2581 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2582 KnownBits &Known, 2583 const APInt &DemandedElts, 2584 const SelectionDAG &DAG, 2585 unsigned Depth) const { 2586 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2587 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2588 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2589 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2590 "Should use MaskedValueIsZero if you don't know whether Op" 2591 " is a target node!"); 2592 Known.resetAll(); 2593 } 2594 2595 void TargetLowering::computeKnownBitsForTargetInstr( 2596 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2597 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2598 unsigned Depth) const { 2599 Known.resetAll(); 2600 } 2601 2602 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 2603 KnownBits &Known, 2604 const APInt &DemandedElts, 2605 const SelectionDAG &DAG, 2606 unsigned Depth) const { 2607 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 2608 2609 if (unsigned Align = DAG.InferPtrAlignment(Op)) { 2610 // The low bits are known zero if the pointer is aligned. 2611 Known.Zero.setLowBits(Log2_32(Align)); 2612 } 2613 } 2614 2615 /// This method can be implemented by targets that want to expose additional 2616 /// information about sign bits to the DAG Combiner. 2617 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2618 const APInt &, 2619 const SelectionDAG &, 2620 unsigned Depth) const { 2621 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2622 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2623 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2624 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2625 "Should use ComputeNumSignBits if you don't know whether Op" 2626 " is a target node!"); 2627 return 1; 2628 } 2629 2630 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2631 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2632 TargetLoweringOpt &TLO, unsigned Depth) const { 2633 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2634 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2635 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2636 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2637 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2638 " is a target node!"); 2639 return false; 2640 } 2641 2642 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2643 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2644 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2645 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2646 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2647 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2648 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2649 "Should use SimplifyDemandedBits if you don't know whether Op" 2650 " is a target node!"); 2651 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2652 return false; 2653 } 2654 2655 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 2656 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2657 SelectionDAG &DAG, unsigned Depth) const { 2658 assert( 2659 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2660 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2661 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2662 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2663 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 2664 " is a target node!"); 2665 return SDValue(); 2666 } 2667 2668 SDValue 2669 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 2670 SDValue N1, MutableArrayRef<int> Mask, 2671 SelectionDAG &DAG) const { 2672 bool LegalMask = isShuffleMaskLegal(Mask, VT); 2673 if (!LegalMask) { 2674 std::swap(N0, N1); 2675 ShuffleVectorSDNode::commuteMask(Mask); 2676 LegalMask = isShuffleMaskLegal(Mask, VT); 2677 } 2678 2679 if (!LegalMask) 2680 return SDValue(); 2681 2682 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 2683 } 2684 2685 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 2686 return nullptr; 2687 } 2688 2689 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 2690 const SelectionDAG &DAG, 2691 bool SNaN, 2692 unsigned Depth) const { 2693 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2694 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2695 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2696 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2697 "Should use isKnownNeverNaN if you don't know whether Op" 2698 " is a target node!"); 2699 return false; 2700 } 2701 2702 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 2703 // work with truncating build vectors and vectors with elements of less than 2704 // 8 bits. 2705 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 2706 if (!N) 2707 return false; 2708 2709 APInt CVal; 2710 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 2711 CVal = CN->getAPIntValue(); 2712 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 2713 auto *CN = BV->getConstantSplatNode(); 2714 if (!CN) 2715 return false; 2716 2717 // If this is a truncating build vector, truncate the splat value. 2718 // Otherwise, we may fail to match the expected values below. 2719 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 2720 CVal = CN->getAPIntValue(); 2721 if (BVEltWidth < CVal.getBitWidth()) 2722 CVal = CVal.trunc(BVEltWidth); 2723 } else { 2724 return false; 2725 } 2726 2727 switch (getBooleanContents(N->getValueType(0))) { 2728 case UndefinedBooleanContent: 2729 return CVal[0]; 2730 case ZeroOrOneBooleanContent: 2731 return CVal.isOneValue(); 2732 case ZeroOrNegativeOneBooleanContent: 2733 return CVal.isAllOnesValue(); 2734 } 2735 2736 llvm_unreachable("Invalid boolean contents"); 2737 } 2738 2739 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 2740 if (!N) 2741 return false; 2742 2743 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 2744 if (!CN) { 2745 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 2746 if (!BV) 2747 return false; 2748 2749 // Only interested in constant splats, we don't care about undef 2750 // elements in identifying boolean constants and getConstantSplatNode 2751 // returns NULL if all ops are undef; 2752 CN = BV->getConstantSplatNode(); 2753 if (!CN) 2754 return false; 2755 } 2756 2757 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 2758 return !CN->getAPIntValue()[0]; 2759 2760 return CN->isNullValue(); 2761 } 2762 2763 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 2764 bool SExt) const { 2765 if (VT == MVT::i1) 2766 return N->isOne(); 2767 2768 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 2769 switch (Cnt) { 2770 case TargetLowering::ZeroOrOneBooleanContent: 2771 // An extended value of 1 is always true, unless its original type is i1, 2772 // in which case it will be sign extended to -1. 2773 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 2774 case TargetLowering::UndefinedBooleanContent: 2775 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2776 return N->isAllOnesValue() && SExt; 2777 } 2778 llvm_unreachable("Unexpected enumeration."); 2779 } 2780 2781 /// This helper function of SimplifySetCC tries to optimize the comparison when 2782 /// either operand of the SetCC node is a bitwise-and instruction. 2783 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 2784 ISD::CondCode Cond, const SDLoc &DL, 2785 DAGCombinerInfo &DCI) const { 2786 // Match these patterns in any of their permutations: 2787 // (X & Y) == Y 2788 // (X & Y) != Y 2789 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 2790 std::swap(N0, N1); 2791 2792 EVT OpVT = N0.getValueType(); 2793 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 2794 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 2795 return SDValue(); 2796 2797 SDValue X, Y; 2798 if (N0.getOperand(0) == N1) { 2799 X = N0.getOperand(1); 2800 Y = N0.getOperand(0); 2801 } else if (N0.getOperand(1) == N1) { 2802 X = N0.getOperand(0); 2803 Y = N0.getOperand(1); 2804 } else { 2805 return SDValue(); 2806 } 2807 2808 SelectionDAG &DAG = DCI.DAG; 2809 SDValue Zero = DAG.getConstant(0, DL, OpVT); 2810 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 2811 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 2812 // Note that where Y is variable and is known to have at most one bit set 2813 // (for example, if it is Z & 1) we cannot do this; the expressions are not 2814 // equivalent when Y == 0. 2815 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 2816 if (DCI.isBeforeLegalizeOps() || 2817 isCondCodeLegal(Cond, N0.getSimpleValueType())) 2818 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 2819 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 2820 // If the target supports an 'and-not' or 'and-complement' logic operation, 2821 // try to use that to make a comparison operation more efficient. 2822 // But don't do this transform if the mask is a single bit because there are 2823 // more efficient ways to deal with that case (for example, 'bt' on x86 or 2824 // 'rlwinm' on PPC). 2825 2826 // Bail out if the compare operand that we want to turn into a zero is 2827 // already a zero (otherwise, infinite loop). 2828 auto *YConst = dyn_cast<ConstantSDNode>(Y); 2829 if (YConst && YConst->isNullValue()) 2830 return SDValue(); 2831 2832 // Transform this into: ~X & Y == 0. 2833 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 2834 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 2835 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 2836 } 2837 2838 return SDValue(); 2839 } 2840 2841 /// There are multiple IR patterns that could be checking whether certain 2842 /// truncation of a signed number would be lossy or not. The pattern which is 2843 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 2844 /// We are looking for the following pattern: (KeptBits is a constant) 2845 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 2846 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 2847 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 2848 /// We will unfold it into the natural trunc+sext pattern: 2849 /// ((%x << C) a>> C) dstcond %x 2850 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 2851 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 2852 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 2853 const SDLoc &DL) const { 2854 // We must be comparing with a constant. 2855 ConstantSDNode *C1; 2856 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 2857 return SDValue(); 2858 2859 // N0 should be: add %x, (1 << (KeptBits-1)) 2860 if (N0->getOpcode() != ISD::ADD) 2861 return SDValue(); 2862 2863 // And we must be 'add'ing a constant. 2864 ConstantSDNode *C01; 2865 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 2866 return SDValue(); 2867 2868 SDValue X = N0->getOperand(0); 2869 EVT XVT = X.getValueType(); 2870 2871 // Validate constants ... 2872 2873 APInt I1 = C1->getAPIntValue(); 2874 2875 ISD::CondCode NewCond; 2876 if (Cond == ISD::CondCode::SETULT) { 2877 NewCond = ISD::CondCode::SETEQ; 2878 } else if (Cond == ISD::CondCode::SETULE) { 2879 NewCond = ISD::CondCode::SETEQ; 2880 // But need to 'canonicalize' the constant. 2881 I1 += 1; 2882 } else if (Cond == ISD::CondCode::SETUGT) { 2883 NewCond = ISD::CondCode::SETNE; 2884 // But need to 'canonicalize' the constant. 2885 I1 += 1; 2886 } else if (Cond == ISD::CondCode::SETUGE) { 2887 NewCond = ISD::CondCode::SETNE; 2888 } else 2889 return SDValue(); 2890 2891 APInt I01 = C01->getAPIntValue(); 2892 2893 auto checkConstants = [&I1, &I01]() -> bool { 2894 // Both of them must be power-of-two, and the constant from setcc is bigger. 2895 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 2896 }; 2897 2898 if (checkConstants()) { 2899 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 2900 } else { 2901 // What if we invert constants? (and the target predicate) 2902 I1.negate(); 2903 I01.negate(); 2904 NewCond = getSetCCInverse(NewCond, /*isInteger=*/true); 2905 if (!checkConstants()) 2906 return SDValue(); 2907 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 2908 } 2909 2910 // They are power-of-two, so which bit is set? 2911 const unsigned KeptBits = I1.logBase2(); 2912 const unsigned KeptBitsMinusOne = I01.logBase2(); 2913 2914 // Magic! 2915 if (KeptBits != (KeptBitsMinusOne + 1)) 2916 return SDValue(); 2917 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 2918 2919 // We don't want to do this in every single case. 2920 SelectionDAG &DAG = DCI.DAG; 2921 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 2922 XVT, KeptBits)) 2923 return SDValue(); 2924 2925 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 2926 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 2927 2928 // Unfold into: ((%x << C) a>> C) cond %x 2929 // Where 'cond' will be either 'eq' or 'ne'. 2930 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 2931 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 2932 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 2933 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 2934 2935 return T2; 2936 } 2937 2938 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 2939 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 2940 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 2941 DAGCombinerInfo &DCI, const SDLoc &DL) const { 2942 assert(isConstOrConstSplat(N1C) && 2943 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 2944 "Should be a comparison with 0."); 2945 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2946 "Valid only for [in]equality comparisons."); 2947 2948 unsigned NewShiftOpcode; 2949 SDValue X, C, Y; 2950 2951 SelectionDAG &DAG = DCI.DAG; 2952 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2953 2954 // Look for '(C l>>/<< Y)'. 2955 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 2956 // The shift should be one-use. 2957 if (!V.hasOneUse()) 2958 return false; 2959 unsigned OldShiftOpcode = V.getOpcode(); 2960 switch (OldShiftOpcode) { 2961 case ISD::SHL: 2962 NewShiftOpcode = ISD::SRL; 2963 break; 2964 case ISD::SRL: 2965 NewShiftOpcode = ISD::SHL; 2966 break; 2967 default: 2968 return false; // must be a logical shift. 2969 } 2970 // We should be shifting a constant. 2971 // FIXME: best to use isConstantOrConstantVector(). 2972 C = V.getOperand(0); 2973 ConstantSDNode *CC = 2974 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 2975 if (!CC) 2976 return false; 2977 Y = V.getOperand(1); 2978 2979 ConstantSDNode *XC = 2980 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 2981 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 2982 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 2983 }; 2984 2985 // LHS of comparison should be an one-use 'and'. 2986 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 2987 return SDValue(); 2988 2989 X = N0.getOperand(0); 2990 SDValue Mask = N0.getOperand(1); 2991 2992 // 'and' is commutative! 2993 if (!Match(Mask)) { 2994 std::swap(X, Mask); 2995 if (!Match(Mask)) 2996 return SDValue(); 2997 } 2998 2999 EVT VT = X.getValueType(); 3000 3001 // Produce: 3002 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3003 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3004 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3005 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3006 return T2; 3007 } 3008 3009 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3010 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3011 /// handle the commuted versions of these patterns. 3012 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3013 ISD::CondCode Cond, const SDLoc &DL, 3014 DAGCombinerInfo &DCI) const { 3015 unsigned BOpcode = N0.getOpcode(); 3016 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3017 "Unexpected binop"); 3018 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3019 3020 // (X + Y) == X --> Y == 0 3021 // (X - Y) == X --> Y == 0 3022 // (X ^ Y) == X --> Y == 0 3023 SelectionDAG &DAG = DCI.DAG; 3024 EVT OpVT = N0.getValueType(); 3025 SDValue X = N0.getOperand(0); 3026 SDValue Y = N0.getOperand(1); 3027 if (X == N1) 3028 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3029 3030 if (Y != N1) 3031 return SDValue(); 3032 3033 // (X + Y) == Y --> X == 0 3034 // (X ^ Y) == Y --> X == 0 3035 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3036 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3037 3038 // The shift would not be valid if the operands are boolean (i1). 3039 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3040 return SDValue(); 3041 3042 // (X - Y) == Y --> X == Y << 1 3043 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3044 !DCI.isBeforeLegalize()); 3045 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3046 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3047 if (!DCI.isCalledByLegalizer()) 3048 DCI.AddToWorklist(YShl1.getNode()); 3049 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3050 } 3051 3052 /// Try to simplify a setcc built with the specified operands and cc. If it is 3053 /// unable to simplify it, return a null SDValue. 3054 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3055 ISD::CondCode Cond, bool foldBooleans, 3056 DAGCombinerInfo &DCI, 3057 const SDLoc &dl) const { 3058 SelectionDAG &DAG = DCI.DAG; 3059 const DataLayout &Layout = DAG.getDataLayout(); 3060 EVT OpVT = N0.getValueType(); 3061 3062 // Constant fold or commute setcc. 3063 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3064 return Fold; 3065 3066 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3067 // TODO: Handle non-splat vector constants. All undef causes trouble. 3068 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3069 if (isConstOrConstSplat(N0) && 3070 (DCI.isBeforeLegalizeOps() || 3071 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3072 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3073 3074 // If we have a subtract with the same 2 non-constant operands as this setcc 3075 // -- but in reverse order -- then try to commute the operands of this setcc 3076 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3077 // instruction on some targets. 3078 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3079 (DCI.isBeforeLegalizeOps() || 3080 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3081 DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) && 3082 !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } )) 3083 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3084 3085 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3086 const APInt &C1 = N1C->getAPIntValue(); 3087 3088 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3089 // equality comparison, then we're just comparing whether X itself is 3090 // zero. 3091 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3092 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3093 N0.getOperand(1).getOpcode() == ISD::Constant) { 3094 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 3095 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3096 ShAmt == Log2_32(N0.getValueSizeInBits())) { 3097 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3098 // (srl (ctlz x), 5) == 0 -> X != 0 3099 // (srl (ctlz x), 5) != 1 -> X != 0 3100 Cond = ISD::SETNE; 3101 } else { 3102 // (srl (ctlz x), 5) != 0 -> X == 0 3103 // (srl (ctlz x), 5) == 1 -> X == 0 3104 Cond = ISD::SETEQ; 3105 } 3106 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3107 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 3108 Zero, Cond); 3109 } 3110 } 3111 3112 SDValue CTPOP = N0; 3113 // Look through truncs that don't change the value of a ctpop. 3114 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 3115 CTPOP = N0.getOperand(0); 3116 3117 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 3118 (N0 == CTPOP || 3119 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 3120 EVT CTVT = CTPOP.getValueType(); 3121 SDValue CTOp = CTPOP.getOperand(0); 3122 3123 // (ctpop x) u< 2 -> (x & x-1) == 0 3124 // (ctpop x) u> 1 -> (x & x-1) != 0 3125 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 3126 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3127 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3128 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3129 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3130 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 3131 } 3132 3133 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3134 if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) && 3135 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3136 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3137 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3138 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3139 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3140 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, true); 3141 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3142 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3143 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3144 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3145 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3146 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3147 } 3148 } 3149 3150 // (zext x) == C --> x == (trunc C) 3151 // (sext x) == C --> x == (trunc C) 3152 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3153 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3154 unsigned MinBits = N0.getValueSizeInBits(); 3155 SDValue PreExt; 3156 bool Signed = false; 3157 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3158 // ZExt 3159 MinBits = N0->getOperand(0).getValueSizeInBits(); 3160 PreExt = N0->getOperand(0); 3161 } else if (N0->getOpcode() == ISD::AND) { 3162 // DAGCombine turns costly ZExts into ANDs 3163 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3164 if ((C->getAPIntValue()+1).isPowerOf2()) { 3165 MinBits = C->getAPIntValue().countTrailingOnes(); 3166 PreExt = N0->getOperand(0); 3167 } 3168 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3169 // SExt 3170 MinBits = N0->getOperand(0).getValueSizeInBits(); 3171 PreExt = N0->getOperand(0); 3172 Signed = true; 3173 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3174 // ZEXTLOAD / SEXTLOAD 3175 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3176 MinBits = LN0->getMemoryVT().getSizeInBits(); 3177 PreExt = N0; 3178 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3179 Signed = true; 3180 MinBits = LN0->getMemoryVT().getSizeInBits(); 3181 PreExt = N0; 3182 } 3183 } 3184 3185 // Figure out how many bits we need to preserve this constant. 3186 unsigned ReqdBits = Signed ? 3187 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3188 C1.getActiveBits(); 3189 3190 // Make sure we're not losing bits from the constant. 3191 if (MinBits > 0 && 3192 MinBits < C1.getBitWidth() && 3193 MinBits >= ReqdBits) { 3194 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3195 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3196 // Will get folded away. 3197 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3198 if (MinBits == 1 && C1 == 1) 3199 // Invert the condition. 3200 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3201 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3202 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3203 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3204 } 3205 3206 // If truncating the setcc operands is not desirable, we can still 3207 // simplify the expression in some cases: 3208 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3209 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3210 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3211 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3212 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3213 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3214 SDValue TopSetCC = N0->getOperand(0); 3215 unsigned N0Opc = N0->getOpcode(); 3216 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3217 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3218 TopSetCC.getOpcode() == ISD::SETCC && 3219 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3220 (isConstFalseVal(N1C) || 3221 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3222 3223 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3224 (!N1C->isNullValue() && Cond == ISD::SETNE); 3225 3226 if (!Inverse) 3227 return TopSetCC; 3228 3229 ISD::CondCode InvCond = ISD::getSetCCInverse( 3230 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3231 TopSetCC.getOperand(0).getValueType().isInteger()); 3232 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3233 TopSetCC.getOperand(1), 3234 InvCond); 3235 } 3236 } 3237 } 3238 3239 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3240 // equality or unsigned, and all 1 bits of the const are in the same 3241 // partial word, see if we can shorten the load. 3242 if (DCI.isBeforeLegalize() && 3243 !ISD::isSignedIntSetCC(Cond) && 3244 N0.getOpcode() == ISD::AND && C1 == 0 && 3245 N0.getNode()->hasOneUse() && 3246 isa<LoadSDNode>(N0.getOperand(0)) && 3247 N0.getOperand(0).getNode()->hasOneUse() && 3248 isa<ConstantSDNode>(N0.getOperand(1))) { 3249 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3250 APInt bestMask; 3251 unsigned bestWidth = 0, bestOffset = 0; 3252 if (Lod->isSimple() && Lod->isUnindexed()) { 3253 unsigned origWidth = N0.getValueSizeInBits(); 3254 unsigned maskWidth = origWidth; 3255 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3256 // 8 bits, but have to be careful... 3257 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3258 origWidth = Lod->getMemoryVT().getSizeInBits(); 3259 const APInt &Mask = N0.getConstantOperandAPInt(1); 3260 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3261 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3262 for (unsigned offset=0; offset<origWidth/width; offset++) { 3263 if (Mask.isSubsetOf(newMask)) { 3264 if (Layout.isLittleEndian()) 3265 bestOffset = (uint64_t)offset * (width/8); 3266 else 3267 bestOffset = (origWidth/width - offset - 1) * (width/8); 3268 bestMask = Mask.lshr(offset * (width/8) * 8); 3269 bestWidth = width; 3270 break; 3271 } 3272 newMask <<= width; 3273 } 3274 } 3275 } 3276 if (bestWidth) { 3277 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3278 if (newVT.isRound() && 3279 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3280 EVT PtrType = Lod->getOperand(1).getValueType(); 3281 SDValue Ptr = Lod->getBasePtr(); 3282 if (bestOffset != 0) 3283 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 3284 DAG.getConstant(bestOffset, dl, PtrType)); 3285 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 3286 SDValue NewLoad = DAG.getLoad( 3287 newVT, dl, Lod->getChain(), Ptr, 3288 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 3289 return DAG.getSetCC(dl, VT, 3290 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3291 DAG.getConstant(bestMask.trunc(bestWidth), 3292 dl, newVT)), 3293 DAG.getConstant(0LL, dl, newVT), Cond); 3294 } 3295 } 3296 } 3297 3298 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3299 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3300 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3301 3302 // If the comparison constant has bits in the upper part, the 3303 // zero-extended value could never match. 3304 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3305 C1.getBitWidth() - InSize))) { 3306 switch (Cond) { 3307 case ISD::SETUGT: 3308 case ISD::SETUGE: 3309 case ISD::SETEQ: 3310 return DAG.getConstant(0, dl, VT); 3311 case ISD::SETULT: 3312 case ISD::SETULE: 3313 case ISD::SETNE: 3314 return DAG.getConstant(1, dl, VT); 3315 case ISD::SETGT: 3316 case ISD::SETGE: 3317 // True if the sign bit of C1 is set. 3318 return DAG.getConstant(C1.isNegative(), dl, VT); 3319 case ISD::SETLT: 3320 case ISD::SETLE: 3321 // True if the sign bit of C1 isn't set. 3322 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3323 default: 3324 break; 3325 } 3326 } 3327 3328 // Otherwise, we can perform the comparison with the low bits. 3329 switch (Cond) { 3330 case ISD::SETEQ: 3331 case ISD::SETNE: 3332 case ISD::SETUGT: 3333 case ISD::SETUGE: 3334 case ISD::SETULT: 3335 case ISD::SETULE: { 3336 EVT newVT = N0.getOperand(0).getValueType(); 3337 if (DCI.isBeforeLegalizeOps() || 3338 (isOperationLegal(ISD::SETCC, newVT) && 3339 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3340 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3341 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3342 3343 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3344 NewConst, Cond); 3345 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3346 } 3347 break; 3348 } 3349 default: 3350 break; // todo, be more careful with signed comparisons 3351 } 3352 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3353 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3354 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3355 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3356 EVT ExtDstTy = N0.getValueType(); 3357 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3358 3359 // If the constant doesn't fit into the number of bits for the source of 3360 // the sign extension, it is impossible for both sides to be equal. 3361 if (C1.getMinSignedBits() > ExtSrcTyBits) 3362 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 3363 3364 SDValue ZextOp; 3365 EVT Op0Ty = N0.getOperand(0).getValueType(); 3366 if (Op0Ty == ExtSrcTy) { 3367 ZextOp = N0.getOperand(0); 3368 } else { 3369 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3370 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 3371 DAG.getConstant(Imm, dl, Op0Ty)); 3372 } 3373 if (!DCI.isCalledByLegalizer()) 3374 DCI.AddToWorklist(ZextOp.getNode()); 3375 // Otherwise, make this a use of a zext. 3376 return DAG.getSetCC(dl, VT, ZextOp, 3377 DAG.getConstant(C1 & APInt::getLowBitsSet( 3378 ExtDstTyBits, 3379 ExtSrcTyBits), 3380 dl, ExtDstTy), 3381 Cond); 3382 } else if ((N1C->isNullValue() || N1C->isOne()) && 3383 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3384 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3385 if (N0.getOpcode() == ISD::SETCC && 3386 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3387 (N0.getValueType() == MVT::i1 || 3388 getBooleanContents(N0.getOperand(0).getValueType()) == 3389 ZeroOrOneBooleanContent)) { 3390 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3391 if (TrueWhenTrue) 3392 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3393 // Invert the condition. 3394 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3395 CC = ISD::getSetCCInverse(CC, 3396 N0.getOperand(0).getValueType().isInteger()); 3397 if (DCI.isBeforeLegalizeOps() || 3398 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3399 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3400 } 3401 3402 if ((N0.getOpcode() == ISD::XOR || 3403 (N0.getOpcode() == ISD::AND && 3404 N0.getOperand(0).getOpcode() == ISD::XOR && 3405 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3406 isa<ConstantSDNode>(N0.getOperand(1)) && 3407 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 3408 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3409 // can only do this if the top bits are known zero. 3410 unsigned BitWidth = N0.getValueSizeInBits(); 3411 if (DAG.MaskedValueIsZero(N0, 3412 APInt::getHighBitsSet(BitWidth, 3413 BitWidth-1))) { 3414 // Okay, get the un-inverted input value. 3415 SDValue Val; 3416 if (N0.getOpcode() == ISD::XOR) { 3417 Val = N0.getOperand(0); 3418 } else { 3419 assert(N0.getOpcode() == ISD::AND && 3420 N0.getOperand(0).getOpcode() == ISD::XOR); 3421 // ((X^1)&1)^1 -> X & 1 3422 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3423 N0.getOperand(0).getOperand(0), 3424 N0.getOperand(1)); 3425 } 3426 3427 return DAG.getSetCC(dl, VT, Val, N1, 3428 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3429 } 3430 } else if (N1C->isOne()) { 3431 SDValue Op0 = N0; 3432 if (Op0.getOpcode() == ISD::TRUNCATE) 3433 Op0 = Op0.getOperand(0); 3434 3435 if ((Op0.getOpcode() == ISD::XOR) && 3436 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3437 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3438 SDValue XorLHS = Op0.getOperand(0); 3439 SDValue XorRHS = Op0.getOperand(1); 3440 // Ensure that the input setccs return an i1 type or 0/1 value. 3441 if (Op0.getValueType() == MVT::i1 || 3442 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3443 ZeroOrOneBooleanContent && 3444 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3445 ZeroOrOneBooleanContent)) { 3446 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3447 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3448 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3449 } 3450 } 3451 if (Op0.getOpcode() == ISD::AND && 3452 isa<ConstantSDNode>(Op0.getOperand(1)) && 3453 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 3454 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3455 if (Op0.getValueType().bitsGT(VT)) 3456 Op0 = DAG.getNode(ISD::AND, dl, VT, 3457 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3458 DAG.getConstant(1, dl, VT)); 3459 else if (Op0.getValueType().bitsLT(VT)) 3460 Op0 = DAG.getNode(ISD::AND, dl, VT, 3461 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3462 DAG.getConstant(1, dl, VT)); 3463 3464 return DAG.getSetCC(dl, VT, Op0, 3465 DAG.getConstant(0, dl, Op0.getValueType()), 3466 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3467 } 3468 if (Op0.getOpcode() == ISD::AssertZext && 3469 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3470 return DAG.getSetCC(dl, VT, Op0, 3471 DAG.getConstant(0, dl, Op0.getValueType()), 3472 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3473 } 3474 } 3475 3476 // Given: 3477 // icmp eq/ne (urem %x, %y), 0 3478 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3479 // icmp eq/ne %x, 0 3480 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3481 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3482 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3483 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3484 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3485 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3486 } 3487 3488 if (SDValue V = 3489 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3490 return V; 3491 } 3492 3493 // These simplifications apply to splat vectors as well. 3494 // TODO: Handle more splat vector cases. 3495 if (auto *N1C = isConstOrConstSplat(N1)) { 3496 const APInt &C1 = N1C->getAPIntValue(); 3497 3498 APInt MinVal, MaxVal; 3499 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3500 if (ISD::isSignedIntSetCC(Cond)) { 3501 MinVal = APInt::getSignedMinValue(OperandBitSize); 3502 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3503 } else { 3504 MinVal = APInt::getMinValue(OperandBitSize); 3505 MaxVal = APInt::getMaxValue(OperandBitSize); 3506 } 3507 3508 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3509 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3510 // X >= MIN --> true 3511 if (C1 == MinVal) 3512 return DAG.getBoolConstant(true, dl, VT, OpVT); 3513 3514 if (!VT.isVector()) { // TODO: Support this for vectors. 3515 // X >= C0 --> X > (C0 - 1) 3516 APInt C = C1 - 1; 3517 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3518 if ((DCI.isBeforeLegalizeOps() || 3519 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3520 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3521 isLegalICmpImmediate(C.getSExtValue())))) { 3522 return DAG.getSetCC(dl, VT, N0, 3523 DAG.getConstant(C, dl, N1.getValueType()), 3524 NewCC); 3525 } 3526 } 3527 } 3528 3529 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3530 // X <= MAX --> true 3531 if (C1 == MaxVal) 3532 return DAG.getBoolConstant(true, dl, VT, OpVT); 3533 3534 // X <= C0 --> X < (C0 + 1) 3535 if (!VT.isVector()) { // TODO: Support this for vectors. 3536 APInt C = C1 + 1; 3537 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3538 if ((DCI.isBeforeLegalizeOps() || 3539 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3540 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3541 isLegalICmpImmediate(C.getSExtValue())))) { 3542 return DAG.getSetCC(dl, VT, N0, 3543 DAG.getConstant(C, dl, N1.getValueType()), 3544 NewCC); 3545 } 3546 } 3547 } 3548 3549 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3550 if (C1 == MinVal) 3551 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3552 3553 // TODO: Support this for vectors after legalize ops. 3554 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3555 // Canonicalize setlt X, Max --> setne X, Max 3556 if (C1 == MaxVal) 3557 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3558 3559 // If we have setult X, 1, turn it into seteq X, 0 3560 if (C1 == MinVal+1) 3561 return DAG.getSetCC(dl, VT, N0, 3562 DAG.getConstant(MinVal, dl, N0.getValueType()), 3563 ISD::SETEQ); 3564 } 3565 } 3566 3567 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3568 if (C1 == MaxVal) 3569 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3570 3571 // TODO: Support this for vectors after legalize ops. 3572 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3573 // Canonicalize setgt X, Min --> setne X, Min 3574 if (C1 == MinVal) 3575 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3576 3577 // If we have setugt X, Max-1, turn it into seteq X, Max 3578 if (C1 == MaxVal-1) 3579 return DAG.getSetCC(dl, VT, N0, 3580 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3581 ISD::SETEQ); 3582 } 3583 } 3584 3585 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3586 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3587 if (C1.isNullValue()) 3588 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3589 VT, N0, N1, Cond, DCI, dl)) 3590 return CC; 3591 } 3592 3593 // If we have "setcc X, C0", check to see if we can shrink the immediate 3594 // by changing cc. 3595 // TODO: Support this for vectors after legalize ops. 3596 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3597 // SETUGT X, SINTMAX -> SETLT X, 0 3598 if (Cond == ISD::SETUGT && 3599 C1 == APInt::getSignedMaxValue(OperandBitSize)) 3600 return DAG.getSetCC(dl, VT, N0, 3601 DAG.getConstant(0, dl, N1.getValueType()), 3602 ISD::SETLT); 3603 3604 // SETULT X, SINTMIN -> SETGT X, -1 3605 if (Cond == ISD::SETULT && 3606 C1 == APInt::getSignedMinValue(OperandBitSize)) { 3607 SDValue ConstMinusOne = 3608 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 3609 N1.getValueType()); 3610 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 3611 } 3612 } 3613 } 3614 3615 // Back to non-vector simplifications. 3616 // TODO: Can we do these for vector splats? 3617 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3618 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3619 const APInt &C1 = N1C->getAPIntValue(); 3620 EVT ShValTy = N0.getValueType(); 3621 3622 // Fold bit comparisons when we can. 3623 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3624 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 3625 N0.getOpcode() == ISD::AND) { 3626 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3627 EVT ShiftTy = 3628 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3629 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 3630 // Perform the xform if the AND RHS is a single bit. 3631 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 3632 if (AndRHS->getAPIntValue().isPowerOf2() && 3633 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3634 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3635 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3636 DAG.getConstant(ShCt, dl, ShiftTy))); 3637 } 3638 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 3639 // (X & 8) == 8 --> (X & 8) >> 3 3640 // Perform the xform if C1 is a single bit. 3641 unsigned ShCt = C1.logBase2(); 3642 if (C1.isPowerOf2() && 3643 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3644 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3645 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3646 DAG.getConstant(ShCt, dl, ShiftTy))); 3647 } 3648 } 3649 } 3650 } 3651 3652 if (C1.getMinSignedBits() <= 64 && 3653 !isLegalICmpImmediate(C1.getSExtValue())) { 3654 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3655 // (X & -256) == 256 -> (X >> 8) == 1 3656 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3657 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 3658 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3659 const APInt &AndRHSC = AndRHS->getAPIntValue(); 3660 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 3661 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 3662 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3663 SDValue Shift = 3664 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 3665 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3666 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 3667 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 3668 } 3669 } 3670 } 3671 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 3672 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 3673 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 3674 // X < 0x100000000 -> (X >> 32) < 1 3675 // X >= 0x100000000 -> (X >> 32) >= 1 3676 // X <= 0x0ffffffff -> (X >> 32) < 1 3677 // X > 0x0ffffffff -> (X >> 32) >= 1 3678 unsigned ShiftBits; 3679 APInt NewC = C1; 3680 ISD::CondCode NewCond = Cond; 3681 if (AdjOne) { 3682 ShiftBits = C1.countTrailingOnes(); 3683 NewC = NewC + 1; 3684 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 3685 } else { 3686 ShiftBits = C1.countTrailingZeros(); 3687 } 3688 NewC.lshrInPlace(ShiftBits); 3689 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 3690 isLegalICmpImmediate(NewC.getSExtValue()) && 3691 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3692 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3693 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3694 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 3695 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 3696 } 3697 } 3698 } 3699 } 3700 3701 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 3702 auto *CFP = cast<ConstantFPSDNode>(N1); 3703 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 3704 3705 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 3706 // constant if knowing that the operand is non-nan is enough. We prefer to 3707 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 3708 // materialize 0.0. 3709 if (Cond == ISD::SETO || Cond == ISD::SETUO) 3710 return DAG.getSetCC(dl, VT, N0, N0, Cond); 3711 3712 // setcc (fneg x), C -> setcc swap(pred) x, -C 3713 if (N0.getOpcode() == ISD::FNEG) { 3714 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 3715 if (DCI.isBeforeLegalizeOps() || 3716 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 3717 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 3718 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 3719 } 3720 } 3721 3722 // If the condition is not legal, see if we can find an equivalent one 3723 // which is legal. 3724 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 3725 // If the comparison was an awkward floating-point == or != and one of 3726 // the comparison operands is infinity or negative infinity, convert the 3727 // condition to a less-awkward <= or >=. 3728 if (CFP->getValueAPF().isInfinity()) { 3729 if (CFP->getValueAPF().isNegative()) { 3730 if (Cond == ISD::SETOEQ && 3731 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3732 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 3733 if (Cond == ISD::SETUEQ && 3734 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3735 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 3736 if (Cond == ISD::SETUNE && 3737 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3738 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 3739 if (Cond == ISD::SETONE && 3740 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3741 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 3742 } else { 3743 if (Cond == ISD::SETOEQ && 3744 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3745 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 3746 if (Cond == ISD::SETUEQ && 3747 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3748 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 3749 if (Cond == ISD::SETUNE && 3750 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3751 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 3752 if (Cond == ISD::SETONE && 3753 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3754 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 3755 } 3756 } 3757 } 3758 } 3759 3760 if (N0 == N1) { 3761 // The sext(setcc()) => setcc() optimization relies on the appropriate 3762 // constant being emitted. 3763 assert(!N0.getValueType().isInteger() && 3764 "Integer types should be handled by FoldSetCC"); 3765 3766 bool EqTrue = ISD::isTrueWhenEqual(Cond); 3767 unsigned UOF = ISD::getUnorderedFlavor(Cond); 3768 if (UOF == 2) // FP operators that are undefined on NaNs. 3769 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3770 if (UOF == unsigned(EqTrue)) 3771 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3772 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 3773 // if it is not already. 3774 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 3775 if (NewCond != Cond && 3776 (DCI.isBeforeLegalizeOps() || 3777 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 3778 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3779 } 3780 3781 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3782 N0.getValueType().isInteger()) { 3783 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 3784 N0.getOpcode() == ISD::XOR) { 3785 // Simplify (X+Y) == (X+Z) --> Y == Z 3786 if (N0.getOpcode() == N1.getOpcode()) { 3787 if (N0.getOperand(0) == N1.getOperand(0)) 3788 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 3789 if (N0.getOperand(1) == N1.getOperand(1)) 3790 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 3791 if (isCommutativeBinOp(N0.getOpcode())) { 3792 // If X op Y == Y op X, try other combinations. 3793 if (N0.getOperand(0) == N1.getOperand(1)) 3794 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 3795 Cond); 3796 if (N0.getOperand(1) == N1.getOperand(0)) 3797 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 3798 Cond); 3799 } 3800 } 3801 3802 // If RHS is a legal immediate value for a compare instruction, we need 3803 // to be careful about increasing register pressure needlessly. 3804 bool LegalRHSImm = false; 3805 3806 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 3807 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3808 // Turn (X+C1) == C2 --> X == C2-C1 3809 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 3810 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3811 DAG.getConstant(RHSC->getAPIntValue()- 3812 LHSR->getAPIntValue(), 3813 dl, N0.getValueType()), Cond); 3814 } 3815 3816 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 3817 if (N0.getOpcode() == ISD::XOR) 3818 // If we know that all of the inverted bits are zero, don't bother 3819 // performing the inversion. 3820 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 3821 return 3822 DAG.getSetCC(dl, VT, N0.getOperand(0), 3823 DAG.getConstant(LHSR->getAPIntValue() ^ 3824 RHSC->getAPIntValue(), 3825 dl, N0.getValueType()), 3826 Cond); 3827 } 3828 3829 // Turn (C1-X) == C2 --> X == C1-C2 3830 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 3831 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 3832 return 3833 DAG.getSetCC(dl, VT, N0.getOperand(1), 3834 DAG.getConstant(SUBC->getAPIntValue() - 3835 RHSC->getAPIntValue(), 3836 dl, N0.getValueType()), 3837 Cond); 3838 } 3839 } 3840 3841 // Could RHSC fold directly into a compare? 3842 if (RHSC->getValueType(0).getSizeInBits() <= 64) 3843 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 3844 } 3845 3846 // (X+Y) == X --> Y == 0 and similar folds. 3847 // Don't do this if X is an immediate that can fold into a cmp 3848 // instruction and X+Y has other uses. It could be an induction variable 3849 // chain, and the transform would increase register pressure. 3850 if (!LegalRHSImm || N0.hasOneUse()) 3851 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 3852 return V; 3853 } 3854 3855 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 3856 N1.getOpcode() == ISD::XOR) 3857 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 3858 return V; 3859 3860 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 3861 return V; 3862 } 3863 3864 // Fold remainder of division by a constant. 3865 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 3866 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3867 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 3868 3869 // When division is cheap or optimizing for minimum size, 3870 // fall through to DIVREM creation by skipping this fold. 3871 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 3872 if (N0.getOpcode() == ISD::UREM) { 3873 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 3874 return Folded; 3875 } else if (N0.getOpcode() == ISD::SREM) { 3876 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 3877 return Folded; 3878 } 3879 } 3880 } 3881 3882 // Fold away ALL boolean setcc's. 3883 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 3884 SDValue Temp; 3885 switch (Cond) { 3886 default: llvm_unreachable("Unknown integer setcc!"); 3887 case ISD::SETEQ: // X == Y -> ~(X^Y) 3888 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3889 N0 = DAG.getNOT(dl, Temp, OpVT); 3890 if (!DCI.isCalledByLegalizer()) 3891 DCI.AddToWorklist(Temp.getNode()); 3892 break; 3893 case ISD::SETNE: // X != Y --> (X^Y) 3894 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3895 break; 3896 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 3897 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 3898 Temp = DAG.getNOT(dl, N0, OpVT); 3899 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 3900 if (!DCI.isCalledByLegalizer()) 3901 DCI.AddToWorklist(Temp.getNode()); 3902 break; 3903 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 3904 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 3905 Temp = DAG.getNOT(dl, N1, OpVT); 3906 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 3907 if (!DCI.isCalledByLegalizer()) 3908 DCI.AddToWorklist(Temp.getNode()); 3909 break; 3910 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 3911 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 3912 Temp = DAG.getNOT(dl, N0, OpVT); 3913 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 3914 if (!DCI.isCalledByLegalizer()) 3915 DCI.AddToWorklist(Temp.getNode()); 3916 break; 3917 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 3918 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 3919 Temp = DAG.getNOT(dl, N1, OpVT); 3920 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 3921 break; 3922 } 3923 if (VT.getScalarType() != MVT::i1) { 3924 if (!DCI.isCalledByLegalizer()) 3925 DCI.AddToWorklist(N0.getNode()); 3926 // FIXME: If running after legalize, we probably can't do this. 3927 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 3928 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 3929 } 3930 return N0; 3931 } 3932 3933 // Could not fold it. 3934 return SDValue(); 3935 } 3936 3937 /// Returns true (and the GlobalValue and the offset) if the node is a 3938 /// GlobalAddress + offset. 3939 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 3940 int64_t &Offset) const { 3941 3942 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 3943 3944 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 3945 GA = GASD->getGlobal(); 3946 Offset += GASD->getOffset(); 3947 return true; 3948 } 3949 3950 if (N->getOpcode() == ISD::ADD) { 3951 SDValue N1 = N->getOperand(0); 3952 SDValue N2 = N->getOperand(1); 3953 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 3954 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 3955 Offset += V->getSExtValue(); 3956 return true; 3957 } 3958 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 3959 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 3960 Offset += V->getSExtValue(); 3961 return true; 3962 } 3963 } 3964 } 3965 3966 return false; 3967 } 3968 3969 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 3970 DAGCombinerInfo &DCI) const { 3971 // Default implementation: no optimization. 3972 return SDValue(); 3973 } 3974 3975 //===----------------------------------------------------------------------===// 3976 // Inline Assembler Implementation Methods 3977 //===----------------------------------------------------------------------===// 3978 3979 TargetLowering::ConstraintType 3980 TargetLowering::getConstraintType(StringRef Constraint) const { 3981 unsigned S = Constraint.size(); 3982 3983 if (S == 1) { 3984 switch (Constraint[0]) { 3985 default: break; 3986 case 'r': 3987 return C_RegisterClass; 3988 case 'm': // memory 3989 case 'o': // offsetable 3990 case 'V': // not offsetable 3991 return C_Memory; 3992 case 'n': // Simple Integer 3993 case 'E': // Floating Point Constant 3994 case 'F': // Floating Point Constant 3995 return C_Immediate; 3996 case 'i': // Simple Integer or Relocatable Constant 3997 case 's': // Relocatable Constant 3998 case 'p': // Address. 3999 case 'X': // Allow ANY value. 4000 case 'I': // Target registers. 4001 case 'J': 4002 case 'K': 4003 case 'L': 4004 case 'M': 4005 case 'N': 4006 case 'O': 4007 case 'P': 4008 case '<': 4009 case '>': 4010 return C_Other; 4011 } 4012 } 4013 4014 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4015 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4016 return C_Memory; 4017 return C_Register; 4018 } 4019 return C_Unknown; 4020 } 4021 4022 /// Try to replace an X constraint, which matches anything, with another that 4023 /// has more specific requirements based on the type of the corresponding 4024 /// operand. 4025 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4026 if (ConstraintVT.isInteger()) 4027 return "r"; 4028 if (ConstraintVT.isFloatingPoint()) 4029 return "f"; // works for many targets 4030 return nullptr; 4031 } 4032 4033 SDValue TargetLowering::LowerAsmOutputForConstraint( 4034 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, 4035 SelectionDAG &DAG) const { 4036 return SDValue(); 4037 } 4038 4039 /// Lower the specified operand into the Ops vector. 4040 /// If it is invalid, don't add anything to Ops. 4041 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4042 std::string &Constraint, 4043 std::vector<SDValue> &Ops, 4044 SelectionDAG &DAG) const { 4045 4046 if (Constraint.length() > 1) return; 4047 4048 char ConstraintLetter = Constraint[0]; 4049 switch (ConstraintLetter) { 4050 default: break; 4051 case 'X': // Allows any operand; labels (basic block) use this. 4052 if (Op.getOpcode() == ISD::BasicBlock || 4053 Op.getOpcode() == ISD::TargetBlockAddress) { 4054 Ops.push_back(Op); 4055 return; 4056 } 4057 LLVM_FALLTHROUGH; 4058 case 'i': // Simple Integer or Relocatable Constant 4059 case 'n': // Simple Integer 4060 case 's': { // Relocatable Constant 4061 4062 GlobalAddressSDNode *GA; 4063 ConstantSDNode *C; 4064 BlockAddressSDNode *BA; 4065 uint64_t Offset = 0; 4066 4067 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4068 // etc., since getelementpointer is variadic. We can't use 4069 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4070 // while in this case the GA may be furthest from the root node which is 4071 // likely an ISD::ADD. 4072 while (1) { 4073 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4074 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4075 GA->getValueType(0), 4076 Offset + GA->getOffset())); 4077 return; 4078 } else if ((C = dyn_cast<ConstantSDNode>(Op)) && 4079 ConstraintLetter != 's') { 4080 // gcc prints these as sign extended. Sign extend value to 64 bits 4081 // now; without this it would get ZExt'd later in 4082 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4083 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4084 BooleanContent BCont = getBooleanContents(MVT::i64); 4085 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont) 4086 : ISD::SIGN_EXTEND; 4087 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() 4088 : C->getSExtValue(); 4089 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal, 4090 SDLoc(C), MVT::i64)); 4091 return; 4092 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && 4093 ConstraintLetter != 'n') { 4094 Ops.push_back(DAG.getTargetBlockAddress( 4095 BA->getBlockAddress(), BA->getValueType(0), 4096 Offset + BA->getOffset(), BA->getTargetFlags())); 4097 return; 4098 } else { 4099 const unsigned OpCode = Op.getOpcode(); 4100 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4101 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4102 Op = Op.getOperand(1); 4103 // Subtraction is not commutative. 4104 else if (OpCode == ISD::ADD && 4105 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4106 Op = Op.getOperand(0); 4107 else 4108 return; 4109 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4110 continue; 4111 } 4112 } 4113 return; 4114 } 4115 break; 4116 } 4117 } 4118 } 4119 4120 std::pair<unsigned, const TargetRegisterClass *> 4121 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4122 StringRef Constraint, 4123 MVT VT) const { 4124 if (Constraint.empty() || Constraint[0] != '{') 4125 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4126 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4127 4128 // Remove the braces from around the name. 4129 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4130 4131 std::pair<unsigned, const TargetRegisterClass *> R = 4132 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4133 4134 // Figure out which register class contains this reg. 4135 for (const TargetRegisterClass *RC : RI->regclasses()) { 4136 // If none of the value types for this register class are valid, we 4137 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4138 if (!isLegalRC(*RI, *RC)) 4139 continue; 4140 4141 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 4142 I != E; ++I) { 4143 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 4144 std::pair<unsigned, const TargetRegisterClass *> S = 4145 std::make_pair(*I, RC); 4146 4147 // If this register class has the requested value type, return it, 4148 // otherwise keep searching and return the first class found 4149 // if no other is found which explicitly has the requested type. 4150 if (RI->isTypeLegalForClass(*RC, VT)) 4151 return S; 4152 if (!R.second) 4153 R = S; 4154 } 4155 } 4156 } 4157 4158 return R; 4159 } 4160 4161 //===----------------------------------------------------------------------===// 4162 // Constraint Selection. 4163 4164 /// Return true of this is an input operand that is a matching constraint like 4165 /// "4". 4166 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4167 assert(!ConstraintCode.empty() && "No known constraint!"); 4168 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4169 } 4170 4171 /// If this is an input matching constraint, this method returns the output 4172 /// operand it matches. 4173 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4174 assert(!ConstraintCode.empty() && "No known constraint!"); 4175 return atoi(ConstraintCode.c_str()); 4176 } 4177 4178 /// Split up the constraint string from the inline assembly value into the 4179 /// specific constraints and their prefixes, and also tie in the associated 4180 /// operand values. 4181 /// If this returns an empty vector, and if the constraint string itself 4182 /// isn't empty, there was an error parsing. 4183 TargetLowering::AsmOperandInfoVector 4184 TargetLowering::ParseConstraints(const DataLayout &DL, 4185 const TargetRegisterInfo *TRI, 4186 ImmutableCallSite CS) const { 4187 /// Information about all of the constraints. 4188 AsmOperandInfoVector ConstraintOperands; 4189 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 4190 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4191 4192 // Do a prepass over the constraints, canonicalizing them, and building up the 4193 // ConstraintOperands list. 4194 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4195 unsigned ResNo = 0; // ResNo - The result number of the next output. 4196 4197 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4198 ConstraintOperands.emplace_back(std::move(CI)); 4199 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4200 4201 // Update multiple alternative constraint count. 4202 if (OpInfo.multipleAlternatives.size() > maCount) 4203 maCount = OpInfo.multipleAlternatives.size(); 4204 4205 OpInfo.ConstraintVT = MVT::Other; 4206 4207 // Compute the value type for each operand. 4208 switch (OpInfo.Type) { 4209 case InlineAsm::isOutput: 4210 // Indirect outputs just consume an argument. 4211 if (OpInfo.isIndirect) { 4212 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 4213 break; 4214 } 4215 4216 // The return value of the call is this value. As such, there is no 4217 // corresponding argument. 4218 assert(!CS.getType()->isVoidTy() && 4219 "Bad inline asm!"); 4220 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 4221 OpInfo.ConstraintVT = 4222 getSimpleValueType(DL, STy->getElementType(ResNo)); 4223 } else { 4224 assert(ResNo == 0 && "Asm only has one result!"); 4225 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 4226 } 4227 ++ResNo; 4228 break; 4229 case InlineAsm::isInput: 4230 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 4231 break; 4232 case InlineAsm::isClobber: 4233 // Nothing to do. 4234 break; 4235 } 4236 4237 if (OpInfo.CallOperandVal) { 4238 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4239 if (OpInfo.isIndirect) { 4240 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4241 if (!PtrTy) 4242 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4243 OpTy = PtrTy->getElementType(); 4244 } 4245 4246 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4247 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4248 if (STy->getNumElements() == 1) 4249 OpTy = STy->getElementType(0); 4250 4251 // If OpTy is not a single value, it may be a struct/union that we 4252 // can tile with integers. 4253 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4254 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4255 switch (BitSize) { 4256 default: break; 4257 case 1: 4258 case 8: 4259 case 16: 4260 case 32: 4261 case 64: 4262 case 128: 4263 OpInfo.ConstraintVT = 4264 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4265 break; 4266 } 4267 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4268 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4269 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4270 } else { 4271 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4272 } 4273 } 4274 } 4275 4276 // If we have multiple alternative constraints, select the best alternative. 4277 if (!ConstraintOperands.empty()) { 4278 if (maCount) { 4279 unsigned bestMAIndex = 0; 4280 int bestWeight = -1; 4281 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4282 int weight = -1; 4283 unsigned maIndex; 4284 // Compute the sums of the weights for each alternative, keeping track 4285 // of the best (highest weight) one so far. 4286 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4287 int weightSum = 0; 4288 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4289 cIndex != eIndex; ++cIndex) { 4290 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4291 if (OpInfo.Type == InlineAsm::isClobber) 4292 continue; 4293 4294 // If this is an output operand with a matching input operand, 4295 // look up the matching input. If their types mismatch, e.g. one 4296 // is an integer, the other is floating point, or their sizes are 4297 // different, flag it as an maCantMatch. 4298 if (OpInfo.hasMatchingInput()) { 4299 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4300 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4301 if ((OpInfo.ConstraintVT.isInteger() != 4302 Input.ConstraintVT.isInteger()) || 4303 (OpInfo.ConstraintVT.getSizeInBits() != 4304 Input.ConstraintVT.getSizeInBits())) { 4305 weightSum = -1; // Can't match. 4306 break; 4307 } 4308 } 4309 } 4310 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4311 if (weight == -1) { 4312 weightSum = -1; 4313 break; 4314 } 4315 weightSum += weight; 4316 } 4317 // Update best. 4318 if (weightSum > bestWeight) { 4319 bestWeight = weightSum; 4320 bestMAIndex = maIndex; 4321 } 4322 } 4323 4324 // Now select chosen alternative in each constraint. 4325 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4326 cIndex != eIndex; ++cIndex) { 4327 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4328 if (cInfo.Type == InlineAsm::isClobber) 4329 continue; 4330 cInfo.selectAlternative(bestMAIndex); 4331 } 4332 } 4333 } 4334 4335 // Check and hook up tied operands, choose constraint code to use. 4336 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4337 cIndex != eIndex; ++cIndex) { 4338 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4339 4340 // If this is an output operand with a matching input operand, look up the 4341 // matching input. If their types mismatch, e.g. one is an integer, the 4342 // other is floating point, or their sizes are different, flag it as an 4343 // error. 4344 if (OpInfo.hasMatchingInput()) { 4345 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4346 4347 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4348 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4349 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4350 OpInfo.ConstraintVT); 4351 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4352 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4353 Input.ConstraintVT); 4354 if ((OpInfo.ConstraintVT.isInteger() != 4355 Input.ConstraintVT.isInteger()) || 4356 (MatchRC.second != InputRC.second)) { 4357 report_fatal_error("Unsupported asm: input constraint" 4358 " with a matching output constraint of" 4359 " incompatible type!"); 4360 } 4361 } 4362 } 4363 } 4364 4365 return ConstraintOperands; 4366 } 4367 4368 /// Return an integer indicating how general CT is. 4369 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4370 switch (CT) { 4371 case TargetLowering::C_Immediate: 4372 case TargetLowering::C_Other: 4373 case TargetLowering::C_Unknown: 4374 return 0; 4375 case TargetLowering::C_Register: 4376 return 1; 4377 case TargetLowering::C_RegisterClass: 4378 return 2; 4379 case TargetLowering::C_Memory: 4380 return 3; 4381 } 4382 llvm_unreachable("Invalid constraint type"); 4383 } 4384 4385 /// Examine constraint type and operand type and determine a weight value. 4386 /// This object must already have been set up with the operand type 4387 /// and the current alternative constraint selected. 4388 TargetLowering::ConstraintWeight 4389 TargetLowering::getMultipleConstraintMatchWeight( 4390 AsmOperandInfo &info, int maIndex) const { 4391 InlineAsm::ConstraintCodeVector *rCodes; 4392 if (maIndex >= (int)info.multipleAlternatives.size()) 4393 rCodes = &info.Codes; 4394 else 4395 rCodes = &info.multipleAlternatives[maIndex].Codes; 4396 ConstraintWeight BestWeight = CW_Invalid; 4397 4398 // Loop over the options, keeping track of the most general one. 4399 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4400 ConstraintWeight weight = 4401 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4402 if (weight > BestWeight) 4403 BestWeight = weight; 4404 } 4405 4406 return BestWeight; 4407 } 4408 4409 /// Examine constraint type and operand type and determine a weight value. 4410 /// This object must already have been set up with the operand type 4411 /// and the current alternative constraint selected. 4412 TargetLowering::ConstraintWeight 4413 TargetLowering::getSingleConstraintMatchWeight( 4414 AsmOperandInfo &info, const char *constraint) const { 4415 ConstraintWeight weight = CW_Invalid; 4416 Value *CallOperandVal = info.CallOperandVal; 4417 // If we don't have a value, we can't do a match, 4418 // but allow it at the lowest weight. 4419 if (!CallOperandVal) 4420 return CW_Default; 4421 // Look at the constraint type. 4422 switch (*constraint) { 4423 case 'i': // immediate integer. 4424 case 'n': // immediate integer with a known value. 4425 if (isa<ConstantInt>(CallOperandVal)) 4426 weight = CW_Constant; 4427 break; 4428 case 's': // non-explicit intregal immediate. 4429 if (isa<GlobalValue>(CallOperandVal)) 4430 weight = CW_Constant; 4431 break; 4432 case 'E': // immediate float if host format. 4433 case 'F': // immediate float. 4434 if (isa<ConstantFP>(CallOperandVal)) 4435 weight = CW_Constant; 4436 break; 4437 case '<': // memory operand with autodecrement. 4438 case '>': // memory operand with autoincrement. 4439 case 'm': // memory operand. 4440 case 'o': // offsettable memory operand 4441 case 'V': // non-offsettable memory operand 4442 weight = CW_Memory; 4443 break; 4444 case 'r': // general register. 4445 case 'g': // general register, memory operand or immediate integer. 4446 // note: Clang converts "g" to "imr". 4447 if (CallOperandVal->getType()->isIntegerTy()) 4448 weight = CW_Register; 4449 break; 4450 case 'X': // any operand. 4451 default: 4452 weight = CW_Default; 4453 break; 4454 } 4455 return weight; 4456 } 4457 4458 /// If there are multiple different constraints that we could pick for this 4459 /// operand (e.g. "imr") try to pick the 'best' one. 4460 /// This is somewhat tricky: constraints fall into four classes: 4461 /// Other -> immediates and magic values 4462 /// Register -> one specific register 4463 /// RegisterClass -> a group of regs 4464 /// Memory -> memory 4465 /// Ideally, we would pick the most specific constraint possible: if we have 4466 /// something that fits into a register, we would pick it. The problem here 4467 /// is that if we have something that could either be in a register or in 4468 /// memory that use of the register could cause selection of *other* 4469 /// operands to fail: they might only succeed if we pick memory. Because of 4470 /// this the heuristic we use is: 4471 /// 4472 /// 1) If there is an 'other' constraint, and if the operand is valid for 4473 /// that constraint, use it. This makes us take advantage of 'i' 4474 /// constraints when available. 4475 /// 2) Otherwise, pick the most general constraint present. This prefers 4476 /// 'm' over 'r', for example. 4477 /// 4478 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4479 const TargetLowering &TLI, 4480 SDValue Op, SelectionDAG *DAG) { 4481 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4482 unsigned BestIdx = 0; 4483 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4484 int BestGenerality = -1; 4485 4486 // Loop over the options, keeping track of the most general one. 4487 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4488 TargetLowering::ConstraintType CType = 4489 TLI.getConstraintType(OpInfo.Codes[i]); 4490 4491 // If this is an 'other' or 'immediate' constraint, see if the operand is 4492 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4493 // the operand is an integer in the range [0..31] we want to use I (saving a 4494 // load of a register), otherwise we must use 'r'. 4495 if ((CType == TargetLowering::C_Other || 4496 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4497 assert(OpInfo.Codes[i].size() == 1 && 4498 "Unhandled multi-letter 'other' constraint"); 4499 std::vector<SDValue> ResultOps; 4500 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4501 ResultOps, *DAG); 4502 if (!ResultOps.empty()) { 4503 BestType = CType; 4504 BestIdx = i; 4505 break; 4506 } 4507 } 4508 4509 // Things with matching constraints can only be registers, per gcc 4510 // documentation. This mainly affects "g" constraints. 4511 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4512 continue; 4513 4514 // This constraint letter is more general than the previous one, use it. 4515 int Generality = getConstraintGenerality(CType); 4516 if (Generality > BestGenerality) { 4517 BestType = CType; 4518 BestIdx = i; 4519 BestGenerality = Generality; 4520 } 4521 } 4522 4523 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4524 OpInfo.ConstraintType = BestType; 4525 } 4526 4527 /// Determines the constraint code and constraint type to use for the specific 4528 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4529 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4530 SDValue Op, 4531 SelectionDAG *DAG) const { 4532 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4533 4534 // Single-letter constraints ('r') are very common. 4535 if (OpInfo.Codes.size() == 1) { 4536 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4537 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4538 } else { 4539 ChooseConstraint(OpInfo, *this, Op, DAG); 4540 } 4541 4542 // 'X' matches anything. 4543 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4544 // Labels and constants are handled elsewhere ('X' is the only thing 4545 // that matches labels). For Functions, the type here is the type of 4546 // the result, which is not what we want to look at; leave them alone. 4547 Value *v = OpInfo.CallOperandVal; 4548 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4549 OpInfo.CallOperandVal = v; 4550 return; 4551 } 4552 4553 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4554 return; 4555 4556 // Otherwise, try to resolve it to something we know about by looking at 4557 // the actual operand type. 4558 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4559 OpInfo.ConstraintCode = Repl; 4560 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4561 } 4562 } 4563 } 4564 4565 /// Given an exact SDIV by a constant, create a multiplication 4566 /// with the multiplicative inverse of the constant. 4567 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 4568 const SDLoc &dl, SelectionDAG &DAG, 4569 SmallVectorImpl<SDNode *> &Created) { 4570 SDValue Op0 = N->getOperand(0); 4571 SDValue Op1 = N->getOperand(1); 4572 EVT VT = N->getValueType(0); 4573 EVT SVT = VT.getScalarType(); 4574 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 4575 EVT ShSVT = ShVT.getScalarType(); 4576 4577 bool UseSRA = false; 4578 SmallVector<SDValue, 16> Shifts, Factors; 4579 4580 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4581 if (C->isNullValue()) 4582 return false; 4583 APInt Divisor = C->getAPIntValue(); 4584 unsigned Shift = Divisor.countTrailingZeros(); 4585 if (Shift) { 4586 Divisor.ashrInPlace(Shift); 4587 UseSRA = true; 4588 } 4589 // Calculate the multiplicative inverse, using Newton's method. 4590 APInt t; 4591 APInt Factor = Divisor; 4592 while ((t = Divisor * Factor) != 1) 4593 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 4594 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 4595 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 4596 return true; 4597 }; 4598 4599 // Collect all magic values from the build vector. 4600 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 4601 return SDValue(); 4602 4603 SDValue Shift, Factor; 4604 if (VT.isVector()) { 4605 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4606 Factor = DAG.getBuildVector(VT, dl, Factors); 4607 } else { 4608 Shift = Shifts[0]; 4609 Factor = Factors[0]; 4610 } 4611 4612 SDValue Res = Op0; 4613 4614 // Shift the value upfront if it is even, so the LSB is one. 4615 if (UseSRA) { 4616 // TODO: For UDIV use SRL instead of SRA. 4617 SDNodeFlags Flags; 4618 Flags.setExact(true); 4619 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 4620 Created.push_back(Res.getNode()); 4621 } 4622 4623 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 4624 } 4625 4626 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 4627 SelectionDAG &DAG, 4628 SmallVectorImpl<SDNode *> &Created) const { 4629 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4630 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4631 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 4632 return SDValue(N, 0); // Lower SDIV as SDIV 4633 return SDValue(); 4634 } 4635 4636 /// Given an ISD::SDIV node expressing a divide by constant, 4637 /// return a DAG expression to select that will generate the same value by 4638 /// multiplying by a magic number. 4639 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4640 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 4641 bool IsAfterLegalization, 4642 SmallVectorImpl<SDNode *> &Created) const { 4643 SDLoc dl(N); 4644 EVT VT = N->getValueType(0); 4645 EVT SVT = VT.getScalarType(); 4646 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4647 EVT ShSVT = ShVT.getScalarType(); 4648 unsigned EltBits = VT.getScalarSizeInBits(); 4649 4650 // Check to see if we can do this. 4651 // FIXME: We should be more aggressive here. 4652 if (!isTypeLegal(VT)) 4653 return SDValue(); 4654 4655 // If the sdiv has an 'exact' bit we can use a simpler lowering. 4656 if (N->getFlags().hasExact()) 4657 return BuildExactSDIV(*this, N, dl, DAG, Created); 4658 4659 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 4660 4661 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4662 if (C->isNullValue()) 4663 return false; 4664 4665 const APInt &Divisor = C->getAPIntValue(); 4666 APInt::ms magics = Divisor.magic(); 4667 int NumeratorFactor = 0; 4668 int ShiftMask = -1; 4669 4670 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 4671 // If d is +1/-1, we just multiply the numerator by +1/-1. 4672 NumeratorFactor = Divisor.getSExtValue(); 4673 magics.m = 0; 4674 magics.s = 0; 4675 ShiftMask = 0; 4676 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 4677 // If d > 0 and m < 0, add the numerator. 4678 NumeratorFactor = 1; 4679 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 4680 // If d < 0 and m > 0, subtract the numerator. 4681 NumeratorFactor = -1; 4682 } 4683 4684 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 4685 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 4686 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 4687 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 4688 return true; 4689 }; 4690 4691 SDValue N0 = N->getOperand(0); 4692 SDValue N1 = N->getOperand(1); 4693 4694 // Collect the shifts / magic values from each element. 4695 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 4696 return SDValue(); 4697 4698 SDValue MagicFactor, Factor, Shift, ShiftMask; 4699 if (VT.isVector()) { 4700 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4701 Factor = DAG.getBuildVector(VT, dl, Factors); 4702 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4703 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 4704 } else { 4705 MagicFactor = MagicFactors[0]; 4706 Factor = Factors[0]; 4707 Shift = Shifts[0]; 4708 ShiftMask = ShiftMasks[0]; 4709 } 4710 4711 // Multiply the numerator (operand 0) by the magic value. 4712 // FIXME: We should support doing a MUL in a wider type. 4713 SDValue Q; 4714 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 4715 : isOperationLegalOrCustom(ISD::MULHS, VT)) 4716 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 4717 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 4718 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 4719 SDValue LoHi = 4720 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 4721 Q = SDValue(LoHi.getNode(), 1); 4722 } else 4723 return SDValue(); // No mulhs or equivalent. 4724 Created.push_back(Q.getNode()); 4725 4726 // (Optionally) Add/subtract the numerator using Factor. 4727 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 4728 Created.push_back(Factor.getNode()); 4729 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 4730 Created.push_back(Q.getNode()); 4731 4732 // Shift right algebraic by shift value. 4733 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 4734 Created.push_back(Q.getNode()); 4735 4736 // Extract the sign bit, mask it and add it to the quotient. 4737 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 4738 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 4739 Created.push_back(T.getNode()); 4740 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 4741 Created.push_back(T.getNode()); 4742 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 4743 } 4744 4745 /// Given an ISD::UDIV node expressing a divide by constant, 4746 /// return a DAG expression to select that will generate the same value by 4747 /// multiplying by a magic number. 4748 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4749 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 4750 bool IsAfterLegalization, 4751 SmallVectorImpl<SDNode *> &Created) const { 4752 SDLoc dl(N); 4753 EVT VT = N->getValueType(0); 4754 EVT SVT = VT.getScalarType(); 4755 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4756 EVT ShSVT = ShVT.getScalarType(); 4757 unsigned EltBits = VT.getScalarSizeInBits(); 4758 4759 // Check to see if we can do this. 4760 // FIXME: We should be more aggressive here. 4761 if (!isTypeLegal(VT)) 4762 return SDValue(); 4763 4764 bool UseNPQ = false; 4765 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4766 4767 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 4768 if (C->isNullValue()) 4769 return false; 4770 // FIXME: We should use a narrower constant when the upper 4771 // bits are known to be zero. 4772 APInt Divisor = C->getAPIntValue(); 4773 APInt::mu magics = Divisor.magicu(); 4774 unsigned PreShift = 0, PostShift = 0; 4775 4776 // If the divisor is even, we can avoid using the expensive fixup by 4777 // shifting the divided value upfront. 4778 if (magics.a != 0 && !Divisor[0]) { 4779 PreShift = Divisor.countTrailingZeros(); 4780 // Get magic number for the shifted divisor. 4781 magics = Divisor.lshr(PreShift).magicu(PreShift); 4782 assert(magics.a == 0 && "Should use cheap fixup now"); 4783 } 4784 4785 APInt Magic = magics.m; 4786 4787 unsigned SelNPQ; 4788 if (magics.a == 0 || Divisor.isOneValue()) { 4789 assert(magics.s < Divisor.getBitWidth() && 4790 "We shouldn't generate an undefined shift!"); 4791 PostShift = magics.s; 4792 SelNPQ = false; 4793 } else { 4794 PostShift = magics.s - 1; 4795 SelNPQ = true; 4796 } 4797 4798 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 4799 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 4800 NPQFactors.push_back( 4801 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4802 : APInt::getNullValue(EltBits), 4803 dl, SVT)); 4804 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 4805 UseNPQ |= SelNPQ; 4806 return true; 4807 }; 4808 4809 SDValue N0 = N->getOperand(0); 4810 SDValue N1 = N->getOperand(1); 4811 4812 // Collect the shifts/magic values from each element. 4813 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 4814 return SDValue(); 4815 4816 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 4817 if (VT.isVector()) { 4818 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 4819 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4820 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 4821 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 4822 } else { 4823 PreShift = PreShifts[0]; 4824 MagicFactor = MagicFactors[0]; 4825 PostShift = PostShifts[0]; 4826 } 4827 4828 SDValue Q = N0; 4829 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 4830 Created.push_back(Q.getNode()); 4831 4832 // FIXME: We should support doing a MUL in a wider type. 4833 auto GetMULHU = [&](SDValue X, SDValue Y) { 4834 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 4835 : isOperationLegalOrCustom(ISD::MULHU, VT)) 4836 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 4837 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 4838 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 4839 SDValue LoHi = 4840 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 4841 return SDValue(LoHi.getNode(), 1); 4842 } 4843 return SDValue(); // No mulhu or equivalent 4844 }; 4845 4846 // Multiply the numerator (operand 0) by the magic value. 4847 Q = GetMULHU(Q, MagicFactor); 4848 if (!Q) 4849 return SDValue(); 4850 4851 Created.push_back(Q.getNode()); 4852 4853 if (UseNPQ) { 4854 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 4855 Created.push_back(NPQ.getNode()); 4856 4857 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 4858 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 4859 if (VT.isVector()) 4860 NPQ = GetMULHU(NPQ, NPQFactor); 4861 else 4862 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 4863 4864 Created.push_back(NPQ.getNode()); 4865 4866 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 4867 Created.push_back(Q.getNode()); 4868 } 4869 4870 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 4871 Created.push_back(Q.getNode()); 4872 4873 SDValue One = DAG.getConstant(1, dl, VT); 4874 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 4875 return DAG.getSelect(dl, VT, IsOne, N0, Q); 4876 } 4877 4878 /// If all values in Values that *don't* match the predicate are same 'splat' 4879 /// value, then replace all values with that splat value. 4880 /// Else, if AlternativeReplacement was provided, then replace all values that 4881 /// do match predicate with AlternativeReplacement value. 4882 static void 4883 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 4884 std::function<bool(SDValue)> Predicate, 4885 SDValue AlternativeReplacement = SDValue()) { 4886 SDValue Replacement; 4887 // Is there a value for which the Predicate does *NOT* match? What is it? 4888 auto SplatValue = llvm::find_if_not(Values, Predicate); 4889 if (SplatValue != Values.end()) { 4890 // Does Values consist only of SplatValue's and values matching Predicate? 4891 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 4892 return Value == *SplatValue || Predicate(Value); 4893 })) // Then we shall replace values matching predicate with SplatValue. 4894 Replacement = *SplatValue; 4895 } 4896 if (!Replacement) { 4897 // Oops, we did not find the "baseline" splat value. 4898 if (!AlternativeReplacement) 4899 return; // Nothing to do. 4900 // Let's replace with provided value then. 4901 Replacement = AlternativeReplacement; 4902 } 4903 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 4904 } 4905 4906 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 4907 /// where the divisor is constant and the comparison target is zero, 4908 /// return a DAG expression that will generate the same comparison result 4909 /// using only multiplications, additions and shifts/rotations. 4910 /// Ref: "Hacker's Delight" 10-17. 4911 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 4912 SDValue CompTargetNode, 4913 ISD::CondCode Cond, 4914 DAGCombinerInfo &DCI, 4915 const SDLoc &DL) const { 4916 SmallVector<SDNode *, 5> Built; 4917 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 4918 DCI, DL, Built)) { 4919 for (SDNode *N : Built) 4920 DCI.AddToWorklist(N); 4921 return Folded; 4922 } 4923 4924 return SDValue(); 4925 } 4926 4927 SDValue 4928 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 4929 SDValue CompTargetNode, ISD::CondCode Cond, 4930 DAGCombinerInfo &DCI, const SDLoc &DL, 4931 SmallVectorImpl<SDNode *> &Created) const { 4932 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 4933 // - D must be constant, with D = D0 * 2^K where D0 is odd 4934 // - P is the multiplicative inverse of D0 modulo 2^W 4935 // - Q = floor(((2^W) - 1) / D) 4936 // where W is the width of the common type of N and D. 4937 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4938 "Only applicable for (in)equality comparisons."); 4939 4940 SelectionDAG &DAG = DCI.DAG; 4941 4942 EVT VT = REMNode.getValueType(); 4943 EVT SVT = VT.getScalarType(); 4944 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4945 EVT ShSVT = ShVT.getScalarType(); 4946 4947 // If MUL is unavailable, we cannot proceed in any case. 4948 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 4949 return SDValue(); 4950 4951 bool ComparingWithAllZeros = true; 4952 bool AllComparisonsWithNonZerosAreTautological = true; 4953 bool HadTautologicalLanes = false; 4954 bool AllLanesAreTautological = true; 4955 bool HadEvenDivisor = false; 4956 bool AllDivisorsArePowerOfTwo = true; 4957 bool HadTautologicalInvertedLanes = false; 4958 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 4959 4960 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 4961 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 4962 if (CDiv->isNullValue()) 4963 return false; 4964 4965 const APInt &D = CDiv->getAPIntValue(); 4966 const APInt &Cmp = CCmp->getAPIntValue(); 4967 4968 ComparingWithAllZeros &= Cmp.isNullValue(); 4969 4970 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 4971 // if C2 is not less than C1, the comparison is always false. 4972 // But we will only be able to produce the comparison that will give the 4973 // opposive tautological answer. So this lane would need to be fixed up. 4974 bool TautologicalInvertedLane = D.ule(Cmp); 4975 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 4976 4977 // If all lanes are tautological (either all divisors are ones, or divisor 4978 // is not greater than the constant we are comparing with), 4979 // we will prefer to avoid the fold. 4980 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; 4981 HadTautologicalLanes |= TautologicalLane; 4982 AllLanesAreTautological &= TautologicalLane; 4983 4984 // If we are comparing with non-zero, we need'll need to subtract said 4985 // comparison value from the LHS. But there is no point in doing that if 4986 // every lane where we are comparing with non-zero is tautological.. 4987 if (!Cmp.isNullValue()) 4988 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 4989 4990 // Decompose D into D0 * 2^K 4991 unsigned K = D.countTrailingZeros(); 4992 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 4993 APInt D0 = D.lshr(K); 4994 4995 // D is even if it has trailing zeros. 4996 HadEvenDivisor |= (K != 0); 4997 // D is a power-of-two if D0 is one. 4998 // If all divisors are power-of-two, we will prefer to avoid the fold. 4999 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5000 5001 // P = inv(D0, 2^W) 5002 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5003 unsigned W = D.getBitWidth(); 5004 APInt P = D0.zext(W + 1) 5005 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5006 .trunc(W); 5007 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5008 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5009 5010 // Q = floor((2^W - 1) u/ D) 5011 // R = ((2^W - 1) u% D) 5012 APInt Q, R; 5013 APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R); 5014 5015 // If we are comparing with zero, then that comparison constant is okay, 5016 // else it may need to be one less than that. 5017 if (Cmp.ugt(R)) 5018 Q -= 1; 5019 5020 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5021 "We are expecting that K is always less than all-ones for ShSVT"); 5022 5023 // If the lane is tautological the result can be constant-folded. 5024 if (TautologicalLane) { 5025 // Set P and K amount to a bogus values so we can try to splat them. 5026 P = 0; 5027 K = -1; 5028 // And ensure that comparison constant is tautological, 5029 // it will always compare true/false. 5030 Q = -1; 5031 } 5032 5033 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5034 KAmts.push_back( 5035 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5036 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5037 return true; 5038 }; 5039 5040 SDValue N = REMNode.getOperand(0); 5041 SDValue D = REMNode.getOperand(1); 5042 5043 // Collect the values from each element. 5044 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5045 return SDValue(); 5046 5047 // If all lanes are tautological, the result can be constant-folded. 5048 if (AllLanesAreTautological) 5049 return SDValue(); 5050 5051 // If this is a urem by a powers-of-two, avoid the fold since it can be 5052 // best implemented as a bit test. 5053 if (AllDivisorsArePowerOfTwo) 5054 return SDValue(); 5055 5056 SDValue PVal, KVal, QVal; 5057 if (VT.isVector()) { 5058 if (HadTautologicalLanes) { 5059 // Try to turn PAmts into a splat, since we don't care about the values 5060 // that are currently '0'. If we can't, just keep '0'`s. 5061 turnVectorIntoSplatVector(PAmts, isNullConstant); 5062 // Try to turn KAmts into a splat, since we don't care about the values 5063 // that are currently '-1'. If we can't, change them to '0'`s. 5064 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5065 DAG.getConstant(0, DL, ShSVT)); 5066 } 5067 5068 PVal = DAG.getBuildVector(VT, DL, PAmts); 5069 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5070 QVal = DAG.getBuildVector(VT, DL, QAmts); 5071 } else { 5072 PVal = PAmts[0]; 5073 KVal = KAmts[0]; 5074 QVal = QAmts[0]; 5075 } 5076 5077 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5078 if (!isOperationLegalOrCustom(ISD::SUB, VT)) 5079 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5080 assert(CompTargetNode.getValueType() == N.getValueType() && 5081 "Expecting that the types on LHS and RHS of comparisons match."); 5082 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5083 } 5084 5085 // (mul N, P) 5086 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5087 Created.push_back(Op0.getNode()); 5088 5089 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5090 // divisors as a performance improvement, since rotating by 0 is a no-op. 5091 if (HadEvenDivisor) { 5092 // We need ROTR to do this. 5093 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5094 return SDValue(); 5095 SDNodeFlags Flags; 5096 Flags.setExact(true); 5097 // UREM: (rotr (mul N, P), K) 5098 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5099 Created.push_back(Op0.getNode()); 5100 } 5101 5102 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5103 SDValue NewCC = 5104 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5105 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5106 if (!HadTautologicalInvertedLanes) 5107 return NewCC; 5108 5109 // If any lanes previously compared always-false, the NewCC will give 5110 // always-true result for them, so we need to fixup those lanes. 5111 // Or the other way around for inequality predicate. 5112 assert(VT.isVector() && "Can/should only get here for vectors."); 5113 Created.push_back(NewCC.getNode()); 5114 5115 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5116 // if C2 is not less than C1, the comparison is always false. 5117 // But we have produced the comparison that will give the 5118 // opposive tautological answer. So these lanes would need to be fixed up. 5119 SDValue TautologicalInvertedChannels = 5120 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5121 Created.push_back(TautologicalInvertedChannels.getNode()); 5122 5123 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5124 // If we have a vector select, let's replace the comparison results in the 5125 // affected lanes with the correct tautological result. 5126 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5127 DL, SETCCVT, SETCCVT); 5128 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5129 Replacement, NewCC); 5130 } 5131 5132 // Else, we can just invert the comparison result in the appropriate lanes. 5133 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5134 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5135 TautologicalInvertedChannels); 5136 5137 return SDValue(); // Don't know how to lower. 5138 } 5139 5140 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5141 /// where the divisor is constant and the comparison target is zero, 5142 /// return a DAG expression that will generate the same comparison result 5143 /// using only multiplications, additions and shifts/rotations. 5144 /// Ref: "Hacker's Delight" 10-17. 5145 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5146 SDValue CompTargetNode, 5147 ISD::CondCode Cond, 5148 DAGCombinerInfo &DCI, 5149 const SDLoc &DL) const { 5150 SmallVector<SDNode *, 7> Built; 5151 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5152 DCI, DL, Built)) { 5153 assert(Built.size() <= 7 && "Max size prediction failed."); 5154 for (SDNode *N : Built) 5155 DCI.AddToWorklist(N); 5156 return Folded; 5157 } 5158 5159 return SDValue(); 5160 } 5161 5162 SDValue 5163 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5164 SDValue CompTargetNode, ISD::CondCode Cond, 5165 DAGCombinerInfo &DCI, const SDLoc &DL, 5166 SmallVectorImpl<SDNode *> &Created) const { 5167 // Fold: 5168 // (seteq/ne (srem N, D), 0) 5169 // To: 5170 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5171 // 5172 // - D must be constant, with D = D0 * 2^K where D0 is odd 5173 // - P is the multiplicative inverse of D0 modulo 2^W 5174 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5175 // - Q = floor((2 * A) / (2^K)) 5176 // where W is the width of the common type of N and D. 5177 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5178 "Only applicable for (in)equality comparisons."); 5179 5180 SelectionDAG &DAG = DCI.DAG; 5181 5182 EVT VT = REMNode.getValueType(); 5183 EVT SVT = VT.getScalarType(); 5184 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5185 EVT ShSVT = ShVT.getScalarType(); 5186 5187 // If MUL is unavailable, we cannot proceed in any case. 5188 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5189 return SDValue(); 5190 5191 // TODO: Could support comparing with non-zero too. 5192 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5193 if (!CompTarget || !CompTarget->isNullValue()) 5194 return SDValue(); 5195 5196 bool HadIntMinDivisor = false; 5197 bool HadOneDivisor = false; 5198 bool AllDivisorsAreOnes = true; 5199 bool HadEvenDivisor = false; 5200 bool NeedToApplyOffset = false; 5201 bool AllDivisorsArePowerOfTwo = true; 5202 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5203 5204 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5205 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5206 if (C->isNullValue()) 5207 return false; 5208 5209 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5210 5211 // WARNING: this fold is only valid for positive divisors! 5212 APInt D = C->getAPIntValue(); 5213 if (D.isNegative()) 5214 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5215 5216 HadIntMinDivisor |= D.isMinSignedValue(); 5217 5218 // If all divisors are ones, we will prefer to avoid the fold. 5219 HadOneDivisor |= D.isOneValue(); 5220 AllDivisorsAreOnes &= D.isOneValue(); 5221 5222 // Decompose D into D0 * 2^K 5223 unsigned K = D.countTrailingZeros(); 5224 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5225 APInt D0 = D.lshr(K); 5226 5227 if (!D.isMinSignedValue()) { 5228 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5229 // we don't care about this lane in this fold, we'll special-handle it. 5230 HadEvenDivisor |= (K != 0); 5231 } 5232 5233 // D is a power-of-two if D0 is one. This includes INT_MIN. 5234 // If all divisors are power-of-two, we will prefer to avoid the fold. 5235 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5236 5237 // P = inv(D0, 2^W) 5238 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5239 unsigned W = D.getBitWidth(); 5240 APInt P = D0.zext(W + 1) 5241 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5242 .trunc(W); 5243 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5244 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5245 5246 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5247 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5248 A.clearLowBits(K); 5249 5250 if (!D.isMinSignedValue()) { 5251 // If divisor INT_MIN, then we don't care about this lane in this fold, 5252 // we'll special-handle it. 5253 NeedToApplyOffset |= A != 0; 5254 } 5255 5256 // Q = floor((2 * A) / (2^K)) 5257 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5258 5259 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5260 "We are expecting that A is always less than all-ones for SVT"); 5261 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5262 "We are expecting that K is always less than all-ones for ShSVT"); 5263 5264 // If the divisor is 1 the result can be constant-folded. Likewise, we 5265 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5266 if (D.isOneValue()) { 5267 // Set P, A and K to a bogus values so we can try to splat them. 5268 P = 0; 5269 A = -1; 5270 K = -1; 5271 5272 // x ?% 1 == 0 <--> true <--> x u<= -1 5273 Q = -1; 5274 } 5275 5276 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5277 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5278 KAmts.push_back( 5279 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5280 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5281 return true; 5282 }; 5283 5284 SDValue N = REMNode.getOperand(0); 5285 SDValue D = REMNode.getOperand(1); 5286 5287 // Collect the values from each element. 5288 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5289 return SDValue(); 5290 5291 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5292 if (AllDivisorsAreOnes) 5293 return SDValue(); 5294 5295 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5296 // since it can be best implemented as a bit test. 5297 if (AllDivisorsArePowerOfTwo) 5298 return SDValue(); 5299 5300 SDValue PVal, AVal, KVal, QVal; 5301 if (VT.isVector()) { 5302 if (HadOneDivisor) { 5303 // Try to turn PAmts into a splat, since we don't care about the values 5304 // that are currently '0'. If we can't, just keep '0'`s. 5305 turnVectorIntoSplatVector(PAmts, isNullConstant); 5306 // Try to turn AAmts into a splat, since we don't care about the 5307 // values that are currently '-1'. If we can't, change them to '0'`s. 5308 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5309 DAG.getConstant(0, DL, SVT)); 5310 // Try to turn KAmts into a splat, since we don't care about the values 5311 // that are currently '-1'. If we can't, change them to '0'`s. 5312 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5313 DAG.getConstant(0, DL, ShSVT)); 5314 } 5315 5316 PVal = DAG.getBuildVector(VT, DL, PAmts); 5317 AVal = DAG.getBuildVector(VT, DL, AAmts); 5318 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5319 QVal = DAG.getBuildVector(VT, DL, QAmts); 5320 } else { 5321 PVal = PAmts[0]; 5322 AVal = AAmts[0]; 5323 KVal = KAmts[0]; 5324 QVal = QAmts[0]; 5325 } 5326 5327 // (mul N, P) 5328 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5329 Created.push_back(Op0.getNode()); 5330 5331 if (NeedToApplyOffset) { 5332 // We need ADD to do this. 5333 if (!isOperationLegalOrCustom(ISD::ADD, VT)) 5334 return SDValue(); 5335 5336 // (add (mul N, P), A) 5337 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5338 Created.push_back(Op0.getNode()); 5339 } 5340 5341 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5342 // divisors as a performance improvement, since rotating by 0 is a no-op. 5343 if (HadEvenDivisor) { 5344 // We need ROTR to do this. 5345 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5346 return SDValue(); 5347 SDNodeFlags Flags; 5348 Flags.setExact(true); 5349 // SREM: (rotr (add (mul N, P), A), K) 5350 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5351 Created.push_back(Op0.getNode()); 5352 } 5353 5354 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5355 SDValue Fold = 5356 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5357 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5358 5359 // If we didn't have lanes with INT_MIN divisor, then we're done. 5360 if (!HadIntMinDivisor) 5361 return Fold; 5362 5363 // That fold is only valid for positive divisors. Which effectively means, 5364 // it is invalid for INT_MIN divisors. So if we have such a lane, 5365 // we must fix-up results for said lanes. 5366 assert(VT.isVector() && "Can/should only get here for vectors."); 5367 5368 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5369 !isOperationLegalOrCustom(ISD::AND, VT) || 5370 !isOperationLegalOrCustom(Cond, VT) || 5371 !isOperationLegalOrCustom(ISD::VSELECT, VT)) 5372 return SDValue(); 5373 5374 Created.push_back(Fold.getNode()); 5375 5376 SDValue IntMin = DAG.getConstant( 5377 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5378 SDValue IntMax = DAG.getConstant( 5379 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5380 SDValue Zero = 5381 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5382 5383 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5384 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5385 Created.push_back(DivisorIsIntMin.getNode()); 5386 5387 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5388 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5389 Created.push_back(Masked.getNode()); 5390 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5391 Created.push_back(MaskedIsZero.getNode()); 5392 5393 // To produce final result we need to blend 2 vectors: 'SetCC' and 5394 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5395 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5396 // constant-folded, select can get lowered to a shuffle with constant mask. 5397 SDValue Blended = 5398 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); 5399 5400 return Blended; 5401 } 5402 5403 bool TargetLowering:: 5404 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5405 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5406 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5407 "be a constant integer"); 5408 return true; 5409 } 5410 5411 return false; 5412 } 5413 5414 char TargetLowering::isNegatibleForFree(SDValue Op, SelectionDAG &DAG, 5415 bool LegalOperations, bool ForCodeSize, 5416 unsigned Depth) const { 5417 // fneg is removable even if it has multiple uses. 5418 if (Op.getOpcode() == ISD::FNEG) 5419 return 2; 5420 5421 // Don't allow anything with multiple uses unless we know it is free. 5422 EVT VT = Op.getValueType(); 5423 const SDNodeFlags Flags = Op->getFlags(); 5424 const TargetOptions &Options = DAG.getTarget().Options; 5425 if (!Op.hasOneUse() && !(Op.getOpcode() == ISD::FP_EXTEND && 5426 isFPExtFree(VT, Op.getOperand(0).getValueType()))) 5427 return 0; 5428 5429 // Don't recurse exponentially. 5430 if (Depth > SelectionDAG::MaxRecursionDepth) 5431 return 0; 5432 5433 switch (Op.getOpcode()) { 5434 case ISD::ConstantFP: { 5435 if (!LegalOperations) 5436 return 1; 5437 5438 // Don't invert constant FP values after legalization unless the target says 5439 // the negated constant is legal. 5440 return isOperationLegal(ISD::ConstantFP, VT) || 5441 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 5442 ForCodeSize); 5443 } 5444 case ISD::BUILD_VECTOR: { 5445 // Only permit BUILD_VECTOR of constants. 5446 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 5447 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 5448 })) 5449 return 0; 5450 if (!LegalOperations) 5451 return 1; 5452 if (isOperationLegal(ISD::ConstantFP, VT) && 5453 isOperationLegal(ISD::BUILD_VECTOR, VT)) 5454 return 1; 5455 return llvm::all_of(Op->op_values(), [&](SDValue N) { 5456 return N.isUndef() || 5457 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 5458 ForCodeSize); 5459 }); 5460 } 5461 case ISD::FADD: 5462 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5463 return 0; 5464 5465 // After operation legalization, it might not be legal to create new FSUBs. 5466 if (LegalOperations && !isOperationLegalOrCustom(ISD::FSUB, VT)) 5467 return 0; 5468 5469 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 5470 if (char V = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5471 ForCodeSize, Depth + 1)) 5472 return V; 5473 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 5474 return isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations, 5475 ForCodeSize, Depth + 1); 5476 case ISD::FSUB: 5477 // We can't turn -(A-B) into B-A when we honor signed zeros. 5478 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5479 return 0; 5480 5481 // fold (fneg (fsub A, B)) -> (fsub B, A) 5482 return 1; 5483 5484 case ISD::FMUL: 5485 case ISD::FDIV: 5486 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) 5487 if (char V = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5488 ForCodeSize, Depth + 1)) 5489 return V; 5490 5491 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 5492 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 5493 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 5494 return 0; 5495 5496 return isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations, 5497 ForCodeSize, Depth + 1); 5498 5499 case ISD::FMA: 5500 case ISD::FMAD: { 5501 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5502 return 0; 5503 5504 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5505 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5506 char V2 = isNegatibleForFree(Op.getOperand(2), DAG, LegalOperations, 5507 ForCodeSize, Depth + 1); 5508 if (!V2) 5509 return 0; 5510 5511 // One of Op0/Op1 must be cheaply negatible, then select the cheapest. 5512 char V0 = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5513 ForCodeSize, Depth + 1); 5514 char V1 = isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations, 5515 ForCodeSize, Depth + 1); 5516 char V01 = std::max(V0, V1); 5517 return V01 ? std::max(V01, V2) : 0; 5518 } 5519 5520 case ISD::FP_EXTEND: 5521 case ISD::FP_ROUND: 5522 case ISD::FSIN: 5523 return isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5524 ForCodeSize, Depth + 1); 5525 } 5526 5527 return 0; 5528 } 5529 5530 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 5531 bool LegalOperations, 5532 bool ForCodeSize, 5533 unsigned Depth) const { 5534 // fneg is removable even if it has multiple uses. 5535 if (Op.getOpcode() == ISD::FNEG) 5536 return Op.getOperand(0); 5537 5538 assert(Depth <= SelectionDAG::MaxRecursionDepth && 5539 "getNegatedExpression doesn't match isNegatibleForFree"); 5540 const SDNodeFlags Flags = Op->getFlags(); 5541 5542 switch (Op.getOpcode()) { 5543 case ISD::ConstantFP: { 5544 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 5545 V.changeSign(); 5546 return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType()); 5547 } 5548 case ISD::BUILD_VECTOR: { 5549 SmallVector<SDValue, 4> Ops; 5550 for (SDValue C : Op->op_values()) { 5551 if (C.isUndef()) { 5552 Ops.push_back(C); 5553 continue; 5554 } 5555 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 5556 V.changeSign(); 5557 Ops.push_back(DAG.getConstantFP(V, SDLoc(Op), C.getValueType())); 5558 } 5559 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Ops); 5560 } 5561 case ISD::FADD: 5562 assert((DAG.getTarget().Options.NoSignedZerosFPMath || 5563 Flags.hasNoSignedZeros()) && 5564 "Expected NSZ fp-flag"); 5565 5566 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 5567 if (isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, ForCodeSize, 5568 Depth + 1)) 5569 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5570 getNegatedExpression(Op.getOperand(0), DAG, 5571 LegalOperations, ForCodeSize, 5572 Depth + 1), 5573 Op.getOperand(1), Flags); 5574 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 5575 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5576 getNegatedExpression(Op.getOperand(1), DAG, 5577 LegalOperations, ForCodeSize, 5578 Depth + 1), 5579 Op.getOperand(0), Flags); 5580 case ISD::FSUB: 5581 // fold (fneg (fsub 0, B)) -> B 5582 if (ConstantFPSDNode *N0CFP = 5583 isConstOrConstSplatFP(Op.getOperand(0), /*AllowUndefs*/ true)) 5584 if (N0CFP->isZero()) 5585 return Op.getOperand(1); 5586 5587 // fold (fneg (fsub A, B)) -> (fsub B, A) 5588 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5589 Op.getOperand(1), Op.getOperand(0), Flags); 5590 5591 case ISD::FMUL: 5592 case ISD::FDIV: 5593 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 5594 if (isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, ForCodeSize, 5595 Depth + 1)) 5596 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5597 getNegatedExpression(Op.getOperand(0), DAG, 5598 LegalOperations, ForCodeSize, 5599 Depth + 1), 5600 Op.getOperand(1), Flags); 5601 5602 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 5603 return DAG.getNode( 5604 Op.getOpcode(), SDLoc(Op), Op.getValueType(), Op.getOperand(0), 5605 getNegatedExpression(Op.getOperand(1), DAG, LegalOperations, 5606 ForCodeSize, Depth + 1), 5607 Flags); 5608 5609 case ISD::FMA: 5610 case ISD::FMAD: { 5611 assert((DAG.getTarget().Options.NoSignedZerosFPMath || 5612 Flags.hasNoSignedZeros()) && 5613 "Expected NSZ fp-flag"); 5614 5615 SDValue Neg2 = getNegatedExpression(Op.getOperand(2), DAG, LegalOperations, 5616 ForCodeSize, Depth + 1); 5617 5618 char V0 = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5619 ForCodeSize, Depth + 1); 5620 char V1 = isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations, 5621 ForCodeSize, Depth + 1); 5622 if (V0 >= V1) { 5623 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5624 SDValue Neg0 = getNegatedExpression( 5625 Op.getOperand(0), DAG, LegalOperations, ForCodeSize, Depth + 1); 5626 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Neg0, 5627 Op.getOperand(1), Neg2, Flags); 5628 } 5629 5630 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5631 SDValue Neg1 = getNegatedExpression(Op.getOperand(1), DAG, LegalOperations, 5632 ForCodeSize, Depth + 1); 5633 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5634 Op.getOperand(0), Neg1, Neg2, Flags); 5635 } 5636 5637 case ISD::FP_EXTEND: 5638 case ISD::FSIN: 5639 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5640 getNegatedExpression(Op.getOperand(0), DAG, 5641 LegalOperations, ForCodeSize, 5642 Depth + 1)); 5643 case ISD::FP_ROUND: 5644 return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(), 5645 getNegatedExpression(Op.getOperand(0), DAG, 5646 LegalOperations, ForCodeSize, 5647 Depth + 1), 5648 Op.getOperand(1)); 5649 } 5650 5651 llvm_unreachable("Unknown code"); 5652 } 5653 5654 //===----------------------------------------------------------------------===// 5655 // Legalization Utilities 5656 //===----------------------------------------------------------------------===// 5657 5658 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 5659 SDValue LHS, SDValue RHS, 5660 SmallVectorImpl<SDValue> &Result, 5661 EVT HiLoVT, SelectionDAG &DAG, 5662 MulExpansionKind Kind, SDValue LL, 5663 SDValue LH, SDValue RL, SDValue RH) const { 5664 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 5665 Opcode == ISD::SMUL_LOHI); 5666 5667 bool HasMULHS = (Kind == MulExpansionKind::Always) || 5668 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 5669 bool HasMULHU = (Kind == MulExpansionKind::Always) || 5670 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 5671 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 5672 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 5673 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 5674 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 5675 5676 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 5677 return false; 5678 5679 unsigned OuterBitSize = VT.getScalarSizeInBits(); 5680 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 5681 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 5682 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 5683 5684 // LL, LH, RL, and RH must be either all NULL or all set to a value. 5685 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 5686 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 5687 5688 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 5689 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 5690 bool Signed) -> bool { 5691 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 5692 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 5693 Hi = SDValue(Lo.getNode(), 1); 5694 return true; 5695 } 5696 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 5697 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 5698 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 5699 return true; 5700 } 5701 return false; 5702 }; 5703 5704 SDValue Lo, Hi; 5705 5706 if (!LL.getNode() && !RL.getNode() && 5707 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5708 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 5709 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 5710 } 5711 5712 if (!LL.getNode()) 5713 return false; 5714 5715 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 5716 if (DAG.MaskedValueIsZero(LHS, HighMask) && 5717 DAG.MaskedValueIsZero(RHS, HighMask)) { 5718 // The inputs are both zero-extended. 5719 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 5720 Result.push_back(Lo); 5721 Result.push_back(Hi); 5722 if (Opcode != ISD::MUL) { 5723 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5724 Result.push_back(Zero); 5725 Result.push_back(Zero); 5726 } 5727 return true; 5728 } 5729 } 5730 5731 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 5732 RHSSB > InnerBitSize) { 5733 // The input values are both sign-extended. 5734 // TODO non-MUL case? 5735 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 5736 Result.push_back(Lo); 5737 Result.push_back(Hi); 5738 return true; 5739 } 5740 } 5741 5742 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 5743 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5744 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 5745 // FIXME getShiftAmountTy does not always return a sensible result when VT 5746 // is an illegal type, and so the type may be too small to fit the shift 5747 // amount. Override it with i32. The shift will have to be legalized. 5748 ShiftAmountTy = MVT::i32; 5749 } 5750 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 5751 5752 if (!LH.getNode() && !RH.getNode() && 5753 isOperationLegalOrCustom(ISD::SRL, VT) && 5754 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5755 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 5756 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 5757 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 5758 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 5759 } 5760 5761 if (!LH.getNode()) 5762 return false; 5763 5764 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 5765 return false; 5766 5767 Result.push_back(Lo); 5768 5769 if (Opcode == ISD::MUL) { 5770 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 5771 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 5772 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 5773 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 5774 Result.push_back(Hi); 5775 return true; 5776 } 5777 5778 // Compute the full width result. 5779 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 5780 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 5781 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5782 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 5783 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 5784 }; 5785 5786 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5787 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 5788 return false; 5789 5790 // This is effectively the add part of a multiply-add of half-sized operands, 5791 // so it cannot overflow. 5792 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5793 5794 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 5795 return false; 5796 5797 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5798 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5799 5800 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 5801 isOperationLegalOrCustom(ISD::ADDE, VT)); 5802 if (UseGlue) 5803 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 5804 Merge(Lo, Hi)); 5805 else 5806 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 5807 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 5808 5809 SDValue Carry = Next.getValue(1); 5810 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5811 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5812 5813 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 5814 return false; 5815 5816 if (UseGlue) 5817 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 5818 Carry); 5819 else 5820 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 5821 Zero, Carry); 5822 5823 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5824 5825 if (Opcode == ISD::SMUL_LOHI) { 5826 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5827 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 5828 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 5829 5830 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5831 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 5832 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 5833 } 5834 5835 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5836 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5837 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5838 return true; 5839 } 5840 5841 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 5842 SelectionDAG &DAG, MulExpansionKind Kind, 5843 SDValue LL, SDValue LH, SDValue RL, 5844 SDValue RH) const { 5845 SmallVector<SDValue, 2> Result; 5846 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 5847 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 5848 DAG, Kind, LL, LH, RL, RH); 5849 if (Ok) { 5850 assert(Result.size() == 2); 5851 Lo = Result[0]; 5852 Hi = Result[1]; 5853 } 5854 return Ok; 5855 } 5856 5857 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 5858 SelectionDAG &DAG) const { 5859 EVT VT = Node->getValueType(0); 5860 5861 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 5862 !isOperationLegalOrCustom(ISD::SRL, VT) || 5863 !isOperationLegalOrCustom(ISD::SUB, VT) || 5864 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 5865 return false; 5866 5867 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 5868 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 5869 SDValue X = Node->getOperand(0); 5870 SDValue Y = Node->getOperand(1); 5871 SDValue Z = Node->getOperand(2); 5872 5873 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 5874 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 5875 SDLoc DL(SDValue(Node, 0)); 5876 5877 EVT ShVT = Z.getValueType(); 5878 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 5879 SDValue Zero = DAG.getConstant(0, DL, ShVT); 5880 5881 SDValue ShAmt; 5882 if (isPowerOf2_32(EltSizeInBits)) { 5883 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 5884 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 5885 } else { 5886 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 5887 } 5888 5889 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 5890 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 5891 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 5892 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 5893 5894 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 5895 // and that is undefined. We must compare and select to avoid UB. 5896 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT); 5897 5898 // For fshl, 0-shift returns the 1st arg (X). 5899 // For fshr, 0-shift returns the 2nd arg (Y). 5900 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ); 5901 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or); 5902 return true; 5903 } 5904 5905 // TODO: Merge with expandFunnelShift. 5906 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 5907 SelectionDAG &DAG) const { 5908 EVT VT = Node->getValueType(0); 5909 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 5910 bool IsLeft = Node->getOpcode() == ISD::ROTL; 5911 SDValue Op0 = Node->getOperand(0); 5912 SDValue Op1 = Node->getOperand(1); 5913 SDLoc DL(SDValue(Node, 0)); 5914 5915 EVT ShVT = Op1.getValueType(); 5916 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 5917 5918 // If a rotate in the other direction is legal, use it. 5919 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 5920 if (isOperationLegal(RevRot, VT)) { 5921 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 5922 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 5923 return true; 5924 } 5925 5926 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 5927 !isOperationLegalOrCustom(ISD::SRL, VT) || 5928 !isOperationLegalOrCustom(ISD::SUB, VT) || 5929 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 5930 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 5931 return false; 5932 5933 // Otherwise, 5934 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) 5935 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) 5936 // 5937 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && 5938 "Expecting the type bitwidth to be a power of 2"); 5939 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 5940 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 5941 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 5942 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 5943 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 5944 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 5945 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), 5946 DAG.getNode(HsOpc, DL, VT, Op0, And1)); 5947 return true; 5948 } 5949 5950 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 5951 SelectionDAG &DAG) const { 5952 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 5953 SDValue Src = Node->getOperand(OpNo); 5954 EVT SrcVT = Src.getValueType(); 5955 EVT DstVT = Node->getValueType(0); 5956 SDLoc dl(SDValue(Node, 0)); 5957 5958 // FIXME: Only f32 to i64 conversions are supported. 5959 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 5960 return false; 5961 5962 if (Node->isStrictFPOpcode()) 5963 // When a NaN is converted to an integer a trap is allowed. We can't 5964 // use this expansion here because it would eliminate that trap. Other 5965 // traps are also allowed and cannot be eliminated. See 5966 // IEEE 754-2008 sec 5.8. 5967 return false; 5968 5969 // Expand f32 -> i64 conversion 5970 // This algorithm comes from compiler-rt's implementation of fixsfdi: 5971 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 5972 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 5973 EVT IntVT = SrcVT.changeTypeToInteger(); 5974 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 5975 5976 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 5977 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 5978 SDValue Bias = DAG.getConstant(127, dl, IntVT); 5979 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 5980 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 5981 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 5982 5983 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 5984 5985 SDValue ExponentBits = DAG.getNode( 5986 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 5987 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 5988 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 5989 5990 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 5991 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 5992 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 5993 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 5994 5995 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 5996 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 5997 DAG.getConstant(0x00800000, dl, IntVT)); 5998 5999 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6000 6001 R = DAG.getSelectCC( 6002 dl, Exponent, ExponentLoBit, 6003 DAG.getNode(ISD::SHL, dl, DstVT, R, 6004 DAG.getZExtOrTrunc( 6005 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6006 dl, IntShVT)), 6007 DAG.getNode(ISD::SRL, dl, DstVT, R, 6008 DAG.getZExtOrTrunc( 6009 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6010 dl, IntShVT)), 6011 ISD::SETGT); 6012 6013 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6014 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6015 6016 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6017 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6018 return true; 6019 } 6020 6021 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6022 SDValue &Chain, 6023 SelectionDAG &DAG) const { 6024 SDLoc dl(SDValue(Node, 0)); 6025 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6026 SDValue Src = Node->getOperand(OpNo); 6027 6028 EVT SrcVT = Src.getValueType(); 6029 EVT DstVT = Node->getValueType(0); 6030 EVT SetCCVT = 6031 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6032 6033 // Only expand vector types if we have the appropriate vector bit operations. 6034 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6035 ISD::FP_TO_SINT; 6036 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6037 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6038 return false; 6039 6040 // If the maximum float value is smaller then the signed integer range, 6041 // the destination signmask can't be represented by the float, so we can 6042 // just use FP_TO_SINT directly. 6043 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6044 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 6045 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6046 if (APFloat::opOverflow & 6047 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6048 if (Node->isStrictFPOpcode()) { 6049 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6050 { Node->getOperand(0), Src }); 6051 Chain = Result.getValue(1); 6052 } else 6053 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6054 return true; 6055 } 6056 6057 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6058 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6059 6060 bool Strict = Node->isStrictFPOpcode() || 6061 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6062 6063 if (Strict) { 6064 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6065 // signmask then offset (the result of which should be fully representable). 6066 // Sel = Src < 0x8000000000000000 6067 // Val = select Sel, Src, Src - 0x8000000000000000 6068 // Ofs = select Sel, 0, 0x8000000000000000 6069 // Result = fp_to_sint(Val) ^ Ofs 6070 6071 // TODO: Should any fast-math-flags be set for the FSUB? 6072 SDValue SrcBiased; 6073 if (Node->isStrictFPOpcode()) 6074 SrcBiased = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6075 { Node->getOperand(0), Src, Cst }); 6076 else 6077 SrcBiased = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst); 6078 SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src, SrcBiased); 6079 SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), 6080 DAG.getConstant(SignMask, dl, DstVT)); 6081 SDValue SInt; 6082 if (Node->isStrictFPOpcode()) { 6083 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6084 { SrcBiased.getValue(1), Val }); 6085 Chain = SInt.getValue(1); 6086 } else 6087 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6088 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, Ofs); 6089 } else { 6090 // Expand based on maximum range of FP_TO_SINT: 6091 // True = fp_to_sint(Src) 6092 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6093 // Result = select (Src < 0x8000000000000000), True, False 6094 6095 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6096 // TODO: Should any fast-math-flags be set for the FSUB? 6097 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6098 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6099 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6100 DAG.getConstant(SignMask, dl, DstVT)); 6101 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6102 } 6103 return true; 6104 } 6105 6106 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6107 SelectionDAG &DAG) const { 6108 SDValue Src = Node->getOperand(0); 6109 EVT SrcVT = Src.getValueType(); 6110 EVT DstVT = Node->getValueType(0); 6111 6112 if (SrcVT.getScalarType() != MVT::i64) 6113 return false; 6114 6115 SDLoc dl(SDValue(Node, 0)); 6116 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6117 6118 if (DstVT.getScalarType() == MVT::f32) { 6119 // Only expand vector types if we have the appropriate vector bit 6120 // operations. 6121 if (SrcVT.isVector() && 6122 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6123 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6124 !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) || 6125 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6126 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6127 return false; 6128 6129 // For unsigned conversions, convert them to signed conversions using the 6130 // algorithm from the x86_64 __floatundidf in compiler_rt. 6131 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src); 6132 6133 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 6134 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst); 6135 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 6136 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst); 6137 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 6138 6139 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or); 6140 SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt); 6141 6142 // TODO: This really should be implemented using a branch rather than a 6143 // select. We happen to get lucky and machinesink does the right 6144 // thing most of the time. This would be a good candidate for a 6145 // pseudo-op, or, even better, for whole-function isel. 6146 EVT SetCCVT = 6147 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6148 6149 SDValue SignBitTest = DAG.getSetCC( 6150 dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 6151 Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast); 6152 return true; 6153 } 6154 6155 if (DstVT.getScalarType() == MVT::f64) { 6156 // Only expand vector types if we have the appropriate vector bit 6157 // operations. 6158 if (SrcVT.isVector() && 6159 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6160 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6161 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6162 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6163 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6164 return false; 6165 6166 // Implementation of unsigned i64 to f64 following the algorithm in 6167 // __floatundidf in compiler_rt. This implementation has the advantage 6168 // of performing rounding correctly, both in the default rounding mode 6169 // and in all alternate rounding modes. 6170 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6171 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6172 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6173 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6174 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6175 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6176 6177 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6178 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6179 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6180 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6181 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6182 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6183 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6184 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6185 return true; 6186 } 6187 6188 return false; 6189 } 6190 6191 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6192 SelectionDAG &DAG) const { 6193 SDLoc dl(Node); 6194 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6195 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6196 EVT VT = Node->getValueType(0); 6197 if (isOperationLegalOrCustom(NewOp, VT)) { 6198 SDValue Quiet0 = Node->getOperand(0); 6199 SDValue Quiet1 = Node->getOperand(1); 6200 6201 if (!Node->getFlags().hasNoNaNs()) { 6202 // Insert canonicalizes if it's possible we need to quiet to get correct 6203 // sNaN behavior. 6204 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6205 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6206 Node->getFlags()); 6207 } 6208 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6209 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6210 Node->getFlags()); 6211 } 6212 } 6213 6214 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6215 } 6216 6217 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6218 // instead if there are no NaNs. 6219 if (Node->getFlags().hasNoNaNs()) { 6220 unsigned IEEE2018Op = 6221 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6222 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6223 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6224 Node->getOperand(1), Node->getFlags()); 6225 } 6226 } 6227 6228 return SDValue(); 6229 } 6230 6231 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 6232 SelectionDAG &DAG) const { 6233 SDLoc dl(Node); 6234 EVT VT = Node->getValueType(0); 6235 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6236 SDValue Op = Node->getOperand(0); 6237 unsigned Len = VT.getScalarSizeInBits(); 6238 assert(VT.isInteger() && "CTPOP not implemented for this type."); 6239 6240 // TODO: Add support for irregular type lengths. 6241 if (!(Len <= 128 && Len % 8 == 0)) 6242 return false; 6243 6244 // Only expand vector types if we have the appropriate vector bit operations. 6245 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 6246 !isOperationLegalOrCustom(ISD::SUB, VT) || 6247 !isOperationLegalOrCustom(ISD::SRL, VT) || 6248 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 6249 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6250 return false; 6251 6252 // This is the "best" algorithm from 6253 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 6254 SDValue Mask55 = 6255 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 6256 SDValue Mask33 = 6257 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 6258 SDValue Mask0F = 6259 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 6260 SDValue Mask01 = 6261 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 6262 6263 // v = v - ((v >> 1) & 0x55555555...) 6264 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 6265 DAG.getNode(ISD::AND, dl, VT, 6266 DAG.getNode(ISD::SRL, dl, VT, Op, 6267 DAG.getConstant(1, dl, ShVT)), 6268 Mask55)); 6269 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 6270 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 6271 DAG.getNode(ISD::AND, dl, VT, 6272 DAG.getNode(ISD::SRL, dl, VT, Op, 6273 DAG.getConstant(2, dl, ShVT)), 6274 Mask33)); 6275 // v = (v + (v >> 4)) & 0x0F0F0F0F... 6276 Op = DAG.getNode(ISD::AND, dl, VT, 6277 DAG.getNode(ISD::ADD, dl, VT, Op, 6278 DAG.getNode(ISD::SRL, dl, VT, Op, 6279 DAG.getConstant(4, dl, ShVT))), 6280 Mask0F); 6281 // v = (v * 0x01010101...) >> (Len - 8) 6282 if (Len > 8) 6283 Op = 6284 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 6285 DAG.getConstant(Len - 8, dl, ShVT)); 6286 6287 Result = Op; 6288 return true; 6289 } 6290 6291 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 6292 SelectionDAG &DAG) const { 6293 SDLoc dl(Node); 6294 EVT VT = Node->getValueType(0); 6295 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6296 SDValue Op = Node->getOperand(0); 6297 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6298 6299 // If the non-ZERO_UNDEF version is supported we can use that instead. 6300 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 6301 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 6302 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 6303 return true; 6304 } 6305 6306 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6307 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 6308 EVT SetCCVT = 6309 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6310 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 6311 SDValue Zero = DAG.getConstant(0, dl, VT); 6312 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6313 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6314 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 6315 return true; 6316 } 6317 6318 // Only expand vector types if we have the appropriate vector bit operations. 6319 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6320 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 6321 !isOperationLegalOrCustom(ISD::SRL, VT) || 6322 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6323 return false; 6324 6325 // for now, we do this: 6326 // x = x | (x >> 1); 6327 // x = x | (x >> 2); 6328 // ... 6329 // x = x | (x >>16); 6330 // x = x | (x >>32); // for 64-bit input 6331 // return popcount(~x); 6332 // 6333 // Ref: "Hacker's Delight" by Henry Warren 6334 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 6335 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 6336 Op = DAG.getNode(ISD::OR, dl, VT, Op, 6337 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 6338 } 6339 Op = DAG.getNOT(dl, Op, VT); 6340 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 6341 return true; 6342 } 6343 6344 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 6345 SelectionDAG &DAG) const { 6346 SDLoc dl(Node); 6347 EVT VT = Node->getValueType(0); 6348 SDValue Op = Node->getOperand(0); 6349 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6350 6351 // If the non-ZERO_UNDEF version is supported we can use that instead. 6352 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 6353 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 6354 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 6355 return true; 6356 } 6357 6358 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6359 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 6360 EVT SetCCVT = 6361 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6362 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 6363 SDValue Zero = DAG.getConstant(0, dl, VT); 6364 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6365 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6366 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 6367 return true; 6368 } 6369 6370 // Only expand vector types if we have the appropriate vector bit operations. 6371 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6372 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 6373 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 6374 !isOperationLegalOrCustom(ISD::SUB, VT) || 6375 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 6376 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6377 return false; 6378 6379 // for now, we use: { return popcount(~x & (x - 1)); } 6380 // unless the target has ctlz but not ctpop, in which case we use: 6381 // { return 32 - nlz(~x & (x-1)); } 6382 // Ref: "Hacker's Delight" by Henry Warren 6383 SDValue Tmp = DAG.getNode( 6384 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 6385 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 6386 6387 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 6388 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 6389 Result = 6390 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 6391 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 6392 return true; 6393 } 6394 6395 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 6396 return true; 6397 } 6398 6399 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 6400 SelectionDAG &DAG) const { 6401 SDLoc dl(N); 6402 EVT VT = N->getValueType(0); 6403 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6404 SDValue Op = N->getOperand(0); 6405 6406 // Only expand vector types if we have the appropriate vector operations. 6407 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 6408 !isOperationLegalOrCustom(ISD::ADD, VT) || 6409 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6410 return false; 6411 6412 SDValue Shift = 6413 DAG.getNode(ISD::SRA, dl, VT, Op, 6414 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 6415 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 6416 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 6417 return true; 6418 } 6419 6420 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 6421 SelectionDAG &DAG) const { 6422 SDLoc SL(LD); 6423 SDValue Chain = LD->getChain(); 6424 SDValue BasePTR = LD->getBasePtr(); 6425 EVT SrcVT = LD->getMemoryVT(); 6426 ISD::LoadExtType ExtType = LD->getExtensionType(); 6427 6428 unsigned NumElem = SrcVT.getVectorNumElements(); 6429 6430 EVT SrcEltVT = SrcVT.getScalarType(); 6431 EVT DstEltVT = LD->getValueType(0).getScalarType(); 6432 6433 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 6434 assert(SrcEltVT.isByteSized()); 6435 6436 SmallVector<SDValue, 8> Vals; 6437 SmallVector<SDValue, 8> LoadChains; 6438 6439 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6440 SDValue ScalarLoad = 6441 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 6442 LD->getPointerInfo().getWithOffset(Idx * Stride), 6443 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 6444 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6445 6446 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 6447 6448 Vals.push_back(ScalarLoad.getValue(0)); 6449 LoadChains.push_back(ScalarLoad.getValue(1)); 6450 } 6451 6452 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 6453 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); 6454 6455 return DAG.getMergeValues({Value, NewChain}, SL); 6456 } 6457 6458 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 6459 SelectionDAG &DAG) const { 6460 SDLoc SL(ST); 6461 6462 SDValue Chain = ST->getChain(); 6463 SDValue BasePtr = ST->getBasePtr(); 6464 SDValue Value = ST->getValue(); 6465 EVT StVT = ST->getMemoryVT(); 6466 6467 // The type of the data we want to save 6468 EVT RegVT = Value.getValueType(); 6469 EVT RegSclVT = RegVT.getScalarType(); 6470 6471 // The type of data as saved in memory. 6472 EVT MemSclVT = StVT.getScalarType(); 6473 6474 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 6475 unsigned NumElem = StVT.getVectorNumElements(); 6476 6477 // A vector must always be stored in memory as-is, i.e. without any padding 6478 // between the elements, since various code depend on it, e.g. in the 6479 // handling of a bitcast of a vector type to int, which may be done with a 6480 // vector store followed by an integer load. A vector that does not have 6481 // elements that are byte-sized must therefore be stored as an integer 6482 // built out of the extracted vector elements. 6483 if (!MemSclVT.isByteSized()) { 6484 unsigned NumBits = StVT.getSizeInBits(); 6485 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 6486 6487 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 6488 6489 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6490 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6491 DAG.getConstant(Idx, SL, IdxVT)); 6492 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 6493 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 6494 unsigned ShiftIntoIdx = 6495 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6496 SDValue ShiftAmount = 6497 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 6498 SDValue ShiftedElt = 6499 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 6500 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 6501 } 6502 6503 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 6504 ST->getAlignment(), ST->getMemOperand()->getFlags(), 6505 ST->getAAInfo()); 6506 } 6507 6508 // Store Stride in bytes 6509 unsigned Stride = MemSclVT.getSizeInBits() / 8; 6510 assert(Stride && "Zero stride!"); 6511 // Extract each of the elements from the original vector and save them into 6512 // memory individually. 6513 SmallVector<SDValue, 8> Stores; 6514 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6515 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6516 DAG.getConstant(Idx, SL, IdxVT)); 6517 6518 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 6519 6520 // This scalar TruncStore may be illegal, but we legalize it later. 6521 SDValue Store = DAG.getTruncStore( 6522 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 6523 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 6524 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6525 6526 Stores.push_back(Store); 6527 } 6528 6529 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 6530 } 6531 6532 std::pair<SDValue, SDValue> 6533 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 6534 assert(LD->getAddressingMode() == ISD::UNINDEXED && 6535 "unaligned indexed loads not implemented!"); 6536 SDValue Chain = LD->getChain(); 6537 SDValue Ptr = LD->getBasePtr(); 6538 EVT VT = LD->getValueType(0); 6539 EVT LoadedVT = LD->getMemoryVT(); 6540 SDLoc dl(LD); 6541 auto &MF = DAG.getMachineFunction(); 6542 6543 if (VT.isFloatingPoint() || VT.isVector()) { 6544 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 6545 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 6546 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 6547 LoadedVT.isVector()) { 6548 // Scalarize the load and let the individual components be handled. 6549 SDValue Scalarized = scalarizeVectorLoad(LD, DAG); 6550 if (Scalarized->getOpcode() == ISD::MERGE_VALUES) 6551 return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1)); 6552 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); 6553 } 6554 6555 // Expand to a (misaligned) integer load of the same size, 6556 // then bitconvert to floating point or vector. 6557 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 6558 LD->getMemOperand()); 6559 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 6560 if (LoadedVT != VT) 6561 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 6562 ISD::ANY_EXTEND, dl, VT, Result); 6563 6564 return std::make_pair(Result, newLoad.getValue(1)); 6565 } 6566 6567 // Copy the value to a (aligned) stack slot using (unaligned) integer 6568 // loads and stores, then do a (aligned) load from the stack slot. 6569 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 6570 unsigned LoadedBytes = LoadedVT.getStoreSize(); 6571 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6572 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 6573 6574 // Make sure the stack slot is also aligned for the register type. 6575 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 6576 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 6577 SmallVector<SDValue, 8> Stores; 6578 SDValue StackPtr = StackBase; 6579 unsigned Offset = 0; 6580 6581 EVT PtrVT = Ptr.getValueType(); 6582 EVT StackPtrVT = StackPtr.getValueType(); 6583 6584 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6585 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6586 6587 // Do all but one copies using the full register width. 6588 for (unsigned i = 1; i < NumRegs; i++) { 6589 // Load one integer register's worth from the original location. 6590 SDValue Load = DAG.getLoad( 6591 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 6592 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 6593 LD->getAAInfo()); 6594 // Follow the load with a store to the stack slot. Remember the store. 6595 Stores.push_back(DAG.getStore( 6596 Load.getValue(1), dl, Load, StackPtr, 6597 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 6598 // Increment the pointers. 6599 Offset += RegBytes; 6600 6601 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6602 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6603 } 6604 6605 // The last copy may be partial. Do an extending load. 6606 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 6607 8 * (LoadedBytes - Offset)); 6608 SDValue Load = 6609 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 6610 LD->getPointerInfo().getWithOffset(Offset), MemVT, 6611 MinAlign(LD->getAlignment(), Offset), 6612 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6613 // Follow the load with a store to the stack slot. Remember the store. 6614 // On big-endian machines this requires a truncating store to ensure 6615 // that the bits end up in the right place. 6616 Stores.push_back(DAG.getTruncStore( 6617 Load.getValue(1), dl, Load, StackPtr, 6618 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 6619 6620 // The order of the stores doesn't matter - say it with a TokenFactor. 6621 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6622 6623 // Finally, perform the original load only redirected to the stack slot. 6624 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 6625 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 6626 LoadedVT); 6627 6628 // Callers expect a MERGE_VALUES node. 6629 return std::make_pair(Load, TF); 6630 } 6631 6632 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 6633 "Unaligned load of unsupported type."); 6634 6635 // Compute the new VT that is half the size of the old one. This is an 6636 // integer MVT. 6637 unsigned NumBits = LoadedVT.getSizeInBits(); 6638 EVT NewLoadedVT; 6639 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 6640 NumBits >>= 1; 6641 6642 unsigned Alignment = LD->getAlignment(); 6643 unsigned IncrementSize = NumBits / 8; 6644 ISD::LoadExtType HiExtType = LD->getExtensionType(); 6645 6646 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 6647 if (HiExtType == ISD::NON_EXTLOAD) 6648 HiExtType = ISD::ZEXTLOAD; 6649 6650 // Load the value in two parts 6651 SDValue Lo, Hi; 6652 if (DAG.getDataLayout().isLittleEndian()) { 6653 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6654 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6655 LD->getAAInfo()); 6656 6657 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6658 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 6659 LD->getPointerInfo().getWithOffset(IncrementSize), 6660 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6661 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6662 } else { 6663 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6664 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6665 LD->getAAInfo()); 6666 6667 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6668 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 6669 LD->getPointerInfo().getWithOffset(IncrementSize), 6670 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6671 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6672 } 6673 6674 // aggregate the two parts 6675 SDValue ShiftAmount = 6676 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 6677 DAG.getDataLayout())); 6678 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 6679 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 6680 6681 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 6682 Hi.getValue(1)); 6683 6684 return std::make_pair(Result, TF); 6685 } 6686 6687 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 6688 SelectionDAG &DAG) const { 6689 assert(ST->getAddressingMode() == ISD::UNINDEXED && 6690 "unaligned indexed stores not implemented!"); 6691 SDValue Chain = ST->getChain(); 6692 SDValue Ptr = ST->getBasePtr(); 6693 SDValue Val = ST->getValue(); 6694 EVT VT = Val.getValueType(); 6695 int Alignment = ST->getAlignment(); 6696 auto &MF = DAG.getMachineFunction(); 6697 EVT StoreMemVT = ST->getMemoryVT(); 6698 6699 SDLoc dl(ST); 6700 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 6701 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 6702 if (isTypeLegal(intVT)) { 6703 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 6704 StoreMemVT.isVector()) { 6705 // Scalarize the store and let the individual components be handled. 6706 SDValue Result = scalarizeVectorStore(ST, DAG); 6707 return Result; 6708 } 6709 // Expand to a bitconvert of the value to the integer type of the 6710 // same size, then a (misaligned) int store. 6711 // FIXME: Does not handle truncating floating point stores! 6712 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 6713 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 6714 Alignment, ST->getMemOperand()->getFlags()); 6715 return Result; 6716 } 6717 // Do a (aligned) store to a stack slot, then copy from the stack slot 6718 // to the final destination using (unaligned) integer loads and stores. 6719 MVT RegVT = getRegisterType( 6720 *DAG.getContext(), 6721 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 6722 EVT PtrVT = Ptr.getValueType(); 6723 unsigned StoredBytes = StoreMemVT.getStoreSize(); 6724 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6725 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 6726 6727 // Make sure the stack slot is also aligned for the register type. 6728 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 6729 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 6730 6731 // Perform the original store, only redirected to the stack slot. 6732 SDValue Store = DAG.getTruncStore( 6733 Chain, dl, Val, StackPtr, 6734 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 6735 6736 EVT StackPtrVT = StackPtr.getValueType(); 6737 6738 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6739 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6740 SmallVector<SDValue, 8> Stores; 6741 unsigned Offset = 0; 6742 6743 // Do all but one copies using the full register width. 6744 for (unsigned i = 1; i < NumRegs; i++) { 6745 // Load one integer register's worth from the stack slot. 6746 SDValue Load = DAG.getLoad( 6747 RegVT, dl, Store, StackPtr, 6748 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 6749 // Store it to the final location. Remember the store. 6750 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 6751 ST->getPointerInfo().getWithOffset(Offset), 6752 MinAlign(ST->getAlignment(), Offset), 6753 ST->getMemOperand()->getFlags())); 6754 // Increment the pointers. 6755 Offset += RegBytes; 6756 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6757 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6758 } 6759 6760 // The last store may be partial. Do a truncating store. On big-endian 6761 // machines this requires an extending load from the stack slot to ensure 6762 // that the bits are in the right place. 6763 EVT LoadMemVT = 6764 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 6765 6766 // Load from the stack slot. 6767 SDValue Load = DAG.getExtLoad( 6768 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 6769 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 6770 6771 Stores.push_back( 6772 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 6773 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 6774 MinAlign(ST->getAlignment(), Offset), 6775 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 6776 // The order of the stores doesn't matter - say it with a TokenFactor. 6777 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6778 return Result; 6779 } 6780 6781 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 6782 "Unaligned store of unknown type."); 6783 // Get the half-size VT 6784 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 6785 int NumBits = NewStoredVT.getSizeInBits(); 6786 int IncrementSize = NumBits / 8; 6787 6788 // Divide the stored value in two parts. 6789 SDValue ShiftAmount = DAG.getConstant( 6790 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 6791 SDValue Lo = Val; 6792 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 6793 6794 // Store the two parts 6795 SDValue Store1, Store2; 6796 Store1 = DAG.getTruncStore(Chain, dl, 6797 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 6798 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 6799 ST->getMemOperand()->getFlags()); 6800 6801 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6802 Alignment = MinAlign(Alignment, IncrementSize); 6803 Store2 = DAG.getTruncStore( 6804 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 6805 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 6806 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6807 6808 SDValue Result = 6809 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 6810 return Result; 6811 } 6812 6813 SDValue 6814 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 6815 const SDLoc &DL, EVT DataVT, 6816 SelectionDAG &DAG, 6817 bool IsCompressedMemory) const { 6818 SDValue Increment; 6819 EVT AddrVT = Addr.getValueType(); 6820 EVT MaskVT = Mask.getValueType(); 6821 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 6822 "Incompatible types of Data and Mask"); 6823 if (IsCompressedMemory) { 6824 // Incrementing the pointer according to number of '1's in the mask. 6825 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 6826 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 6827 if (MaskIntVT.getSizeInBits() < 32) { 6828 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 6829 MaskIntVT = MVT::i32; 6830 } 6831 6832 // Count '1's with POPCNT. 6833 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 6834 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 6835 // Scale is an element size in bytes. 6836 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 6837 AddrVT); 6838 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 6839 } else 6840 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 6841 6842 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 6843 } 6844 6845 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 6846 SDValue Idx, 6847 EVT VecVT, 6848 const SDLoc &dl) { 6849 if (isa<ConstantSDNode>(Idx)) 6850 return Idx; 6851 6852 EVT IdxVT = Idx.getValueType(); 6853 unsigned NElts = VecVT.getVectorNumElements(); 6854 if (isPowerOf2_32(NElts)) { 6855 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 6856 Log2_32(NElts)); 6857 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 6858 DAG.getConstant(Imm, dl, IdxVT)); 6859 } 6860 6861 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 6862 DAG.getConstant(NElts - 1, dl, IdxVT)); 6863 } 6864 6865 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 6866 SDValue VecPtr, EVT VecVT, 6867 SDValue Index) const { 6868 SDLoc dl(Index); 6869 // Make sure the index type is big enough to compute in. 6870 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 6871 6872 EVT EltVT = VecVT.getVectorElementType(); 6873 6874 // Calculate the element offset and add it to the pointer. 6875 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 6876 assert(EltSize * 8 == EltVT.getSizeInBits() && 6877 "Converting bits to bytes lost precision"); 6878 6879 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 6880 6881 EVT IdxVT = Index.getValueType(); 6882 6883 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 6884 DAG.getConstant(EltSize, dl, IdxVT)); 6885 return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index); 6886 } 6887 6888 //===----------------------------------------------------------------------===// 6889 // Implementation of Emulated TLS Model 6890 //===----------------------------------------------------------------------===// 6891 6892 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 6893 SelectionDAG &DAG) const { 6894 // Access to address of TLS varialbe xyz is lowered to a function call: 6895 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 6896 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6897 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 6898 SDLoc dl(GA); 6899 6900 ArgListTy Args; 6901 ArgListEntry Entry; 6902 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 6903 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 6904 StringRef EmuTlsVarName(NameString); 6905 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 6906 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 6907 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 6908 Entry.Ty = VoidPtrType; 6909 Args.push_back(Entry); 6910 6911 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 6912 6913 TargetLowering::CallLoweringInfo CLI(DAG); 6914 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 6915 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 6916 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 6917 6918 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 6919 // At last for X86 targets, maybe good for other targets too? 6920 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6921 MFI.setAdjustsStack(true); // Is this only for X86 target? 6922 MFI.setHasCalls(true); 6923 6924 assert((GA->getOffset() == 0) && 6925 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 6926 return CallResult.first; 6927 } 6928 6929 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 6930 SelectionDAG &DAG) const { 6931 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 6932 if (!isCtlzFast()) 6933 return SDValue(); 6934 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 6935 SDLoc dl(Op); 6936 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 6937 if (C->isNullValue() && CC == ISD::SETEQ) { 6938 EVT VT = Op.getOperand(0).getValueType(); 6939 SDValue Zext = Op.getOperand(0); 6940 if (VT.bitsLT(MVT::i32)) { 6941 VT = MVT::i32; 6942 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 6943 } 6944 unsigned Log2b = Log2_32(VT.getSizeInBits()); 6945 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 6946 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 6947 DAG.getConstant(Log2b, dl, MVT::i32)); 6948 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 6949 } 6950 } 6951 return SDValue(); 6952 } 6953 6954 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 6955 unsigned Opcode = Node->getOpcode(); 6956 SDValue LHS = Node->getOperand(0); 6957 SDValue RHS = Node->getOperand(1); 6958 EVT VT = LHS.getValueType(); 6959 SDLoc dl(Node); 6960 6961 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 6962 assert(VT.isInteger() && "Expected operands to be integers"); 6963 6964 // usub.sat(a, b) -> umax(a, b) - b 6965 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 6966 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 6967 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 6968 } 6969 6970 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 6971 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 6972 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 6973 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 6974 } 6975 6976 unsigned OverflowOp; 6977 switch (Opcode) { 6978 case ISD::SADDSAT: 6979 OverflowOp = ISD::SADDO; 6980 break; 6981 case ISD::UADDSAT: 6982 OverflowOp = ISD::UADDO; 6983 break; 6984 case ISD::SSUBSAT: 6985 OverflowOp = ISD::SSUBO; 6986 break; 6987 case ISD::USUBSAT: 6988 OverflowOp = ISD::USUBO; 6989 break; 6990 default: 6991 llvm_unreachable("Expected method to receive signed or unsigned saturation " 6992 "addition or subtraction node."); 6993 } 6994 6995 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 6996 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6997 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 6998 LHS, RHS); 6999 SDValue SumDiff = Result.getValue(0); 7000 SDValue Overflow = Result.getValue(1); 7001 SDValue Zero = DAG.getConstant(0, dl, VT); 7002 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 7003 7004 if (Opcode == ISD::UADDSAT) { 7005 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7006 // (LHS + RHS) | OverflowMask 7007 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7008 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 7009 } 7010 // Overflow ? 0xffff.... : (LHS + RHS) 7011 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 7012 } else if (Opcode == ISD::USUBSAT) { 7013 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7014 // (LHS - RHS) & ~OverflowMask 7015 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7016 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 7017 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 7018 } 7019 // Overflow ? 0 : (LHS - RHS) 7020 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 7021 } else { 7022 // SatMax -> Overflow && SumDiff < 0 7023 // SatMin -> Overflow && SumDiff >= 0 7024 APInt MinVal = APInt::getSignedMinValue(BitWidth); 7025 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 7026 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7027 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7028 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 7029 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 7030 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 7031 } 7032 } 7033 7034 SDValue 7035 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 7036 assert((Node->getOpcode() == ISD::SMULFIX || 7037 Node->getOpcode() == ISD::UMULFIX || 7038 Node->getOpcode() == ISD::SMULFIXSAT || 7039 Node->getOpcode() == ISD::UMULFIXSAT) && 7040 "Expected a fixed point multiplication opcode"); 7041 7042 SDLoc dl(Node); 7043 SDValue LHS = Node->getOperand(0); 7044 SDValue RHS = Node->getOperand(1); 7045 EVT VT = LHS.getValueType(); 7046 unsigned Scale = Node->getConstantOperandVal(2); 7047 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 7048 Node->getOpcode() == ISD::UMULFIXSAT); 7049 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 7050 Node->getOpcode() == ISD::SMULFIXSAT); 7051 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7052 unsigned VTSize = VT.getScalarSizeInBits(); 7053 7054 if (!Scale) { 7055 // [us]mul.fix(a, b, 0) -> mul(a, b) 7056 if (!Saturating) { 7057 if (isOperationLegalOrCustom(ISD::MUL, VT)) 7058 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7059 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 7060 SDValue Result = 7061 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7062 SDValue Product = Result.getValue(0); 7063 SDValue Overflow = Result.getValue(1); 7064 SDValue Zero = DAG.getConstant(0, dl, VT); 7065 7066 APInt MinVal = APInt::getSignedMinValue(VTSize); 7067 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 7068 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7069 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7070 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 7071 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 7072 return DAG.getSelect(dl, VT, Overflow, Result, Product); 7073 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 7074 SDValue Result = 7075 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7076 SDValue Product = Result.getValue(0); 7077 SDValue Overflow = Result.getValue(1); 7078 7079 APInt MaxVal = APInt::getMaxValue(VTSize); 7080 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7081 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 7082 } 7083 } 7084 7085 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 7086 "Expected scale to be less than the number of bits if signed or at " 7087 "most the number of bits if unsigned."); 7088 assert(LHS.getValueType() == RHS.getValueType() && 7089 "Expected both operands to be the same type"); 7090 7091 // Get the upper and lower bits of the result. 7092 SDValue Lo, Hi; 7093 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 7094 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 7095 if (isOperationLegalOrCustom(LoHiOp, VT)) { 7096 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 7097 Lo = Result.getValue(0); 7098 Hi = Result.getValue(1); 7099 } else if (isOperationLegalOrCustom(HiOp, VT)) { 7100 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7101 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 7102 } else if (VT.isVector()) { 7103 return SDValue(); 7104 } else { 7105 report_fatal_error("Unable to expand fixed point multiplication."); 7106 } 7107 7108 if (Scale == VTSize) 7109 // Result is just the top half since we'd be shifting by the width of the 7110 // operand. Overflow impossible so this works for both UMULFIX and 7111 // UMULFIXSAT. 7112 return Hi; 7113 7114 // The result will need to be shifted right by the scale since both operands 7115 // are scaled. The result is given to us in 2 halves, so we only want part of 7116 // both in the result. 7117 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7118 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 7119 DAG.getConstant(Scale, dl, ShiftTy)); 7120 if (!Saturating) 7121 return Result; 7122 7123 if (!Signed) { 7124 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 7125 // widened multiplication) aren't all zeroes. 7126 7127 // Saturate to max if ((Hi >> Scale) != 0), 7128 // which is the same as if (Hi > ((1 << Scale) - 1)) 7129 APInt MaxVal = APInt::getMaxValue(VTSize); 7130 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 7131 dl, VT); 7132 Result = DAG.getSelectCC(dl, Hi, LowMask, 7133 DAG.getConstant(MaxVal, dl, VT), Result, 7134 ISD::SETUGT); 7135 7136 return Result; 7137 } 7138 7139 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 7140 // widened multiplication) aren't all ones or all zeroes. 7141 7142 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 7143 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 7144 7145 if (Scale == 0) { 7146 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 7147 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 7148 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 7149 // Saturated to SatMin if wide product is negative, and SatMax if wide 7150 // product is positive ... 7151 SDValue Zero = DAG.getConstant(0, dl, VT); 7152 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 7153 ISD::SETLT); 7154 // ... but only if we overflowed. 7155 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 7156 } 7157 7158 // We handled Scale==0 above so all the bits to examine is in Hi. 7159 7160 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 7161 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 7162 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 7163 dl, VT); 7164 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 7165 // Saturate to min if (Hi >> (Scale - 1)) < -1), 7166 // which is the same as if (HI < (-1 << (Scale - 1)) 7167 SDValue HighMask = 7168 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 7169 dl, VT); 7170 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 7171 return Result; 7172 } 7173 7174 void TargetLowering::expandUADDSUBO( 7175 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7176 SDLoc dl(Node); 7177 SDValue LHS = Node->getOperand(0); 7178 SDValue RHS = Node->getOperand(1); 7179 bool IsAdd = Node->getOpcode() == ISD::UADDO; 7180 7181 // If ADD/SUBCARRY is legal, use that instead. 7182 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 7183 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 7184 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 7185 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 7186 { LHS, RHS, CarryIn }); 7187 Result = SDValue(NodeCarry.getNode(), 0); 7188 Overflow = SDValue(NodeCarry.getNode(), 1); 7189 return; 7190 } 7191 7192 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7193 LHS.getValueType(), LHS, RHS); 7194 7195 EVT ResultType = Node->getValueType(1); 7196 EVT SetCCType = getSetCCResultType( 7197 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7198 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 7199 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 7200 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7201 } 7202 7203 void TargetLowering::expandSADDSUBO( 7204 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7205 SDLoc dl(Node); 7206 SDValue LHS = Node->getOperand(0); 7207 SDValue RHS = Node->getOperand(1); 7208 bool IsAdd = Node->getOpcode() == ISD::SADDO; 7209 7210 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7211 LHS.getValueType(), LHS, RHS); 7212 7213 EVT ResultType = Node->getValueType(1); 7214 EVT OType = getSetCCResultType( 7215 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7216 7217 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 7218 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 7219 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 7220 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 7221 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 7222 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7223 return; 7224 } 7225 7226 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 7227 7228 // For an addition, the result should be less than one of the operands (LHS) 7229 // if and only if the other operand (RHS) is negative, otherwise there will 7230 // be overflow. 7231 // For a subtraction, the result should be less than one of the operands 7232 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 7233 // otherwise there will be overflow. 7234 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 7235 SDValue ConditionRHS = 7236 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 7237 7238 Overflow = DAG.getBoolExtOrTrunc( 7239 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 7240 ResultType, ResultType); 7241 } 7242 7243 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 7244 SDValue &Overflow, SelectionDAG &DAG) const { 7245 SDLoc dl(Node); 7246 EVT VT = Node->getValueType(0); 7247 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7248 SDValue LHS = Node->getOperand(0); 7249 SDValue RHS = Node->getOperand(1); 7250 bool isSigned = Node->getOpcode() == ISD::SMULO; 7251 7252 // For power-of-two multiplications we can use a simpler shift expansion. 7253 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 7254 const APInt &C = RHSC->getAPIntValue(); 7255 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 7256 if (C.isPowerOf2()) { 7257 // smulo(x, signed_min) is same as umulo(x, signed_min). 7258 bool UseArithShift = isSigned && !C.isMinSignedValue(); 7259 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7260 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 7261 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 7262 Overflow = DAG.getSetCC(dl, SetCCVT, 7263 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 7264 dl, VT, Result, ShiftAmt), 7265 LHS, ISD::SETNE); 7266 return true; 7267 } 7268 } 7269 7270 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 7271 if (VT.isVector()) 7272 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 7273 VT.getVectorNumElements()); 7274 7275 SDValue BottomHalf; 7276 SDValue TopHalf; 7277 static const unsigned Ops[2][3] = 7278 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 7279 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 7280 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 7281 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7282 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 7283 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 7284 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 7285 RHS); 7286 TopHalf = BottomHalf.getValue(1); 7287 } else if (isTypeLegal(WideVT)) { 7288 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 7289 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 7290 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 7291 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 7292 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 7293 getShiftAmountTy(WideVT, DAG.getDataLayout())); 7294 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 7295 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 7296 } else { 7297 if (VT.isVector()) 7298 return false; 7299 7300 // We can fall back to a libcall with an illegal type for the MUL if we 7301 // have a libcall big enough. 7302 // Also, we can fall back to a division in some cases, but that's a big 7303 // performance hit in the general case. 7304 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 7305 if (WideVT == MVT::i16) 7306 LC = RTLIB::MUL_I16; 7307 else if (WideVT == MVT::i32) 7308 LC = RTLIB::MUL_I32; 7309 else if (WideVT == MVT::i64) 7310 LC = RTLIB::MUL_I64; 7311 else if (WideVT == MVT::i128) 7312 LC = RTLIB::MUL_I128; 7313 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 7314 7315 SDValue HiLHS; 7316 SDValue HiRHS; 7317 if (isSigned) { 7318 // The high part is obtained by SRA'ing all but one of the bits of low 7319 // part. 7320 unsigned LoSize = VT.getSizeInBits(); 7321 HiLHS = 7322 DAG.getNode(ISD::SRA, dl, VT, LHS, 7323 DAG.getConstant(LoSize - 1, dl, 7324 getPointerTy(DAG.getDataLayout()))); 7325 HiRHS = 7326 DAG.getNode(ISD::SRA, dl, VT, RHS, 7327 DAG.getConstant(LoSize - 1, dl, 7328 getPointerTy(DAG.getDataLayout()))); 7329 } else { 7330 HiLHS = DAG.getConstant(0, dl, VT); 7331 HiRHS = DAG.getConstant(0, dl, VT); 7332 } 7333 7334 // Here we're passing the 2 arguments explicitly as 4 arguments that are 7335 // pre-lowered to the correct types. This all depends upon WideVT not 7336 // being a legal type for the architecture and thus has to be split to 7337 // two arguments. 7338 SDValue Ret; 7339 TargetLowering::MakeLibCallOptions CallOptions; 7340 CallOptions.setSExt(isSigned); 7341 CallOptions.setIsPostTypeLegalization(true); 7342 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 7343 // Halves of WideVT are packed into registers in different order 7344 // depending on platform endianness. This is usually handled by 7345 // the C calling convention, but we can't defer to it in 7346 // the legalizer. 7347 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 7348 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7349 } else { 7350 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 7351 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7352 } 7353 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 7354 "Ret value is a collection of constituent nodes holding result."); 7355 if (DAG.getDataLayout().isLittleEndian()) { 7356 // Same as above. 7357 BottomHalf = Ret.getOperand(0); 7358 TopHalf = Ret.getOperand(1); 7359 } else { 7360 BottomHalf = Ret.getOperand(1); 7361 TopHalf = Ret.getOperand(0); 7362 } 7363 } 7364 7365 Result = BottomHalf; 7366 if (isSigned) { 7367 SDValue ShiftAmt = DAG.getConstant( 7368 VT.getScalarSizeInBits() - 1, dl, 7369 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 7370 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 7371 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 7372 } else { 7373 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 7374 DAG.getConstant(0, dl, VT), ISD::SETNE); 7375 } 7376 7377 // Truncate the result if SetCC returns a larger type than needed. 7378 EVT RType = Node->getValueType(1); 7379 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 7380 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 7381 7382 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 7383 "Unexpected result type for S/UMULO legalization"); 7384 return true; 7385 } 7386 7387 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 7388 SDLoc dl(Node); 7389 bool NoNaN = Node->getFlags().hasNoNaNs(); 7390 unsigned BaseOpcode = 0; 7391 switch (Node->getOpcode()) { 7392 default: llvm_unreachable("Expected VECREDUCE opcode"); 7393 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 7394 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 7395 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; 7396 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 7397 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 7398 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 7399 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 7400 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; 7401 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; 7402 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; 7403 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; 7404 case ISD::VECREDUCE_FMAX: 7405 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM; 7406 break; 7407 case ISD::VECREDUCE_FMIN: 7408 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM; 7409 break; 7410 } 7411 7412 SDValue Op = Node->getOperand(0); 7413 EVT VT = Op.getValueType(); 7414 7415 // Try to use a shuffle reduction for power of two vectors. 7416 if (VT.isPow2VectorType()) { 7417 while (VT.getVectorNumElements() > 1) { 7418 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 7419 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 7420 break; 7421 7422 SDValue Lo, Hi; 7423 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 7424 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 7425 VT = HalfVT; 7426 } 7427 } 7428 7429 EVT EltVT = VT.getVectorElementType(); 7430 unsigned NumElts = VT.getVectorNumElements(); 7431 7432 SmallVector<SDValue, 8> Ops; 7433 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 7434 7435 SDValue Res = Ops[0]; 7436 for (unsigned i = 1; i < NumElts; i++) 7437 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 7438 7439 // Result type may be wider than element type. 7440 if (EltVT != Node->getValueType(0)) 7441 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 7442 return Res; 7443 } 7444