1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Target/TargetLowering.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/CodeGen/Analysis.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/GlobalVariable.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/MC/MCAsmInfo.h"
27 #include "llvm/MC/MCExpr.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Target/TargetLoweringObjectFile.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Target/TargetRegisterInfo.h"
34 #include "llvm/Target/TargetSubtargetInfo.h"
35 #include <cctype>
36 using namespace llvm;
37 
38 /// NOTE: The TargetMachine owns TLOF.
39 TargetLowering::TargetLowering(const TargetMachine &tm)
40   : TargetLoweringBase(tm) {}
41 
42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43   return nullptr;
44 }
45 
46 /// Check whether a given call node is in tail position within its function. If
47 /// so, it sets Chain to the input chain of the tail call.
48 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
49                                           SDValue &Chain) const {
50   const Function *F = DAG.getMachineFunction().getFunction();
51 
52   // Conservatively require the attributes of the call to match those of
53   // the return. Ignore noalias because it doesn't affect the call sequence.
54   AttributeSet CallerAttrs = F->getAttributes();
55   if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex)
56       .removeAttribute(Attribute::NoAlias).hasAttributes())
57     return false;
58 
59   // It's not safe to eliminate the sign / zero extension of the return value.
60   if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
61       CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
62     return false;
63 
64   // Check if the only use is a function return node.
65   return isUsedByReturnOnly(Node, Chain);
66 }
67 
68 /// \brief Set CallLoweringInfo attribute flags based on a call instruction
69 /// and called function attributes.
70 void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS,
71                                                  unsigned AttrIdx) {
72   isSExt     = CS->paramHasAttr(AttrIdx, Attribute::SExt);
73   isZExt     = CS->paramHasAttr(AttrIdx, Attribute::ZExt);
74   isInReg    = CS->paramHasAttr(AttrIdx, Attribute::InReg);
75   isSRet     = CS->paramHasAttr(AttrIdx, Attribute::StructRet);
76   isNest     = CS->paramHasAttr(AttrIdx, Attribute::Nest);
77   isByVal    = CS->paramHasAttr(AttrIdx, Attribute::ByVal);
78   isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca);
79   isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned);
80   Alignment  = CS->getParamAlignment(AttrIdx);
81 }
82 
83 /// Generate a libcall taking the given operands as arguments and returning a
84 /// result of type RetVT.
85 std::pair<SDValue, SDValue>
86 TargetLowering::makeLibCall(SelectionDAG &DAG,
87                             RTLIB::Libcall LC, EVT RetVT,
88                             ArrayRef<SDValue> Ops,
89                             bool isSigned, SDLoc dl,
90                             bool doesNotReturn,
91                             bool isReturnValueUsed) const {
92   TargetLowering::ArgListTy Args;
93   Args.reserve(Ops.size());
94 
95   TargetLowering::ArgListEntry Entry;
96   for (SDValue Op : Ops) {
97     Entry.Node = Op;
98     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
99     Entry.isSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
100     Entry.isZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
101     Args.push_back(Entry);
102   }
103 
104   if (LC == RTLIB::UNKNOWN_LIBCALL)
105     report_fatal_error("Unsupported library call operation!");
106   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
107                                          getPointerTy(DAG.getDataLayout()));
108 
109   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
110   TargetLowering::CallLoweringInfo CLI(DAG);
111   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
112   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
113     .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
114     .setNoReturn(doesNotReturn).setDiscardResult(!isReturnValueUsed)
115     .setSExtResult(signExtend).setZExtResult(!signExtend);
116   return LowerCallTo(CLI);
117 }
118 
119 /// Soften the operands of a comparison. This code is shared among BR_CC,
120 /// SELECT_CC, and SETCC handlers.
121 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
122                                          SDValue &NewLHS, SDValue &NewRHS,
123                                          ISD::CondCode &CCCode,
124                                          SDLoc dl) const {
125   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
126          && "Unsupported setcc type!");
127 
128   // Expand into one or more soft-fp libcall(s).
129   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
130   bool ShouldInvertCC = false;
131   switch (CCCode) {
132   case ISD::SETEQ:
133   case ISD::SETOEQ:
134     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
135           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
136           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
137     break;
138   case ISD::SETNE:
139   case ISD::SETUNE:
140     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
141           (VT == MVT::f64) ? RTLIB::UNE_F64 :
142           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
143     break;
144   case ISD::SETGE:
145   case ISD::SETOGE:
146     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
147           (VT == MVT::f64) ? RTLIB::OGE_F64 :
148           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
149     break;
150   case ISD::SETLT:
151   case ISD::SETOLT:
152     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
153           (VT == MVT::f64) ? RTLIB::OLT_F64 :
154           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
155     break;
156   case ISD::SETLE:
157   case ISD::SETOLE:
158     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
159           (VT == MVT::f64) ? RTLIB::OLE_F64 :
160           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
161     break;
162   case ISD::SETGT:
163   case ISD::SETOGT:
164     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
165           (VT == MVT::f64) ? RTLIB::OGT_F64 :
166           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
167     break;
168   case ISD::SETUO:
169     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
170           (VT == MVT::f64) ? RTLIB::UO_F64 :
171           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
172     break;
173   case ISD::SETO:
174     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
175           (VT == MVT::f64) ? RTLIB::O_F64 :
176           (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
177     break;
178   case ISD::SETONE:
179     // SETONE = SETOLT | SETOGT
180     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
181           (VT == MVT::f64) ? RTLIB::OLT_F64 :
182           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
183     LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
184           (VT == MVT::f64) ? RTLIB::OGT_F64 :
185           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
186     break;
187   case ISD::SETUEQ:
188     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
189           (VT == MVT::f64) ? RTLIB::UO_F64 :
190           (VT == MVT::f128) ? RTLIB::UO_F64 : RTLIB::UO_PPCF128;
191     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
192           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
193           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
194     break;
195   default:
196     // Invert CC for unordered comparisons
197     ShouldInvertCC = true;
198     switch (CCCode) {
199     case ISD::SETULT:
200       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
201             (VT == MVT::f64) ? RTLIB::OGE_F64 :
202             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
203       break;
204     case ISD::SETULE:
205       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
206             (VT == MVT::f64) ? RTLIB::OGT_F64 :
207             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
208       break;
209     case ISD::SETUGT:
210       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
211             (VT == MVT::f64) ? RTLIB::OLE_F64 :
212             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
213       break;
214     case ISD::SETUGE:
215       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
216             (VT == MVT::f64) ? RTLIB::OLT_F64 :
217             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
218       break;
219     default: llvm_unreachable("Do not know how to soften this setcc!");
220     }
221   }
222 
223   // Use the target specific return value for comparions lib calls.
224   EVT RetVT = getCmpLibcallReturnType();
225   SDValue Ops[2] = {NewLHS, NewRHS};
226   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
227                        dl).first;
228   NewRHS = DAG.getConstant(0, dl, RetVT);
229 
230   CCCode = getCmpLibcallCC(LC1);
231   if (ShouldInvertCC)
232     CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
233 
234   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
235     SDValue Tmp = DAG.getNode(
236         ISD::SETCC, dl,
237         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
238         NewLHS, NewRHS, DAG.getCondCode(CCCode));
239     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
240                          dl).first;
241     NewLHS = DAG.getNode(
242         ISD::SETCC, dl,
243         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
244         NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
245     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
246     NewRHS = SDValue();
247   }
248 }
249 
250 /// Return the entry encoding for a jump table in the current function. The
251 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
252 unsigned TargetLowering::getJumpTableEncoding() const {
253   // In non-pic modes, just use the address of a block.
254   if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
255     return MachineJumpTableInfo::EK_BlockAddress;
256 
257   // In PIC mode, if the target supports a GPRel32 directive, use it.
258   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
259     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
260 
261   // Otherwise, use a label difference.
262   return MachineJumpTableInfo::EK_LabelDifference32;
263 }
264 
265 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
266                                                  SelectionDAG &DAG) const {
267   // If our PIC model is GP relative, use the global offset table as the base.
268   unsigned JTEncoding = getJumpTableEncoding();
269 
270   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
271       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
272     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
273 
274   return Table;
275 }
276 
277 /// This returns the relocation base for the given PIC jumptable, the same as
278 /// getPICJumpTableRelocBase, but as an MCExpr.
279 const MCExpr *
280 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
281                                              unsigned JTI,MCContext &Ctx) const{
282   // The normal PIC reloc base is the label at the start of the jump table.
283   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
284 }
285 
286 bool
287 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
288   // Assume that everything is safe in static mode.
289   if (getTargetMachine().getRelocationModel() == Reloc::Static)
290     return true;
291 
292   // In dynamic-no-pic mode, assume that known defined values are safe.
293   if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
294       GA && GA->getGlobal()->isStrongDefinitionForLinker())
295     return true;
296 
297   // Otherwise assume nothing is safe.
298   return false;
299 }
300 
301 //===----------------------------------------------------------------------===//
302 //  Optimization Methods
303 //===----------------------------------------------------------------------===//
304 
305 /// Check to see if the specified operand of the specified instruction is a
306 /// constant integer. If so, check to see if there are any bits set in the
307 /// constant that are not demanded. If so, shrink the constant and return true.
308 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
309                                                         const APInt &Demanded) {
310   SDLoc dl(Op);
311 
312   // FIXME: ISD::SELECT, ISD::SELECT_CC
313   switch (Op.getOpcode()) {
314   default: break;
315   case ISD::XOR:
316   case ISD::AND:
317   case ISD::OR: {
318     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
319     if (!C) return false;
320 
321     if (Op.getOpcode() == ISD::XOR &&
322         (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
323       return false;
324 
325     // if we can expand it to have all bits set, do it
326     if (C->getAPIntValue().intersects(~Demanded)) {
327       EVT VT = Op.getValueType();
328       SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
329                                 DAG.getConstant(Demanded &
330                                                 C->getAPIntValue(),
331                                                 dl, VT));
332       return CombineTo(Op, New);
333     }
334 
335     break;
336   }
337   }
338 
339   return false;
340 }
341 
342 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
343 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
344 /// generalized for targets with other types of implicit widening casts.
345 bool
346 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
347                                                     unsigned BitWidth,
348                                                     const APInt &Demanded,
349                                                     SDLoc dl) {
350   assert(Op.getNumOperands() == 2 &&
351          "ShrinkDemandedOp only supports binary operators!");
352   assert(Op.getNode()->getNumValues() == 1 &&
353          "ShrinkDemandedOp only supports nodes with one result!");
354 
355   // Early return, as this function cannot handle vector types.
356   if (Op.getValueType().isVector())
357     return false;
358 
359   // Don't do this if the node has another user, which may require the
360   // full value.
361   if (!Op.getNode()->hasOneUse())
362     return false;
363 
364   // Search for the smallest integer type with free casts to and from
365   // Op's type. For expedience, just check power-of-2 integer types.
366   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
367   unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros();
368   unsigned SmallVTBits = DemandedSize;
369   if (!isPowerOf2_32(SmallVTBits))
370     SmallVTBits = NextPowerOf2(SmallVTBits);
371   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
372     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
373     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
374         TLI.isZExtFree(SmallVT, Op.getValueType())) {
375       // We found a type with free casts.
376       SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
377                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
378                                           Op.getNode()->getOperand(0)),
379                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
380                                           Op.getNode()->getOperand(1)));
381       bool NeedZext = DemandedSize > SmallVTBits;
382       SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND,
383                               dl, Op.getValueType(), X);
384       return CombineTo(Op, Z);
385     }
386   }
387   return false;
388 }
389 
390 /// Look at Op. At this point, we know that only the DemandedMask bits of the
391 /// result of Op are ever used downstream. If we can use this information to
392 /// simplify Op, create a new simplified DAG node and return true, returning the
393 /// original and new nodes in Old and New. Otherwise, analyze the expression and
394 /// return a mask of KnownOne and KnownZero bits for the expression (used to
395 /// simplify the caller).  The KnownZero/One bits may only be accurate for those
396 /// bits in the DemandedMask.
397 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
398                                           const APInt &DemandedMask,
399                                           APInt &KnownZero,
400                                           APInt &KnownOne,
401                                           TargetLoweringOpt &TLO,
402                                           unsigned Depth) const {
403   unsigned BitWidth = DemandedMask.getBitWidth();
404   assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
405          "Mask size mismatches value type size!");
406   APInt NewMask = DemandedMask;
407   SDLoc dl(Op);
408   auto &DL = TLO.DAG.getDataLayout();
409 
410   // Don't know anything.
411   KnownZero = KnownOne = APInt(BitWidth, 0);
412 
413   // Other users may use these bits.
414   if (!Op.getNode()->hasOneUse()) {
415     if (Depth != 0) {
416       // If not at the root, Just compute the KnownZero/KnownOne bits to
417       // simplify things downstream.
418       TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth);
419       return false;
420     }
421     // If this is the root being simplified, allow it to have multiple uses,
422     // just set the NewMask to all bits.
423     NewMask = APInt::getAllOnesValue(BitWidth);
424   } else if (DemandedMask == 0) {
425     // Not demanding any bits from Op.
426     if (Op.getOpcode() != ISD::UNDEF)
427       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
428     return false;
429   } else if (Depth == 6) {        // Limit search depth.
430     return false;
431   }
432 
433   APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
434   switch (Op.getOpcode()) {
435   case ISD::Constant:
436     // We know all of the bits for a constant!
437     KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
438     KnownZero = ~KnownOne;
439     return false;   // Don't fall through, will infinitely loop.
440   case ISD::AND:
441     // If the RHS is a constant, check to see if the LHS would be zero without
442     // using the bits from the RHS.  Below, we use knowledge about the RHS to
443     // simplify the LHS, here we're using information from the LHS to simplify
444     // the RHS.
445     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
446       APInt LHSZero, LHSOne;
447       // Do not increment Depth here; that can cause an infinite loop.
448       TLO.DAG.computeKnownBits(Op.getOperand(0), LHSZero, LHSOne, Depth);
449       // If the LHS already has zeros where RHSC does, this and is dead.
450       if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
451         return TLO.CombineTo(Op, Op.getOperand(0));
452       // If any of the set bits in the RHS are known zero on the LHS, shrink
453       // the constant.
454       if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
455         return true;
456     }
457 
458     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
459                              KnownOne, TLO, Depth+1))
460       return true;
461     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
462     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
463                              KnownZero2, KnownOne2, TLO, Depth+1))
464       return true;
465     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
466 
467     // If all of the demanded bits are known one on one side, return the other.
468     // These bits cannot contribute to the result of the 'and'.
469     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
470       return TLO.CombineTo(Op, Op.getOperand(0));
471     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
472       return TLO.CombineTo(Op, Op.getOperand(1));
473     // If all of the demanded bits in the inputs are known zeros, return zero.
474     if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
475       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType()));
476     // If the RHS is a constant, see if we can simplify it.
477     if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
478       return true;
479     // If the operation can be done in a smaller type, do so.
480     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
481       return true;
482 
483     // Output known-1 bits are only known if set in both the LHS & RHS.
484     KnownOne &= KnownOne2;
485     // Output known-0 are known to be clear if zero in either the LHS | RHS.
486     KnownZero |= KnownZero2;
487     break;
488   case ISD::OR:
489     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
490                              KnownOne, TLO, Depth+1))
491       return true;
492     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
493     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
494                              KnownZero2, KnownOne2, TLO, Depth+1))
495       return true;
496     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
497 
498     // If all of the demanded bits are known zero on one side, return the other.
499     // These bits cannot contribute to the result of the 'or'.
500     if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
501       return TLO.CombineTo(Op, Op.getOperand(0));
502     if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
503       return TLO.CombineTo(Op, Op.getOperand(1));
504     // If all of the potentially set bits on one side are known to be set on
505     // the other side, just use the 'other' side.
506     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
507       return TLO.CombineTo(Op, Op.getOperand(0));
508     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
509       return TLO.CombineTo(Op, Op.getOperand(1));
510     // If the RHS is a constant, see if we can simplify it.
511     if (TLO.ShrinkDemandedConstant(Op, NewMask))
512       return true;
513     // If the operation can be done in a smaller type, do so.
514     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
515       return true;
516 
517     // Output known-0 bits are only known if clear in both the LHS & RHS.
518     KnownZero &= KnownZero2;
519     // Output known-1 are known to be set if set in either the LHS | RHS.
520     KnownOne |= KnownOne2;
521     break;
522   case ISD::XOR:
523     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
524                              KnownOne, TLO, Depth+1))
525       return true;
526     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
527     if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
528                              KnownOne2, TLO, Depth+1))
529       return true;
530     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
531 
532     // If all of the demanded bits are known zero on one side, return the other.
533     // These bits cannot contribute to the result of the 'xor'.
534     if ((KnownZero & NewMask) == NewMask)
535       return TLO.CombineTo(Op, Op.getOperand(0));
536     if ((KnownZero2 & NewMask) == NewMask)
537       return TLO.CombineTo(Op, Op.getOperand(1));
538     // If the operation can be done in a smaller type, do so.
539     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
540       return true;
541 
542     // If all of the unknown bits are known to be zero on one side or the other
543     // (but not both) turn this into an *inclusive* or.
544     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
545     if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
546       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
547                                                Op.getOperand(0),
548                                                Op.getOperand(1)));
549 
550     // Output known-0 bits are known if clear or set in both the LHS & RHS.
551     KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
552     // Output known-1 are known to be set if set in only one of the LHS, RHS.
553     KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
554 
555     // If all of the demanded bits on one side are known, and all of the set
556     // bits on that side are also known to be set on the other side, turn this
557     // into an AND, as we know the bits will be cleared.
558     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
559     // NB: it is okay if more bits are known than are requested
560     if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side
561       if (KnownOne == KnownOne2) { // set bits are the same on both sides
562         EVT VT = Op.getValueType();
563         SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, dl, VT);
564         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
565                                                  Op.getOperand(0), ANDC));
566       }
567     }
568 
569     // If the RHS is a constant, see if we can simplify it.
570     // for XOR, we prefer to force bits to 1 if they will make a -1.
571     // if we can't force bits, try to shrink constant
572     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
573       APInt Expanded = C->getAPIntValue() | (~NewMask);
574       // if we can expand it to have all bits set, do it
575       if (Expanded.isAllOnesValue()) {
576         if (Expanded != C->getAPIntValue()) {
577           EVT VT = Op.getValueType();
578           SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
579                                         TLO.DAG.getConstant(Expanded, dl, VT));
580           return TLO.CombineTo(Op, New);
581         }
582         // if it already has all the bits set, nothing to change
583         // but don't shrink either!
584       } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
585         return true;
586       }
587     }
588 
589     KnownZero = KnownZeroOut;
590     KnownOne  = KnownOneOut;
591     break;
592   case ISD::SELECT:
593     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
594                              KnownOne, TLO, Depth+1))
595       return true;
596     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
597                              KnownOne2, TLO, Depth+1))
598       return true;
599     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
600     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
601 
602     // If the operands are constants, see if we can simplify them.
603     if (TLO.ShrinkDemandedConstant(Op, NewMask))
604       return true;
605 
606     // Only known if known in both the LHS and RHS.
607     KnownOne &= KnownOne2;
608     KnownZero &= KnownZero2;
609     break;
610   case ISD::SELECT_CC:
611     if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
612                              KnownOne, TLO, Depth+1))
613       return true;
614     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
615                              KnownOne2, TLO, Depth+1))
616       return true;
617     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
618     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
619 
620     // If the operands are constants, see if we can simplify them.
621     if (TLO.ShrinkDemandedConstant(Op, NewMask))
622       return true;
623 
624     // Only known if known in both the LHS and RHS.
625     KnownOne &= KnownOne2;
626     KnownZero &= KnownZero2;
627     break;
628   case ISD::SHL:
629     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
630       unsigned ShAmt = SA->getZExtValue();
631       SDValue InOp = Op.getOperand(0);
632 
633       // If the shift count is an invalid immediate, don't do anything.
634       if (ShAmt >= BitWidth)
635         break;
636 
637       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
638       // single shift.  We can do this if the bottom bits (which are shifted
639       // out) are never demanded.
640       if (InOp.getOpcode() == ISD::SRL &&
641           isa<ConstantSDNode>(InOp.getOperand(1))) {
642         if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
643           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
644           unsigned Opc = ISD::SHL;
645           int Diff = ShAmt-C1;
646           if (Diff < 0) {
647             Diff = -Diff;
648             Opc = ISD::SRL;
649           }
650 
651           SDValue NewSA =
652             TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
653           EVT VT = Op.getValueType();
654           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
655                                                    InOp.getOperand(0), NewSA));
656         }
657       }
658 
659       if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
660                                KnownZero, KnownOne, TLO, Depth+1))
661         return true;
662 
663       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
664       // are not demanded. This will likely allow the anyext to be folded away.
665       if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
666         SDValue InnerOp = InOp.getNode()->getOperand(0);
667         EVT InnerVT = InnerOp.getValueType();
668         unsigned InnerBits = InnerVT.getSizeInBits();
669         if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 &&
670             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
671           EVT ShTy = getShiftAmountTy(InnerVT, DL);
672           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
673             ShTy = InnerVT;
674           SDValue NarrowShl =
675             TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
676                             TLO.DAG.getConstant(ShAmt, dl, ShTy));
677           return
678             TLO.CombineTo(Op,
679                           TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
680                                           NarrowShl));
681         }
682         // Repeat the SHL optimization above in cases where an extension
683         // intervenes: (shl (anyext (shr x, c1)), c2) to
684         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
685         // aren't demanded (as above) and that the shifted upper c1 bits of
686         // x aren't demanded.
687         if (InOp.hasOneUse() &&
688             InnerOp.getOpcode() == ISD::SRL &&
689             InnerOp.hasOneUse() &&
690             isa<ConstantSDNode>(InnerOp.getOperand(1))) {
691           uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1))
692             ->getZExtValue();
693           if (InnerShAmt < ShAmt &&
694               InnerShAmt < InnerBits &&
695               NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 &&
696               NewMask.trunc(ShAmt) == 0) {
697             SDValue NewSA =
698               TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
699                                   Op.getOperand(1).getValueType());
700             EVT VT = Op.getValueType();
701             SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
702                                              InnerOp.getOperand(0));
703             return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT,
704                                                      NewExt, NewSA));
705           }
706         }
707       }
708 
709       KnownZero <<= SA->getZExtValue();
710       KnownOne  <<= SA->getZExtValue();
711       // low bits known zero.
712       KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
713     }
714     break;
715   case ISD::SRL:
716     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
717       EVT VT = Op.getValueType();
718       unsigned ShAmt = SA->getZExtValue();
719       unsigned VTSize = VT.getSizeInBits();
720       SDValue InOp = Op.getOperand(0);
721 
722       // If the shift count is an invalid immediate, don't do anything.
723       if (ShAmt >= BitWidth)
724         break;
725 
726       APInt InDemandedMask = (NewMask << ShAmt);
727 
728       // If the shift is exact, then it does demand the low bits (and knows that
729       // they are zero).
730       if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact())
731         InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt);
732 
733       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
734       // single shift.  We can do this if the top bits (which are shifted out)
735       // are never demanded.
736       if (InOp.getOpcode() == ISD::SHL &&
737           isa<ConstantSDNode>(InOp.getOperand(1))) {
738         if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
739           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
740           unsigned Opc = ISD::SRL;
741           int Diff = ShAmt-C1;
742           if (Diff < 0) {
743             Diff = -Diff;
744             Opc = ISD::SHL;
745           }
746 
747           SDValue NewSA =
748             TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
749           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
750                                                    InOp.getOperand(0), NewSA));
751         }
752       }
753 
754       // Compute the new bits that are at the top now.
755       if (SimplifyDemandedBits(InOp, InDemandedMask,
756                                KnownZero, KnownOne, TLO, Depth+1))
757         return true;
758       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
759       KnownZero = KnownZero.lshr(ShAmt);
760       KnownOne  = KnownOne.lshr(ShAmt);
761 
762       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
763       KnownZero |= HighBits;  // High bits known zero.
764     }
765     break;
766   case ISD::SRA:
767     // If this is an arithmetic shift right and only the low-bit is set, we can
768     // always convert this into a logical shr, even if the shift amount is
769     // variable.  The low bit of the shift cannot be an input sign bit unless
770     // the shift amount is >= the size of the datatype, which is undefined.
771     if (NewMask == 1)
772       return TLO.CombineTo(Op,
773                            TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
774                                            Op.getOperand(0), Op.getOperand(1)));
775 
776     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
777       EVT VT = Op.getValueType();
778       unsigned ShAmt = SA->getZExtValue();
779 
780       // If the shift count is an invalid immediate, don't do anything.
781       if (ShAmt >= BitWidth)
782         break;
783 
784       APInt InDemandedMask = (NewMask << ShAmt);
785 
786       // If the shift is exact, then it does demand the low bits (and knows that
787       // they are zero).
788       if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact())
789         InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt);
790 
791       // If any of the demanded bits are produced by the sign extension, we also
792       // demand the input sign bit.
793       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
794       if (HighBits.intersects(NewMask))
795         InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
796 
797       if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
798                                KnownZero, KnownOne, TLO, Depth+1))
799         return true;
800       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
801       KnownZero = KnownZero.lshr(ShAmt);
802       KnownOne  = KnownOne.lshr(ShAmt);
803 
804       // Handle the sign bit, adjusted to where it is now in the mask.
805       APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
806 
807       // If the input sign bit is known to be zero, or if none of the top bits
808       // are demanded, turn this into an unsigned shift right.
809       if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
810         SDNodeFlags Flags;
811         Flags.setExact(cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact());
812         return TLO.CombineTo(Op,
813                              TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0),
814                                              Op.getOperand(1), &Flags));
815       }
816 
817       int Log2 = NewMask.exactLogBase2();
818       if (Log2 >= 0) {
819         // The bit must come from the sign.
820         SDValue NewSA =
821           TLO.DAG.getConstant(BitWidth - 1 - Log2, dl,
822                               Op.getOperand(1).getValueType());
823         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
824                                                  Op.getOperand(0), NewSA));
825       }
826 
827       if (KnownOne.intersects(SignBit))
828         // New bits are known one.
829         KnownOne |= HighBits;
830     }
831     break;
832   case ISD::SIGN_EXTEND_INREG: {
833     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
834 
835     APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
836     // If we only care about the highest bit, don't bother shifting right.
837     if (MsbMask == NewMask) {
838       unsigned ShAmt = ExVT.getScalarType().getSizeInBits();
839       SDValue InOp = Op.getOperand(0);
840       unsigned VTBits = Op->getValueType(0).getScalarType().getSizeInBits();
841       bool AlreadySignExtended =
842         TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1;
843       // However if the input is already sign extended we expect the sign
844       // extension to be dropped altogether later and do not simplify.
845       if (!AlreadySignExtended) {
846         // Compute the correct shift amount type, which must be getShiftAmountTy
847         // for scalar types after legalization.
848         EVT ShiftAmtTy = Op.getValueType();
849         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
850           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
851 
852         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, dl,
853                                                ShiftAmtTy);
854         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
855                                                  Op.getValueType(), InOp,
856                                                  ShiftAmt));
857       }
858     }
859 
860     // Sign extension.  Compute the demanded bits in the result that are not
861     // present in the input.
862     APInt NewBits =
863       APInt::getHighBitsSet(BitWidth,
864                             BitWidth - ExVT.getScalarType().getSizeInBits());
865 
866     // If none of the extended bits are demanded, eliminate the sextinreg.
867     if ((NewBits & NewMask) == 0)
868       return TLO.CombineTo(Op, Op.getOperand(0));
869 
870     APInt InSignBit =
871       APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth);
872     APInt InputDemandedBits =
873       APInt::getLowBitsSet(BitWidth,
874                            ExVT.getScalarType().getSizeInBits()) &
875       NewMask;
876 
877     // Since the sign extended bits are demanded, we know that the sign
878     // bit is demanded.
879     InputDemandedBits |= InSignBit;
880 
881     if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
882                              KnownZero, KnownOne, TLO, Depth+1))
883       return true;
884     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
885 
886     // If the sign bit of the input is known set or clear, then we know the
887     // top bits of the result.
888 
889     // If the input sign bit is known zero, convert this into a zero extension.
890     if (KnownZero.intersects(InSignBit))
891       return TLO.CombineTo(Op,
892                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT));
893 
894     if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
895       KnownOne |= NewBits;
896       KnownZero &= ~NewBits;
897     } else {                       // Input sign bit unknown
898       KnownZero &= ~NewBits;
899       KnownOne &= ~NewBits;
900     }
901     break;
902   }
903   case ISD::BUILD_PAIR: {
904     EVT HalfVT = Op.getOperand(0).getValueType();
905     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
906 
907     APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
908     APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
909 
910     APInt KnownZeroLo, KnownOneLo;
911     APInt KnownZeroHi, KnownOneHi;
912 
913     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo,
914                              KnownOneLo, TLO, Depth + 1))
915       return true;
916 
917     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi,
918                              KnownOneHi, TLO, Depth + 1))
919       return true;
920 
921     KnownZero = KnownZeroLo.zext(BitWidth) |
922                 KnownZeroHi.zext(BitWidth).shl(HalfBitWidth);
923 
924     KnownOne = KnownOneLo.zext(BitWidth) |
925                KnownOneHi.zext(BitWidth).shl(HalfBitWidth);
926     break;
927   }
928   case ISD::ZERO_EXTEND: {
929     unsigned OperandBitWidth =
930       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
931     APInt InMask = NewMask.trunc(OperandBitWidth);
932 
933     // If none of the top bits are demanded, convert this into an any_extend.
934     APInt NewBits =
935       APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
936     if (!NewBits.intersects(NewMask))
937       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
938                                                Op.getValueType(),
939                                                Op.getOperand(0)));
940 
941     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
942                              KnownZero, KnownOne, TLO, Depth+1))
943       return true;
944     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
945     KnownZero = KnownZero.zext(BitWidth);
946     KnownOne = KnownOne.zext(BitWidth);
947     KnownZero |= NewBits;
948     break;
949   }
950   case ISD::SIGN_EXTEND: {
951     EVT InVT = Op.getOperand(0).getValueType();
952     unsigned InBits = InVT.getScalarType().getSizeInBits();
953     APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
954     APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
955     APInt NewBits   = ~InMask & NewMask;
956 
957     // If none of the top bits are demanded, convert this into an any_extend.
958     if (NewBits == 0)
959       return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
960                                               Op.getValueType(),
961                                               Op.getOperand(0)));
962 
963     // Since some of the sign extended bits are demanded, we know that the sign
964     // bit is demanded.
965     APInt InDemandedBits = InMask & NewMask;
966     InDemandedBits |= InSignBit;
967     InDemandedBits = InDemandedBits.trunc(InBits);
968 
969     if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
970                              KnownOne, TLO, Depth+1))
971       return true;
972     KnownZero = KnownZero.zext(BitWidth);
973     KnownOne = KnownOne.zext(BitWidth);
974 
975     // If the sign bit is known zero, convert this to a zero extend.
976     if (KnownZero.intersects(InSignBit))
977       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
978                                                Op.getValueType(),
979                                                Op.getOperand(0)));
980 
981     // If the sign bit is known one, the top bits match.
982     if (KnownOne.intersects(InSignBit)) {
983       KnownOne |= NewBits;
984       assert((KnownZero & NewBits) == 0);
985     } else {   // Otherwise, top bits aren't known.
986       assert((KnownOne & NewBits) == 0);
987       assert((KnownZero & NewBits) == 0);
988     }
989     break;
990   }
991   case ISD::ANY_EXTEND: {
992     unsigned OperandBitWidth =
993       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
994     APInt InMask = NewMask.trunc(OperandBitWidth);
995     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
996                              KnownZero, KnownOne, TLO, Depth+1))
997       return true;
998     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
999     KnownZero = KnownZero.zext(BitWidth);
1000     KnownOne = KnownOne.zext(BitWidth);
1001     break;
1002   }
1003   case ISD::TRUNCATE: {
1004     // Simplify the input, using demanded bit information, and compute the known
1005     // zero/one bits live out.
1006     unsigned OperandBitWidth =
1007       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1008     APInt TruncMask = NewMask.zext(OperandBitWidth);
1009     if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1010                              KnownZero, KnownOne, TLO, Depth+1))
1011       return true;
1012     KnownZero = KnownZero.trunc(BitWidth);
1013     KnownOne = KnownOne.trunc(BitWidth);
1014 
1015     // If the input is only used by this truncate, see if we can shrink it based
1016     // on the known demanded bits.
1017     if (Op.getOperand(0).getNode()->hasOneUse()) {
1018       SDValue In = Op.getOperand(0);
1019       switch (In.getOpcode()) {
1020       default: break;
1021       case ISD::SRL:
1022         // Shrink SRL by a constant if none of the high bits shifted in are
1023         // demanded.
1024         if (TLO.LegalTypes() &&
1025             !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1026           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1027           // undesirable.
1028           break;
1029         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1030         if (!ShAmt)
1031           break;
1032         SDValue Shift = In.getOperand(1);
1033         if (TLO.LegalTypes()) {
1034           uint64_t ShVal = ShAmt->getZExtValue();
1035           Shift = TLO.DAG.getConstant(ShVal, dl,
1036                                       getShiftAmountTy(Op.getValueType(), DL));
1037         }
1038 
1039         APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1040                                                OperandBitWidth - BitWidth);
1041         HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
1042 
1043         if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1044           // None of the shifted in bits are needed.  Add a truncate of the
1045           // shift input, then shift it.
1046           SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1047                                              Op.getValueType(),
1048                                              In.getOperand(0));
1049           return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1050                                                    Op.getValueType(),
1051                                                    NewTrunc,
1052                                                    Shift));
1053         }
1054         break;
1055       }
1056     }
1057 
1058     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1059     break;
1060   }
1061   case ISD::AssertZext: {
1062     // AssertZext demands all of the high bits, plus any of the low bits
1063     // demanded by its users.
1064     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1065     APInt InMask = APInt::getLowBitsSet(BitWidth,
1066                                         VT.getSizeInBits());
1067     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
1068                              KnownZero, KnownOne, TLO, Depth+1))
1069       return true;
1070     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1071 
1072     KnownZero |= ~InMask & NewMask;
1073     break;
1074   }
1075   case ISD::BITCAST:
1076     // If this is an FP->Int bitcast and if the sign bit is the only
1077     // thing demanded, turn this into a FGETSIGN.
1078     if (!TLO.LegalOperations() &&
1079         !Op.getValueType().isVector() &&
1080         !Op.getOperand(0).getValueType().isVector() &&
1081         NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
1082         Op.getOperand(0).getValueType().isFloatingPoint()) {
1083       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
1084       bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1085       if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple() &&
1086            Op.getOperand(0).getValueType() != MVT::f128) {
1087         // Cannot eliminate/lower SHL for f128 yet.
1088         EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
1089         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1090         // place.  We expect the SHL to be eliminated by other optimizations.
1091         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
1092         unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
1093         if (!OpVTLegal && OpVTSizeInBits > 32)
1094           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
1095         unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1096         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, Op.getValueType());
1097         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1098                                                  Op.getValueType(),
1099                                                  Sign, ShAmt));
1100       }
1101     }
1102     break;
1103   case ISD::ADD:
1104   case ISD::MUL:
1105   case ISD::SUB: {
1106     // Add, Sub, and Mul don't demand any bits in positions beyond that
1107     // of the highest bit demanded of them.
1108     APInt LoMask = APInt::getLowBitsSet(BitWidth,
1109                                         BitWidth - NewMask.countLeadingZeros());
1110     if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1111                              KnownOne2, TLO, Depth+1))
1112       return true;
1113     if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1114                              KnownOne2, TLO, Depth+1))
1115       return true;
1116     // See if the operation should be performed at a smaller bit width.
1117     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1118       return true;
1119   }
1120   // FALL THROUGH
1121   default:
1122     // Just use computeKnownBits to compute output bits.
1123     TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth);
1124     break;
1125   }
1126 
1127   // If we know the value of all of the demanded bits, return this as a
1128   // constant.
1129   if ((NewMask & (KnownZero|KnownOne)) == NewMask) {
1130     // Avoid folding to a constant if any OpaqueConstant is involved.
1131     const SDNode *N = Op.getNode();
1132     for (SDNodeIterator I = SDNodeIterator::begin(N),
1133          E = SDNodeIterator::end(N); I != E; ++I) {
1134       SDNode *Op = *I;
1135       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
1136         if (C->isOpaque())
1137           return false;
1138     }
1139     return TLO.CombineTo(Op,
1140                          TLO.DAG.getConstant(KnownOne, dl, Op.getValueType()));
1141   }
1142 
1143   return false;
1144 }
1145 
1146 /// Determine which of the bits specified in Mask are known to be either zero or
1147 /// one and return them in the KnownZero/KnownOne bitsets.
1148 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1149                                                    APInt &KnownZero,
1150                                                    APInt &KnownOne,
1151                                                    const SelectionDAG &DAG,
1152                                                    unsigned Depth) const {
1153   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1154           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1155           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1156           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1157          "Should use MaskedValueIsZero if you don't know whether Op"
1158          " is a target node!");
1159   KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
1160 }
1161 
1162 /// This method can be implemented by targets that want to expose additional
1163 /// information about sign bits to the DAG Combiner.
1164 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1165                                                          const SelectionDAG &,
1166                                                          unsigned Depth) const {
1167   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1168           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1169           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1170           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1171          "Should use ComputeNumSignBits if you don't know whether Op"
1172          " is a target node!");
1173   return 1;
1174 }
1175 
1176 /// Test if the given value is known to have exactly one bit set. This differs
1177 /// from computeKnownBits in that it doesn't need to determine which bit is set.
1178 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1179   // A left-shift of a constant one will have exactly one bit set, because
1180   // shifting the bit off the end is undefined.
1181   if (Val.getOpcode() == ISD::SHL)
1182     if (ConstantSDNode *C =
1183          dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1184       if (C->getAPIntValue() == 1)
1185         return true;
1186 
1187   // Similarly, a right-shift of a constant sign-bit will have exactly
1188   // one bit set.
1189   if (Val.getOpcode() == ISD::SRL)
1190     if (ConstantSDNode *C =
1191          dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1192       if (C->getAPIntValue().isSignBit())
1193         return true;
1194 
1195   // More could be done here, though the above checks are enough
1196   // to handle some common cases.
1197 
1198   // Fall back to computeKnownBits to catch other known cases.
1199   EVT OpVT = Val.getValueType();
1200   unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1201   APInt KnownZero, KnownOne;
1202   DAG.computeKnownBits(Val, KnownZero, KnownOne);
1203   return (KnownZero.countPopulation() == BitWidth - 1) &&
1204          (KnownOne.countPopulation() == 1);
1205 }
1206 
1207 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
1208   if (!N)
1209     return false;
1210 
1211   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
1212   if (!CN) {
1213     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
1214     if (!BV)
1215       return false;
1216 
1217     BitVector UndefElements;
1218     CN = BV->getConstantSplatNode(&UndefElements);
1219     // Only interested in constant splats, and we don't try to handle undef
1220     // elements in identifying boolean constants.
1221     if (!CN || UndefElements.none())
1222       return false;
1223   }
1224 
1225   switch (getBooleanContents(N->getValueType(0))) {
1226   case UndefinedBooleanContent:
1227     return CN->getAPIntValue()[0];
1228   case ZeroOrOneBooleanContent:
1229     return CN->isOne();
1230   case ZeroOrNegativeOneBooleanContent:
1231     return CN->isAllOnesValue();
1232   }
1233 
1234   llvm_unreachable("Invalid boolean contents");
1235 }
1236 
1237 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
1238   if (!N)
1239     return false;
1240 
1241   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
1242   if (!CN) {
1243     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
1244     if (!BV)
1245       return false;
1246 
1247     BitVector UndefElements;
1248     CN = BV->getConstantSplatNode(&UndefElements);
1249     // Only interested in constant splats, and we don't try to handle undef
1250     // elements in identifying boolean constants.
1251     if (!CN || UndefElements.none())
1252       return false;
1253   }
1254 
1255   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
1256     return !CN->getAPIntValue()[0];
1257 
1258   return CN->isNullValue();
1259 }
1260 
1261 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
1262                                        bool SExt) const {
1263   if (VT == MVT::i1)
1264     return N->isOne();
1265 
1266   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
1267   switch (Cnt) {
1268   case TargetLowering::ZeroOrOneBooleanContent:
1269     // An extended value of 1 is always true, unless its original type is i1,
1270     // in which case it will be sign extended to -1.
1271     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
1272   case TargetLowering::UndefinedBooleanContent:
1273   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1274     return N->isAllOnesValue() && SExt;
1275   }
1276   llvm_unreachable("Unexpected enumeration.");
1277 }
1278 
1279 /// Try to simplify a setcc built with the specified operands and cc. If it is
1280 /// unable to simplify it, return a null SDValue.
1281 SDValue
1282 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1283                               ISD::CondCode Cond, bool foldBooleans,
1284                               DAGCombinerInfo &DCI, SDLoc dl) const {
1285   SelectionDAG &DAG = DCI.DAG;
1286 
1287   // These setcc operations always fold.
1288   switch (Cond) {
1289   default: break;
1290   case ISD::SETFALSE:
1291   case ISD::SETFALSE2: return DAG.getConstant(0, dl, VT);
1292   case ISD::SETTRUE:
1293   case ISD::SETTRUE2: {
1294     TargetLowering::BooleanContent Cnt =
1295         getBooleanContents(N0->getValueType(0));
1296     return DAG.getConstant(
1297         Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl,
1298         VT);
1299   }
1300   }
1301 
1302   // Ensure that the constant occurs on the RHS, and fold constant
1303   // comparisons.
1304   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
1305   if (isa<ConstantSDNode>(N0.getNode()) &&
1306       (DCI.isBeforeLegalizeOps() ||
1307        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
1308     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
1309 
1310   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1311     const APInt &C1 = N1C->getAPIntValue();
1312 
1313     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1314     // equality comparison, then we're just comparing whether X itself is
1315     // zero.
1316     if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1317         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1318         N0.getOperand(1).getOpcode() == ISD::Constant) {
1319       const APInt &ShAmt
1320         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1321       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1322           ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1323         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1324           // (srl (ctlz x), 5) == 0  -> X != 0
1325           // (srl (ctlz x), 5) != 1  -> X != 0
1326           Cond = ISD::SETNE;
1327         } else {
1328           // (srl (ctlz x), 5) != 0  -> X == 0
1329           // (srl (ctlz x), 5) == 1  -> X == 0
1330           Cond = ISD::SETEQ;
1331         }
1332         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
1333         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1334                             Zero, Cond);
1335       }
1336     }
1337 
1338     SDValue CTPOP = N0;
1339     // Look through truncs that don't change the value of a ctpop.
1340     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1341       CTPOP = N0.getOperand(0);
1342 
1343     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1344         (N0 == CTPOP || N0.getValueType().getSizeInBits() >
1345                         Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
1346       EVT CTVT = CTPOP.getValueType();
1347       SDValue CTOp = CTPOP.getOperand(0);
1348 
1349       // (ctpop x) u< 2 -> (x & x-1) == 0
1350       // (ctpop x) u> 1 -> (x & x-1) != 0
1351       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1352         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1353                                   DAG.getConstant(1, dl, CTVT));
1354         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1355         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1356         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
1357       }
1358 
1359       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1360     }
1361 
1362     // (zext x) == C --> x == (trunc C)
1363     // (sext x) == C --> x == (trunc C)
1364     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1365         DCI.isBeforeLegalize() && N0->hasOneUse()) {
1366       unsigned MinBits = N0.getValueSizeInBits();
1367       SDValue PreExt;
1368       bool Signed = false;
1369       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
1370         // ZExt
1371         MinBits = N0->getOperand(0).getValueSizeInBits();
1372         PreExt = N0->getOperand(0);
1373       } else if (N0->getOpcode() == ISD::AND) {
1374         // DAGCombine turns costly ZExts into ANDs
1375         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
1376           if ((C->getAPIntValue()+1).isPowerOf2()) {
1377             MinBits = C->getAPIntValue().countTrailingOnes();
1378             PreExt = N0->getOperand(0);
1379           }
1380       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
1381         // SExt
1382         MinBits = N0->getOperand(0).getValueSizeInBits();
1383         PreExt = N0->getOperand(0);
1384         Signed = true;
1385       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
1386         // ZEXTLOAD / SEXTLOAD
1387         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
1388           MinBits = LN0->getMemoryVT().getSizeInBits();
1389           PreExt = N0;
1390         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
1391           Signed = true;
1392           MinBits = LN0->getMemoryVT().getSizeInBits();
1393           PreExt = N0;
1394         }
1395       }
1396 
1397       // Figure out how many bits we need to preserve this constant.
1398       unsigned ReqdBits = Signed ?
1399         C1.getBitWidth() - C1.getNumSignBits() + 1 :
1400         C1.getActiveBits();
1401 
1402       // Make sure we're not losing bits from the constant.
1403       if (MinBits > 0 &&
1404           MinBits < C1.getBitWidth() &&
1405           MinBits >= ReqdBits) {
1406         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
1407         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
1408           // Will get folded away.
1409           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
1410           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
1411           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
1412         }
1413 
1414         // If truncating the setcc operands is not desirable, we can still
1415         // simplify the expression in some cases:
1416         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
1417         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
1418         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
1419         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
1420         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
1421         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
1422         SDValue TopSetCC = N0->getOperand(0);
1423         unsigned N0Opc = N0->getOpcode();
1424         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
1425         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
1426             TopSetCC.getOpcode() == ISD::SETCC &&
1427             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
1428             (isConstFalseVal(N1C) ||
1429              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
1430 
1431           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
1432                          (!N1C->isNullValue() && Cond == ISD::SETNE);
1433 
1434           if (!Inverse)
1435             return TopSetCC;
1436 
1437           ISD::CondCode InvCond = ISD::getSetCCInverse(
1438               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
1439               TopSetCC.getOperand(0).getValueType().isInteger());
1440           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
1441                                       TopSetCC.getOperand(1),
1442                                       InvCond);
1443 
1444         }
1445       }
1446     }
1447 
1448     // If the LHS is '(and load, const)', the RHS is 0,
1449     // the test is for equality or unsigned, and all 1 bits of the const are
1450     // in the same partial word, see if we can shorten the load.
1451     if (DCI.isBeforeLegalize() &&
1452         !ISD::isSignedIntSetCC(Cond) &&
1453         N0.getOpcode() == ISD::AND && C1 == 0 &&
1454         N0.getNode()->hasOneUse() &&
1455         isa<LoadSDNode>(N0.getOperand(0)) &&
1456         N0.getOperand(0).getNode()->hasOneUse() &&
1457         isa<ConstantSDNode>(N0.getOperand(1))) {
1458       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1459       APInt bestMask;
1460       unsigned bestWidth = 0, bestOffset = 0;
1461       if (!Lod->isVolatile() && Lod->isUnindexed()) {
1462         unsigned origWidth = N0.getValueType().getSizeInBits();
1463         unsigned maskWidth = origWidth;
1464         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1465         // 8 bits, but have to be careful...
1466         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1467           origWidth = Lod->getMemoryVT().getSizeInBits();
1468         const APInt &Mask =
1469           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1470         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1471           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1472           for (unsigned offset=0; offset<origWidth/width; offset++) {
1473             if ((newMask & Mask) == Mask) {
1474               if (!DAG.getDataLayout().isLittleEndian())
1475                 bestOffset = (origWidth/width - offset - 1) * (width/8);
1476               else
1477                 bestOffset = (uint64_t)offset * (width/8);
1478               bestMask = Mask.lshr(offset * (width/8) * 8);
1479               bestWidth = width;
1480               break;
1481             }
1482             newMask = newMask << width;
1483           }
1484         }
1485       }
1486       if (bestWidth) {
1487         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
1488         if (newVT.isRound()) {
1489           EVT PtrType = Lod->getOperand(1).getValueType();
1490           SDValue Ptr = Lod->getBasePtr();
1491           if (bestOffset != 0)
1492             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1493                               DAG.getConstant(bestOffset, dl, PtrType));
1494           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1495           SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1496                                 Lod->getPointerInfo().getWithOffset(bestOffset),
1497                                         false, false, false, NewAlign);
1498           return DAG.getSetCC(dl, VT,
1499                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1500                                       DAG.getConstant(bestMask.trunc(bestWidth),
1501                                                       dl, newVT)),
1502                               DAG.getConstant(0LL, dl, newVT), Cond);
1503         }
1504       }
1505     }
1506 
1507     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1508     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1509       unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1510 
1511       // If the comparison constant has bits in the upper part, the
1512       // zero-extended value could never match.
1513       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1514                                               C1.getBitWidth() - InSize))) {
1515         switch (Cond) {
1516         case ISD::SETUGT:
1517         case ISD::SETUGE:
1518         case ISD::SETEQ: return DAG.getConstant(0, dl, VT);
1519         case ISD::SETULT:
1520         case ISD::SETULE:
1521         case ISD::SETNE: return DAG.getConstant(1, dl, VT);
1522         case ISD::SETGT:
1523         case ISD::SETGE:
1524           // True if the sign bit of C1 is set.
1525           return DAG.getConstant(C1.isNegative(), dl, VT);
1526         case ISD::SETLT:
1527         case ISD::SETLE:
1528           // True if the sign bit of C1 isn't set.
1529           return DAG.getConstant(C1.isNonNegative(), dl, VT);
1530         default:
1531           break;
1532         }
1533       }
1534 
1535       // Otherwise, we can perform the comparison with the low bits.
1536       switch (Cond) {
1537       case ISD::SETEQ:
1538       case ISD::SETNE:
1539       case ISD::SETUGT:
1540       case ISD::SETUGE:
1541       case ISD::SETULT:
1542       case ISD::SETULE: {
1543         EVT newVT = N0.getOperand(0).getValueType();
1544         if (DCI.isBeforeLegalizeOps() ||
1545             (isOperationLegal(ISD::SETCC, newVT) &&
1546              getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) {
1547           EVT NewSetCCVT =
1548               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
1549           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
1550 
1551           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
1552                                           NewConst, Cond);
1553           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
1554         }
1555         break;
1556       }
1557       default:
1558         break;   // todo, be more careful with signed comparisons
1559       }
1560     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1561                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1562       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1563       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1564       EVT ExtDstTy = N0.getValueType();
1565       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1566 
1567       // If the constant doesn't fit into the number of bits for the source of
1568       // the sign extension, it is impossible for both sides to be equal.
1569       if (C1.getMinSignedBits() > ExtSrcTyBits)
1570         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
1571 
1572       SDValue ZextOp;
1573       EVT Op0Ty = N0.getOperand(0).getValueType();
1574       if (Op0Ty == ExtSrcTy) {
1575         ZextOp = N0.getOperand(0);
1576       } else {
1577         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1578         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1579                               DAG.getConstant(Imm, dl, Op0Ty));
1580       }
1581       if (!DCI.isCalledByLegalizer())
1582         DCI.AddToWorklist(ZextOp.getNode());
1583       // Otherwise, make this a use of a zext.
1584       return DAG.getSetCC(dl, VT, ZextOp,
1585                           DAG.getConstant(C1 & APInt::getLowBitsSet(
1586                                                               ExtDstTyBits,
1587                                                               ExtSrcTyBits),
1588                                           dl, ExtDstTy),
1589                           Cond);
1590     } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1591                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1592       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1593       if (N0.getOpcode() == ISD::SETCC &&
1594           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
1595         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
1596         if (TrueWhenTrue)
1597           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
1598         // Invert the condition.
1599         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1600         CC = ISD::getSetCCInverse(CC,
1601                                   N0.getOperand(0).getValueType().isInteger());
1602         if (DCI.isBeforeLegalizeOps() ||
1603             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
1604           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1605       }
1606 
1607       if ((N0.getOpcode() == ISD::XOR ||
1608            (N0.getOpcode() == ISD::AND &&
1609             N0.getOperand(0).getOpcode() == ISD::XOR &&
1610             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1611           isa<ConstantSDNode>(N0.getOperand(1)) &&
1612           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1613         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1614         // can only do this if the top bits are known zero.
1615         unsigned BitWidth = N0.getValueSizeInBits();
1616         if (DAG.MaskedValueIsZero(N0,
1617                                   APInt::getHighBitsSet(BitWidth,
1618                                                         BitWidth-1))) {
1619           // Okay, get the un-inverted input value.
1620           SDValue Val;
1621           if (N0.getOpcode() == ISD::XOR)
1622             Val = N0.getOperand(0);
1623           else {
1624             assert(N0.getOpcode() == ISD::AND &&
1625                     N0.getOperand(0).getOpcode() == ISD::XOR);
1626             // ((X^1)&1)^1 -> X & 1
1627             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1628                               N0.getOperand(0).getOperand(0),
1629                               N0.getOperand(1));
1630           }
1631 
1632           return DAG.getSetCC(dl, VT, Val, N1,
1633                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1634         }
1635       } else if (N1C->getAPIntValue() == 1 &&
1636                  (VT == MVT::i1 ||
1637                   getBooleanContents(N0->getValueType(0)) ==
1638                       ZeroOrOneBooleanContent)) {
1639         SDValue Op0 = N0;
1640         if (Op0.getOpcode() == ISD::TRUNCATE)
1641           Op0 = Op0.getOperand(0);
1642 
1643         if ((Op0.getOpcode() == ISD::XOR) &&
1644             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
1645             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
1646           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
1647           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
1648           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
1649                               Cond);
1650         }
1651         if (Op0.getOpcode() == ISD::AND &&
1652             isa<ConstantSDNode>(Op0.getOperand(1)) &&
1653             cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
1654           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
1655           if (Op0.getValueType().bitsGT(VT))
1656             Op0 = DAG.getNode(ISD::AND, dl, VT,
1657                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
1658                           DAG.getConstant(1, dl, VT));
1659           else if (Op0.getValueType().bitsLT(VT))
1660             Op0 = DAG.getNode(ISD::AND, dl, VT,
1661                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
1662                         DAG.getConstant(1, dl, VT));
1663 
1664           return DAG.getSetCC(dl, VT, Op0,
1665                               DAG.getConstant(0, dl, Op0.getValueType()),
1666                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1667         }
1668         if (Op0.getOpcode() == ISD::AssertZext &&
1669             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
1670           return DAG.getSetCC(dl, VT, Op0,
1671                               DAG.getConstant(0, dl, Op0.getValueType()),
1672                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1673       }
1674     }
1675 
1676     APInt MinVal, MaxVal;
1677     unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1678     if (ISD::isSignedIntSetCC(Cond)) {
1679       MinVal = APInt::getSignedMinValue(OperandBitSize);
1680       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1681     } else {
1682       MinVal = APInt::getMinValue(OperandBitSize);
1683       MaxVal = APInt::getMaxValue(OperandBitSize);
1684     }
1685 
1686     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1687     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1688       if (C1 == MinVal) return DAG.getConstant(1, dl, VT);  // X >= MIN --> true
1689       // X >= C0 --> X > (C0 - 1)
1690       APInt C = C1 - 1;
1691       ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
1692       if ((DCI.isBeforeLegalizeOps() ||
1693            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
1694           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
1695                                 isLegalICmpImmediate(C.getSExtValue())))) {
1696         return DAG.getSetCC(dl, VT, N0,
1697                             DAG.getConstant(C, dl, N1.getValueType()),
1698                             NewCC);
1699       }
1700     }
1701 
1702     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1703       if (C1 == MaxVal) return DAG.getConstant(1, dl, VT);  // X <= MAX --> true
1704       // X <= C0 --> X < (C0 + 1)
1705       APInt C = C1 + 1;
1706       ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
1707       if ((DCI.isBeforeLegalizeOps() ||
1708            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
1709           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
1710                                 isLegalICmpImmediate(C.getSExtValue())))) {
1711         return DAG.getSetCC(dl, VT, N0,
1712                             DAG.getConstant(C, dl, N1.getValueType()),
1713                             NewCC);
1714       }
1715     }
1716 
1717     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1718       return DAG.getConstant(0, dl, VT);      // X < MIN --> false
1719     if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1720       return DAG.getConstant(1, dl, VT);      // X >= MIN --> true
1721     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1722       return DAG.getConstant(0, dl, VT);      // X > MAX --> false
1723     if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1724       return DAG.getConstant(1, dl, VT);      // X <= MAX --> true
1725 
1726     // Canonicalize setgt X, Min --> setne X, Min
1727     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1728       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1729     // Canonicalize setlt X, Max --> setne X, Max
1730     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1731       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1732 
1733     // If we have setult X, 1, turn it into seteq X, 0
1734     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1735       return DAG.getSetCC(dl, VT, N0,
1736                           DAG.getConstant(MinVal, dl, N0.getValueType()),
1737                           ISD::SETEQ);
1738     // If we have setugt X, Max-1, turn it into seteq X, Max
1739     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1740       return DAG.getSetCC(dl, VT, N0,
1741                           DAG.getConstant(MaxVal, dl, N0.getValueType()),
1742                           ISD::SETEQ);
1743 
1744     // If we have "setcc X, C0", check to see if we can shrink the immediate
1745     // by changing cc.
1746 
1747     // SETUGT X, SINTMAX  -> SETLT X, 0
1748     if (Cond == ISD::SETUGT &&
1749         C1 == APInt::getSignedMaxValue(OperandBitSize))
1750       return DAG.getSetCC(dl, VT, N0,
1751                           DAG.getConstant(0, dl, N1.getValueType()),
1752                           ISD::SETLT);
1753 
1754     // SETULT X, SINTMIN  -> SETGT X, -1
1755     if (Cond == ISD::SETULT &&
1756         C1 == APInt::getSignedMinValue(OperandBitSize)) {
1757       SDValue ConstMinusOne =
1758           DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
1759                           N1.getValueType());
1760       return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1761     }
1762 
1763     // Fold bit comparisons when we can.
1764     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1765         (VT == N0.getValueType() ||
1766          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
1767         N0.getOpcode() == ISD::AND) {
1768       auto &DL = DAG.getDataLayout();
1769       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1770         EVT ShiftTy = DCI.isBeforeLegalize()
1771                           ? getPointerTy(DL)
1772                           : getShiftAmountTy(N0.getValueType(), DL);
1773         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1774           // Perform the xform if the AND RHS is a single bit.
1775           if (AndRHS->getAPIntValue().isPowerOf2()) {
1776             return DAG.getNode(ISD::TRUNCATE, dl, VT,
1777                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1778                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
1779                                    ShiftTy)));
1780           }
1781         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
1782           // (X & 8) == 8  -->  (X & 8) >> 3
1783           // Perform the xform if C1 is a single bit.
1784           if (C1.isPowerOf2()) {
1785             return DAG.getNode(ISD::TRUNCATE, dl, VT,
1786                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1787                                       DAG.getConstant(C1.logBase2(), dl,
1788                                                       ShiftTy)));
1789           }
1790         }
1791       }
1792     }
1793 
1794     if (C1.getMinSignedBits() <= 64 &&
1795         !isLegalICmpImmediate(C1.getSExtValue())) {
1796       // (X & -256) == 256 -> (X >> 8) == 1
1797       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1798           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
1799         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1800           const APInt &AndRHSC = AndRHS->getAPIntValue();
1801           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
1802             unsigned ShiftBits = AndRHSC.countTrailingZeros();
1803             auto &DL = DAG.getDataLayout();
1804             EVT ShiftTy = DCI.isBeforeLegalize()
1805                               ? getPointerTy(DL)
1806                               : getShiftAmountTy(N0.getValueType(), DL);
1807             EVT CmpTy = N0.getValueType();
1808             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
1809                                         DAG.getConstant(ShiftBits, dl,
1810                                                         ShiftTy));
1811             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
1812             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
1813           }
1814         }
1815       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
1816                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
1817         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
1818         // X <  0x100000000 -> (X >> 32) <  1
1819         // X >= 0x100000000 -> (X >> 32) >= 1
1820         // X <= 0x0ffffffff -> (X >> 32) <  1
1821         // X >  0x0ffffffff -> (X >> 32) >= 1
1822         unsigned ShiftBits;
1823         APInt NewC = C1;
1824         ISD::CondCode NewCond = Cond;
1825         if (AdjOne) {
1826           ShiftBits = C1.countTrailingOnes();
1827           NewC = NewC + 1;
1828           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1829         } else {
1830           ShiftBits = C1.countTrailingZeros();
1831         }
1832         NewC = NewC.lshr(ShiftBits);
1833         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
1834           isLegalICmpImmediate(NewC.getSExtValue())) {
1835           auto &DL = DAG.getDataLayout();
1836           EVT ShiftTy = DCI.isBeforeLegalize()
1837                             ? getPointerTy(DL)
1838                             : getShiftAmountTy(N0.getValueType(), DL);
1839           EVT CmpTy = N0.getValueType();
1840           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
1841                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
1842           SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
1843           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
1844         }
1845       }
1846     }
1847   }
1848 
1849   if (isa<ConstantFPSDNode>(N0.getNode())) {
1850     // Constant fold or commute setcc.
1851     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1852     if (O.getNode()) return O;
1853   } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1854     // If the RHS of an FP comparison is a constant, simplify it away in
1855     // some cases.
1856     if (CFP->getValueAPF().isNaN()) {
1857       // If an operand is known to be a nan, we can fold it.
1858       switch (ISD::getUnorderedFlavor(Cond)) {
1859       default: llvm_unreachable("Unknown flavor!");
1860       case 0:  // Known false.
1861         return DAG.getConstant(0, dl, VT);
1862       case 1:  // Known true.
1863         return DAG.getConstant(1, dl, VT);
1864       case 2:  // Undefined.
1865         return DAG.getUNDEF(VT);
1866       }
1867     }
1868 
1869     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1870     // constant if knowing that the operand is non-nan is enough.  We prefer to
1871     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1872     // materialize 0.0.
1873     if (Cond == ISD::SETO || Cond == ISD::SETUO)
1874       return DAG.getSetCC(dl, VT, N0, N0, Cond);
1875 
1876     // If the condition is not legal, see if we can find an equivalent one
1877     // which is legal.
1878     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
1879       // If the comparison was an awkward floating-point == or != and one of
1880       // the comparison operands is infinity or negative infinity, convert the
1881       // condition to a less-awkward <= or >=.
1882       if (CFP->getValueAPF().isInfinity()) {
1883         if (CFP->getValueAPF().isNegative()) {
1884           if (Cond == ISD::SETOEQ &&
1885               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
1886             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
1887           if (Cond == ISD::SETUEQ &&
1888               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
1889             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
1890           if (Cond == ISD::SETUNE &&
1891               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
1892             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
1893           if (Cond == ISD::SETONE &&
1894               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
1895             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
1896         } else {
1897           if (Cond == ISD::SETOEQ &&
1898               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
1899             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
1900           if (Cond == ISD::SETUEQ &&
1901               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
1902             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
1903           if (Cond == ISD::SETUNE &&
1904               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
1905             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
1906           if (Cond == ISD::SETONE &&
1907               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
1908             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
1909         }
1910       }
1911     }
1912   }
1913 
1914   if (N0 == N1) {
1915     // The sext(setcc()) => setcc() optimization relies on the appropriate
1916     // constant being emitted.
1917     uint64_t EqVal = 0;
1918     switch (getBooleanContents(N0.getValueType())) {
1919     case UndefinedBooleanContent:
1920     case ZeroOrOneBooleanContent:
1921       EqVal = ISD::isTrueWhenEqual(Cond);
1922       break;
1923     case ZeroOrNegativeOneBooleanContent:
1924       EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0;
1925       break;
1926     }
1927 
1928     // We can always fold X == X for integer setcc's.
1929     if (N0.getValueType().isInteger()) {
1930       return DAG.getConstant(EqVal, dl, VT);
1931     }
1932     unsigned UOF = ISD::getUnorderedFlavor(Cond);
1933     if (UOF == 2)   // FP operators that are undefined on NaNs.
1934       return DAG.getConstant(EqVal, dl, VT);
1935     if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1936       return DAG.getConstant(EqVal, dl, VT);
1937     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1938     // if it is not already.
1939     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1940     if (NewCond != Cond && (DCI.isBeforeLegalizeOps() ||
1941           getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal))
1942       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
1943   }
1944 
1945   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1946       N0.getValueType().isInteger()) {
1947     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1948         N0.getOpcode() == ISD::XOR) {
1949       // Simplify (X+Y) == (X+Z) -->  Y == Z
1950       if (N0.getOpcode() == N1.getOpcode()) {
1951         if (N0.getOperand(0) == N1.getOperand(0))
1952           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
1953         if (N0.getOperand(1) == N1.getOperand(1))
1954           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
1955         if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1956           // If X op Y == Y op X, try other combinations.
1957           if (N0.getOperand(0) == N1.getOperand(1))
1958             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
1959                                 Cond);
1960           if (N0.getOperand(1) == N1.getOperand(0))
1961             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
1962                                 Cond);
1963         }
1964       }
1965 
1966       // If RHS is a legal immediate value for a compare instruction, we need
1967       // to be careful about increasing register pressure needlessly.
1968       bool LegalRHSImm = false;
1969 
1970       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1971         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1972           // Turn (X+C1) == C2 --> X == C2-C1
1973           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
1974             return DAG.getSetCC(dl, VT, N0.getOperand(0),
1975                                 DAG.getConstant(RHSC->getAPIntValue()-
1976                                                 LHSR->getAPIntValue(),
1977                                 dl, N0.getValueType()), Cond);
1978           }
1979 
1980           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1981           if (N0.getOpcode() == ISD::XOR)
1982             // If we know that all of the inverted bits are zero, don't bother
1983             // performing the inversion.
1984             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1985               return
1986                 DAG.getSetCC(dl, VT, N0.getOperand(0),
1987                              DAG.getConstant(LHSR->getAPIntValue() ^
1988                                                RHSC->getAPIntValue(),
1989                                              dl, N0.getValueType()),
1990                              Cond);
1991         }
1992 
1993         // Turn (C1-X) == C2 --> X == C1-C2
1994         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1995           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
1996             return
1997               DAG.getSetCC(dl, VT, N0.getOperand(1),
1998                            DAG.getConstant(SUBC->getAPIntValue() -
1999                                              RHSC->getAPIntValue(),
2000                                            dl, N0.getValueType()),
2001                            Cond);
2002           }
2003         }
2004 
2005         // Could RHSC fold directly into a compare?
2006         if (RHSC->getValueType(0).getSizeInBits() <= 64)
2007           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
2008       }
2009 
2010       // Simplify (X+Z) == X -->  Z == 0
2011       // Don't do this if X is an immediate that can fold into a cmp
2012       // instruction and X+Z has other uses. It could be an induction variable
2013       // chain, and the transform would increase register pressure.
2014       if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
2015         if (N0.getOperand(0) == N1)
2016           return DAG.getSetCC(dl, VT, N0.getOperand(1),
2017                               DAG.getConstant(0, dl, N0.getValueType()), Cond);
2018         if (N0.getOperand(1) == N1) {
2019           if (DAG.isCommutativeBinOp(N0.getOpcode()))
2020             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2021                                 DAG.getConstant(0, dl, N0.getValueType()),
2022                                 Cond);
2023           if (N0.getNode()->hasOneUse()) {
2024             assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2025             auto &DL = DAG.getDataLayout();
2026             // (Z-X) == X  --> Z == X<<1
2027             SDValue SH = DAG.getNode(
2028                 ISD::SHL, dl, N1.getValueType(), N1,
2029                 DAG.getConstant(1, dl,
2030                                 getShiftAmountTy(N1.getValueType(), DL)));
2031             if (!DCI.isCalledByLegalizer())
2032               DCI.AddToWorklist(SH.getNode());
2033             return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2034           }
2035         }
2036       }
2037     }
2038 
2039     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2040         N1.getOpcode() == ISD::XOR) {
2041       // Simplify  X == (X+Z) -->  Z == 0
2042       if (N1.getOperand(0) == N0)
2043         return DAG.getSetCC(dl, VT, N1.getOperand(1),
2044                         DAG.getConstant(0, dl, N1.getValueType()), Cond);
2045       if (N1.getOperand(1) == N0) {
2046         if (DAG.isCommutativeBinOp(N1.getOpcode()))
2047           return DAG.getSetCC(dl, VT, N1.getOperand(0),
2048                           DAG.getConstant(0, dl, N1.getValueType()), Cond);
2049         if (N1.getNode()->hasOneUse()) {
2050           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2051           auto &DL = DAG.getDataLayout();
2052           // X == (Z-X)  --> X<<1 == Z
2053           SDValue SH = DAG.getNode(
2054               ISD::SHL, dl, N1.getValueType(), N0,
2055               DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL)));
2056           if (!DCI.isCalledByLegalizer())
2057             DCI.AddToWorklist(SH.getNode());
2058           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2059         }
2060       }
2061     }
2062 
2063     // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2064     // Note that where y is variable and is known to have at most
2065     // one bit set (for example, if it is z&1) we cannot do this;
2066     // the expressions are not equivalent when y==0.
2067     if (N0.getOpcode() == ISD::AND)
2068       if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2069         if (ValueHasExactlyOneBitSet(N1, DAG)) {
2070           Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2071           if (DCI.isBeforeLegalizeOps() ||
2072               isCondCodeLegal(Cond, N0.getSimpleValueType())) {
2073             SDValue Zero = DAG.getConstant(0, dl, N1.getValueType());
2074             return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2075           }
2076         }
2077       }
2078     if (N1.getOpcode() == ISD::AND)
2079       if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2080         if (ValueHasExactlyOneBitSet(N0, DAG)) {
2081           Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2082           if (DCI.isBeforeLegalizeOps() ||
2083               isCondCodeLegal(Cond, N1.getSimpleValueType())) {
2084             SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
2085             return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2086           }
2087         }
2088       }
2089   }
2090 
2091   // Fold away ALL boolean setcc's.
2092   SDValue Temp;
2093   if (N0.getValueType() == MVT::i1 && foldBooleans) {
2094     switch (Cond) {
2095     default: llvm_unreachable("Unknown integer setcc!");
2096     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2097       Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2098       N0 = DAG.getNOT(dl, Temp, MVT::i1);
2099       if (!DCI.isCalledByLegalizer())
2100         DCI.AddToWorklist(Temp.getNode());
2101       break;
2102     case ISD::SETNE:  // X != Y   -->  (X^Y)
2103       N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2104       break;
2105     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2106     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2107       Temp = DAG.getNOT(dl, N0, MVT::i1);
2108       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2109       if (!DCI.isCalledByLegalizer())
2110         DCI.AddToWorklist(Temp.getNode());
2111       break;
2112     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2113     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2114       Temp = DAG.getNOT(dl, N1, MVT::i1);
2115       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2116       if (!DCI.isCalledByLegalizer())
2117         DCI.AddToWorklist(Temp.getNode());
2118       break;
2119     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2120     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2121       Temp = DAG.getNOT(dl, N0, MVT::i1);
2122       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2123       if (!DCI.isCalledByLegalizer())
2124         DCI.AddToWorklist(Temp.getNode());
2125       break;
2126     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2127     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2128       Temp = DAG.getNOT(dl, N1, MVT::i1);
2129       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2130       break;
2131     }
2132     if (VT != MVT::i1) {
2133       if (!DCI.isCalledByLegalizer())
2134         DCI.AddToWorklist(N0.getNode());
2135       // FIXME: If running after legalize, we probably can't do this.
2136       N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2137     }
2138     return N0;
2139   }
2140 
2141   // Could not fold it.
2142   return SDValue();
2143 }
2144 
2145 /// Returns true (and the GlobalValue and the offset) if the node is a
2146 /// GlobalAddress + offset.
2147 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2148                                     int64_t &Offset) const {
2149   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
2150     GA = GASD->getGlobal();
2151     Offset += GASD->getOffset();
2152     return true;
2153   }
2154 
2155   if (N->getOpcode() == ISD::ADD) {
2156     SDValue N1 = N->getOperand(0);
2157     SDValue N2 = N->getOperand(1);
2158     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2159       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
2160         Offset += V->getSExtValue();
2161         return true;
2162       }
2163     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2164       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
2165         Offset += V->getSExtValue();
2166         return true;
2167       }
2168     }
2169   }
2170 
2171   return false;
2172 }
2173 
2174 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
2175                                           DAGCombinerInfo &DCI) const {
2176   // Default implementation: no optimization.
2177   return SDValue();
2178 }
2179 
2180 //===----------------------------------------------------------------------===//
2181 //  Inline Assembler Implementation Methods
2182 //===----------------------------------------------------------------------===//
2183 
2184 TargetLowering::ConstraintType
2185 TargetLowering::getConstraintType(StringRef Constraint) const {
2186   unsigned S = Constraint.size();
2187 
2188   if (S == 1) {
2189     switch (Constraint[0]) {
2190     default: break;
2191     case 'r': return C_RegisterClass;
2192     case 'm':    // memory
2193     case 'o':    // offsetable
2194     case 'V':    // not offsetable
2195       return C_Memory;
2196     case 'i':    // Simple Integer or Relocatable Constant
2197     case 'n':    // Simple Integer
2198     case 'E':    // Floating Point Constant
2199     case 'F':    // Floating Point Constant
2200     case 's':    // Relocatable Constant
2201     case 'p':    // Address.
2202     case 'X':    // Allow ANY value.
2203     case 'I':    // Target registers.
2204     case 'J':
2205     case 'K':
2206     case 'L':
2207     case 'M':
2208     case 'N':
2209     case 'O':
2210     case 'P':
2211     case '<':
2212     case '>':
2213       return C_Other;
2214     }
2215   }
2216 
2217   if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
2218     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
2219       return C_Memory;
2220     return C_Register;
2221   }
2222   return C_Unknown;
2223 }
2224 
2225 /// Try to replace an X constraint, which matches anything, with another that
2226 /// has more specific requirements based on the type of the corresponding
2227 /// operand.
2228 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2229   if (ConstraintVT.isInteger())
2230     return "r";
2231   if (ConstraintVT.isFloatingPoint())
2232     return "f";      // works for many targets
2233   return nullptr;
2234 }
2235 
2236 /// Lower the specified operand into the Ops vector.
2237 /// If it is invalid, don't add anything to Ops.
2238 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2239                                                   std::string &Constraint,
2240                                                   std::vector<SDValue> &Ops,
2241                                                   SelectionDAG &DAG) const {
2242 
2243   if (Constraint.length() > 1) return;
2244 
2245   char ConstraintLetter = Constraint[0];
2246   switch (ConstraintLetter) {
2247   default: break;
2248   case 'X':     // Allows any operand; labels (basic block) use this.
2249     if (Op.getOpcode() == ISD::BasicBlock) {
2250       Ops.push_back(Op);
2251       return;
2252     }
2253     // fall through
2254   case 'i':    // Simple Integer or Relocatable Constant
2255   case 'n':    // Simple Integer
2256   case 's': {  // Relocatable Constant
2257     // These operands are interested in values of the form (GV+C), where C may
2258     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2259     // is possible and fine if either GV or C are missing.
2260     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2261     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2262 
2263     // If we have "(add GV, C)", pull out GV/C
2264     if (Op.getOpcode() == ISD::ADD) {
2265       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2266       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2267       if (!C || !GA) {
2268         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2269         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2270       }
2271       if (!C || !GA) {
2272         C = nullptr;
2273         GA = nullptr;
2274       }
2275     }
2276 
2277     // If we find a valid operand, map to the TargetXXX version so that the
2278     // value itself doesn't get selected.
2279     if (GA) {   // Either &GV   or   &GV+C
2280       if (ConstraintLetter != 'n') {
2281         int64_t Offs = GA->getOffset();
2282         if (C) Offs += C->getZExtValue();
2283         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2284                                                  C ? SDLoc(C) : SDLoc(),
2285                                                  Op.getValueType(), Offs));
2286       }
2287       return;
2288     }
2289     if (C) {   // just C, no GV.
2290       // Simple constants are not allowed for 's'.
2291       if (ConstraintLetter != 's') {
2292         // gcc prints these as sign extended.  Sign extend value to 64 bits
2293         // now; without this it would get ZExt'd later in
2294         // ScheduleDAGSDNodes::EmitNode, which is very generic.
2295         Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2296                                             SDLoc(C), MVT::i64));
2297       }
2298       return;
2299     }
2300     break;
2301   }
2302   }
2303 }
2304 
2305 std::pair<unsigned, const TargetRegisterClass *>
2306 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
2307                                              StringRef Constraint,
2308                                              MVT VT) const {
2309   if (Constraint.empty() || Constraint[0] != '{')
2310     return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr));
2311   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2312 
2313   // Remove the braces from around the name.
2314   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2315 
2316   std::pair<unsigned, const TargetRegisterClass*> R =
2317     std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr));
2318 
2319   // Figure out which register class contains this reg.
2320   for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2321        E = RI->regclass_end(); RCI != E; ++RCI) {
2322     const TargetRegisterClass *RC = *RCI;
2323 
2324     // If none of the value types for this register class are valid, we
2325     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2326     if (!isLegalRC(RC))
2327       continue;
2328 
2329     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2330          I != E; ++I) {
2331       if (RegName.equals_lower(RI->getName(*I))) {
2332         std::pair<unsigned, const TargetRegisterClass*> S =
2333           std::make_pair(*I, RC);
2334 
2335         // If this register class has the requested value type, return it,
2336         // otherwise keep searching and return the first class found
2337         // if no other is found which explicitly has the requested type.
2338         if (RC->hasType(VT))
2339           return S;
2340         else if (!R.second)
2341           R = S;
2342       }
2343     }
2344   }
2345 
2346   return R;
2347 }
2348 
2349 //===----------------------------------------------------------------------===//
2350 // Constraint Selection.
2351 
2352 /// Return true of this is an input operand that is a matching constraint like
2353 /// "4".
2354 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2355   assert(!ConstraintCode.empty() && "No known constraint!");
2356   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
2357 }
2358 
2359 /// If this is an input matching constraint, this method returns the output
2360 /// operand it matches.
2361 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2362   assert(!ConstraintCode.empty() && "No known constraint!");
2363   return atoi(ConstraintCode.c_str());
2364 }
2365 
2366 /// Split up the constraint string from the inline assembly value into the
2367 /// specific constraints and their prefixes, and also tie in the associated
2368 /// operand values.
2369 /// If this returns an empty vector, and if the constraint string itself
2370 /// isn't empty, there was an error parsing.
2371 TargetLowering::AsmOperandInfoVector
2372 TargetLowering::ParseConstraints(const DataLayout &DL,
2373                                  const TargetRegisterInfo *TRI,
2374                                  ImmutableCallSite CS) const {
2375   /// Information about all of the constraints.
2376   AsmOperandInfoVector ConstraintOperands;
2377   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2378   unsigned maCount = 0; // Largest number of multiple alternative constraints.
2379 
2380   // Do a prepass over the constraints, canonicalizing them, and building up the
2381   // ConstraintOperands list.
2382   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
2383   unsigned ResNo = 0;   // ResNo - The result number of the next output.
2384 
2385   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
2386     ConstraintOperands.emplace_back(std::move(CI));
2387     AsmOperandInfo &OpInfo = ConstraintOperands.back();
2388 
2389     // Update multiple alternative constraint count.
2390     if (OpInfo.multipleAlternatives.size() > maCount)
2391       maCount = OpInfo.multipleAlternatives.size();
2392 
2393     OpInfo.ConstraintVT = MVT::Other;
2394 
2395     // Compute the value type for each operand.
2396     switch (OpInfo.Type) {
2397     case InlineAsm::isOutput:
2398       // Indirect outputs just consume an argument.
2399       if (OpInfo.isIndirect) {
2400         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2401         break;
2402       }
2403 
2404       // The return value of the call is this value.  As such, there is no
2405       // corresponding argument.
2406       assert(!CS.getType()->isVoidTy() &&
2407              "Bad inline asm!");
2408       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
2409         OpInfo.ConstraintVT =
2410             getSimpleValueType(DL, STy->getElementType(ResNo));
2411       } else {
2412         assert(ResNo == 0 && "Asm only has one result!");
2413         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
2414       }
2415       ++ResNo;
2416       break;
2417     case InlineAsm::isInput:
2418       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2419       break;
2420     case InlineAsm::isClobber:
2421       // Nothing to do.
2422       break;
2423     }
2424 
2425     if (OpInfo.CallOperandVal) {
2426       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2427       if (OpInfo.isIndirect) {
2428         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2429         if (!PtrTy)
2430           report_fatal_error("Indirect operand for inline asm not a pointer!");
2431         OpTy = PtrTy->getElementType();
2432       }
2433 
2434       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
2435       if (StructType *STy = dyn_cast<StructType>(OpTy))
2436         if (STy->getNumElements() == 1)
2437           OpTy = STy->getElementType(0);
2438 
2439       // If OpTy is not a single value, it may be a struct/union that we
2440       // can tile with integers.
2441       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2442         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
2443         switch (BitSize) {
2444         default: break;
2445         case 1:
2446         case 8:
2447         case 16:
2448         case 32:
2449         case 64:
2450         case 128:
2451           OpInfo.ConstraintVT =
2452             MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2453           break;
2454         }
2455       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
2456         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
2457         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
2458       } else {
2459         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
2460       }
2461     }
2462   }
2463 
2464   // If we have multiple alternative constraints, select the best alternative.
2465   if (!ConstraintOperands.empty()) {
2466     if (maCount) {
2467       unsigned bestMAIndex = 0;
2468       int bestWeight = -1;
2469       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
2470       int weight = -1;
2471       unsigned maIndex;
2472       // Compute the sums of the weights for each alternative, keeping track
2473       // of the best (highest weight) one so far.
2474       for (maIndex = 0; maIndex < maCount; ++maIndex) {
2475         int weightSum = 0;
2476         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2477             cIndex != eIndex; ++cIndex) {
2478           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2479           if (OpInfo.Type == InlineAsm::isClobber)
2480             continue;
2481 
2482           // If this is an output operand with a matching input operand,
2483           // look up the matching input. If their types mismatch, e.g. one
2484           // is an integer, the other is floating point, or their sizes are
2485           // different, flag it as an maCantMatch.
2486           if (OpInfo.hasMatchingInput()) {
2487             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2488             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2489               if ((OpInfo.ConstraintVT.isInteger() !=
2490                    Input.ConstraintVT.isInteger()) ||
2491                   (OpInfo.ConstraintVT.getSizeInBits() !=
2492                    Input.ConstraintVT.getSizeInBits())) {
2493                 weightSum = -1;  // Can't match.
2494                 break;
2495               }
2496             }
2497           }
2498           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2499           if (weight == -1) {
2500             weightSum = -1;
2501             break;
2502           }
2503           weightSum += weight;
2504         }
2505         // Update best.
2506         if (weightSum > bestWeight) {
2507           bestWeight = weightSum;
2508           bestMAIndex = maIndex;
2509         }
2510       }
2511 
2512       // Now select chosen alternative in each constraint.
2513       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2514           cIndex != eIndex; ++cIndex) {
2515         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2516         if (cInfo.Type == InlineAsm::isClobber)
2517           continue;
2518         cInfo.selectAlternative(bestMAIndex);
2519       }
2520     }
2521   }
2522 
2523   // Check and hook up tied operands, choose constraint code to use.
2524   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2525       cIndex != eIndex; ++cIndex) {
2526     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2527 
2528     // If this is an output operand with a matching input operand, look up the
2529     // matching input. If their types mismatch, e.g. one is an integer, the
2530     // other is floating point, or their sizes are different, flag it as an
2531     // error.
2532     if (OpInfo.hasMatchingInput()) {
2533       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2534 
2535       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2536         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
2537             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
2538                                          OpInfo.ConstraintVT);
2539         std::pair<unsigned, const TargetRegisterClass *> InputRC =
2540             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
2541                                          Input.ConstraintVT);
2542         if ((OpInfo.ConstraintVT.isInteger() !=
2543              Input.ConstraintVT.isInteger()) ||
2544             (MatchRC.second != InputRC.second)) {
2545           report_fatal_error("Unsupported asm: input constraint"
2546                              " with a matching output constraint of"
2547                              " incompatible type!");
2548         }
2549       }
2550     }
2551   }
2552 
2553   return ConstraintOperands;
2554 }
2555 
2556 /// Return an integer indicating how general CT is.
2557 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2558   switch (CT) {
2559   case TargetLowering::C_Other:
2560   case TargetLowering::C_Unknown:
2561     return 0;
2562   case TargetLowering::C_Register:
2563     return 1;
2564   case TargetLowering::C_RegisterClass:
2565     return 2;
2566   case TargetLowering::C_Memory:
2567     return 3;
2568   }
2569   llvm_unreachable("Invalid constraint type");
2570 }
2571 
2572 /// Examine constraint type and operand type and determine a weight value.
2573 /// This object must already have been set up with the operand type
2574 /// and the current alternative constraint selected.
2575 TargetLowering::ConstraintWeight
2576   TargetLowering::getMultipleConstraintMatchWeight(
2577     AsmOperandInfo &info, int maIndex) const {
2578   InlineAsm::ConstraintCodeVector *rCodes;
2579   if (maIndex >= (int)info.multipleAlternatives.size())
2580     rCodes = &info.Codes;
2581   else
2582     rCodes = &info.multipleAlternatives[maIndex].Codes;
2583   ConstraintWeight BestWeight = CW_Invalid;
2584 
2585   // Loop over the options, keeping track of the most general one.
2586   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
2587     ConstraintWeight weight =
2588       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
2589     if (weight > BestWeight)
2590       BestWeight = weight;
2591   }
2592 
2593   return BestWeight;
2594 }
2595 
2596 /// Examine constraint type and operand type and determine a weight value.
2597 /// This object must already have been set up with the operand type
2598 /// and the current alternative constraint selected.
2599 TargetLowering::ConstraintWeight
2600   TargetLowering::getSingleConstraintMatchWeight(
2601     AsmOperandInfo &info, const char *constraint) const {
2602   ConstraintWeight weight = CW_Invalid;
2603   Value *CallOperandVal = info.CallOperandVal;
2604     // If we don't have a value, we can't do a match,
2605     // but allow it at the lowest weight.
2606   if (!CallOperandVal)
2607     return CW_Default;
2608   // Look at the constraint type.
2609   switch (*constraint) {
2610     case 'i': // immediate integer.
2611     case 'n': // immediate integer with a known value.
2612       if (isa<ConstantInt>(CallOperandVal))
2613         weight = CW_Constant;
2614       break;
2615     case 's': // non-explicit intregal immediate.
2616       if (isa<GlobalValue>(CallOperandVal))
2617         weight = CW_Constant;
2618       break;
2619     case 'E': // immediate float if host format.
2620     case 'F': // immediate float.
2621       if (isa<ConstantFP>(CallOperandVal))
2622         weight = CW_Constant;
2623       break;
2624     case '<': // memory operand with autodecrement.
2625     case '>': // memory operand with autoincrement.
2626     case 'm': // memory operand.
2627     case 'o': // offsettable memory operand
2628     case 'V': // non-offsettable memory operand
2629       weight = CW_Memory;
2630       break;
2631     case 'r': // general register.
2632     case 'g': // general register, memory operand or immediate integer.
2633               // note: Clang converts "g" to "imr".
2634       if (CallOperandVal->getType()->isIntegerTy())
2635         weight = CW_Register;
2636       break;
2637     case 'X': // any operand.
2638     default:
2639       weight = CW_Default;
2640       break;
2641   }
2642   return weight;
2643 }
2644 
2645 /// If there are multiple different constraints that we could pick for this
2646 /// operand (e.g. "imr") try to pick the 'best' one.
2647 /// This is somewhat tricky: constraints fall into four classes:
2648 ///    Other         -> immediates and magic values
2649 ///    Register      -> one specific register
2650 ///    RegisterClass -> a group of regs
2651 ///    Memory        -> memory
2652 /// Ideally, we would pick the most specific constraint possible: if we have
2653 /// something that fits into a register, we would pick it.  The problem here
2654 /// is that if we have something that could either be in a register or in
2655 /// memory that use of the register could cause selection of *other*
2656 /// operands to fail: they might only succeed if we pick memory.  Because of
2657 /// this the heuristic we use is:
2658 ///
2659 ///  1) If there is an 'other' constraint, and if the operand is valid for
2660 ///     that constraint, use it.  This makes us take advantage of 'i'
2661 ///     constraints when available.
2662 ///  2) Otherwise, pick the most general constraint present.  This prefers
2663 ///     'm' over 'r', for example.
2664 ///
2665 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2666                              const TargetLowering &TLI,
2667                              SDValue Op, SelectionDAG *DAG) {
2668   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2669   unsigned BestIdx = 0;
2670   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2671   int BestGenerality = -1;
2672 
2673   // Loop over the options, keeping track of the most general one.
2674   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2675     TargetLowering::ConstraintType CType =
2676       TLI.getConstraintType(OpInfo.Codes[i]);
2677 
2678     // If this is an 'other' constraint, see if the operand is valid for it.
2679     // For example, on X86 we might have an 'rI' constraint.  If the operand
2680     // is an integer in the range [0..31] we want to use I (saving a load
2681     // of a register), otherwise we must use 'r'.
2682     if (CType == TargetLowering::C_Other && Op.getNode()) {
2683       assert(OpInfo.Codes[i].size() == 1 &&
2684              "Unhandled multi-letter 'other' constraint");
2685       std::vector<SDValue> ResultOps;
2686       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
2687                                        ResultOps, *DAG);
2688       if (!ResultOps.empty()) {
2689         BestType = CType;
2690         BestIdx = i;
2691         break;
2692       }
2693     }
2694 
2695     // Things with matching constraints can only be registers, per gcc
2696     // documentation.  This mainly affects "g" constraints.
2697     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
2698       continue;
2699 
2700     // This constraint letter is more general than the previous one, use it.
2701     int Generality = getConstraintGenerality(CType);
2702     if (Generality > BestGenerality) {
2703       BestType = CType;
2704       BestIdx = i;
2705       BestGenerality = Generality;
2706     }
2707   }
2708 
2709   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2710   OpInfo.ConstraintType = BestType;
2711 }
2712 
2713 /// Determines the constraint code and constraint type to use for the specific
2714 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
2715 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2716                                             SDValue Op,
2717                                             SelectionDAG *DAG) const {
2718   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2719 
2720   // Single-letter constraints ('r') are very common.
2721   if (OpInfo.Codes.size() == 1) {
2722     OpInfo.ConstraintCode = OpInfo.Codes[0];
2723     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2724   } else {
2725     ChooseConstraint(OpInfo, *this, Op, DAG);
2726   }
2727 
2728   // 'X' matches anything.
2729   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2730     // Labels and constants are handled elsewhere ('X' is the only thing
2731     // that matches labels).  For Functions, the type here is the type of
2732     // the result, which is not what we want to look at; leave them alone.
2733     Value *v = OpInfo.CallOperandVal;
2734     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2735       OpInfo.CallOperandVal = v;
2736       return;
2737     }
2738 
2739     // Otherwise, try to resolve it to something we know about by looking at
2740     // the actual operand type.
2741     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2742       OpInfo.ConstraintCode = Repl;
2743       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2744     }
2745   }
2746 }
2747 
2748 /// \brief Given an exact SDIV by a constant, create a multiplication
2749 /// with the multiplicative inverse of the constant.
2750 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d,
2751                               SDLoc dl, SelectionDAG &DAG,
2752                               std::vector<SDNode *> &Created) {
2753   assert(d != 0 && "Division by zero!");
2754 
2755   // Shift the value upfront if it is even, so the LSB is one.
2756   unsigned ShAmt = d.countTrailingZeros();
2757   if (ShAmt) {
2758     // TODO: For UDIV use SRL instead of SRA.
2759     SDValue Amt =
2760         DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(),
2761                                                         DAG.getDataLayout()));
2762     SDNodeFlags Flags;
2763     Flags.setExact(true);
2764     Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, &Flags);
2765     Created.push_back(Op1.getNode());
2766     d = d.ashr(ShAmt);
2767   }
2768 
2769   // Calculate the multiplicative inverse, using Newton's method.
2770   APInt t, xn = d;
2771   while ((t = d*xn) != 1)
2772     xn *= APInt(d.getBitWidth(), 2) - t;
2773 
2774   SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType());
2775   SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
2776   Created.push_back(Mul.getNode());
2777   return Mul;
2778 }
2779 
2780 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
2781                                       SelectionDAG &DAG,
2782                                       std::vector<SDNode *> *Created) const {
2783   AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes();
2784   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2785   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
2786     return SDValue(N,0); // Lower SDIV as SDIV
2787   return SDValue();
2788 }
2789 
2790 /// \brief Given an ISD::SDIV node expressing a divide by constant,
2791 /// return a DAG expression to select that will generate the same value by
2792 /// multiplying by a magic number.
2793 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
2794 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor,
2795                                   SelectionDAG &DAG, bool IsAfterLegalization,
2796                                   std::vector<SDNode *> *Created) const {
2797   assert(Created && "No vector to hold sdiv ops.");
2798 
2799   EVT VT = N->getValueType(0);
2800   SDLoc dl(N);
2801 
2802   // Check to see if we can do this.
2803   // FIXME: We should be more aggressive here.
2804   if (!isTypeLegal(VT))
2805     return SDValue();
2806 
2807   // If the sdiv has an 'exact' bit we can use a simpler lowering.
2808   if (cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact())
2809     return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created);
2810 
2811   APInt::ms magics = Divisor.magic();
2812 
2813   // Multiply the numerator (operand 0) by the magic value
2814   // FIXME: We should support doing a MUL in a wider type
2815   SDValue Q;
2816   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
2817                             isOperationLegalOrCustom(ISD::MULHS, VT))
2818     Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2819                     DAG.getConstant(magics.m, dl, VT));
2820   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
2821                                  isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2822     Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2823                               N->getOperand(0),
2824                               DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
2825   else
2826     return SDValue();       // No mulhs or equvialent
2827   // If d > 0 and m < 0, add the numerator
2828   if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
2829     Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2830     Created->push_back(Q.getNode());
2831   }
2832   // If d < 0 and m > 0, subtract the numerator.
2833   if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
2834     Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2835     Created->push_back(Q.getNode());
2836   }
2837   auto &DL = DAG.getDataLayout();
2838   // Shift right algebraic if shift value is nonzero
2839   if (magics.s > 0) {
2840     Q = DAG.getNode(
2841         ISD::SRA, dl, VT, Q,
2842         DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL)));
2843     Created->push_back(Q.getNode());
2844   }
2845   // Extract the sign bit and add it to the quotient
2846   SDValue T =
2847       DAG.getNode(ISD::SRL, dl, VT, Q,
2848                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl,
2849                                   getShiftAmountTy(Q.getValueType(), DL)));
2850   Created->push_back(T.getNode());
2851   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2852 }
2853 
2854 /// \brief Given an ISD::UDIV node expressing a divide by constant,
2855 /// return a DAG expression to select that will generate the same value by
2856 /// multiplying by a magic number.
2857 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
2858 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor,
2859                                   SelectionDAG &DAG, bool IsAfterLegalization,
2860                                   std::vector<SDNode *> *Created) const {
2861   assert(Created && "No vector to hold udiv ops.");
2862 
2863   EVT VT = N->getValueType(0);
2864   SDLoc dl(N);
2865   auto &DL = DAG.getDataLayout();
2866 
2867   // Check to see if we can do this.
2868   // FIXME: We should be more aggressive here.
2869   if (!isTypeLegal(VT))
2870     return SDValue();
2871 
2872   // FIXME: We should use a narrower constant when the upper
2873   // bits are known to be zero.
2874   APInt::mu magics = Divisor.magicu();
2875 
2876   SDValue Q = N->getOperand(0);
2877 
2878   // If the divisor is even, we can avoid using the expensive fixup by shifting
2879   // the divided value upfront.
2880   if (magics.a != 0 && !Divisor[0]) {
2881     unsigned Shift = Divisor.countTrailingZeros();
2882     Q = DAG.getNode(
2883         ISD::SRL, dl, VT, Q,
2884         DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL)));
2885     Created->push_back(Q.getNode());
2886 
2887     // Get magic number for the shifted divisor.
2888     magics = Divisor.lshr(Shift).magicu(Shift);
2889     assert(magics.a == 0 && "Should use cheap fixup now");
2890   }
2891 
2892   // Multiply the numerator (operand 0) by the magic value
2893   // FIXME: We should support doing a MUL in a wider type
2894   if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
2895                             isOperationLegalOrCustom(ISD::MULHU, VT))
2896     Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT));
2897   else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
2898                                  isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2899     Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
2900                             DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
2901   else
2902     return SDValue();       // No mulhu or equvialent
2903 
2904   Created->push_back(Q.getNode());
2905 
2906   if (magics.a == 0) {
2907     assert(magics.s < Divisor.getBitWidth() &&
2908            "We shouldn't generate an undefined shift!");
2909     return DAG.getNode(
2910         ISD::SRL, dl, VT, Q,
2911         DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL)));
2912   } else {
2913     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2914     Created->push_back(NPQ.getNode());
2915     NPQ = DAG.getNode(
2916         ISD::SRL, dl, VT, NPQ,
2917         DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL)));
2918     Created->push_back(NPQ.getNode());
2919     NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2920     Created->push_back(NPQ.getNode());
2921     return DAG.getNode(
2922         ISD::SRL, dl, VT, NPQ,
2923         DAG.getConstant(magics.s - 1, dl,
2924                         getShiftAmountTy(NPQ.getValueType(), DL)));
2925   }
2926 }
2927 
2928 bool TargetLowering::
2929 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
2930   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
2931     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
2932                                 "be a constant integer");
2933     return true;
2934   }
2935 
2936   return false;
2937 }
2938 
2939 //===----------------------------------------------------------------------===//
2940 // Legalization Utilities
2941 //===----------------------------------------------------------------------===//
2942 
2943 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
2944                                SelectionDAG &DAG, SDValue LL, SDValue LH,
2945                                SDValue RL, SDValue RH) const {
2946   EVT VT = N->getValueType(0);
2947   SDLoc dl(N);
2948 
2949   bool HasMULHS = isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
2950   bool HasMULHU = isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
2951   bool HasSMUL_LOHI = isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
2952   bool HasUMUL_LOHI = isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
2953   if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) {
2954     unsigned OuterBitSize = VT.getSizeInBits();
2955     unsigned InnerBitSize = HiLoVT.getSizeInBits();
2956     unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0));
2957     unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1));
2958 
2959     // LL, LH, RL, and RH must be either all NULL or all set to a value.
2960     assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
2961            (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
2962 
2963     if (!LL.getNode() && !RL.getNode() &&
2964         isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
2965       LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(0));
2966       RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(1));
2967     }
2968 
2969     if (!LL.getNode())
2970       return false;
2971 
2972     APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
2973     if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) &&
2974         DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) {
2975       // The inputs are both zero-extended.
2976       if (HasUMUL_LOHI) {
2977         // We can emit a umul_lohi.
2978         Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL,
2979                          RL);
2980         Hi = SDValue(Lo.getNode(), 1);
2981         return true;
2982       }
2983       if (HasMULHU) {
2984         // We can emit a mulhu+mul.
2985         Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
2986         Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL);
2987         return true;
2988       }
2989     }
2990     if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) {
2991       // The input values are both sign-extended.
2992       if (HasSMUL_LOHI) {
2993         // We can emit a smul_lohi.
2994         Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL,
2995                          RL);
2996         Hi = SDValue(Lo.getNode(), 1);
2997         return true;
2998       }
2999       if (HasMULHS) {
3000         // We can emit a mulhs+mul.
3001         Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
3002         Hi = DAG.getNode(ISD::MULHS, dl, HiLoVT, LL, RL);
3003         return true;
3004       }
3005     }
3006 
3007     if (!LH.getNode() && !RH.getNode() &&
3008         isOperationLegalOrCustom(ISD::SRL, VT) &&
3009         isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
3010       auto &DL = DAG.getDataLayout();
3011       unsigned ShiftAmt = VT.getSizeInBits() - HiLoVT.getSizeInBits();
3012       SDValue Shift = DAG.getConstant(ShiftAmt, dl, getShiftAmountTy(VT, DL));
3013       LH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(0), Shift);
3014       LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
3015       RH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(1), Shift);
3016       RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
3017     }
3018 
3019     if (!LH.getNode())
3020       return false;
3021 
3022     if (HasUMUL_LOHI) {
3023       // Lo,Hi = umul LHS, RHS.
3024       SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl,
3025                                      DAG.getVTList(HiLoVT, HiLoVT), LL, RL);
3026       Lo = UMulLOHI;
3027       Hi = UMulLOHI.getValue(1);
3028       RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
3029       LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
3030       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
3031       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
3032       return true;
3033     }
3034     if (HasMULHU) {
3035       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
3036       Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL);
3037       RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
3038       LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
3039       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
3040       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
3041       return true;
3042     }
3043   }
3044   return false;
3045 }
3046 
3047 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
3048                                SelectionDAG &DAG) const {
3049   EVT VT = Node->getOperand(0).getValueType();
3050   EVT NVT = Node->getValueType(0);
3051   SDLoc dl(SDValue(Node, 0));
3052 
3053   // FIXME: Only f32 to i64 conversions are supported.
3054   if (VT != MVT::f32 || NVT != MVT::i64)
3055     return false;
3056 
3057   // Expand f32 -> i64 conversion
3058   // This algorithm comes from compiler-rt's implementation of fixsfdi:
3059   // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c
3060   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(),
3061                                 VT.getSizeInBits());
3062   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
3063   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
3064   SDValue Bias = DAG.getConstant(127, dl, IntVT);
3065   SDValue SignMask = DAG.getConstant(APInt::getSignBit(VT.getSizeInBits()), dl,
3066                                      IntVT);
3067   SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT);
3068   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
3069 
3070   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0));
3071 
3072   auto &DL = DAG.getDataLayout();
3073   SDValue ExponentBits = DAG.getNode(
3074       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
3075       DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL)));
3076   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
3077 
3078   SDValue Sign = DAG.getNode(
3079       ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
3080       DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL)));
3081   Sign = DAG.getSExtOrTrunc(Sign, dl, NVT);
3082 
3083   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
3084       DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
3085       DAG.getConstant(0x00800000, dl, IntVT));
3086 
3087   R = DAG.getZExtOrTrunc(R, dl, NVT);
3088 
3089   R = DAG.getSelectCC(
3090       dl, Exponent, ExponentLoBit,
3091       DAG.getNode(ISD::SHL, dl, NVT, R,
3092                   DAG.getZExtOrTrunc(
3093                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
3094                       dl, getShiftAmountTy(IntVT, DL))),
3095       DAG.getNode(ISD::SRL, dl, NVT, R,
3096                   DAG.getZExtOrTrunc(
3097                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
3098                       dl, getShiftAmountTy(IntVT, DL))),
3099       ISD::SETGT);
3100 
3101   SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT,
3102       DAG.getNode(ISD::XOR, dl, NVT, R, Sign),
3103       Sign);
3104 
3105   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
3106       DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT);
3107   return true;
3108 }
3109 
3110 //===----------------------------------------------------------------------===//
3111 // Implementation of Emulated TLS Model
3112 //===----------------------------------------------------------------------===//
3113 
3114 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
3115                                                 SelectionDAG &DAG) const {
3116   // Access to address of TLS varialbe xyz is lowered to a function call:
3117   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
3118   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3119   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
3120   SDLoc dl(GA);
3121 
3122   ArgListTy Args;
3123   ArgListEntry Entry;
3124   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
3125   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
3126   StringRef EmuTlsVarName(NameString);
3127   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
3128   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
3129   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
3130   Entry.Ty = VoidPtrType;
3131   Args.push_back(Entry);
3132 
3133   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
3134 
3135   TargetLowering::CallLoweringInfo CLI(DAG);
3136   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
3137   CLI.setCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args), 0);
3138   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3139 
3140   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
3141   // At last for X86 targets, maybe good for other targets too?
3142   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3143   MFI->setAdjustsStack(true);  // Is this only for X86 target?
3144   MFI->setHasCalls(true);
3145 
3146   assert((GA->getOffset() == 0) &&
3147          "Emulated TLS must have zero offset in GlobalAddressSDNode");
3148   return CallResult.first;
3149 }
3150