1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/TargetLowering.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/CodeGen/CallingConvLower.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/CodeGen/TargetRegisterInfo.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/KnownBits.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Target/TargetLoweringObjectFile.h"
35 #include "llvm/Target/TargetMachine.h"
36 #include <cctype>
37 using namespace llvm;
38 
39 /// NOTE: The TargetMachine owns TLOF.
40 TargetLowering::TargetLowering(const TargetMachine &tm)
41   : TargetLoweringBase(tm) {}
42 
43 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
44   return nullptr;
45 }
46 
47 bool TargetLowering::isPositionIndependent() const {
48   return getTargetMachine().isPositionIndependent();
49 }
50 
51 /// Check whether a given call node is in tail position within its function. If
52 /// so, it sets Chain to the input chain of the tail call.
53 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
54                                           SDValue &Chain) const {
55   const Function &F = DAG.getMachineFunction().getFunction();
56 
57   // Conservatively require the attributes of the call to match those of
58   // the return. Ignore NoAlias and NonNull because they don't affect the
59   // call sequence.
60   AttributeList CallerAttrs = F.getAttributes();
61   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
62           .removeAttribute(Attribute::NoAlias)
63           .removeAttribute(Attribute::NonNull)
64           .hasAttributes())
65     return false;
66 
67   // It's not safe to eliminate the sign / zero extension of the return value.
68   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
69       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
70     return false;
71 
72   // Check if the only use is a function return node.
73   return isUsedByReturnOnly(Node, Chain);
74 }
75 
76 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
77     const uint32_t *CallerPreservedMask,
78     const SmallVectorImpl<CCValAssign> &ArgLocs,
79     const SmallVectorImpl<SDValue> &OutVals) const {
80   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
81     const CCValAssign &ArgLoc = ArgLocs[I];
82     if (!ArgLoc.isRegLoc())
83       continue;
84     unsigned Reg = ArgLoc.getLocReg();
85     // Only look at callee saved registers.
86     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
87       continue;
88     // Check that we pass the value used for the caller.
89     // (We look for a CopyFromReg reading a virtual register that is used
90     //  for the function live-in value of register Reg)
91     SDValue Value = OutVals[I];
92     if (Value->getOpcode() != ISD::CopyFromReg)
93       return false;
94     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
95     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
96       return false;
97   }
98   return true;
99 }
100 
101 /// Set CallLoweringInfo attribute flags based on a call instruction
102 /// and called function attributes.
103 void TargetLoweringBase::ArgListEntry::setAttributes(ImmutableCallSite *CS,
104                                                      unsigned ArgIdx) {
105   IsSExt = CS->paramHasAttr(ArgIdx, Attribute::SExt);
106   IsZExt = CS->paramHasAttr(ArgIdx, Attribute::ZExt);
107   IsInReg = CS->paramHasAttr(ArgIdx, Attribute::InReg);
108   IsSRet = CS->paramHasAttr(ArgIdx, Attribute::StructRet);
109   IsNest = CS->paramHasAttr(ArgIdx, Attribute::Nest);
110   IsByVal = CS->paramHasAttr(ArgIdx, Attribute::ByVal);
111   IsInAlloca = CS->paramHasAttr(ArgIdx, Attribute::InAlloca);
112   IsReturned = CS->paramHasAttr(ArgIdx, Attribute::Returned);
113   IsSwiftSelf = CS->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
114   IsSwiftError = CS->paramHasAttr(ArgIdx, Attribute::SwiftError);
115   Alignment  = CS->getParamAlignment(ArgIdx);
116 }
117 
118 /// Generate a libcall taking the given operands as arguments and returning a
119 /// result of type RetVT.
120 std::pair<SDValue, SDValue>
121 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
122                             ArrayRef<SDValue> Ops, bool isSigned,
123                             const SDLoc &dl, bool doesNotReturn,
124                             bool isReturnValueUsed) const {
125   TargetLowering::ArgListTy Args;
126   Args.reserve(Ops.size());
127 
128   TargetLowering::ArgListEntry Entry;
129   for (SDValue Op : Ops) {
130     Entry.Node = Op;
131     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
132     Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
133     Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
134     Args.push_back(Entry);
135   }
136 
137   if (LC == RTLIB::UNKNOWN_LIBCALL)
138     report_fatal_error("Unsupported library call operation!");
139   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
140                                          getPointerTy(DAG.getDataLayout()));
141 
142   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
143   TargetLowering::CallLoweringInfo CLI(DAG);
144   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
145   CLI.setDebugLoc(dl)
146       .setChain(DAG.getEntryNode())
147       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
148       .setNoReturn(doesNotReturn)
149       .setDiscardResult(!isReturnValueUsed)
150       .setSExtResult(signExtend)
151       .setZExtResult(!signExtend);
152   return LowerCallTo(CLI);
153 }
154 
155 /// Soften the operands of a comparison. This code is shared among BR_CC,
156 /// SELECT_CC, and SETCC handlers.
157 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
158                                          SDValue &NewLHS, SDValue &NewRHS,
159                                          ISD::CondCode &CCCode,
160                                          const SDLoc &dl) const {
161   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
162          && "Unsupported setcc type!");
163 
164   // Expand into one or more soft-fp libcall(s).
165   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
166   bool ShouldInvertCC = false;
167   switch (CCCode) {
168   case ISD::SETEQ:
169   case ISD::SETOEQ:
170     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
171           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
172           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
173     break;
174   case ISD::SETNE:
175   case ISD::SETUNE:
176     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
177           (VT == MVT::f64) ? RTLIB::UNE_F64 :
178           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
179     break;
180   case ISD::SETGE:
181   case ISD::SETOGE:
182     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
183           (VT == MVT::f64) ? RTLIB::OGE_F64 :
184           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
185     break;
186   case ISD::SETLT:
187   case ISD::SETOLT:
188     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
189           (VT == MVT::f64) ? RTLIB::OLT_F64 :
190           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
191     break;
192   case ISD::SETLE:
193   case ISD::SETOLE:
194     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
195           (VT == MVT::f64) ? RTLIB::OLE_F64 :
196           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
197     break;
198   case ISD::SETGT:
199   case ISD::SETOGT:
200     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
201           (VT == MVT::f64) ? RTLIB::OGT_F64 :
202           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
203     break;
204   case ISD::SETUO:
205     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
206           (VT == MVT::f64) ? RTLIB::UO_F64 :
207           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
208     break;
209   case ISD::SETO:
210     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
211           (VT == MVT::f64) ? RTLIB::O_F64 :
212           (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
213     break;
214   case ISD::SETONE:
215     // SETONE = SETOLT | SETOGT
216     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
217           (VT == MVT::f64) ? RTLIB::OLT_F64 :
218           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
219     LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
220           (VT == MVT::f64) ? RTLIB::OGT_F64 :
221           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
222     break;
223   case ISD::SETUEQ:
224     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
225           (VT == MVT::f64) ? RTLIB::UO_F64 :
226           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
227     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
228           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
229           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
230     break;
231   default:
232     // Invert CC for unordered comparisons
233     ShouldInvertCC = true;
234     switch (CCCode) {
235     case ISD::SETULT:
236       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
237             (VT == MVT::f64) ? RTLIB::OGE_F64 :
238             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
239       break;
240     case ISD::SETULE:
241       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
242             (VT == MVT::f64) ? RTLIB::OGT_F64 :
243             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
244       break;
245     case ISD::SETUGT:
246       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
247             (VT == MVT::f64) ? RTLIB::OLE_F64 :
248             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
249       break;
250     case ISD::SETUGE:
251       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
252             (VT == MVT::f64) ? RTLIB::OLT_F64 :
253             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
254       break;
255     default: llvm_unreachable("Do not know how to soften this setcc!");
256     }
257   }
258 
259   // Use the target specific return value for comparions lib calls.
260   EVT RetVT = getCmpLibcallReturnType();
261   SDValue Ops[2] = {NewLHS, NewRHS};
262   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
263                        dl).first;
264   NewRHS = DAG.getConstant(0, dl, RetVT);
265 
266   CCCode = getCmpLibcallCC(LC1);
267   if (ShouldInvertCC)
268     CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
269 
270   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
271     SDValue Tmp = DAG.getNode(
272         ISD::SETCC, dl,
273         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
274         NewLHS, NewRHS, DAG.getCondCode(CCCode));
275     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
276                          dl).first;
277     NewLHS = DAG.getNode(
278         ISD::SETCC, dl,
279         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
280         NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
281     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
282     NewRHS = SDValue();
283   }
284 }
285 
286 /// Return the entry encoding for a jump table in the current function. The
287 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
288 unsigned TargetLowering::getJumpTableEncoding() const {
289   // In non-pic modes, just use the address of a block.
290   if (!isPositionIndependent())
291     return MachineJumpTableInfo::EK_BlockAddress;
292 
293   // In PIC mode, if the target supports a GPRel32 directive, use it.
294   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
295     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
296 
297   // Otherwise, use a label difference.
298   return MachineJumpTableInfo::EK_LabelDifference32;
299 }
300 
301 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
302                                                  SelectionDAG &DAG) const {
303   // If our PIC model is GP relative, use the global offset table as the base.
304   unsigned JTEncoding = getJumpTableEncoding();
305 
306   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
307       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
308     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
309 
310   return Table;
311 }
312 
313 /// This returns the relocation base for the given PIC jumptable, the same as
314 /// getPICJumpTableRelocBase, but as an MCExpr.
315 const MCExpr *
316 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
317                                              unsigned JTI,MCContext &Ctx) const{
318   // The normal PIC reloc base is the label at the start of the jump table.
319   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
320 }
321 
322 bool
323 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
324   const TargetMachine &TM = getTargetMachine();
325   const GlobalValue *GV = GA->getGlobal();
326 
327   // If the address is not even local to this DSO we will have to load it from
328   // a got and then add the offset.
329   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
330     return false;
331 
332   // If the code is position independent we will have to add a base register.
333   if (isPositionIndependent())
334     return false;
335 
336   // Otherwise we can do it.
337   return true;
338 }
339 
340 //===----------------------------------------------------------------------===//
341 //  Optimization Methods
342 //===----------------------------------------------------------------------===//
343 
344 /// If the specified instruction has a constant integer operand and there are
345 /// bits set in that constant that are not demanded, then clear those bits and
346 /// return true.
347 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
348                                             TargetLoweringOpt &TLO) const {
349   SelectionDAG &DAG = TLO.DAG;
350   SDLoc DL(Op);
351   unsigned Opcode = Op.getOpcode();
352 
353   // Do target-specific constant optimization.
354   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
355     return TLO.New.getNode();
356 
357   // FIXME: ISD::SELECT, ISD::SELECT_CC
358   switch (Opcode) {
359   default:
360     break;
361   case ISD::XOR:
362   case ISD::AND:
363   case ISD::OR: {
364     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
365     if (!Op1C)
366       return false;
367 
368     // If this is a 'not' op, don't touch it because that's a canonical form.
369     const APInt &C = Op1C->getAPIntValue();
370     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
371       return false;
372 
373     if (!C.isSubsetOf(Demanded)) {
374       EVT VT = Op.getValueType();
375       SDValue NewC = DAG.getConstant(Demanded & C, DL, VT);
376       SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
377       return TLO.CombineTo(Op, NewOp);
378     }
379 
380     break;
381   }
382   }
383 
384   return false;
385 }
386 
387 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
388 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
389 /// generalized for targets with other types of implicit widening casts.
390 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
391                                       const APInt &Demanded,
392                                       TargetLoweringOpt &TLO) const {
393   assert(Op.getNumOperands() == 2 &&
394          "ShrinkDemandedOp only supports binary operators!");
395   assert(Op.getNode()->getNumValues() == 1 &&
396          "ShrinkDemandedOp only supports nodes with one result!");
397 
398   SelectionDAG &DAG = TLO.DAG;
399   SDLoc dl(Op);
400 
401   // Early return, as this function cannot handle vector types.
402   if (Op.getValueType().isVector())
403     return false;
404 
405   // Don't do this if the node has another user, which may require the
406   // full value.
407   if (!Op.getNode()->hasOneUse())
408     return false;
409 
410   // Search for the smallest integer type with free casts to and from
411   // Op's type. For expedience, just check power-of-2 integer types.
412   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
413   unsigned DemandedSize = Demanded.getActiveBits();
414   unsigned SmallVTBits = DemandedSize;
415   if (!isPowerOf2_32(SmallVTBits))
416     SmallVTBits = NextPowerOf2(SmallVTBits);
417   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
418     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
419     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
420         TLI.isZExtFree(SmallVT, Op.getValueType())) {
421       // We found a type with free casts.
422       SDValue X = DAG.getNode(
423           Op.getOpcode(), dl, SmallVT,
424           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
425           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
426       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
427       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
428       return TLO.CombineTo(Op, Z);
429     }
430   }
431   return false;
432 }
433 
434 bool
435 TargetLowering::SimplifyDemandedBits(SDNode *User, unsigned OpIdx,
436                                      const APInt &DemandedBits,
437                                      DAGCombinerInfo &DCI,
438                                      TargetLoweringOpt &TLO) const {
439   SDValue Op = User->getOperand(OpIdx);
440   KnownBits Known;
441 
442   if (!SimplifyDemandedBits(Op, DemandedBits, Known, TLO, 0, true))
443     return false;
444 
445 
446   // Old will not always be the same as Op.  For example:
447   //
448   // Demanded = 0xffffff
449   // Op = i64 truncate (i32 and x, 0xffffff)
450   // In this case simplify demand bits will want to replace the 'and' node
451   // with the value 'x', which will give us:
452   // Old = i32 and x, 0xffffff
453   // New = x
454   if (TLO.Old.hasOneUse()) {
455     // For the one use case, we just commit the change.
456     DCI.CommitTargetLoweringOpt(TLO);
457     return true;
458   }
459 
460   // If Old has more than one use then it must be Op, because the
461   // AssumeSingleUse flag is not propogated to recursive calls of
462   // SimplifyDemanded bits, so the only node with multiple use that
463   // it will attempt to combine will be Op.
464   assert(TLO.Old == Op);
465 
466   SmallVector <SDValue, 4> NewOps;
467   for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
468     if (i == OpIdx) {
469       NewOps.push_back(TLO.New);
470       continue;
471     }
472     NewOps.push_back(User->getOperand(i));
473   }
474   User = TLO.DAG.UpdateNodeOperands(User, NewOps);
475   // Op has less users now, so we may be able to perform additional combines
476   // with it.
477   DCI.AddToWorklist(Op.getNode());
478   // User's operands have been updated, so we may be able to do new combines
479   // with it.
480   DCI.AddToWorklist(User);
481   return true;
482 }
483 
484 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
485                                           DAGCombinerInfo &DCI) const {
486   SelectionDAG &DAG = DCI.DAG;
487   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
488                         !DCI.isBeforeLegalizeOps());
489   KnownBits Known;
490 
491   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
492   if (Simplified) {
493     DCI.AddToWorklist(Op.getNode());
494     DCI.CommitTargetLoweringOpt(TLO);
495   }
496   return Simplified;
497 }
498 
499 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
500                                           KnownBits &Known,
501                                           TargetLoweringOpt &TLO,
502                                           unsigned Depth,
503                                           bool AssumeSingleUse) const {
504   EVT VT = Op.getValueType();
505   APInt DemandedElts = VT.isVector()
506                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
507                            : APInt(1, 1);
508   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
509                               AssumeSingleUse);
510 }
511 
512 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
513 /// result of Op are ever used downstream. If we can use this information to
514 /// simplify Op, create a new simplified DAG node and return true, returning the
515 /// original and new nodes in Old and New. Otherwise, analyze the expression and
516 /// return a mask of Known bits for the expression (used to simplify the
517 /// caller).  The Known bits may only be accurate for those bits in the
518 /// OriginalDemandedBits and OriginalDemandedElts.
519 bool TargetLowering::SimplifyDemandedBits(
520     SDValue Op, const APInt &OriginalDemandedBits,
521     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
522     unsigned Depth, bool AssumeSingleUse) const {
523   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
524   assert(Op.getScalarValueSizeInBits() == BitWidth &&
525          "Mask size mismatches value type size!");
526 
527   unsigned NumElts = OriginalDemandedElts.getBitWidth();
528   assert((!Op.getValueType().isVector() ||
529           NumElts == Op.getValueType().getVectorNumElements()) &&
530          "Unexpected vector size");
531 
532   APInt DemandedBits = OriginalDemandedBits;
533   APInt DemandedElts = OriginalDemandedElts;
534   SDLoc dl(Op);
535   auto &DL = TLO.DAG.getDataLayout();
536 
537   // Don't know anything.
538   Known = KnownBits(BitWidth);
539 
540   if (Op.getOpcode() == ISD::Constant) {
541     // We know all of the bits for a constant!
542     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
543     Known.Zero = ~Known.One;
544     return false;
545   }
546 
547   // Other users may use these bits.
548   EVT VT = Op.getValueType();
549   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
550     if (Depth != 0) {
551       // If not at the root, Just compute the Known bits to
552       // simplify things downstream.
553       TLO.DAG.computeKnownBits(Op, Known, DemandedElts, Depth);
554       return false;
555     }
556     // If this is the root being simplified, allow it to have multiple uses,
557     // just set the DemandedBits/Elts to all bits.
558     DemandedBits = APInt::getAllOnesValue(BitWidth);
559     DemandedElts = APInt::getAllOnesValue(NumElts);
560   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
561     // Not demanding any bits/elts from Op.
562     if (!Op.isUndef())
563       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
564     return false;
565   } else if (Depth == 6) { // Limit search depth.
566     return false;
567   }
568 
569   KnownBits Known2, KnownOut;
570   switch (Op.getOpcode()) {
571   case ISD::BUILD_VECTOR:
572     // Collect the known bits that are shared by every constant vector element.
573     Known.Zero.setAllBits(); Known.One.setAllBits();
574     for (SDValue SrcOp : Op->ops()) {
575       if (!isa<ConstantSDNode>(SrcOp)) {
576         // We can only handle all constant values - bail out with no known bits.
577         Known = KnownBits(BitWidth);
578         return false;
579       }
580       Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue();
581       Known2.Zero = ~Known2.One;
582 
583       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
584       if (Known2.One.getBitWidth() != BitWidth) {
585         assert(Known2.getBitWidth() > BitWidth &&
586                "Expected BUILD_VECTOR implicit truncation");
587         Known2 = Known2.trunc(BitWidth);
588       }
589 
590       // Known bits are the values that are shared by every element.
591       // TODO: support per-element known bits.
592       Known.One &= Known2.One;
593       Known.Zero &= Known2.Zero;
594     }
595     return false; // Don't fall through, will infinitely loop.
596   case ISD::CONCAT_VECTORS: {
597     Known.Zero.setAllBits();
598     Known.One.setAllBits();
599     EVT SubVT = Op.getOperand(0).getValueType();
600     unsigned NumSubVecs = Op.getNumOperands();
601     unsigned NumSubElts = SubVT.getVectorNumElements();
602     for (unsigned i = 0; i != NumSubVecs; ++i) {
603       APInt DemandedSubElts =
604           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
605       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
606                                Known2, TLO, Depth + 1))
607         return true;
608       // Known bits are shared by every demanded subvector element.
609       if (!!DemandedSubElts) {
610         Known.One &= Known2.One;
611         Known.Zero &= Known2.Zero;
612       }
613     }
614     break;
615   }
616   case ISD::VECTOR_SHUFFLE: {
617     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
618 
619     // Collect demanded elements from shuffle operands..
620     APInt DemandedLHS(NumElts, 0);
621     APInt DemandedRHS(NumElts, 0);
622     for (unsigned i = 0; i != NumElts; ++i) {
623       if (!DemandedElts[i])
624         continue;
625       int M = ShuffleMask[i];
626       if (M < 0) {
627         // For UNDEF elements, we don't know anything about the common state of
628         // the shuffle result.
629         DemandedLHS.clearAllBits();
630         DemandedRHS.clearAllBits();
631         break;
632       }
633       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
634       if (M < (int)NumElts)
635         DemandedLHS.setBit(M);
636       else
637         DemandedRHS.setBit(M - NumElts);
638     }
639 
640     if (!!DemandedLHS || !!DemandedRHS) {
641       Known.Zero.setAllBits();
642       Known.One.setAllBits();
643       if (!!DemandedLHS) {
644         if (SimplifyDemandedBits(Op.getOperand(0), DemandedBits, DemandedLHS,
645                                  Known2, TLO, Depth + 1))
646           return true;
647         Known.One &= Known2.One;
648         Known.Zero &= Known2.Zero;
649       }
650       if (!!DemandedRHS) {
651         if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedRHS,
652                                  Known2, TLO, Depth + 1))
653           return true;
654         Known.One &= Known2.One;
655         Known.Zero &= Known2.Zero;
656       }
657     }
658     break;
659   }
660   case ISD::AND: {
661     SDValue Op0 = Op.getOperand(0);
662     SDValue Op1 = Op.getOperand(1);
663 
664     // If the RHS is a constant, check to see if the LHS would be zero without
665     // using the bits from the RHS.  Below, we use knowledge about the RHS to
666     // simplify the LHS, here we're using information from the LHS to simplify
667     // the RHS.
668     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
669       KnownBits LHSKnown;
670       // Do not increment Depth here; that can cause an infinite loop.
671       TLO.DAG.computeKnownBits(Op0, LHSKnown, DemandedElts, Depth);
672       // If the LHS already has zeros where RHSC does, this 'and' is dead.
673       if ((LHSKnown.Zero & DemandedBits) ==
674           (~RHSC->getAPIntValue() & DemandedBits))
675         return TLO.CombineTo(Op, Op0);
676 
677       // If any of the set bits in the RHS are known zero on the LHS, shrink
678       // the constant.
679       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
680         return true;
681 
682       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
683       // constant, but if this 'and' is only clearing bits that were just set by
684       // the xor, then this 'and' can be eliminated by shrinking the mask of
685       // the xor. For example, for a 32-bit X:
686       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
687       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
688           LHSKnown.One == ~RHSC->getAPIntValue()) {
689         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
690         return TLO.CombineTo(Op, Xor);
691       }
692     }
693 
694     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, Depth + 1))
695       return true;
696     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
697     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, Known2, TLO,
698                              Depth + 1))
699       return true;
700     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
701 
702     // If all of the demanded bits are known one on one side, return the other.
703     // These bits cannot contribute to the result of the 'and'.
704     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
705       return TLO.CombineTo(Op, Op0);
706     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
707       return TLO.CombineTo(Op, Op1);
708     // If all of the demanded bits in the inputs are known zeros, return zero.
709     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
710       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
711     // If the RHS is a constant, see if we can simplify it.
712     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
713       return true;
714     // If the operation can be done in a smaller type, do so.
715     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
716       return true;
717 
718     // Output known-1 bits are only known if set in both the LHS & RHS.
719     Known.One &= Known2.One;
720     // Output known-0 are known to be clear if zero in either the LHS | RHS.
721     Known.Zero |= Known2.Zero;
722     break;
723   }
724   case ISD::OR: {
725     SDValue Op0 = Op.getOperand(0);
726     SDValue Op1 = Op.getOperand(1);
727 
728     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, Depth + 1))
729       return true;
730     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
731     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, Known2, TLO,
732                              Depth + 1))
733       return true;
734     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
735 
736     // If all of the demanded bits are known zero on one side, return the other.
737     // These bits cannot contribute to the result of the 'or'.
738     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
739       return TLO.CombineTo(Op, Op0);
740     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
741       return TLO.CombineTo(Op, Op1);
742     // If the RHS is a constant, see if we can simplify it.
743     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
744       return true;
745     // If the operation can be done in a smaller type, do so.
746     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
747       return true;
748 
749     // Output known-0 bits are only known if clear in both the LHS & RHS.
750     Known.Zero &= Known2.Zero;
751     // Output known-1 are known to be set if set in either the LHS | RHS.
752     Known.One |= Known2.One;
753     break;
754   }
755   case ISD::XOR: {
756     SDValue Op0 = Op.getOperand(0);
757     SDValue Op1 = Op.getOperand(1);
758 
759     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, Depth + 1))
760       return true;
761     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
762     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, Depth + 1))
763       return true;
764     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
765 
766     // If all of the demanded bits are known zero on one side, return the other.
767     // These bits cannot contribute to the result of the 'xor'.
768     if (DemandedBits.isSubsetOf(Known.Zero))
769       return TLO.CombineTo(Op, Op0);
770     if (DemandedBits.isSubsetOf(Known2.Zero))
771       return TLO.CombineTo(Op, Op1);
772     // If the operation can be done in a smaller type, do so.
773     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
774       return true;
775 
776     // If all of the unknown bits are known to be zero on one side or the other
777     // (but not both) turn this into an *inclusive* or.
778     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
779     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
780       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
781 
782     // Output known-0 bits are known if clear or set in both the LHS & RHS.
783     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
784     // Output known-1 are known to be set if set in only one of the LHS, RHS.
785     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
786 
787     if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
788       // If one side is a constant, and all of the known set bits on the other
789       // side are also set in the constant, turn this into an AND, as we know
790       // the bits will be cleared.
791       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
792       // NB: it is okay if more bits are known than are requested
793       if (C->getAPIntValue() == Known2.One) {
794         SDValue ANDC =
795             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
796         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
797       }
798 
799       // If the RHS is a constant, see if we can change it. Don't alter a -1
800       // constant because that's a 'not' op, and that is better for combining
801       // and codegen.
802       if (!C->isAllOnesValue()) {
803         if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
804           // We're flipping all demanded bits. Flip the undemanded bits too.
805           SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
806           return TLO.CombineTo(Op, New);
807         }
808         // If we can't turn this into a 'not', try to shrink the constant.
809         if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
810           return true;
811       }
812     }
813 
814     Known = std::move(KnownOut);
815     break;
816   }
817   case ISD::SELECT:
818     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
819                              Depth + 1))
820       return true;
821     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
822                              Depth + 1))
823       return true;
824     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
825     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
826 
827     // If the operands are constants, see if we can simplify them.
828     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
829       return true;
830 
831     // Only known if known in both the LHS and RHS.
832     Known.One &= Known2.One;
833     Known.Zero &= Known2.Zero;
834     break;
835   case ISD::SELECT_CC:
836     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
837                              Depth + 1))
838       return true;
839     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
840                              Depth + 1))
841       return true;
842     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
843     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
844 
845     // If the operands are constants, see if we can simplify them.
846     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
847       return true;
848 
849     // Only known if known in both the LHS and RHS.
850     Known.One &= Known2.One;
851     Known.Zero &= Known2.Zero;
852     break;
853   case ISD::SETCC: {
854     SDValue Op0 = Op.getOperand(0);
855     SDValue Op1 = Op.getOperand(1);
856     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
857     // If (1) we only need the sign-bit, (2) the setcc operands are the same
858     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
859     // -1, we may be able to bypass the setcc.
860     if (DemandedBits.isSignMask() &&
861         Op0.getScalarValueSizeInBits() == BitWidth &&
862         getBooleanContents(VT) ==
863             BooleanContent::ZeroOrNegativeOneBooleanContent) {
864       // If we're testing X < 0, then this compare isn't needed - just use X!
865       // FIXME: We're limiting to integer types here, but this should also work
866       // if we don't care about FP signed-zero. The use of SETLT with FP means
867       // that we don't care about NaNs.
868       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
869           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
870         return TLO.CombineTo(Op, Op0);
871 
872       // TODO: Should we check for other forms of sign-bit comparisons?
873       // Examples: X <= -1, X >= 0
874     }
875     if (getBooleanContents(Op0.getValueType()) ==
876             TargetLowering::ZeroOrOneBooleanContent &&
877         BitWidth > 1)
878       Known.Zero.setBitsFrom(1);
879     break;
880   }
881   case ISD::SHL: {
882     SDValue Op0 = Op.getOperand(0);
883     SDValue Op1 = Op.getOperand(1);
884 
885     if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
886       // If the shift count is an invalid immediate, don't do anything.
887       if (SA->getAPIntValue().uge(BitWidth))
888         break;
889 
890       unsigned ShAmt = SA->getZExtValue();
891 
892       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
893       // single shift.  We can do this if the bottom bits (which are shifted
894       // out) are never demanded.
895       if (Op0.getOpcode() == ISD::SRL) {
896         if (ShAmt &&
897             (DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
898           if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) {
899             if (SA2->getAPIntValue().ult(BitWidth)) {
900               unsigned C1 = SA2->getZExtValue();
901               unsigned Opc = ISD::SHL;
902               int Diff = ShAmt - C1;
903               if (Diff < 0) {
904                 Diff = -Diff;
905                 Opc = ISD::SRL;
906               }
907 
908               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
909               return TLO.CombineTo(
910                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
911             }
912           }
913         }
914       }
915 
916       if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts, Known, TLO,
917                                Depth + 1))
918         return true;
919 
920       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
921       // are not demanded. This will likely allow the anyext to be folded away.
922       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
923         SDValue InnerOp = Op0.getOperand(0);
924         EVT InnerVT = InnerOp.getValueType();
925         unsigned InnerBits = InnerVT.getScalarSizeInBits();
926         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
927             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
928           EVT ShTy = getShiftAmountTy(InnerVT, DL);
929           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
930             ShTy = InnerVT;
931           SDValue NarrowShl =
932               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
933                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
934           return TLO.CombineTo(
935               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
936         }
937         // Repeat the SHL optimization above in cases where an extension
938         // intervenes: (shl (anyext (shr x, c1)), c2) to
939         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
940         // aren't demanded (as above) and that the shifted upper c1 bits of
941         // x aren't demanded.
942         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
943             InnerOp.hasOneUse()) {
944           if (ConstantSDNode *SA2 =
945                   isConstOrConstSplat(InnerOp.getOperand(1))) {
946             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
947             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
948                 DemandedBits.getActiveBits() <=
949                     (InnerBits - InnerShAmt + ShAmt) &&
950                 DemandedBits.countTrailingZeros() >= ShAmt) {
951               SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
952                                                   Op1.getValueType());
953               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
954                                                InnerOp.getOperand(0));
955               return TLO.CombineTo(
956                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
957             }
958           }
959         }
960       }
961 
962       Known.Zero <<= ShAmt;
963       Known.One <<= ShAmt;
964       // low bits known zero.
965       Known.Zero.setLowBits(ShAmt);
966     }
967     break;
968   }
969   case ISD::SRL: {
970     SDValue Op0 = Op.getOperand(0);
971     SDValue Op1 = Op.getOperand(1);
972 
973     if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
974       // If the shift count is an invalid immediate, don't do anything.
975       if (SA->getAPIntValue().uge(BitWidth))
976         break;
977 
978       unsigned ShAmt = SA->getZExtValue();
979       APInt InDemandedMask = (DemandedBits << ShAmt);
980 
981       // If the shift is exact, then it does demand the low bits (and knows that
982       // they are zero).
983       if (Op->getFlags().hasExact())
984         InDemandedMask.setLowBits(ShAmt);
985 
986       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
987       // single shift.  We can do this if the top bits (which are shifted out)
988       // are never demanded.
989       if (Op0.getOpcode() == ISD::SHL) {
990         if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) {
991           if (ShAmt &&
992               (DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) {
993             if (SA2->getAPIntValue().ult(BitWidth)) {
994               unsigned C1 = SA2->getZExtValue();
995               unsigned Opc = ISD::SRL;
996               int Diff = ShAmt - C1;
997               if (Diff < 0) {
998                 Diff = -Diff;
999                 Opc = ISD::SHL;
1000               }
1001 
1002               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
1003               return TLO.CombineTo(
1004                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1005             }
1006           }
1007         }
1008       }
1009 
1010       // Compute the new bits that are at the top now.
1011       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, Depth + 1))
1012         return true;
1013       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1014       Known.Zero.lshrInPlace(ShAmt);
1015       Known.One.lshrInPlace(ShAmt);
1016 
1017       Known.Zero.setHighBits(ShAmt); // High bits known zero.
1018     }
1019     break;
1020   }
1021   case ISD::SRA: {
1022     SDValue Op0 = Op.getOperand(0);
1023     SDValue Op1 = Op.getOperand(1);
1024 
1025     // If this is an arithmetic shift right and only the low-bit is set, we can
1026     // always convert this into a logical shr, even if the shift amount is
1027     // variable.  The low bit of the shift cannot be an input sign bit unless
1028     // the shift amount is >= the size of the datatype, which is undefined.
1029     if (DemandedBits.isOneValue())
1030       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1031 
1032     if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
1033       // If the shift count is an invalid immediate, don't do anything.
1034       if (SA->getAPIntValue().uge(BitWidth))
1035         break;
1036 
1037       unsigned ShAmt = SA->getZExtValue();
1038       APInt InDemandedMask = (DemandedBits << ShAmt);
1039 
1040       // If the shift is exact, then it does demand the low bits (and knows that
1041       // they are zero).
1042       if (Op->getFlags().hasExact())
1043         InDemandedMask.setLowBits(ShAmt);
1044 
1045       // If any of the demanded bits are produced by the sign extension, we also
1046       // demand the input sign bit.
1047       if (DemandedBits.countLeadingZeros() < ShAmt)
1048         InDemandedMask.setSignBit();
1049 
1050       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, Depth + 1))
1051         return true;
1052       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1053       Known.Zero.lshrInPlace(ShAmt);
1054       Known.One.lshrInPlace(ShAmt);
1055 
1056       // If the input sign bit is known to be zero, or if none of the top bits
1057       // are demanded, turn this into an unsigned shift right.
1058       if (Known.Zero[BitWidth - ShAmt - 1] ||
1059           DemandedBits.countLeadingZeros() >= ShAmt) {
1060         SDNodeFlags Flags;
1061         Flags.setExact(Op->getFlags().hasExact());
1062         return TLO.CombineTo(
1063             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1064       }
1065 
1066       int Log2 = DemandedBits.exactLogBase2();
1067       if (Log2 >= 0) {
1068         // The bit must come from the sign.
1069         SDValue NewSA =
1070             TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType());
1071         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1072       }
1073 
1074       if (Known.One[BitWidth - ShAmt - 1])
1075         // New bits are known one.
1076         Known.One.setHighBits(ShAmt);
1077     }
1078     break;
1079   }
1080   case ISD::SIGN_EXTEND_INREG: {
1081     SDValue Op0 = Op.getOperand(0);
1082     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1083     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1084 
1085     // If we only care about the highest bit, don't bother shifting right.
1086     if (DemandedBits.isSignMask()) {
1087       bool AlreadySignExtended =
1088           TLO.DAG.ComputeNumSignBits(Op0) >= BitWidth - ExVTBits + 1;
1089       // However if the input is already sign extended we expect the sign
1090       // extension to be dropped altogether later and do not simplify.
1091       if (!AlreadySignExtended) {
1092         // Compute the correct shift amount type, which must be getShiftAmountTy
1093         // for scalar types after legalization.
1094         EVT ShiftAmtTy = VT;
1095         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1096           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1097 
1098         SDValue ShiftAmt =
1099             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1100         return TLO.CombineTo(Op,
1101                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1102       }
1103     }
1104 
1105     // If none of the extended bits are demanded, eliminate the sextinreg.
1106     if (DemandedBits.getActiveBits() <= ExVTBits)
1107       return TLO.CombineTo(Op, Op0);
1108 
1109     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1110 
1111     // Since the sign extended bits are demanded, we know that the sign
1112     // bit is demanded.
1113     InputDemandedBits.setBit(ExVTBits - 1);
1114 
1115     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1116       return true;
1117     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1118 
1119     // If the sign bit of the input is known set or clear, then we know the
1120     // top bits of the result.
1121 
1122     // If the input sign bit is known zero, convert this into a zero extension.
1123     if (Known.Zero[ExVTBits - 1])
1124       return TLO.CombineTo(
1125           Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
1126 
1127     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1128     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1129       Known.One.setBitsFrom(ExVTBits);
1130       Known.Zero &= Mask;
1131     } else { // Input sign bit unknown
1132       Known.Zero &= Mask;
1133       Known.One &= Mask;
1134     }
1135     break;
1136   }
1137   case ISD::BUILD_PAIR: {
1138     EVT HalfVT = Op.getOperand(0).getValueType();
1139     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1140 
1141     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1142     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1143 
1144     KnownBits KnownLo, KnownHi;
1145 
1146     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1147       return true;
1148 
1149     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1150       return true;
1151 
1152     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1153                 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1154 
1155     Known.One = KnownLo.One.zext(BitWidth) |
1156                KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1157     break;
1158   }
1159   case ISD::ZERO_EXTEND: {
1160     SDValue Src = Op.getOperand(0);
1161     unsigned InBits = Src.getScalarValueSizeInBits();
1162 
1163     // If none of the top bits are demanded, convert this into an any_extend.
1164     if (DemandedBits.getActiveBits() <= InBits)
1165       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src));
1166 
1167     APInt InDemandedBits = DemandedBits.trunc(InBits);
1168     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth+1))
1169       return true;
1170     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1171     Known = Known.zext(BitWidth);
1172     Known.Zero.setBitsFrom(InBits);
1173     break;
1174   }
1175   case ISD::SIGN_EXTEND: {
1176     SDValue Src = Op.getOperand(0);
1177     unsigned InBits = Src.getScalarValueSizeInBits();
1178 
1179     // If none of the top bits are demanded, convert this into an any_extend.
1180     if (DemandedBits.getActiveBits() <= InBits)
1181       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src));
1182 
1183     // Since some of the sign extended bits are demanded, we know that the sign
1184     // bit is demanded.
1185     APInt InDemandedBits = DemandedBits.trunc(InBits);
1186     InDemandedBits.setBit(InBits - 1);
1187 
1188     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1))
1189       return true;
1190     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1191     // If the sign bit is known one, the top bits match.
1192     Known = Known.sext(BitWidth);
1193 
1194     // If the sign bit is known zero, convert this to a zero extend.
1195     if (Known.isNonNegative())
1196       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Src));
1197     break;
1198   }
1199   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1200     // TODO - merge this with SIGN_EXTEND above?
1201     SDValue Src = Op.getOperand(0);
1202     unsigned InBits = Src.getScalarValueSizeInBits();
1203 
1204     APInt InDemandedBits = DemandedBits.trunc(InBits);
1205 
1206     // If some of the sign extended bits are demanded, we know that the sign
1207     // bit is demanded.
1208     if (InBits < DemandedBits.getActiveBits())
1209       InDemandedBits.setBit(InBits - 1);
1210 
1211     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1))
1212       return true;
1213     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1214     // If the sign bit is known one, the top bits match.
1215     Known = Known.sext(BitWidth);
1216     break;
1217   }
1218   case ISD::ANY_EXTEND: {
1219     SDValue Src = Op.getOperand(0);
1220     unsigned InBits = Src.getScalarValueSizeInBits();
1221     APInt InDemandedBits = DemandedBits.trunc(InBits);
1222     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth+1))
1223       return true;
1224     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1225     Known = Known.zext(BitWidth);
1226     break;
1227   }
1228   case ISD::TRUNCATE: {
1229     SDValue Src = Op.getOperand(0);
1230 
1231     // Simplify the input, using demanded bit information, and compute the known
1232     // zero/one bits live out.
1233     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1234     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1235     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1236       return true;
1237     Known = Known.trunc(BitWidth);
1238 
1239     // If the input is only used by this truncate, see if we can shrink it based
1240     // on the known demanded bits.
1241     if (Src.getNode()->hasOneUse()) {
1242       switch (Src.getOpcode()) {
1243       default:
1244         break;
1245       case ISD::SRL:
1246         // Shrink SRL by a constant if none of the high bits shifted in are
1247         // demanded.
1248         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1249           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1250           // undesirable.
1251           break;
1252         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
1253         if (!ShAmt)
1254           break;
1255         SDValue Shift = Src.getOperand(1);
1256         if (TLO.LegalTypes()) {
1257           uint64_t ShVal = ShAmt->getZExtValue();
1258           Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1259         }
1260 
1261         if (ShAmt->getZExtValue() < BitWidth) {
1262           APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1263                                                  OperandBitWidth - BitWidth);
1264           HighBits.lshrInPlace(ShAmt->getZExtValue());
1265           HighBits = HighBits.trunc(BitWidth);
1266 
1267           if (!(HighBits & DemandedBits)) {
1268             // None of the shifted in bits are needed.  Add a truncate of the
1269             // shift input, then shift it.
1270             SDValue NewTrunc =
1271                 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1272             return TLO.CombineTo(
1273                 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift));
1274           }
1275         }
1276         break;
1277       }
1278     }
1279 
1280     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1281     break;
1282   }
1283   case ISD::AssertZext: {
1284     // AssertZext demands all of the high bits, plus any of the low bits
1285     // demanded by its users.
1286     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1287     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1288     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits,
1289                              Known, TLO, Depth+1))
1290       return true;
1291     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1292 
1293     Known.Zero |= ~InMask;
1294     break;
1295   }
1296   case ISD::EXTRACT_VECTOR_ELT: {
1297     SDValue Src = Op.getOperand(0);
1298     SDValue Idx = Op.getOperand(1);
1299     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1300     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1301 
1302     // Demand the bits from every vector element without a constant index.
1303     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1304     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1305       if (CIdx->getAPIntValue().ult(NumSrcElts))
1306         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1307 
1308     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1309     // anything about the extended bits.
1310     APInt DemandedSrcBits = DemandedBits;
1311     if (BitWidth > EltBitWidth)
1312       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1313 
1314     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1315                              Depth + 1))
1316       return true;
1317 
1318     Known = Known2;
1319     if (BitWidth > EltBitWidth)
1320       Known = Known.zext(BitWidth);
1321     break;
1322   }
1323   case ISD::BITCAST: {
1324     SDValue Src = Op.getOperand(0);
1325     EVT SrcVT = Src.getValueType();
1326     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1327 
1328     // If this is an FP->Int bitcast and if the sign bit is the only
1329     // thing demanded, turn this into a FGETSIGN.
1330     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1331         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1332         SrcVT.isFloatingPoint()) {
1333       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1334       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1335       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1336           SrcVT != MVT::f128) {
1337         // Cannot eliminate/lower SHL for f128 yet.
1338         EVT Ty = OpVTLegal ? VT : MVT::i32;
1339         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1340         // place.  We expect the SHL to be eliminated by other optimizations.
1341         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
1342         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1343         if (!OpVTLegal && OpVTSizeInBits > 32)
1344           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1345         unsigned ShVal = Op.getValueSizeInBits() - 1;
1346         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1347         return TLO.CombineTo(Op,
1348                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1349       }
1350     }
1351     // If bitcast from a vector, see if we can use SimplifyDemandedVectorElts by
1352     // demanding the element if any bits from it are demanded.
1353     // TODO - bigendian once we have test coverage.
1354     // TODO - bool vectors once SimplifyDemandedVectorElts has SETCC support.
1355     if (SrcVT.isVector() && NumSrcEltBits > 1 &&
1356         (BitWidth % NumSrcEltBits) == 0 &&
1357         TLO.DAG.getDataLayout().isLittleEndian()) {
1358       unsigned Scale = BitWidth / NumSrcEltBits;
1359       auto GetDemandedSubMask = [&](APInt &DemandedSubElts) -> bool {
1360         DemandedSubElts = APInt::getNullValue(Scale);
1361         for (unsigned i = 0; i != Scale; ++i) {
1362           unsigned Offset = i * NumSrcEltBits;
1363           APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
1364           if (!Sub.isNullValue())
1365             DemandedSubElts.setBit(i);
1366         }
1367         return true;
1368       };
1369 
1370       APInt DemandedSubElts;
1371       if (GetDemandedSubMask(DemandedSubElts)) {
1372         unsigned NumSrcElts = SrcVT.getVectorNumElements();
1373         APInt DemandedElts = APInt::getSplat(NumSrcElts, DemandedSubElts);
1374 
1375         APInt KnownUndef, KnownZero;
1376         if (SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, KnownZero,
1377                                        TLO, Depth + 1))
1378           return true;
1379       }
1380     }
1381     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
1382     // recursive call where Known may be useful to the caller.
1383     if (Depth > 0) {
1384       TLO.DAG.computeKnownBits(Op, Known, Depth);
1385       return false;
1386     }
1387     break;
1388   }
1389   case ISD::ADD:
1390   case ISD::MUL:
1391   case ISD::SUB: {
1392     // Add, Sub, and Mul don't demand any bits in positions beyond that
1393     // of the highest bit demanded of them.
1394     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
1395     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
1396     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
1397     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, Depth + 1) ||
1398         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, Depth + 1) ||
1399         // See if the operation should be performed at a smaller bit width.
1400         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
1401       SDNodeFlags Flags = Op.getNode()->getFlags();
1402       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1403         // Disable the nsw and nuw flags. We can no longer guarantee that we
1404         // won't wrap after simplification.
1405         Flags.setNoSignedWrap(false);
1406         Flags.setNoUnsignedWrap(false);
1407         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1,
1408                                         Flags);
1409         return TLO.CombineTo(Op, NewOp);
1410       }
1411       return true;
1412     }
1413 
1414     // If we have a constant operand, we may be able to turn it into -1 if we
1415     // do not demand the high bits. This can make the constant smaller to
1416     // encode, allow more general folding, or match specialized instruction
1417     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
1418     // is probably not useful (and could be detrimental).
1419     ConstantSDNode *C = isConstOrConstSplat(Op1);
1420     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
1421     if (C && !C->isAllOnesValue() && !C->isOne() &&
1422         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
1423       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
1424       // We can't guarantee that the new math op doesn't wrap, so explicitly
1425       // clear those flags to prevent folding with a potential existing node
1426       // that has those flags set.
1427       SDNodeFlags Flags;
1428       Flags.setNoSignedWrap(false);
1429       Flags.setNoUnsignedWrap(false);
1430       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
1431       return TLO.CombineTo(Op, NewOp);
1432     }
1433 
1434     LLVM_FALLTHROUGH;
1435   }
1436   default:
1437     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1438       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
1439                                             Known, TLO, Depth))
1440         return true;
1441       break;
1442     }
1443 
1444     // Just use computeKnownBits to compute output bits.
1445     TLO.DAG.computeKnownBits(Op, Known, DemandedElts, Depth);
1446     break;
1447   }
1448 
1449   // If we know the value of all of the demanded bits, return this as a
1450   // constant.
1451   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
1452     // Avoid folding to a constant if any OpaqueConstant is involved.
1453     const SDNode *N = Op.getNode();
1454     for (SDNodeIterator I = SDNodeIterator::begin(N),
1455                         E = SDNodeIterator::end(N);
1456          I != E; ++I) {
1457       SDNode *Op = *I;
1458       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
1459         if (C->isOpaque())
1460           return false;
1461     }
1462     // TODO: Handle float bits as well.
1463     if (VT.isInteger())
1464       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
1465   }
1466 
1467   return false;
1468 }
1469 
1470 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
1471                                                 const APInt &DemandedElts,
1472                                                 APInt &KnownUndef,
1473                                                 APInt &KnownZero,
1474                                                 DAGCombinerInfo &DCI) const {
1475   SelectionDAG &DAG = DCI.DAG;
1476   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1477                         !DCI.isBeforeLegalizeOps());
1478 
1479   bool Simplified =
1480       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
1481   if (Simplified) {
1482     DCI.AddToWorklist(Op.getNode());
1483     DCI.CommitTargetLoweringOpt(TLO);
1484   }
1485   return Simplified;
1486 }
1487 
1488 bool TargetLowering::SimplifyDemandedVectorElts(
1489     SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef,
1490     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
1491     bool AssumeSingleUse) const {
1492   EVT VT = Op.getValueType();
1493   APInt DemandedElts = DemandedEltMask;
1494   unsigned NumElts = DemandedElts.getBitWidth();
1495   assert(VT.isVector() && "Expected vector op");
1496   assert(VT.getVectorNumElements() == NumElts &&
1497          "Mask size mismatches value type element count!");
1498 
1499   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
1500 
1501   // Undef operand.
1502   if (Op.isUndef()) {
1503     KnownUndef.setAllBits();
1504     return false;
1505   }
1506 
1507   // If Op has other users, assume that all elements are needed.
1508   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
1509     DemandedElts.setAllBits();
1510 
1511   // Not demanding any elements from Op.
1512   if (DemandedElts == 0) {
1513     KnownUndef.setAllBits();
1514     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1515   }
1516 
1517   // Limit search depth.
1518   if (Depth >= 6)
1519     return false;
1520 
1521   SDLoc DL(Op);
1522   unsigned EltSizeInBits = VT.getScalarSizeInBits();
1523 
1524   switch (Op.getOpcode()) {
1525   case ISD::SCALAR_TO_VECTOR: {
1526     if (!DemandedElts[0]) {
1527       KnownUndef.setAllBits();
1528       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1529     }
1530     KnownUndef.setHighBits(NumElts - 1);
1531     break;
1532   }
1533   case ISD::BITCAST: {
1534     SDValue Src = Op.getOperand(0);
1535     EVT SrcVT = Src.getValueType();
1536 
1537     // We only handle vectors here.
1538     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
1539     if (!SrcVT.isVector())
1540       break;
1541 
1542     // Fast handling of 'identity' bitcasts.
1543     unsigned NumSrcElts = SrcVT.getVectorNumElements();
1544     if (NumSrcElts == NumElts)
1545       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
1546                                         KnownZero, TLO, Depth + 1);
1547 
1548     APInt SrcZero, SrcUndef;
1549     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
1550 
1551     // Bitcast from 'large element' src vector to 'small element' vector, we
1552     // must demand a source element if any DemandedElt maps to it.
1553     if ((NumElts % NumSrcElts) == 0) {
1554       unsigned Scale = NumElts / NumSrcElts;
1555       for (unsigned i = 0; i != NumElts; ++i)
1556         if (DemandedElts[i])
1557           SrcDemandedElts.setBit(i / Scale);
1558 
1559       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
1560                                      TLO, Depth + 1))
1561         return true;
1562 
1563       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
1564       // of the large element.
1565       // TODO - bigendian once we have test coverage.
1566       if (TLO.DAG.getDataLayout().isLittleEndian()) {
1567         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
1568         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
1569         for (unsigned i = 0; i != NumElts; ++i)
1570           if (DemandedElts[i]) {
1571             unsigned Ofs = (i % Scale) * EltSizeInBits;
1572             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
1573           }
1574 
1575         KnownBits Known;
1576         if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1))
1577           return true;
1578       }
1579 
1580       // If the src element is zero/undef then all the output elements will be -
1581       // only demanded elements are guaranteed to be correct.
1582       for (unsigned i = 0; i != NumSrcElts; ++i) {
1583         if (SrcDemandedElts[i]) {
1584           if (SrcZero[i])
1585             KnownZero.setBits(i * Scale, (i + 1) * Scale);
1586           if (SrcUndef[i])
1587             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
1588         }
1589       }
1590     }
1591 
1592     // Bitcast from 'small element' src vector to 'large element' vector, we
1593     // demand all smaller source elements covered by the larger demanded element
1594     // of this vector.
1595     if ((NumSrcElts % NumElts) == 0) {
1596       unsigned Scale = NumSrcElts / NumElts;
1597       for (unsigned i = 0; i != NumElts; ++i)
1598         if (DemandedElts[i])
1599           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
1600 
1601       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
1602                                      TLO, Depth + 1))
1603         return true;
1604 
1605       // If all the src elements covering an output element are zero/undef, then
1606       // the output element will be as well, assuming it was demanded.
1607       for (unsigned i = 0; i != NumElts; ++i) {
1608         if (DemandedElts[i]) {
1609           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
1610             KnownZero.setBit(i);
1611           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
1612             KnownUndef.setBit(i);
1613         }
1614       }
1615     }
1616     break;
1617   }
1618   case ISD::BUILD_VECTOR: {
1619     // Check all elements and simplify any unused elements with UNDEF.
1620     if (!DemandedElts.isAllOnesValue()) {
1621       // Don't simplify BROADCASTS.
1622       if (llvm::any_of(Op->op_values(),
1623                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
1624         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
1625         bool Updated = false;
1626         for (unsigned i = 0; i != NumElts; ++i) {
1627           if (!DemandedElts[i] && !Ops[i].isUndef()) {
1628             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
1629             KnownUndef.setBit(i);
1630             Updated = true;
1631           }
1632         }
1633         if (Updated)
1634           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
1635       }
1636     }
1637     for (unsigned i = 0; i != NumElts; ++i) {
1638       SDValue SrcOp = Op.getOperand(i);
1639       if (SrcOp.isUndef()) {
1640         KnownUndef.setBit(i);
1641       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
1642                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
1643         KnownZero.setBit(i);
1644       }
1645     }
1646     break;
1647   }
1648   case ISD::CONCAT_VECTORS: {
1649     EVT SubVT = Op.getOperand(0).getValueType();
1650     unsigned NumSubVecs = Op.getNumOperands();
1651     unsigned NumSubElts = SubVT.getVectorNumElements();
1652     for (unsigned i = 0; i != NumSubVecs; ++i) {
1653       SDValue SubOp = Op.getOperand(i);
1654       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1655       APInt SubUndef, SubZero;
1656       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
1657                                      Depth + 1))
1658         return true;
1659       KnownUndef.insertBits(SubUndef, i * NumSubElts);
1660       KnownZero.insertBits(SubZero, i * NumSubElts);
1661     }
1662     break;
1663   }
1664   case ISD::INSERT_SUBVECTOR: {
1665     if (!isa<ConstantSDNode>(Op.getOperand(2)))
1666       break;
1667     SDValue Base = Op.getOperand(0);
1668     SDValue Sub = Op.getOperand(1);
1669     EVT SubVT = Sub.getValueType();
1670     unsigned NumSubElts = SubVT.getVectorNumElements();
1671     const APInt& Idx = cast<ConstantSDNode>(Op.getOperand(2))->getAPIntValue();
1672     if (Idx.ugt(NumElts - NumSubElts))
1673       break;
1674     unsigned SubIdx = Idx.getZExtValue();
1675     APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
1676     APInt SubUndef, SubZero;
1677     if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
1678                                    Depth + 1))
1679       return true;
1680     APInt BaseElts = DemandedElts;
1681     BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
1682     if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
1683                                    Depth + 1))
1684       return true;
1685     KnownUndef.insertBits(SubUndef, SubIdx);
1686     KnownZero.insertBits(SubZero, SubIdx);
1687     break;
1688   }
1689   case ISD::EXTRACT_SUBVECTOR: {
1690     SDValue Src = Op.getOperand(0);
1691     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1692     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1693     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
1694       // Offset the demanded elts by the subvector index.
1695       uint64_t Idx = SubIdx->getZExtValue();
1696       APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1697       APInt SrcUndef, SrcZero;
1698       if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
1699                                      Depth + 1))
1700         return true;
1701       KnownUndef = SrcUndef.extractBits(NumElts, Idx);
1702       KnownZero = SrcZero.extractBits(NumElts, Idx);
1703     }
1704     break;
1705   }
1706   case ISD::INSERT_VECTOR_ELT: {
1707     SDValue Vec = Op.getOperand(0);
1708     SDValue Scl = Op.getOperand(1);
1709     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1710 
1711     // For a legal, constant insertion index, if we don't need this insertion
1712     // then strip it, else remove it from the demanded elts.
1713     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
1714       unsigned Idx = CIdx->getZExtValue();
1715       if (!DemandedElts[Idx])
1716         return TLO.CombineTo(Op, Vec);
1717 
1718       APInt DemandedVecElts(DemandedElts);
1719       DemandedVecElts.clearBit(Idx);
1720       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
1721                                      KnownZero, TLO, Depth + 1))
1722         return true;
1723 
1724       KnownUndef.clearBit(Idx);
1725       if (Scl.isUndef())
1726         KnownUndef.setBit(Idx);
1727 
1728       KnownZero.clearBit(Idx);
1729       if (isNullConstant(Scl) || isNullFPConstant(Scl))
1730         KnownZero.setBit(Idx);
1731       break;
1732     }
1733 
1734     APInt VecUndef, VecZero;
1735     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
1736                                    Depth + 1))
1737       return true;
1738     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
1739     break;
1740   }
1741   case ISD::VSELECT: {
1742     // Try to transform the select condition based on the current demanded
1743     // elements.
1744     // TODO: If a condition element is undef, we can choose from one arm of the
1745     //       select (and if one arm is undef, then we can propagate that to the
1746     //       result).
1747     // TODO - add support for constant vselect masks (see IR version of this).
1748     APInt UnusedUndef, UnusedZero;
1749     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
1750                                    UnusedZero, TLO, Depth + 1))
1751       return true;
1752 
1753     // See if we can simplify either vselect operand.
1754     APInt DemandedLHS(DemandedElts);
1755     APInt DemandedRHS(DemandedElts);
1756     APInt UndefLHS, ZeroLHS;
1757     APInt UndefRHS, ZeroRHS;
1758     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
1759                                    ZeroLHS, TLO, Depth + 1))
1760       return true;
1761     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
1762                                    ZeroRHS, TLO, Depth + 1))
1763       return true;
1764 
1765     KnownUndef = UndefLHS & UndefRHS;
1766     KnownZero = ZeroLHS & ZeroRHS;
1767     break;
1768   }
1769   case ISD::VECTOR_SHUFFLE: {
1770     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1771 
1772     // Collect demanded elements from shuffle operands..
1773     APInt DemandedLHS(NumElts, 0);
1774     APInt DemandedRHS(NumElts, 0);
1775     for (unsigned i = 0; i != NumElts; ++i) {
1776       int M = ShuffleMask[i];
1777       if (M < 0 || !DemandedElts[i])
1778         continue;
1779       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1780       if (M < (int)NumElts)
1781         DemandedLHS.setBit(M);
1782       else
1783         DemandedRHS.setBit(M - NumElts);
1784     }
1785 
1786     // See if we can simplify either shuffle operand.
1787     APInt UndefLHS, ZeroLHS;
1788     APInt UndefRHS, ZeroRHS;
1789     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
1790                                    ZeroLHS, TLO, Depth + 1))
1791       return true;
1792     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
1793                                    ZeroRHS, TLO, Depth + 1))
1794       return true;
1795 
1796     // Simplify mask using undef elements from LHS/RHS.
1797     bool Updated = false;
1798     bool IdentityLHS = true, IdentityRHS = true;
1799     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
1800     for (unsigned i = 0; i != NumElts; ++i) {
1801       int &M = NewMask[i];
1802       if (M < 0)
1803         continue;
1804       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
1805           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
1806         Updated = true;
1807         M = -1;
1808       }
1809       IdentityLHS &= (M < 0) || (M == (int)i);
1810       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
1811     }
1812 
1813     // Update legal shuffle masks based on demanded elements if it won't reduce
1814     // to Identity which can cause premature removal of the shuffle mask.
1815     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps &&
1816         isShuffleMaskLegal(NewMask, VT))
1817       return TLO.CombineTo(Op,
1818                            TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0),
1819                                                     Op.getOperand(1), NewMask));
1820 
1821     // Propagate undef/zero elements from LHS/RHS.
1822     for (unsigned i = 0; i != NumElts; ++i) {
1823       int M = ShuffleMask[i];
1824       if (M < 0) {
1825         KnownUndef.setBit(i);
1826       } else if (M < (int)NumElts) {
1827         if (UndefLHS[M])
1828           KnownUndef.setBit(i);
1829         if (ZeroLHS[M])
1830           KnownZero.setBit(i);
1831       } else {
1832         if (UndefRHS[M - NumElts])
1833           KnownUndef.setBit(i);
1834         if (ZeroRHS[M - NumElts])
1835           KnownZero.setBit(i);
1836       }
1837     }
1838     break;
1839   }
1840   case ISD::SIGN_EXTEND_VECTOR_INREG:
1841   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1842     APInt SrcUndef, SrcZero;
1843     SDValue Src = Op.getOperand(0);
1844     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1845     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
1846     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef,
1847                                    SrcZero, TLO, Depth + 1))
1848       return true;
1849     KnownZero = SrcZero.zextOrTrunc(NumElts);
1850     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
1851     break;
1852   }
1853   case ISD::OR:
1854   case ISD::XOR:
1855   case ISD::ADD:
1856   case ISD::SUB:
1857   case ISD::FADD:
1858   case ISD::FSUB:
1859   case ISD::FMUL:
1860   case ISD::FDIV:
1861   case ISD::FREM: {
1862     APInt SrcUndef, SrcZero;
1863     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
1864                                    SrcZero, TLO, Depth + 1))
1865       return true;
1866     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
1867                                    KnownZero, TLO, Depth + 1))
1868       return true;
1869     KnownZero &= SrcZero;
1870     KnownUndef &= SrcUndef;
1871     break;
1872   }
1873   case ISD::AND: {
1874     APInt SrcUndef, SrcZero;
1875     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
1876                                    SrcZero, TLO, Depth + 1))
1877       return true;
1878     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
1879                                    KnownZero, TLO, Depth + 1))
1880       return true;
1881 
1882     // If either side has a zero element, then the result element is zero, even
1883     // if the other is an UNDEF.
1884     KnownZero |= SrcZero;
1885     KnownUndef &= SrcUndef;
1886     KnownUndef &= ~KnownZero;
1887     break;
1888   }
1889   case ISD::TRUNCATE:
1890   case ISD::SIGN_EXTEND:
1891   case ISD::ZERO_EXTEND:
1892     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
1893                                    KnownZero, TLO, Depth + 1))
1894       return true;
1895     break;
1896   default: {
1897     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1898       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
1899                                                   KnownZero, TLO, Depth))
1900         return true;
1901     } else {
1902       KnownBits Known;
1903       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
1904       if (SimplifyDemandedBits(Op, DemandedBits, DemandedEltMask, Known, TLO,
1905                                Depth, AssumeSingleUse))
1906         return true;
1907     }
1908     break;
1909   }
1910   }
1911   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
1912 
1913   // Constant fold all undef cases.
1914   // TODO: Handle zero cases as well.
1915   if (DemandedElts.isSubsetOf(KnownUndef))
1916     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1917 
1918   return false;
1919 }
1920 
1921 /// Determine which of the bits specified in Mask are known to be either zero or
1922 /// one and return them in the Known.
1923 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1924                                                    KnownBits &Known,
1925                                                    const APInt &DemandedElts,
1926                                                    const SelectionDAG &DAG,
1927                                                    unsigned Depth) const {
1928   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1929           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1930           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1931           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1932          "Should use MaskedValueIsZero if you don't know whether Op"
1933          " is a target node!");
1934   Known.resetAll();
1935 }
1936 
1937 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
1938                                                    KnownBits &Known,
1939                                                    const APInt &DemandedElts,
1940                                                    const SelectionDAG &DAG,
1941                                                    unsigned Depth) const {
1942   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
1943 
1944   if (unsigned Align = DAG.InferPtrAlignment(Op)) {
1945     // The low bits are known zero if the pointer is aligned.
1946     Known.Zero.setLowBits(Log2_32(Align));
1947   }
1948 }
1949 
1950 /// This method can be implemented by targets that want to expose additional
1951 /// information about sign bits to the DAG Combiner.
1952 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1953                                                          const APInt &,
1954                                                          const SelectionDAG &,
1955                                                          unsigned Depth) const {
1956   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1957           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1958           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1959           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1960          "Should use ComputeNumSignBits if you don't know whether Op"
1961          " is a target node!");
1962   return 1;
1963 }
1964 
1965 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
1966     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
1967     TargetLoweringOpt &TLO, unsigned Depth) const {
1968   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1969           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1970           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1971           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1972          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
1973          " is a target node!");
1974   return false;
1975 }
1976 
1977 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
1978     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
1979     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
1980   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1981           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1982           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1983           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1984          "Should use SimplifyDemandedBits if you don't know whether Op"
1985          " is a target node!");
1986   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
1987   return false;
1988 }
1989 
1990 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
1991                                                   const SelectionDAG &DAG,
1992                                                   bool SNaN,
1993                                                   unsigned Depth) const {
1994   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1995           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1996           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1997           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1998          "Should use isKnownNeverNaN if you don't know whether Op"
1999          " is a target node!");
2000   return false;
2001 }
2002 
2003 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2004 // work with truncating build vectors and vectors with elements of less than
2005 // 8 bits.
2006 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2007   if (!N)
2008     return false;
2009 
2010   APInt CVal;
2011   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2012     CVal = CN->getAPIntValue();
2013   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2014     auto *CN = BV->getConstantSplatNode();
2015     if (!CN)
2016       return false;
2017 
2018     // If this is a truncating build vector, truncate the splat value.
2019     // Otherwise, we may fail to match the expected values below.
2020     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2021     CVal = CN->getAPIntValue();
2022     if (BVEltWidth < CVal.getBitWidth())
2023       CVal = CVal.trunc(BVEltWidth);
2024   } else {
2025     return false;
2026   }
2027 
2028   switch (getBooleanContents(N->getValueType(0))) {
2029   case UndefinedBooleanContent:
2030     return CVal[0];
2031   case ZeroOrOneBooleanContent:
2032     return CVal.isOneValue();
2033   case ZeroOrNegativeOneBooleanContent:
2034     return CVal.isAllOnesValue();
2035   }
2036 
2037   llvm_unreachable("Invalid boolean contents");
2038 }
2039 
2040 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2041   if (!N)
2042     return false;
2043 
2044   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2045   if (!CN) {
2046     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2047     if (!BV)
2048       return false;
2049 
2050     // Only interested in constant splats, we don't care about undef
2051     // elements in identifying boolean constants and getConstantSplatNode
2052     // returns NULL if all ops are undef;
2053     CN = BV->getConstantSplatNode();
2054     if (!CN)
2055       return false;
2056   }
2057 
2058   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2059     return !CN->getAPIntValue()[0];
2060 
2061   return CN->isNullValue();
2062 }
2063 
2064 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2065                                        bool SExt) const {
2066   if (VT == MVT::i1)
2067     return N->isOne();
2068 
2069   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2070   switch (Cnt) {
2071   case TargetLowering::ZeroOrOneBooleanContent:
2072     // An extended value of 1 is always true, unless its original type is i1,
2073     // in which case it will be sign extended to -1.
2074     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
2075   case TargetLowering::UndefinedBooleanContent:
2076   case TargetLowering::ZeroOrNegativeOneBooleanContent:
2077     return N->isAllOnesValue() && SExt;
2078   }
2079   llvm_unreachable("Unexpected enumeration.");
2080 }
2081 
2082 /// This helper function of SimplifySetCC tries to optimize the comparison when
2083 /// either operand of the SetCC node is a bitwise-and instruction.
2084 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
2085                                              ISD::CondCode Cond,
2086                                              DAGCombinerInfo &DCI,
2087                                              const SDLoc &DL) const {
2088   // Match these patterns in any of their permutations:
2089   // (X & Y) == Y
2090   // (X & Y) != Y
2091   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
2092     std::swap(N0, N1);
2093 
2094   EVT OpVT = N0.getValueType();
2095   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
2096       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
2097     return SDValue();
2098 
2099   SDValue X, Y;
2100   if (N0.getOperand(0) == N1) {
2101     X = N0.getOperand(1);
2102     Y = N0.getOperand(0);
2103   } else if (N0.getOperand(1) == N1) {
2104     X = N0.getOperand(0);
2105     Y = N0.getOperand(1);
2106   } else {
2107     return SDValue();
2108   }
2109 
2110   SelectionDAG &DAG = DCI.DAG;
2111   SDValue Zero = DAG.getConstant(0, DL, OpVT);
2112   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
2113     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2114     // Note that where Y is variable and is known to have at most one bit set
2115     // (for example, if it is Z & 1) we cannot do this; the expressions are not
2116     // equivalent when Y == 0.
2117     Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2118     if (DCI.isBeforeLegalizeOps() ||
2119         isCondCodeLegal(Cond, N0.getSimpleValueType()))
2120       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
2121   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
2122     // If the target supports an 'and-not' or 'and-complement' logic operation,
2123     // try to use that to make a comparison operation more efficient.
2124     // But don't do this transform if the mask is a single bit because there are
2125     // more efficient ways to deal with that case (for example, 'bt' on x86 or
2126     // 'rlwinm' on PPC).
2127 
2128     // Bail out if the compare operand that we want to turn into a zero is
2129     // already a zero (otherwise, infinite loop).
2130     auto *YConst = dyn_cast<ConstantSDNode>(Y);
2131     if (YConst && YConst->isNullValue())
2132       return SDValue();
2133 
2134     // Transform this into: ~X & Y == 0.
2135     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
2136     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
2137     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
2138   }
2139 
2140   return SDValue();
2141 }
2142 
2143 /// There are multiple IR patterns that could be checking whether certain
2144 /// truncation of a signed number would be lossy or not. The pattern which is
2145 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
2146 /// We are looking for the following pattern: (KeptBits is a constant)
2147 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
2148 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
2149 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
2150 /// We will unfold it into the natural trunc+sext pattern:
2151 ///   ((%x << C) a>> C) dstcond %x
2152 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
2153 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
2154     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
2155     const SDLoc &DL) const {
2156   // We must be comparing with a constant.
2157   ConstantSDNode *C1;
2158   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
2159     return SDValue();
2160 
2161   // N0 should be:  add %x, (1 << (KeptBits-1))
2162   if (N0->getOpcode() != ISD::ADD)
2163     return SDValue();
2164 
2165   // And we must be 'add'ing a constant.
2166   ConstantSDNode *C01;
2167   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
2168     return SDValue();
2169 
2170   SDValue X = N0->getOperand(0);
2171   EVT XVT = X.getValueType();
2172 
2173   // Validate constants ...
2174 
2175   APInt I1 = C1->getAPIntValue();
2176 
2177   ISD::CondCode NewCond;
2178   if (Cond == ISD::CondCode::SETULT) {
2179     NewCond = ISD::CondCode::SETEQ;
2180   } else if (Cond == ISD::CondCode::SETULE) {
2181     NewCond = ISD::CondCode::SETEQ;
2182     // But need to 'canonicalize' the constant.
2183     I1 += 1;
2184   } else if (Cond == ISD::CondCode::SETUGT) {
2185     NewCond = ISD::CondCode::SETNE;
2186     // But need to 'canonicalize' the constant.
2187     I1 += 1;
2188   } else if (Cond == ISD::CondCode::SETUGE) {
2189     NewCond = ISD::CondCode::SETNE;
2190   } else
2191     return SDValue();
2192 
2193   APInt I01 = C01->getAPIntValue();
2194 
2195   auto checkConstants = [&I1, &I01]() -> bool {
2196     // Both of them must be power-of-two, and the constant from setcc is bigger.
2197     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
2198   };
2199 
2200   if (checkConstants()) {
2201     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
2202   } else {
2203     // What if we invert constants? (and the target predicate)
2204     I1.negate();
2205     I01.negate();
2206     NewCond = getSetCCInverse(NewCond, /*isInteger=*/true);
2207     if (!checkConstants())
2208       return SDValue();
2209     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
2210   }
2211 
2212   // They are power-of-two, so which bit is set?
2213   const unsigned KeptBits = I1.logBase2();
2214   const unsigned KeptBitsMinusOne = I01.logBase2();
2215 
2216   // Magic!
2217   if (KeptBits != (KeptBitsMinusOne + 1))
2218     return SDValue();
2219   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
2220 
2221   // We don't want to do this in every single case.
2222   SelectionDAG &DAG = DCI.DAG;
2223   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
2224           XVT, KeptBits))
2225     return SDValue();
2226 
2227   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
2228   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
2229 
2230   // Unfold into:  ((%x << C) a>> C) cond %x
2231   // Where 'cond' will be either 'eq' or 'ne'.
2232   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
2233   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
2234   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
2235   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
2236 
2237   return T2;
2238 }
2239 
2240 /// Try to simplify a setcc built with the specified operands and cc. If it is
2241 /// unable to simplify it, return a null SDValue.
2242 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
2243                                       ISD::CondCode Cond, bool foldBooleans,
2244                                       DAGCombinerInfo &DCI,
2245                                       const SDLoc &dl) const {
2246   SelectionDAG &DAG = DCI.DAG;
2247   EVT OpVT = N0.getValueType();
2248 
2249   // These setcc operations always fold.
2250   switch (Cond) {
2251   default: break;
2252   case ISD::SETFALSE:
2253   case ISD::SETFALSE2: return DAG.getBoolConstant(false, dl, VT, OpVT);
2254   case ISD::SETTRUE:
2255   case ISD::SETTRUE2:  return DAG.getBoolConstant(true, dl, VT, OpVT);
2256   }
2257 
2258   // Ensure that the constant occurs on the RHS and fold constant comparisons.
2259   // TODO: Handle non-splat vector constants. All undef causes trouble.
2260   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
2261   if (isConstOrConstSplat(N0) &&
2262       (DCI.isBeforeLegalizeOps() ||
2263        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
2264     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
2265 
2266   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
2267     const APInt &C1 = N1C->getAPIntValue();
2268 
2269     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
2270     // equality comparison, then we're just comparing whether X itself is
2271     // zero.
2272     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
2273         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
2274         N0.getOperand(1).getOpcode() == ISD::Constant) {
2275       const APInt &ShAmt
2276         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2277       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2278           ShAmt == Log2_32(N0.getValueSizeInBits())) {
2279         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
2280           // (srl (ctlz x), 5) == 0  -> X != 0
2281           // (srl (ctlz x), 5) != 1  -> X != 0
2282           Cond = ISD::SETNE;
2283         } else {
2284           // (srl (ctlz x), 5) != 0  -> X == 0
2285           // (srl (ctlz x), 5) == 1  -> X == 0
2286           Cond = ISD::SETEQ;
2287         }
2288         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
2289         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
2290                             Zero, Cond);
2291       }
2292     }
2293 
2294     SDValue CTPOP = N0;
2295     // Look through truncs that don't change the value of a ctpop.
2296     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
2297       CTPOP = N0.getOperand(0);
2298 
2299     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
2300         (N0 == CTPOP ||
2301          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
2302       EVT CTVT = CTPOP.getValueType();
2303       SDValue CTOp = CTPOP.getOperand(0);
2304 
2305       // (ctpop x) u< 2 -> (x & x-1) == 0
2306       // (ctpop x) u> 1 -> (x & x-1) != 0
2307       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
2308         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
2309                                   DAG.getConstant(1, dl, CTVT));
2310         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
2311         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
2312         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
2313       }
2314 
2315       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
2316     }
2317 
2318     // (zext x) == C --> x == (trunc C)
2319     // (sext x) == C --> x == (trunc C)
2320     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2321         DCI.isBeforeLegalize() && N0->hasOneUse()) {
2322       unsigned MinBits = N0.getValueSizeInBits();
2323       SDValue PreExt;
2324       bool Signed = false;
2325       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
2326         // ZExt
2327         MinBits = N0->getOperand(0).getValueSizeInBits();
2328         PreExt = N0->getOperand(0);
2329       } else if (N0->getOpcode() == ISD::AND) {
2330         // DAGCombine turns costly ZExts into ANDs
2331         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
2332           if ((C->getAPIntValue()+1).isPowerOf2()) {
2333             MinBits = C->getAPIntValue().countTrailingOnes();
2334             PreExt = N0->getOperand(0);
2335           }
2336       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
2337         // SExt
2338         MinBits = N0->getOperand(0).getValueSizeInBits();
2339         PreExt = N0->getOperand(0);
2340         Signed = true;
2341       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
2342         // ZEXTLOAD / SEXTLOAD
2343         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
2344           MinBits = LN0->getMemoryVT().getSizeInBits();
2345           PreExt = N0;
2346         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
2347           Signed = true;
2348           MinBits = LN0->getMemoryVT().getSizeInBits();
2349           PreExt = N0;
2350         }
2351       }
2352 
2353       // Figure out how many bits we need to preserve this constant.
2354       unsigned ReqdBits = Signed ?
2355         C1.getBitWidth() - C1.getNumSignBits() + 1 :
2356         C1.getActiveBits();
2357 
2358       // Make sure we're not losing bits from the constant.
2359       if (MinBits > 0 &&
2360           MinBits < C1.getBitWidth() &&
2361           MinBits >= ReqdBits) {
2362         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
2363         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
2364           // Will get folded away.
2365           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
2366           if (MinBits == 1 && C1 == 1)
2367             // Invert the condition.
2368             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
2369                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2370           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
2371           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
2372         }
2373 
2374         // If truncating the setcc operands is not desirable, we can still
2375         // simplify the expression in some cases:
2376         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
2377         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
2378         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
2379         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
2380         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
2381         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
2382         SDValue TopSetCC = N0->getOperand(0);
2383         unsigned N0Opc = N0->getOpcode();
2384         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
2385         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
2386             TopSetCC.getOpcode() == ISD::SETCC &&
2387             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
2388             (isConstFalseVal(N1C) ||
2389              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
2390 
2391           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
2392                          (!N1C->isNullValue() && Cond == ISD::SETNE);
2393 
2394           if (!Inverse)
2395             return TopSetCC;
2396 
2397           ISD::CondCode InvCond = ISD::getSetCCInverse(
2398               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
2399               TopSetCC.getOperand(0).getValueType().isInteger());
2400           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
2401                                       TopSetCC.getOperand(1),
2402                                       InvCond);
2403         }
2404       }
2405     }
2406 
2407     // If the LHS is '(and load, const)', the RHS is 0, the test is for
2408     // equality or unsigned, and all 1 bits of the const are in the same
2409     // partial word, see if we can shorten the load.
2410     if (DCI.isBeforeLegalize() &&
2411         !ISD::isSignedIntSetCC(Cond) &&
2412         N0.getOpcode() == ISD::AND && C1 == 0 &&
2413         N0.getNode()->hasOneUse() &&
2414         isa<LoadSDNode>(N0.getOperand(0)) &&
2415         N0.getOperand(0).getNode()->hasOneUse() &&
2416         isa<ConstantSDNode>(N0.getOperand(1))) {
2417       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
2418       APInt bestMask;
2419       unsigned bestWidth = 0, bestOffset = 0;
2420       if (!Lod->isVolatile() && Lod->isUnindexed()) {
2421         unsigned origWidth = N0.getValueSizeInBits();
2422         unsigned maskWidth = origWidth;
2423         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
2424         // 8 bits, but have to be careful...
2425         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
2426           origWidth = Lod->getMemoryVT().getSizeInBits();
2427         const APInt &Mask =
2428           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2429         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
2430           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
2431           for (unsigned offset=0; offset<origWidth/width; offset++) {
2432             if (Mask.isSubsetOf(newMask)) {
2433               if (DAG.getDataLayout().isLittleEndian())
2434                 bestOffset = (uint64_t)offset * (width/8);
2435               else
2436                 bestOffset = (origWidth/width - offset - 1) * (width/8);
2437               bestMask = Mask.lshr(offset * (width/8) * 8);
2438               bestWidth = width;
2439               break;
2440             }
2441             newMask <<= width;
2442           }
2443         }
2444       }
2445       if (bestWidth) {
2446         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
2447         if (newVT.isRound() &&
2448             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
2449           EVT PtrType = Lod->getOperand(1).getValueType();
2450           SDValue Ptr = Lod->getBasePtr();
2451           if (bestOffset != 0)
2452             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
2453                               DAG.getConstant(bestOffset, dl, PtrType));
2454           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
2455           SDValue NewLoad = DAG.getLoad(
2456               newVT, dl, Lod->getChain(), Ptr,
2457               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
2458           return DAG.getSetCC(dl, VT,
2459                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
2460                                       DAG.getConstant(bestMask.trunc(bestWidth),
2461                                                       dl, newVT)),
2462                               DAG.getConstant(0LL, dl, newVT), Cond);
2463         }
2464       }
2465     }
2466 
2467     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
2468     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
2469       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
2470 
2471       // If the comparison constant has bits in the upper part, the
2472       // zero-extended value could never match.
2473       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
2474                                               C1.getBitWidth() - InSize))) {
2475         switch (Cond) {
2476         case ISD::SETUGT:
2477         case ISD::SETUGE:
2478         case ISD::SETEQ:
2479           return DAG.getConstant(0, dl, VT);
2480         case ISD::SETULT:
2481         case ISD::SETULE:
2482         case ISD::SETNE:
2483           return DAG.getConstant(1, dl, VT);
2484         case ISD::SETGT:
2485         case ISD::SETGE:
2486           // True if the sign bit of C1 is set.
2487           return DAG.getConstant(C1.isNegative(), dl, VT);
2488         case ISD::SETLT:
2489         case ISD::SETLE:
2490           // True if the sign bit of C1 isn't set.
2491           return DAG.getConstant(C1.isNonNegative(), dl, VT);
2492         default:
2493           break;
2494         }
2495       }
2496 
2497       // Otherwise, we can perform the comparison with the low bits.
2498       switch (Cond) {
2499       case ISD::SETEQ:
2500       case ISD::SETNE:
2501       case ISD::SETUGT:
2502       case ISD::SETUGE:
2503       case ISD::SETULT:
2504       case ISD::SETULE: {
2505         EVT newVT = N0.getOperand(0).getValueType();
2506         if (DCI.isBeforeLegalizeOps() ||
2507             (isOperationLegal(ISD::SETCC, newVT) &&
2508              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
2509           EVT NewSetCCVT =
2510               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
2511           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
2512 
2513           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
2514                                           NewConst, Cond);
2515           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
2516         }
2517         break;
2518       }
2519       default:
2520         break;   // todo, be more careful with signed comparisons
2521       }
2522     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2523                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2524       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
2525       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
2526       EVT ExtDstTy = N0.getValueType();
2527       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
2528 
2529       // If the constant doesn't fit into the number of bits for the source of
2530       // the sign extension, it is impossible for both sides to be equal.
2531       if (C1.getMinSignedBits() > ExtSrcTyBits)
2532         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
2533 
2534       SDValue ZextOp;
2535       EVT Op0Ty = N0.getOperand(0).getValueType();
2536       if (Op0Ty == ExtSrcTy) {
2537         ZextOp = N0.getOperand(0);
2538       } else {
2539         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
2540         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
2541                               DAG.getConstant(Imm, dl, Op0Ty));
2542       }
2543       if (!DCI.isCalledByLegalizer())
2544         DCI.AddToWorklist(ZextOp.getNode());
2545       // Otherwise, make this a use of a zext.
2546       return DAG.getSetCC(dl, VT, ZextOp,
2547                           DAG.getConstant(C1 & APInt::getLowBitsSet(
2548                                                               ExtDstTyBits,
2549                                                               ExtSrcTyBits),
2550                                           dl, ExtDstTy),
2551                           Cond);
2552     } else if ((N1C->isNullValue() || N1C->isOne()) &&
2553                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2554       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
2555       if (N0.getOpcode() == ISD::SETCC &&
2556           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
2557         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
2558         if (TrueWhenTrue)
2559           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
2560         // Invert the condition.
2561         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
2562         CC = ISD::getSetCCInverse(CC,
2563                                   N0.getOperand(0).getValueType().isInteger());
2564         if (DCI.isBeforeLegalizeOps() ||
2565             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
2566           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
2567       }
2568 
2569       if ((N0.getOpcode() == ISD::XOR ||
2570            (N0.getOpcode() == ISD::AND &&
2571             N0.getOperand(0).getOpcode() == ISD::XOR &&
2572             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
2573           isa<ConstantSDNode>(N0.getOperand(1)) &&
2574           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
2575         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
2576         // can only do this if the top bits are known zero.
2577         unsigned BitWidth = N0.getValueSizeInBits();
2578         if (DAG.MaskedValueIsZero(N0,
2579                                   APInt::getHighBitsSet(BitWidth,
2580                                                         BitWidth-1))) {
2581           // Okay, get the un-inverted input value.
2582           SDValue Val;
2583           if (N0.getOpcode() == ISD::XOR) {
2584             Val = N0.getOperand(0);
2585           } else {
2586             assert(N0.getOpcode() == ISD::AND &&
2587                     N0.getOperand(0).getOpcode() == ISD::XOR);
2588             // ((X^1)&1)^1 -> X & 1
2589             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
2590                               N0.getOperand(0).getOperand(0),
2591                               N0.getOperand(1));
2592           }
2593 
2594           return DAG.getSetCC(dl, VT, Val, N1,
2595                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2596         }
2597       } else if (N1C->isOne() &&
2598                  (VT == MVT::i1 ||
2599                   getBooleanContents(N0->getValueType(0)) ==
2600                       ZeroOrOneBooleanContent)) {
2601         SDValue Op0 = N0;
2602         if (Op0.getOpcode() == ISD::TRUNCATE)
2603           Op0 = Op0.getOperand(0);
2604 
2605         if ((Op0.getOpcode() == ISD::XOR) &&
2606             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
2607             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
2608           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
2609           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
2610           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
2611                               Cond);
2612         }
2613         if (Op0.getOpcode() == ISD::AND &&
2614             isa<ConstantSDNode>(Op0.getOperand(1)) &&
2615             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
2616           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
2617           if (Op0.getValueType().bitsGT(VT))
2618             Op0 = DAG.getNode(ISD::AND, dl, VT,
2619                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
2620                           DAG.getConstant(1, dl, VT));
2621           else if (Op0.getValueType().bitsLT(VT))
2622             Op0 = DAG.getNode(ISD::AND, dl, VT,
2623                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
2624                         DAG.getConstant(1, dl, VT));
2625 
2626           return DAG.getSetCC(dl, VT, Op0,
2627                               DAG.getConstant(0, dl, Op0.getValueType()),
2628                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2629         }
2630         if (Op0.getOpcode() == ISD::AssertZext &&
2631             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
2632           return DAG.getSetCC(dl, VT, Op0,
2633                               DAG.getConstant(0, dl, Op0.getValueType()),
2634                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2635       }
2636     }
2637 
2638     if (SDValue V =
2639             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
2640       return V;
2641   }
2642 
2643   // These simplifications apply to splat vectors as well.
2644   // TODO: Handle more splat vector cases.
2645   if (auto *N1C = isConstOrConstSplat(N1)) {
2646     const APInt &C1 = N1C->getAPIntValue();
2647 
2648     APInt MinVal, MaxVal;
2649     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
2650     if (ISD::isSignedIntSetCC(Cond)) {
2651       MinVal = APInt::getSignedMinValue(OperandBitSize);
2652       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
2653     } else {
2654       MinVal = APInt::getMinValue(OperandBitSize);
2655       MaxVal = APInt::getMaxValue(OperandBitSize);
2656     }
2657 
2658     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2659     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
2660       // X >= MIN --> true
2661       if (C1 == MinVal)
2662         return DAG.getBoolConstant(true, dl, VT, OpVT);
2663 
2664       if (!VT.isVector()) { // TODO: Support this for vectors.
2665         // X >= C0 --> X > (C0 - 1)
2666         APInt C = C1 - 1;
2667         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
2668         if ((DCI.isBeforeLegalizeOps() ||
2669              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
2670             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
2671                                   isLegalICmpImmediate(C.getSExtValue())))) {
2672           return DAG.getSetCC(dl, VT, N0,
2673                               DAG.getConstant(C, dl, N1.getValueType()),
2674                               NewCC);
2675         }
2676       }
2677     }
2678 
2679     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
2680       // X <= MAX --> true
2681       if (C1 == MaxVal)
2682         return DAG.getBoolConstant(true, dl, VT, OpVT);
2683 
2684       // X <= C0 --> X < (C0 + 1)
2685       if (!VT.isVector()) { // TODO: Support this for vectors.
2686         APInt C = C1 + 1;
2687         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
2688         if ((DCI.isBeforeLegalizeOps() ||
2689              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
2690             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
2691                                   isLegalICmpImmediate(C.getSExtValue())))) {
2692           return DAG.getSetCC(dl, VT, N0,
2693                               DAG.getConstant(C, dl, N1.getValueType()),
2694                               NewCC);
2695         }
2696       }
2697     }
2698 
2699     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
2700       if (C1 == MinVal)
2701         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
2702 
2703       // TODO: Support this for vectors after legalize ops.
2704       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
2705         // Canonicalize setlt X, Max --> setne X, Max
2706         if (C1 == MaxVal)
2707           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2708 
2709         // If we have setult X, 1, turn it into seteq X, 0
2710         if (C1 == MinVal+1)
2711           return DAG.getSetCC(dl, VT, N0,
2712                               DAG.getConstant(MinVal, dl, N0.getValueType()),
2713                               ISD::SETEQ);
2714       }
2715     }
2716 
2717     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
2718       if (C1 == MaxVal)
2719         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
2720 
2721       // TODO: Support this for vectors after legalize ops.
2722       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
2723         // Canonicalize setgt X, Min --> setne X, Min
2724         if (C1 == MinVal)
2725           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2726 
2727         // If we have setugt X, Max-1, turn it into seteq X, Max
2728         if (C1 == MaxVal-1)
2729           return DAG.getSetCC(dl, VT, N0,
2730                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
2731                               ISD::SETEQ);
2732       }
2733     }
2734 
2735     // If we have "setcc X, C0", check to see if we can shrink the immediate
2736     // by changing cc.
2737     // TODO: Support this for vectors after legalize ops.
2738     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
2739       // SETUGT X, SINTMAX  -> SETLT X, 0
2740       if (Cond == ISD::SETUGT &&
2741           C1 == APInt::getSignedMaxValue(OperandBitSize))
2742         return DAG.getSetCC(dl, VT, N0,
2743                             DAG.getConstant(0, dl, N1.getValueType()),
2744                             ISD::SETLT);
2745 
2746       // SETULT X, SINTMIN  -> SETGT X, -1
2747       if (Cond == ISD::SETULT &&
2748           C1 == APInt::getSignedMinValue(OperandBitSize)) {
2749         SDValue ConstMinusOne =
2750             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
2751                             N1.getValueType());
2752         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2753       }
2754     }
2755   }
2756 
2757   // Back to non-vector simplifications.
2758   // TODO: Can we do these for vector splats?
2759   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
2760     const APInt &C1 = N1C->getAPIntValue();
2761 
2762     // Fold bit comparisons when we can.
2763     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2764         (VT == N0.getValueType() ||
2765          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2766         N0.getOpcode() == ISD::AND) {
2767       auto &DL = DAG.getDataLayout();
2768       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2769         EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
2770                                        !DCI.isBeforeLegalize());
2771         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
2772           // Perform the xform if the AND RHS is a single bit.
2773           if (AndRHS->getAPIntValue().isPowerOf2()) {
2774             return DAG.getNode(ISD::TRUNCATE, dl, VT,
2775                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2776                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
2777                                    ShiftTy)));
2778           }
2779         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2780           // (X & 8) == 8  -->  (X & 8) >> 3
2781           // Perform the xform if C1 is a single bit.
2782           if (C1.isPowerOf2()) {
2783             return DAG.getNode(ISD::TRUNCATE, dl, VT,
2784                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2785                                       DAG.getConstant(C1.logBase2(), dl,
2786                                                       ShiftTy)));
2787           }
2788         }
2789       }
2790     }
2791 
2792     if (C1.getMinSignedBits() <= 64 &&
2793         !isLegalICmpImmediate(C1.getSExtValue())) {
2794       // (X & -256) == 256 -> (X >> 8) == 1
2795       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2796           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
2797         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2798           const APInt &AndRHSC = AndRHS->getAPIntValue();
2799           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
2800             unsigned ShiftBits = AndRHSC.countTrailingZeros();
2801             auto &DL = DAG.getDataLayout();
2802             EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
2803                                            !DCI.isBeforeLegalize());
2804             EVT CmpTy = N0.getValueType();
2805             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
2806                                         DAG.getConstant(ShiftBits, dl,
2807                                                         ShiftTy));
2808             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
2809             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
2810           }
2811         }
2812       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
2813                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
2814         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
2815         // X <  0x100000000 -> (X >> 32) <  1
2816         // X >= 0x100000000 -> (X >> 32) >= 1
2817         // X <= 0x0ffffffff -> (X >> 32) <  1
2818         // X >  0x0ffffffff -> (X >> 32) >= 1
2819         unsigned ShiftBits;
2820         APInt NewC = C1;
2821         ISD::CondCode NewCond = Cond;
2822         if (AdjOne) {
2823           ShiftBits = C1.countTrailingOnes();
2824           NewC = NewC + 1;
2825           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2826         } else {
2827           ShiftBits = C1.countTrailingZeros();
2828         }
2829         NewC.lshrInPlace(ShiftBits);
2830         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
2831           isLegalICmpImmediate(NewC.getSExtValue())) {
2832           auto &DL = DAG.getDataLayout();
2833           EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
2834                                          !DCI.isBeforeLegalize());
2835           EVT CmpTy = N0.getValueType();
2836           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
2837                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
2838           SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
2839           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
2840         }
2841       }
2842     }
2843   }
2844 
2845   if (isa<ConstantFPSDNode>(N0.getNode())) {
2846     // Constant fold or commute setcc.
2847     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2848     if (O.getNode()) return O;
2849   } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2850     // If the RHS of an FP comparison is a constant, simplify it away in
2851     // some cases.
2852     if (CFP->getValueAPF().isNaN()) {
2853       // If an operand is known to be a nan, we can fold it.
2854       switch (ISD::getUnorderedFlavor(Cond)) {
2855       default: llvm_unreachable("Unknown flavor!");
2856       case 0:  // Known false.
2857         return DAG.getBoolConstant(false, dl, VT, OpVT);
2858       case 1:  // Known true.
2859         return DAG.getBoolConstant(true, dl, VT, OpVT);
2860       case 2:  // Undefined.
2861         return DAG.getUNDEF(VT);
2862       }
2863     }
2864 
2865     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2866     // constant if knowing that the operand is non-nan is enough.  We prefer to
2867     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2868     // materialize 0.0.
2869     if (Cond == ISD::SETO || Cond == ISD::SETUO)
2870       return DAG.getSetCC(dl, VT, N0, N0, Cond);
2871 
2872     // setcc (fneg x), C -> setcc swap(pred) x, -C
2873     if (N0.getOpcode() == ISD::FNEG) {
2874       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
2875       if (DCI.isBeforeLegalizeOps() ||
2876           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
2877         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
2878         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
2879       }
2880     }
2881 
2882     // If the condition is not legal, see if we can find an equivalent one
2883     // which is legal.
2884     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
2885       // If the comparison was an awkward floating-point == or != and one of
2886       // the comparison operands is infinity or negative infinity, convert the
2887       // condition to a less-awkward <= or >=.
2888       if (CFP->getValueAPF().isInfinity()) {
2889         if (CFP->getValueAPF().isNegative()) {
2890           if (Cond == ISD::SETOEQ &&
2891               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
2892             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2893           if (Cond == ISD::SETUEQ &&
2894               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
2895             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2896           if (Cond == ISD::SETUNE &&
2897               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
2898             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2899           if (Cond == ISD::SETONE &&
2900               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
2901             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2902         } else {
2903           if (Cond == ISD::SETOEQ &&
2904               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
2905             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2906           if (Cond == ISD::SETUEQ &&
2907               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
2908             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2909           if (Cond == ISD::SETUNE &&
2910               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
2911             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2912           if (Cond == ISD::SETONE &&
2913               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
2914             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2915         }
2916       }
2917     }
2918   }
2919 
2920   if (N0 == N1) {
2921     // The sext(setcc()) => setcc() optimization relies on the appropriate
2922     // constant being emitted.
2923 
2924     bool EqTrue = ISD::isTrueWhenEqual(Cond);
2925 
2926     // We can always fold X == X for integer setcc's.
2927     if (N0.getValueType().isInteger())
2928       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
2929 
2930     unsigned UOF = ISD::getUnorderedFlavor(Cond);
2931     if (UOF == 2)   // FP operators that are undefined on NaNs.
2932       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
2933     if (UOF == unsigned(EqTrue))
2934       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
2935     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2936     // if it is not already.
2937     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2938     if (NewCond != Cond &&
2939         (DCI.isBeforeLegalizeOps() ||
2940          isCondCodeLegal(NewCond, N0.getSimpleValueType())))
2941       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2942   }
2943 
2944   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2945       N0.getValueType().isInteger()) {
2946     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2947         N0.getOpcode() == ISD::XOR) {
2948       // Simplify (X+Y) == (X+Z) -->  Y == Z
2949       if (N0.getOpcode() == N1.getOpcode()) {
2950         if (N0.getOperand(0) == N1.getOperand(0))
2951           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2952         if (N0.getOperand(1) == N1.getOperand(1))
2953           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2954         if (isCommutativeBinOp(N0.getOpcode())) {
2955           // If X op Y == Y op X, try other combinations.
2956           if (N0.getOperand(0) == N1.getOperand(1))
2957             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2958                                 Cond);
2959           if (N0.getOperand(1) == N1.getOperand(0))
2960             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2961                                 Cond);
2962         }
2963       }
2964 
2965       // If RHS is a legal immediate value for a compare instruction, we need
2966       // to be careful about increasing register pressure needlessly.
2967       bool LegalRHSImm = false;
2968 
2969       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2970         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2971           // Turn (X+C1) == C2 --> X == C2-C1
2972           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2973             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2974                                 DAG.getConstant(RHSC->getAPIntValue()-
2975                                                 LHSR->getAPIntValue(),
2976                                 dl, N0.getValueType()), Cond);
2977           }
2978 
2979           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2980           if (N0.getOpcode() == ISD::XOR)
2981             // If we know that all of the inverted bits are zero, don't bother
2982             // performing the inversion.
2983             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2984               return
2985                 DAG.getSetCC(dl, VT, N0.getOperand(0),
2986                              DAG.getConstant(LHSR->getAPIntValue() ^
2987                                                RHSC->getAPIntValue(),
2988                                              dl, N0.getValueType()),
2989                              Cond);
2990         }
2991 
2992         // Turn (C1-X) == C2 --> X == C1-C2
2993         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2994           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2995             return
2996               DAG.getSetCC(dl, VT, N0.getOperand(1),
2997                            DAG.getConstant(SUBC->getAPIntValue() -
2998                                              RHSC->getAPIntValue(),
2999                                            dl, N0.getValueType()),
3000                            Cond);
3001           }
3002         }
3003 
3004         // Could RHSC fold directly into a compare?
3005         if (RHSC->getValueType(0).getSizeInBits() <= 64)
3006           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
3007       }
3008 
3009       // Simplify (X+Z) == X -->  Z == 0
3010       // Don't do this if X is an immediate that can fold into a cmp
3011       // instruction and X+Z has other uses. It could be an induction variable
3012       // chain, and the transform would increase register pressure.
3013       if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
3014         if (N0.getOperand(0) == N1)
3015           return DAG.getSetCC(dl, VT, N0.getOperand(1),
3016                               DAG.getConstant(0, dl, N0.getValueType()), Cond);
3017         if (N0.getOperand(1) == N1) {
3018           if (isCommutativeBinOp(N0.getOpcode()))
3019             return DAG.getSetCC(dl, VT, N0.getOperand(0),
3020                                 DAG.getConstant(0, dl, N0.getValueType()),
3021                                 Cond);
3022           if (N0.getNode()->hasOneUse()) {
3023             assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
3024             auto &DL = DAG.getDataLayout();
3025             // (Z-X) == X  --> Z == X<<1
3026             SDValue SH = DAG.getNode(
3027                 ISD::SHL, dl, N1.getValueType(), N1,
3028                 DAG.getConstant(1, dl,
3029                                 getShiftAmountTy(N1.getValueType(), DL,
3030                                                  !DCI.isBeforeLegalize())));
3031             if (!DCI.isCalledByLegalizer())
3032               DCI.AddToWorklist(SH.getNode());
3033             return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
3034           }
3035         }
3036       }
3037     }
3038 
3039     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
3040         N1.getOpcode() == ISD::XOR) {
3041       // Simplify  X == (X+Z) -->  Z == 0
3042       if (N1.getOperand(0) == N0)
3043         return DAG.getSetCC(dl, VT, N1.getOperand(1),
3044                         DAG.getConstant(0, dl, N1.getValueType()), Cond);
3045       if (N1.getOperand(1) == N0) {
3046         if (isCommutativeBinOp(N1.getOpcode()))
3047           return DAG.getSetCC(dl, VT, N1.getOperand(0),
3048                           DAG.getConstant(0, dl, N1.getValueType()), Cond);
3049         if (N1.getNode()->hasOneUse()) {
3050           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
3051           auto &DL = DAG.getDataLayout();
3052           // X == (Z-X)  --> X<<1 == Z
3053           SDValue SH = DAG.getNode(
3054               ISD::SHL, dl, N1.getValueType(), N0,
3055               DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL,
3056                                                       !DCI.isBeforeLegalize())));
3057           if (!DCI.isCalledByLegalizer())
3058             DCI.AddToWorklist(SH.getNode());
3059           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
3060         }
3061       }
3062     }
3063 
3064     if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl))
3065       return V;
3066   }
3067 
3068   // Fold away ALL boolean setcc's.
3069   SDValue Temp;
3070   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
3071     EVT OpVT = N0.getValueType();
3072     switch (Cond) {
3073     default: llvm_unreachable("Unknown integer setcc!");
3074     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
3075       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3076       N0 = DAG.getNOT(dl, Temp, OpVT);
3077       if (!DCI.isCalledByLegalizer())
3078         DCI.AddToWorklist(Temp.getNode());
3079       break;
3080     case ISD::SETNE:  // X != Y   -->  (X^Y)
3081       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3082       break;
3083     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
3084     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
3085       Temp = DAG.getNOT(dl, N0, OpVT);
3086       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
3087       if (!DCI.isCalledByLegalizer())
3088         DCI.AddToWorklist(Temp.getNode());
3089       break;
3090     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
3091     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
3092       Temp = DAG.getNOT(dl, N1, OpVT);
3093       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
3094       if (!DCI.isCalledByLegalizer())
3095         DCI.AddToWorklist(Temp.getNode());
3096       break;
3097     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
3098     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
3099       Temp = DAG.getNOT(dl, N0, OpVT);
3100       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
3101       if (!DCI.isCalledByLegalizer())
3102         DCI.AddToWorklist(Temp.getNode());
3103       break;
3104     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
3105     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
3106       Temp = DAG.getNOT(dl, N1, OpVT);
3107       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
3108       break;
3109     }
3110     if (VT.getScalarType() != MVT::i1) {
3111       if (!DCI.isCalledByLegalizer())
3112         DCI.AddToWorklist(N0.getNode());
3113       // FIXME: If running after legalize, we probably can't do this.
3114       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
3115       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
3116     }
3117     return N0;
3118   }
3119 
3120   // Could not fold it.
3121   return SDValue();
3122 }
3123 
3124 /// Returns true (and the GlobalValue and the offset) if the node is a
3125 /// GlobalAddress + offset.
3126 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
3127                                     int64_t &Offset) const {
3128 
3129   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
3130 
3131   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
3132     GA = GASD->getGlobal();
3133     Offset += GASD->getOffset();
3134     return true;
3135   }
3136 
3137   if (N->getOpcode() == ISD::ADD) {
3138     SDValue N1 = N->getOperand(0);
3139     SDValue N2 = N->getOperand(1);
3140     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
3141       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
3142         Offset += V->getSExtValue();
3143         return true;
3144       }
3145     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
3146       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
3147         Offset += V->getSExtValue();
3148         return true;
3149       }
3150     }
3151   }
3152 
3153   return false;
3154 }
3155 
3156 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
3157                                           DAGCombinerInfo &DCI) const {
3158   // Default implementation: no optimization.
3159   return SDValue();
3160 }
3161 
3162 //===----------------------------------------------------------------------===//
3163 //  Inline Assembler Implementation Methods
3164 //===----------------------------------------------------------------------===//
3165 
3166 TargetLowering::ConstraintType
3167 TargetLowering::getConstraintType(StringRef Constraint) const {
3168   unsigned S = Constraint.size();
3169 
3170   if (S == 1) {
3171     switch (Constraint[0]) {
3172     default: break;
3173     case 'r': return C_RegisterClass;
3174     case 'm':    // memory
3175     case 'o':    // offsetable
3176     case 'V':    // not offsetable
3177       return C_Memory;
3178     case 'i':    // Simple Integer or Relocatable Constant
3179     case 'n':    // Simple Integer
3180     case 'E':    // Floating Point Constant
3181     case 'F':    // Floating Point Constant
3182     case 's':    // Relocatable Constant
3183     case 'p':    // Address.
3184     case 'X':    // Allow ANY value.
3185     case 'I':    // Target registers.
3186     case 'J':
3187     case 'K':
3188     case 'L':
3189     case 'M':
3190     case 'N':
3191     case 'O':
3192     case 'P':
3193     case '<':
3194     case '>':
3195       return C_Other;
3196     }
3197   }
3198 
3199   if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
3200     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
3201       return C_Memory;
3202     return C_Register;
3203   }
3204   return C_Unknown;
3205 }
3206 
3207 /// Try to replace an X constraint, which matches anything, with another that
3208 /// has more specific requirements based on the type of the corresponding
3209 /// operand.
3210 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
3211   if (ConstraintVT.isInteger())
3212     return "r";
3213   if (ConstraintVT.isFloatingPoint())
3214     return "f";      // works for many targets
3215   return nullptr;
3216 }
3217 
3218 /// Lower the specified operand into the Ops vector.
3219 /// If it is invalid, don't add anything to Ops.
3220 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3221                                                   std::string &Constraint,
3222                                                   std::vector<SDValue> &Ops,
3223                                                   SelectionDAG &DAG) const {
3224 
3225   if (Constraint.length() > 1) return;
3226 
3227   char ConstraintLetter = Constraint[0];
3228   switch (ConstraintLetter) {
3229   default: break;
3230   case 'X':     // Allows any operand; labels (basic block) use this.
3231     if (Op.getOpcode() == ISD::BasicBlock) {
3232       Ops.push_back(Op);
3233       return;
3234     }
3235     LLVM_FALLTHROUGH;
3236   case 'i':    // Simple Integer or Relocatable Constant
3237   case 'n':    // Simple Integer
3238   case 's': {  // Relocatable Constant
3239     // These operands are interested in values of the form (GV+C), where C may
3240     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
3241     // is possible and fine if either GV or C are missing.
3242     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
3243     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
3244 
3245     // If we have "(add GV, C)", pull out GV/C
3246     if (Op.getOpcode() == ISD::ADD) {
3247       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3248       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
3249       if (!C || !GA) {
3250         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
3251         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
3252       }
3253       if (!C || !GA) {
3254         C = nullptr;
3255         GA = nullptr;
3256       }
3257     }
3258 
3259     // If we find a valid operand, map to the TargetXXX version so that the
3260     // value itself doesn't get selected.
3261     if (GA) {   // Either &GV   or   &GV+C
3262       if (ConstraintLetter != 'n') {
3263         int64_t Offs = GA->getOffset();
3264         if (C) Offs += C->getZExtValue();
3265         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
3266                                                  C ? SDLoc(C) : SDLoc(),
3267                                                  Op.getValueType(), Offs));
3268       }
3269       return;
3270     }
3271     if (C) {   // just C, no GV.
3272       // Simple constants are not allowed for 's'.
3273       if (ConstraintLetter != 's') {
3274         // gcc prints these as sign extended.  Sign extend value to 64 bits
3275         // now; without this it would get ZExt'd later in
3276         // ScheduleDAGSDNodes::EmitNode, which is very generic.
3277         Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
3278                                             SDLoc(C), MVT::i64));
3279       }
3280       return;
3281     }
3282     break;
3283   }
3284   }
3285 }
3286 
3287 std::pair<unsigned, const TargetRegisterClass *>
3288 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
3289                                              StringRef Constraint,
3290                                              MVT VT) const {
3291   if (Constraint.empty() || Constraint[0] != '{')
3292     return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr));
3293   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
3294 
3295   // Remove the braces from around the name.
3296   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
3297 
3298   std::pair<unsigned, const TargetRegisterClass*> R =
3299     std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr));
3300 
3301   // Figure out which register class contains this reg.
3302   for (const TargetRegisterClass *RC : RI->regclasses()) {
3303     // If none of the value types for this register class are valid, we
3304     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3305     if (!isLegalRC(*RI, *RC))
3306       continue;
3307 
3308     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
3309          I != E; ++I) {
3310       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
3311         std::pair<unsigned, const TargetRegisterClass*> S =
3312           std::make_pair(*I, RC);
3313 
3314         // If this register class has the requested value type, return it,
3315         // otherwise keep searching and return the first class found
3316         // if no other is found which explicitly has the requested type.
3317         if (RI->isTypeLegalForClass(*RC, VT))
3318           return S;
3319         if (!R.second)
3320           R = S;
3321       }
3322     }
3323   }
3324 
3325   return R;
3326 }
3327 
3328 //===----------------------------------------------------------------------===//
3329 // Constraint Selection.
3330 
3331 /// Return true of this is an input operand that is a matching constraint like
3332 /// "4".
3333 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
3334   assert(!ConstraintCode.empty() && "No known constraint!");
3335   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
3336 }
3337 
3338 /// If this is an input matching constraint, this method returns the output
3339 /// operand it matches.
3340 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
3341   assert(!ConstraintCode.empty() && "No known constraint!");
3342   return atoi(ConstraintCode.c_str());
3343 }
3344 
3345 /// Split up the constraint string from the inline assembly value into the
3346 /// specific constraints and their prefixes, and also tie in the associated
3347 /// operand values.
3348 /// If this returns an empty vector, and if the constraint string itself
3349 /// isn't empty, there was an error parsing.
3350 TargetLowering::AsmOperandInfoVector
3351 TargetLowering::ParseConstraints(const DataLayout &DL,
3352                                  const TargetRegisterInfo *TRI,
3353                                  ImmutableCallSite CS) const {
3354   /// Information about all of the constraints.
3355   AsmOperandInfoVector ConstraintOperands;
3356   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
3357   unsigned maCount = 0; // Largest number of multiple alternative constraints.
3358 
3359   // Do a prepass over the constraints, canonicalizing them, and building up the
3360   // ConstraintOperands list.
3361   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
3362   unsigned ResNo = 0;   // ResNo - The result number of the next output.
3363 
3364   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
3365     ConstraintOperands.emplace_back(std::move(CI));
3366     AsmOperandInfo &OpInfo = ConstraintOperands.back();
3367 
3368     // Update multiple alternative constraint count.
3369     if (OpInfo.multipleAlternatives.size() > maCount)
3370       maCount = OpInfo.multipleAlternatives.size();
3371 
3372     OpInfo.ConstraintVT = MVT::Other;
3373 
3374     // Compute the value type for each operand.
3375     switch (OpInfo.Type) {
3376     case InlineAsm::isOutput:
3377       // Indirect outputs just consume an argument.
3378       if (OpInfo.isIndirect) {
3379         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
3380         break;
3381       }
3382 
3383       // The return value of the call is this value.  As such, there is no
3384       // corresponding argument.
3385       assert(!CS.getType()->isVoidTy() &&
3386              "Bad inline asm!");
3387       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
3388         OpInfo.ConstraintVT =
3389             getSimpleValueType(DL, STy->getElementType(ResNo));
3390       } else {
3391         assert(ResNo == 0 && "Asm only has one result!");
3392         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
3393       }
3394       ++ResNo;
3395       break;
3396     case InlineAsm::isInput:
3397       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
3398       break;
3399     case InlineAsm::isClobber:
3400       // Nothing to do.
3401       break;
3402     }
3403 
3404     if (OpInfo.CallOperandVal) {
3405       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
3406       if (OpInfo.isIndirect) {
3407         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
3408         if (!PtrTy)
3409           report_fatal_error("Indirect operand for inline asm not a pointer!");
3410         OpTy = PtrTy->getElementType();
3411       }
3412 
3413       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
3414       if (StructType *STy = dyn_cast<StructType>(OpTy))
3415         if (STy->getNumElements() == 1)
3416           OpTy = STy->getElementType(0);
3417 
3418       // If OpTy is not a single value, it may be a struct/union that we
3419       // can tile with integers.
3420       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
3421         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
3422         switch (BitSize) {
3423         default: break;
3424         case 1:
3425         case 8:
3426         case 16:
3427         case 32:
3428         case 64:
3429         case 128:
3430           OpInfo.ConstraintVT =
3431             MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
3432           break;
3433         }
3434       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
3435         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
3436         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
3437       } else {
3438         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
3439       }
3440     }
3441   }
3442 
3443   // If we have multiple alternative constraints, select the best alternative.
3444   if (!ConstraintOperands.empty()) {
3445     if (maCount) {
3446       unsigned bestMAIndex = 0;
3447       int bestWeight = -1;
3448       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
3449       int weight = -1;
3450       unsigned maIndex;
3451       // Compute the sums of the weights for each alternative, keeping track
3452       // of the best (highest weight) one so far.
3453       for (maIndex = 0; maIndex < maCount; ++maIndex) {
3454         int weightSum = 0;
3455         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3456             cIndex != eIndex; ++cIndex) {
3457           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
3458           if (OpInfo.Type == InlineAsm::isClobber)
3459             continue;
3460 
3461           // If this is an output operand with a matching input operand,
3462           // look up the matching input. If their types mismatch, e.g. one
3463           // is an integer, the other is floating point, or their sizes are
3464           // different, flag it as an maCantMatch.
3465           if (OpInfo.hasMatchingInput()) {
3466             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
3467             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
3468               if ((OpInfo.ConstraintVT.isInteger() !=
3469                    Input.ConstraintVT.isInteger()) ||
3470                   (OpInfo.ConstraintVT.getSizeInBits() !=
3471                    Input.ConstraintVT.getSizeInBits())) {
3472                 weightSum = -1;  // Can't match.
3473                 break;
3474               }
3475             }
3476           }
3477           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
3478           if (weight == -1) {
3479             weightSum = -1;
3480             break;
3481           }
3482           weightSum += weight;
3483         }
3484         // Update best.
3485         if (weightSum > bestWeight) {
3486           bestWeight = weightSum;
3487           bestMAIndex = maIndex;
3488         }
3489       }
3490 
3491       // Now select chosen alternative in each constraint.
3492       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3493           cIndex != eIndex; ++cIndex) {
3494         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
3495         if (cInfo.Type == InlineAsm::isClobber)
3496           continue;
3497         cInfo.selectAlternative(bestMAIndex);
3498       }
3499     }
3500   }
3501 
3502   // Check and hook up tied operands, choose constraint code to use.
3503   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3504       cIndex != eIndex; ++cIndex) {
3505     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
3506 
3507     // If this is an output operand with a matching input operand, look up the
3508     // matching input. If their types mismatch, e.g. one is an integer, the
3509     // other is floating point, or their sizes are different, flag it as an
3510     // error.
3511     if (OpInfo.hasMatchingInput()) {
3512       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
3513 
3514       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
3515         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
3516             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
3517                                          OpInfo.ConstraintVT);
3518         std::pair<unsigned, const TargetRegisterClass *> InputRC =
3519             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
3520                                          Input.ConstraintVT);
3521         if ((OpInfo.ConstraintVT.isInteger() !=
3522              Input.ConstraintVT.isInteger()) ||
3523             (MatchRC.second != InputRC.second)) {
3524           report_fatal_error("Unsupported asm: input constraint"
3525                              " with a matching output constraint of"
3526                              " incompatible type!");
3527         }
3528       }
3529     }
3530   }
3531 
3532   return ConstraintOperands;
3533 }
3534 
3535 /// Return an integer indicating how general CT is.
3536 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3537   switch (CT) {
3538   case TargetLowering::C_Other:
3539   case TargetLowering::C_Unknown:
3540     return 0;
3541   case TargetLowering::C_Register:
3542     return 1;
3543   case TargetLowering::C_RegisterClass:
3544     return 2;
3545   case TargetLowering::C_Memory:
3546     return 3;
3547   }
3548   llvm_unreachable("Invalid constraint type");
3549 }
3550 
3551 /// Examine constraint type and operand type and determine a weight value.
3552 /// This object must already have been set up with the operand type
3553 /// and the current alternative constraint selected.
3554 TargetLowering::ConstraintWeight
3555   TargetLowering::getMultipleConstraintMatchWeight(
3556     AsmOperandInfo &info, int maIndex) const {
3557   InlineAsm::ConstraintCodeVector *rCodes;
3558   if (maIndex >= (int)info.multipleAlternatives.size())
3559     rCodes = &info.Codes;
3560   else
3561     rCodes = &info.multipleAlternatives[maIndex].Codes;
3562   ConstraintWeight BestWeight = CW_Invalid;
3563 
3564   // Loop over the options, keeping track of the most general one.
3565   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
3566     ConstraintWeight weight =
3567       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
3568     if (weight > BestWeight)
3569       BestWeight = weight;
3570   }
3571 
3572   return BestWeight;
3573 }
3574 
3575 /// Examine constraint type and operand type and determine a weight value.
3576 /// This object must already have been set up with the operand type
3577 /// and the current alternative constraint selected.
3578 TargetLowering::ConstraintWeight
3579   TargetLowering::getSingleConstraintMatchWeight(
3580     AsmOperandInfo &info, const char *constraint) const {
3581   ConstraintWeight weight = CW_Invalid;
3582   Value *CallOperandVal = info.CallOperandVal;
3583     // If we don't have a value, we can't do a match,
3584     // but allow it at the lowest weight.
3585   if (!CallOperandVal)
3586     return CW_Default;
3587   // Look at the constraint type.
3588   switch (*constraint) {
3589     case 'i': // immediate integer.
3590     case 'n': // immediate integer with a known value.
3591       if (isa<ConstantInt>(CallOperandVal))
3592         weight = CW_Constant;
3593       break;
3594     case 's': // non-explicit intregal immediate.
3595       if (isa<GlobalValue>(CallOperandVal))
3596         weight = CW_Constant;
3597       break;
3598     case 'E': // immediate float if host format.
3599     case 'F': // immediate float.
3600       if (isa<ConstantFP>(CallOperandVal))
3601         weight = CW_Constant;
3602       break;
3603     case '<': // memory operand with autodecrement.
3604     case '>': // memory operand with autoincrement.
3605     case 'm': // memory operand.
3606     case 'o': // offsettable memory operand
3607     case 'V': // non-offsettable memory operand
3608       weight = CW_Memory;
3609       break;
3610     case 'r': // general register.
3611     case 'g': // general register, memory operand or immediate integer.
3612               // note: Clang converts "g" to "imr".
3613       if (CallOperandVal->getType()->isIntegerTy())
3614         weight = CW_Register;
3615       break;
3616     case 'X': // any operand.
3617     default:
3618       weight = CW_Default;
3619       break;
3620   }
3621   return weight;
3622 }
3623 
3624 /// If there are multiple different constraints that we could pick for this
3625 /// operand (e.g. "imr") try to pick the 'best' one.
3626 /// This is somewhat tricky: constraints fall into four classes:
3627 ///    Other         -> immediates and magic values
3628 ///    Register      -> one specific register
3629 ///    RegisterClass -> a group of regs
3630 ///    Memory        -> memory
3631 /// Ideally, we would pick the most specific constraint possible: if we have
3632 /// something that fits into a register, we would pick it.  The problem here
3633 /// is that if we have something that could either be in a register or in
3634 /// memory that use of the register could cause selection of *other*
3635 /// operands to fail: they might only succeed if we pick memory.  Because of
3636 /// this the heuristic we use is:
3637 ///
3638 ///  1) If there is an 'other' constraint, and if the operand is valid for
3639 ///     that constraint, use it.  This makes us take advantage of 'i'
3640 ///     constraints when available.
3641 ///  2) Otherwise, pick the most general constraint present.  This prefers
3642 ///     'm' over 'r', for example.
3643 ///
3644 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
3645                              const TargetLowering &TLI,
3646                              SDValue Op, SelectionDAG *DAG) {
3647   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
3648   unsigned BestIdx = 0;
3649   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
3650   int BestGenerality = -1;
3651 
3652   // Loop over the options, keeping track of the most general one.
3653   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
3654     TargetLowering::ConstraintType CType =
3655       TLI.getConstraintType(OpInfo.Codes[i]);
3656 
3657     // If this is an 'other' constraint, see if the operand is valid for it.
3658     // For example, on X86 we might have an 'rI' constraint.  If the operand
3659     // is an integer in the range [0..31] we want to use I (saving a load
3660     // of a register), otherwise we must use 'r'.
3661     if (CType == TargetLowering::C_Other && Op.getNode()) {
3662       assert(OpInfo.Codes[i].size() == 1 &&
3663              "Unhandled multi-letter 'other' constraint");
3664       std::vector<SDValue> ResultOps;
3665       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
3666                                        ResultOps, *DAG);
3667       if (!ResultOps.empty()) {
3668         BestType = CType;
3669         BestIdx = i;
3670         break;
3671       }
3672     }
3673 
3674     // Things with matching constraints can only be registers, per gcc
3675     // documentation.  This mainly affects "g" constraints.
3676     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
3677       continue;
3678 
3679     // This constraint letter is more general than the previous one, use it.
3680     int Generality = getConstraintGenerality(CType);
3681     if (Generality > BestGenerality) {
3682       BestType = CType;
3683       BestIdx = i;
3684       BestGenerality = Generality;
3685     }
3686   }
3687 
3688   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
3689   OpInfo.ConstraintType = BestType;
3690 }
3691 
3692 /// Determines the constraint code and constraint type to use for the specific
3693 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
3694 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
3695                                             SDValue Op,
3696                                             SelectionDAG *DAG) const {
3697   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
3698 
3699   // Single-letter constraints ('r') are very common.
3700   if (OpInfo.Codes.size() == 1) {
3701     OpInfo.ConstraintCode = OpInfo.Codes[0];
3702     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3703   } else {
3704     ChooseConstraint(OpInfo, *this, Op, DAG);
3705   }
3706 
3707   // 'X' matches anything.
3708   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
3709     // Labels and constants are handled elsewhere ('X' is the only thing
3710     // that matches labels).  For Functions, the type here is the type of
3711     // the result, which is not what we want to look at; leave them alone.
3712     Value *v = OpInfo.CallOperandVal;
3713     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
3714       OpInfo.CallOperandVal = v;
3715       return;
3716     }
3717 
3718     // Otherwise, try to resolve it to something we know about by looking at
3719     // the actual operand type.
3720     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
3721       OpInfo.ConstraintCode = Repl;
3722       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3723     }
3724   }
3725 }
3726 
3727 /// Given an exact SDIV by a constant, create a multiplication
3728 /// with the multiplicative inverse of the constant.
3729 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
3730                               const SDLoc &dl, SelectionDAG &DAG,
3731                               SmallVectorImpl<SDNode *> &Created) {
3732   SDValue Op0 = N->getOperand(0);
3733   SDValue Op1 = N->getOperand(1);
3734   EVT VT = N->getValueType(0);
3735   EVT SVT = VT.getScalarType();
3736   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
3737   EVT ShSVT = ShVT.getScalarType();
3738 
3739   bool UseSRA = false;
3740   SmallVector<SDValue, 16> Shifts, Factors;
3741 
3742   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
3743     if (C->isNullValue())
3744       return false;
3745     APInt Divisor = C->getAPIntValue();
3746     unsigned Shift = Divisor.countTrailingZeros();
3747     if (Shift) {
3748       Divisor.ashrInPlace(Shift);
3749       UseSRA = true;
3750     }
3751     // Calculate the multiplicative inverse, using Newton's method.
3752     APInt t;
3753     APInt Factor = Divisor;
3754     while ((t = Divisor * Factor) != 1)
3755       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
3756     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
3757     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
3758     return true;
3759   };
3760 
3761   // Collect all magic values from the build vector.
3762   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
3763     return SDValue();
3764 
3765   SDValue Shift, Factor;
3766   if (VT.isVector()) {
3767     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
3768     Factor = DAG.getBuildVector(VT, dl, Factors);
3769   } else {
3770     Shift = Shifts[0];
3771     Factor = Factors[0];
3772   }
3773 
3774   SDValue Res = Op0;
3775 
3776   // Shift the value upfront if it is even, so the LSB is one.
3777   if (UseSRA) {
3778     // TODO: For UDIV use SRL instead of SRA.
3779     SDNodeFlags Flags;
3780     Flags.setExact(true);
3781     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
3782     Created.push_back(Res.getNode());
3783   }
3784 
3785   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
3786 }
3787 
3788 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
3789                                      SelectionDAG &DAG,
3790                                      SmallVectorImpl<SDNode *> &Created) const {
3791   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3792   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3793   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
3794     return SDValue(N,0); // Lower SDIV as SDIV
3795   return SDValue();
3796 }
3797 
3798 /// Given an ISD::SDIV node expressing a divide by constant,
3799 /// return a DAG expression to select that will generate the same value by
3800 /// multiplying by a magic number.
3801 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
3802 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
3803                                   bool IsAfterLegalization,
3804                                   SmallVectorImpl<SDNode *> &Created) const {
3805   SDLoc dl(N);
3806   EVT VT = N->getValueType(0);
3807   EVT SVT = VT.getScalarType();
3808   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
3809   EVT ShSVT = ShVT.getScalarType();
3810   unsigned EltBits = VT.getScalarSizeInBits();
3811 
3812   // Check to see if we can do this.
3813   // FIXME: We should be more aggressive here.
3814   if (!isTypeLegal(VT))
3815     return SDValue();
3816 
3817   // If the sdiv has an 'exact' bit we can use a simpler lowering.
3818   if (N->getFlags().hasExact())
3819     return BuildExactSDIV(*this, N, dl, DAG, Created);
3820 
3821   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
3822 
3823   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
3824     if (C->isNullValue())
3825       return false;
3826 
3827     const APInt &Divisor = C->getAPIntValue();
3828     APInt::ms magics = Divisor.magic();
3829     int NumeratorFactor = 0;
3830     int ShiftMask = -1;
3831 
3832     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
3833       // If d is +1/-1, we just multiply the numerator by +1/-1.
3834       NumeratorFactor = Divisor.getSExtValue();
3835       magics.m = 0;
3836       magics.s = 0;
3837       ShiftMask = 0;
3838     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
3839       // If d > 0 and m < 0, add the numerator.
3840       NumeratorFactor = 1;
3841     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
3842       // If d < 0 and m > 0, subtract the numerator.
3843       NumeratorFactor = -1;
3844     }
3845 
3846     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
3847     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
3848     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
3849     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
3850     return true;
3851   };
3852 
3853   SDValue N0 = N->getOperand(0);
3854   SDValue N1 = N->getOperand(1);
3855 
3856   // Collect the shifts / magic values from each element.
3857   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
3858     return SDValue();
3859 
3860   SDValue MagicFactor, Factor, Shift, ShiftMask;
3861   if (VT.isVector()) {
3862     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
3863     Factor = DAG.getBuildVector(VT, dl, Factors);
3864     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
3865     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
3866   } else {
3867     MagicFactor = MagicFactors[0];
3868     Factor = Factors[0];
3869     Shift = Shifts[0];
3870     ShiftMask = ShiftMasks[0];
3871   }
3872 
3873   // Multiply the numerator (operand 0) by the magic value.
3874   // FIXME: We should support doing a MUL in a wider type.
3875   SDValue Q;
3876   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
3877                           : isOperationLegalOrCustom(ISD::MULHS, VT))
3878     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
3879   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
3880                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
3881     SDValue LoHi =
3882         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
3883     Q = SDValue(LoHi.getNode(), 1);
3884   } else
3885     return SDValue(); // No mulhs or equivalent.
3886   Created.push_back(Q.getNode());
3887 
3888   // (Optionally) Add/subtract the numerator using Factor.
3889   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
3890   Created.push_back(Factor.getNode());
3891   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
3892   Created.push_back(Q.getNode());
3893 
3894   // Shift right algebraic by shift value.
3895   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
3896   Created.push_back(Q.getNode());
3897 
3898   // Extract the sign bit, mask it and add it to the quotient.
3899   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
3900   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
3901   Created.push_back(T.getNode());
3902   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
3903   Created.push_back(T.getNode());
3904   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3905 }
3906 
3907 /// Given an ISD::UDIV node expressing a divide by constant,
3908 /// return a DAG expression to select that will generate the same value by
3909 /// multiplying by a magic number.
3910 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
3911 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
3912                                   bool IsAfterLegalization,
3913                                   SmallVectorImpl<SDNode *> &Created) const {
3914   SDLoc dl(N);
3915   EVT VT = N->getValueType(0);
3916   EVT SVT = VT.getScalarType();
3917   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
3918   EVT ShSVT = ShVT.getScalarType();
3919   unsigned EltBits = VT.getScalarSizeInBits();
3920 
3921   // Check to see if we can do this.
3922   // FIXME: We should be more aggressive here.
3923   if (!isTypeLegal(VT))
3924     return SDValue();
3925 
3926   bool UseNPQ = false;
3927   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
3928 
3929   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
3930     if (C->isNullValue())
3931       return false;
3932     // FIXME: We should use a narrower constant when the upper
3933     // bits are known to be zero.
3934     APInt Divisor = C->getAPIntValue();
3935     APInt::mu magics = Divisor.magicu();
3936     unsigned PreShift = 0, PostShift = 0;
3937 
3938     // If the divisor is even, we can avoid using the expensive fixup by
3939     // shifting the divided value upfront.
3940     if (magics.a != 0 && !Divisor[0]) {
3941       PreShift = Divisor.countTrailingZeros();
3942       // Get magic number for the shifted divisor.
3943       magics = Divisor.lshr(PreShift).magicu(PreShift);
3944       assert(magics.a == 0 && "Should use cheap fixup now");
3945     }
3946 
3947     APInt Magic = magics.m;
3948 
3949     unsigned SelNPQ;
3950     if (magics.a == 0 || Divisor.isOneValue()) {
3951       assert(magics.s < Divisor.getBitWidth() &&
3952              "We shouldn't generate an undefined shift!");
3953       PostShift = magics.s;
3954       SelNPQ = false;
3955     } else {
3956       PostShift = magics.s - 1;
3957       SelNPQ = true;
3958     }
3959 
3960     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
3961     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
3962     NPQFactors.push_back(
3963         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
3964                                : APInt::getNullValue(EltBits),
3965                         dl, SVT));
3966     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
3967     UseNPQ |= SelNPQ;
3968     return true;
3969   };
3970 
3971   SDValue N0 = N->getOperand(0);
3972   SDValue N1 = N->getOperand(1);
3973 
3974   // Collect the shifts/magic values from each element.
3975   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
3976     return SDValue();
3977 
3978   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
3979   if (VT.isVector()) {
3980     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
3981     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
3982     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
3983     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
3984   } else {
3985     PreShift = PreShifts[0];
3986     MagicFactor = MagicFactors[0];
3987     PostShift = PostShifts[0];
3988   }
3989 
3990   SDValue Q = N0;
3991   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
3992   Created.push_back(Q.getNode());
3993 
3994   // FIXME: We should support doing a MUL in a wider type.
3995   auto GetMULHU = [&](SDValue X, SDValue Y) {
3996     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
3997                             : isOperationLegalOrCustom(ISD::MULHU, VT))
3998       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
3999     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
4000                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
4001       SDValue LoHi =
4002           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
4003       return SDValue(LoHi.getNode(), 1);
4004     }
4005     return SDValue(); // No mulhu or equivalent
4006   };
4007 
4008   // Multiply the numerator (operand 0) by the magic value.
4009   Q = GetMULHU(Q, MagicFactor);
4010   if (!Q)
4011     return SDValue();
4012 
4013   Created.push_back(Q.getNode());
4014 
4015   if (UseNPQ) {
4016     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
4017     Created.push_back(NPQ.getNode());
4018 
4019     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
4020     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
4021     if (VT.isVector())
4022       NPQ = GetMULHU(NPQ, NPQFactor);
4023     else
4024       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
4025 
4026     Created.push_back(NPQ.getNode());
4027 
4028     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
4029     Created.push_back(Q.getNode());
4030   }
4031 
4032   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
4033   Created.push_back(Q.getNode());
4034 
4035   SDValue One = DAG.getConstant(1, dl, VT);
4036   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
4037   return DAG.getSelect(dl, VT, IsOne, N0, Q);
4038 }
4039 
4040 bool TargetLowering::
4041 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
4042   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
4043     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
4044                                 "be a constant integer");
4045     return true;
4046   }
4047 
4048   return false;
4049 }
4050 
4051 //===----------------------------------------------------------------------===//
4052 // Legalization Utilities
4053 //===----------------------------------------------------------------------===//
4054 
4055 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
4056                                     SDValue LHS, SDValue RHS,
4057                                     SmallVectorImpl<SDValue> &Result,
4058                                     EVT HiLoVT, SelectionDAG &DAG,
4059                                     MulExpansionKind Kind, SDValue LL,
4060                                     SDValue LH, SDValue RL, SDValue RH) const {
4061   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
4062          Opcode == ISD::SMUL_LOHI);
4063 
4064   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
4065                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
4066   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
4067                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
4068   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
4069                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
4070   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
4071                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
4072 
4073   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
4074     return false;
4075 
4076   unsigned OuterBitSize = VT.getScalarSizeInBits();
4077   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
4078   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
4079   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
4080 
4081   // LL, LH, RL, and RH must be either all NULL or all set to a value.
4082   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
4083          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
4084 
4085   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
4086   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
4087                           bool Signed) -> bool {
4088     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
4089       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
4090       Hi = SDValue(Lo.getNode(), 1);
4091       return true;
4092     }
4093     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
4094       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
4095       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
4096       return true;
4097     }
4098     return false;
4099   };
4100 
4101   SDValue Lo, Hi;
4102 
4103   if (!LL.getNode() && !RL.getNode() &&
4104       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
4105     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
4106     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
4107   }
4108 
4109   if (!LL.getNode())
4110     return false;
4111 
4112   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
4113   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
4114       DAG.MaskedValueIsZero(RHS, HighMask)) {
4115     // The inputs are both zero-extended.
4116     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
4117       Result.push_back(Lo);
4118       Result.push_back(Hi);
4119       if (Opcode != ISD::MUL) {
4120         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
4121         Result.push_back(Zero);
4122         Result.push_back(Zero);
4123       }
4124       return true;
4125     }
4126   }
4127 
4128   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
4129       RHSSB > InnerBitSize) {
4130     // The input values are both sign-extended.
4131     // TODO non-MUL case?
4132     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
4133       Result.push_back(Lo);
4134       Result.push_back(Hi);
4135       return true;
4136     }
4137   }
4138 
4139   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
4140   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
4141   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
4142     // FIXME getShiftAmountTy does not always return a sensible result when VT
4143     // is an illegal type, and so the type may be too small to fit the shift
4144     // amount. Override it with i32. The shift will have to be legalized.
4145     ShiftAmountTy = MVT::i32;
4146   }
4147   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
4148 
4149   if (!LH.getNode() && !RH.getNode() &&
4150       isOperationLegalOrCustom(ISD::SRL, VT) &&
4151       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
4152     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
4153     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
4154     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
4155     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
4156   }
4157 
4158   if (!LH.getNode())
4159     return false;
4160 
4161   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
4162     return false;
4163 
4164   Result.push_back(Lo);
4165 
4166   if (Opcode == ISD::MUL) {
4167     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
4168     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
4169     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
4170     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
4171     Result.push_back(Hi);
4172     return true;
4173   }
4174 
4175   // Compute the full width result.
4176   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
4177     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
4178     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
4179     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
4180     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
4181   };
4182 
4183   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
4184   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
4185     return false;
4186 
4187   // This is effectively the add part of a multiply-add of half-sized operands,
4188   // so it cannot overflow.
4189   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
4190 
4191   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
4192     return false;
4193 
4194   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
4195   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
4196 
4197   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
4198                   isOperationLegalOrCustom(ISD::ADDE, VT));
4199   if (UseGlue)
4200     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
4201                        Merge(Lo, Hi));
4202   else
4203     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
4204                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
4205 
4206   SDValue Carry = Next.getValue(1);
4207   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
4208   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
4209 
4210   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
4211     return false;
4212 
4213   if (UseGlue)
4214     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
4215                      Carry);
4216   else
4217     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
4218                      Zero, Carry);
4219 
4220   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
4221 
4222   if (Opcode == ISD::SMUL_LOHI) {
4223     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
4224                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
4225     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
4226 
4227     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
4228                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
4229     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
4230   }
4231 
4232   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
4233   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
4234   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
4235   return true;
4236 }
4237 
4238 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
4239                                SelectionDAG &DAG, MulExpansionKind Kind,
4240                                SDValue LL, SDValue LH, SDValue RL,
4241                                SDValue RH) const {
4242   SmallVector<SDValue, 2> Result;
4243   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
4244                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
4245                            DAG, Kind, LL, LH, RL, RH);
4246   if (Ok) {
4247     assert(Result.size() == 2);
4248     Lo = Result[0];
4249     Hi = Result[1];
4250   }
4251   return Ok;
4252 }
4253 
4254 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
4255                                        SelectionDAG &DAG) const {
4256   EVT VT = Node->getValueType(0);
4257 
4258   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
4259                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
4260                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
4261                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
4262     return false;
4263 
4264   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
4265   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
4266   SDValue X = Node->getOperand(0);
4267   SDValue Y = Node->getOperand(1);
4268   SDValue Z = Node->getOperand(2);
4269 
4270   unsigned EltSizeInBits = VT.getScalarSizeInBits();
4271   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
4272   SDLoc DL(SDValue(Node, 0));
4273 
4274   EVT ShVT = Z.getValueType();
4275   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
4276   SDValue Zero = DAG.getConstant(0, DL, ShVT);
4277 
4278   SDValue ShAmt;
4279   if (isPowerOf2_32(EltSizeInBits)) {
4280     SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
4281     ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
4282   } else {
4283     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
4284   }
4285 
4286   SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
4287   SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
4288   SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
4289   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
4290 
4291   // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
4292   // and that is undefined. We must compare and select to avoid UB.
4293   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
4294 
4295   // For fshl, 0-shift returns the 1st arg (X).
4296   // For fshr, 0-shift returns the 2nd arg (Y).
4297   SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
4298   Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
4299   return true;
4300 }
4301 
4302 // TODO: Merge with expandFunnelShift.
4303 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
4304                                SelectionDAG &DAG) const {
4305   EVT VT = Node->getValueType(0);
4306   unsigned EltSizeInBits = VT.getScalarSizeInBits();
4307   bool IsLeft = Node->getOpcode() == ISD::ROTL;
4308   SDValue Op0 = Node->getOperand(0);
4309   SDValue Op1 = Node->getOperand(1);
4310   SDLoc DL(SDValue(Node, 0));
4311 
4312   EVT ShVT = Op1.getValueType();
4313   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
4314 
4315   // If a rotate in the other direction is legal, use it.
4316   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
4317   if (isOperationLegal(RevRot, VT)) {
4318     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
4319     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
4320     return true;
4321   }
4322 
4323   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
4324                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
4325                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
4326                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
4327                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
4328     return false;
4329 
4330   // Otherwise,
4331   //   (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
4332   //   (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
4333   //
4334   assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
4335          "Expecting the type bitwidth to be a power of 2");
4336   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
4337   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
4338   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
4339   SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
4340   SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
4341   SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
4342   Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
4343                        DAG.getNode(HsOpc, DL, VT, Op0, And1));
4344   return true;
4345 }
4346 
4347 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
4348                                SelectionDAG &DAG) const {
4349   SDValue Src = Node->getOperand(0);
4350   EVT SrcVT = Src.getValueType();
4351   EVT DstVT = Node->getValueType(0);
4352   SDLoc dl(SDValue(Node, 0));
4353 
4354   // FIXME: Only f32 to i64 conversions are supported.
4355   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
4356     return false;
4357 
4358   // Expand f32 -> i64 conversion
4359   // This algorithm comes from compiler-rt's implementation of fixsfdi:
4360   // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c
4361   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
4362   EVT IntVT = SrcVT.changeTypeToInteger();
4363   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
4364 
4365   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
4366   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
4367   SDValue Bias = DAG.getConstant(127, dl, IntVT);
4368   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
4369   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
4370   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
4371 
4372   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
4373 
4374   SDValue ExponentBits = DAG.getNode(
4375       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
4376       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
4377   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
4378 
4379   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
4380                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
4381                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
4382   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
4383 
4384   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
4385                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
4386                           DAG.getConstant(0x00800000, dl, IntVT));
4387 
4388   R = DAG.getZExtOrTrunc(R, dl, DstVT);
4389 
4390   R = DAG.getSelectCC(
4391       dl, Exponent, ExponentLoBit,
4392       DAG.getNode(ISD::SHL, dl, DstVT, R,
4393                   DAG.getZExtOrTrunc(
4394                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
4395                       dl, IntShVT)),
4396       DAG.getNode(ISD::SRL, dl, DstVT, R,
4397                   DAG.getZExtOrTrunc(
4398                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
4399                       dl, IntShVT)),
4400       ISD::SETGT);
4401 
4402   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
4403                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
4404 
4405   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
4406                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
4407   return true;
4408 }
4409 
4410 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
4411                                       SelectionDAG &DAG) const {
4412   SDLoc dl(SDValue(Node, 0));
4413   SDValue Src = Node->getOperand(0);
4414 
4415   EVT SrcVT = Src.getValueType();
4416   EVT DstVT = Node->getValueType(0);
4417   EVT SetCCVT =
4418       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
4419 
4420   // Only expand vector types if we have the appropriate vector bit operations.
4421   if (DstVT.isVector() && (!isOperationLegalOrCustom(ISD::FP_TO_SINT, DstVT) ||
4422                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
4423     return false;
4424 
4425   // If the maximum float value is smaller then the signed integer range,
4426   // the destination signmask can't be represented by the float, so we can
4427   // just use FP_TO_SINT directly.
4428   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
4429   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
4430   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
4431   if (APFloat::opOverflow &
4432       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
4433     Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
4434     return true;
4435   }
4436 
4437   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
4438   SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
4439 
4440   bool Strict = shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
4441   if (Strict) {
4442     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
4443     // signmask then offset (the result of which should be fully representable).
4444     // Sel = Src < 0x8000000000000000
4445     // Val = select Sel, Src, Src - 0x8000000000000000
4446     // Ofs = select Sel, 0, 0x8000000000000000
4447     // Result = fp_to_sint(Val) ^ Ofs
4448 
4449     // TODO: Should any fast-math-flags be set for the FSUB?
4450     SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src,
4451                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
4452     SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT),
4453                                 DAG.getConstant(SignMask, dl, DstVT));
4454     Result = DAG.getNode(ISD::XOR, dl, DstVT,
4455                          DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val), Ofs);
4456   } else {
4457     // Expand based on maximum range of FP_TO_SINT:
4458     // True = fp_to_sint(Src)
4459     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
4460     // Result = select (Src < 0x8000000000000000), True, False
4461 
4462     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
4463     // TODO: Should any fast-math-flags be set for the FSUB?
4464     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
4465                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
4466     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
4467                         DAG.getConstant(SignMask, dl, DstVT));
4468     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
4469   }
4470   return true;
4471 }
4472 
4473 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
4474                                       SelectionDAG &DAG) const {
4475   SDValue Src = Node->getOperand(0);
4476   EVT SrcVT = Src.getValueType();
4477   EVT DstVT = Node->getValueType(0);
4478 
4479   if (SrcVT.getScalarType() != MVT::i64)
4480     return false;
4481 
4482   SDLoc dl(SDValue(Node, 0));
4483   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
4484 
4485   if (DstVT.getScalarType() == MVT::f32) {
4486     // Only expand vector types if we have the appropriate vector bit
4487     // operations.
4488     if (SrcVT.isVector() &&
4489         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
4490          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
4491          !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) ||
4492          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
4493          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
4494       return false;
4495 
4496     // For unsigned conversions, convert them to signed conversions using the
4497     // algorithm from the x86_64 __floatundidf in compiler_rt.
4498     SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src);
4499 
4500     SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
4501     SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst);
4502     SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
4503     SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst);
4504     SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
4505 
4506     SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or);
4507     SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt);
4508 
4509     // TODO: This really should be implemented using a branch rather than a
4510     // select.  We happen to get lucky and machinesink does the right
4511     // thing most of the time.  This would be a good candidate for a
4512     // pseudo-op, or, even better, for whole-function isel.
4513     EVT SetCCVT =
4514         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
4515 
4516     SDValue SignBitTest = DAG.getSetCC(
4517         dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
4518     Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast);
4519     return true;
4520   }
4521 
4522   if (DstVT.getScalarType() == MVT::f64) {
4523     // Only expand vector types if we have the appropriate vector bit
4524     // operations.
4525     if (SrcVT.isVector() &&
4526         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
4527          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
4528          !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
4529          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
4530          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
4531       return false;
4532 
4533     // Implementation of unsigned i64 to f64 following the algorithm in
4534     // __floatundidf in compiler_rt. This implementation has the advantage
4535     // of performing rounding correctly, both in the default rounding mode
4536     // and in all alternate rounding modes.
4537     SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
4538     SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
4539         BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
4540     SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
4541     SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
4542     SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
4543 
4544     SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
4545     SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
4546     SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
4547     SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
4548     SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
4549     SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
4550     SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
4551     Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
4552     return true;
4553   }
4554 
4555   return false;
4556 }
4557 
4558 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
4559                                               SelectionDAG &DAG) const {
4560   SDLoc dl(Node);
4561   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
4562     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
4563   EVT VT = Node->getValueType(0);
4564   if (isOperationLegalOrCustom(NewOp, VT)) {
4565     SDValue Quiet0 = Node->getOperand(0);
4566     SDValue Quiet1 = Node->getOperand(1);
4567 
4568     if (!Node->getFlags().hasNoNaNs()) {
4569       // Insert canonicalizes if it's possible we need to quiet to get correct
4570       // sNaN behavior.
4571       if (!DAG.isKnownNeverSNaN(Quiet0)) {
4572         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
4573                              Node->getFlags());
4574       }
4575       if (!DAG.isKnownNeverSNaN(Quiet1)) {
4576         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
4577                              Node->getFlags());
4578       }
4579     }
4580 
4581     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
4582   }
4583 
4584   return SDValue();
4585 }
4586 
4587 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
4588                                  SelectionDAG &DAG) const {
4589   SDLoc dl(Node);
4590   EVT VT = Node->getValueType(0);
4591   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4592   SDValue Op = Node->getOperand(0);
4593   unsigned Len = VT.getScalarSizeInBits();
4594   assert(VT.isInteger() && "CTPOP not implemented for this type.");
4595 
4596   // TODO: Add support for irregular type lengths.
4597   if (!(Len <= 128 && Len % 8 == 0))
4598     return false;
4599 
4600   // Only expand vector types if we have the appropriate vector bit operations.
4601   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
4602                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
4603                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
4604                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
4605                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
4606     return false;
4607 
4608   // This is the "best" algorithm from
4609   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
4610   SDValue Mask55 =
4611       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
4612   SDValue Mask33 =
4613       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
4614   SDValue Mask0F =
4615       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
4616   SDValue Mask01 =
4617       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
4618 
4619   // v = v - ((v >> 1) & 0x55555555...)
4620   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
4621                    DAG.getNode(ISD::AND, dl, VT,
4622                                DAG.getNode(ISD::SRL, dl, VT, Op,
4623                                            DAG.getConstant(1, dl, ShVT)),
4624                                Mask55));
4625   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
4626   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
4627                    DAG.getNode(ISD::AND, dl, VT,
4628                                DAG.getNode(ISD::SRL, dl, VT, Op,
4629                                            DAG.getConstant(2, dl, ShVT)),
4630                                Mask33));
4631   // v = (v + (v >> 4)) & 0x0F0F0F0F...
4632   Op = DAG.getNode(ISD::AND, dl, VT,
4633                    DAG.getNode(ISD::ADD, dl, VT, Op,
4634                                DAG.getNode(ISD::SRL, dl, VT, Op,
4635                                            DAG.getConstant(4, dl, ShVT))),
4636                    Mask0F);
4637   // v = (v * 0x01010101...) >> (Len - 8)
4638   if (Len > 8)
4639     Op =
4640         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
4641                     DAG.getConstant(Len - 8, dl, ShVT));
4642 
4643   Result = Op;
4644   return true;
4645 }
4646 
4647 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
4648                                 SelectionDAG &DAG) const {
4649   SDLoc dl(Node);
4650   EVT VT = Node->getValueType(0);
4651   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4652   SDValue Op = Node->getOperand(0);
4653   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
4654 
4655   // If the non-ZERO_UNDEF version is supported we can use that instead.
4656   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
4657       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
4658     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
4659     return true;
4660   }
4661 
4662   // If the ZERO_UNDEF version is supported use that and handle the zero case.
4663   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
4664     EVT SetCCVT =
4665         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
4666     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
4667     SDValue Zero = DAG.getConstant(0, dl, VT);
4668     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
4669     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
4670                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
4671     return true;
4672   }
4673 
4674   // Only expand vector types if we have the appropriate vector bit operations.
4675   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
4676                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
4677                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
4678                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
4679     return false;
4680 
4681   // for now, we do this:
4682   // x = x | (x >> 1);
4683   // x = x | (x >> 2);
4684   // ...
4685   // x = x | (x >>16);
4686   // x = x | (x >>32); // for 64-bit input
4687   // return popcount(~x);
4688   //
4689   // Ref: "Hacker's Delight" by Henry Warren
4690   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
4691     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
4692     Op = DAG.getNode(ISD::OR, dl, VT, Op,
4693                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
4694   }
4695   Op = DAG.getNOT(dl, Op, VT);
4696   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
4697   return true;
4698 }
4699 
4700 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
4701                                 SelectionDAG &DAG) const {
4702   SDLoc dl(Node);
4703   EVT VT = Node->getValueType(0);
4704   SDValue Op = Node->getOperand(0);
4705   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
4706 
4707   // If the non-ZERO_UNDEF version is supported we can use that instead.
4708   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
4709       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
4710     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
4711     return true;
4712   }
4713 
4714   // If the ZERO_UNDEF version is supported use that and handle the zero case.
4715   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
4716     EVT SetCCVT =
4717         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
4718     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
4719     SDValue Zero = DAG.getConstant(0, dl, VT);
4720     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
4721     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
4722                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
4723     return true;
4724   }
4725 
4726   // Only expand vector types if we have the appropriate vector bit operations.
4727   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
4728                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
4729                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
4730                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
4731                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
4732                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
4733     return false;
4734 
4735   // for now, we use: { return popcount(~x & (x - 1)); }
4736   // unless the target has ctlz but not ctpop, in which case we use:
4737   // { return 32 - nlz(~x & (x-1)); }
4738   // Ref: "Hacker's Delight" by Henry Warren
4739   SDValue Tmp = DAG.getNode(
4740       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
4741       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
4742 
4743   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
4744   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
4745     Result =
4746         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
4747                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
4748     return true;
4749   }
4750 
4751   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
4752   return true;
4753 }
4754 
4755 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
4756                                             SelectionDAG &DAG) const {
4757   SDLoc SL(LD);
4758   SDValue Chain = LD->getChain();
4759   SDValue BasePTR = LD->getBasePtr();
4760   EVT SrcVT = LD->getMemoryVT();
4761   ISD::LoadExtType ExtType = LD->getExtensionType();
4762 
4763   unsigned NumElem = SrcVT.getVectorNumElements();
4764 
4765   EVT SrcEltVT = SrcVT.getScalarType();
4766   EVT DstEltVT = LD->getValueType(0).getScalarType();
4767 
4768   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
4769   assert(SrcEltVT.isByteSized());
4770 
4771   SmallVector<SDValue, 8> Vals;
4772   SmallVector<SDValue, 8> LoadChains;
4773 
4774   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
4775     SDValue ScalarLoad =
4776         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
4777                        LD->getPointerInfo().getWithOffset(Idx * Stride),
4778                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
4779                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
4780 
4781     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
4782 
4783     Vals.push_back(ScalarLoad.getValue(0));
4784     LoadChains.push_back(ScalarLoad.getValue(1));
4785   }
4786 
4787   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
4788   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
4789 
4790   return DAG.getMergeValues({ Value, NewChain }, SL);
4791 }
4792 
4793 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
4794                                              SelectionDAG &DAG) const {
4795   SDLoc SL(ST);
4796 
4797   SDValue Chain = ST->getChain();
4798   SDValue BasePtr = ST->getBasePtr();
4799   SDValue Value = ST->getValue();
4800   EVT StVT = ST->getMemoryVT();
4801 
4802   // The type of the data we want to save
4803   EVT RegVT = Value.getValueType();
4804   EVT RegSclVT = RegVT.getScalarType();
4805 
4806   // The type of data as saved in memory.
4807   EVT MemSclVT = StVT.getScalarType();
4808 
4809   EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
4810   unsigned NumElem = StVT.getVectorNumElements();
4811 
4812   // A vector must always be stored in memory as-is, i.e. without any padding
4813   // between the elements, since various code depend on it, e.g. in the
4814   // handling of a bitcast of a vector type to int, which may be done with a
4815   // vector store followed by an integer load. A vector that does not have
4816   // elements that are byte-sized must therefore be stored as an integer
4817   // built out of the extracted vector elements.
4818   if (!MemSclVT.isByteSized()) {
4819     unsigned NumBits = StVT.getSizeInBits();
4820     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
4821 
4822     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
4823 
4824     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
4825       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
4826                                 DAG.getConstant(Idx, SL, IdxVT));
4827       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
4828       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
4829       unsigned ShiftIntoIdx =
4830           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
4831       SDValue ShiftAmount =
4832           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
4833       SDValue ShiftedElt =
4834           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
4835       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
4836     }
4837 
4838     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
4839                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
4840                         ST->getAAInfo());
4841   }
4842 
4843   // Store Stride in bytes
4844   unsigned Stride = MemSclVT.getSizeInBits() / 8;
4845   assert (Stride && "Zero stride!");
4846   // Extract each of the elements from the original vector and save them into
4847   // memory individually.
4848   SmallVector<SDValue, 8> Stores;
4849   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
4850     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
4851                               DAG.getConstant(Idx, SL, IdxVT));
4852 
4853     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
4854 
4855     // This scalar TruncStore may be illegal, but we legalize it later.
4856     SDValue Store = DAG.getTruncStore(
4857         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
4858         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
4859         ST->getMemOperand()->getFlags(), ST->getAAInfo());
4860 
4861     Stores.push_back(Store);
4862   }
4863 
4864   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
4865 }
4866 
4867 std::pair<SDValue, SDValue>
4868 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
4869   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
4870          "unaligned indexed loads not implemented!");
4871   SDValue Chain = LD->getChain();
4872   SDValue Ptr = LD->getBasePtr();
4873   EVT VT = LD->getValueType(0);
4874   EVT LoadedVT = LD->getMemoryVT();
4875   SDLoc dl(LD);
4876   auto &MF = DAG.getMachineFunction();
4877 
4878   if (VT.isFloatingPoint() || VT.isVector()) {
4879     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
4880     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
4881       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
4882           LoadedVT.isVector()) {
4883         // Scalarize the load and let the individual components be handled.
4884         SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
4885         if (Scalarized->getOpcode() == ISD::MERGE_VALUES)
4886           return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1));
4887         return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
4888       }
4889 
4890       // Expand to a (misaligned) integer load of the same size,
4891       // then bitconvert to floating point or vector.
4892       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
4893                                     LD->getMemOperand());
4894       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
4895       if (LoadedVT != VT)
4896         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
4897                              ISD::ANY_EXTEND, dl, VT, Result);
4898 
4899       return std::make_pair(Result, newLoad.getValue(1));
4900     }
4901 
4902     // Copy the value to a (aligned) stack slot using (unaligned) integer
4903     // loads and stores, then do a (aligned) load from the stack slot.
4904     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
4905     unsigned LoadedBytes = LoadedVT.getStoreSize();
4906     unsigned RegBytes = RegVT.getSizeInBits() / 8;
4907     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
4908 
4909     // Make sure the stack slot is also aligned for the register type.
4910     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
4911     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
4912     SmallVector<SDValue, 8> Stores;
4913     SDValue StackPtr = StackBase;
4914     unsigned Offset = 0;
4915 
4916     EVT PtrVT = Ptr.getValueType();
4917     EVT StackPtrVT = StackPtr.getValueType();
4918 
4919     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
4920     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
4921 
4922     // Do all but one copies using the full register width.
4923     for (unsigned i = 1; i < NumRegs; i++) {
4924       // Load one integer register's worth from the original location.
4925       SDValue Load = DAG.getLoad(
4926           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
4927           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
4928           LD->getAAInfo());
4929       // Follow the load with a store to the stack slot.  Remember the store.
4930       Stores.push_back(DAG.getStore(
4931           Load.getValue(1), dl, Load, StackPtr,
4932           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
4933       // Increment the pointers.
4934       Offset += RegBytes;
4935 
4936       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
4937       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
4938     }
4939 
4940     // The last copy may be partial.  Do an extending load.
4941     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
4942                                   8 * (LoadedBytes - Offset));
4943     SDValue Load =
4944         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
4945                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
4946                        MinAlign(LD->getAlignment(), Offset),
4947                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
4948     // Follow the load with a store to the stack slot.  Remember the store.
4949     // On big-endian machines this requires a truncating store to ensure
4950     // that the bits end up in the right place.
4951     Stores.push_back(DAG.getTruncStore(
4952         Load.getValue(1), dl, Load, StackPtr,
4953         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
4954 
4955     // The order of the stores doesn't matter - say it with a TokenFactor.
4956     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
4957 
4958     // Finally, perform the original load only redirected to the stack slot.
4959     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
4960                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
4961                           LoadedVT);
4962 
4963     // Callers expect a MERGE_VALUES node.
4964     return std::make_pair(Load, TF);
4965   }
4966 
4967   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
4968          "Unaligned load of unsupported type.");
4969 
4970   // Compute the new VT that is half the size of the old one.  This is an
4971   // integer MVT.
4972   unsigned NumBits = LoadedVT.getSizeInBits();
4973   EVT NewLoadedVT;
4974   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
4975   NumBits >>= 1;
4976 
4977   unsigned Alignment = LD->getAlignment();
4978   unsigned IncrementSize = NumBits / 8;
4979   ISD::LoadExtType HiExtType = LD->getExtensionType();
4980 
4981   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
4982   if (HiExtType == ISD::NON_EXTLOAD)
4983     HiExtType = ISD::ZEXTLOAD;
4984 
4985   // Load the value in two parts
4986   SDValue Lo, Hi;
4987   if (DAG.getDataLayout().isLittleEndian()) {
4988     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
4989                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
4990                         LD->getAAInfo());
4991 
4992     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
4993     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
4994                         LD->getPointerInfo().getWithOffset(IncrementSize),
4995                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
4996                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
4997   } else {
4998     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
4999                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
5000                         LD->getAAInfo());
5001 
5002     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
5003     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
5004                         LD->getPointerInfo().getWithOffset(IncrementSize),
5005                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
5006                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
5007   }
5008 
5009   // aggregate the two parts
5010   SDValue ShiftAmount =
5011       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
5012                                                     DAG.getDataLayout()));
5013   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
5014   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
5015 
5016   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
5017                              Hi.getValue(1));
5018 
5019   return std::make_pair(Result, TF);
5020 }
5021 
5022 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
5023                                              SelectionDAG &DAG) const {
5024   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
5025          "unaligned indexed stores not implemented!");
5026   SDValue Chain = ST->getChain();
5027   SDValue Ptr = ST->getBasePtr();
5028   SDValue Val = ST->getValue();
5029   EVT VT = Val.getValueType();
5030   int Alignment = ST->getAlignment();
5031   auto &MF = DAG.getMachineFunction();
5032   EVT MemVT = ST->getMemoryVT();
5033 
5034   SDLoc dl(ST);
5035   if (MemVT.isFloatingPoint() || MemVT.isVector()) {
5036     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
5037     if (isTypeLegal(intVT)) {
5038       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
5039           MemVT.isVector()) {
5040         // Scalarize the store and let the individual components be handled.
5041         SDValue Result = scalarizeVectorStore(ST, DAG);
5042 
5043         return Result;
5044       }
5045       // Expand to a bitconvert of the value to the integer type of the
5046       // same size, then a (misaligned) int store.
5047       // FIXME: Does not handle truncating floating point stores!
5048       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
5049       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
5050                             Alignment, ST->getMemOperand()->getFlags());
5051       return Result;
5052     }
5053     // Do a (aligned) store to a stack slot, then copy from the stack slot
5054     // to the final destination using (unaligned) integer loads and stores.
5055     EVT StoredVT = ST->getMemoryVT();
5056     MVT RegVT =
5057       getRegisterType(*DAG.getContext(),
5058                       EVT::getIntegerVT(*DAG.getContext(),
5059                                         StoredVT.getSizeInBits()));
5060     EVT PtrVT = Ptr.getValueType();
5061     unsigned StoredBytes = StoredVT.getStoreSize();
5062     unsigned RegBytes = RegVT.getSizeInBits() / 8;
5063     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
5064 
5065     // Make sure the stack slot is also aligned for the register type.
5066     SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
5067     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
5068 
5069     // Perform the original store, only redirected to the stack slot.
5070     SDValue Store = DAG.getTruncStore(
5071         Chain, dl, Val, StackPtr,
5072         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoredVT);
5073 
5074     EVT StackPtrVT = StackPtr.getValueType();
5075 
5076     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
5077     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
5078     SmallVector<SDValue, 8> Stores;
5079     unsigned Offset = 0;
5080 
5081     // Do all but one copies using the full register width.
5082     for (unsigned i = 1; i < NumRegs; i++) {
5083       // Load one integer register's worth from the stack slot.
5084       SDValue Load = DAG.getLoad(
5085           RegVT, dl, Store, StackPtr,
5086           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
5087       // Store it to the final location.  Remember the store.
5088       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
5089                                     ST->getPointerInfo().getWithOffset(Offset),
5090                                     MinAlign(ST->getAlignment(), Offset),
5091                                     ST->getMemOperand()->getFlags()));
5092       // Increment the pointers.
5093       Offset += RegBytes;
5094       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
5095       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
5096     }
5097 
5098     // The last store may be partial.  Do a truncating store.  On big-endian
5099     // machines this requires an extending load from the stack slot to ensure
5100     // that the bits are in the right place.
5101     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
5102                                   8 * (StoredBytes - Offset));
5103 
5104     // Load from the stack slot.
5105     SDValue Load = DAG.getExtLoad(
5106         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
5107         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT);
5108 
5109     Stores.push_back(
5110         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
5111                           ST->getPointerInfo().getWithOffset(Offset), MemVT,
5112                           MinAlign(ST->getAlignment(), Offset),
5113                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
5114     // The order of the stores doesn't matter - say it with a TokenFactor.
5115     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
5116     return Result;
5117   }
5118 
5119   assert(ST->getMemoryVT().isInteger() &&
5120          !ST->getMemoryVT().isVector() &&
5121          "Unaligned store of unknown type.");
5122   // Get the half-size VT
5123   EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
5124   int NumBits = NewStoredVT.getSizeInBits();
5125   int IncrementSize = NumBits / 8;
5126 
5127   // Divide the stored value in two parts.
5128   SDValue ShiftAmount =
5129       DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(),
5130                                                     DAG.getDataLayout()));
5131   SDValue Lo = Val;
5132   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
5133 
5134   // Store the two parts
5135   SDValue Store1, Store2;
5136   Store1 = DAG.getTruncStore(Chain, dl,
5137                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
5138                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
5139                              ST->getMemOperand()->getFlags());
5140 
5141   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
5142   Alignment = MinAlign(Alignment, IncrementSize);
5143   Store2 = DAG.getTruncStore(
5144       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
5145       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
5146       ST->getMemOperand()->getFlags(), ST->getAAInfo());
5147 
5148   SDValue Result =
5149     DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
5150   return Result;
5151 }
5152 
5153 SDValue
5154 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
5155                                        const SDLoc &DL, EVT DataVT,
5156                                        SelectionDAG &DAG,
5157                                        bool IsCompressedMemory) const {
5158   SDValue Increment;
5159   EVT AddrVT = Addr.getValueType();
5160   EVT MaskVT = Mask.getValueType();
5161   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
5162          "Incompatible types of Data and Mask");
5163   if (IsCompressedMemory) {
5164     // Incrementing the pointer according to number of '1's in the mask.
5165     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
5166     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
5167     if (MaskIntVT.getSizeInBits() < 32) {
5168       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
5169       MaskIntVT = MVT::i32;
5170     }
5171 
5172     // Count '1's with POPCNT.
5173     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
5174     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
5175     // Scale is an element size in bytes.
5176     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
5177                                     AddrVT);
5178     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
5179   } else
5180     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
5181 
5182   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
5183 }
5184 
5185 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
5186                                        SDValue Idx,
5187                                        EVT VecVT,
5188                                        const SDLoc &dl) {
5189   if (isa<ConstantSDNode>(Idx))
5190     return Idx;
5191 
5192   EVT IdxVT = Idx.getValueType();
5193   unsigned NElts = VecVT.getVectorNumElements();
5194   if (isPowerOf2_32(NElts)) {
5195     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
5196                                      Log2_32(NElts));
5197     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
5198                        DAG.getConstant(Imm, dl, IdxVT));
5199   }
5200 
5201   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
5202                      DAG.getConstant(NElts - 1, dl, IdxVT));
5203 }
5204 
5205 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
5206                                                 SDValue VecPtr, EVT VecVT,
5207                                                 SDValue Index) const {
5208   SDLoc dl(Index);
5209   // Make sure the index type is big enough to compute in.
5210   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
5211 
5212   EVT EltVT = VecVT.getVectorElementType();
5213 
5214   // Calculate the element offset and add it to the pointer.
5215   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
5216   assert(EltSize * 8 == EltVT.getSizeInBits() &&
5217          "Converting bits to bytes lost precision");
5218 
5219   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
5220 
5221   EVT IdxVT = Index.getValueType();
5222 
5223   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
5224                       DAG.getConstant(EltSize, dl, IdxVT));
5225   return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index);
5226 }
5227 
5228 //===----------------------------------------------------------------------===//
5229 // Implementation of Emulated TLS Model
5230 //===----------------------------------------------------------------------===//
5231 
5232 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
5233                                                 SelectionDAG &DAG) const {
5234   // Access to address of TLS varialbe xyz is lowered to a function call:
5235   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
5236   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5237   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
5238   SDLoc dl(GA);
5239 
5240   ArgListTy Args;
5241   ArgListEntry Entry;
5242   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
5243   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
5244   StringRef EmuTlsVarName(NameString);
5245   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
5246   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
5247   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
5248   Entry.Ty = VoidPtrType;
5249   Args.push_back(Entry);
5250 
5251   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
5252 
5253   TargetLowering::CallLoweringInfo CLI(DAG);
5254   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
5255   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
5256   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
5257 
5258   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
5259   // At last for X86 targets, maybe good for other targets too?
5260   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5261   MFI.setAdjustsStack(true);  // Is this only for X86 target?
5262   MFI.setHasCalls(true);
5263 
5264   assert((GA->getOffset() == 0) &&
5265          "Emulated TLS must have zero offset in GlobalAddressSDNode");
5266   return CallResult.first;
5267 }
5268 
5269 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
5270                                                 SelectionDAG &DAG) const {
5271   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
5272   if (!isCtlzFast())
5273     return SDValue();
5274   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5275   SDLoc dl(Op);
5276   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5277     if (C->isNullValue() && CC == ISD::SETEQ) {
5278       EVT VT = Op.getOperand(0).getValueType();
5279       SDValue Zext = Op.getOperand(0);
5280       if (VT.bitsLT(MVT::i32)) {
5281         VT = MVT::i32;
5282         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
5283       }
5284       unsigned Log2b = Log2_32(VT.getSizeInBits());
5285       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
5286       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
5287                                 DAG.getConstant(Log2b, dl, MVT::i32));
5288       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
5289     }
5290   }
5291   return SDValue();
5292 }
5293 
5294 SDValue TargetLowering::getExpandedSaturationAdditionSubtraction(
5295     SDNode *Node, SelectionDAG &DAG) const {
5296   unsigned Opcode = Node->getOpcode();
5297   unsigned OverflowOp;
5298   switch (Opcode) {
5299   case ISD::SADDSAT:
5300     OverflowOp = ISD::SADDO;
5301     break;
5302   case ISD::UADDSAT:
5303     OverflowOp = ISD::UADDO;
5304     break;
5305   case ISD::SSUBSAT:
5306     OverflowOp = ISD::SSUBO;
5307     break;
5308   case ISD::USUBSAT:
5309     OverflowOp = ISD::USUBO;
5310     break;
5311   default:
5312     llvm_unreachable("Expected method to receive signed or unsigned saturation "
5313                      "addition or subtraction node.");
5314   }
5315   assert(Node->getNumOperands() == 2 && "Expected node to have 2 operands.");
5316 
5317   SDLoc dl(Node);
5318   SDValue LHS = Node->getOperand(0);
5319   SDValue RHS = Node->getOperand(1);
5320   assert(LHS.getValueType().isScalarInteger() &&
5321          "Expected operands to be integers. Vector of int arguments should "
5322          "already be unrolled.");
5323   assert(RHS.getValueType().isScalarInteger() &&
5324          "Expected operands to be integers. Vector of int arguments should "
5325          "already be unrolled.");
5326   assert(LHS.getValueType() == RHS.getValueType() &&
5327          "Expected both operands to be the same type");
5328 
5329   unsigned BitWidth = LHS.getValueSizeInBits();
5330   EVT ResultType = LHS.getValueType();
5331   EVT BoolVT =
5332       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ResultType);
5333   SDValue Result =
5334       DAG.getNode(OverflowOp, dl, DAG.getVTList(ResultType, BoolVT), LHS, RHS);
5335   SDValue SumDiff = Result.getValue(0);
5336   SDValue Overflow = Result.getValue(1);
5337   SDValue Zero = DAG.getConstant(0, dl, ResultType);
5338 
5339   if (Opcode == ISD::UADDSAT) {
5340     // Just need to check overflow for SatMax.
5341     APInt MaxVal = APInt::getMaxValue(BitWidth);
5342     SDValue SatMax = DAG.getConstant(MaxVal, dl, ResultType);
5343     return DAG.getSelect(dl, ResultType, Overflow, SatMax, SumDiff);
5344   } else if (Opcode == ISD::USUBSAT) {
5345     // Just need to check overflow for SatMin.
5346     APInt MinVal = APInt::getMinValue(BitWidth);
5347     SDValue SatMin = DAG.getConstant(MinVal, dl, ResultType);
5348     return DAG.getSelect(dl, ResultType, Overflow, SatMin, SumDiff);
5349   } else {
5350     // SatMax -> Overflow && SumDiff < 0
5351     // SatMin -> Overflow && SumDiff >= 0
5352     APInt MinVal = APInt::getSignedMinValue(BitWidth);
5353     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
5354     SDValue SatMin = DAG.getConstant(MinVal, dl, ResultType);
5355     SDValue SatMax = DAG.getConstant(MaxVal, dl, ResultType);
5356     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
5357     Result = DAG.getSelect(dl, ResultType, SumNeg, SatMax, SatMin);
5358     return DAG.getSelect(dl, ResultType, Overflow, Result, SumDiff);
5359   }
5360 }
5361 
5362 SDValue
5363 TargetLowering::getExpandedFixedPointMultiplication(SDNode *Node,
5364                                                     SelectionDAG &DAG) const {
5365   assert(Node->getOpcode() == ISD::SMULFIX && "Expected opcode to be SMULFIX.");
5366   assert(Node->getNumOperands() == 3 &&
5367          "Expected signed fixed point multiplication to have 3 operands.");
5368 
5369   SDLoc dl(Node);
5370   SDValue LHS = Node->getOperand(0);
5371   SDValue RHS = Node->getOperand(1);
5372   assert(LHS.getValueType().isScalarInteger() &&
5373          "Expected operands to be integers. Vector of int arguments should "
5374          "already be unrolled.");
5375   assert(RHS.getValueType().isScalarInteger() &&
5376          "Expected operands to be integers. Vector of int arguments should "
5377          "already be unrolled.");
5378   assert(LHS.getValueType() == RHS.getValueType() &&
5379          "Expected both operands to be the same type");
5380 
5381   unsigned Scale = Node->getConstantOperandVal(2);
5382   EVT VT = LHS.getValueType();
5383   assert(Scale < VT.getScalarSizeInBits() &&
5384          "Expected scale to be less than the number of bits.");
5385 
5386   if (!Scale)
5387     return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
5388 
5389   // Get the upper and lower bits of the result.
5390   SDValue Lo, Hi;
5391   if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
5392     SDValue Result =
5393         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), LHS, RHS);
5394     Lo = Result.getValue(0);
5395     Hi = Result.getValue(1);
5396   } else if (isOperationLegalOrCustom(ISD::MULHS, VT)) {
5397     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
5398     Hi = DAG.getNode(ISD::MULHS, dl, VT, LHS, RHS);
5399   } else {
5400     report_fatal_error("Unable to expand signed fixed point multiplication.");
5401   }
5402 
5403   // The result will need to be shifted right by the scale since both operands
5404   // are scaled. The result is given to us in 2 halves, so we only want part of
5405   // both in the result.
5406   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
5407   Lo = DAG.getNode(ISD::SRL, dl, VT, Lo, DAG.getConstant(Scale, dl, ShiftTy));
5408   Hi = DAG.getNode(
5409       ISD::SHL, dl, VT, Hi,
5410       DAG.getConstant(VT.getScalarSizeInBits() - Scale, dl, ShiftTy));
5411   return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
5412 }
5413