1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetLowering.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/CodeGen/CallingConvLower.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/SelectionDAG.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/Target/TargetRegisterInfo.h" 35 #include "llvm/Target/TargetSubtargetInfo.h" 36 #include <cctype> 37 using namespace llvm; 38 39 /// NOTE: The TargetMachine owns TLOF. 40 TargetLowering::TargetLowering(const TargetMachine &tm) 41 : TargetLoweringBase(tm) {} 42 43 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 44 return nullptr; 45 } 46 47 bool TargetLowering::isPositionIndependent() const { 48 return getTargetMachine().isPositionIndependent(); 49 } 50 51 /// Check whether a given call node is in tail position within its function. If 52 /// so, it sets Chain to the input chain of the tail call. 53 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 54 SDValue &Chain) const { 55 const Function *F = DAG.getMachineFunction().getFunction(); 56 57 // Conservatively require the attributes of the call to match those of 58 // the return. Ignore noalias because it doesn't affect the call sequence. 59 AttributeList CallerAttrs = F->getAttributes(); 60 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 61 .removeAttribute(Attribute::NoAlias) 62 .hasAttributes()) 63 return false; 64 65 // It's not safe to eliminate the sign / zero extension of the return value. 66 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 67 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 68 return false; 69 70 // Check if the only use is a function return node. 71 return isUsedByReturnOnly(Node, Chain); 72 } 73 74 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 75 const uint32_t *CallerPreservedMask, 76 const SmallVectorImpl<CCValAssign> &ArgLocs, 77 const SmallVectorImpl<SDValue> &OutVals) const { 78 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 79 const CCValAssign &ArgLoc = ArgLocs[I]; 80 if (!ArgLoc.isRegLoc()) 81 continue; 82 unsigned Reg = ArgLoc.getLocReg(); 83 // Only look at callee saved registers. 84 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 85 continue; 86 // Check that we pass the value used for the caller. 87 // (We look for a CopyFromReg reading a virtual register that is used 88 // for the function live-in value of register Reg) 89 SDValue Value = OutVals[I]; 90 if (Value->getOpcode() != ISD::CopyFromReg) 91 return false; 92 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 93 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 94 return false; 95 } 96 return true; 97 } 98 99 /// \brief Set CallLoweringInfo attribute flags based on a call instruction 100 /// and called function attributes. 101 void TargetLoweringBase::ArgListEntry::setAttributes(ImmutableCallSite *CS, 102 unsigned ArgIdx) { 103 IsSExt = CS->paramHasAttr(ArgIdx, Attribute::SExt); 104 IsZExt = CS->paramHasAttr(ArgIdx, Attribute::ZExt); 105 IsInReg = CS->paramHasAttr(ArgIdx, Attribute::InReg); 106 IsSRet = CS->paramHasAttr(ArgIdx, Attribute::StructRet); 107 IsNest = CS->paramHasAttr(ArgIdx, Attribute::Nest); 108 IsByVal = CS->paramHasAttr(ArgIdx, Attribute::ByVal); 109 IsInAlloca = CS->paramHasAttr(ArgIdx, Attribute::InAlloca); 110 IsReturned = CS->paramHasAttr(ArgIdx, Attribute::Returned); 111 IsSwiftSelf = CS->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 112 IsSwiftError = CS->paramHasAttr(ArgIdx, Attribute::SwiftError); 113 Alignment = CS->getParamAlignment(ArgIdx); 114 } 115 116 /// Generate a libcall taking the given operands as arguments and returning a 117 /// result of type RetVT. 118 std::pair<SDValue, SDValue> 119 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 120 ArrayRef<SDValue> Ops, bool isSigned, 121 const SDLoc &dl, bool doesNotReturn, 122 bool isReturnValueUsed) const { 123 TargetLowering::ArgListTy Args; 124 Args.reserve(Ops.size()); 125 126 TargetLowering::ArgListEntry Entry; 127 for (SDValue Op : Ops) { 128 Entry.Node = Op; 129 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 130 Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 131 Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 132 Args.push_back(Entry); 133 } 134 135 if (LC == RTLIB::UNKNOWN_LIBCALL) 136 report_fatal_error("Unsupported library call operation!"); 137 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 138 getPointerTy(DAG.getDataLayout())); 139 140 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 141 TargetLowering::CallLoweringInfo CLI(DAG); 142 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); 143 CLI.setDebugLoc(dl) 144 .setChain(DAG.getEntryNode()) 145 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 146 .setNoReturn(doesNotReturn) 147 .setDiscardResult(!isReturnValueUsed) 148 .setSExtResult(signExtend) 149 .setZExtResult(!signExtend); 150 return LowerCallTo(CLI); 151 } 152 153 /// Soften the operands of a comparison. This code is shared among BR_CC, 154 /// SELECT_CC, and SETCC handlers. 155 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 156 SDValue &NewLHS, SDValue &NewRHS, 157 ISD::CondCode &CCCode, 158 const SDLoc &dl) const { 159 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 160 && "Unsupported setcc type!"); 161 162 // Expand into one or more soft-fp libcall(s). 163 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 164 bool ShouldInvertCC = false; 165 switch (CCCode) { 166 case ISD::SETEQ: 167 case ISD::SETOEQ: 168 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 169 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 170 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 171 break; 172 case ISD::SETNE: 173 case ISD::SETUNE: 174 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 175 (VT == MVT::f64) ? RTLIB::UNE_F64 : 176 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 177 break; 178 case ISD::SETGE: 179 case ISD::SETOGE: 180 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 181 (VT == MVT::f64) ? RTLIB::OGE_F64 : 182 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 183 break; 184 case ISD::SETLT: 185 case ISD::SETOLT: 186 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 187 (VT == MVT::f64) ? RTLIB::OLT_F64 : 188 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 189 break; 190 case ISD::SETLE: 191 case ISD::SETOLE: 192 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 193 (VT == MVT::f64) ? RTLIB::OLE_F64 : 194 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 195 break; 196 case ISD::SETGT: 197 case ISD::SETOGT: 198 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 199 (VT == MVT::f64) ? RTLIB::OGT_F64 : 200 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 201 break; 202 case ISD::SETUO: 203 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 204 (VT == MVT::f64) ? RTLIB::UO_F64 : 205 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 206 break; 207 case ISD::SETO: 208 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 209 (VT == MVT::f64) ? RTLIB::O_F64 : 210 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 211 break; 212 case ISD::SETONE: 213 // SETONE = SETOLT | SETOGT 214 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 215 (VT == MVT::f64) ? RTLIB::OLT_F64 : 216 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 217 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 218 (VT == MVT::f64) ? RTLIB::OGT_F64 : 219 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 220 break; 221 case ISD::SETUEQ: 222 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 223 (VT == MVT::f64) ? RTLIB::UO_F64 : 224 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 225 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 226 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 227 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 228 break; 229 default: 230 // Invert CC for unordered comparisons 231 ShouldInvertCC = true; 232 switch (CCCode) { 233 case ISD::SETULT: 234 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 235 (VT == MVT::f64) ? RTLIB::OGE_F64 : 236 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 237 break; 238 case ISD::SETULE: 239 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 240 (VT == MVT::f64) ? RTLIB::OGT_F64 : 241 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 242 break; 243 case ISD::SETUGT: 244 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 245 (VT == MVT::f64) ? RTLIB::OLE_F64 : 246 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 247 break; 248 case ISD::SETUGE: 249 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 250 (VT == MVT::f64) ? RTLIB::OLT_F64 : 251 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 252 break; 253 default: llvm_unreachable("Do not know how to soften this setcc!"); 254 } 255 } 256 257 // Use the target specific return value for comparions lib calls. 258 EVT RetVT = getCmpLibcallReturnType(); 259 SDValue Ops[2] = {NewLHS, NewRHS}; 260 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/, 261 dl).first; 262 NewRHS = DAG.getConstant(0, dl, RetVT); 263 264 CCCode = getCmpLibcallCC(LC1); 265 if (ShouldInvertCC) 266 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); 267 268 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 269 SDValue Tmp = DAG.getNode( 270 ISD::SETCC, dl, 271 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 272 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 273 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/, 274 dl).first; 275 NewLHS = DAG.getNode( 276 ISD::SETCC, dl, 277 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 278 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 279 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 280 NewRHS = SDValue(); 281 } 282 } 283 284 /// Return the entry encoding for a jump table in the current function. The 285 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 286 unsigned TargetLowering::getJumpTableEncoding() const { 287 // In non-pic modes, just use the address of a block. 288 if (!isPositionIndependent()) 289 return MachineJumpTableInfo::EK_BlockAddress; 290 291 // In PIC mode, if the target supports a GPRel32 directive, use it. 292 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 293 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 294 295 // Otherwise, use a label difference. 296 return MachineJumpTableInfo::EK_LabelDifference32; 297 } 298 299 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 300 SelectionDAG &DAG) const { 301 // If our PIC model is GP relative, use the global offset table as the base. 302 unsigned JTEncoding = getJumpTableEncoding(); 303 304 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 305 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 306 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 307 308 return Table; 309 } 310 311 /// This returns the relocation base for the given PIC jumptable, the same as 312 /// getPICJumpTableRelocBase, but as an MCExpr. 313 const MCExpr * 314 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 315 unsigned JTI,MCContext &Ctx) const{ 316 // The normal PIC reloc base is the label at the start of the jump table. 317 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 318 } 319 320 bool 321 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 322 const TargetMachine &TM = getTargetMachine(); 323 const GlobalValue *GV = GA->getGlobal(); 324 325 // If the address is not even local to this DSO we will have to load it from 326 // a got and then add the offset. 327 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 328 return false; 329 330 // If the code is position independent we will have to add a base register. 331 if (isPositionIndependent()) 332 return false; 333 334 // Otherwise we can do it. 335 return true; 336 } 337 338 //===----------------------------------------------------------------------===// 339 // Optimization Methods 340 //===----------------------------------------------------------------------===// 341 342 /// If the specified instruction has a constant integer operand and there are 343 /// bits set in that constant that are not demanded, then clear those bits and 344 /// return true. 345 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 346 TargetLoweringOpt &TLO) const { 347 SelectionDAG &DAG = TLO.DAG; 348 SDLoc DL(Op); 349 unsigned Opcode = Op.getOpcode(); 350 351 // Do target-specific constant optimization. 352 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 353 return TLO.New.getNode(); 354 355 // FIXME: ISD::SELECT, ISD::SELECT_CC 356 switch (Opcode) { 357 default: 358 break; 359 case ISD::XOR: 360 case ISD::AND: 361 case ISD::OR: { 362 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 363 if (!Op1C) 364 return false; 365 366 // If this is a 'not' op, don't touch it because that's a canonical form. 367 const APInt &C = Op1C->getAPIntValue(); 368 if (Opcode == ISD::XOR && (C | ~Demanded).isAllOnesValue()) 369 return false; 370 371 if (C.intersects(~Demanded)) { 372 EVT VT = Op.getValueType(); 373 SDValue NewC = DAG.getConstant(Demanded & C, DL, VT); 374 SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 375 return TLO.CombineTo(Op, NewOp); 376 } 377 378 break; 379 } 380 } 381 382 return false; 383 } 384 385 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 386 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 387 /// generalized for targets with other types of implicit widening casts. 388 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 389 const APInt &Demanded, 390 TargetLoweringOpt &TLO) const { 391 assert(Op.getNumOperands() == 2 && 392 "ShrinkDemandedOp only supports binary operators!"); 393 assert(Op.getNode()->getNumValues() == 1 && 394 "ShrinkDemandedOp only supports nodes with one result!"); 395 396 SelectionDAG &DAG = TLO.DAG; 397 SDLoc dl(Op); 398 399 // Early return, as this function cannot handle vector types. 400 if (Op.getValueType().isVector()) 401 return false; 402 403 // Don't do this if the node has another user, which may require the 404 // full value. 405 if (!Op.getNode()->hasOneUse()) 406 return false; 407 408 // Search for the smallest integer type with free casts to and from 409 // Op's type. For expedience, just check power-of-2 integer types. 410 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 411 unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros(); 412 unsigned SmallVTBits = DemandedSize; 413 if (!isPowerOf2_32(SmallVTBits)) 414 SmallVTBits = NextPowerOf2(SmallVTBits); 415 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 416 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 417 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 418 TLI.isZExtFree(SmallVT, Op.getValueType())) { 419 // We found a type with free casts. 420 SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT, 421 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 422 Op.getNode()->getOperand(0)), 423 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 424 Op.getNode()->getOperand(1))); 425 bool NeedZext = DemandedSize > SmallVTBits; 426 SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, 427 dl, Op.getValueType(), X); 428 return TLO.CombineTo(Op, Z); 429 } 430 } 431 return false; 432 } 433 434 bool 435 TargetLowering::SimplifyDemandedBits(SDNode *User, unsigned OpIdx, 436 const APInt &Demanded, 437 DAGCombinerInfo &DCI, 438 TargetLoweringOpt &TLO) const { 439 SDValue Op = User->getOperand(OpIdx); 440 KnownBits Known; 441 442 if (!SimplifyDemandedBits(Op, Demanded, Known, TLO, 0, true)) 443 return false; 444 445 446 // Old will not always be the same as Op. For example: 447 // 448 // Demanded = 0xffffff 449 // Op = i64 truncate (i32 and x, 0xffffff) 450 // In this case simplify demand bits will want to replace the 'and' node 451 // with the value 'x', which will give us: 452 // Old = i32 and x, 0xffffff 453 // New = x 454 if (TLO.Old.hasOneUse()) { 455 // For the one use case, we just commit the change. 456 DCI.CommitTargetLoweringOpt(TLO); 457 return true; 458 } 459 460 // If Old has more than one use then it must be Op, because the 461 // AssumeSingleUse flag is not propogated to recursive calls of 462 // SimplifyDemanded bits, so the only node with multiple use that 463 // it will attempt to combine will be opt. 464 assert(TLO.Old == Op); 465 466 SmallVector <SDValue, 4> NewOps; 467 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 468 if (i == OpIdx) { 469 NewOps.push_back(TLO.New); 470 continue; 471 } 472 NewOps.push_back(User->getOperand(i)); 473 } 474 TLO.DAG.UpdateNodeOperands(User, NewOps); 475 // Op has less users now, so we may be able to perform additional combines 476 // with it. 477 DCI.AddToWorklist(Op.getNode()); 478 // User's operands have been updated, so we may be able to do new combines 479 // with it. 480 DCI.AddToWorklist(User); 481 return true; 482 } 483 484 bool TargetLowering::SimplifyDemandedBits(SDValue Op, APInt &DemandedMask, 485 DAGCombinerInfo &DCI) const { 486 487 SelectionDAG &DAG = DCI.DAG; 488 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 489 !DCI.isBeforeLegalizeOps()); 490 KnownBits Known; 491 492 bool Simplified = SimplifyDemandedBits(Op, DemandedMask, Known, TLO); 493 if (Simplified) 494 DCI.CommitTargetLoweringOpt(TLO); 495 return Simplified; 496 } 497 498 /// Look at Op. At this point, we know that only the DemandedMask bits of the 499 /// result of Op are ever used downstream. If we can use this information to 500 /// simplify Op, create a new simplified DAG node and return true, returning the 501 /// original and new nodes in Old and New. Otherwise, analyze the expression and 502 /// return a mask of Known bits for the expression (used to simplify the 503 /// caller). The Known bits may only be accurate for those bits in the 504 /// DemandedMask. 505 bool TargetLowering::SimplifyDemandedBits(SDValue Op, 506 const APInt &DemandedMask, 507 KnownBits &Known, 508 TargetLoweringOpt &TLO, 509 unsigned Depth, 510 bool AssumeSingleUse) const { 511 unsigned BitWidth = DemandedMask.getBitWidth(); 512 assert(Op.getScalarValueSizeInBits() == BitWidth && 513 "Mask size mismatches value type size!"); 514 APInt NewMask = DemandedMask; 515 SDLoc dl(Op); 516 auto &DL = TLO.DAG.getDataLayout(); 517 518 // Don't know anything. 519 Known = KnownBits(BitWidth); 520 521 // Other users may use these bits. 522 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 523 if (Depth != 0) { 524 // If not at the root, Just compute the Known bits to 525 // simplify things downstream. 526 TLO.DAG.computeKnownBits(Op, Known, Depth); 527 return false; 528 } 529 // If this is the root being simplified, allow it to have multiple uses, 530 // just set the NewMask to all bits. 531 NewMask = APInt::getAllOnesValue(BitWidth); 532 } else if (DemandedMask == 0) { 533 // Not demanding any bits from Op. 534 if (!Op.isUndef()) 535 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType())); 536 return false; 537 } else if (Depth == 6) { // Limit search depth. 538 return false; 539 } 540 541 KnownBits Known2, KnownOut; 542 switch (Op.getOpcode()) { 543 case ISD::Constant: 544 // We know all of the bits for a constant! 545 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 546 Known.Zero = ~Known.One; 547 return false; // Don't fall through, will infinitely loop. 548 case ISD::BUILD_VECTOR: 549 // Collect the known bits that are shared by every constant vector element. 550 Known.Zero.setAllBits(); Known.One.setAllBits(); 551 for (SDValue SrcOp : Op->ops()) { 552 if (!isa<ConstantSDNode>(SrcOp)) { 553 // We can only handle all constant values - bail out with no known bits. 554 Known = KnownBits(BitWidth); 555 return false; 556 } 557 Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue(); 558 Known2.Zero = ~Known2.One; 559 560 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 561 if (Known2.One.getBitWidth() != BitWidth) { 562 assert(Known2.getBitWidth() > BitWidth && 563 "Expected BUILD_VECTOR implicit truncation"); 564 Known2 = Known2.trunc(BitWidth); 565 } 566 567 // Known bits are the values that are shared by every element. 568 // TODO: support per-element known bits. 569 Known.One &= Known2.One; 570 Known.Zero &= Known2.Zero; 571 } 572 return false; // Don't fall through, will infinitely loop. 573 case ISD::AND: 574 // If the RHS is a constant, check to see if the LHS would be zero without 575 // using the bits from the RHS. Below, we use knowledge about the RHS to 576 // simplify the LHS, here we're using information from the LHS to simplify 577 // the RHS. 578 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op.getOperand(1))) { 579 SDValue Op0 = Op.getOperand(0); 580 KnownBits LHSKnown; 581 // Do not increment Depth here; that can cause an infinite loop. 582 TLO.DAG.computeKnownBits(Op0, LHSKnown, Depth); 583 // If the LHS already has zeros where RHSC does, this and is dead. 584 if ((LHSKnown.Zero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) 585 return TLO.CombineTo(Op, Op0); 586 587 // If any of the set bits in the RHS are known zero on the LHS, shrink 588 // the constant. 589 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & NewMask, TLO)) 590 return true; 591 592 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 593 // constant, but if this 'and' is only clearing bits that were just set by 594 // the xor, then this 'and' can be eliminated by shrinking the mask of 595 // the xor. For example, for a 32-bit X: 596 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 597 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 598 LHSKnown.One == ~RHSC->getAPIntValue()) { 599 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, Op.getValueType(), 600 Op0.getOperand(0), Op.getOperand(1)); 601 return TLO.CombineTo(Op, Xor); 602 } 603 } 604 605 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1)) 606 return true; 607 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 608 if (SimplifyDemandedBits(Op.getOperand(0), ~Known.Zero & NewMask, 609 Known2, TLO, Depth+1)) 610 return true; 611 assert((Known2.Zero & Known2.One) == 0 && "Bits known to be one AND zero?"); 612 613 // If all of the demanded bits are known one on one side, return the other. 614 // These bits cannot contribute to the result of the 'and'. 615 if (NewMask.isSubsetOf(Known2.Zero | Known.One)) 616 return TLO.CombineTo(Op, Op.getOperand(0)); 617 if (NewMask.isSubsetOf(Known.Zero | Known2.One)) 618 return TLO.CombineTo(Op, Op.getOperand(1)); 619 // If all of the demanded bits in the inputs are known zeros, return zero. 620 if (NewMask.isSubsetOf(Known.Zero | Known2.Zero)) 621 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType())); 622 // If the RHS is a constant, see if we can simplify it. 623 if (ShrinkDemandedConstant(Op, ~Known2.Zero & NewMask, TLO)) 624 return true; 625 // If the operation can be done in a smaller type, do so. 626 if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) 627 return true; 628 629 // Output known-1 bits are only known if set in both the LHS & RHS. 630 Known.One &= Known2.One; 631 // Output known-0 are known to be clear if zero in either the LHS | RHS. 632 Known.Zero |= Known2.Zero; 633 break; 634 case ISD::OR: 635 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1)) 636 return true; 637 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 638 if (SimplifyDemandedBits(Op.getOperand(0), ~Known.One & NewMask, 639 Known2, TLO, Depth+1)) 640 return true; 641 assert((Known2.Zero & Known2.One) == 0 && "Bits known to be one AND zero?"); 642 643 // If all of the demanded bits are known zero on one side, return the other. 644 // These bits cannot contribute to the result of the 'or'. 645 if (NewMask.isSubsetOf(Known2.One | Known.Zero)) 646 return TLO.CombineTo(Op, Op.getOperand(0)); 647 if (NewMask.isSubsetOf(Known.One | Known2.Zero)) 648 return TLO.CombineTo(Op, Op.getOperand(1)); 649 // If the RHS is a constant, see if we can simplify it. 650 if (ShrinkDemandedConstant(Op, NewMask, TLO)) 651 return true; 652 // If the operation can be done in a smaller type, do so. 653 if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) 654 return true; 655 656 // Output known-0 bits are only known if clear in both the LHS & RHS. 657 Known.Zero &= Known2.Zero; 658 // Output known-1 are known to be set if set in either the LHS | RHS. 659 Known.One |= Known2.One; 660 break; 661 case ISD::XOR: { 662 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1)) 663 return true; 664 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 665 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, Known2, TLO, Depth+1)) 666 return true; 667 assert((Known2.Zero & Known2.One) == 0 && "Bits known to be one AND zero?"); 668 669 // If all of the demanded bits are known zero on one side, return the other. 670 // These bits cannot contribute to the result of the 'xor'. 671 if (NewMask.isSubsetOf(Known.Zero)) 672 return TLO.CombineTo(Op, Op.getOperand(0)); 673 if (NewMask.isSubsetOf(Known2.Zero)) 674 return TLO.CombineTo(Op, Op.getOperand(1)); 675 // If the operation can be done in a smaller type, do so. 676 if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) 677 return true; 678 679 // If all of the unknown bits are known to be zero on one side or the other 680 // (but not both) turn this into an *inclusive* or. 681 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 682 if ((NewMask & ~Known.Zero & ~Known2.Zero) == 0) 683 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(), 684 Op.getOperand(0), 685 Op.getOperand(1))); 686 687 // Output known-0 bits are known if clear or set in both the LHS & RHS. 688 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 689 // Output known-1 are known to be set if set in only one of the LHS, RHS. 690 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 691 692 // If all of the demanded bits on one side are known, and all of the set 693 // bits on that side are also known to be set on the other side, turn this 694 // into an AND, as we know the bits will be cleared. 695 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 696 // NB: it is okay if more bits are known than are requested 697 if (NewMask.isSubsetOf(Known.Zero|Known.One)) { // all known on one side 698 if (Known.One == Known2.One) { // set bits are the same on both sides 699 EVT VT = Op.getValueType(); 700 SDValue ANDC = TLO.DAG.getConstant(~Known.One & NewMask, dl, VT); 701 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, 702 Op.getOperand(0), ANDC)); 703 } 704 } 705 706 // If the RHS is a constant, see if we can change it. Don't alter a -1 707 // constant because that's a 'not' op, and that is better for combining and 708 // codegen. 709 ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1)); 710 if (C && !C->isAllOnesValue()) { 711 if (NewMask.isSubsetOf(C->getAPIntValue())) { 712 // We're flipping all demanded bits. Flip the undemanded bits too. 713 SDValue New = TLO.DAG.getNOT(dl, Op.getOperand(0), Op.getValueType()); 714 return TLO.CombineTo(Op, New); 715 } 716 // If we can't turn this into a 'not', try to shrink the constant. 717 if (ShrinkDemandedConstant(Op, NewMask, TLO)) 718 return true; 719 } 720 721 Known = std::move(KnownOut); 722 break; 723 } 724 case ISD::SELECT: 725 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, Known, TLO, Depth+1)) 726 return true; 727 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known2, TLO, Depth+1)) 728 return true; 729 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 730 assert((Known2.Zero & Known2.One) == 0 && "Bits known to be one AND zero?"); 731 732 // If the operands are constants, see if we can simplify them. 733 if (ShrinkDemandedConstant(Op, NewMask, TLO)) 734 return true; 735 736 // Only known if known in both the LHS and RHS. 737 Known.One &= Known2.One; 738 Known.Zero &= Known2.Zero; 739 break; 740 case ISD::SELECT_CC: 741 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, Known, TLO, Depth+1)) 742 return true; 743 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, Known2, TLO, Depth+1)) 744 return true; 745 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 746 assert((Known2.Zero & Known2.One) == 0 && "Bits known to be one AND zero?"); 747 748 // If the operands are constants, see if we can simplify them. 749 if (ShrinkDemandedConstant(Op, NewMask, TLO)) 750 return true; 751 752 // Only known if known in both the LHS and RHS. 753 Known.One &= Known2.One; 754 Known.Zero &= Known2.Zero; 755 break; 756 case ISD::SETCC: { 757 SDValue Op0 = Op.getOperand(0); 758 SDValue Op1 = Op.getOperand(1); 759 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 760 // If (1) we only need the sign-bit, (2) the setcc operands are the same 761 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 762 // -1, we may be able to bypass the setcc. 763 if (NewMask.isSignMask() && Op0.getScalarValueSizeInBits() == BitWidth && 764 getBooleanContents(Op.getValueType()) == 765 BooleanContent::ZeroOrNegativeOneBooleanContent) { 766 // If we're testing X < 0, then this compare isn't needed - just use X! 767 // FIXME: We're limiting to integer types here, but this should also work 768 // if we don't care about FP signed-zero. The use of SETLT with FP means 769 // that we don't care about NaNs. 770 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 771 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 772 return TLO.CombineTo(Op, Op0); 773 774 // TODO: Should we check for other forms of sign-bit comparisons? 775 // Examples: X <= -1, X >= 0 776 } 777 if (getBooleanContents(Op0.getValueType()) == 778 TargetLowering::ZeroOrOneBooleanContent && 779 BitWidth > 1) 780 Known.Zero.setBitsFrom(1); 781 break; 782 } 783 case ISD::SHL: 784 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 785 unsigned ShAmt = SA->getZExtValue(); 786 SDValue InOp = Op.getOperand(0); 787 788 // If the shift count is an invalid immediate, don't do anything. 789 if (ShAmt >= BitWidth) 790 break; 791 792 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 793 // single shift. We can do this if the bottom bits (which are shifted 794 // out) are never demanded. 795 if (InOp.getOpcode() == ISD::SRL && 796 isa<ConstantSDNode>(InOp.getOperand(1))) { 797 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 798 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 799 unsigned Opc = ISD::SHL; 800 int Diff = ShAmt-C1; 801 if (Diff < 0) { 802 Diff = -Diff; 803 Opc = ISD::SRL; 804 } 805 806 SDValue NewSA = 807 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 808 EVT VT = Op.getValueType(); 809 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 810 InOp.getOperand(0), NewSA)); 811 } 812 } 813 814 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), Known, TLO, Depth+1)) 815 return true; 816 817 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 818 // are not demanded. This will likely allow the anyext to be folded away. 819 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { 820 SDValue InnerOp = InOp.getNode()->getOperand(0); 821 EVT InnerVT = InnerOp.getValueType(); 822 unsigned InnerBits = InnerVT.getSizeInBits(); 823 if (ShAmt < InnerBits && NewMask.getActiveBits() <= InnerBits && 824 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 825 EVT ShTy = getShiftAmountTy(InnerVT, DL); 826 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 827 ShTy = InnerVT; 828 SDValue NarrowShl = 829 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 830 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 831 return 832 TLO.CombineTo(Op, 833 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), 834 NarrowShl)); 835 } 836 // Repeat the SHL optimization above in cases where an extension 837 // intervenes: (shl (anyext (shr x, c1)), c2) to 838 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 839 // aren't demanded (as above) and that the shifted upper c1 bits of 840 // x aren't demanded. 841 if (InOp.hasOneUse() && 842 InnerOp.getOpcode() == ISD::SRL && 843 InnerOp.hasOneUse() && 844 isa<ConstantSDNode>(InnerOp.getOperand(1))) { 845 unsigned InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1)) 846 ->getZExtValue(); 847 if (InnerShAmt < ShAmt && 848 InnerShAmt < InnerBits && 849 NewMask.getActiveBits() <= (InnerBits - InnerShAmt + ShAmt) && 850 NewMask.countTrailingZeros() >= ShAmt) { 851 SDValue NewSA = 852 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 853 Op.getOperand(1).getValueType()); 854 EVT VT = Op.getValueType(); 855 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 856 InnerOp.getOperand(0)); 857 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, 858 NewExt, NewSA)); 859 } 860 } 861 } 862 863 Known.Zero <<= SA->getZExtValue(); 864 Known.One <<= SA->getZExtValue(); 865 // low bits known zero. 866 Known.Zero.setLowBits(SA->getZExtValue()); 867 } 868 break; 869 case ISD::SRL: 870 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 871 EVT VT = Op.getValueType(); 872 unsigned ShAmt = SA->getZExtValue(); 873 unsigned VTSize = VT.getSizeInBits(); 874 SDValue InOp = Op.getOperand(0); 875 876 // If the shift count is an invalid immediate, don't do anything. 877 if (ShAmt >= BitWidth) 878 break; 879 880 APInt InDemandedMask = (NewMask << ShAmt); 881 882 // If the shift is exact, then it does demand the low bits (and knows that 883 // they are zero). 884 if (Op->getFlags().hasExact()) 885 InDemandedMask.setLowBits(ShAmt); 886 887 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 888 // single shift. We can do this if the top bits (which are shifted out) 889 // are never demanded. 890 if (InOp.getOpcode() == ISD::SHL && 891 isa<ConstantSDNode>(InOp.getOperand(1))) { 892 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) { 893 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 894 unsigned Opc = ISD::SRL; 895 int Diff = ShAmt-C1; 896 if (Diff < 0) { 897 Diff = -Diff; 898 Opc = ISD::SHL; 899 } 900 901 SDValue NewSA = 902 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 903 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 904 InOp.getOperand(0), NewSA)); 905 } 906 } 907 908 // Compute the new bits that are at the top now. 909 if (SimplifyDemandedBits(InOp, InDemandedMask, Known, TLO, Depth+1)) 910 return true; 911 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 912 Known.Zero.lshrInPlace(ShAmt); 913 Known.One.lshrInPlace(ShAmt); 914 915 Known.Zero.setHighBits(ShAmt); // High bits known zero. 916 } 917 break; 918 case ISD::SRA: 919 // If this is an arithmetic shift right and only the low-bit is set, we can 920 // always convert this into a logical shr, even if the shift amount is 921 // variable. The low bit of the shift cannot be an input sign bit unless 922 // the shift amount is >= the size of the datatype, which is undefined. 923 if (NewMask == 1) 924 return TLO.CombineTo(Op, 925 TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), 926 Op.getOperand(0), Op.getOperand(1))); 927 928 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 929 EVT VT = Op.getValueType(); 930 unsigned ShAmt = SA->getZExtValue(); 931 932 // If the shift count is an invalid immediate, don't do anything. 933 if (ShAmt >= BitWidth) 934 break; 935 936 APInt InDemandedMask = (NewMask << ShAmt); 937 938 // If the shift is exact, then it does demand the low bits (and knows that 939 // they are zero). 940 if (Op->getFlags().hasExact()) 941 InDemandedMask.setLowBits(ShAmt); 942 943 // If any of the demanded bits are produced by the sign extension, we also 944 // demand the input sign bit. 945 if (NewMask.countLeadingZeros() < ShAmt) 946 InDemandedMask.setSignBit(); 947 948 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, Known, TLO, 949 Depth+1)) 950 return true; 951 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 952 Known.Zero.lshrInPlace(ShAmt); 953 Known.One.lshrInPlace(ShAmt); 954 955 // If the input sign bit is known to be zero, or if none of the top bits 956 // are demanded, turn this into an unsigned shift right. 957 if (Known.Zero[BitWidth - ShAmt - 1] || 958 NewMask.countLeadingZeros() >= ShAmt) { 959 SDNodeFlags Flags; 960 Flags.setExact(Op->getFlags().hasExact()); 961 return TLO.CombineTo(Op, 962 TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0), 963 Op.getOperand(1), Flags)); 964 } 965 966 int Log2 = NewMask.exactLogBase2(); 967 if (Log2 >= 0) { 968 // The bit must come from the sign. 969 SDValue NewSA = 970 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, 971 Op.getOperand(1).getValueType()); 972 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 973 Op.getOperand(0), NewSA)); 974 } 975 976 if (Known.One[BitWidth - ShAmt - 1]) 977 // New bits are known one. 978 Known.One.setHighBits(ShAmt); 979 } 980 break; 981 case ISD::SIGN_EXTEND_INREG: { 982 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 983 984 APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1); 985 // If we only care about the highest bit, don't bother shifting right. 986 if (MsbMask == NewMask) { 987 unsigned ShAmt = ExVT.getScalarSizeInBits(); 988 SDValue InOp = Op.getOperand(0); 989 unsigned VTBits = Op->getValueType(0).getScalarSizeInBits(); 990 bool AlreadySignExtended = 991 TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1; 992 // However if the input is already sign extended we expect the sign 993 // extension to be dropped altogether later and do not simplify. 994 if (!AlreadySignExtended) { 995 // Compute the correct shift amount type, which must be getShiftAmountTy 996 // for scalar types after legalization. 997 EVT ShiftAmtTy = Op.getValueType(); 998 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 999 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1000 1001 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, dl, 1002 ShiftAmtTy); 1003 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 1004 Op.getValueType(), InOp, 1005 ShiftAmt)); 1006 } 1007 } 1008 1009 // Sign extension. Compute the demanded bits in the result that are not 1010 // present in the input. 1011 APInt NewBits = 1012 APInt::getHighBitsSet(BitWidth, 1013 BitWidth - ExVT.getScalarSizeInBits()); 1014 1015 // If none of the extended bits are demanded, eliminate the sextinreg. 1016 if ((NewBits & NewMask) == 0) 1017 return TLO.CombineTo(Op, Op.getOperand(0)); 1018 1019 APInt InSignBit = 1020 APInt::getSignMask(ExVT.getScalarSizeInBits()).zext(BitWidth); 1021 APInt InputDemandedBits = 1022 APInt::getLowBitsSet(BitWidth, 1023 ExVT.getScalarSizeInBits()) & 1024 NewMask; 1025 1026 // Since the sign extended bits are demanded, we know that the sign 1027 // bit is demanded. 1028 InputDemandedBits |= InSignBit; 1029 1030 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, 1031 Known, TLO, Depth+1)) 1032 return true; 1033 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1034 1035 // If the sign bit of the input is known set or clear, then we know the 1036 // top bits of the result. 1037 1038 // If the input sign bit is known zero, convert this into a zero extension. 1039 if (Known.Zero.intersects(InSignBit)) 1040 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg( 1041 Op.getOperand(0), dl, ExVT.getScalarType())); 1042 1043 if (Known.One.intersects(InSignBit)) { // Input sign bit known set 1044 Known.One |= NewBits; 1045 Known.Zero &= ~NewBits; 1046 } else { // Input sign bit unknown 1047 Known.Zero &= ~NewBits; 1048 Known.One &= ~NewBits; 1049 } 1050 break; 1051 } 1052 case ISD::BUILD_PAIR: { 1053 EVT HalfVT = Op.getOperand(0).getValueType(); 1054 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1055 1056 APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1057 APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1058 1059 KnownBits KnownLo, KnownHi; 1060 1061 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1062 return true; 1063 1064 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1065 return true; 1066 1067 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1068 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1069 1070 Known.One = KnownLo.One.zext(BitWidth) | 1071 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1072 break; 1073 } 1074 case ISD::ZERO_EXTEND: { 1075 unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 1076 APInt InMask = NewMask.trunc(OperandBitWidth); 1077 1078 // If none of the top bits are demanded, convert this into an any_extend. 1079 APInt NewBits = 1080 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask; 1081 if (!NewBits.intersects(NewMask)) 1082 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 1083 Op.getValueType(), 1084 Op.getOperand(0))); 1085 1086 if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1)) 1087 return true; 1088 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1089 Known = Known.zext(BitWidth); 1090 Known.Zero |= NewBits; 1091 break; 1092 } 1093 case ISD::SIGN_EXTEND: { 1094 EVT InVT = Op.getOperand(0).getValueType(); 1095 unsigned InBits = InVT.getScalarSizeInBits(); 1096 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits); 1097 APInt InSignBit = APInt::getOneBitSet(BitWidth, InBits - 1); 1098 APInt NewBits = ~InMask & NewMask; 1099 1100 // If none of the top bits are demanded, convert this into an any_extend. 1101 if (NewBits == 0) 1102 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 1103 Op.getValueType(), 1104 Op.getOperand(0))); 1105 1106 // Since some of the sign extended bits are demanded, we know that the sign 1107 // bit is demanded. 1108 APInt InDemandedBits = InMask & NewMask; 1109 InDemandedBits |= InSignBit; 1110 InDemandedBits = InDemandedBits.trunc(InBits); 1111 1112 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, Known, TLO, 1113 Depth+1)) 1114 return true; 1115 Known = Known.zext(BitWidth); 1116 1117 // If the sign bit is known zero, convert this to a zero extend. 1118 if (Known.Zero.intersects(InSignBit)) 1119 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, 1120 Op.getValueType(), 1121 Op.getOperand(0))); 1122 1123 // If the sign bit is known one, the top bits match. 1124 if (Known.One.intersects(InSignBit)) { 1125 Known.One |= NewBits; 1126 assert((Known.Zero & NewBits) == 0); 1127 } else { // Otherwise, top bits aren't known. 1128 assert((Known.One & NewBits) == 0); 1129 assert((Known.Zero & NewBits) == 0); 1130 } 1131 break; 1132 } 1133 case ISD::ANY_EXTEND: { 1134 unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 1135 APInt InMask = NewMask.trunc(OperandBitWidth); 1136 if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1)) 1137 return true; 1138 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1139 Known = Known.zext(BitWidth); 1140 break; 1141 } 1142 case ISD::TRUNCATE: { 1143 // Simplify the input, using demanded bit information, and compute the known 1144 // zero/one bits live out. 1145 unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 1146 APInt TruncMask = NewMask.zext(OperandBitWidth); 1147 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, Known, TLO, Depth+1)) 1148 return true; 1149 Known = Known.trunc(BitWidth); 1150 1151 // If the input is only used by this truncate, see if we can shrink it based 1152 // on the known demanded bits. 1153 if (Op.getOperand(0).getNode()->hasOneUse()) { 1154 SDValue In = Op.getOperand(0); 1155 switch (In.getOpcode()) { 1156 default: break; 1157 case ISD::SRL: 1158 // Shrink SRL by a constant if none of the high bits shifted in are 1159 // demanded. 1160 if (TLO.LegalTypes() && 1161 !isTypeDesirableForOp(ISD::SRL, Op.getValueType())) 1162 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1163 // undesirable. 1164 break; 1165 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); 1166 if (!ShAmt) 1167 break; 1168 SDValue Shift = In.getOperand(1); 1169 if (TLO.LegalTypes()) { 1170 uint64_t ShVal = ShAmt->getZExtValue(); 1171 Shift = TLO.DAG.getConstant(ShVal, dl, 1172 getShiftAmountTy(Op.getValueType(), DL)); 1173 } 1174 1175 if (ShAmt->getZExtValue() < BitWidth) { 1176 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 1177 OperandBitWidth - BitWidth); 1178 HighBits.lshrInPlace(ShAmt->getZExtValue()); 1179 HighBits = HighBits.trunc(BitWidth); 1180 1181 if (!(HighBits & NewMask)) { 1182 // None of the shifted in bits are needed. Add a truncate of the 1183 // shift input, then shift it. 1184 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, 1185 Op.getValueType(), 1186 In.getOperand(0)); 1187 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, 1188 Op.getValueType(), 1189 NewTrunc, 1190 Shift)); 1191 } 1192 } 1193 break; 1194 } 1195 } 1196 1197 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1198 break; 1199 } 1200 case ISD::AssertZext: { 1201 // AssertZext demands all of the high bits, plus any of the low bits 1202 // demanded by its users. 1203 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1204 APInt InMask = APInt::getLowBitsSet(BitWidth, 1205 VT.getSizeInBits()); 1206 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask, 1207 Known, TLO, Depth+1)) 1208 return true; 1209 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1210 1211 Known.Zero |= ~InMask; 1212 break; 1213 } 1214 case ISD::BITCAST: 1215 // If this is an FP->Int bitcast and if the sign bit is the only 1216 // thing demanded, turn this into a FGETSIGN. 1217 if (!TLO.LegalOperations() && 1218 !Op.getValueType().isVector() && 1219 !Op.getOperand(0).getValueType().isVector() && 1220 NewMask == APInt::getSignMask(Op.getValueSizeInBits()) && 1221 Op.getOperand(0).getValueType().isFloatingPoint()) { 1222 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType()); 1223 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1224 if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple() && 1225 Op.getOperand(0).getValueType() != MVT::f128) { 1226 // Cannot eliminate/lower SHL for f128 yet. 1227 EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32; 1228 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1229 // place. We expect the SHL to be eliminated by other optimizations. 1230 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0)); 1231 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1232 if (!OpVTLegal && OpVTSizeInBits > 32) 1233 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign); 1234 unsigned ShVal = Op.getValueSizeInBits() - 1; 1235 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, Op.getValueType()); 1236 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 1237 Op.getValueType(), 1238 Sign, ShAmt)); 1239 } 1240 } 1241 break; 1242 case ISD::ADD: 1243 case ISD::MUL: 1244 case ISD::SUB: { 1245 // Add, Sub, and Mul don't demand any bits in positions beyond that 1246 // of the highest bit demanded of them. 1247 APInt LoMask = APInt::getLowBitsSet(BitWidth, 1248 BitWidth - NewMask.countLeadingZeros()); 1249 if (SimplifyDemandedBits(Op.getOperand(0), LoMask, Known2, TLO, Depth+1) || 1250 SimplifyDemandedBits(Op.getOperand(1), LoMask, Known2, TLO, Depth+1) || 1251 // See if the operation should be performed at a smaller bit width. 1252 ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) { 1253 SDNodeFlags Flags = Op.getNode()->getFlags(); 1254 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 1255 // Disable the nsw and nuw flags. We can no longer guarantee that we 1256 // won't wrap after simplification. 1257 Flags.setNoSignedWrap(false); 1258 Flags.setNoUnsignedWrap(false); 1259 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), 1260 Op.getOperand(0), Op.getOperand(1), 1261 Flags); 1262 return TLO.CombineTo(Op, NewOp); 1263 } 1264 return true; 1265 } 1266 LLVM_FALLTHROUGH; 1267 } 1268 default: 1269 // Just use computeKnownBits to compute output bits. 1270 TLO.DAG.computeKnownBits(Op, Known, Depth); 1271 break; 1272 } 1273 1274 // If we know the value of all of the demanded bits, return this as a 1275 // constant. 1276 if (NewMask.isSubsetOf(Known.Zero|Known.One)) { 1277 // Avoid folding to a constant if any OpaqueConstant is involved. 1278 const SDNode *N = Op.getNode(); 1279 for (SDNodeIterator I = SDNodeIterator::begin(N), 1280 E = SDNodeIterator::end(N); I != E; ++I) { 1281 SDNode *Op = *I; 1282 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 1283 if (C->isOpaque()) 1284 return false; 1285 } 1286 return TLO.CombineTo(Op, 1287 TLO.DAG.getConstant(Known.One, dl, Op.getValueType())); 1288 } 1289 1290 return false; 1291 } 1292 1293 /// Determine which of the bits specified in Mask are known to be either zero or 1294 /// one and return them in the Known. 1295 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1296 KnownBits &Known, 1297 const APInt &DemandedElts, 1298 const SelectionDAG &DAG, 1299 unsigned Depth) const { 1300 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1301 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1302 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1303 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1304 "Should use MaskedValueIsZero if you don't know whether Op" 1305 " is a target node!"); 1306 Known.resetAll(); 1307 } 1308 1309 /// This method can be implemented by targets that want to expose additional 1310 /// information about sign bits to the DAG Combiner. 1311 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 1312 const APInt &, 1313 const SelectionDAG &, 1314 unsigned Depth) const { 1315 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1316 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1317 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1318 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1319 "Should use ComputeNumSignBits if you don't know whether Op" 1320 " is a target node!"); 1321 return 1; 1322 } 1323 1324 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 1325 // work with truncating build vectors and vectors with elements of less than 1326 // 8 bits. 1327 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 1328 if (!N) 1329 return false; 1330 1331 APInt CVal; 1332 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 1333 CVal = CN->getAPIntValue(); 1334 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 1335 auto *CN = BV->getConstantSplatNode(); 1336 if (!CN) 1337 return false; 1338 1339 // If this is a truncating build vector, truncate the splat value. 1340 // Otherwise, we may fail to match the expected values below. 1341 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 1342 CVal = CN->getAPIntValue(); 1343 if (BVEltWidth < CVal.getBitWidth()) 1344 CVal = CVal.trunc(BVEltWidth); 1345 } else { 1346 return false; 1347 } 1348 1349 switch (getBooleanContents(N->getValueType(0))) { 1350 case UndefinedBooleanContent: 1351 return CVal[0]; 1352 case ZeroOrOneBooleanContent: 1353 return CVal == 1; 1354 case ZeroOrNegativeOneBooleanContent: 1355 return CVal.isAllOnesValue(); 1356 } 1357 1358 llvm_unreachable("Invalid boolean contents"); 1359 } 1360 1361 SDValue TargetLowering::getConstTrueVal(SelectionDAG &DAG, EVT VT, 1362 const SDLoc &DL) const { 1363 unsigned ElementWidth = VT.getScalarSizeInBits(); 1364 APInt TrueInt = 1365 getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent 1366 ? APInt(ElementWidth, 1) 1367 : APInt::getAllOnesValue(ElementWidth); 1368 return DAG.getConstant(TrueInt, DL, VT); 1369 } 1370 1371 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 1372 if (!N) 1373 return false; 1374 1375 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1376 if (!CN) { 1377 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1378 if (!BV) 1379 return false; 1380 1381 // Only interested in constant splats, we don't care about undef 1382 // elements in identifying boolean constants and getConstantSplatNode 1383 // returns NULL if all ops are undef; 1384 CN = BV->getConstantSplatNode(); 1385 if (!CN) 1386 return false; 1387 } 1388 1389 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 1390 return !CN->getAPIntValue()[0]; 1391 1392 return CN->isNullValue(); 1393 } 1394 1395 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 1396 bool SExt) const { 1397 if (VT == MVT::i1) 1398 return N->isOne(); 1399 1400 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 1401 switch (Cnt) { 1402 case TargetLowering::ZeroOrOneBooleanContent: 1403 // An extended value of 1 is always true, unless its original type is i1, 1404 // in which case it will be sign extended to -1. 1405 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 1406 case TargetLowering::UndefinedBooleanContent: 1407 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1408 return N->isAllOnesValue() && SExt; 1409 } 1410 llvm_unreachable("Unexpected enumeration."); 1411 } 1412 1413 /// This helper function of SimplifySetCC tries to optimize the comparison when 1414 /// either operand of the SetCC node is a bitwise-and instruction. 1415 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 1416 ISD::CondCode Cond, 1417 DAGCombinerInfo &DCI, 1418 const SDLoc &DL) const { 1419 // Match these patterns in any of their permutations: 1420 // (X & Y) == Y 1421 // (X & Y) != Y 1422 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 1423 std::swap(N0, N1); 1424 1425 EVT OpVT = N0.getValueType(); 1426 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 1427 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 1428 return SDValue(); 1429 1430 SDValue X, Y; 1431 if (N0.getOperand(0) == N1) { 1432 X = N0.getOperand(1); 1433 Y = N0.getOperand(0); 1434 } else if (N0.getOperand(1) == N1) { 1435 X = N0.getOperand(0); 1436 Y = N0.getOperand(1); 1437 } else { 1438 return SDValue(); 1439 } 1440 1441 SelectionDAG &DAG = DCI.DAG; 1442 SDValue Zero = DAG.getConstant(0, DL, OpVT); 1443 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 1444 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 1445 // Note that where Y is variable and is known to have at most one bit set 1446 // (for example, if it is Z & 1) we cannot do this; the expressions are not 1447 // equivalent when Y == 0. 1448 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 1449 if (DCI.isBeforeLegalizeOps() || 1450 isCondCodeLegal(Cond, N0.getSimpleValueType())) 1451 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 1452 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 1453 // If the target supports an 'and-not' or 'and-complement' logic operation, 1454 // try to use that to make a comparison operation more efficient. 1455 // But don't do this transform if the mask is a single bit because there are 1456 // more efficient ways to deal with that case (for example, 'bt' on x86 or 1457 // 'rlwinm' on PPC). 1458 1459 // Bail out if the compare operand that we want to turn into a zero is 1460 // already a zero (otherwise, infinite loop). 1461 auto *YConst = dyn_cast<ConstantSDNode>(Y); 1462 if (YConst && YConst->isNullValue()) 1463 return SDValue(); 1464 1465 // Transform this into: ~X & Y == 0. 1466 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 1467 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 1468 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 1469 } 1470 1471 return SDValue(); 1472 } 1473 1474 /// Try to simplify a setcc built with the specified operands and cc. If it is 1475 /// unable to simplify it, return a null SDValue. 1476 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 1477 ISD::CondCode Cond, bool foldBooleans, 1478 DAGCombinerInfo &DCI, 1479 const SDLoc &dl) const { 1480 SelectionDAG &DAG = DCI.DAG; 1481 1482 // These setcc operations always fold. 1483 switch (Cond) { 1484 default: break; 1485 case ISD::SETFALSE: 1486 case ISD::SETFALSE2: return DAG.getConstant(0, dl, VT); 1487 case ISD::SETTRUE: 1488 case ISD::SETTRUE2: { 1489 TargetLowering::BooleanContent Cnt = 1490 getBooleanContents(N0->getValueType(0)); 1491 return DAG.getConstant( 1492 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl, 1493 VT); 1494 } 1495 } 1496 1497 // Ensure that the constant occurs on the RHS, and fold constant 1498 // comparisons. 1499 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 1500 if (isa<ConstantSDNode>(N0.getNode()) && 1501 (DCI.isBeforeLegalizeOps() || 1502 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 1503 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 1504 1505 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 1506 const APInt &C1 = N1C->getAPIntValue(); 1507 1508 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 1509 // equality comparison, then we're just comparing whether X itself is 1510 // zero. 1511 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) && 1512 N0.getOperand(0).getOpcode() == ISD::CTLZ && 1513 N0.getOperand(1).getOpcode() == ISD::Constant) { 1514 const APInt &ShAmt 1515 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1516 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1517 ShAmt == Log2_32(N0.getValueSizeInBits())) { 1518 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 1519 // (srl (ctlz x), 5) == 0 -> X != 0 1520 // (srl (ctlz x), 5) != 1 -> X != 0 1521 Cond = ISD::SETNE; 1522 } else { 1523 // (srl (ctlz x), 5) != 0 -> X == 0 1524 // (srl (ctlz x), 5) == 1 -> X == 0 1525 Cond = ISD::SETEQ; 1526 } 1527 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 1528 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 1529 Zero, Cond); 1530 } 1531 } 1532 1533 SDValue CTPOP = N0; 1534 // Look through truncs that don't change the value of a ctpop. 1535 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 1536 CTPOP = N0.getOperand(0); 1537 1538 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 1539 (N0 == CTPOP || 1540 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 1541 EVT CTVT = CTPOP.getValueType(); 1542 SDValue CTOp = CTPOP.getOperand(0); 1543 1544 // (ctpop x) u< 2 -> (x & x-1) == 0 1545 // (ctpop x) u> 1 -> (x & x-1) != 0 1546 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 1547 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 1548 DAG.getConstant(1, dl, CTVT)); 1549 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 1550 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 1551 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 1552 } 1553 1554 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 1555 } 1556 1557 // (zext x) == C --> x == (trunc C) 1558 // (sext x) == C --> x == (trunc C) 1559 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1560 DCI.isBeforeLegalize() && N0->hasOneUse()) { 1561 unsigned MinBits = N0.getValueSizeInBits(); 1562 SDValue PreExt; 1563 bool Signed = false; 1564 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 1565 // ZExt 1566 MinBits = N0->getOperand(0).getValueSizeInBits(); 1567 PreExt = N0->getOperand(0); 1568 } else if (N0->getOpcode() == ISD::AND) { 1569 // DAGCombine turns costly ZExts into ANDs 1570 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 1571 if ((C->getAPIntValue()+1).isPowerOf2()) { 1572 MinBits = C->getAPIntValue().countTrailingOnes(); 1573 PreExt = N0->getOperand(0); 1574 } 1575 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 1576 // SExt 1577 MinBits = N0->getOperand(0).getValueSizeInBits(); 1578 PreExt = N0->getOperand(0); 1579 Signed = true; 1580 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 1581 // ZEXTLOAD / SEXTLOAD 1582 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 1583 MinBits = LN0->getMemoryVT().getSizeInBits(); 1584 PreExt = N0; 1585 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 1586 Signed = true; 1587 MinBits = LN0->getMemoryVT().getSizeInBits(); 1588 PreExt = N0; 1589 } 1590 } 1591 1592 // Figure out how many bits we need to preserve this constant. 1593 unsigned ReqdBits = Signed ? 1594 C1.getBitWidth() - C1.getNumSignBits() + 1 : 1595 C1.getActiveBits(); 1596 1597 // Make sure we're not losing bits from the constant. 1598 if (MinBits > 0 && 1599 MinBits < C1.getBitWidth() && 1600 MinBits >= ReqdBits) { 1601 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 1602 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 1603 // Will get folded away. 1604 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 1605 if (MinBits == 1 && C1 == 1) 1606 // Invert the condition. 1607 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 1608 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1609 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 1610 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 1611 } 1612 1613 // If truncating the setcc operands is not desirable, we can still 1614 // simplify the expression in some cases: 1615 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 1616 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 1617 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 1618 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 1619 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 1620 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 1621 SDValue TopSetCC = N0->getOperand(0); 1622 unsigned N0Opc = N0->getOpcode(); 1623 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 1624 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 1625 TopSetCC.getOpcode() == ISD::SETCC && 1626 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 1627 (isConstFalseVal(N1C) || 1628 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 1629 1630 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 1631 (!N1C->isNullValue() && Cond == ISD::SETNE); 1632 1633 if (!Inverse) 1634 return TopSetCC; 1635 1636 ISD::CondCode InvCond = ISD::getSetCCInverse( 1637 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 1638 TopSetCC.getOperand(0).getValueType().isInteger()); 1639 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 1640 TopSetCC.getOperand(1), 1641 InvCond); 1642 1643 } 1644 } 1645 } 1646 1647 // If the LHS is '(and load, const)', the RHS is 0, 1648 // the test is for equality or unsigned, and all 1 bits of the const are 1649 // in the same partial word, see if we can shorten the load. 1650 if (DCI.isBeforeLegalize() && 1651 !ISD::isSignedIntSetCC(Cond) && 1652 N0.getOpcode() == ISD::AND && C1 == 0 && 1653 N0.getNode()->hasOneUse() && 1654 isa<LoadSDNode>(N0.getOperand(0)) && 1655 N0.getOperand(0).getNode()->hasOneUse() && 1656 isa<ConstantSDNode>(N0.getOperand(1))) { 1657 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 1658 APInt bestMask; 1659 unsigned bestWidth = 0, bestOffset = 0; 1660 if (!Lod->isVolatile() && Lod->isUnindexed()) { 1661 unsigned origWidth = N0.getValueSizeInBits(); 1662 unsigned maskWidth = origWidth; 1663 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 1664 // 8 bits, but have to be careful... 1665 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 1666 origWidth = Lod->getMemoryVT().getSizeInBits(); 1667 const APInt &Mask = 1668 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1669 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 1670 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 1671 for (unsigned offset=0; offset<origWidth/width; offset++) { 1672 if ((newMask & Mask) == Mask) { 1673 if (!DAG.getDataLayout().isLittleEndian()) 1674 bestOffset = (origWidth/width - offset - 1) * (width/8); 1675 else 1676 bestOffset = (uint64_t)offset * (width/8); 1677 bestMask = Mask.lshr(offset * (width/8) * 8); 1678 bestWidth = width; 1679 break; 1680 } 1681 newMask <<= width; 1682 } 1683 } 1684 } 1685 if (bestWidth) { 1686 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 1687 if (newVT.isRound()) { 1688 EVT PtrType = Lod->getOperand(1).getValueType(); 1689 SDValue Ptr = Lod->getBasePtr(); 1690 if (bestOffset != 0) 1691 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 1692 DAG.getConstant(bestOffset, dl, PtrType)); 1693 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 1694 SDValue NewLoad = DAG.getLoad( 1695 newVT, dl, Lod->getChain(), Ptr, 1696 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 1697 return DAG.getSetCC(dl, VT, 1698 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 1699 DAG.getConstant(bestMask.trunc(bestWidth), 1700 dl, newVT)), 1701 DAG.getConstant(0LL, dl, newVT), Cond); 1702 } 1703 } 1704 } 1705 1706 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 1707 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 1708 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 1709 1710 // If the comparison constant has bits in the upper part, the 1711 // zero-extended value could never match. 1712 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 1713 C1.getBitWidth() - InSize))) { 1714 switch (Cond) { 1715 case ISD::SETUGT: 1716 case ISD::SETUGE: 1717 case ISD::SETEQ: return DAG.getConstant(0, dl, VT); 1718 case ISD::SETULT: 1719 case ISD::SETULE: 1720 case ISD::SETNE: return DAG.getConstant(1, dl, VT); 1721 case ISD::SETGT: 1722 case ISD::SETGE: 1723 // True if the sign bit of C1 is set. 1724 return DAG.getConstant(C1.isNegative(), dl, VT); 1725 case ISD::SETLT: 1726 case ISD::SETLE: 1727 // True if the sign bit of C1 isn't set. 1728 return DAG.getConstant(C1.isNonNegative(), dl, VT); 1729 default: 1730 break; 1731 } 1732 } 1733 1734 // Otherwise, we can perform the comparison with the low bits. 1735 switch (Cond) { 1736 case ISD::SETEQ: 1737 case ISD::SETNE: 1738 case ISD::SETUGT: 1739 case ISD::SETUGE: 1740 case ISD::SETULT: 1741 case ISD::SETULE: { 1742 EVT newVT = N0.getOperand(0).getValueType(); 1743 if (DCI.isBeforeLegalizeOps() || 1744 (isOperationLegal(ISD::SETCC, newVT) && 1745 getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) { 1746 EVT NewSetCCVT = 1747 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); 1748 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 1749 1750 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 1751 NewConst, Cond); 1752 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 1753 } 1754 break; 1755 } 1756 default: 1757 break; // todo, be more careful with signed comparisons 1758 } 1759 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 1760 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1761 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 1762 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 1763 EVT ExtDstTy = N0.getValueType(); 1764 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 1765 1766 // If the constant doesn't fit into the number of bits for the source of 1767 // the sign extension, it is impossible for both sides to be equal. 1768 if (C1.getMinSignedBits() > ExtSrcTyBits) 1769 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 1770 1771 SDValue ZextOp; 1772 EVT Op0Ty = N0.getOperand(0).getValueType(); 1773 if (Op0Ty == ExtSrcTy) { 1774 ZextOp = N0.getOperand(0); 1775 } else { 1776 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 1777 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 1778 DAG.getConstant(Imm, dl, Op0Ty)); 1779 } 1780 if (!DCI.isCalledByLegalizer()) 1781 DCI.AddToWorklist(ZextOp.getNode()); 1782 // Otherwise, make this a use of a zext. 1783 return DAG.getSetCC(dl, VT, ZextOp, 1784 DAG.getConstant(C1 & APInt::getLowBitsSet( 1785 ExtDstTyBits, 1786 ExtSrcTyBits), 1787 dl, ExtDstTy), 1788 Cond); 1789 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) && 1790 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1791 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 1792 if (N0.getOpcode() == ISD::SETCC && 1793 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 1794 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1); 1795 if (TrueWhenTrue) 1796 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 1797 // Invert the condition. 1798 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 1799 CC = ISD::getSetCCInverse(CC, 1800 N0.getOperand(0).getValueType().isInteger()); 1801 if (DCI.isBeforeLegalizeOps() || 1802 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 1803 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 1804 } 1805 1806 if ((N0.getOpcode() == ISD::XOR || 1807 (N0.getOpcode() == ISD::AND && 1808 N0.getOperand(0).getOpcode() == ISD::XOR && 1809 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 1810 isa<ConstantSDNode>(N0.getOperand(1)) && 1811 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) { 1812 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 1813 // can only do this if the top bits are known zero. 1814 unsigned BitWidth = N0.getValueSizeInBits(); 1815 if (DAG.MaskedValueIsZero(N0, 1816 APInt::getHighBitsSet(BitWidth, 1817 BitWidth-1))) { 1818 // Okay, get the un-inverted input value. 1819 SDValue Val; 1820 if (N0.getOpcode() == ISD::XOR) 1821 Val = N0.getOperand(0); 1822 else { 1823 assert(N0.getOpcode() == ISD::AND && 1824 N0.getOperand(0).getOpcode() == ISD::XOR); 1825 // ((X^1)&1)^1 -> X & 1 1826 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 1827 N0.getOperand(0).getOperand(0), 1828 N0.getOperand(1)); 1829 } 1830 1831 return DAG.getSetCC(dl, VT, Val, N1, 1832 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1833 } 1834 } else if (N1C->getAPIntValue() == 1 && 1835 (VT == MVT::i1 || 1836 getBooleanContents(N0->getValueType(0)) == 1837 ZeroOrOneBooleanContent)) { 1838 SDValue Op0 = N0; 1839 if (Op0.getOpcode() == ISD::TRUNCATE) 1840 Op0 = Op0.getOperand(0); 1841 1842 if ((Op0.getOpcode() == ISD::XOR) && 1843 Op0.getOperand(0).getOpcode() == ISD::SETCC && 1844 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 1845 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 1846 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 1847 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 1848 Cond); 1849 } 1850 if (Op0.getOpcode() == ISD::AND && 1851 isa<ConstantSDNode>(Op0.getOperand(1)) && 1852 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) { 1853 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 1854 if (Op0.getValueType().bitsGT(VT)) 1855 Op0 = DAG.getNode(ISD::AND, dl, VT, 1856 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 1857 DAG.getConstant(1, dl, VT)); 1858 else if (Op0.getValueType().bitsLT(VT)) 1859 Op0 = DAG.getNode(ISD::AND, dl, VT, 1860 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 1861 DAG.getConstant(1, dl, VT)); 1862 1863 return DAG.getSetCC(dl, VT, Op0, 1864 DAG.getConstant(0, dl, Op0.getValueType()), 1865 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1866 } 1867 if (Op0.getOpcode() == ISD::AssertZext && 1868 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 1869 return DAG.getSetCC(dl, VT, Op0, 1870 DAG.getConstant(0, dl, Op0.getValueType()), 1871 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1872 } 1873 } 1874 1875 APInt MinVal, MaxVal; 1876 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits(); 1877 if (ISD::isSignedIntSetCC(Cond)) { 1878 MinVal = APInt::getSignedMinValue(OperandBitSize); 1879 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 1880 } else { 1881 MinVal = APInt::getMinValue(OperandBitSize); 1882 MaxVal = APInt::getMaxValue(OperandBitSize); 1883 } 1884 1885 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 1886 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 1887 if (C1 == MinVal) return DAG.getConstant(1, dl, VT); // X >= MIN --> true 1888 // X >= C0 --> X > (C0 - 1) 1889 APInt C = C1 - 1; 1890 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 1891 if ((DCI.isBeforeLegalizeOps() || 1892 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1893 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1894 isLegalICmpImmediate(C.getSExtValue())))) { 1895 return DAG.getSetCC(dl, VT, N0, 1896 DAG.getConstant(C, dl, N1.getValueType()), 1897 NewCC); 1898 } 1899 } 1900 1901 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 1902 if (C1 == MaxVal) return DAG.getConstant(1, dl, VT); // X <= MAX --> true 1903 // X <= C0 --> X < (C0 + 1) 1904 APInt C = C1 + 1; 1905 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 1906 if ((DCI.isBeforeLegalizeOps() || 1907 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1908 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1909 isLegalICmpImmediate(C.getSExtValue())))) { 1910 return DAG.getSetCC(dl, VT, N0, 1911 DAG.getConstant(C, dl, N1.getValueType()), 1912 NewCC); 1913 } 1914 } 1915 1916 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) 1917 return DAG.getConstant(0, dl, VT); // X < MIN --> false 1918 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal) 1919 return DAG.getConstant(1, dl, VT); // X >= MIN --> true 1920 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal) 1921 return DAG.getConstant(0, dl, VT); // X > MAX --> false 1922 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal) 1923 return DAG.getConstant(1, dl, VT); // X <= MAX --> true 1924 1925 // Canonicalize setgt X, Min --> setne X, Min 1926 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) 1927 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1928 // Canonicalize setlt X, Max --> setne X, Max 1929 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) 1930 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1931 1932 // If we have setult X, 1, turn it into seteq X, 0 1933 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) 1934 return DAG.getSetCC(dl, VT, N0, 1935 DAG.getConstant(MinVal, dl, N0.getValueType()), 1936 ISD::SETEQ); 1937 // If we have setugt X, Max-1, turn it into seteq X, Max 1938 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) 1939 return DAG.getSetCC(dl, VT, N0, 1940 DAG.getConstant(MaxVal, dl, N0.getValueType()), 1941 ISD::SETEQ); 1942 1943 // If we have "setcc X, C0", check to see if we can shrink the immediate 1944 // by changing cc. 1945 1946 // SETUGT X, SINTMAX -> SETLT X, 0 1947 if (Cond == ISD::SETUGT && 1948 C1 == APInt::getSignedMaxValue(OperandBitSize)) 1949 return DAG.getSetCC(dl, VT, N0, 1950 DAG.getConstant(0, dl, N1.getValueType()), 1951 ISD::SETLT); 1952 1953 // SETULT X, SINTMIN -> SETGT X, -1 1954 if (Cond == ISD::SETULT && 1955 C1 == APInt::getSignedMinValue(OperandBitSize)) { 1956 SDValue ConstMinusOne = 1957 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 1958 N1.getValueType()); 1959 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 1960 } 1961 1962 // Fold bit comparisons when we can. 1963 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1964 (VT == N0.getValueType() || 1965 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 1966 N0.getOpcode() == ISD::AND) { 1967 auto &DL = DAG.getDataLayout(); 1968 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1969 EVT ShiftTy = DCI.isBeforeLegalize() 1970 ? getPointerTy(DL) 1971 : getShiftAmountTy(N0.getValueType(), DL); 1972 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 1973 // Perform the xform if the AND RHS is a single bit. 1974 if (AndRHS->getAPIntValue().isPowerOf2()) { 1975 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1976 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1977 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, 1978 ShiftTy))); 1979 } 1980 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 1981 // (X & 8) == 8 --> (X & 8) >> 3 1982 // Perform the xform if C1 is a single bit. 1983 if (C1.isPowerOf2()) { 1984 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1985 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1986 DAG.getConstant(C1.logBase2(), dl, 1987 ShiftTy))); 1988 } 1989 } 1990 } 1991 } 1992 1993 if (C1.getMinSignedBits() <= 64 && 1994 !isLegalICmpImmediate(C1.getSExtValue())) { 1995 // (X & -256) == 256 -> (X >> 8) == 1 1996 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1997 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 1998 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1999 const APInt &AndRHSC = AndRHS->getAPIntValue(); 2000 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 2001 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 2002 auto &DL = DAG.getDataLayout(); 2003 EVT ShiftTy = DCI.isBeforeLegalize() 2004 ? getPointerTy(DL) 2005 : getShiftAmountTy(N0.getValueType(), DL); 2006 EVT CmpTy = N0.getValueType(); 2007 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 2008 DAG.getConstant(ShiftBits, dl, 2009 ShiftTy)); 2010 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); 2011 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 2012 } 2013 } 2014 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 2015 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 2016 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 2017 // X < 0x100000000 -> (X >> 32) < 1 2018 // X >= 0x100000000 -> (X >> 32) >= 1 2019 // X <= 0x0ffffffff -> (X >> 32) < 1 2020 // X > 0x0ffffffff -> (X >> 32) >= 1 2021 unsigned ShiftBits; 2022 APInt NewC = C1; 2023 ISD::CondCode NewCond = Cond; 2024 if (AdjOne) { 2025 ShiftBits = C1.countTrailingOnes(); 2026 NewC = NewC + 1; 2027 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 2028 } else { 2029 ShiftBits = C1.countTrailingZeros(); 2030 } 2031 NewC.lshrInPlace(ShiftBits); 2032 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 2033 isLegalICmpImmediate(NewC.getSExtValue())) { 2034 auto &DL = DAG.getDataLayout(); 2035 EVT ShiftTy = DCI.isBeforeLegalize() 2036 ? getPointerTy(DL) 2037 : getShiftAmountTy(N0.getValueType(), DL); 2038 EVT CmpTy = N0.getValueType(); 2039 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 2040 DAG.getConstant(ShiftBits, dl, ShiftTy)); 2041 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); 2042 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 2043 } 2044 } 2045 } 2046 } 2047 2048 if (isa<ConstantFPSDNode>(N0.getNode())) { 2049 // Constant fold or commute setcc. 2050 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); 2051 if (O.getNode()) return O; 2052 } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { 2053 // If the RHS of an FP comparison is a constant, simplify it away in 2054 // some cases. 2055 if (CFP->getValueAPF().isNaN()) { 2056 // If an operand is known to be a nan, we can fold it. 2057 switch (ISD::getUnorderedFlavor(Cond)) { 2058 default: llvm_unreachable("Unknown flavor!"); 2059 case 0: // Known false. 2060 return DAG.getConstant(0, dl, VT); 2061 case 1: // Known true. 2062 return DAG.getConstant(1, dl, VT); 2063 case 2: // Undefined. 2064 return DAG.getUNDEF(VT); 2065 } 2066 } 2067 2068 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 2069 // constant if knowing that the operand is non-nan is enough. We prefer to 2070 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 2071 // materialize 0.0. 2072 if (Cond == ISD::SETO || Cond == ISD::SETUO) 2073 return DAG.getSetCC(dl, VT, N0, N0, Cond); 2074 2075 // setcc (fneg x), C -> setcc swap(pred) x, -C 2076 if (N0.getOpcode() == ISD::FNEG) { 2077 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 2078 if (DCI.isBeforeLegalizeOps() || 2079 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 2080 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 2081 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 2082 } 2083 } 2084 2085 // If the condition is not legal, see if we can find an equivalent one 2086 // which is legal. 2087 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 2088 // If the comparison was an awkward floating-point == or != and one of 2089 // the comparison operands is infinity or negative infinity, convert the 2090 // condition to a less-awkward <= or >=. 2091 if (CFP->getValueAPF().isInfinity()) { 2092 if (CFP->getValueAPF().isNegative()) { 2093 if (Cond == ISD::SETOEQ && 2094 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 2095 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 2096 if (Cond == ISD::SETUEQ && 2097 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 2098 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 2099 if (Cond == ISD::SETUNE && 2100 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 2101 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 2102 if (Cond == ISD::SETONE && 2103 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 2104 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 2105 } else { 2106 if (Cond == ISD::SETOEQ && 2107 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 2108 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 2109 if (Cond == ISD::SETUEQ && 2110 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 2111 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 2112 if (Cond == ISD::SETUNE && 2113 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 2114 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 2115 if (Cond == ISD::SETONE && 2116 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 2117 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 2118 } 2119 } 2120 } 2121 } 2122 2123 if (N0 == N1) { 2124 // The sext(setcc()) => setcc() optimization relies on the appropriate 2125 // constant being emitted. 2126 uint64_t EqVal = 0; 2127 switch (getBooleanContents(N0.getValueType())) { 2128 case UndefinedBooleanContent: 2129 case ZeroOrOneBooleanContent: 2130 EqVal = ISD::isTrueWhenEqual(Cond); 2131 break; 2132 case ZeroOrNegativeOneBooleanContent: 2133 EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0; 2134 break; 2135 } 2136 2137 // We can always fold X == X for integer setcc's. 2138 if (N0.getValueType().isInteger()) { 2139 return DAG.getConstant(EqVal, dl, VT); 2140 } 2141 unsigned UOF = ISD::getUnorderedFlavor(Cond); 2142 if (UOF == 2) // FP operators that are undefined on NaNs. 2143 return DAG.getConstant(EqVal, dl, VT); 2144 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) 2145 return DAG.getConstant(EqVal, dl, VT); 2146 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 2147 // if it is not already. 2148 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 2149 if (NewCond != Cond && (DCI.isBeforeLegalizeOps() || 2150 getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal)) 2151 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 2152 } 2153 2154 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2155 N0.getValueType().isInteger()) { 2156 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 2157 N0.getOpcode() == ISD::XOR) { 2158 // Simplify (X+Y) == (X+Z) --> Y == Z 2159 if (N0.getOpcode() == N1.getOpcode()) { 2160 if (N0.getOperand(0) == N1.getOperand(0)) 2161 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 2162 if (N0.getOperand(1) == N1.getOperand(1)) 2163 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 2164 if (DAG.isCommutativeBinOp(N0.getOpcode())) { 2165 // If X op Y == Y op X, try other combinations. 2166 if (N0.getOperand(0) == N1.getOperand(1)) 2167 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 2168 Cond); 2169 if (N0.getOperand(1) == N1.getOperand(0)) 2170 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 2171 Cond); 2172 } 2173 } 2174 2175 // If RHS is a legal immediate value for a compare instruction, we need 2176 // to be careful about increasing register pressure needlessly. 2177 bool LegalRHSImm = false; 2178 2179 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 2180 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2181 // Turn (X+C1) == C2 --> X == C2-C1 2182 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 2183 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2184 DAG.getConstant(RHSC->getAPIntValue()- 2185 LHSR->getAPIntValue(), 2186 dl, N0.getValueType()), Cond); 2187 } 2188 2189 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 2190 if (N0.getOpcode() == ISD::XOR) 2191 // If we know that all of the inverted bits are zero, don't bother 2192 // performing the inversion. 2193 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 2194 return 2195 DAG.getSetCC(dl, VT, N0.getOperand(0), 2196 DAG.getConstant(LHSR->getAPIntValue() ^ 2197 RHSC->getAPIntValue(), 2198 dl, N0.getValueType()), 2199 Cond); 2200 } 2201 2202 // Turn (C1-X) == C2 --> X == C1-C2 2203 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 2204 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 2205 return 2206 DAG.getSetCC(dl, VT, N0.getOperand(1), 2207 DAG.getConstant(SUBC->getAPIntValue() - 2208 RHSC->getAPIntValue(), 2209 dl, N0.getValueType()), 2210 Cond); 2211 } 2212 } 2213 2214 // Could RHSC fold directly into a compare? 2215 if (RHSC->getValueType(0).getSizeInBits() <= 64) 2216 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 2217 } 2218 2219 // Simplify (X+Z) == X --> Z == 0 2220 // Don't do this if X is an immediate that can fold into a cmp 2221 // instruction and X+Z has other uses. It could be an induction variable 2222 // chain, and the transform would increase register pressure. 2223 if (!LegalRHSImm || N0.getNode()->hasOneUse()) { 2224 if (N0.getOperand(0) == N1) 2225 return DAG.getSetCC(dl, VT, N0.getOperand(1), 2226 DAG.getConstant(0, dl, N0.getValueType()), Cond); 2227 if (N0.getOperand(1) == N1) { 2228 if (DAG.isCommutativeBinOp(N0.getOpcode())) 2229 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2230 DAG.getConstant(0, dl, N0.getValueType()), 2231 Cond); 2232 if (N0.getNode()->hasOneUse()) { 2233 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); 2234 auto &DL = DAG.getDataLayout(); 2235 // (Z-X) == X --> Z == X<<1 2236 SDValue SH = DAG.getNode( 2237 ISD::SHL, dl, N1.getValueType(), N1, 2238 DAG.getConstant(1, dl, 2239 getShiftAmountTy(N1.getValueType(), DL))); 2240 if (!DCI.isCalledByLegalizer()) 2241 DCI.AddToWorklist(SH.getNode()); 2242 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); 2243 } 2244 } 2245 } 2246 } 2247 2248 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 2249 N1.getOpcode() == ISD::XOR) { 2250 // Simplify X == (X+Z) --> Z == 0 2251 if (N1.getOperand(0) == N0) 2252 return DAG.getSetCC(dl, VT, N1.getOperand(1), 2253 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2254 if (N1.getOperand(1) == N0) { 2255 if (DAG.isCommutativeBinOp(N1.getOpcode())) 2256 return DAG.getSetCC(dl, VT, N1.getOperand(0), 2257 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2258 if (N1.getNode()->hasOneUse()) { 2259 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); 2260 auto &DL = DAG.getDataLayout(); 2261 // X == (Z-X) --> X<<1 == Z 2262 SDValue SH = DAG.getNode( 2263 ISD::SHL, dl, N1.getValueType(), N0, 2264 DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL))); 2265 if (!DCI.isCalledByLegalizer()) 2266 DCI.AddToWorklist(SH.getNode()); 2267 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); 2268 } 2269 } 2270 } 2271 2272 if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl)) 2273 return V; 2274 } 2275 2276 // Fold away ALL boolean setcc's. 2277 SDValue Temp; 2278 if (N0.getValueType() == MVT::i1 && foldBooleans) { 2279 switch (Cond) { 2280 default: llvm_unreachable("Unknown integer setcc!"); 2281 case ISD::SETEQ: // X == Y -> ~(X^Y) 2282 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2283 N0 = DAG.getNOT(dl, Temp, MVT::i1); 2284 if (!DCI.isCalledByLegalizer()) 2285 DCI.AddToWorklist(Temp.getNode()); 2286 break; 2287 case ISD::SETNE: // X != Y --> (X^Y) 2288 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2289 break; 2290 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 2291 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 2292 Temp = DAG.getNOT(dl, N0, MVT::i1); 2293 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp); 2294 if (!DCI.isCalledByLegalizer()) 2295 DCI.AddToWorklist(Temp.getNode()); 2296 break; 2297 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 2298 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 2299 Temp = DAG.getNOT(dl, N1, MVT::i1); 2300 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp); 2301 if (!DCI.isCalledByLegalizer()) 2302 DCI.AddToWorklist(Temp.getNode()); 2303 break; 2304 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 2305 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 2306 Temp = DAG.getNOT(dl, N0, MVT::i1); 2307 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp); 2308 if (!DCI.isCalledByLegalizer()) 2309 DCI.AddToWorklist(Temp.getNode()); 2310 break; 2311 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 2312 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 2313 Temp = DAG.getNOT(dl, N1, MVT::i1); 2314 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp); 2315 break; 2316 } 2317 if (VT != MVT::i1) { 2318 if (!DCI.isCalledByLegalizer()) 2319 DCI.AddToWorklist(N0.getNode()); 2320 // FIXME: If running after legalize, we probably can't do this. 2321 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0); 2322 } 2323 return N0; 2324 } 2325 2326 // Could not fold it. 2327 return SDValue(); 2328 } 2329 2330 /// Returns true (and the GlobalValue and the offset) if the node is a 2331 /// GlobalAddress + offset. 2332 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, 2333 int64_t &Offset) const { 2334 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 2335 GA = GASD->getGlobal(); 2336 Offset += GASD->getOffset(); 2337 return true; 2338 } 2339 2340 if (N->getOpcode() == ISD::ADD) { 2341 SDValue N1 = N->getOperand(0); 2342 SDValue N2 = N->getOperand(1); 2343 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 2344 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 2345 Offset += V->getSExtValue(); 2346 return true; 2347 } 2348 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 2349 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 2350 Offset += V->getSExtValue(); 2351 return true; 2352 } 2353 } 2354 } 2355 2356 return false; 2357 } 2358 2359 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 2360 DAGCombinerInfo &DCI) const { 2361 // Default implementation: no optimization. 2362 return SDValue(); 2363 } 2364 2365 //===----------------------------------------------------------------------===// 2366 // Inline Assembler Implementation Methods 2367 //===----------------------------------------------------------------------===// 2368 2369 TargetLowering::ConstraintType 2370 TargetLowering::getConstraintType(StringRef Constraint) const { 2371 unsigned S = Constraint.size(); 2372 2373 if (S == 1) { 2374 switch (Constraint[0]) { 2375 default: break; 2376 case 'r': return C_RegisterClass; 2377 case 'm': // memory 2378 case 'o': // offsetable 2379 case 'V': // not offsetable 2380 return C_Memory; 2381 case 'i': // Simple Integer or Relocatable Constant 2382 case 'n': // Simple Integer 2383 case 'E': // Floating Point Constant 2384 case 'F': // Floating Point Constant 2385 case 's': // Relocatable Constant 2386 case 'p': // Address. 2387 case 'X': // Allow ANY value. 2388 case 'I': // Target registers. 2389 case 'J': 2390 case 'K': 2391 case 'L': 2392 case 'M': 2393 case 'N': 2394 case 'O': 2395 case 'P': 2396 case '<': 2397 case '>': 2398 return C_Other; 2399 } 2400 } 2401 2402 if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { 2403 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 2404 return C_Memory; 2405 return C_Register; 2406 } 2407 return C_Unknown; 2408 } 2409 2410 /// Try to replace an X constraint, which matches anything, with another that 2411 /// has more specific requirements based on the type of the corresponding 2412 /// operand. 2413 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ 2414 if (ConstraintVT.isInteger()) 2415 return "r"; 2416 if (ConstraintVT.isFloatingPoint()) 2417 return "f"; // works for many targets 2418 return nullptr; 2419 } 2420 2421 /// Lower the specified operand into the Ops vector. 2422 /// If it is invalid, don't add anything to Ops. 2423 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 2424 std::string &Constraint, 2425 std::vector<SDValue> &Ops, 2426 SelectionDAG &DAG) const { 2427 2428 if (Constraint.length() > 1) return; 2429 2430 char ConstraintLetter = Constraint[0]; 2431 switch (ConstraintLetter) { 2432 default: break; 2433 case 'X': // Allows any operand; labels (basic block) use this. 2434 if (Op.getOpcode() == ISD::BasicBlock) { 2435 Ops.push_back(Op); 2436 return; 2437 } 2438 LLVM_FALLTHROUGH; 2439 case 'i': // Simple Integer or Relocatable Constant 2440 case 'n': // Simple Integer 2441 case 's': { // Relocatable Constant 2442 // These operands are interested in values of the form (GV+C), where C may 2443 // be folded in as an offset of GV, or it may be explicitly added. Also, it 2444 // is possible and fine if either GV or C are missing. 2445 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2446 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 2447 2448 // If we have "(add GV, C)", pull out GV/C 2449 if (Op.getOpcode() == ISD::ADD) { 2450 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2451 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 2452 if (!C || !GA) { 2453 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 2454 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 2455 } 2456 if (!C || !GA) { 2457 C = nullptr; 2458 GA = nullptr; 2459 } 2460 } 2461 2462 // If we find a valid operand, map to the TargetXXX version so that the 2463 // value itself doesn't get selected. 2464 if (GA) { // Either &GV or &GV+C 2465 if (ConstraintLetter != 'n') { 2466 int64_t Offs = GA->getOffset(); 2467 if (C) Offs += C->getZExtValue(); 2468 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 2469 C ? SDLoc(C) : SDLoc(), 2470 Op.getValueType(), Offs)); 2471 } 2472 return; 2473 } 2474 if (C) { // just C, no GV. 2475 // Simple constants are not allowed for 's'. 2476 if (ConstraintLetter != 's') { 2477 // gcc prints these as sign extended. Sign extend value to 64 bits 2478 // now; without this it would get ZExt'd later in 2479 // ScheduleDAGSDNodes::EmitNode, which is very generic. 2480 Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(), 2481 SDLoc(C), MVT::i64)); 2482 } 2483 return; 2484 } 2485 break; 2486 } 2487 } 2488 } 2489 2490 std::pair<unsigned, const TargetRegisterClass *> 2491 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 2492 StringRef Constraint, 2493 MVT VT) const { 2494 if (Constraint.empty() || Constraint[0] != '{') 2495 return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr)); 2496 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); 2497 2498 // Remove the braces from around the name. 2499 StringRef RegName(Constraint.data()+1, Constraint.size()-2); 2500 2501 std::pair<unsigned, const TargetRegisterClass*> R = 2502 std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr)); 2503 2504 // Figure out which register class contains this reg. 2505 for (const TargetRegisterClass *RC : RI->regclasses()) { 2506 // If none of the value types for this register class are valid, we 2507 // can't use it. For example, 64-bit reg classes on 32-bit targets. 2508 if (!isLegalRC(*RI, *RC)) 2509 continue; 2510 2511 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 2512 I != E; ++I) { 2513 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 2514 std::pair<unsigned, const TargetRegisterClass*> S = 2515 std::make_pair(*I, RC); 2516 2517 // If this register class has the requested value type, return it, 2518 // otherwise keep searching and return the first class found 2519 // if no other is found which explicitly has the requested type. 2520 if (RI->isTypeLegalForClass(*RC, VT)) 2521 return S; 2522 if (!R.second) 2523 R = S; 2524 } 2525 } 2526 } 2527 2528 return R; 2529 } 2530 2531 //===----------------------------------------------------------------------===// 2532 // Constraint Selection. 2533 2534 /// Return true of this is an input operand that is a matching constraint like 2535 /// "4". 2536 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 2537 assert(!ConstraintCode.empty() && "No known constraint!"); 2538 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 2539 } 2540 2541 /// If this is an input matching constraint, this method returns the output 2542 /// operand it matches. 2543 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 2544 assert(!ConstraintCode.empty() && "No known constraint!"); 2545 return atoi(ConstraintCode.c_str()); 2546 } 2547 2548 /// Split up the constraint string from the inline assembly value into the 2549 /// specific constraints and their prefixes, and also tie in the associated 2550 /// operand values. 2551 /// If this returns an empty vector, and if the constraint string itself 2552 /// isn't empty, there was an error parsing. 2553 TargetLowering::AsmOperandInfoVector 2554 TargetLowering::ParseConstraints(const DataLayout &DL, 2555 const TargetRegisterInfo *TRI, 2556 ImmutableCallSite CS) const { 2557 /// Information about all of the constraints. 2558 AsmOperandInfoVector ConstraintOperands; 2559 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 2560 unsigned maCount = 0; // Largest number of multiple alternative constraints. 2561 2562 // Do a prepass over the constraints, canonicalizing them, and building up the 2563 // ConstraintOperands list. 2564 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 2565 unsigned ResNo = 0; // ResNo - The result number of the next output. 2566 2567 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 2568 ConstraintOperands.emplace_back(std::move(CI)); 2569 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 2570 2571 // Update multiple alternative constraint count. 2572 if (OpInfo.multipleAlternatives.size() > maCount) 2573 maCount = OpInfo.multipleAlternatives.size(); 2574 2575 OpInfo.ConstraintVT = MVT::Other; 2576 2577 // Compute the value type for each operand. 2578 switch (OpInfo.Type) { 2579 case InlineAsm::isOutput: 2580 // Indirect outputs just consume an argument. 2581 if (OpInfo.isIndirect) { 2582 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2583 break; 2584 } 2585 2586 // The return value of the call is this value. As such, there is no 2587 // corresponding argument. 2588 assert(!CS.getType()->isVoidTy() && 2589 "Bad inline asm!"); 2590 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 2591 OpInfo.ConstraintVT = 2592 getSimpleValueType(DL, STy->getElementType(ResNo)); 2593 } else { 2594 assert(ResNo == 0 && "Asm only has one result!"); 2595 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 2596 } 2597 ++ResNo; 2598 break; 2599 case InlineAsm::isInput: 2600 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2601 break; 2602 case InlineAsm::isClobber: 2603 // Nothing to do. 2604 break; 2605 } 2606 2607 if (OpInfo.CallOperandVal) { 2608 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 2609 if (OpInfo.isIndirect) { 2610 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 2611 if (!PtrTy) 2612 report_fatal_error("Indirect operand for inline asm not a pointer!"); 2613 OpTy = PtrTy->getElementType(); 2614 } 2615 2616 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 2617 if (StructType *STy = dyn_cast<StructType>(OpTy)) 2618 if (STy->getNumElements() == 1) 2619 OpTy = STy->getElementType(0); 2620 2621 // If OpTy is not a single value, it may be a struct/union that we 2622 // can tile with integers. 2623 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 2624 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 2625 switch (BitSize) { 2626 default: break; 2627 case 1: 2628 case 8: 2629 case 16: 2630 case 32: 2631 case 64: 2632 case 128: 2633 OpInfo.ConstraintVT = 2634 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 2635 break; 2636 } 2637 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 2638 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 2639 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 2640 } else { 2641 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 2642 } 2643 } 2644 } 2645 2646 // If we have multiple alternative constraints, select the best alternative. 2647 if (!ConstraintOperands.empty()) { 2648 if (maCount) { 2649 unsigned bestMAIndex = 0; 2650 int bestWeight = -1; 2651 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 2652 int weight = -1; 2653 unsigned maIndex; 2654 // Compute the sums of the weights for each alternative, keeping track 2655 // of the best (highest weight) one so far. 2656 for (maIndex = 0; maIndex < maCount; ++maIndex) { 2657 int weightSum = 0; 2658 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2659 cIndex != eIndex; ++cIndex) { 2660 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2661 if (OpInfo.Type == InlineAsm::isClobber) 2662 continue; 2663 2664 // If this is an output operand with a matching input operand, 2665 // look up the matching input. If their types mismatch, e.g. one 2666 // is an integer, the other is floating point, or their sizes are 2667 // different, flag it as an maCantMatch. 2668 if (OpInfo.hasMatchingInput()) { 2669 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2670 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2671 if ((OpInfo.ConstraintVT.isInteger() != 2672 Input.ConstraintVT.isInteger()) || 2673 (OpInfo.ConstraintVT.getSizeInBits() != 2674 Input.ConstraintVT.getSizeInBits())) { 2675 weightSum = -1; // Can't match. 2676 break; 2677 } 2678 } 2679 } 2680 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 2681 if (weight == -1) { 2682 weightSum = -1; 2683 break; 2684 } 2685 weightSum += weight; 2686 } 2687 // Update best. 2688 if (weightSum > bestWeight) { 2689 bestWeight = weightSum; 2690 bestMAIndex = maIndex; 2691 } 2692 } 2693 2694 // Now select chosen alternative in each constraint. 2695 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2696 cIndex != eIndex; ++cIndex) { 2697 AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; 2698 if (cInfo.Type == InlineAsm::isClobber) 2699 continue; 2700 cInfo.selectAlternative(bestMAIndex); 2701 } 2702 } 2703 } 2704 2705 // Check and hook up tied operands, choose constraint code to use. 2706 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2707 cIndex != eIndex; ++cIndex) { 2708 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2709 2710 // If this is an output operand with a matching input operand, look up the 2711 // matching input. If their types mismatch, e.g. one is an integer, the 2712 // other is floating point, or their sizes are different, flag it as an 2713 // error. 2714 if (OpInfo.hasMatchingInput()) { 2715 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2716 2717 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2718 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 2719 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 2720 OpInfo.ConstraintVT); 2721 std::pair<unsigned, const TargetRegisterClass *> InputRC = 2722 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 2723 Input.ConstraintVT); 2724 if ((OpInfo.ConstraintVT.isInteger() != 2725 Input.ConstraintVT.isInteger()) || 2726 (MatchRC.second != InputRC.second)) { 2727 report_fatal_error("Unsupported asm: input constraint" 2728 " with a matching output constraint of" 2729 " incompatible type!"); 2730 } 2731 } 2732 } 2733 } 2734 2735 return ConstraintOperands; 2736 } 2737 2738 /// Return an integer indicating how general CT is. 2739 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 2740 switch (CT) { 2741 case TargetLowering::C_Other: 2742 case TargetLowering::C_Unknown: 2743 return 0; 2744 case TargetLowering::C_Register: 2745 return 1; 2746 case TargetLowering::C_RegisterClass: 2747 return 2; 2748 case TargetLowering::C_Memory: 2749 return 3; 2750 } 2751 llvm_unreachable("Invalid constraint type"); 2752 } 2753 2754 /// Examine constraint type and operand type and determine a weight value. 2755 /// This object must already have been set up with the operand type 2756 /// and the current alternative constraint selected. 2757 TargetLowering::ConstraintWeight 2758 TargetLowering::getMultipleConstraintMatchWeight( 2759 AsmOperandInfo &info, int maIndex) const { 2760 InlineAsm::ConstraintCodeVector *rCodes; 2761 if (maIndex >= (int)info.multipleAlternatives.size()) 2762 rCodes = &info.Codes; 2763 else 2764 rCodes = &info.multipleAlternatives[maIndex].Codes; 2765 ConstraintWeight BestWeight = CW_Invalid; 2766 2767 // Loop over the options, keeping track of the most general one. 2768 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 2769 ConstraintWeight weight = 2770 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 2771 if (weight > BestWeight) 2772 BestWeight = weight; 2773 } 2774 2775 return BestWeight; 2776 } 2777 2778 /// Examine constraint type and operand type and determine a weight value. 2779 /// This object must already have been set up with the operand type 2780 /// and the current alternative constraint selected. 2781 TargetLowering::ConstraintWeight 2782 TargetLowering::getSingleConstraintMatchWeight( 2783 AsmOperandInfo &info, const char *constraint) const { 2784 ConstraintWeight weight = CW_Invalid; 2785 Value *CallOperandVal = info.CallOperandVal; 2786 // If we don't have a value, we can't do a match, 2787 // but allow it at the lowest weight. 2788 if (!CallOperandVal) 2789 return CW_Default; 2790 // Look at the constraint type. 2791 switch (*constraint) { 2792 case 'i': // immediate integer. 2793 case 'n': // immediate integer with a known value. 2794 if (isa<ConstantInt>(CallOperandVal)) 2795 weight = CW_Constant; 2796 break; 2797 case 's': // non-explicit intregal immediate. 2798 if (isa<GlobalValue>(CallOperandVal)) 2799 weight = CW_Constant; 2800 break; 2801 case 'E': // immediate float if host format. 2802 case 'F': // immediate float. 2803 if (isa<ConstantFP>(CallOperandVal)) 2804 weight = CW_Constant; 2805 break; 2806 case '<': // memory operand with autodecrement. 2807 case '>': // memory operand with autoincrement. 2808 case 'm': // memory operand. 2809 case 'o': // offsettable memory operand 2810 case 'V': // non-offsettable memory operand 2811 weight = CW_Memory; 2812 break; 2813 case 'r': // general register. 2814 case 'g': // general register, memory operand or immediate integer. 2815 // note: Clang converts "g" to "imr". 2816 if (CallOperandVal->getType()->isIntegerTy()) 2817 weight = CW_Register; 2818 break; 2819 case 'X': // any operand. 2820 default: 2821 weight = CW_Default; 2822 break; 2823 } 2824 return weight; 2825 } 2826 2827 /// If there are multiple different constraints that we could pick for this 2828 /// operand (e.g. "imr") try to pick the 'best' one. 2829 /// This is somewhat tricky: constraints fall into four classes: 2830 /// Other -> immediates and magic values 2831 /// Register -> one specific register 2832 /// RegisterClass -> a group of regs 2833 /// Memory -> memory 2834 /// Ideally, we would pick the most specific constraint possible: if we have 2835 /// something that fits into a register, we would pick it. The problem here 2836 /// is that if we have something that could either be in a register or in 2837 /// memory that use of the register could cause selection of *other* 2838 /// operands to fail: they might only succeed if we pick memory. Because of 2839 /// this the heuristic we use is: 2840 /// 2841 /// 1) If there is an 'other' constraint, and if the operand is valid for 2842 /// that constraint, use it. This makes us take advantage of 'i' 2843 /// constraints when available. 2844 /// 2) Otherwise, pick the most general constraint present. This prefers 2845 /// 'm' over 'r', for example. 2846 /// 2847 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 2848 const TargetLowering &TLI, 2849 SDValue Op, SelectionDAG *DAG) { 2850 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 2851 unsigned BestIdx = 0; 2852 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 2853 int BestGenerality = -1; 2854 2855 // Loop over the options, keeping track of the most general one. 2856 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 2857 TargetLowering::ConstraintType CType = 2858 TLI.getConstraintType(OpInfo.Codes[i]); 2859 2860 // If this is an 'other' constraint, see if the operand is valid for it. 2861 // For example, on X86 we might have an 'rI' constraint. If the operand 2862 // is an integer in the range [0..31] we want to use I (saving a load 2863 // of a register), otherwise we must use 'r'. 2864 if (CType == TargetLowering::C_Other && Op.getNode()) { 2865 assert(OpInfo.Codes[i].size() == 1 && 2866 "Unhandled multi-letter 'other' constraint"); 2867 std::vector<SDValue> ResultOps; 2868 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 2869 ResultOps, *DAG); 2870 if (!ResultOps.empty()) { 2871 BestType = CType; 2872 BestIdx = i; 2873 break; 2874 } 2875 } 2876 2877 // Things with matching constraints can only be registers, per gcc 2878 // documentation. This mainly affects "g" constraints. 2879 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 2880 continue; 2881 2882 // This constraint letter is more general than the previous one, use it. 2883 int Generality = getConstraintGenerality(CType); 2884 if (Generality > BestGenerality) { 2885 BestType = CType; 2886 BestIdx = i; 2887 BestGenerality = Generality; 2888 } 2889 } 2890 2891 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 2892 OpInfo.ConstraintType = BestType; 2893 } 2894 2895 /// Determines the constraint code and constraint type to use for the specific 2896 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 2897 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 2898 SDValue Op, 2899 SelectionDAG *DAG) const { 2900 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 2901 2902 // Single-letter constraints ('r') are very common. 2903 if (OpInfo.Codes.size() == 1) { 2904 OpInfo.ConstraintCode = OpInfo.Codes[0]; 2905 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2906 } else { 2907 ChooseConstraint(OpInfo, *this, Op, DAG); 2908 } 2909 2910 // 'X' matches anything. 2911 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 2912 // Labels and constants are handled elsewhere ('X' is the only thing 2913 // that matches labels). For Functions, the type here is the type of 2914 // the result, which is not what we want to look at; leave them alone. 2915 Value *v = OpInfo.CallOperandVal; 2916 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 2917 OpInfo.CallOperandVal = v; 2918 return; 2919 } 2920 2921 // Otherwise, try to resolve it to something we know about by looking at 2922 // the actual operand type. 2923 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 2924 OpInfo.ConstraintCode = Repl; 2925 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2926 } 2927 } 2928 } 2929 2930 /// \brief Given an exact SDIV by a constant, create a multiplication 2931 /// with the multiplicative inverse of the constant. 2932 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d, 2933 const SDLoc &dl, SelectionDAG &DAG, 2934 std::vector<SDNode *> &Created) { 2935 assert(d != 0 && "Division by zero!"); 2936 2937 // Shift the value upfront if it is even, so the LSB is one. 2938 unsigned ShAmt = d.countTrailingZeros(); 2939 if (ShAmt) { 2940 // TODO: For UDIV use SRL instead of SRA. 2941 SDValue Amt = 2942 DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(), 2943 DAG.getDataLayout())); 2944 SDNodeFlags Flags; 2945 Flags.setExact(true); 2946 Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, Flags); 2947 Created.push_back(Op1.getNode()); 2948 d.ashrInPlace(ShAmt); 2949 } 2950 2951 // Calculate the multiplicative inverse, using Newton's method. 2952 APInt t, xn = d; 2953 while ((t = d*xn) != 1) 2954 xn *= APInt(d.getBitWidth(), 2) - t; 2955 2956 SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType()); 2957 SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2); 2958 Created.push_back(Mul.getNode()); 2959 return Mul; 2960 } 2961 2962 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 2963 SelectionDAG &DAG, 2964 std::vector<SDNode *> *Created) const { 2965 AttributeList Attr = DAG.getMachineFunction().getFunction()->getAttributes(); 2966 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2967 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 2968 return SDValue(N,0); // Lower SDIV as SDIV 2969 return SDValue(); 2970 } 2971 2972 /// \brief Given an ISD::SDIV node expressing a divide by constant, 2973 /// return a DAG expression to select that will generate the same value by 2974 /// multiplying by a magic number. 2975 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 2976 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor, 2977 SelectionDAG &DAG, bool IsAfterLegalization, 2978 std::vector<SDNode *> *Created) const { 2979 assert(Created && "No vector to hold sdiv ops."); 2980 2981 EVT VT = N->getValueType(0); 2982 SDLoc dl(N); 2983 2984 // Check to see if we can do this. 2985 // FIXME: We should be more aggressive here. 2986 if (!isTypeLegal(VT)) 2987 return SDValue(); 2988 2989 // If the sdiv has an 'exact' bit we can use a simpler lowering. 2990 if (N->getFlags().hasExact()) 2991 return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created); 2992 2993 APInt::ms magics = Divisor.magic(); 2994 2995 // Multiply the numerator (operand 0) by the magic value 2996 // FIXME: We should support doing a MUL in a wider type 2997 SDValue Q; 2998 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) : 2999 isOperationLegalOrCustom(ISD::MULHS, VT)) 3000 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0), 3001 DAG.getConstant(magics.m, dl, VT)); 3002 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) : 3003 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) 3004 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), 3005 N->getOperand(0), 3006 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 3007 else 3008 return SDValue(); // No mulhs or equvialent 3009 // If d > 0 and m < 0, add the numerator 3010 if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 3011 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); 3012 Created->push_back(Q.getNode()); 3013 } 3014 // If d < 0 and m > 0, subtract the numerator. 3015 if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 3016 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0)); 3017 Created->push_back(Q.getNode()); 3018 } 3019 auto &DL = DAG.getDataLayout(); 3020 // Shift right algebraic if shift value is nonzero 3021 if (magics.s > 0) { 3022 Q = DAG.getNode( 3023 ISD::SRA, dl, VT, Q, 3024 DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); 3025 Created->push_back(Q.getNode()); 3026 } 3027 // Extract the sign bit and add it to the quotient 3028 SDValue T = 3029 DAG.getNode(ISD::SRL, dl, VT, Q, 3030 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, 3031 getShiftAmountTy(Q.getValueType(), DL))); 3032 Created->push_back(T.getNode()); 3033 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 3034 } 3035 3036 /// \brief Given an ISD::UDIV node expressing a divide by constant, 3037 /// return a DAG expression to select that will generate the same value by 3038 /// multiplying by a magic number. 3039 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 3040 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor, 3041 SelectionDAG &DAG, bool IsAfterLegalization, 3042 std::vector<SDNode *> *Created) const { 3043 assert(Created && "No vector to hold udiv ops."); 3044 3045 EVT VT = N->getValueType(0); 3046 SDLoc dl(N); 3047 auto &DL = DAG.getDataLayout(); 3048 3049 // Check to see if we can do this. 3050 // FIXME: We should be more aggressive here. 3051 if (!isTypeLegal(VT)) 3052 return SDValue(); 3053 3054 // FIXME: We should use a narrower constant when the upper 3055 // bits are known to be zero. 3056 APInt::mu magics = Divisor.magicu(); 3057 3058 SDValue Q = N->getOperand(0); 3059 3060 // If the divisor is even, we can avoid using the expensive fixup by shifting 3061 // the divided value upfront. 3062 if (magics.a != 0 && !Divisor[0]) { 3063 unsigned Shift = Divisor.countTrailingZeros(); 3064 Q = DAG.getNode( 3065 ISD::SRL, dl, VT, Q, 3066 DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL))); 3067 Created->push_back(Q.getNode()); 3068 3069 // Get magic number for the shifted divisor. 3070 magics = Divisor.lshr(Shift).magicu(Shift); 3071 assert(magics.a == 0 && "Should use cheap fixup now"); 3072 } 3073 3074 // Multiply the numerator (operand 0) by the magic value 3075 // FIXME: We should support doing a MUL in a wider type 3076 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) : 3077 isOperationLegalOrCustom(ISD::MULHU, VT)) 3078 Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT)); 3079 else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) : 3080 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) 3081 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q, 3082 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 3083 else 3084 return SDValue(); // No mulhu or equivalent 3085 3086 Created->push_back(Q.getNode()); 3087 3088 if (magics.a == 0) { 3089 assert(magics.s < Divisor.getBitWidth() && 3090 "We shouldn't generate an undefined shift!"); 3091 return DAG.getNode( 3092 ISD::SRL, dl, VT, Q, 3093 DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); 3094 } else { 3095 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); 3096 Created->push_back(NPQ.getNode()); 3097 NPQ = DAG.getNode( 3098 ISD::SRL, dl, VT, NPQ, 3099 DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL))); 3100 Created->push_back(NPQ.getNode()); 3101 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 3102 Created->push_back(NPQ.getNode()); 3103 return DAG.getNode( 3104 ISD::SRL, dl, VT, NPQ, 3105 DAG.getConstant(magics.s - 1, dl, 3106 getShiftAmountTy(NPQ.getValueType(), DL))); 3107 } 3108 } 3109 3110 bool TargetLowering:: 3111 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 3112 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 3113 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 3114 "be a constant integer"); 3115 return true; 3116 } 3117 3118 return false; 3119 } 3120 3121 //===----------------------------------------------------------------------===// 3122 // Legalization Utilities 3123 //===----------------------------------------------------------------------===// 3124 3125 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 3126 SDValue LHS, SDValue RHS, 3127 SmallVectorImpl<SDValue> &Result, 3128 EVT HiLoVT, SelectionDAG &DAG, 3129 MulExpansionKind Kind, SDValue LL, 3130 SDValue LH, SDValue RL, SDValue RH) const { 3131 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 3132 Opcode == ISD::SMUL_LOHI); 3133 3134 bool HasMULHS = (Kind == MulExpansionKind::Always) || 3135 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 3136 bool HasMULHU = (Kind == MulExpansionKind::Always) || 3137 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 3138 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 3139 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 3140 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 3141 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 3142 3143 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 3144 return false; 3145 3146 unsigned OuterBitSize = VT.getScalarSizeInBits(); 3147 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 3148 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 3149 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 3150 3151 // LL, LH, RL, and RH must be either all NULL or all set to a value. 3152 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 3153 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 3154 3155 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 3156 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 3157 bool Signed) -> bool { 3158 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 3159 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 3160 Hi = SDValue(Lo.getNode(), 1); 3161 return true; 3162 } 3163 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 3164 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 3165 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 3166 return true; 3167 } 3168 return false; 3169 }; 3170 3171 SDValue Lo, Hi; 3172 3173 if (!LL.getNode() && !RL.getNode() && 3174 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 3175 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 3176 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 3177 } 3178 3179 if (!LL.getNode()) 3180 return false; 3181 3182 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 3183 if (DAG.MaskedValueIsZero(LHS, HighMask) && 3184 DAG.MaskedValueIsZero(RHS, HighMask)) { 3185 // The inputs are both zero-extended. 3186 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 3187 Result.push_back(Lo); 3188 Result.push_back(Hi); 3189 if (Opcode != ISD::MUL) { 3190 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 3191 Result.push_back(Zero); 3192 Result.push_back(Zero); 3193 } 3194 return true; 3195 } 3196 } 3197 3198 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 3199 RHSSB > InnerBitSize) { 3200 // The input values are both sign-extended. 3201 // TODO non-MUL case? 3202 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 3203 Result.push_back(Lo); 3204 Result.push_back(Hi); 3205 return true; 3206 } 3207 } 3208 3209 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 3210 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 3211 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 3212 // FIXME getShiftAmountTy does not always return a sensible result when VT 3213 // is an illegal type, and so the type may be too small to fit the shift 3214 // amount. Override it with i32. The shift will have to be legalized. 3215 ShiftAmountTy = MVT::i32; 3216 } 3217 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 3218 3219 if (!LH.getNode() && !RH.getNode() && 3220 isOperationLegalOrCustom(ISD::SRL, VT) && 3221 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 3222 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 3223 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 3224 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 3225 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 3226 } 3227 3228 if (!LH.getNode()) 3229 return false; 3230 3231 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 3232 return false; 3233 3234 Result.push_back(Lo); 3235 3236 if (Opcode == ISD::MUL) { 3237 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 3238 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 3239 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 3240 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 3241 Result.push_back(Hi); 3242 return true; 3243 } 3244 3245 // Compute the full width result. 3246 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 3247 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3248 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 3249 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3250 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 3251 }; 3252 3253 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 3254 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 3255 return false; 3256 3257 // This is effectively the add part of a multiply-add of half-sized operands, 3258 // so it cannot overflow. 3259 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 3260 3261 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 3262 return false; 3263 3264 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 3265 Merge(Lo, Hi)); 3266 3267 SDValue Carry = Next.getValue(1); 3268 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 3269 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 3270 3271 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 3272 return false; 3273 3274 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 3275 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 3276 Carry); 3277 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 3278 3279 if (Opcode == ISD::SMUL_LOHI) { 3280 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 3281 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 3282 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 3283 3284 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 3285 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 3286 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 3287 } 3288 3289 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 3290 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 3291 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 3292 return true; 3293 } 3294 3295 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 3296 SelectionDAG &DAG, MulExpansionKind Kind, 3297 SDValue LL, SDValue LH, SDValue RL, 3298 SDValue RH) const { 3299 SmallVector<SDValue, 2> Result; 3300 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 3301 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 3302 DAG, Kind, LL, LH, RL, RH); 3303 if (Ok) { 3304 assert(Result.size() == 2); 3305 Lo = Result[0]; 3306 Hi = Result[1]; 3307 } 3308 return Ok; 3309 } 3310 3311 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 3312 SelectionDAG &DAG) const { 3313 EVT VT = Node->getOperand(0).getValueType(); 3314 EVT NVT = Node->getValueType(0); 3315 SDLoc dl(SDValue(Node, 0)); 3316 3317 // FIXME: Only f32 to i64 conversions are supported. 3318 if (VT != MVT::f32 || NVT != MVT::i64) 3319 return false; 3320 3321 // Expand f32 -> i64 conversion 3322 // This algorithm comes from compiler-rt's implementation of fixsfdi: 3323 // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c 3324 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), 3325 VT.getSizeInBits()); 3326 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 3327 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 3328 SDValue Bias = DAG.getConstant(127, dl, IntVT); 3329 SDValue SignMask = DAG.getConstant(APInt::getSignMask(VT.getSizeInBits()), dl, 3330 IntVT); 3331 SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT); 3332 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 3333 3334 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0)); 3335 3336 auto &DL = DAG.getDataLayout(); 3337 SDValue ExponentBits = DAG.getNode( 3338 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 3339 DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL))); 3340 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 3341 3342 SDValue Sign = DAG.getNode( 3343 ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 3344 DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL))); 3345 Sign = DAG.getSExtOrTrunc(Sign, dl, NVT); 3346 3347 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 3348 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 3349 DAG.getConstant(0x00800000, dl, IntVT)); 3350 3351 R = DAG.getZExtOrTrunc(R, dl, NVT); 3352 3353 R = DAG.getSelectCC( 3354 dl, Exponent, ExponentLoBit, 3355 DAG.getNode(ISD::SHL, dl, NVT, R, 3356 DAG.getZExtOrTrunc( 3357 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 3358 dl, getShiftAmountTy(IntVT, DL))), 3359 DAG.getNode(ISD::SRL, dl, NVT, R, 3360 DAG.getZExtOrTrunc( 3361 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 3362 dl, getShiftAmountTy(IntVT, DL))), 3363 ISD::SETGT); 3364 3365 SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT, 3366 DAG.getNode(ISD::XOR, dl, NVT, R, Sign), 3367 Sign); 3368 3369 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 3370 DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT); 3371 return true; 3372 } 3373 3374 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 3375 SelectionDAG &DAG) const { 3376 SDLoc SL(LD); 3377 SDValue Chain = LD->getChain(); 3378 SDValue BasePTR = LD->getBasePtr(); 3379 EVT SrcVT = LD->getMemoryVT(); 3380 ISD::LoadExtType ExtType = LD->getExtensionType(); 3381 3382 unsigned NumElem = SrcVT.getVectorNumElements(); 3383 3384 EVT SrcEltVT = SrcVT.getScalarType(); 3385 EVT DstEltVT = LD->getValueType(0).getScalarType(); 3386 3387 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 3388 assert(SrcEltVT.isByteSized()); 3389 3390 EVT PtrVT = BasePTR.getValueType(); 3391 3392 SmallVector<SDValue, 8> Vals; 3393 SmallVector<SDValue, 8> LoadChains; 3394 3395 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 3396 SDValue ScalarLoad = 3397 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 3398 LD->getPointerInfo().getWithOffset(Idx * Stride), 3399 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 3400 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3401 3402 BasePTR = DAG.getNode(ISD::ADD, SL, PtrVT, BasePTR, 3403 DAG.getConstant(Stride, SL, PtrVT)); 3404 3405 Vals.push_back(ScalarLoad.getValue(0)); 3406 LoadChains.push_back(ScalarLoad.getValue(1)); 3407 } 3408 3409 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 3410 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); 3411 3412 return DAG.getMergeValues({ Value, NewChain }, SL); 3413 } 3414 3415 // FIXME: This relies on each element having a byte size, otherwise the stride 3416 // is 0 and just overwrites the same location. ExpandStore currently expects 3417 // this broken behavior. 3418 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 3419 SelectionDAG &DAG) const { 3420 SDLoc SL(ST); 3421 3422 SDValue Chain = ST->getChain(); 3423 SDValue BasePtr = ST->getBasePtr(); 3424 SDValue Value = ST->getValue(); 3425 EVT StVT = ST->getMemoryVT(); 3426 3427 // The type of the data we want to save 3428 EVT RegVT = Value.getValueType(); 3429 EVT RegSclVT = RegVT.getScalarType(); 3430 3431 // The type of data as saved in memory. 3432 EVT MemSclVT = StVT.getScalarType(); 3433 3434 EVT PtrVT = BasePtr.getValueType(); 3435 3436 // Store Stride in bytes 3437 unsigned Stride = MemSclVT.getSizeInBits() / 8; 3438 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 3439 unsigned NumElem = StVT.getVectorNumElements(); 3440 3441 // Extract each of the elements from the original vector and save them into 3442 // memory individually. 3443 SmallVector<SDValue, 8> Stores; 3444 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 3445 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 3446 DAG.getConstant(Idx, SL, IdxVT)); 3447 3448 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 3449 DAG.getConstant(Idx * Stride, SL, PtrVT)); 3450 3451 // This scalar TruncStore may be illegal, but we legalize it later. 3452 SDValue Store = DAG.getTruncStore( 3453 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 3454 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 3455 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 3456 3457 Stores.push_back(Store); 3458 } 3459 3460 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 3461 } 3462 3463 std::pair<SDValue, SDValue> 3464 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 3465 assert(LD->getAddressingMode() == ISD::UNINDEXED && 3466 "unaligned indexed loads not implemented!"); 3467 SDValue Chain = LD->getChain(); 3468 SDValue Ptr = LD->getBasePtr(); 3469 EVT VT = LD->getValueType(0); 3470 EVT LoadedVT = LD->getMemoryVT(); 3471 SDLoc dl(LD); 3472 if (VT.isFloatingPoint() || VT.isVector()) { 3473 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 3474 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 3475 if (!isOperationLegalOrCustom(ISD::LOAD, intVT)) { 3476 // Scalarize the load and let the individual components be handled. 3477 SDValue Scalarized = scalarizeVectorLoad(LD, DAG); 3478 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); 3479 } 3480 3481 // Expand to a (misaligned) integer load of the same size, 3482 // then bitconvert to floating point or vector. 3483 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 3484 LD->getMemOperand()); 3485 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 3486 if (LoadedVT != VT) 3487 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 3488 ISD::ANY_EXTEND, dl, VT, Result); 3489 3490 return std::make_pair(Result, newLoad.getValue(1)); 3491 } 3492 3493 // Copy the value to a (aligned) stack slot using (unaligned) integer 3494 // loads and stores, then do a (aligned) load from the stack slot. 3495 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 3496 unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8; 3497 unsigned RegBytes = RegVT.getSizeInBits() / 8; 3498 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 3499 3500 // Make sure the stack slot is also aligned for the register type. 3501 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 3502 3503 SmallVector<SDValue, 8> Stores; 3504 SDValue StackPtr = StackBase; 3505 unsigned Offset = 0; 3506 3507 EVT PtrVT = Ptr.getValueType(); 3508 EVT StackPtrVT = StackPtr.getValueType(); 3509 3510 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 3511 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 3512 3513 // Do all but one copies using the full register width. 3514 for (unsigned i = 1; i < NumRegs; i++) { 3515 // Load one integer register's worth from the original location. 3516 SDValue Load = DAG.getLoad( 3517 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 3518 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 3519 LD->getAAInfo()); 3520 // Follow the load with a store to the stack slot. Remember the store. 3521 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr, 3522 MachinePointerInfo())); 3523 // Increment the pointers. 3524 Offset += RegBytes; 3525 Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement); 3526 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, StackPtr, 3527 StackPtrIncrement); 3528 } 3529 3530 // The last copy may be partial. Do an extending load. 3531 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 3532 8 * (LoadedBytes - Offset)); 3533 SDValue Load = 3534 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 3535 LD->getPointerInfo().getWithOffset(Offset), MemVT, 3536 MinAlign(LD->getAlignment(), Offset), 3537 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3538 // Follow the load with a store to the stack slot. Remember the store. 3539 // On big-endian machines this requires a truncating store to ensure 3540 // that the bits end up in the right place. 3541 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr, 3542 MachinePointerInfo(), MemVT)); 3543 3544 // The order of the stores doesn't matter - say it with a TokenFactor. 3545 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 3546 3547 // Finally, perform the original load only redirected to the stack slot. 3548 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 3549 MachinePointerInfo(), LoadedVT); 3550 3551 // Callers expect a MERGE_VALUES node. 3552 return std::make_pair(Load, TF); 3553 } 3554 3555 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 3556 "Unaligned load of unsupported type."); 3557 3558 // Compute the new VT that is half the size of the old one. This is an 3559 // integer MVT. 3560 unsigned NumBits = LoadedVT.getSizeInBits(); 3561 EVT NewLoadedVT; 3562 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 3563 NumBits >>= 1; 3564 3565 unsigned Alignment = LD->getAlignment(); 3566 unsigned IncrementSize = NumBits / 8; 3567 ISD::LoadExtType HiExtType = LD->getExtensionType(); 3568 3569 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 3570 if (HiExtType == ISD::NON_EXTLOAD) 3571 HiExtType = ISD::ZEXTLOAD; 3572 3573 // Load the value in two parts 3574 SDValue Lo, Hi; 3575 if (DAG.getDataLayout().isLittleEndian()) { 3576 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 3577 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 3578 LD->getAAInfo()); 3579 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 3580 DAG.getConstant(IncrementSize, dl, Ptr.getValueType())); 3581 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 3582 LD->getPointerInfo().getWithOffset(IncrementSize), 3583 NewLoadedVT, MinAlign(Alignment, IncrementSize), 3584 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3585 } else { 3586 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 3587 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 3588 LD->getAAInfo()); 3589 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 3590 DAG.getConstant(IncrementSize, dl, Ptr.getValueType())); 3591 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 3592 LD->getPointerInfo().getWithOffset(IncrementSize), 3593 NewLoadedVT, MinAlign(Alignment, IncrementSize), 3594 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3595 } 3596 3597 // aggregate the two parts 3598 SDValue ShiftAmount = 3599 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 3600 DAG.getDataLayout())); 3601 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 3602 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 3603 3604 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 3605 Hi.getValue(1)); 3606 3607 return std::make_pair(Result, TF); 3608 } 3609 3610 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 3611 SelectionDAG &DAG) const { 3612 assert(ST->getAddressingMode() == ISD::UNINDEXED && 3613 "unaligned indexed stores not implemented!"); 3614 SDValue Chain = ST->getChain(); 3615 SDValue Ptr = ST->getBasePtr(); 3616 SDValue Val = ST->getValue(); 3617 EVT VT = Val.getValueType(); 3618 int Alignment = ST->getAlignment(); 3619 3620 SDLoc dl(ST); 3621 if (ST->getMemoryVT().isFloatingPoint() || 3622 ST->getMemoryVT().isVector()) { 3623 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 3624 if (isTypeLegal(intVT)) { 3625 if (!isOperationLegalOrCustom(ISD::STORE, intVT)) { 3626 // Scalarize the store and let the individual components be handled. 3627 SDValue Result = scalarizeVectorStore(ST, DAG); 3628 3629 return Result; 3630 } 3631 // Expand to a bitconvert of the value to the integer type of the 3632 // same size, then a (misaligned) int store. 3633 // FIXME: Does not handle truncating floating point stores! 3634 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 3635 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 3636 Alignment, ST->getMemOperand()->getFlags()); 3637 return Result; 3638 } 3639 // Do a (aligned) store to a stack slot, then copy from the stack slot 3640 // to the final destination using (unaligned) integer loads and stores. 3641 EVT StoredVT = ST->getMemoryVT(); 3642 MVT RegVT = 3643 getRegisterType(*DAG.getContext(), 3644 EVT::getIntegerVT(*DAG.getContext(), 3645 StoredVT.getSizeInBits())); 3646 EVT PtrVT = Ptr.getValueType(); 3647 unsigned StoredBytes = StoredVT.getSizeInBits() / 8; 3648 unsigned RegBytes = RegVT.getSizeInBits() / 8; 3649 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 3650 3651 // Make sure the stack slot is also aligned for the register type. 3652 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 3653 3654 // Perform the original store, only redirected to the stack slot. 3655 SDValue Store = DAG.getTruncStore(Chain, dl, Val, StackPtr, 3656 MachinePointerInfo(), StoredVT); 3657 3658 EVT StackPtrVT = StackPtr.getValueType(); 3659 3660 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 3661 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 3662 SmallVector<SDValue, 8> Stores; 3663 unsigned Offset = 0; 3664 3665 // Do all but one copies using the full register width. 3666 for (unsigned i = 1; i < NumRegs; i++) { 3667 // Load one integer register's worth from the stack slot. 3668 SDValue Load = 3669 DAG.getLoad(RegVT, dl, Store, StackPtr, MachinePointerInfo()); 3670 // Store it to the final location. Remember the store. 3671 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 3672 ST->getPointerInfo().getWithOffset(Offset), 3673 MinAlign(ST->getAlignment(), Offset), 3674 ST->getMemOperand()->getFlags())); 3675 // Increment the pointers. 3676 Offset += RegBytes; 3677 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, 3678 StackPtr, StackPtrIncrement); 3679 Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement); 3680 } 3681 3682 // The last store may be partial. Do a truncating store. On big-endian 3683 // machines this requires an extending load from the stack slot to ensure 3684 // that the bits are in the right place. 3685 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 3686 8 * (StoredBytes - Offset)); 3687 3688 // Load from the stack slot. 3689 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 3690 MachinePointerInfo(), MemVT); 3691 3692 Stores.push_back( 3693 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 3694 ST->getPointerInfo().getWithOffset(Offset), MemVT, 3695 MinAlign(ST->getAlignment(), Offset), 3696 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 3697 // The order of the stores doesn't matter - say it with a TokenFactor. 3698 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 3699 return Result; 3700 } 3701 3702 assert(ST->getMemoryVT().isInteger() && 3703 !ST->getMemoryVT().isVector() && 3704 "Unaligned store of unknown type."); 3705 // Get the half-size VT 3706 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); 3707 int NumBits = NewStoredVT.getSizeInBits(); 3708 int IncrementSize = NumBits / 8; 3709 3710 // Divide the stored value in two parts. 3711 SDValue ShiftAmount = 3712 DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(), 3713 DAG.getDataLayout())); 3714 SDValue Lo = Val; 3715 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 3716 3717 // Store the two parts 3718 SDValue Store1, Store2; 3719 Store1 = DAG.getTruncStore(Chain, dl, 3720 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 3721 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 3722 ST->getMemOperand()->getFlags()); 3723 3724 EVT PtrVT = Ptr.getValueType(); 3725 Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3726 DAG.getConstant(IncrementSize, dl, PtrVT)); 3727 Alignment = MinAlign(Alignment, IncrementSize); 3728 Store2 = DAG.getTruncStore( 3729 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 3730 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 3731 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 3732 3733 SDValue Result = 3734 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 3735 return Result; 3736 } 3737 3738 SDValue 3739 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 3740 const SDLoc &DL, EVT DataVT, 3741 SelectionDAG &DAG, 3742 bool IsCompressedMemory) const { 3743 SDValue Increment; 3744 EVT AddrVT = Addr.getValueType(); 3745 EVT MaskVT = Mask.getValueType(); 3746 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 3747 "Incompatible types of Data and Mask"); 3748 if (IsCompressedMemory) { 3749 // Incrementing the pointer according to number of '1's in the mask. 3750 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 3751 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 3752 if (MaskIntVT.getSizeInBits() < 32) { 3753 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 3754 MaskIntVT = MVT::i32; 3755 } 3756 3757 // Count '1's with POPCNT. 3758 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 3759 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 3760 // Scale is an element size in bytes. 3761 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 3762 AddrVT); 3763 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 3764 } else 3765 Increment = DAG.getConstant(DataVT.getSizeInBits() / 8, DL, AddrVT); 3766 3767 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 3768 } 3769 3770 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 3771 SDValue Idx, 3772 EVT VecVT, 3773 const SDLoc &dl) { 3774 if (isa<ConstantSDNode>(Idx)) 3775 return Idx; 3776 3777 EVT IdxVT = Idx.getValueType(); 3778 unsigned NElts = VecVT.getVectorNumElements(); 3779 if (isPowerOf2_32(NElts)) { 3780 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 3781 Log2_32(NElts)); 3782 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 3783 DAG.getConstant(Imm, dl, IdxVT)); 3784 } 3785 3786 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 3787 DAG.getConstant(NElts - 1, dl, IdxVT)); 3788 } 3789 3790 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 3791 SDValue VecPtr, EVT VecVT, 3792 SDValue Index) const { 3793 SDLoc dl(Index); 3794 // Make sure the index type is big enough to compute in. 3795 Index = DAG.getZExtOrTrunc(Index, dl, getPointerTy(DAG.getDataLayout())); 3796 3797 EVT EltVT = VecVT.getVectorElementType(); 3798 3799 // Calculate the element offset and add it to the pointer. 3800 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 3801 assert(EltSize * 8 == EltVT.getSizeInBits() && 3802 "Converting bits to bytes lost precision"); 3803 3804 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 3805 3806 EVT IdxVT = Index.getValueType(); 3807 3808 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 3809 DAG.getConstant(EltSize, dl, IdxVT)); 3810 return DAG.getNode(ISD::ADD, dl, IdxVT, Index, VecPtr); 3811 } 3812 3813 //===----------------------------------------------------------------------===// 3814 // Implementation of Emulated TLS Model 3815 //===----------------------------------------------------------------------===// 3816 3817 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 3818 SelectionDAG &DAG) const { 3819 // Access to address of TLS varialbe xyz is lowered to a function call: 3820 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 3821 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3822 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 3823 SDLoc dl(GA); 3824 3825 ArgListTy Args; 3826 ArgListEntry Entry; 3827 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 3828 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 3829 StringRef EmuTlsVarName(NameString); 3830 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 3831 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 3832 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 3833 Entry.Ty = VoidPtrType; 3834 Args.push_back(Entry); 3835 3836 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 3837 3838 TargetLowering::CallLoweringInfo CLI(DAG); 3839 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 3840 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 3841 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3842 3843 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 3844 // At last for X86 targets, maybe good for other targets too? 3845 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 3846 MFI.setAdjustsStack(true); // Is this only for X86 target? 3847 MFI.setHasCalls(true); 3848 3849 assert((GA->getOffset() == 0) && 3850 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 3851 return CallResult.first; 3852 } 3853 3854 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 3855 SelectionDAG &DAG) const { 3856 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 3857 if (!isCtlzFast()) 3858 return SDValue(); 3859 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3860 SDLoc dl(Op); 3861 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3862 if (C->isNullValue() && CC == ISD::SETEQ) { 3863 EVT VT = Op.getOperand(0).getValueType(); 3864 SDValue Zext = Op.getOperand(0); 3865 if (VT.bitsLT(MVT::i32)) { 3866 VT = MVT::i32; 3867 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 3868 } 3869 unsigned Log2b = Log2_32(VT.getSizeInBits()); 3870 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 3871 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 3872 DAG.getConstant(Log2b, dl, MVT::i32)); 3873 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 3874 } 3875 } 3876 return SDValue(); 3877 } 3878