1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore following attributes because they don't affect the
61   // call sequence.
62   AttrBuilder CallerAttrs(F.getAttributes(), AttributeList::ReturnIndex);
63   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
64                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
65                            Attribute::NonNull})
66     CallerAttrs.removeAttribute(Attr);
67 
68   if (CallerAttrs.hasAttributes())
69     return false;
70 
71   // It's not safe to eliminate the sign / zero extension of the return value.
72   if (CallerAttrs.contains(Attribute::ZExt) ||
73       CallerAttrs.contains(Attribute::SExt))
74     return false;
75 
76   // Check if the only use is a function return node.
77   return isUsedByReturnOnly(Node, Chain);
78 }
79 
80 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
81     const uint32_t *CallerPreservedMask,
82     const SmallVectorImpl<CCValAssign> &ArgLocs,
83     const SmallVectorImpl<SDValue> &OutVals) const {
84   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
85     const CCValAssign &ArgLoc = ArgLocs[I];
86     if (!ArgLoc.isRegLoc())
87       continue;
88     MCRegister Reg = ArgLoc.getLocReg();
89     // Only look at callee saved registers.
90     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
91       continue;
92     // Check that we pass the value used for the caller.
93     // (We look for a CopyFromReg reading a virtual register that is used
94     //  for the function live-in value of register Reg)
95     SDValue Value = OutVals[I];
96     if (Value->getOpcode() != ISD::CopyFromReg)
97       return false;
98     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
99     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
100       return false;
101   }
102   return true;
103 }
104 
105 /// Set CallLoweringInfo attribute flags based on a call instruction
106 /// and called function attributes.
107 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
108                                                      unsigned ArgIdx) {
109   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
110   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
111   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
112   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
113   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
114   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
115   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
116   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
117   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
118   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
119   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
120   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
121   Alignment = Call->getParamStackAlign(ArgIdx);
122   IndirectType = nullptr;
123   assert(IsByVal + IsPreallocated + IsInAlloca <= 1 &&
124          "multiple ABI attributes?");
125   if (IsByVal) {
126     IndirectType = Call->getParamByValType(ArgIdx);
127     if (!Alignment)
128       Alignment = Call->getParamAlign(ArgIdx);
129   }
130   if (IsPreallocated)
131     IndirectType = Call->getParamPreallocatedType(ArgIdx);
132   if (IsInAlloca)
133     IndirectType = Call->getParamInAllocaType(ArgIdx);
134 }
135 
136 /// Generate a libcall taking the given operands as arguments and returning a
137 /// result of type RetVT.
138 std::pair<SDValue, SDValue>
139 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
140                             ArrayRef<SDValue> Ops,
141                             MakeLibCallOptions CallOptions,
142                             const SDLoc &dl,
143                             SDValue InChain) const {
144   if (!InChain)
145     InChain = DAG.getEntryNode();
146 
147   TargetLowering::ArgListTy Args;
148   Args.reserve(Ops.size());
149 
150   TargetLowering::ArgListEntry Entry;
151   for (unsigned i = 0; i < Ops.size(); ++i) {
152     SDValue NewOp = Ops[i];
153     Entry.Node = NewOp;
154     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
155     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
156                                                  CallOptions.IsSExt);
157     Entry.IsZExt = !Entry.IsSExt;
158 
159     if (CallOptions.IsSoften &&
160         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
161       Entry.IsSExt = Entry.IsZExt = false;
162     }
163     Args.push_back(Entry);
164   }
165 
166   if (LC == RTLIB::UNKNOWN_LIBCALL)
167     report_fatal_error("Unsupported library call operation!");
168   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
169                                          getPointerTy(DAG.getDataLayout()));
170 
171   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
172   TargetLowering::CallLoweringInfo CLI(DAG);
173   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
174   bool zeroExtend = !signExtend;
175 
176   if (CallOptions.IsSoften &&
177       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
178     signExtend = zeroExtend = false;
179   }
180 
181   CLI.setDebugLoc(dl)
182       .setChain(InChain)
183       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
184       .setNoReturn(CallOptions.DoesNotReturn)
185       .setDiscardResult(!CallOptions.IsReturnValueUsed)
186       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
187       .setSExtResult(signExtend)
188       .setZExtResult(zeroExtend);
189   return LowerCallTo(CLI);
190 }
191 
192 bool TargetLowering::findOptimalMemOpLowering(
193     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
194     unsigned SrcAS, const AttributeList &FuncAttributes) const {
195   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
196     return false;
197 
198   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
199 
200   if (VT == MVT::Other) {
201     // Use the largest integer type whose alignment constraints are satisfied.
202     // We only need to check DstAlign here as SrcAlign is always greater or
203     // equal to DstAlign (or zero).
204     VT = MVT::i64;
205     if (Op.isFixedDstAlign())
206       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
207              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
208         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
209     assert(VT.isInteger());
210 
211     // Find the largest legal integer type.
212     MVT LVT = MVT::i64;
213     while (!isTypeLegal(LVT))
214       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
215     assert(LVT.isInteger());
216 
217     // If the type we've chosen is larger than the largest legal integer type
218     // then use that instead.
219     if (VT.bitsGT(LVT))
220       VT = LVT;
221   }
222 
223   unsigned NumMemOps = 0;
224   uint64_t Size = Op.size();
225   while (Size) {
226     unsigned VTSize = VT.getSizeInBits() / 8;
227     while (VTSize > Size) {
228       // For now, only use non-vector load / store's for the left-over pieces.
229       EVT NewVT = VT;
230       unsigned NewVTSize;
231 
232       bool Found = false;
233       if (VT.isVector() || VT.isFloatingPoint()) {
234         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
235         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
236             isSafeMemOpType(NewVT.getSimpleVT()))
237           Found = true;
238         else if (NewVT == MVT::i64 &&
239                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
240                  isSafeMemOpType(MVT::f64)) {
241           // i64 is usually not legal on 32-bit targets, but f64 may be.
242           NewVT = MVT::f64;
243           Found = true;
244         }
245       }
246 
247       if (!Found) {
248         do {
249           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
250           if (NewVT == MVT::i8)
251             break;
252         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
253       }
254       NewVTSize = NewVT.getSizeInBits() / 8;
255 
256       // If the new VT cannot cover all of the remaining bits, then consider
257       // issuing a (or a pair of) unaligned and overlapping load / store.
258       bool Fast;
259       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
260           allowsMisalignedMemoryAccesses(
261               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
262               MachineMemOperand::MONone, &Fast) &&
263           Fast)
264         VTSize = Size;
265       else {
266         VT = NewVT;
267         VTSize = NewVTSize;
268       }
269     }
270 
271     if (++NumMemOps > Limit)
272       return false;
273 
274     MemOps.push_back(VT);
275     Size -= VTSize;
276   }
277 
278   return true;
279 }
280 
281 /// Soften the operands of a comparison. This code is shared among BR_CC,
282 /// SELECT_CC, and SETCC handlers.
283 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
284                                          SDValue &NewLHS, SDValue &NewRHS,
285                                          ISD::CondCode &CCCode,
286                                          const SDLoc &dl, const SDValue OldLHS,
287                                          const SDValue OldRHS) const {
288   SDValue Chain;
289   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
290                              OldRHS, Chain);
291 }
292 
293 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
294                                          SDValue &NewLHS, SDValue &NewRHS,
295                                          ISD::CondCode &CCCode,
296                                          const SDLoc &dl, const SDValue OldLHS,
297                                          const SDValue OldRHS,
298                                          SDValue &Chain,
299                                          bool IsSignaling) const {
300   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
301   // not supporting it. We can update this code when libgcc provides such
302   // functions.
303 
304   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
305          && "Unsupported setcc type!");
306 
307   // Expand into one or more soft-fp libcall(s).
308   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
309   bool ShouldInvertCC = false;
310   switch (CCCode) {
311   case ISD::SETEQ:
312   case ISD::SETOEQ:
313     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
314           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
315           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
316     break;
317   case ISD::SETNE:
318   case ISD::SETUNE:
319     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
320           (VT == MVT::f64) ? RTLIB::UNE_F64 :
321           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
322     break;
323   case ISD::SETGE:
324   case ISD::SETOGE:
325     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
326           (VT == MVT::f64) ? RTLIB::OGE_F64 :
327           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
328     break;
329   case ISD::SETLT:
330   case ISD::SETOLT:
331     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
332           (VT == MVT::f64) ? RTLIB::OLT_F64 :
333           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
334     break;
335   case ISD::SETLE:
336   case ISD::SETOLE:
337     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
338           (VT == MVT::f64) ? RTLIB::OLE_F64 :
339           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
340     break;
341   case ISD::SETGT:
342   case ISD::SETOGT:
343     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
344           (VT == MVT::f64) ? RTLIB::OGT_F64 :
345           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
346     break;
347   case ISD::SETO:
348     ShouldInvertCC = true;
349     LLVM_FALLTHROUGH;
350   case ISD::SETUO:
351     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
352           (VT == MVT::f64) ? RTLIB::UO_F64 :
353           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
354     break;
355   case ISD::SETONE:
356     // SETONE = O && UNE
357     ShouldInvertCC = true;
358     LLVM_FALLTHROUGH;
359   case ISD::SETUEQ:
360     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
361           (VT == MVT::f64) ? RTLIB::UO_F64 :
362           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
363     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
364           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
365           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
366     break;
367   default:
368     // Invert CC for unordered comparisons
369     ShouldInvertCC = true;
370     switch (CCCode) {
371     case ISD::SETULT:
372       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
373             (VT == MVT::f64) ? RTLIB::OGE_F64 :
374             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
375       break;
376     case ISD::SETULE:
377       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
378             (VT == MVT::f64) ? RTLIB::OGT_F64 :
379             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
380       break;
381     case ISD::SETUGT:
382       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
383             (VT == MVT::f64) ? RTLIB::OLE_F64 :
384             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
385       break;
386     case ISD::SETUGE:
387       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
388             (VT == MVT::f64) ? RTLIB::OLT_F64 :
389             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
390       break;
391     default: llvm_unreachable("Do not know how to soften this setcc!");
392     }
393   }
394 
395   // Use the target specific return value for comparions lib calls.
396   EVT RetVT = getCmpLibcallReturnType();
397   SDValue Ops[2] = {NewLHS, NewRHS};
398   TargetLowering::MakeLibCallOptions CallOptions;
399   EVT OpsVT[2] = { OldLHS.getValueType(),
400                    OldRHS.getValueType() };
401   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
402   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
403   NewLHS = Call.first;
404   NewRHS = DAG.getConstant(0, dl, RetVT);
405 
406   CCCode = getCmpLibcallCC(LC1);
407   if (ShouldInvertCC) {
408     assert(RetVT.isInteger());
409     CCCode = getSetCCInverse(CCCode, RetVT);
410   }
411 
412   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
413     // Update Chain.
414     Chain = Call.second;
415   } else {
416     EVT SetCCVT =
417         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
418     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
419     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
420     CCCode = getCmpLibcallCC(LC2);
421     if (ShouldInvertCC)
422       CCCode = getSetCCInverse(CCCode, RetVT);
423     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
424     if (Chain)
425       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
426                           Call2.second);
427     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
428                          Tmp.getValueType(), Tmp, NewLHS);
429     NewRHS = SDValue();
430   }
431 }
432 
433 /// Return the entry encoding for a jump table in the current function. The
434 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
435 unsigned TargetLowering::getJumpTableEncoding() const {
436   // In non-pic modes, just use the address of a block.
437   if (!isPositionIndependent())
438     return MachineJumpTableInfo::EK_BlockAddress;
439 
440   // In PIC mode, if the target supports a GPRel32 directive, use it.
441   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
442     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
443 
444   // Otherwise, use a label difference.
445   return MachineJumpTableInfo::EK_LabelDifference32;
446 }
447 
448 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
449                                                  SelectionDAG &DAG) const {
450   // If our PIC model is GP relative, use the global offset table as the base.
451   unsigned JTEncoding = getJumpTableEncoding();
452 
453   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
454       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
455     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
456 
457   return Table;
458 }
459 
460 /// This returns the relocation base for the given PIC jumptable, the same as
461 /// getPICJumpTableRelocBase, but as an MCExpr.
462 const MCExpr *
463 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
464                                              unsigned JTI,MCContext &Ctx) const{
465   // The normal PIC reloc base is the label at the start of the jump table.
466   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
467 }
468 
469 bool
470 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
471   const TargetMachine &TM = getTargetMachine();
472   const GlobalValue *GV = GA->getGlobal();
473 
474   // If the address is not even local to this DSO we will have to load it from
475   // a got and then add the offset.
476   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
477     return false;
478 
479   // If the code is position independent we will have to add a base register.
480   if (isPositionIndependent())
481     return false;
482 
483   // Otherwise we can do it.
484   return true;
485 }
486 
487 //===----------------------------------------------------------------------===//
488 //  Optimization Methods
489 //===----------------------------------------------------------------------===//
490 
491 /// If the specified instruction has a constant integer operand and there are
492 /// bits set in that constant that are not demanded, then clear those bits and
493 /// return true.
494 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
495                                             const APInt &DemandedBits,
496                                             const APInt &DemandedElts,
497                                             TargetLoweringOpt &TLO) const {
498   SDLoc DL(Op);
499   unsigned Opcode = Op.getOpcode();
500 
501   // Do target-specific constant optimization.
502   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
503     return TLO.New.getNode();
504 
505   // FIXME: ISD::SELECT, ISD::SELECT_CC
506   switch (Opcode) {
507   default:
508     break;
509   case ISD::XOR:
510   case ISD::AND:
511   case ISD::OR: {
512     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
513     if (!Op1C || Op1C->isOpaque())
514       return false;
515 
516     // If this is a 'not' op, don't touch it because that's a canonical form.
517     const APInt &C = Op1C->getAPIntValue();
518     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
519       return false;
520 
521     if (!C.isSubsetOf(DemandedBits)) {
522       EVT VT = Op.getValueType();
523       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
524       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
525       return TLO.CombineTo(Op, NewOp);
526     }
527 
528     break;
529   }
530   }
531 
532   return false;
533 }
534 
535 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
536                                             const APInt &DemandedBits,
537                                             TargetLoweringOpt &TLO) const {
538   EVT VT = Op.getValueType();
539   APInt DemandedElts = VT.isVector()
540                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
541                            : APInt(1, 1);
542   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
543 }
544 
545 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
546 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
547 /// generalized for targets with other types of implicit widening casts.
548 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
549                                       const APInt &Demanded,
550                                       TargetLoweringOpt &TLO) const {
551   assert(Op.getNumOperands() == 2 &&
552          "ShrinkDemandedOp only supports binary operators!");
553   assert(Op.getNode()->getNumValues() == 1 &&
554          "ShrinkDemandedOp only supports nodes with one result!");
555 
556   SelectionDAG &DAG = TLO.DAG;
557   SDLoc dl(Op);
558 
559   // Early return, as this function cannot handle vector types.
560   if (Op.getValueType().isVector())
561     return false;
562 
563   // Don't do this if the node has another user, which may require the
564   // full value.
565   if (!Op.getNode()->hasOneUse())
566     return false;
567 
568   // Search for the smallest integer type with free casts to and from
569   // Op's type. For expedience, just check power-of-2 integer types.
570   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
571   unsigned DemandedSize = Demanded.getActiveBits();
572   unsigned SmallVTBits = DemandedSize;
573   if (!isPowerOf2_32(SmallVTBits))
574     SmallVTBits = NextPowerOf2(SmallVTBits);
575   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
576     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
577     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
578         TLI.isZExtFree(SmallVT, Op.getValueType())) {
579       // We found a type with free casts.
580       SDValue X = DAG.getNode(
581           Op.getOpcode(), dl, SmallVT,
582           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
583           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
584       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
585       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
586       return TLO.CombineTo(Op, Z);
587     }
588   }
589   return false;
590 }
591 
592 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
593                                           DAGCombinerInfo &DCI) const {
594   SelectionDAG &DAG = DCI.DAG;
595   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
596                         !DCI.isBeforeLegalizeOps());
597   KnownBits Known;
598 
599   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
600   if (Simplified) {
601     DCI.AddToWorklist(Op.getNode());
602     DCI.CommitTargetLoweringOpt(TLO);
603   }
604   return Simplified;
605 }
606 
607 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
608                                           KnownBits &Known,
609                                           TargetLoweringOpt &TLO,
610                                           unsigned Depth,
611                                           bool AssumeSingleUse) const {
612   EVT VT = Op.getValueType();
613 
614   // TODO: We can probably do more work on calculating the known bits and
615   // simplifying the operations for scalable vectors, but for now we just
616   // bail out.
617   if (VT.isScalableVector()) {
618     // Pretend we don't know anything for now.
619     Known = KnownBits(DemandedBits.getBitWidth());
620     return false;
621   }
622 
623   APInt DemandedElts = VT.isVector()
624                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
625                            : APInt(1, 1);
626   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
627                               AssumeSingleUse);
628 }
629 
630 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
631 // TODO: Under what circumstances can we create nodes? Constant folding?
632 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
633     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
634     SelectionDAG &DAG, unsigned Depth) const {
635   // Limit search depth.
636   if (Depth >= SelectionDAG::MaxRecursionDepth)
637     return SDValue();
638 
639   // Ignore UNDEFs.
640   if (Op.isUndef())
641     return SDValue();
642 
643   // Not demanding any bits/elts from Op.
644   if (DemandedBits == 0 || DemandedElts == 0)
645     return DAG.getUNDEF(Op.getValueType());
646 
647   unsigned NumElts = DemandedElts.getBitWidth();
648   unsigned BitWidth = DemandedBits.getBitWidth();
649   KnownBits LHSKnown, RHSKnown;
650   switch (Op.getOpcode()) {
651   case ISD::BITCAST: {
652     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
653     EVT SrcVT = Src.getValueType();
654     EVT DstVT = Op.getValueType();
655     if (SrcVT == DstVT)
656       return Src;
657 
658     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
659     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
660     if (NumSrcEltBits == NumDstEltBits)
661       if (SDValue V = SimplifyMultipleUseDemandedBits(
662               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
663         return DAG.getBitcast(DstVT, V);
664 
665     // TODO - bigendian once we have test coverage.
666     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
667         DAG.getDataLayout().isLittleEndian()) {
668       unsigned Scale = NumDstEltBits / NumSrcEltBits;
669       unsigned NumSrcElts = SrcVT.getVectorNumElements();
670       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
671       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
672       for (unsigned i = 0; i != Scale; ++i) {
673         unsigned Offset = i * NumSrcEltBits;
674         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
675         if (!Sub.isNullValue()) {
676           DemandedSrcBits |= Sub;
677           for (unsigned j = 0; j != NumElts; ++j)
678             if (DemandedElts[j])
679               DemandedSrcElts.setBit((j * Scale) + i);
680         }
681       }
682 
683       if (SDValue V = SimplifyMultipleUseDemandedBits(
684               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
685         return DAG.getBitcast(DstVT, V);
686     }
687 
688     // TODO - bigendian once we have test coverage.
689     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
690         DAG.getDataLayout().isLittleEndian()) {
691       unsigned Scale = NumSrcEltBits / NumDstEltBits;
692       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
693       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
694       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
695       for (unsigned i = 0; i != NumElts; ++i)
696         if (DemandedElts[i]) {
697           unsigned Offset = (i % Scale) * NumDstEltBits;
698           DemandedSrcBits.insertBits(DemandedBits, Offset);
699           DemandedSrcElts.setBit(i / Scale);
700         }
701 
702       if (SDValue V = SimplifyMultipleUseDemandedBits(
703               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
704         return DAG.getBitcast(DstVT, V);
705     }
706 
707     break;
708   }
709   case ISD::AND: {
710     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
711     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
712 
713     // If all of the demanded bits are known 1 on one side, return the other.
714     // These bits cannot contribute to the result of the 'and' in this
715     // context.
716     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
717       return Op.getOperand(0);
718     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
719       return Op.getOperand(1);
720     break;
721   }
722   case ISD::OR: {
723     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
724     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
725 
726     // If all of the demanded bits are known zero on one side, return the
727     // other.  These bits cannot contribute to the result of the 'or' in this
728     // context.
729     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
730       return Op.getOperand(0);
731     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
732       return Op.getOperand(1);
733     break;
734   }
735   case ISD::XOR: {
736     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
737     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
738 
739     // If all of the demanded bits are known zero on one side, return the
740     // other.
741     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
742       return Op.getOperand(0);
743     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
744       return Op.getOperand(1);
745     break;
746   }
747   case ISD::SHL: {
748     // If we are only demanding sign bits then we can use the shift source
749     // directly.
750     if (const APInt *MaxSA =
751             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
752       SDValue Op0 = Op.getOperand(0);
753       unsigned ShAmt = MaxSA->getZExtValue();
754       unsigned NumSignBits =
755           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
756       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
757       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
758         return Op0;
759     }
760     break;
761   }
762   case ISD::SETCC: {
763     SDValue Op0 = Op.getOperand(0);
764     SDValue Op1 = Op.getOperand(1);
765     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
766     // If (1) we only need the sign-bit, (2) the setcc operands are the same
767     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
768     // -1, we may be able to bypass the setcc.
769     if (DemandedBits.isSignMask() &&
770         Op0.getScalarValueSizeInBits() == BitWidth &&
771         getBooleanContents(Op0.getValueType()) ==
772             BooleanContent::ZeroOrNegativeOneBooleanContent) {
773       // If we're testing X < 0, then this compare isn't needed - just use X!
774       // FIXME: We're limiting to integer types here, but this should also work
775       // if we don't care about FP signed-zero. The use of SETLT with FP means
776       // that we don't care about NaNs.
777       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
778           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
779         return Op0;
780     }
781     break;
782   }
783   case ISD::SIGN_EXTEND_INREG: {
784     // If none of the extended bits are demanded, eliminate the sextinreg.
785     SDValue Op0 = Op.getOperand(0);
786     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
787     unsigned ExBits = ExVT.getScalarSizeInBits();
788     if (DemandedBits.getActiveBits() <= ExBits)
789       return Op0;
790     // If the input is already sign extended, just drop the extension.
791     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
792     if (NumSignBits >= (BitWidth - ExBits + 1))
793       return Op0;
794     break;
795   }
796   case ISD::ANY_EXTEND_VECTOR_INREG:
797   case ISD::SIGN_EXTEND_VECTOR_INREG:
798   case ISD::ZERO_EXTEND_VECTOR_INREG: {
799     // If we only want the lowest element and none of extended bits, then we can
800     // return the bitcasted source vector.
801     SDValue Src = Op.getOperand(0);
802     EVT SrcVT = Src.getValueType();
803     EVT DstVT = Op.getValueType();
804     if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
805         DAG.getDataLayout().isLittleEndian() &&
806         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
807       return DAG.getBitcast(DstVT, Src);
808     }
809     break;
810   }
811   case ISD::INSERT_VECTOR_ELT: {
812     // If we don't demand the inserted element, return the base vector.
813     SDValue Vec = Op.getOperand(0);
814     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
815     EVT VecVT = Vec.getValueType();
816     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
817         !DemandedElts[CIdx->getZExtValue()])
818       return Vec;
819     break;
820   }
821   case ISD::INSERT_SUBVECTOR: {
822     SDValue Vec = Op.getOperand(0);
823     SDValue Sub = Op.getOperand(1);
824     uint64_t Idx = Op.getConstantOperandVal(2);
825     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
826     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
827     // If we don't demand the inserted subvector, return the base vector.
828     if (DemandedSubElts == 0)
829       return Vec;
830     // If this simply widens the lowest subvector, see if we can do it earlier.
831     if (Idx == 0 && Vec.isUndef()) {
832       if (SDValue NewSub = SimplifyMultipleUseDemandedBits(
833               Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1))
834         return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
835                            Op.getOperand(0), NewSub, Op.getOperand(2));
836     }
837     break;
838   }
839   case ISD::VECTOR_SHUFFLE: {
840     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
841 
842     // If all the demanded elts are from one operand and are inline,
843     // then we can use the operand directly.
844     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
845     for (unsigned i = 0; i != NumElts; ++i) {
846       int M = ShuffleMask[i];
847       if (M < 0 || !DemandedElts[i])
848         continue;
849       AllUndef = false;
850       IdentityLHS &= (M == (int)i);
851       IdentityRHS &= ((M - NumElts) == i);
852     }
853 
854     if (AllUndef)
855       return DAG.getUNDEF(Op.getValueType());
856     if (IdentityLHS)
857       return Op.getOperand(0);
858     if (IdentityRHS)
859       return Op.getOperand(1);
860     break;
861   }
862   default:
863     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
864       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
865               Op, DemandedBits, DemandedElts, DAG, Depth))
866         return V;
867     break;
868   }
869   return SDValue();
870 }
871 
872 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
873     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
874     unsigned Depth) const {
875   EVT VT = Op.getValueType();
876   APInt DemandedElts = VT.isVector()
877                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
878                            : APInt(1, 1);
879   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
880                                          Depth);
881 }
882 
883 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
884     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
885     unsigned Depth) const {
886   APInt DemandedBits = APInt::getAllOnesValue(Op.getScalarValueSizeInBits());
887   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
888                                          Depth);
889 }
890 
891 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
892 /// result of Op are ever used downstream. If we can use this information to
893 /// simplify Op, create a new simplified DAG node and return true, returning the
894 /// original and new nodes in Old and New. Otherwise, analyze the expression and
895 /// return a mask of Known bits for the expression (used to simplify the
896 /// caller).  The Known bits may only be accurate for those bits in the
897 /// OriginalDemandedBits and OriginalDemandedElts.
898 bool TargetLowering::SimplifyDemandedBits(
899     SDValue Op, const APInt &OriginalDemandedBits,
900     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
901     unsigned Depth, bool AssumeSingleUse) const {
902   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
903   assert(Op.getScalarValueSizeInBits() == BitWidth &&
904          "Mask size mismatches value type size!");
905 
906   // Don't know anything.
907   Known = KnownBits(BitWidth);
908 
909   // TODO: We can probably do more work on calculating the known bits and
910   // simplifying the operations for scalable vectors, but for now we just
911   // bail out.
912   if (Op.getValueType().isScalableVector())
913     return false;
914 
915   unsigned NumElts = OriginalDemandedElts.getBitWidth();
916   assert((!Op.getValueType().isVector() ||
917           NumElts == Op.getValueType().getVectorNumElements()) &&
918          "Unexpected vector size");
919 
920   APInt DemandedBits = OriginalDemandedBits;
921   APInt DemandedElts = OriginalDemandedElts;
922   SDLoc dl(Op);
923   auto &DL = TLO.DAG.getDataLayout();
924 
925   // Undef operand.
926   if (Op.isUndef())
927     return false;
928 
929   if (Op.getOpcode() == ISD::Constant) {
930     // We know all of the bits for a constant!
931     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
932     return false;
933   }
934 
935   if (Op.getOpcode() == ISD::ConstantFP) {
936     // We know all of the bits for a floating point constant!
937     Known = KnownBits::makeConstant(
938         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
939     return false;
940   }
941 
942   // Other users may use these bits.
943   EVT VT = Op.getValueType();
944   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
945     if (Depth != 0) {
946       // If not at the root, Just compute the Known bits to
947       // simplify things downstream.
948       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
949       return false;
950     }
951     // If this is the root being simplified, allow it to have multiple uses,
952     // just set the DemandedBits/Elts to all bits.
953     DemandedBits = APInt::getAllOnesValue(BitWidth);
954     DemandedElts = APInt::getAllOnesValue(NumElts);
955   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
956     // Not demanding any bits/elts from Op.
957     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
958   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
959     // Limit search depth.
960     return false;
961   }
962 
963   KnownBits Known2;
964   switch (Op.getOpcode()) {
965   case ISD::TargetConstant:
966     llvm_unreachable("Can't simplify this node");
967   case ISD::SCALAR_TO_VECTOR: {
968     if (!DemandedElts[0])
969       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
970 
971     KnownBits SrcKnown;
972     SDValue Src = Op.getOperand(0);
973     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
974     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
975     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
976       return true;
977 
978     // Upper elements are undef, so only get the knownbits if we just demand
979     // the bottom element.
980     if (DemandedElts == 1)
981       Known = SrcKnown.anyextOrTrunc(BitWidth);
982     break;
983   }
984   case ISD::BUILD_VECTOR:
985     // Collect the known bits that are shared by every demanded element.
986     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
987     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
988     return false; // Don't fall through, will infinitely loop.
989   case ISD::LOAD: {
990     auto *LD = cast<LoadSDNode>(Op);
991     if (getTargetConstantFromLoad(LD)) {
992       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
993       return false; // Don't fall through, will infinitely loop.
994     }
995     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
996       // If this is a ZEXTLoad and we are looking at the loaded value.
997       EVT MemVT = LD->getMemoryVT();
998       unsigned MemBits = MemVT.getScalarSizeInBits();
999       Known.Zero.setBitsFrom(MemBits);
1000       return false; // Don't fall through, will infinitely loop.
1001     }
1002     break;
1003   }
1004   case ISD::INSERT_VECTOR_ELT: {
1005     SDValue Vec = Op.getOperand(0);
1006     SDValue Scl = Op.getOperand(1);
1007     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1008     EVT VecVT = Vec.getValueType();
1009 
1010     // If index isn't constant, assume we need all vector elements AND the
1011     // inserted element.
1012     APInt DemandedVecElts(DemandedElts);
1013     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1014       unsigned Idx = CIdx->getZExtValue();
1015       DemandedVecElts.clearBit(Idx);
1016 
1017       // Inserted element is not required.
1018       if (!DemandedElts[Idx])
1019         return TLO.CombineTo(Op, Vec);
1020     }
1021 
1022     KnownBits KnownScl;
1023     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1024     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1025     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1026       return true;
1027 
1028     Known = KnownScl.anyextOrTrunc(BitWidth);
1029 
1030     KnownBits KnownVec;
1031     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1032                              Depth + 1))
1033       return true;
1034 
1035     if (!!DemandedVecElts)
1036       Known = KnownBits::commonBits(Known, KnownVec);
1037 
1038     return false;
1039   }
1040   case ISD::INSERT_SUBVECTOR: {
1041     // Demand any elements from the subvector and the remainder from the src its
1042     // inserted into.
1043     SDValue Src = Op.getOperand(0);
1044     SDValue Sub = Op.getOperand(1);
1045     uint64_t Idx = Op.getConstantOperandVal(2);
1046     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1047     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1048     APInt DemandedSrcElts = DemandedElts;
1049     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
1050 
1051     KnownBits KnownSub, KnownSrc;
1052     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1053                              Depth + 1))
1054       return true;
1055     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1056                              Depth + 1))
1057       return true;
1058 
1059     Known.Zero.setAllBits();
1060     Known.One.setAllBits();
1061     if (!!DemandedSubElts)
1062       Known = KnownBits::commonBits(Known, KnownSub);
1063     if (!!DemandedSrcElts)
1064       Known = KnownBits::commonBits(Known, KnownSrc);
1065 
1066     // Attempt to avoid multi-use src if we don't need anything from it.
1067     if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() ||
1068         !DemandedSrcElts.isAllOnesValue()) {
1069       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1070           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1071       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1072           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1073       if (NewSub || NewSrc) {
1074         NewSub = NewSub ? NewSub : Sub;
1075         NewSrc = NewSrc ? NewSrc : Src;
1076         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1077                                         Op.getOperand(2));
1078         return TLO.CombineTo(Op, NewOp);
1079       }
1080     }
1081     break;
1082   }
1083   case ISD::EXTRACT_SUBVECTOR: {
1084     // Offset the demanded elts by the subvector index.
1085     SDValue Src = Op.getOperand(0);
1086     if (Src.getValueType().isScalableVector())
1087       break;
1088     uint64_t Idx = Op.getConstantOperandVal(1);
1089     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1090     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1091 
1092     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1093                              Depth + 1))
1094       return true;
1095 
1096     // Attempt to avoid multi-use src if we don't need anything from it.
1097     if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) {
1098       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1099           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1100       if (DemandedSrc) {
1101         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1102                                         Op.getOperand(1));
1103         return TLO.CombineTo(Op, NewOp);
1104       }
1105     }
1106     break;
1107   }
1108   case ISD::CONCAT_VECTORS: {
1109     Known.Zero.setAllBits();
1110     Known.One.setAllBits();
1111     EVT SubVT = Op.getOperand(0).getValueType();
1112     unsigned NumSubVecs = Op.getNumOperands();
1113     unsigned NumSubElts = SubVT.getVectorNumElements();
1114     for (unsigned i = 0; i != NumSubVecs; ++i) {
1115       APInt DemandedSubElts =
1116           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1117       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1118                                Known2, TLO, Depth + 1))
1119         return true;
1120       // Known bits are shared by every demanded subvector element.
1121       if (!!DemandedSubElts)
1122         Known = KnownBits::commonBits(Known, Known2);
1123     }
1124     break;
1125   }
1126   case ISD::VECTOR_SHUFFLE: {
1127     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1128 
1129     // Collect demanded elements from shuffle operands..
1130     APInt DemandedLHS(NumElts, 0);
1131     APInt DemandedRHS(NumElts, 0);
1132     for (unsigned i = 0; i != NumElts; ++i) {
1133       if (!DemandedElts[i])
1134         continue;
1135       int M = ShuffleMask[i];
1136       if (M < 0) {
1137         // For UNDEF elements, we don't know anything about the common state of
1138         // the shuffle result.
1139         DemandedLHS.clearAllBits();
1140         DemandedRHS.clearAllBits();
1141         break;
1142       }
1143       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1144       if (M < (int)NumElts)
1145         DemandedLHS.setBit(M);
1146       else
1147         DemandedRHS.setBit(M - NumElts);
1148     }
1149 
1150     if (!!DemandedLHS || !!DemandedRHS) {
1151       SDValue Op0 = Op.getOperand(0);
1152       SDValue Op1 = Op.getOperand(1);
1153 
1154       Known.Zero.setAllBits();
1155       Known.One.setAllBits();
1156       if (!!DemandedLHS) {
1157         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1158                                  Depth + 1))
1159           return true;
1160         Known = KnownBits::commonBits(Known, Known2);
1161       }
1162       if (!!DemandedRHS) {
1163         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1164                                  Depth + 1))
1165           return true;
1166         Known = KnownBits::commonBits(Known, Known2);
1167       }
1168 
1169       // Attempt to avoid multi-use ops if we don't need anything from them.
1170       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1171           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1172       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1173           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1174       if (DemandedOp0 || DemandedOp1) {
1175         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1176         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1177         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1178         return TLO.CombineTo(Op, NewOp);
1179       }
1180     }
1181     break;
1182   }
1183   case ISD::AND: {
1184     SDValue Op0 = Op.getOperand(0);
1185     SDValue Op1 = Op.getOperand(1);
1186 
1187     // If the RHS is a constant, check to see if the LHS would be zero without
1188     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1189     // simplify the LHS, here we're using information from the LHS to simplify
1190     // the RHS.
1191     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1192       // Do not increment Depth here; that can cause an infinite loop.
1193       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1194       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1195       if ((LHSKnown.Zero & DemandedBits) ==
1196           (~RHSC->getAPIntValue() & DemandedBits))
1197         return TLO.CombineTo(Op, Op0);
1198 
1199       // If any of the set bits in the RHS are known zero on the LHS, shrink
1200       // the constant.
1201       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1202                                  DemandedElts, TLO))
1203         return true;
1204 
1205       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1206       // constant, but if this 'and' is only clearing bits that were just set by
1207       // the xor, then this 'and' can be eliminated by shrinking the mask of
1208       // the xor. For example, for a 32-bit X:
1209       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1210       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1211           LHSKnown.One == ~RHSC->getAPIntValue()) {
1212         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1213         return TLO.CombineTo(Op, Xor);
1214       }
1215     }
1216 
1217     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1218                              Depth + 1))
1219       return true;
1220     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1221     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1222                              Known2, TLO, Depth + 1))
1223       return true;
1224     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1225 
1226     // Attempt to avoid multi-use ops if we don't need anything from them.
1227     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1228       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1229           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1230       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1231           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1232       if (DemandedOp0 || DemandedOp1) {
1233         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1234         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1235         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1236         return TLO.CombineTo(Op, NewOp);
1237       }
1238     }
1239 
1240     // If all of the demanded bits are known one on one side, return the other.
1241     // These bits cannot contribute to the result of the 'and'.
1242     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1243       return TLO.CombineTo(Op, Op0);
1244     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1245       return TLO.CombineTo(Op, Op1);
1246     // If all of the demanded bits in the inputs are known zeros, return zero.
1247     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1248       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1249     // If the RHS is a constant, see if we can simplify it.
1250     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1251                                TLO))
1252       return true;
1253     // If the operation can be done in a smaller type, do so.
1254     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1255       return true;
1256 
1257     Known &= Known2;
1258     break;
1259   }
1260   case ISD::OR: {
1261     SDValue Op0 = Op.getOperand(0);
1262     SDValue Op1 = Op.getOperand(1);
1263 
1264     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1265                              Depth + 1))
1266       return true;
1267     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1268     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1269                              Known2, TLO, Depth + 1))
1270       return true;
1271     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1272 
1273     // Attempt to avoid multi-use ops if we don't need anything from them.
1274     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1275       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1276           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1277       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1278           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1279       if (DemandedOp0 || DemandedOp1) {
1280         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1281         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1282         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1283         return TLO.CombineTo(Op, NewOp);
1284       }
1285     }
1286 
1287     // If all of the demanded bits are known zero on one side, return the other.
1288     // These bits cannot contribute to the result of the 'or'.
1289     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1290       return TLO.CombineTo(Op, Op0);
1291     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1292       return TLO.CombineTo(Op, Op1);
1293     // If the RHS is a constant, see if we can simplify it.
1294     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1295       return true;
1296     // If the operation can be done in a smaller type, do so.
1297     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1298       return true;
1299 
1300     Known |= Known2;
1301     break;
1302   }
1303   case ISD::XOR: {
1304     SDValue Op0 = Op.getOperand(0);
1305     SDValue Op1 = Op.getOperand(1);
1306 
1307     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1308                              Depth + 1))
1309       return true;
1310     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1311     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1312                              Depth + 1))
1313       return true;
1314     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1315 
1316     // Attempt to avoid multi-use ops if we don't need anything from them.
1317     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1318       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1319           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1320       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1321           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1322       if (DemandedOp0 || DemandedOp1) {
1323         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1324         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1325         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1326         return TLO.CombineTo(Op, NewOp);
1327       }
1328     }
1329 
1330     // If all of the demanded bits are known zero on one side, return the other.
1331     // These bits cannot contribute to the result of the 'xor'.
1332     if (DemandedBits.isSubsetOf(Known.Zero))
1333       return TLO.CombineTo(Op, Op0);
1334     if (DemandedBits.isSubsetOf(Known2.Zero))
1335       return TLO.CombineTo(Op, Op1);
1336     // If the operation can be done in a smaller type, do so.
1337     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1338       return true;
1339 
1340     // If all of the unknown bits are known to be zero on one side or the other
1341     // turn this into an *inclusive* or.
1342     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1343     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1344       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1345 
1346     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1347     if (C) {
1348       // If one side is a constant, and all of the set bits in the constant are
1349       // also known set on the other side, turn this into an AND, as we know
1350       // the bits will be cleared.
1351       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1352       // NB: it is okay if more bits are known than are requested
1353       if (C->getAPIntValue() == Known2.One) {
1354         SDValue ANDC =
1355             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1356         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1357       }
1358 
1359       // If the RHS is a constant, see if we can change it. Don't alter a -1
1360       // constant because that's a 'not' op, and that is better for combining
1361       // and codegen.
1362       if (!C->isAllOnesValue() &&
1363           DemandedBits.isSubsetOf(C->getAPIntValue())) {
1364         // We're flipping all demanded bits. Flip the undemanded bits too.
1365         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1366         return TLO.CombineTo(Op, New);
1367       }
1368     }
1369 
1370     // If we can't turn this into a 'not', try to shrink the constant.
1371     if (!C || !C->isAllOnesValue())
1372       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1373         return true;
1374 
1375     Known ^= Known2;
1376     break;
1377   }
1378   case ISD::SELECT:
1379     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1380                              Depth + 1))
1381       return true;
1382     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1383                              Depth + 1))
1384       return true;
1385     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1386     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1387 
1388     // If the operands are constants, see if we can simplify them.
1389     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1390       return true;
1391 
1392     // Only known if known in both the LHS and RHS.
1393     Known = KnownBits::commonBits(Known, Known2);
1394     break;
1395   case ISD::SELECT_CC:
1396     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1397                              Depth + 1))
1398       return true;
1399     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1400                              Depth + 1))
1401       return true;
1402     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1403     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1404 
1405     // If the operands are constants, see if we can simplify them.
1406     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1407       return true;
1408 
1409     // Only known if known in both the LHS and RHS.
1410     Known = KnownBits::commonBits(Known, Known2);
1411     break;
1412   case ISD::SETCC: {
1413     SDValue Op0 = Op.getOperand(0);
1414     SDValue Op1 = Op.getOperand(1);
1415     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1416     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1417     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1418     // -1, we may be able to bypass the setcc.
1419     if (DemandedBits.isSignMask() &&
1420         Op0.getScalarValueSizeInBits() == BitWidth &&
1421         getBooleanContents(Op0.getValueType()) ==
1422             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1423       // If we're testing X < 0, then this compare isn't needed - just use X!
1424       // FIXME: We're limiting to integer types here, but this should also work
1425       // if we don't care about FP signed-zero. The use of SETLT with FP means
1426       // that we don't care about NaNs.
1427       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1428           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1429         return TLO.CombineTo(Op, Op0);
1430 
1431       // TODO: Should we check for other forms of sign-bit comparisons?
1432       // Examples: X <= -1, X >= 0
1433     }
1434     if (getBooleanContents(Op0.getValueType()) ==
1435             TargetLowering::ZeroOrOneBooleanContent &&
1436         BitWidth > 1)
1437       Known.Zero.setBitsFrom(1);
1438     break;
1439   }
1440   case ISD::SHL: {
1441     SDValue Op0 = Op.getOperand(0);
1442     SDValue Op1 = Op.getOperand(1);
1443     EVT ShiftVT = Op1.getValueType();
1444 
1445     if (const APInt *SA =
1446             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1447       unsigned ShAmt = SA->getZExtValue();
1448       if (ShAmt == 0)
1449         return TLO.CombineTo(Op, Op0);
1450 
1451       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1452       // single shift.  We can do this if the bottom bits (which are shifted
1453       // out) are never demanded.
1454       // TODO - support non-uniform vector amounts.
1455       if (Op0.getOpcode() == ISD::SRL) {
1456         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1457           if (const APInt *SA2 =
1458                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1459             unsigned C1 = SA2->getZExtValue();
1460             unsigned Opc = ISD::SHL;
1461             int Diff = ShAmt - C1;
1462             if (Diff < 0) {
1463               Diff = -Diff;
1464               Opc = ISD::SRL;
1465             }
1466             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1467             return TLO.CombineTo(
1468                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1469           }
1470         }
1471       }
1472 
1473       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1474       // are not demanded. This will likely allow the anyext to be folded away.
1475       // TODO - support non-uniform vector amounts.
1476       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1477         SDValue InnerOp = Op0.getOperand(0);
1478         EVT InnerVT = InnerOp.getValueType();
1479         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1480         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1481             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1482           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1483           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1484             ShTy = InnerVT;
1485           SDValue NarrowShl =
1486               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1487                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1488           return TLO.CombineTo(
1489               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1490         }
1491 
1492         // Repeat the SHL optimization above in cases where an extension
1493         // intervenes: (shl (anyext (shr x, c1)), c2) to
1494         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1495         // aren't demanded (as above) and that the shifted upper c1 bits of
1496         // x aren't demanded.
1497         // TODO - support non-uniform vector amounts.
1498         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1499             InnerOp.hasOneUse()) {
1500           if (const APInt *SA2 =
1501                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1502             unsigned InnerShAmt = SA2->getZExtValue();
1503             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1504                 DemandedBits.getActiveBits() <=
1505                     (InnerBits - InnerShAmt + ShAmt) &&
1506                 DemandedBits.countTrailingZeros() >= ShAmt) {
1507               SDValue NewSA =
1508                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1509               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1510                                                InnerOp.getOperand(0));
1511               return TLO.CombineTo(
1512                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1513             }
1514           }
1515         }
1516       }
1517 
1518       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1519       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1520                                Depth + 1))
1521         return true;
1522       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1523       Known.Zero <<= ShAmt;
1524       Known.One <<= ShAmt;
1525       // low bits known zero.
1526       Known.Zero.setLowBits(ShAmt);
1527 
1528       // Try shrinking the operation as long as the shift amount will still be
1529       // in range.
1530       if ((ShAmt < DemandedBits.getActiveBits()) &&
1531           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1532         return true;
1533     }
1534 
1535     // If we are only demanding sign bits then we can use the shift source
1536     // directly.
1537     if (const APInt *MaxSA =
1538             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1539       unsigned ShAmt = MaxSA->getZExtValue();
1540       unsigned NumSignBits =
1541           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1542       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1543       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1544         return TLO.CombineTo(Op, Op0);
1545     }
1546     break;
1547   }
1548   case ISD::SRL: {
1549     SDValue Op0 = Op.getOperand(0);
1550     SDValue Op1 = Op.getOperand(1);
1551     EVT ShiftVT = Op1.getValueType();
1552 
1553     if (const APInt *SA =
1554             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1555       unsigned ShAmt = SA->getZExtValue();
1556       if (ShAmt == 0)
1557         return TLO.CombineTo(Op, Op0);
1558 
1559       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1560       // single shift.  We can do this if the top bits (which are shifted out)
1561       // are never demanded.
1562       // TODO - support non-uniform vector amounts.
1563       if (Op0.getOpcode() == ISD::SHL) {
1564         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1565           if (const APInt *SA2 =
1566                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1567             unsigned C1 = SA2->getZExtValue();
1568             unsigned Opc = ISD::SRL;
1569             int Diff = ShAmt - C1;
1570             if (Diff < 0) {
1571               Diff = -Diff;
1572               Opc = ISD::SHL;
1573             }
1574             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1575             return TLO.CombineTo(
1576                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1577           }
1578         }
1579       }
1580 
1581       APInt InDemandedMask = (DemandedBits << ShAmt);
1582 
1583       // If the shift is exact, then it does demand the low bits (and knows that
1584       // they are zero).
1585       if (Op->getFlags().hasExact())
1586         InDemandedMask.setLowBits(ShAmt);
1587 
1588       // Compute the new bits that are at the top now.
1589       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1590                                Depth + 1))
1591         return true;
1592       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1593       Known.Zero.lshrInPlace(ShAmt);
1594       Known.One.lshrInPlace(ShAmt);
1595       // High bits known zero.
1596       Known.Zero.setHighBits(ShAmt);
1597     }
1598     break;
1599   }
1600   case ISD::SRA: {
1601     SDValue Op0 = Op.getOperand(0);
1602     SDValue Op1 = Op.getOperand(1);
1603     EVT ShiftVT = Op1.getValueType();
1604 
1605     // If we only want bits that already match the signbit then we don't need
1606     // to shift.
1607     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1608     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1609         NumHiDemandedBits)
1610       return TLO.CombineTo(Op, Op0);
1611 
1612     // If this is an arithmetic shift right and only the low-bit is set, we can
1613     // always convert this into a logical shr, even if the shift amount is
1614     // variable.  The low bit of the shift cannot be an input sign bit unless
1615     // the shift amount is >= the size of the datatype, which is undefined.
1616     if (DemandedBits.isOneValue())
1617       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1618 
1619     if (const APInt *SA =
1620             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1621       unsigned ShAmt = SA->getZExtValue();
1622       if (ShAmt == 0)
1623         return TLO.CombineTo(Op, Op0);
1624 
1625       APInt InDemandedMask = (DemandedBits << ShAmt);
1626 
1627       // If the shift is exact, then it does demand the low bits (and knows that
1628       // they are zero).
1629       if (Op->getFlags().hasExact())
1630         InDemandedMask.setLowBits(ShAmt);
1631 
1632       // If any of the demanded bits are produced by the sign extension, we also
1633       // demand the input sign bit.
1634       if (DemandedBits.countLeadingZeros() < ShAmt)
1635         InDemandedMask.setSignBit();
1636 
1637       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1638                                Depth + 1))
1639         return true;
1640       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1641       Known.Zero.lshrInPlace(ShAmt);
1642       Known.One.lshrInPlace(ShAmt);
1643 
1644       // If the input sign bit is known to be zero, or if none of the top bits
1645       // are demanded, turn this into an unsigned shift right.
1646       if (Known.Zero[BitWidth - ShAmt - 1] ||
1647           DemandedBits.countLeadingZeros() >= ShAmt) {
1648         SDNodeFlags Flags;
1649         Flags.setExact(Op->getFlags().hasExact());
1650         return TLO.CombineTo(
1651             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1652       }
1653 
1654       int Log2 = DemandedBits.exactLogBase2();
1655       if (Log2 >= 0) {
1656         // The bit must come from the sign.
1657         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1658         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1659       }
1660 
1661       if (Known.One[BitWidth - ShAmt - 1])
1662         // New bits are known one.
1663         Known.One.setHighBits(ShAmt);
1664 
1665       // Attempt to avoid multi-use ops if we don't need anything from them.
1666       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1667         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1668             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1669         if (DemandedOp0) {
1670           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1671           return TLO.CombineTo(Op, NewOp);
1672         }
1673       }
1674     }
1675     break;
1676   }
1677   case ISD::FSHL:
1678   case ISD::FSHR: {
1679     SDValue Op0 = Op.getOperand(0);
1680     SDValue Op1 = Op.getOperand(1);
1681     SDValue Op2 = Op.getOperand(2);
1682     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1683 
1684     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1685       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1686 
1687       // For fshl, 0-shift returns the 1st arg.
1688       // For fshr, 0-shift returns the 2nd arg.
1689       if (Amt == 0) {
1690         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1691                                  Known, TLO, Depth + 1))
1692           return true;
1693         break;
1694       }
1695 
1696       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1697       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1698       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1699       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1700       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1701                                Depth + 1))
1702         return true;
1703       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1704                                Depth + 1))
1705         return true;
1706 
1707       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1708       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1709       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1710       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1711       Known.One |= Known2.One;
1712       Known.Zero |= Known2.Zero;
1713     }
1714 
1715     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1716     if (isPowerOf2_32(BitWidth)) {
1717       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1718       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1719                                Known2, TLO, Depth + 1))
1720         return true;
1721     }
1722     break;
1723   }
1724   case ISD::ROTL:
1725   case ISD::ROTR: {
1726     SDValue Op0 = Op.getOperand(0);
1727     SDValue Op1 = Op.getOperand(1);
1728 
1729     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1730     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1731       return TLO.CombineTo(Op, Op0);
1732 
1733     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1734     if (isPowerOf2_32(BitWidth)) {
1735       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1736       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1737                                Depth + 1))
1738         return true;
1739     }
1740     break;
1741   }
1742   case ISD::UMIN: {
1743     // Check if one arg is always less than (or equal) to the other arg.
1744     SDValue Op0 = Op.getOperand(0);
1745     SDValue Op1 = Op.getOperand(1);
1746     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1747     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1748     Known = KnownBits::umin(Known0, Known1);
1749     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
1750       return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1);
1751     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
1752       return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1);
1753     break;
1754   }
1755   case ISD::UMAX: {
1756     // Check if one arg is always greater than (or equal) to the other arg.
1757     SDValue Op0 = Op.getOperand(0);
1758     SDValue Op1 = Op.getOperand(1);
1759     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1760     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1761     Known = KnownBits::umax(Known0, Known1);
1762     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
1763       return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1);
1764     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
1765       return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1);
1766     break;
1767   }
1768   case ISD::BITREVERSE: {
1769     SDValue Src = Op.getOperand(0);
1770     APInt DemandedSrcBits = DemandedBits.reverseBits();
1771     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1772                              Depth + 1))
1773       return true;
1774     Known.One = Known2.One.reverseBits();
1775     Known.Zero = Known2.Zero.reverseBits();
1776     break;
1777   }
1778   case ISD::BSWAP: {
1779     SDValue Src = Op.getOperand(0);
1780     APInt DemandedSrcBits = DemandedBits.byteSwap();
1781     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1782                              Depth + 1))
1783       return true;
1784     Known.One = Known2.One.byteSwap();
1785     Known.Zero = Known2.Zero.byteSwap();
1786     break;
1787   }
1788   case ISD::CTPOP: {
1789     // If only 1 bit is demanded, replace with PARITY as long as we're before
1790     // op legalization.
1791     // FIXME: Limit to scalars for now.
1792     if (DemandedBits.isOneValue() && !TLO.LegalOps && !VT.isVector())
1793       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
1794                                                Op.getOperand(0)));
1795 
1796     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1797     break;
1798   }
1799   case ISD::SIGN_EXTEND_INREG: {
1800     SDValue Op0 = Op.getOperand(0);
1801     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1802     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1803 
1804     // If we only care about the highest bit, don't bother shifting right.
1805     if (DemandedBits.isSignMask()) {
1806       unsigned NumSignBits =
1807           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1808       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1809       // However if the input is already sign extended we expect the sign
1810       // extension to be dropped altogether later and do not simplify.
1811       if (!AlreadySignExtended) {
1812         // Compute the correct shift amount type, which must be getShiftAmountTy
1813         // for scalar types after legalization.
1814         EVT ShiftAmtTy = VT;
1815         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1816           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1817 
1818         SDValue ShiftAmt =
1819             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1820         return TLO.CombineTo(Op,
1821                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1822       }
1823     }
1824 
1825     // If none of the extended bits are demanded, eliminate the sextinreg.
1826     if (DemandedBits.getActiveBits() <= ExVTBits)
1827       return TLO.CombineTo(Op, Op0);
1828 
1829     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1830 
1831     // Since the sign extended bits are demanded, we know that the sign
1832     // bit is demanded.
1833     InputDemandedBits.setBit(ExVTBits - 1);
1834 
1835     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1836       return true;
1837     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1838 
1839     // If the sign bit of the input is known set or clear, then we know the
1840     // top bits of the result.
1841 
1842     // If the input sign bit is known zero, convert this into a zero extension.
1843     if (Known.Zero[ExVTBits - 1])
1844       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
1845 
1846     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1847     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1848       Known.One.setBitsFrom(ExVTBits);
1849       Known.Zero &= Mask;
1850     } else { // Input sign bit unknown
1851       Known.Zero &= Mask;
1852       Known.One &= Mask;
1853     }
1854     break;
1855   }
1856   case ISD::BUILD_PAIR: {
1857     EVT HalfVT = Op.getOperand(0).getValueType();
1858     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1859 
1860     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1861     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1862 
1863     KnownBits KnownLo, KnownHi;
1864 
1865     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1866       return true;
1867 
1868     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1869       return true;
1870 
1871     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1872                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1873 
1874     Known.One = KnownLo.One.zext(BitWidth) |
1875                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1876     break;
1877   }
1878   case ISD::ZERO_EXTEND:
1879   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1880     SDValue Src = Op.getOperand(0);
1881     EVT SrcVT = Src.getValueType();
1882     unsigned InBits = SrcVT.getScalarSizeInBits();
1883     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1884     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1885 
1886     // If none of the top bits are demanded, convert this into an any_extend.
1887     if (DemandedBits.getActiveBits() <= InBits) {
1888       // If we only need the non-extended bits of the bottom element
1889       // then we can just bitcast to the result.
1890       if (IsVecInReg && DemandedElts == 1 &&
1891           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1892           TLO.DAG.getDataLayout().isLittleEndian())
1893         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1894 
1895       unsigned Opc =
1896           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1897       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1898         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1899     }
1900 
1901     APInt InDemandedBits = DemandedBits.trunc(InBits);
1902     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1903     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1904                              Depth + 1))
1905       return true;
1906     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1907     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1908     Known = Known.zext(BitWidth);
1909 
1910     // Attempt to avoid multi-use ops if we don't need anything from them.
1911     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1912             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1913       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1914     break;
1915   }
1916   case ISD::SIGN_EXTEND:
1917   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1918     SDValue Src = Op.getOperand(0);
1919     EVT SrcVT = Src.getValueType();
1920     unsigned InBits = SrcVT.getScalarSizeInBits();
1921     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1922     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1923 
1924     // If none of the top bits are demanded, convert this into an any_extend.
1925     if (DemandedBits.getActiveBits() <= InBits) {
1926       // If we only need the non-extended bits of the bottom element
1927       // then we can just bitcast to the result.
1928       if (IsVecInReg && DemandedElts == 1 &&
1929           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1930           TLO.DAG.getDataLayout().isLittleEndian())
1931         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1932 
1933       unsigned Opc =
1934           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1935       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1936         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1937     }
1938 
1939     APInt InDemandedBits = DemandedBits.trunc(InBits);
1940     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1941 
1942     // Since some of the sign extended bits are demanded, we know that the sign
1943     // bit is demanded.
1944     InDemandedBits.setBit(InBits - 1);
1945 
1946     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1947                              Depth + 1))
1948       return true;
1949     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1950     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1951 
1952     // If the sign bit is known one, the top bits match.
1953     Known = Known.sext(BitWidth);
1954 
1955     // If the sign bit is known zero, convert this to a zero extend.
1956     if (Known.isNonNegative()) {
1957       unsigned Opc =
1958           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1959       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1960         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1961     }
1962 
1963     // Attempt to avoid multi-use ops if we don't need anything from them.
1964     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1965             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1966       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1967     break;
1968   }
1969   case ISD::ANY_EXTEND:
1970   case ISD::ANY_EXTEND_VECTOR_INREG: {
1971     SDValue Src = Op.getOperand(0);
1972     EVT SrcVT = Src.getValueType();
1973     unsigned InBits = SrcVT.getScalarSizeInBits();
1974     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1975     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1976 
1977     // If we only need the bottom element then we can just bitcast.
1978     // TODO: Handle ANY_EXTEND?
1979     if (IsVecInReg && DemandedElts == 1 &&
1980         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1981         TLO.DAG.getDataLayout().isLittleEndian())
1982       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1983 
1984     APInt InDemandedBits = DemandedBits.trunc(InBits);
1985     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1986     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1987                              Depth + 1))
1988       return true;
1989     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1990     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1991     Known = Known.anyext(BitWidth);
1992 
1993     // Attempt to avoid multi-use ops if we don't need anything from them.
1994     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1995             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1996       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1997     break;
1998   }
1999   case ISD::TRUNCATE: {
2000     SDValue Src = Op.getOperand(0);
2001 
2002     // Simplify the input, using demanded bit information, and compute the known
2003     // zero/one bits live out.
2004     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2005     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2006     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2007                              Depth + 1))
2008       return true;
2009     Known = Known.trunc(BitWidth);
2010 
2011     // Attempt to avoid multi-use ops if we don't need anything from them.
2012     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2013             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2014       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2015 
2016     // If the input is only used by this truncate, see if we can shrink it based
2017     // on the known demanded bits.
2018     if (Src.getNode()->hasOneUse()) {
2019       switch (Src.getOpcode()) {
2020       default:
2021         break;
2022       case ISD::SRL:
2023         // Shrink SRL by a constant if none of the high bits shifted in are
2024         // demanded.
2025         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2026           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2027           // undesirable.
2028           break;
2029 
2030         const APInt *ShAmtC =
2031             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2032         if (!ShAmtC || ShAmtC->uge(BitWidth))
2033           break;
2034         uint64_t ShVal = ShAmtC->getZExtValue();
2035 
2036         APInt HighBits =
2037             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2038         HighBits.lshrInPlace(ShVal);
2039         HighBits = HighBits.trunc(BitWidth);
2040 
2041         if (!(HighBits & DemandedBits)) {
2042           // None of the shifted in bits are needed.  Add a truncate of the
2043           // shift input, then shift it.
2044           SDValue NewShAmt = TLO.DAG.getConstant(
2045               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2046           SDValue NewTrunc =
2047               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2048           return TLO.CombineTo(
2049               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2050         }
2051         break;
2052       }
2053     }
2054 
2055     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2056     break;
2057   }
2058   case ISD::AssertZext: {
2059     // AssertZext demands all of the high bits, plus any of the low bits
2060     // demanded by its users.
2061     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2062     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2063     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2064                              TLO, Depth + 1))
2065       return true;
2066     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2067 
2068     Known.Zero |= ~InMask;
2069     break;
2070   }
2071   case ISD::EXTRACT_VECTOR_ELT: {
2072     SDValue Src = Op.getOperand(0);
2073     SDValue Idx = Op.getOperand(1);
2074     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2075     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2076 
2077     if (SrcEltCnt.isScalable())
2078       return false;
2079 
2080     // Demand the bits from every vector element without a constant index.
2081     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2082     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
2083     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2084       if (CIdx->getAPIntValue().ult(NumSrcElts))
2085         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2086 
2087     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2088     // anything about the extended bits.
2089     APInt DemandedSrcBits = DemandedBits;
2090     if (BitWidth > EltBitWidth)
2091       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2092 
2093     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2094                              Depth + 1))
2095       return true;
2096 
2097     // Attempt to avoid multi-use ops if we don't need anything from them.
2098     if (!DemandedSrcBits.isAllOnesValue() ||
2099         !DemandedSrcElts.isAllOnesValue()) {
2100       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2101               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2102         SDValue NewOp =
2103             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2104         return TLO.CombineTo(Op, NewOp);
2105       }
2106     }
2107 
2108     Known = Known2;
2109     if (BitWidth > EltBitWidth)
2110       Known = Known.anyext(BitWidth);
2111     break;
2112   }
2113   case ISD::BITCAST: {
2114     SDValue Src = Op.getOperand(0);
2115     EVT SrcVT = Src.getValueType();
2116     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2117 
2118     // If this is an FP->Int bitcast and if the sign bit is the only
2119     // thing demanded, turn this into a FGETSIGN.
2120     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2121         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2122         SrcVT.isFloatingPoint()) {
2123       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2124       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2125       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2126           SrcVT != MVT::f128) {
2127         // Cannot eliminate/lower SHL for f128 yet.
2128         EVT Ty = OpVTLegal ? VT : MVT::i32;
2129         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2130         // place.  We expect the SHL to be eliminated by other optimizations.
2131         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2132         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2133         if (!OpVTLegal && OpVTSizeInBits > 32)
2134           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2135         unsigned ShVal = Op.getValueSizeInBits() - 1;
2136         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2137         return TLO.CombineTo(Op,
2138                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2139       }
2140     }
2141 
2142     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2143     // Demand the elt/bit if any of the original elts/bits are demanded.
2144     // TODO - bigendian once we have test coverage.
2145     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
2146         TLO.DAG.getDataLayout().isLittleEndian()) {
2147       unsigned Scale = BitWidth / NumSrcEltBits;
2148       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2149       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2150       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2151       for (unsigned i = 0; i != Scale; ++i) {
2152         unsigned Offset = i * NumSrcEltBits;
2153         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
2154         if (!Sub.isNullValue()) {
2155           DemandedSrcBits |= Sub;
2156           for (unsigned j = 0; j != NumElts; ++j)
2157             if (DemandedElts[j])
2158               DemandedSrcElts.setBit((j * Scale) + i);
2159         }
2160       }
2161 
2162       APInt KnownSrcUndef, KnownSrcZero;
2163       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2164                                      KnownSrcZero, TLO, Depth + 1))
2165         return true;
2166 
2167       KnownBits KnownSrcBits;
2168       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2169                                KnownSrcBits, TLO, Depth + 1))
2170         return true;
2171     } else if ((NumSrcEltBits % BitWidth) == 0 &&
2172                TLO.DAG.getDataLayout().isLittleEndian()) {
2173       unsigned Scale = NumSrcEltBits / BitWidth;
2174       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2175       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2176       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2177       for (unsigned i = 0; i != NumElts; ++i)
2178         if (DemandedElts[i]) {
2179           unsigned Offset = (i % Scale) * BitWidth;
2180           DemandedSrcBits.insertBits(DemandedBits, Offset);
2181           DemandedSrcElts.setBit(i / Scale);
2182         }
2183 
2184       if (SrcVT.isVector()) {
2185         APInt KnownSrcUndef, KnownSrcZero;
2186         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2187                                        KnownSrcZero, TLO, Depth + 1))
2188           return true;
2189       }
2190 
2191       KnownBits KnownSrcBits;
2192       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2193                                KnownSrcBits, TLO, Depth + 1))
2194         return true;
2195     }
2196 
2197     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2198     // recursive call where Known may be useful to the caller.
2199     if (Depth > 0) {
2200       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2201       return false;
2202     }
2203     break;
2204   }
2205   case ISD::ADD:
2206   case ISD::MUL:
2207   case ISD::SUB: {
2208     // Add, Sub, and Mul don't demand any bits in positions beyond that
2209     // of the highest bit demanded of them.
2210     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2211     SDNodeFlags Flags = Op.getNode()->getFlags();
2212     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2213     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2214     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2215                              Depth + 1) ||
2216         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2217                              Depth + 1) ||
2218         // See if the operation should be performed at a smaller bit width.
2219         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2220       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2221         // Disable the nsw and nuw flags. We can no longer guarantee that we
2222         // won't wrap after simplification.
2223         Flags.setNoSignedWrap(false);
2224         Flags.setNoUnsignedWrap(false);
2225         SDValue NewOp =
2226             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2227         return TLO.CombineTo(Op, NewOp);
2228       }
2229       return true;
2230     }
2231 
2232     // Attempt to avoid multi-use ops if we don't need anything from them.
2233     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
2234       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2235           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2236       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2237           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2238       if (DemandedOp0 || DemandedOp1) {
2239         Flags.setNoSignedWrap(false);
2240         Flags.setNoUnsignedWrap(false);
2241         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2242         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2243         SDValue NewOp =
2244             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2245         return TLO.CombineTo(Op, NewOp);
2246       }
2247     }
2248 
2249     // If we have a constant operand, we may be able to turn it into -1 if we
2250     // do not demand the high bits. This can make the constant smaller to
2251     // encode, allow more general folding, or match specialized instruction
2252     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2253     // is probably not useful (and could be detrimental).
2254     ConstantSDNode *C = isConstOrConstSplat(Op1);
2255     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2256     if (C && !C->isAllOnesValue() && !C->isOne() &&
2257         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
2258       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2259       // Disable the nsw and nuw flags. We can no longer guarantee that we
2260       // won't wrap after simplification.
2261       Flags.setNoSignedWrap(false);
2262       Flags.setNoUnsignedWrap(false);
2263       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2264       return TLO.CombineTo(Op, NewOp);
2265     }
2266 
2267     LLVM_FALLTHROUGH;
2268   }
2269   default:
2270     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2271       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2272                                             Known, TLO, Depth))
2273         return true;
2274       break;
2275     }
2276 
2277     // Just use computeKnownBits to compute output bits.
2278     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2279     break;
2280   }
2281 
2282   // If we know the value of all of the demanded bits, return this as a
2283   // constant.
2284   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2285     // Avoid folding to a constant if any OpaqueConstant is involved.
2286     const SDNode *N = Op.getNode();
2287     for (SDNode *Op :
2288          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2289       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2290         if (C->isOpaque())
2291           return false;
2292     }
2293     if (VT.isInteger())
2294       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2295     if (VT.isFloatingPoint())
2296       return TLO.CombineTo(
2297           Op,
2298           TLO.DAG.getConstantFP(
2299               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2300   }
2301 
2302   return false;
2303 }
2304 
2305 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2306                                                 const APInt &DemandedElts,
2307                                                 APInt &KnownUndef,
2308                                                 APInt &KnownZero,
2309                                                 DAGCombinerInfo &DCI) const {
2310   SelectionDAG &DAG = DCI.DAG;
2311   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2312                         !DCI.isBeforeLegalizeOps());
2313 
2314   bool Simplified =
2315       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2316   if (Simplified) {
2317     DCI.AddToWorklist(Op.getNode());
2318     DCI.CommitTargetLoweringOpt(TLO);
2319   }
2320 
2321   return Simplified;
2322 }
2323 
2324 /// Given a vector binary operation and known undefined elements for each input
2325 /// operand, compute whether each element of the output is undefined.
2326 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2327                                          const APInt &UndefOp0,
2328                                          const APInt &UndefOp1) {
2329   EVT VT = BO.getValueType();
2330   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2331          "Vector binop only");
2332 
2333   EVT EltVT = VT.getVectorElementType();
2334   unsigned NumElts = VT.getVectorNumElements();
2335   assert(UndefOp0.getBitWidth() == NumElts &&
2336          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2337 
2338   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2339                                    const APInt &UndefVals) {
2340     if (UndefVals[Index])
2341       return DAG.getUNDEF(EltVT);
2342 
2343     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2344       // Try hard to make sure that the getNode() call is not creating temporary
2345       // nodes. Ignore opaque integers because they do not constant fold.
2346       SDValue Elt = BV->getOperand(Index);
2347       auto *C = dyn_cast<ConstantSDNode>(Elt);
2348       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2349         return Elt;
2350     }
2351 
2352     return SDValue();
2353   };
2354 
2355   APInt KnownUndef = APInt::getNullValue(NumElts);
2356   for (unsigned i = 0; i != NumElts; ++i) {
2357     // If both inputs for this element are either constant or undef and match
2358     // the element type, compute the constant/undef result for this element of
2359     // the vector.
2360     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2361     // not handle FP constants. The code within getNode() should be refactored
2362     // to avoid the danger of creating a bogus temporary node here.
2363     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2364     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2365     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2366       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2367         KnownUndef.setBit(i);
2368   }
2369   return KnownUndef;
2370 }
2371 
2372 bool TargetLowering::SimplifyDemandedVectorElts(
2373     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2374     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2375     bool AssumeSingleUse) const {
2376   EVT VT = Op.getValueType();
2377   unsigned Opcode = Op.getOpcode();
2378   APInt DemandedElts = OriginalDemandedElts;
2379   unsigned NumElts = DemandedElts.getBitWidth();
2380   assert(VT.isVector() && "Expected vector op");
2381 
2382   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2383 
2384   // TODO: For now we assume we know nothing about scalable vectors.
2385   if (VT.isScalableVector())
2386     return false;
2387 
2388   assert(VT.getVectorNumElements() == NumElts &&
2389          "Mask size mismatches value type element count!");
2390 
2391   // Undef operand.
2392   if (Op.isUndef()) {
2393     KnownUndef.setAllBits();
2394     return false;
2395   }
2396 
2397   // If Op has other users, assume that all elements are needed.
2398   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2399     DemandedElts.setAllBits();
2400 
2401   // Not demanding any elements from Op.
2402   if (DemandedElts == 0) {
2403     KnownUndef.setAllBits();
2404     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2405   }
2406 
2407   // Limit search depth.
2408   if (Depth >= SelectionDAG::MaxRecursionDepth)
2409     return false;
2410 
2411   SDLoc DL(Op);
2412   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2413 
2414   // Helper for demanding the specified elements and all the bits of both binary
2415   // operands.
2416   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2417     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2418                                                            TLO.DAG, Depth + 1);
2419     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2420                                                            TLO.DAG, Depth + 1);
2421     if (NewOp0 || NewOp1) {
2422       SDValue NewOp = TLO.DAG.getNode(
2423           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2424       return TLO.CombineTo(Op, NewOp);
2425     }
2426     return false;
2427   };
2428 
2429   switch (Opcode) {
2430   case ISD::SCALAR_TO_VECTOR: {
2431     if (!DemandedElts[0]) {
2432       KnownUndef.setAllBits();
2433       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2434     }
2435     SDValue ScalarSrc = Op.getOperand(0);
2436     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2437       SDValue Src = ScalarSrc.getOperand(0);
2438       SDValue Idx = ScalarSrc.getOperand(1);
2439       EVT SrcVT = Src.getValueType();
2440 
2441       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
2442 
2443       if (SrcEltCnt.isScalable())
2444         return false;
2445 
2446       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2447       if (isNullConstant(Idx)) {
2448         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
2449         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
2450         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
2451         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2452                                        TLO, Depth + 1))
2453           return true;
2454       }
2455     }
2456     KnownUndef.setHighBits(NumElts - 1);
2457     break;
2458   }
2459   case ISD::BITCAST: {
2460     SDValue Src = Op.getOperand(0);
2461     EVT SrcVT = Src.getValueType();
2462 
2463     // We only handle vectors here.
2464     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2465     if (!SrcVT.isVector())
2466       break;
2467 
2468     // Fast handling of 'identity' bitcasts.
2469     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2470     if (NumSrcElts == NumElts)
2471       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2472                                         KnownZero, TLO, Depth + 1);
2473 
2474     APInt SrcZero, SrcUndef;
2475     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2476 
2477     // Bitcast from 'large element' src vector to 'small element' vector, we
2478     // must demand a source element if any DemandedElt maps to it.
2479     if ((NumElts % NumSrcElts) == 0) {
2480       unsigned Scale = NumElts / NumSrcElts;
2481       for (unsigned i = 0; i != NumElts; ++i)
2482         if (DemandedElts[i])
2483           SrcDemandedElts.setBit(i / Scale);
2484 
2485       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2486                                      TLO, Depth + 1))
2487         return true;
2488 
2489       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2490       // of the large element.
2491       // TODO - bigendian once we have test coverage.
2492       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2493         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2494         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2495         for (unsigned i = 0; i != NumElts; ++i)
2496           if (DemandedElts[i]) {
2497             unsigned Ofs = (i % Scale) * EltSizeInBits;
2498             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2499           }
2500 
2501         KnownBits Known;
2502         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2503                                  TLO, Depth + 1))
2504           return true;
2505       }
2506 
2507       // If the src element is zero/undef then all the output elements will be -
2508       // only demanded elements are guaranteed to be correct.
2509       for (unsigned i = 0; i != NumSrcElts; ++i) {
2510         if (SrcDemandedElts[i]) {
2511           if (SrcZero[i])
2512             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2513           if (SrcUndef[i])
2514             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2515         }
2516       }
2517     }
2518 
2519     // Bitcast from 'small element' src vector to 'large element' vector, we
2520     // demand all smaller source elements covered by the larger demanded element
2521     // of this vector.
2522     if ((NumSrcElts % NumElts) == 0) {
2523       unsigned Scale = NumSrcElts / NumElts;
2524       for (unsigned i = 0; i != NumElts; ++i)
2525         if (DemandedElts[i])
2526           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2527 
2528       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2529                                      TLO, Depth + 1))
2530         return true;
2531 
2532       // If all the src elements covering an output element are zero/undef, then
2533       // the output element will be as well, assuming it was demanded.
2534       for (unsigned i = 0; i != NumElts; ++i) {
2535         if (DemandedElts[i]) {
2536           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2537             KnownZero.setBit(i);
2538           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2539             KnownUndef.setBit(i);
2540         }
2541       }
2542     }
2543     break;
2544   }
2545   case ISD::BUILD_VECTOR: {
2546     // Check all elements and simplify any unused elements with UNDEF.
2547     if (!DemandedElts.isAllOnesValue()) {
2548       // Don't simplify BROADCASTS.
2549       if (llvm::any_of(Op->op_values(),
2550                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2551         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2552         bool Updated = false;
2553         for (unsigned i = 0; i != NumElts; ++i) {
2554           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2555             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2556             KnownUndef.setBit(i);
2557             Updated = true;
2558           }
2559         }
2560         if (Updated)
2561           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2562       }
2563     }
2564     for (unsigned i = 0; i != NumElts; ++i) {
2565       SDValue SrcOp = Op.getOperand(i);
2566       if (SrcOp.isUndef()) {
2567         KnownUndef.setBit(i);
2568       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2569                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2570         KnownZero.setBit(i);
2571       }
2572     }
2573     break;
2574   }
2575   case ISD::CONCAT_VECTORS: {
2576     EVT SubVT = Op.getOperand(0).getValueType();
2577     unsigned NumSubVecs = Op.getNumOperands();
2578     unsigned NumSubElts = SubVT.getVectorNumElements();
2579     for (unsigned i = 0; i != NumSubVecs; ++i) {
2580       SDValue SubOp = Op.getOperand(i);
2581       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2582       APInt SubUndef, SubZero;
2583       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2584                                      Depth + 1))
2585         return true;
2586       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2587       KnownZero.insertBits(SubZero, i * NumSubElts);
2588     }
2589     break;
2590   }
2591   case ISD::INSERT_SUBVECTOR: {
2592     // Demand any elements from the subvector and the remainder from the src its
2593     // inserted into.
2594     SDValue Src = Op.getOperand(0);
2595     SDValue Sub = Op.getOperand(1);
2596     uint64_t Idx = Op.getConstantOperandVal(2);
2597     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2598     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2599     APInt DemandedSrcElts = DemandedElts;
2600     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2601 
2602     APInt SubUndef, SubZero;
2603     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2604                                    Depth + 1))
2605       return true;
2606 
2607     // If none of the src operand elements are demanded, replace it with undef.
2608     if (!DemandedSrcElts && !Src.isUndef())
2609       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2610                                                TLO.DAG.getUNDEF(VT), Sub,
2611                                                Op.getOperand(2)));
2612 
2613     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2614                                    TLO, Depth + 1))
2615       return true;
2616     KnownUndef.insertBits(SubUndef, Idx);
2617     KnownZero.insertBits(SubZero, Idx);
2618 
2619     // Attempt to avoid multi-use ops if we don't need anything from them.
2620     if (!DemandedSrcElts.isAllOnesValue() ||
2621         !DemandedSubElts.isAllOnesValue()) {
2622       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2623           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2624       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2625           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2626       if (NewSrc || NewSub) {
2627         NewSrc = NewSrc ? NewSrc : Src;
2628         NewSub = NewSub ? NewSub : Sub;
2629         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2630                                         NewSub, Op.getOperand(2));
2631         return TLO.CombineTo(Op, NewOp);
2632       }
2633     }
2634     break;
2635   }
2636   case ISD::EXTRACT_SUBVECTOR: {
2637     // Offset the demanded elts by the subvector index.
2638     SDValue Src = Op.getOperand(0);
2639     if (Src.getValueType().isScalableVector())
2640       break;
2641     uint64_t Idx = Op.getConstantOperandVal(1);
2642     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2643     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2644 
2645     APInt SrcUndef, SrcZero;
2646     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2647                                    Depth + 1))
2648       return true;
2649     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2650     KnownZero = SrcZero.extractBits(NumElts, Idx);
2651 
2652     // Attempt to avoid multi-use ops if we don't need anything from them.
2653     if (!DemandedElts.isAllOnesValue()) {
2654       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2655           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2656       if (NewSrc) {
2657         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2658                                         Op.getOperand(1));
2659         return TLO.CombineTo(Op, NewOp);
2660       }
2661     }
2662     break;
2663   }
2664   case ISD::INSERT_VECTOR_ELT: {
2665     SDValue Vec = Op.getOperand(0);
2666     SDValue Scl = Op.getOperand(1);
2667     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2668 
2669     // For a legal, constant insertion index, if we don't need this insertion
2670     // then strip it, else remove it from the demanded elts.
2671     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2672       unsigned Idx = CIdx->getZExtValue();
2673       if (!DemandedElts[Idx])
2674         return TLO.CombineTo(Op, Vec);
2675 
2676       APInt DemandedVecElts(DemandedElts);
2677       DemandedVecElts.clearBit(Idx);
2678       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2679                                      KnownZero, TLO, Depth + 1))
2680         return true;
2681 
2682       KnownUndef.setBitVal(Idx, Scl.isUndef());
2683 
2684       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
2685       break;
2686     }
2687 
2688     APInt VecUndef, VecZero;
2689     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2690                                    Depth + 1))
2691       return true;
2692     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2693     break;
2694   }
2695   case ISD::VSELECT: {
2696     // Try to transform the select condition based on the current demanded
2697     // elements.
2698     // TODO: If a condition element is undef, we can choose from one arm of the
2699     //       select (and if one arm is undef, then we can propagate that to the
2700     //       result).
2701     // TODO - add support for constant vselect masks (see IR version of this).
2702     APInt UnusedUndef, UnusedZero;
2703     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2704                                    UnusedZero, TLO, Depth + 1))
2705       return true;
2706 
2707     // See if we can simplify either vselect operand.
2708     APInt DemandedLHS(DemandedElts);
2709     APInt DemandedRHS(DemandedElts);
2710     APInt UndefLHS, ZeroLHS;
2711     APInt UndefRHS, ZeroRHS;
2712     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2713                                    ZeroLHS, TLO, Depth + 1))
2714       return true;
2715     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2716                                    ZeroRHS, TLO, Depth + 1))
2717       return true;
2718 
2719     KnownUndef = UndefLHS & UndefRHS;
2720     KnownZero = ZeroLHS & ZeroRHS;
2721     break;
2722   }
2723   case ISD::VECTOR_SHUFFLE: {
2724     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2725 
2726     // Collect demanded elements from shuffle operands..
2727     APInt DemandedLHS(NumElts, 0);
2728     APInt DemandedRHS(NumElts, 0);
2729     for (unsigned i = 0; i != NumElts; ++i) {
2730       int M = ShuffleMask[i];
2731       if (M < 0 || !DemandedElts[i])
2732         continue;
2733       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2734       if (M < (int)NumElts)
2735         DemandedLHS.setBit(M);
2736       else
2737         DemandedRHS.setBit(M - NumElts);
2738     }
2739 
2740     // See if we can simplify either shuffle operand.
2741     APInt UndefLHS, ZeroLHS;
2742     APInt UndefRHS, ZeroRHS;
2743     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2744                                    ZeroLHS, TLO, Depth + 1))
2745       return true;
2746     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2747                                    ZeroRHS, TLO, Depth + 1))
2748       return true;
2749 
2750     // Simplify mask using undef elements from LHS/RHS.
2751     bool Updated = false;
2752     bool IdentityLHS = true, IdentityRHS = true;
2753     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2754     for (unsigned i = 0; i != NumElts; ++i) {
2755       int &M = NewMask[i];
2756       if (M < 0)
2757         continue;
2758       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2759           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2760         Updated = true;
2761         M = -1;
2762       }
2763       IdentityLHS &= (M < 0) || (M == (int)i);
2764       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2765     }
2766 
2767     // Update legal shuffle masks based on demanded elements if it won't reduce
2768     // to Identity which can cause premature removal of the shuffle mask.
2769     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2770       SDValue LegalShuffle =
2771           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2772                                   NewMask, TLO.DAG);
2773       if (LegalShuffle)
2774         return TLO.CombineTo(Op, LegalShuffle);
2775     }
2776 
2777     // Propagate undef/zero elements from LHS/RHS.
2778     for (unsigned i = 0; i != NumElts; ++i) {
2779       int M = ShuffleMask[i];
2780       if (M < 0) {
2781         KnownUndef.setBit(i);
2782       } else if (M < (int)NumElts) {
2783         if (UndefLHS[M])
2784           KnownUndef.setBit(i);
2785         if (ZeroLHS[M])
2786           KnownZero.setBit(i);
2787       } else {
2788         if (UndefRHS[M - NumElts])
2789           KnownUndef.setBit(i);
2790         if (ZeroRHS[M - NumElts])
2791           KnownZero.setBit(i);
2792       }
2793     }
2794     break;
2795   }
2796   case ISD::ANY_EXTEND_VECTOR_INREG:
2797   case ISD::SIGN_EXTEND_VECTOR_INREG:
2798   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2799     APInt SrcUndef, SrcZero;
2800     SDValue Src = Op.getOperand(0);
2801     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2802     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2803     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2804                                    Depth + 1))
2805       return true;
2806     KnownZero = SrcZero.zextOrTrunc(NumElts);
2807     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2808 
2809     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2810         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2811         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2812       // aext - if we just need the bottom element then we can bitcast.
2813       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2814     }
2815 
2816     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2817       // zext(undef) upper bits are guaranteed to be zero.
2818       if (DemandedElts.isSubsetOf(KnownUndef))
2819         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2820       KnownUndef.clearAllBits();
2821     }
2822     break;
2823   }
2824 
2825   // TODO: There are more binop opcodes that could be handled here - MIN,
2826   // MAX, saturated math, etc.
2827   case ISD::OR:
2828   case ISD::XOR:
2829   case ISD::ADD:
2830   case ISD::SUB:
2831   case ISD::FADD:
2832   case ISD::FSUB:
2833   case ISD::FMUL:
2834   case ISD::FDIV:
2835   case ISD::FREM: {
2836     SDValue Op0 = Op.getOperand(0);
2837     SDValue Op1 = Op.getOperand(1);
2838 
2839     APInt UndefRHS, ZeroRHS;
2840     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2841                                    Depth + 1))
2842       return true;
2843     APInt UndefLHS, ZeroLHS;
2844     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2845                                    Depth + 1))
2846       return true;
2847 
2848     KnownZero = ZeroLHS & ZeroRHS;
2849     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2850 
2851     // Attempt to avoid multi-use ops if we don't need anything from them.
2852     // TODO - use KnownUndef to relax the demandedelts?
2853     if (!DemandedElts.isAllOnesValue())
2854       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2855         return true;
2856     break;
2857   }
2858   case ISD::SHL:
2859   case ISD::SRL:
2860   case ISD::SRA:
2861   case ISD::ROTL:
2862   case ISD::ROTR: {
2863     SDValue Op0 = Op.getOperand(0);
2864     SDValue Op1 = Op.getOperand(1);
2865 
2866     APInt UndefRHS, ZeroRHS;
2867     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2868                                    Depth + 1))
2869       return true;
2870     APInt UndefLHS, ZeroLHS;
2871     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2872                                    Depth + 1))
2873       return true;
2874 
2875     KnownZero = ZeroLHS;
2876     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2877 
2878     // Attempt to avoid multi-use ops if we don't need anything from them.
2879     // TODO - use KnownUndef to relax the demandedelts?
2880     if (!DemandedElts.isAllOnesValue())
2881       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2882         return true;
2883     break;
2884   }
2885   case ISD::MUL:
2886   case ISD::AND: {
2887     SDValue Op0 = Op.getOperand(0);
2888     SDValue Op1 = Op.getOperand(1);
2889 
2890     APInt SrcUndef, SrcZero;
2891     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
2892                                    Depth + 1))
2893       return true;
2894     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
2895                                    TLO, Depth + 1))
2896       return true;
2897 
2898     // If either side has a zero element, then the result element is zero, even
2899     // if the other is an UNDEF.
2900     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2901     // and then handle 'and' nodes with the rest of the binop opcodes.
2902     KnownZero |= SrcZero;
2903     KnownUndef &= SrcUndef;
2904     KnownUndef &= ~KnownZero;
2905 
2906     // Attempt to avoid multi-use ops if we don't need anything from them.
2907     // TODO - use KnownUndef to relax the demandedelts?
2908     if (!DemandedElts.isAllOnesValue())
2909       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2910         return true;
2911     break;
2912   }
2913   case ISD::TRUNCATE:
2914   case ISD::SIGN_EXTEND:
2915   case ISD::ZERO_EXTEND:
2916     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2917                                    KnownZero, TLO, Depth + 1))
2918       return true;
2919 
2920     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2921       // zext(undef) upper bits are guaranteed to be zero.
2922       if (DemandedElts.isSubsetOf(KnownUndef))
2923         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2924       KnownUndef.clearAllBits();
2925     }
2926     break;
2927   default: {
2928     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2929       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2930                                                   KnownZero, TLO, Depth))
2931         return true;
2932     } else {
2933       KnownBits Known;
2934       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2935       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2936                                TLO, Depth, AssumeSingleUse))
2937         return true;
2938     }
2939     break;
2940   }
2941   }
2942   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2943 
2944   // Constant fold all undef cases.
2945   // TODO: Handle zero cases as well.
2946   if (DemandedElts.isSubsetOf(KnownUndef))
2947     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2948 
2949   return false;
2950 }
2951 
2952 /// Determine which of the bits specified in Mask are known to be either zero or
2953 /// one and return them in the Known.
2954 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2955                                                    KnownBits &Known,
2956                                                    const APInt &DemandedElts,
2957                                                    const SelectionDAG &DAG,
2958                                                    unsigned Depth) const {
2959   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2960           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2961           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2962           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2963          "Should use MaskedValueIsZero if you don't know whether Op"
2964          " is a target node!");
2965   Known.resetAll();
2966 }
2967 
2968 void TargetLowering::computeKnownBitsForTargetInstr(
2969     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2970     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2971     unsigned Depth) const {
2972   Known.resetAll();
2973 }
2974 
2975 void TargetLowering::computeKnownBitsForFrameIndex(
2976   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
2977   // The low bits are known zero if the pointer is aligned.
2978   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
2979 }
2980 
2981 Align TargetLowering::computeKnownAlignForTargetInstr(
2982   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
2983   unsigned Depth) const {
2984   return Align(1);
2985 }
2986 
2987 /// This method can be implemented by targets that want to expose additional
2988 /// information about sign bits to the DAG Combiner.
2989 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2990                                                          const APInt &,
2991                                                          const SelectionDAG &,
2992                                                          unsigned Depth) const {
2993   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2994           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2995           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2996           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2997          "Should use ComputeNumSignBits if you don't know whether Op"
2998          " is a target node!");
2999   return 1;
3000 }
3001 
3002 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3003   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3004   const MachineRegisterInfo &MRI, unsigned Depth) const {
3005   return 1;
3006 }
3007 
3008 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3009     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3010     TargetLoweringOpt &TLO, unsigned Depth) const {
3011   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3012           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3013           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3014           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3015          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3016          " is a target node!");
3017   return false;
3018 }
3019 
3020 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3021     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3022     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3023   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3024           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3025           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3026           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3027          "Should use SimplifyDemandedBits if you don't know whether Op"
3028          " is a target node!");
3029   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3030   return false;
3031 }
3032 
3033 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3034     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3035     SelectionDAG &DAG, unsigned Depth) const {
3036   assert(
3037       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3038        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3039        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3040        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3041       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3042       " is a target node!");
3043   return SDValue();
3044 }
3045 
3046 SDValue
3047 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3048                                         SDValue N1, MutableArrayRef<int> Mask,
3049                                         SelectionDAG &DAG) const {
3050   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3051   if (!LegalMask) {
3052     std::swap(N0, N1);
3053     ShuffleVectorSDNode::commuteMask(Mask);
3054     LegalMask = isShuffleMaskLegal(Mask, VT);
3055   }
3056 
3057   if (!LegalMask)
3058     return SDValue();
3059 
3060   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3061 }
3062 
3063 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3064   return nullptr;
3065 }
3066 
3067 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3068     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3069     bool PoisonOnly, unsigned Depth) const {
3070   assert(
3071       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3072        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3073        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3074        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3075       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3076       " is a target node!");
3077   return false;
3078 }
3079 
3080 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3081                                                   const SelectionDAG &DAG,
3082                                                   bool SNaN,
3083                                                   unsigned Depth) const {
3084   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3085           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3086           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3087           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3088          "Should use isKnownNeverNaN if you don't know whether Op"
3089          " is a target node!");
3090   return false;
3091 }
3092 
3093 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3094 // work with truncating build vectors and vectors with elements of less than
3095 // 8 bits.
3096 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
3097   if (!N)
3098     return false;
3099 
3100   APInt CVal;
3101   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
3102     CVal = CN->getAPIntValue();
3103   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
3104     auto *CN = BV->getConstantSplatNode();
3105     if (!CN)
3106       return false;
3107 
3108     // If this is a truncating build vector, truncate the splat value.
3109     // Otherwise, we may fail to match the expected values below.
3110     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
3111     CVal = CN->getAPIntValue();
3112     if (BVEltWidth < CVal.getBitWidth())
3113       CVal = CVal.trunc(BVEltWidth);
3114   } else {
3115     return false;
3116   }
3117 
3118   switch (getBooleanContents(N->getValueType(0))) {
3119   case UndefinedBooleanContent:
3120     return CVal[0];
3121   case ZeroOrOneBooleanContent:
3122     return CVal.isOneValue();
3123   case ZeroOrNegativeOneBooleanContent:
3124     return CVal.isAllOnesValue();
3125   }
3126 
3127   llvm_unreachable("Invalid boolean contents");
3128 }
3129 
3130 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
3131   if (!N)
3132     return false;
3133 
3134   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3135   if (!CN) {
3136     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3137     if (!BV)
3138       return false;
3139 
3140     // Only interested in constant splats, we don't care about undef
3141     // elements in identifying boolean constants and getConstantSplatNode
3142     // returns NULL if all ops are undef;
3143     CN = BV->getConstantSplatNode();
3144     if (!CN)
3145       return false;
3146   }
3147 
3148   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3149     return !CN->getAPIntValue()[0];
3150 
3151   return CN->isNullValue();
3152 }
3153 
3154 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3155                                        bool SExt) const {
3156   if (VT == MVT::i1)
3157     return N->isOne();
3158 
3159   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3160   switch (Cnt) {
3161   case TargetLowering::ZeroOrOneBooleanContent:
3162     // An extended value of 1 is always true, unless its original type is i1,
3163     // in which case it will be sign extended to -1.
3164     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3165   case TargetLowering::UndefinedBooleanContent:
3166   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3167     return N->isAllOnesValue() && SExt;
3168   }
3169   llvm_unreachable("Unexpected enumeration.");
3170 }
3171 
3172 /// This helper function of SimplifySetCC tries to optimize the comparison when
3173 /// either operand of the SetCC node is a bitwise-and instruction.
3174 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3175                                          ISD::CondCode Cond, const SDLoc &DL,
3176                                          DAGCombinerInfo &DCI) const {
3177   // Match these patterns in any of their permutations:
3178   // (X & Y) == Y
3179   // (X & Y) != Y
3180   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3181     std::swap(N0, N1);
3182 
3183   EVT OpVT = N0.getValueType();
3184   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3185       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3186     return SDValue();
3187 
3188   SDValue X, Y;
3189   if (N0.getOperand(0) == N1) {
3190     X = N0.getOperand(1);
3191     Y = N0.getOperand(0);
3192   } else if (N0.getOperand(1) == N1) {
3193     X = N0.getOperand(0);
3194     Y = N0.getOperand(1);
3195   } else {
3196     return SDValue();
3197   }
3198 
3199   SelectionDAG &DAG = DCI.DAG;
3200   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3201   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3202     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3203     // Note that where Y is variable and is known to have at most one bit set
3204     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3205     // equivalent when Y == 0.
3206     assert(OpVT.isInteger());
3207     Cond = ISD::getSetCCInverse(Cond, OpVT);
3208     if (DCI.isBeforeLegalizeOps() ||
3209         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3210       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3211   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3212     // If the target supports an 'and-not' or 'and-complement' logic operation,
3213     // try to use that to make a comparison operation more efficient.
3214     // But don't do this transform if the mask is a single bit because there are
3215     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3216     // 'rlwinm' on PPC).
3217 
3218     // Bail out if the compare operand that we want to turn into a zero is
3219     // already a zero (otherwise, infinite loop).
3220     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3221     if (YConst && YConst->isNullValue())
3222       return SDValue();
3223 
3224     // Transform this into: ~X & Y == 0.
3225     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3226     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3227     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3228   }
3229 
3230   return SDValue();
3231 }
3232 
3233 /// There are multiple IR patterns that could be checking whether certain
3234 /// truncation of a signed number would be lossy or not. The pattern which is
3235 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3236 /// We are looking for the following pattern: (KeptBits is a constant)
3237 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3238 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3239 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3240 /// We will unfold it into the natural trunc+sext pattern:
3241 ///   ((%x << C) a>> C) dstcond %x
3242 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3243 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3244     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3245     const SDLoc &DL) const {
3246   // We must be comparing with a constant.
3247   ConstantSDNode *C1;
3248   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3249     return SDValue();
3250 
3251   // N0 should be:  add %x, (1 << (KeptBits-1))
3252   if (N0->getOpcode() != ISD::ADD)
3253     return SDValue();
3254 
3255   // And we must be 'add'ing a constant.
3256   ConstantSDNode *C01;
3257   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3258     return SDValue();
3259 
3260   SDValue X = N0->getOperand(0);
3261   EVT XVT = X.getValueType();
3262 
3263   // Validate constants ...
3264 
3265   APInt I1 = C1->getAPIntValue();
3266 
3267   ISD::CondCode NewCond;
3268   if (Cond == ISD::CondCode::SETULT) {
3269     NewCond = ISD::CondCode::SETEQ;
3270   } else if (Cond == ISD::CondCode::SETULE) {
3271     NewCond = ISD::CondCode::SETEQ;
3272     // But need to 'canonicalize' the constant.
3273     I1 += 1;
3274   } else if (Cond == ISD::CondCode::SETUGT) {
3275     NewCond = ISD::CondCode::SETNE;
3276     // But need to 'canonicalize' the constant.
3277     I1 += 1;
3278   } else if (Cond == ISD::CondCode::SETUGE) {
3279     NewCond = ISD::CondCode::SETNE;
3280   } else
3281     return SDValue();
3282 
3283   APInt I01 = C01->getAPIntValue();
3284 
3285   auto checkConstants = [&I1, &I01]() -> bool {
3286     // Both of them must be power-of-two, and the constant from setcc is bigger.
3287     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3288   };
3289 
3290   if (checkConstants()) {
3291     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3292   } else {
3293     // What if we invert constants? (and the target predicate)
3294     I1.negate();
3295     I01.negate();
3296     assert(XVT.isInteger());
3297     NewCond = getSetCCInverse(NewCond, XVT);
3298     if (!checkConstants())
3299       return SDValue();
3300     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3301   }
3302 
3303   // They are power-of-two, so which bit is set?
3304   const unsigned KeptBits = I1.logBase2();
3305   const unsigned KeptBitsMinusOne = I01.logBase2();
3306 
3307   // Magic!
3308   if (KeptBits != (KeptBitsMinusOne + 1))
3309     return SDValue();
3310   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3311 
3312   // We don't want to do this in every single case.
3313   SelectionDAG &DAG = DCI.DAG;
3314   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3315           XVT, KeptBits))
3316     return SDValue();
3317 
3318   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3319   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3320 
3321   // Unfold into:  ((%x << C) a>> C) cond %x
3322   // Where 'cond' will be either 'eq' or 'ne'.
3323   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3324   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3325   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3326   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3327 
3328   return T2;
3329 }
3330 
3331 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3332 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3333     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3334     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3335   assert(isConstOrConstSplat(N1C) &&
3336          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
3337          "Should be a comparison with 0.");
3338   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3339          "Valid only for [in]equality comparisons.");
3340 
3341   unsigned NewShiftOpcode;
3342   SDValue X, C, Y;
3343 
3344   SelectionDAG &DAG = DCI.DAG;
3345   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3346 
3347   // Look for '(C l>>/<< Y)'.
3348   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3349     // The shift should be one-use.
3350     if (!V.hasOneUse())
3351       return false;
3352     unsigned OldShiftOpcode = V.getOpcode();
3353     switch (OldShiftOpcode) {
3354     case ISD::SHL:
3355       NewShiftOpcode = ISD::SRL;
3356       break;
3357     case ISD::SRL:
3358       NewShiftOpcode = ISD::SHL;
3359       break;
3360     default:
3361       return false; // must be a logical shift.
3362     }
3363     // We should be shifting a constant.
3364     // FIXME: best to use isConstantOrConstantVector().
3365     C = V.getOperand(0);
3366     ConstantSDNode *CC =
3367         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3368     if (!CC)
3369       return false;
3370     Y = V.getOperand(1);
3371 
3372     ConstantSDNode *XC =
3373         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3374     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3375         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3376   };
3377 
3378   // LHS of comparison should be an one-use 'and'.
3379   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3380     return SDValue();
3381 
3382   X = N0.getOperand(0);
3383   SDValue Mask = N0.getOperand(1);
3384 
3385   // 'and' is commutative!
3386   if (!Match(Mask)) {
3387     std::swap(X, Mask);
3388     if (!Match(Mask))
3389       return SDValue();
3390   }
3391 
3392   EVT VT = X.getValueType();
3393 
3394   // Produce:
3395   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3396   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3397   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3398   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3399   return T2;
3400 }
3401 
3402 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3403 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3404 /// handle the commuted versions of these patterns.
3405 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3406                                            ISD::CondCode Cond, const SDLoc &DL,
3407                                            DAGCombinerInfo &DCI) const {
3408   unsigned BOpcode = N0.getOpcode();
3409   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3410          "Unexpected binop");
3411   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3412 
3413   // (X + Y) == X --> Y == 0
3414   // (X - Y) == X --> Y == 0
3415   // (X ^ Y) == X --> Y == 0
3416   SelectionDAG &DAG = DCI.DAG;
3417   EVT OpVT = N0.getValueType();
3418   SDValue X = N0.getOperand(0);
3419   SDValue Y = N0.getOperand(1);
3420   if (X == N1)
3421     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3422 
3423   if (Y != N1)
3424     return SDValue();
3425 
3426   // (X + Y) == Y --> X == 0
3427   // (X ^ Y) == Y --> X == 0
3428   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3429     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3430 
3431   // The shift would not be valid if the operands are boolean (i1).
3432   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3433     return SDValue();
3434 
3435   // (X - Y) == Y --> X == Y << 1
3436   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3437                                  !DCI.isBeforeLegalize());
3438   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3439   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3440   if (!DCI.isCalledByLegalizer())
3441     DCI.AddToWorklist(YShl1.getNode());
3442   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3443 }
3444 
3445 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3446                                       SDValue N0, const APInt &C1,
3447                                       ISD::CondCode Cond, const SDLoc &dl,
3448                                       SelectionDAG &DAG) {
3449   // Look through truncs that don't change the value of a ctpop.
3450   // FIXME: Add vector support? Need to be careful with setcc result type below.
3451   SDValue CTPOP = N0;
3452   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3453       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3454     CTPOP = N0.getOperand(0);
3455 
3456   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3457     return SDValue();
3458 
3459   EVT CTVT = CTPOP.getValueType();
3460   SDValue CTOp = CTPOP.getOperand(0);
3461 
3462   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3463   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3464   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3465     return SDValue();
3466 
3467   // (ctpop x) u< 2 -> (x & x-1) == 0
3468   // (ctpop x) u> 1 -> (x & x-1) != 0
3469   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3470     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3471     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3472       return SDValue();
3473     if (C1 == 0 && (Cond == ISD::SETULT))
3474       return SDValue(); // This is handled elsewhere.
3475 
3476     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3477 
3478     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3479     SDValue Result = CTOp;
3480     for (unsigned i = 0; i < Passes; i++) {
3481       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3482       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3483     }
3484     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3485     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3486   }
3487 
3488   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3489   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3490     // For scalars, keep CTPOP if it is legal or custom.
3491     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3492       return SDValue();
3493     // This is based on X86's custom lowering for CTPOP which produces more
3494     // instructions than the expansion here.
3495 
3496     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3497     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3498     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3499     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3500     assert(CTVT.isInteger());
3501     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3502     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3503     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3504     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3505     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3506     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3507     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3508   }
3509 
3510   return SDValue();
3511 }
3512 
3513 /// Try to simplify a setcc built with the specified operands and cc. If it is
3514 /// unable to simplify it, return a null SDValue.
3515 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3516                                       ISD::CondCode Cond, bool foldBooleans,
3517                                       DAGCombinerInfo &DCI,
3518                                       const SDLoc &dl) const {
3519   SelectionDAG &DAG = DCI.DAG;
3520   const DataLayout &Layout = DAG.getDataLayout();
3521   EVT OpVT = N0.getValueType();
3522 
3523   // Constant fold or commute setcc.
3524   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3525     return Fold;
3526 
3527   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3528   // TODO: Handle non-splat vector constants. All undef causes trouble.
3529   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
3530   // infinite loop here when we encounter one.
3531   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3532   if (isConstOrConstSplat(N0) &&
3533       (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) &&
3534       (DCI.isBeforeLegalizeOps() ||
3535        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3536     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3537 
3538   // If we have a subtract with the same 2 non-constant operands as this setcc
3539   // -- but in reverse order -- then try to commute the operands of this setcc
3540   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3541   // instruction on some targets.
3542   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3543       (DCI.isBeforeLegalizeOps() ||
3544        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3545       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
3546       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
3547     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3548 
3549   if (auto *N1C = isConstOrConstSplat(N1)) {
3550     const APInt &C1 = N1C->getAPIntValue();
3551 
3552     // Optimize some CTPOP cases.
3553     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
3554       return V;
3555 
3556     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3557     // equality comparison, then we're just comparing whether X itself is
3558     // zero.
3559     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3560         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3561         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
3562       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
3563         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3564             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
3565           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3566             // (srl (ctlz x), 5) == 0  -> X != 0
3567             // (srl (ctlz x), 5) != 1  -> X != 0
3568             Cond = ISD::SETNE;
3569           } else {
3570             // (srl (ctlz x), 5) != 0  -> X == 0
3571             // (srl (ctlz x), 5) == 1  -> X == 0
3572             Cond = ISD::SETEQ;
3573           }
3574           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3575           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
3576                               Cond);
3577         }
3578       }
3579     }
3580   }
3581 
3582   // FIXME: Support vectors.
3583   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3584     const APInt &C1 = N1C->getAPIntValue();
3585 
3586     // (zext x) == C --> x == (trunc C)
3587     // (sext x) == C --> x == (trunc C)
3588     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3589         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3590       unsigned MinBits = N0.getValueSizeInBits();
3591       SDValue PreExt;
3592       bool Signed = false;
3593       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3594         // ZExt
3595         MinBits = N0->getOperand(0).getValueSizeInBits();
3596         PreExt = N0->getOperand(0);
3597       } else if (N0->getOpcode() == ISD::AND) {
3598         // DAGCombine turns costly ZExts into ANDs
3599         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3600           if ((C->getAPIntValue()+1).isPowerOf2()) {
3601             MinBits = C->getAPIntValue().countTrailingOnes();
3602             PreExt = N0->getOperand(0);
3603           }
3604       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3605         // SExt
3606         MinBits = N0->getOperand(0).getValueSizeInBits();
3607         PreExt = N0->getOperand(0);
3608         Signed = true;
3609       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3610         // ZEXTLOAD / SEXTLOAD
3611         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3612           MinBits = LN0->getMemoryVT().getSizeInBits();
3613           PreExt = N0;
3614         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3615           Signed = true;
3616           MinBits = LN0->getMemoryVT().getSizeInBits();
3617           PreExt = N0;
3618         }
3619       }
3620 
3621       // Figure out how many bits we need to preserve this constant.
3622       unsigned ReqdBits = Signed ?
3623         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3624         C1.getActiveBits();
3625 
3626       // Make sure we're not losing bits from the constant.
3627       if (MinBits > 0 &&
3628           MinBits < C1.getBitWidth() &&
3629           MinBits >= ReqdBits) {
3630         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3631         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3632           // Will get folded away.
3633           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3634           if (MinBits == 1 && C1 == 1)
3635             // Invert the condition.
3636             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3637                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3638           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3639           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3640         }
3641 
3642         // If truncating the setcc operands is not desirable, we can still
3643         // simplify the expression in some cases:
3644         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3645         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3646         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3647         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3648         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3649         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3650         SDValue TopSetCC = N0->getOperand(0);
3651         unsigned N0Opc = N0->getOpcode();
3652         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3653         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3654             TopSetCC.getOpcode() == ISD::SETCC &&
3655             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3656             (isConstFalseVal(N1C) ||
3657              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3658 
3659           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3660                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3661 
3662           if (!Inverse)
3663             return TopSetCC;
3664 
3665           ISD::CondCode InvCond = ISD::getSetCCInverse(
3666               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3667               TopSetCC.getOperand(0).getValueType());
3668           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3669                                       TopSetCC.getOperand(1),
3670                                       InvCond);
3671         }
3672       }
3673     }
3674 
3675     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3676     // equality or unsigned, and all 1 bits of the const are in the same
3677     // partial word, see if we can shorten the load.
3678     if (DCI.isBeforeLegalize() &&
3679         !ISD::isSignedIntSetCC(Cond) &&
3680         N0.getOpcode() == ISD::AND && C1 == 0 &&
3681         N0.getNode()->hasOneUse() &&
3682         isa<LoadSDNode>(N0.getOperand(0)) &&
3683         N0.getOperand(0).getNode()->hasOneUse() &&
3684         isa<ConstantSDNode>(N0.getOperand(1))) {
3685       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3686       APInt bestMask;
3687       unsigned bestWidth = 0, bestOffset = 0;
3688       if (Lod->isSimple() && Lod->isUnindexed()) {
3689         unsigned origWidth = N0.getValueSizeInBits();
3690         unsigned maskWidth = origWidth;
3691         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3692         // 8 bits, but have to be careful...
3693         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3694           origWidth = Lod->getMemoryVT().getSizeInBits();
3695         const APInt &Mask = N0.getConstantOperandAPInt(1);
3696         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3697           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3698           for (unsigned offset=0; offset<origWidth/width; offset++) {
3699             if (Mask.isSubsetOf(newMask)) {
3700               if (Layout.isLittleEndian())
3701                 bestOffset = (uint64_t)offset * (width/8);
3702               else
3703                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3704               bestMask = Mask.lshr(offset * (width/8) * 8);
3705               bestWidth = width;
3706               break;
3707             }
3708             newMask <<= width;
3709           }
3710         }
3711       }
3712       if (bestWidth) {
3713         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3714         if (newVT.isRound() &&
3715             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3716           SDValue Ptr = Lod->getBasePtr();
3717           if (bestOffset != 0)
3718             Ptr =
3719                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
3720           SDValue NewLoad =
3721               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
3722                           Lod->getPointerInfo().getWithOffset(bestOffset),
3723                           Lod->getOriginalAlign());
3724           return DAG.getSetCC(dl, VT,
3725                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3726                                       DAG.getConstant(bestMask.trunc(bestWidth),
3727                                                       dl, newVT)),
3728                               DAG.getConstant(0LL, dl, newVT), Cond);
3729         }
3730       }
3731     }
3732 
3733     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3734     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3735       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3736 
3737       // If the comparison constant has bits in the upper part, the
3738       // zero-extended value could never match.
3739       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3740                                               C1.getBitWidth() - InSize))) {
3741         switch (Cond) {
3742         case ISD::SETUGT:
3743         case ISD::SETUGE:
3744         case ISD::SETEQ:
3745           return DAG.getConstant(0, dl, VT);
3746         case ISD::SETULT:
3747         case ISD::SETULE:
3748         case ISD::SETNE:
3749           return DAG.getConstant(1, dl, VT);
3750         case ISD::SETGT:
3751         case ISD::SETGE:
3752           // True if the sign bit of C1 is set.
3753           return DAG.getConstant(C1.isNegative(), dl, VT);
3754         case ISD::SETLT:
3755         case ISD::SETLE:
3756           // True if the sign bit of C1 isn't set.
3757           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3758         default:
3759           break;
3760         }
3761       }
3762 
3763       // Otherwise, we can perform the comparison with the low bits.
3764       switch (Cond) {
3765       case ISD::SETEQ:
3766       case ISD::SETNE:
3767       case ISD::SETUGT:
3768       case ISD::SETUGE:
3769       case ISD::SETULT:
3770       case ISD::SETULE: {
3771         EVT newVT = N0.getOperand(0).getValueType();
3772         if (DCI.isBeforeLegalizeOps() ||
3773             (isOperationLegal(ISD::SETCC, newVT) &&
3774              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3775           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3776           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3777 
3778           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3779                                           NewConst, Cond);
3780           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3781         }
3782         break;
3783       }
3784       default:
3785         break; // todo, be more careful with signed comparisons
3786       }
3787     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3788                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3789                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
3790                                       OpVT)) {
3791       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3792       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3793       EVT ExtDstTy = N0.getValueType();
3794       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3795 
3796       // If the constant doesn't fit into the number of bits for the source of
3797       // the sign extension, it is impossible for both sides to be equal.
3798       if (C1.getMinSignedBits() > ExtSrcTyBits)
3799         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
3800 
3801       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
3802              ExtDstTy != ExtSrcTy && "Unexpected types!");
3803       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3804       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
3805                                    DAG.getConstant(Imm, dl, ExtDstTy));
3806       if (!DCI.isCalledByLegalizer())
3807         DCI.AddToWorklist(ZextOp.getNode());
3808       // Otherwise, make this a use of a zext.
3809       return DAG.getSetCC(dl, VT, ZextOp,
3810                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
3811     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3812                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3813       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3814       if (N0.getOpcode() == ISD::SETCC &&
3815           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3816           (N0.getValueType() == MVT::i1 ||
3817            getBooleanContents(N0.getOperand(0).getValueType()) ==
3818                        ZeroOrOneBooleanContent)) {
3819         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3820         if (TrueWhenTrue)
3821           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3822         // Invert the condition.
3823         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3824         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3825         if (DCI.isBeforeLegalizeOps() ||
3826             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3827           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3828       }
3829 
3830       if ((N0.getOpcode() == ISD::XOR ||
3831            (N0.getOpcode() == ISD::AND &&
3832             N0.getOperand(0).getOpcode() == ISD::XOR &&
3833             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3834           isOneConstant(N0.getOperand(1))) {
3835         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3836         // can only do this if the top bits are known zero.
3837         unsigned BitWidth = N0.getValueSizeInBits();
3838         if (DAG.MaskedValueIsZero(N0,
3839                                   APInt::getHighBitsSet(BitWidth,
3840                                                         BitWidth-1))) {
3841           // Okay, get the un-inverted input value.
3842           SDValue Val;
3843           if (N0.getOpcode() == ISD::XOR) {
3844             Val = N0.getOperand(0);
3845           } else {
3846             assert(N0.getOpcode() == ISD::AND &&
3847                     N0.getOperand(0).getOpcode() == ISD::XOR);
3848             // ((X^1)&1)^1 -> X & 1
3849             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3850                               N0.getOperand(0).getOperand(0),
3851                               N0.getOperand(1));
3852           }
3853 
3854           return DAG.getSetCC(dl, VT, Val, N1,
3855                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3856         }
3857       } else if (N1C->isOne()) {
3858         SDValue Op0 = N0;
3859         if (Op0.getOpcode() == ISD::TRUNCATE)
3860           Op0 = Op0.getOperand(0);
3861 
3862         if ((Op0.getOpcode() == ISD::XOR) &&
3863             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3864             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3865           SDValue XorLHS = Op0.getOperand(0);
3866           SDValue XorRHS = Op0.getOperand(1);
3867           // Ensure that the input setccs return an i1 type or 0/1 value.
3868           if (Op0.getValueType() == MVT::i1 ||
3869               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3870                       ZeroOrOneBooleanContent &&
3871                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3872                         ZeroOrOneBooleanContent)) {
3873             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3874             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3875             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3876           }
3877         }
3878         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
3879           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3880           if (Op0.getValueType().bitsGT(VT))
3881             Op0 = DAG.getNode(ISD::AND, dl, VT,
3882                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3883                           DAG.getConstant(1, dl, VT));
3884           else if (Op0.getValueType().bitsLT(VT))
3885             Op0 = DAG.getNode(ISD::AND, dl, VT,
3886                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3887                         DAG.getConstant(1, dl, VT));
3888 
3889           return DAG.getSetCC(dl, VT, Op0,
3890                               DAG.getConstant(0, dl, Op0.getValueType()),
3891                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3892         }
3893         if (Op0.getOpcode() == ISD::AssertZext &&
3894             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3895           return DAG.getSetCC(dl, VT, Op0,
3896                               DAG.getConstant(0, dl, Op0.getValueType()),
3897                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3898       }
3899     }
3900 
3901     // Given:
3902     //   icmp eq/ne (urem %x, %y), 0
3903     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3904     //   icmp eq/ne %x, 0
3905     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3906         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3907       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3908       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3909       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3910         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3911     }
3912 
3913     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
3914     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
3915     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3916         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
3917         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
3918         N1C && N1C->isAllOnesValue()) {
3919       return DAG.getSetCC(dl, VT, N0.getOperand(0),
3920                           DAG.getConstant(0, dl, OpVT),
3921                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
3922     }
3923 
3924     if (SDValue V =
3925             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3926       return V;
3927   }
3928 
3929   // These simplifications apply to splat vectors as well.
3930   // TODO: Handle more splat vector cases.
3931   if (auto *N1C = isConstOrConstSplat(N1)) {
3932     const APInt &C1 = N1C->getAPIntValue();
3933 
3934     APInt MinVal, MaxVal;
3935     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3936     if (ISD::isSignedIntSetCC(Cond)) {
3937       MinVal = APInt::getSignedMinValue(OperandBitSize);
3938       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3939     } else {
3940       MinVal = APInt::getMinValue(OperandBitSize);
3941       MaxVal = APInt::getMaxValue(OperandBitSize);
3942     }
3943 
3944     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3945     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3946       // X >= MIN --> true
3947       if (C1 == MinVal)
3948         return DAG.getBoolConstant(true, dl, VT, OpVT);
3949 
3950       if (!VT.isVector()) { // TODO: Support this for vectors.
3951         // X >= C0 --> X > (C0 - 1)
3952         APInt C = C1 - 1;
3953         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3954         if ((DCI.isBeforeLegalizeOps() ||
3955              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3956             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3957                                   isLegalICmpImmediate(C.getSExtValue())))) {
3958           return DAG.getSetCC(dl, VT, N0,
3959                               DAG.getConstant(C, dl, N1.getValueType()),
3960                               NewCC);
3961         }
3962       }
3963     }
3964 
3965     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3966       // X <= MAX --> true
3967       if (C1 == MaxVal)
3968         return DAG.getBoolConstant(true, dl, VT, OpVT);
3969 
3970       // X <= C0 --> X < (C0 + 1)
3971       if (!VT.isVector()) { // TODO: Support this for vectors.
3972         APInt C = C1 + 1;
3973         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3974         if ((DCI.isBeforeLegalizeOps() ||
3975              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3976             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3977                                   isLegalICmpImmediate(C.getSExtValue())))) {
3978           return DAG.getSetCC(dl, VT, N0,
3979                               DAG.getConstant(C, dl, N1.getValueType()),
3980                               NewCC);
3981         }
3982       }
3983     }
3984 
3985     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3986       if (C1 == MinVal)
3987         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3988 
3989       // TODO: Support this for vectors after legalize ops.
3990       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3991         // Canonicalize setlt X, Max --> setne X, Max
3992         if (C1 == MaxVal)
3993           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3994 
3995         // If we have setult X, 1, turn it into seteq X, 0
3996         if (C1 == MinVal+1)
3997           return DAG.getSetCC(dl, VT, N0,
3998                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3999                               ISD::SETEQ);
4000       }
4001     }
4002 
4003     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
4004       if (C1 == MaxVal)
4005         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
4006 
4007       // TODO: Support this for vectors after legalize ops.
4008       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4009         // Canonicalize setgt X, Min --> setne X, Min
4010         if (C1 == MinVal)
4011           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4012 
4013         // If we have setugt X, Max-1, turn it into seteq X, Max
4014         if (C1 == MaxVal-1)
4015           return DAG.getSetCC(dl, VT, N0,
4016                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
4017                               ISD::SETEQ);
4018       }
4019     }
4020 
4021     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
4022       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4023       if (C1.isNullValue())
4024         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
4025                 VT, N0, N1, Cond, DCI, dl))
4026           return CC;
4027 
4028       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
4029       // For example, when high 32-bits of i64 X are known clear:
4030       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
4031       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
4032       bool CmpZero = N1C->getAPIntValue().isNullValue();
4033       bool CmpNegOne = N1C->getAPIntValue().isAllOnesValue();
4034       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
4035         // Match or(lo,shl(hi,bw/2)) pattern.
4036         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
4037           unsigned EltBits = V.getScalarValueSizeInBits();
4038           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
4039             return false;
4040           SDValue LHS = V.getOperand(0);
4041           SDValue RHS = V.getOperand(1);
4042           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
4043           // Unshifted element must have zero upperbits.
4044           if (RHS.getOpcode() == ISD::SHL &&
4045               isa<ConstantSDNode>(RHS.getOperand(1)) &&
4046               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4047               DAG.MaskedValueIsZero(LHS, HiBits)) {
4048             Lo = LHS;
4049             Hi = RHS.getOperand(0);
4050             return true;
4051           }
4052           if (LHS.getOpcode() == ISD::SHL &&
4053               isa<ConstantSDNode>(LHS.getOperand(1)) &&
4054               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4055               DAG.MaskedValueIsZero(RHS, HiBits)) {
4056             Lo = RHS;
4057             Hi = LHS.getOperand(0);
4058             return true;
4059           }
4060           return false;
4061         };
4062 
4063         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4064           unsigned EltBits = N0.getScalarValueSizeInBits();
4065           unsigned HalfBits = EltBits / 2;
4066           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4067           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4068           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4069           SDValue NewN0 =
4070               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4071           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4072           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4073         };
4074 
4075         SDValue Lo, Hi;
4076         if (IsConcat(N0, Lo, Hi))
4077           return MergeConcat(Lo, Hi);
4078 
4079         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4080           SDValue Lo0, Lo1, Hi0, Hi1;
4081           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4082               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4083             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4084                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4085           }
4086         }
4087       }
4088     }
4089 
4090     // If we have "setcc X, C0", check to see if we can shrink the immediate
4091     // by changing cc.
4092     // TODO: Support this for vectors after legalize ops.
4093     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4094       // SETUGT X, SINTMAX  -> SETLT X, 0
4095       // SETUGE X, SINTMIN -> SETLT X, 0
4096       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4097           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4098         return DAG.getSetCC(dl, VT, N0,
4099                             DAG.getConstant(0, dl, N1.getValueType()),
4100                             ISD::SETLT);
4101 
4102       // SETULT X, SINTMIN  -> SETGT X, -1
4103       // SETULE X, SINTMAX  -> SETGT X, -1
4104       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4105           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4106         return DAG.getSetCC(dl, VT, N0,
4107                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4108                             ISD::SETGT);
4109     }
4110   }
4111 
4112   // Back to non-vector simplifications.
4113   // TODO: Can we do these for vector splats?
4114   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4115     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4116     const APInt &C1 = N1C->getAPIntValue();
4117     EVT ShValTy = N0.getValueType();
4118 
4119     // Fold bit comparisons when we can. This will result in an
4120     // incorrect value when boolean false is negative one, unless
4121     // the bitsize is 1 in which case the false value is the same
4122     // in practice regardless of the representation.
4123     if ((VT.getSizeInBits() == 1 ||
4124          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4125         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4126         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4127         N0.getOpcode() == ISD::AND) {
4128       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4129         EVT ShiftTy =
4130             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4131         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4132           // Perform the xform if the AND RHS is a single bit.
4133           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4134           if (AndRHS->getAPIntValue().isPowerOf2() &&
4135               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4136             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4137                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4138                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4139           }
4140         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4141           // (X & 8) == 8  -->  (X & 8) >> 3
4142           // Perform the xform if C1 is a single bit.
4143           unsigned ShCt = C1.logBase2();
4144           if (C1.isPowerOf2() &&
4145               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4146             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4147                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4148                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4149           }
4150         }
4151       }
4152     }
4153 
4154     if (C1.getMinSignedBits() <= 64 &&
4155         !isLegalICmpImmediate(C1.getSExtValue())) {
4156       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4157       // (X & -256) == 256 -> (X >> 8) == 1
4158       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4159           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4160         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4161           const APInt &AndRHSC = AndRHS->getAPIntValue();
4162           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
4163             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4164             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4165               SDValue Shift =
4166                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4167                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4168               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4169               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4170             }
4171           }
4172         }
4173       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4174                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4175         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4176         // X <  0x100000000 -> (X >> 32) <  1
4177         // X >= 0x100000000 -> (X >> 32) >= 1
4178         // X <= 0x0ffffffff -> (X >> 32) <  1
4179         // X >  0x0ffffffff -> (X >> 32) >= 1
4180         unsigned ShiftBits;
4181         APInt NewC = C1;
4182         ISD::CondCode NewCond = Cond;
4183         if (AdjOne) {
4184           ShiftBits = C1.countTrailingOnes();
4185           NewC = NewC + 1;
4186           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4187         } else {
4188           ShiftBits = C1.countTrailingZeros();
4189         }
4190         NewC.lshrInPlace(ShiftBits);
4191         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4192             isLegalICmpImmediate(NewC.getSExtValue()) &&
4193             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4194           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4195                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4196           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4197           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4198         }
4199       }
4200     }
4201   }
4202 
4203   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4204     auto *CFP = cast<ConstantFPSDNode>(N1);
4205     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4206 
4207     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4208     // constant if knowing that the operand is non-nan is enough.  We prefer to
4209     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4210     // materialize 0.0.
4211     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4212       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4213 
4214     // setcc (fneg x), C -> setcc swap(pred) x, -C
4215     if (N0.getOpcode() == ISD::FNEG) {
4216       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4217       if (DCI.isBeforeLegalizeOps() ||
4218           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4219         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4220         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4221       }
4222     }
4223 
4224     // If the condition is not legal, see if we can find an equivalent one
4225     // which is legal.
4226     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4227       // If the comparison was an awkward floating-point == or != and one of
4228       // the comparison operands is infinity or negative infinity, convert the
4229       // condition to a less-awkward <= or >=.
4230       if (CFP->getValueAPF().isInfinity()) {
4231         bool IsNegInf = CFP->getValueAPF().isNegative();
4232         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4233         switch (Cond) {
4234         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4235         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4236         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4237         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4238         default: break;
4239         }
4240         if (NewCond != ISD::SETCC_INVALID &&
4241             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4242           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4243       }
4244     }
4245   }
4246 
4247   if (N0 == N1) {
4248     // The sext(setcc()) => setcc() optimization relies on the appropriate
4249     // constant being emitted.
4250     assert(!N0.getValueType().isInteger() &&
4251            "Integer types should be handled by FoldSetCC");
4252 
4253     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4254     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4255     if (UOF == 2) // FP operators that are undefined on NaNs.
4256       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4257     if (UOF == unsigned(EqTrue))
4258       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4259     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4260     // if it is not already.
4261     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4262     if (NewCond != Cond &&
4263         (DCI.isBeforeLegalizeOps() ||
4264                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4265       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4266   }
4267 
4268   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4269       N0.getValueType().isInteger()) {
4270     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4271         N0.getOpcode() == ISD::XOR) {
4272       // Simplify (X+Y) == (X+Z) -->  Y == Z
4273       if (N0.getOpcode() == N1.getOpcode()) {
4274         if (N0.getOperand(0) == N1.getOperand(0))
4275           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4276         if (N0.getOperand(1) == N1.getOperand(1))
4277           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4278         if (isCommutativeBinOp(N0.getOpcode())) {
4279           // If X op Y == Y op X, try other combinations.
4280           if (N0.getOperand(0) == N1.getOperand(1))
4281             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4282                                 Cond);
4283           if (N0.getOperand(1) == N1.getOperand(0))
4284             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4285                                 Cond);
4286         }
4287       }
4288 
4289       // If RHS is a legal immediate value for a compare instruction, we need
4290       // to be careful about increasing register pressure needlessly.
4291       bool LegalRHSImm = false;
4292 
4293       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4294         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4295           // Turn (X+C1) == C2 --> X == C2-C1
4296           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
4297             return DAG.getSetCC(dl, VT, N0.getOperand(0),
4298                                 DAG.getConstant(RHSC->getAPIntValue()-
4299                                                 LHSR->getAPIntValue(),
4300                                 dl, N0.getValueType()), Cond);
4301           }
4302 
4303           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
4304           if (N0.getOpcode() == ISD::XOR)
4305             // If we know that all of the inverted bits are zero, don't bother
4306             // performing the inversion.
4307             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
4308               return
4309                 DAG.getSetCC(dl, VT, N0.getOperand(0),
4310                              DAG.getConstant(LHSR->getAPIntValue() ^
4311                                                RHSC->getAPIntValue(),
4312                                              dl, N0.getValueType()),
4313                              Cond);
4314         }
4315 
4316         // Turn (C1-X) == C2 --> X == C1-C2
4317         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
4318           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
4319             return
4320               DAG.getSetCC(dl, VT, N0.getOperand(1),
4321                            DAG.getConstant(SUBC->getAPIntValue() -
4322                                              RHSC->getAPIntValue(),
4323                                            dl, N0.getValueType()),
4324                            Cond);
4325           }
4326         }
4327 
4328         // Could RHSC fold directly into a compare?
4329         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4330           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4331       }
4332 
4333       // (X+Y) == X --> Y == 0 and similar folds.
4334       // Don't do this if X is an immediate that can fold into a cmp
4335       // instruction and X+Y has other uses. It could be an induction variable
4336       // chain, and the transform would increase register pressure.
4337       if (!LegalRHSImm || N0.hasOneUse())
4338         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4339           return V;
4340     }
4341 
4342     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4343         N1.getOpcode() == ISD::XOR)
4344       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4345         return V;
4346 
4347     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4348       return V;
4349   }
4350 
4351   // Fold remainder of division by a constant.
4352   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4353       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4354     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4355 
4356     // When division is cheap or optimizing for minimum size,
4357     // fall through to DIVREM creation by skipping this fold.
4358     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
4359       if (N0.getOpcode() == ISD::UREM) {
4360         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4361           return Folded;
4362       } else if (N0.getOpcode() == ISD::SREM) {
4363         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4364           return Folded;
4365       }
4366     }
4367   }
4368 
4369   // Fold away ALL boolean setcc's.
4370   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4371     SDValue Temp;
4372     switch (Cond) {
4373     default: llvm_unreachable("Unknown integer setcc!");
4374     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4375       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4376       N0 = DAG.getNOT(dl, Temp, OpVT);
4377       if (!DCI.isCalledByLegalizer())
4378         DCI.AddToWorklist(Temp.getNode());
4379       break;
4380     case ISD::SETNE:  // X != Y   -->  (X^Y)
4381       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4382       break;
4383     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4384     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4385       Temp = DAG.getNOT(dl, N0, OpVT);
4386       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4387       if (!DCI.isCalledByLegalizer())
4388         DCI.AddToWorklist(Temp.getNode());
4389       break;
4390     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4391     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4392       Temp = DAG.getNOT(dl, N1, OpVT);
4393       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4394       if (!DCI.isCalledByLegalizer())
4395         DCI.AddToWorklist(Temp.getNode());
4396       break;
4397     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4398     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4399       Temp = DAG.getNOT(dl, N0, OpVT);
4400       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4401       if (!DCI.isCalledByLegalizer())
4402         DCI.AddToWorklist(Temp.getNode());
4403       break;
4404     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4405     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4406       Temp = DAG.getNOT(dl, N1, OpVT);
4407       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4408       break;
4409     }
4410     if (VT.getScalarType() != MVT::i1) {
4411       if (!DCI.isCalledByLegalizer())
4412         DCI.AddToWorklist(N0.getNode());
4413       // FIXME: If running after legalize, we probably can't do this.
4414       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4415       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4416     }
4417     return N0;
4418   }
4419 
4420   // Could not fold it.
4421   return SDValue();
4422 }
4423 
4424 /// Returns true (and the GlobalValue and the offset) if the node is a
4425 /// GlobalAddress + offset.
4426 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4427                                     int64_t &Offset) const {
4428 
4429   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4430 
4431   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4432     GA = GASD->getGlobal();
4433     Offset += GASD->getOffset();
4434     return true;
4435   }
4436 
4437   if (N->getOpcode() == ISD::ADD) {
4438     SDValue N1 = N->getOperand(0);
4439     SDValue N2 = N->getOperand(1);
4440     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4441       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4442         Offset += V->getSExtValue();
4443         return true;
4444       }
4445     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4446       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4447         Offset += V->getSExtValue();
4448         return true;
4449       }
4450     }
4451   }
4452 
4453   return false;
4454 }
4455 
4456 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4457                                           DAGCombinerInfo &DCI) const {
4458   // Default implementation: no optimization.
4459   return SDValue();
4460 }
4461 
4462 //===----------------------------------------------------------------------===//
4463 //  Inline Assembler Implementation Methods
4464 //===----------------------------------------------------------------------===//
4465 
4466 TargetLowering::ConstraintType
4467 TargetLowering::getConstraintType(StringRef Constraint) const {
4468   unsigned S = Constraint.size();
4469 
4470   if (S == 1) {
4471     switch (Constraint[0]) {
4472     default: break;
4473     case 'r':
4474       return C_RegisterClass;
4475     case 'm': // memory
4476     case 'o': // offsetable
4477     case 'V': // not offsetable
4478       return C_Memory;
4479     case 'n': // Simple Integer
4480     case 'E': // Floating Point Constant
4481     case 'F': // Floating Point Constant
4482       return C_Immediate;
4483     case 'i': // Simple Integer or Relocatable Constant
4484     case 's': // Relocatable Constant
4485     case 'p': // Address.
4486     case 'X': // Allow ANY value.
4487     case 'I': // Target registers.
4488     case 'J':
4489     case 'K':
4490     case 'L':
4491     case 'M':
4492     case 'N':
4493     case 'O':
4494     case 'P':
4495     case '<':
4496     case '>':
4497       return C_Other;
4498     }
4499   }
4500 
4501   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4502     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4503       return C_Memory;
4504     return C_Register;
4505   }
4506   return C_Unknown;
4507 }
4508 
4509 /// Try to replace an X constraint, which matches anything, with another that
4510 /// has more specific requirements based on the type of the corresponding
4511 /// operand.
4512 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4513   if (ConstraintVT.isInteger())
4514     return "r";
4515   if (ConstraintVT.isFloatingPoint())
4516     return "f"; // works for many targets
4517   return nullptr;
4518 }
4519 
4520 SDValue TargetLowering::LowerAsmOutputForConstraint(
4521     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
4522     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
4523   return SDValue();
4524 }
4525 
4526 /// Lower the specified operand into the Ops vector.
4527 /// If it is invalid, don't add anything to Ops.
4528 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4529                                                   std::string &Constraint,
4530                                                   std::vector<SDValue> &Ops,
4531                                                   SelectionDAG &DAG) const {
4532 
4533   if (Constraint.length() > 1) return;
4534 
4535   char ConstraintLetter = Constraint[0];
4536   switch (ConstraintLetter) {
4537   default: break;
4538   case 'X':     // Allows any operand; labels (basic block) use this.
4539     if (Op.getOpcode() == ISD::BasicBlock ||
4540         Op.getOpcode() == ISD::TargetBlockAddress) {
4541       Ops.push_back(Op);
4542       return;
4543     }
4544     LLVM_FALLTHROUGH;
4545   case 'i':    // Simple Integer or Relocatable Constant
4546   case 'n':    // Simple Integer
4547   case 's': {  // Relocatable Constant
4548 
4549     GlobalAddressSDNode *GA;
4550     ConstantSDNode *C;
4551     BlockAddressSDNode *BA;
4552     uint64_t Offset = 0;
4553 
4554     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4555     // etc., since getelementpointer is variadic. We can't use
4556     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4557     // while in this case the GA may be furthest from the root node which is
4558     // likely an ISD::ADD.
4559     while (1) {
4560       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4561         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4562                                                  GA->getValueType(0),
4563                                                  Offset + GA->getOffset()));
4564         return;
4565       }
4566       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
4567         // gcc prints these as sign extended.  Sign extend value to 64 bits
4568         // now; without this it would get ZExt'd later in
4569         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4570         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4571         BooleanContent BCont = getBooleanContents(MVT::i64);
4572         ISD::NodeType ExtOpc =
4573             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
4574         int64_t ExtVal =
4575             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
4576         Ops.push_back(
4577             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
4578         return;
4579       }
4580       if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4581         Ops.push_back(DAG.getTargetBlockAddress(
4582             BA->getBlockAddress(), BA->getValueType(0),
4583             Offset + BA->getOffset(), BA->getTargetFlags()));
4584         return;
4585       }
4586       const unsigned OpCode = Op.getOpcode();
4587       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4588         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4589           Op = Op.getOperand(1);
4590         // Subtraction is not commutative.
4591         else if (OpCode == ISD::ADD &&
4592                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4593           Op = Op.getOperand(0);
4594         else
4595           return;
4596         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4597         continue;
4598       }
4599       return;
4600     }
4601     break;
4602   }
4603   }
4604 }
4605 
4606 std::pair<unsigned, const TargetRegisterClass *>
4607 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4608                                              StringRef Constraint,
4609                                              MVT VT) const {
4610   if (Constraint.empty() || Constraint[0] != '{')
4611     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4612   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4613 
4614   // Remove the braces from around the name.
4615   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4616 
4617   std::pair<unsigned, const TargetRegisterClass *> R =
4618       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4619 
4620   // Figure out which register class contains this reg.
4621   for (const TargetRegisterClass *RC : RI->regclasses()) {
4622     // If none of the value types for this register class are valid, we
4623     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4624     if (!isLegalRC(*RI, *RC))
4625       continue;
4626 
4627     for (const MCPhysReg &PR : *RC) {
4628       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
4629         std::pair<unsigned, const TargetRegisterClass *> S =
4630             std::make_pair(PR, RC);
4631 
4632         // If this register class has the requested value type, return it,
4633         // otherwise keep searching and return the first class found
4634         // if no other is found which explicitly has the requested type.
4635         if (RI->isTypeLegalForClass(*RC, VT))
4636           return S;
4637         if (!R.second)
4638           R = S;
4639       }
4640     }
4641   }
4642 
4643   return R;
4644 }
4645 
4646 //===----------------------------------------------------------------------===//
4647 // Constraint Selection.
4648 
4649 /// Return true of this is an input operand that is a matching constraint like
4650 /// "4".
4651 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4652   assert(!ConstraintCode.empty() && "No known constraint!");
4653   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4654 }
4655 
4656 /// If this is an input matching constraint, this method returns the output
4657 /// operand it matches.
4658 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4659   assert(!ConstraintCode.empty() && "No known constraint!");
4660   return atoi(ConstraintCode.c_str());
4661 }
4662 
4663 /// Split up the constraint string from the inline assembly value into the
4664 /// specific constraints and their prefixes, and also tie in the associated
4665 /// operand values.
4666 /// If this returns an empty vector, and if the constraint string itself
4667 /// isn't empty, there was an error parsing.
4668 TargetLowering::AsmOperandInfoVector
4669 TargetLowering::ParseConstraints(const DataLayout &DL,
4670                                  const TargetRegisterInfo *TRI,
4671                                  const CallBase &Call) const {
4672   /// Information about all of the constraints.
4673   AsmOperandInfoVector ConstraintOperands;
4674   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
4675   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4676 
4677   // Do a prepass over the constraints, canonicalizing them, and building up the
4678   // ConstraintOperands list.
4679   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4680   unsigned ResNo = 0; // ResNo - The result number of the next output.
4681 
4682   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4683     ConstraintOperands.emplace_back(std::move(CI));
4684     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4685 
4686     // Update multiple alternative constraint count.
4687     if (OpInfo.multipleAlternatives.size() > maCount)
4688       maCount = OpInfo.multipleAlternatives.size();
4689 
4690     OpInfo.ConstraintVT = MVT::Other;
4691 
4692     // Compute the value type for each operand.
4693     switch (OpInfo.Type) {
4694     case InlineAsm::isOutput:
4695       // Indirect outputs just consume an argument.
4696       if (OpInfo.isIndirect) {
4697         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4698         break;
4699       }
4700 
4701       // The return value of the call is this value.  As such, there is no
4702       // corresponding argument.
4703       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
4704       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
4705         OpInfo.ConstraintVT =
4706             getSimpleValueType(DL, STy->getElementType(ResNo));
4707       } else {
4708         assert(ResNo == 0 && "Asm only has one result!");
4709         OpInfo.ConstraintVT =
4710             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
4711       }
4712       ++ResNo;
4713       break;
4714     case InlineAsm::isInput:
4715       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4716       break;
4717     case InlineAsm::isClobber:
4718       // Nothing to do.
4719       break;
4720     }
4721 
4722     if (OpInfo.CallOperandVal) {
4723       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4724       if (OpInfo.isIndirect) {
4725         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4726         if (!PtrTy)
4727           report_fatal_error("Indirect operand for inline asm not a pointer!");
4728         OpTy = PtrTy->getElementType();
4729       }
4730 
4731       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4732       if (StructType *STy = dyn_cast<StructType>(OpTy))
4733         if (STy->getNumElements() == 1)
4734           OpTy = STy->getElementType(0);
4735 
4736       // If OpTy is not a single value, it may be a struct/union that we
4737       // can tile with integers.
4738       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4739         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4740         switch (BitSize) {
4741         default: break;
4742         case 1:
4743         case 8:
4744         case 16:
4745         case 32:
4746         case 64:
4747         case 128:
4748           OpInfo.ConstraintVT =
4749               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4750           break;
4751         }
4752       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4753         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4754         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4755       } else {
4756         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4757       }
4758     }
4759   }
4760 
4761   // If we have multiple alternative constraints, select the best alternative.
4762   if (!ConstraintOperands.empty()) {
4763     if (maCount) {
4764       unsigned bestMAIndex = 0;
4765       int bestWeight = -1;
4766       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4767       int weight = -1;
4768       unsigned maIndex;
4769       // Compute the sums of the weights for each alternative, keeping track
4770       // of the best (highest weight) one so far.
4771       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4772         int weightSum = 0;
4773         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4774              cIndex != eIndex; ++cIndex) {
4775           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4776           if (OpInfo.Type == InlineAsm::isClobber)
4777             continue;
4778 
4779           // If this is an output operand with a matching input operand,
4780           // look up the matching input. If their types mismatch, e.g. one
4781           // is an integer, the other is floating point, or their sizes are
4782           // different, flag it as an maCantMatch.
4783           if (OpInfo.hasMatchingInput()) {
4784             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4785             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4786               if ((OpInfo.ConstraintVT.isInteger() !=
4787                    Input.ConstraintVT.isInteger()) ||
4788                   (OpInfo.ConstraintVT.getSizeInBits() !=
4789                    Input.ConstraintVT.getSizeInBits())) {
4790                 weightSum = -1; // Can't match.
4791                 break;
4792               }
4793             }
4794           }
4795           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4796           if (weight == -1) {
4797             weightSum = -1;
4798             break;
4799           }
4800           weightSum += weight;
4801         }
4802         // Update best.
4803         if (weightSum > bestWeight) {
4804           bestWeight = weightSum;
4805           bestMAIndex = maIndex;
4806         }
4807       }
4808 
4809       // Now select chosen alternative in each constraint.
4810       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4811            cIndex != eIndex; ++cIndex) {
4812         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4813         if (cInfo.Type == InlineAsm::isClobber)
4814           continue;
4815         cInfo.selectAlternative(bestMAIndex);
4816       }
4817     }
4818   }
4819 
4820   // Check and hook up tied operands, choose constraint code to use.
4821   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4822        cIndex != eIndex; ++cIndex) {
4823     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4824 
4825     // If this is an output operand with a matching input operand, look up the
4826     // matching input. If their types mismatch, e.g. one is an integer, the
4827     // other is floating point, or their sizes are different, flag it as an
4828     // error.
4829     if (OpInfo.hasMatchingInput()) {
4830       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4831 
4832       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4833         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4834             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4835                                          OpInfo.ConstraintVT);
4836         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4837             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4838                                          Input.ConstraintVT);
4839         if ((OpInfo.ConstraintVT.isInteger() !=
4840              Input.ConstraintVT.isInteger()) ||
4841             (MatchRC.second != InputRC.second)) {
4842           report_fatal_error("Unsupported asm: input constraint"
4843                              " with a matching output constraint of"
4844                              " incompatible type!");
4845         }
4846       }
4847     }
4848   }
4849 
4850   return ConstraintOperands;
4851 }
4852 
4853 /// Return an integer indicating how general CT is.
4854 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4855   switch (CT) {
4856   case TargetLowering::C_Immediate:
4857   case TargetLowering::C_Other:
4858   case TargetLowering::C_Unknown:
4859     return 0;
4860   case TargetLowering::C_Register:
4861     return 1;
4862   case TargetLowering::C_RegisterClass:
4863     return 2;
4864   case TargetLowering::C_Memory:
4865     return 3;
4866   }
4867   llvm_unreachable("Invalid constraint type");
4868 }
4869 
4870 /// Examine constraint type and operand type and determine a weight value.
4871 /// This object must already have been set up with the operand type
4872 /// and the current alternative constraint selected.
4873 TargetLowering::ConstraintWeight
4874   TargetLowering::getMultipleConstraintMatchWeight(
4875     AsmOperandInfo &info, int maIndex) const {
4876   InlineAsm::ConstraintCodeVector *rCodes;
4877   if (maIndex >= (int)info.multipleAlternatives.size())
4878     rCodes = &info.Codes;
4879   else
4880     rCodes = &info.multipleAlternatives[maIndex].Codes;
4881   ConstraintWeight BestWeight = CW_Invalid;
4882 
4883   // Loop over the options, keeping track of the most general one.
4884   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4885     ConstraintWeight weight =
4886       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4887     if (weight > BestWeight)
4888       BestWeight = weight;
4889   }
4890 
4891   return BestWeight;
4892 }
4893 
4894 /// Examine constraint type and operand type and determine a weight value.
4895 /// This object must already have been set up with the operand type
4896 /// and the current alternative constraint selected.
4897 TargetLowering::ConstraintWeight
4898   TargetLowering::getSingleConstraintMatchWeight(
4899     AsmOperandInfo &info, const char *constraint) const {
4900   ConstraintWeight weight = CW_Invalid;
4901   Value *CallOperandVal = info.CallOperandVal;
4902     // If we don't have a value, we can't do a match,
4903     // but allow it at the lowest weight.
4904   if (!CallOperandVal)
4905     return CW_Default;
4906   // Look at the constraint type.
4907   switch (*constraint) {
4908     case 'i': // immediate integer.
4909     case 'n': // immediate integer with a known value.
4910       if (isa<ConstantInt>(CallOperandVal))
4911         weight = CW_Constant;
4912       break;
4913     case 's': // non-explicit intregal immediate.
4914       if (isa<GlobalValue>(CallOperandVal))
4915         weight = CW_Constant;
4916       break;
4917     case 'E': // immediate float if host format.
4918     case 'F': // immediate float.
4919       if (isa<ConstantFP>(CallOperandVal))
4920         weight = CW_Constant;
4921       break;
4922     case '<': // memory operand with autodecrement.
4923     case '>': // memory operand with autoincrement.
4924     case 'm': // memory operand.
4925     case 'o': // offsettable memory operand
4926     case 'V': // non-offsettable memory operand
4927       weight = CW_Memory;
4928       break;
4929     case 'r': // general register.
4930     case 'g': // general register, memory operand or immediate integer.
4931               // note: Clang converts "g" to "imr".
4932       if (CallOperandVal->getType()->isIntegerTy())
4933         weight = CW_Register;
4934       break;
4935     case 'X': // any operand.
4936   default:
4937     weight = CW_Default;
4938     break;
4939   }
4940   return weight;
4941 }
4942 
4943 /// If there are multiple different constraints that we could pick for this
4944 /// operand (e.g. "imr") try to pick the 'best' one.
4945 /// This is somewhat tricky: constraints fall into four classes:
4946 ///    Other         -> immediates and magic values
4947 ///    Register      -> one specific register
4948 ///    RegisterClass -> a group of regs
4949 ///    Memory        -> memory
4950 /// Ideally, we would pick the most specific constraint possible: if we have
4951 /// something that fits into a register, we would pick it.  The problem here
4952 /// is that if we have something that could either be in a register or in
4953 /// memory that use of the register could cause selection of *other*
4954 /// operands to fail: they might only succeed if we pick memory.  Because of
4955 /// this the heuristic we use is:
4956 ///
4957 ///  1) If there is an 'other' constraint, and if the operand is valid for
4958 ///     that constraint, use it.  This makes us take advantage of 'i'
4959 ///     constraints when available.
4960 ///  2) Otherwise, pick the most general constraint present.  This prefers
4961 ///     'm' over 'r', for example.
4962 ///
4963 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4964                              const TargetLowering &TLI,
4965                              SDValue Op, SelectionDAG *DAG) {
4966   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4967   unsigned BestIdx = 0;
4968   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4969   int BestGenerality = -1;
4970 
4971   // Loop over the options, keeping track of the most general one.
4972   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4973     TargetLowering::ConstraintType CType =
4974       TLI.getConstraintType(OpInfo.Codes[i]);
4975 
4976     // Indirect 'other' or 'immediate' constraints are not allowed.
4977     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4978                                CType == TargetLowering::C_Register ||
4979                                CType == TargetLowering::C_RegisterClass))
4980       continue;
4981 
4982     // If this is an 'other' or 'immediate' constraint, see if the operand is
4983     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4984     // the operand is an integer in the range [0..31] we want to use I (saving a
4985     // load of a register), otherwise we must use 'r'.
4986     if ((CType == TargetLowering::C_Other ||
4987          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4988       assert(OpInfo.Codes[i].size() == 1 &&
4989              "Unhandled multi-letter 'other' constraint");
4990       std::vector<SDValue> ResultOps;
4991       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4992                                        ResultOps, *DAG);
4993       if (!ResultOps.empty()) {
4994         BestType = CType;
4995         BestIdx = i;
4996         break;
4997       }
4998     }
4999 
5000     // Things with matching constraints can only be registers, per gcc
5001     // documentation.  This mainly affects "g" constraints.
5002     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
5003       continue;
5004 
5005     // This constraint letter is more general than the previous one, use it.
5006     int Generality = getConstraintGenerality(CType);
5007     if (Generality > BestGenerality) {
5008       BestType = CType;
5009       BestIdx = i;
5010       BestGenerality = Generality;
5011     }
5012   }
5013 
5014   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
5015   OpInfo.ConstraintType = BestType;
5016 }
5017 
5018 /// Determines the constraint code and constraint type to use for the specific
5019 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5020 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5021                                             SDValue Op,
5022                                             SelectionDAG *DAG) const {
5023   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
5024 
5025   // Single-letter constraints ('r') are very common.
5026   if (OpInfo.Codes.size() == 1) {
5027     OpInfo.ConstraintCode = OpInfo.Codes[0];
5028     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5029   } else {
5030     ChooseConstraint(OpInfo, *this, Op, DAG);
5031   }
5032 
5033   // 'X' matches anything.
5034   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
5035     // Labels and constants are handled elsewhere ('X' is the only thing
5036     // that matches labels).  For Functions, the type here is the type of
5037     // the result, which is not what we want to look at; leave them alone.
5038     Value *v = OpInfo.CallOperandVal;
5039     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
5040       OpInfo.CallOperandVal = v;
5041       return;
5042     }
5043 
5044     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
5045       return;
5046 
5047     // Otherwise, try to resolve it to something we know about by looking at
5048     // the actual operand type.
5049     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5050       OpInfo.ConstraintCode = Repl;
5051       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5052     }
5053   }
5054 }
5055 
5056 /// Given an exact SDIV by a constant, create a multiplication
5057 /// with the multiplicative inverse of the constant.
5058 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5059                               const SDLoc &dl, SelectionDAG &DAG,
5060                               SmallVectorImpl<SDNode *> &Created) {
5061   SDValue Op0 = N->getOperand(0);
5062   SDValue Op1 = N->getOperand(1);
5063   EVT VT = N->getValueType(0);
5064   EVT SVT = VT.getScalarType();
5065   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5066   EVT ShSVT = ShVT.getScalarType();
5067 
5068   bool UseSRA = false;
5069   SmallVector<SDValue, 16> Shifts, Factors;
5070 
5071   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5072     if (C->isNullValue())
5073       return false;
5074     APInt Divisor = C->getAPIntValue();
5075     unsigned Shift = Divisor.countTrailingZeros();
5076     if (Shift) {
5077       Divisor.ashrInPlace(Shift);
5078       UseSRA = true;
5079     }
5080     // Calculate the multiplicative inverse, using Newton's method.
5081     APInt t;
5082     APInt Factor = Divisor;
5083     while ((t = Divisor * Factor) != 1)
5084       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5085     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5086     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5087     return true;
5088   };
5089 
5090   // Collect all magic values from the build vector.
5091   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5092     return SDValue();
5093 
5094   SDValue Shift, Factor;
5095   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5096     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5097     Factor = DAG.getBuildVector(VT, dl, Factors);
5098   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5099     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5100            "Expected matchUnaryPredicate to return one element for scalable "
5101            "vectors");
5102     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5103     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5104   } else {
5105     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5106     Shift = Shifts[0];
5107     Factor = Factors[0];
5108   }
5109 
5110   SDValue Res = Op0;
5111 
5112   // Shift the value upfront if it is even, so the LSB is one.
5113   if (UseSRA) {
5114     // TODO: For UDIV use SRL instead of SRA.
5115     SDNodeFlags Flags;
5116     Flags.setExact(true);
5117     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5118     Created.push_back(Res.getNode());
5119   }
5120 
5121   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5122 }
5123 
5124 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5125                               SelectionDAG &DAG,
5126                               SmallVectorImpl<SDNode *> &Created) const {
5127   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5128   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5129   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5130     return SDValue(N, 0); // Lower SDIV as SDIV
5131   return SDValue();
5132 }
5133 
5134 namespace {
5135 /// Magic data for optimising signed division by a constant.
5136 struct ms {
5137   APInt m;    ///< magic number
5138   unsigned s; ///< shift amount
5139 };
5140 
5141 /// Magic data for optimising unsigned division by a constant.
5142 struct mu {
5143   APInt m;    ///< magic number
5144   bool a;     ///< add indicator
5145   unsigned s; ///< shift amount
5146 };
5147 } // namespace
5148 
5149 /// Calculate the magic numbers required to implement an unsigned integer
5150 /// division by a constant as a sequence of multiplies, adds and shifts.
5151 /// Requires that the divisor not be 0.  Taken from "Hacker's Delight", Henry
5152 /// S. Warren, Jr., chapter 10.
5153 /// LeadingZeros can be used to simplify the calculation if the upper bits
5154 /// of the divided value are known zero.
5155 static mu magicu(const APInt &d, unsigned LeadingZeros = 0) {
5156   unsigned p;
5157   APInt nc, delta, q1, r1, q2, r2;
5158   struct mu magu;
5159   magu.a = 0; // initialize "add" indicator
5160   APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros);
5161   APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
5162   APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
5163 
5164   nc = allOnes - (allOnes - d).urem(d);
5165   p = d.getBitWidth() - 1;  // initialize p
5166   q1 = signedMin.udiv(nc);  // initialize q1 = 2p/nc
5167   r1 = signedMin - q1 * nc; // initialize r1 = rem(2p,nc)
5168   q2 = signedMax.udiv(d);   // initialize q2 = (2p-1)/d
5169   r2 = signedMax - q2 * d;  // initialize r2 = rem((2p-1),d)
5170   do {
5171     p = p + 1;
5172     if (r1.uge(nc - r1)) {
5173       q1 = q1 + q1 + 1;  // update q1
5174       r1 = r1 + r1 - nc; // update r1
5175     } else {
5176       q1 = q1 + q1; // update q1
5177       r1 = r1 + r1; // update r1
5178     }
5179     if ((r2 + 1).uge(d - r2)) {
5180       if (q2.uge(signedMax))
5181         magu.a = 1;
5182       q2 = q2 + q2 + 1;     // update q2
5183       r2 = r2 + r2 + 1 - d; // update r2
5184     } else {
5185       if (q2.uge(signedMin))
5186         magu.a = 1;
5187       q2 = q2 + q2;     // update q2
5188       r2 = r2 + r2 + 1; // update r2
5189     }
5190     delta = d - 1 - r2;
5191   } while (p < d.getBitWidth() * 2 &&
5192            (q1.ult(delta) || (q1 == delta && r1 == 0)));
5193   magu.m = q2 + 1;              // resulting magic number
5194   magu.s = p - d.getBitWidth(); // resulting shift
5195   return magu;
5196 }
5197 
5198 /// Calculate the magic numbers required to implement a signed integer division
5199 /// by a constant as a sequence of multiplies, adds and shifts.  Requires that
5200 /// the divisor not be 0, 1, or -1.  Taken from "Hacker's Delight", Henry S.
5201 /// Warren, Jr., Chapter 10.
5202 static ms magic(const APInt &d) {
5203   unsigned p;
5204   APInt ad, anc, delta, q1, r1, q2, r2, t;
5205   APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
5206   struct ms mag;
5207 
5208   ad = d.abs();
5209   t = signedMin + (d.lshr(d.getBitWidth() - 1));
5210   anc = t - 1 - t.urem(ad);  // absolute value of nc
5211   p = d.getBitWidth() - 1;   // initialize p
5212   q1 = signedMin.udiv(anc);  // initialize q1 = 2p/abs(nc)
5213   r1 = signedMin - q1 * anc; // initialize r1 = rem(2p,abs(nc))
5214   q2 = signedMin.udiv(ad);   // initialize q2 = 2p/abs(d)
5215   r2 = signedMin - q2 * ad;  // initialize r2 = rem(2p,abs(d))
5216   do {
5217     p = p + 1;
5218     q1 = q1 << 1;      // update q1 = 2p/abs(nc)
5219     r1 = r1 << 1;      // update r1 = rem(2p/abs(nc))
5220     if (r1.uge(anc)) { // must be unsigned comparison
5221       q1 = q1 + 1;
5222       r1 = r1 - anc;
5223     }
5224     q2 = q2 << 1;     // update q2 = 2p/abs(d)
5225     r2 = r2 << 1;     // update r2 = rem(2p/abs(d))
5226     if (r2.uge(ad)) { // must be unsigned comparison
5227       q2 = q2 + 1;
5228       r2 = r2 - ad;
5229     }
5230     delta = ad - r2;
5231   } while (q1.ult(delta) || (q1 == delta && r1 == 0));
5232 
5233   mag.m = q2 + 1;
5234   if (d.isNegative())
5235     mag.m = -mag.m;            // resulting magic number
5236   mag.s = p - d.getBitWidth(); // resulting shift
5237   return mag;
5238 }
5239 
5240 /// Given an ISD::SDIV node expressing a divide by constant,
5241 /// return a DAG expression to select that will generate the same value by
5242 /// multiplying by a magic number.
5243 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5244 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5245                                   bool IsAfterLegalization,
5246                                   SmallVectorImpl<SDNode *> &Created) const {
5247   SDLoc dl(N);
5248   EVT VT = N->getValueType(0);
5249   EVT SVT = VT.getScalarType();
5250   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5251   EVT ShSVT = ShVT.getScalarType();
5252   unsigned EltBits = VT.getScalarSizeInBits();
5253   EVT MulVT;
5254 
5255   // Check to see if we can do this.
5256   // FIXME: We should be more aggressive here.
5257   if (!isTypeLegal(VT)) {
5258     // Limit this to simple scalars for now.
5259     if (VT.isVector() || !VT.isSimple())
5260       return SDValue();
5261 
5262     // If this type will be promoted to a large enough type with a legal
5263     // multiply operation, we can go ahead and do this transform.
5264     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5265       return SDValue();
5266 
5267     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5268     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5269         !isOperationLegal(ISD::MUL, MulVT))
5270       return SDValue();
5271   }
5272 
5273   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5274   if (N->getFlags().hasExact())
5275     return BuildExactSDIV(*this, N, dl, DAG, Created);
5276 
5277   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5278 
5279   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5280     if (C->isNullValue())
5281       return false;
5282 
5283     const APInt &Divisor = C->getAPIntValue();
5284     ms magics = magic(Divisor);
5285     int NumeratorFactor = 0;
5286     int ShiftMask = -1;
5287 
5288     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
5289       // If d is +1/-1, we just multiply the numerator by +1/-1.
5290       NumeratorFactor = Divisor.getSExtValue();
5291       magics.m = 0;
5292       magics.s = 0;
5293       ShiftMask = 0;
5294     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
5295       // If d > 0 and m < 0, add the numerator.
5296       NumeratorFactor = 1;
5297     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
5298       // If d < 0 and m > 0, subtract the numerator.
5299       NumeratorFactor = -1;
5300     }
5301 
5302     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
5303     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5304     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
5305     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5306     return true;
5307   };
5308 
5309   SDValue N0 = N->getOperand(0);
5310   SDValue N1 = N->getOperand(1);
5311 
5312   // Collect the shifts / magic values from each element.
5313   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5314     return SDValue();
5315 
5316   SDValue MagicFactor, Factor, Shift, ShiftMask;
5317   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5318     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5319     Factor = DAG.getBuildVector(VT, dl, Factors);
5320     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5321     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5322   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5323     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5324            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5325            "Expected matchUnaryPredicate to return one element for scalable "
5326            "vectors");
5327     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5328     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5329     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5330     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5331   } else {
5332     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5333     MagicFactor = MagicFactors[0];
5334     Factor = Factors[0];
5335     Shift = Shifts[0];
5336     ShiftMask = ShiftMasks[0];
5337   }
5338 
5339   // Multiply the numerator (operand 0) by the magic value.
5340   // FIXME: We should support doing a MUL in a wider type.
5341   auto GetMULHS = [&](SDValue X, SDValue Y) {
5342     // If the type isn't legal, use a wider mul of the the type calculated
5343     // earlier.
5344     if (!isTypeLegal(VT)) {
5345       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5346       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5347       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5348       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5349                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5350       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5351     }
5352 
5353     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5354       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5355     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5356       SDValue LoHi =
5357           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5358       return SDValue(LoHi.getNode(), 1);
5359     }
5360     return SDValue();
5361   };
5362 
5363   SDValue Q = GetMULHS(N0, MagicFactor);
5364   if (!Q)
5365     return SDValue();
5366 
5367   Created.push_back(Q.getNode());
5368 
5369   // (Optionally) Add/subtract the numerator using Factor.
5370   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5371   Created.push_back(Factor.getNode());
5372   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5373   Created.push_back(Q.getNode());
5374 
5375   // Shift right algebraic by shift value.
5376   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5377   Created.push_back(Q.getNode());
5378 
5379   // Extract the sign bit, mask it and add it to the quotient.
5380   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5381   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5382   Created.push_back(T.getNode());
5383   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5384   Created.push_back(T.getNode());
5385   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5386 }
5387 
5388 /// Given an ISD::UDIV node expressing a divide by constant,
5389 /// return a DAG expression to select that will generate the same value by
5390 /// multiplying by a magic number.
5391 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5392 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5393                                   bool IsAfterLegalization,
5394                                   SmallVectorImpl<SDNode *> &Created) const {
5395   SDLoc dl(N);
5396   EVT VT = N->getValueType(0);
5397   EVT SVT = VT.getScalarType();
5398   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5399   EVT ShSVT = ShVT.getScalarType();
5400   unsigned EltBits = VT.getScalarSizeInBits();
5401   EVT MulVT;
5402 
5403   // Check to see if we can do this.
5404   // FIXME: We should be more aggressive here.
5405   if (!isTypeLegal(VT)) {
5406     // Limit this to simple scalars for now.
5407     if (VT.isVector() || !VT.isSimple())
5408       return SDValue();
5409 
5410     // If this type will be promoted to a large enough type with a legal
5411     // multiply operation, we can go ahead and do this transform.
5412     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5413       return SDValue();
5414 
5415     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5416     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5417         !isOperationLegal(ISD::MUL, MulVT))
5418       return SDValue();
5419   }
5420 
5421   bool UseNPQ = false;
5422   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5423 
5424   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5425     if (C->isNullValue())
5426       return false;
5427     // FIXME: We should use a narrower constant when the upper
5428     // bits are known to be zero.
5429     const APInt& Divisor = C->getAPIntValue();
5430     mu magics = magicu(Divisor);
5431     unsigned PreShift = 0, PostShift = 0;
5432 
5433     // If the divisor is even, we can avoid using the expensive fixup by
5434     // shifting the divided value upfront.
5435     if (magics.a != 0 && !Divisor[0]) {
5436       PreShift = Divisor.countTrailingZeros();
5437       // Get magic number for the shifted divisor.
5438       magics = magicu(Divisor.lshr(PreShift), PreShift);
5439       assert(magics.a == 0 && "Should use cheap fixup now");
5440     }
5441 
5442     APInt Magic = magics.m;
5443 
5444     unsigned SelNPQ;
5445     if (magics.a == 0 || Divisor.isOneValue()) {
5446       assert(magics.s < Divisor.getBitWidth() &&
5447              "We shouldn't generate an undefined shift!");
5448       PostShift = magics.s;
5449       SelNPQ = false;
5450     } else {
5451       PostShift = magics.s - 1;
5452       SelNPQ = true;
5453     }
5454 
5455     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5456     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5457     NPQFactors.push_back(
5458         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5459                                : APInt::getNullValue(EltBits),
5460                         dl, SVT));
5461     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5462     UseNPQ |= SelNPQ;
5463     return true;
5464   };
5465 
5466   SDValue N0 = N->getOperand(0);
5467   SDValue N1 = N->getOperand(1);
5468 
5469   // Collect the shifts/magic values from each element.
5470   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5471     return SDValue();
5472 
5473   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5474   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5475     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5476     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5477     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5478     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5479   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5480     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
5481            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
5482            "Expected matchUnaryPredicate to return one for scalable vectors");
5483     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5484     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5485     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5486     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5487   } else {
5488     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5489     PreShift = PreShifts[0];
5490     MagicFactor = MagicFactors[0];
5491     PostShift = PostShifts[0];
5492   }
5493 
5494   SDValue Q = N0;
5495   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5496   Created.push_back(Q.getNode());
5497 
5498   // FIXME: We should support doing a MUL in a wider type.
5499   auto GetMULHU = [&](SDValue X, SDValue Y) {
5500     // If the type isn't legal, use a wider mul of the the type calculated
5501     // earlier.
5502     if (!isTypeLegal(VT)) {
5503       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
5504       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
5505       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5506       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5507                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5508       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5509     }
5510 
5511     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
5512       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5513     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
5514       SDValue LoHi =
5515           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5516       return SDValue(LoHi.getNode(), 1);
5517     }
5518     return SDValue(); // No mulhu or equivalent
5519   };
5520 
5521   // Multiply the numerator (operand 0) by the magic value.
5522   Q = GetMULHU(Q, MagicFactor);
5523   if (!Q)
5524     return SDValue();
5525 
5526   Created.push_back(Q.getNode());
5527 
5528   if (UseNPQ) {
5529     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5530     Created.push_back(NPQ.getNode());
5531 
5532     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5533     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5534     if (VT.isVector())
5535       NPQ = GetMULHU(NPQ, NPQFactor);
5536     else
5537       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5538 
5539     Created.push_back(NPQ.getNode());
5540 
5541     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5542     Created.push_back(Q.getNode());
5543   }
5544 
5545   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5546   Created.push_back(Q.getNode());
5547 
5548   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5549 
5550   SDValue One = DAG.getConstant(1, dl, VT);
5551   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
5552   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5553 }
5554 
5555 /// If all values in Values that *don't* match the predicate are same 'splat'
5556 /// value, then replace all values with that splat value.
5557 /// Else, if AlternativeReplacement was provided, then replace all values that
5558 /// do match predicate with AlternativeReplacement value.
5559 static void
5560 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5561                           std::function<bool(SDValue)> Predicate,
5562                           SDValue AlternativeReplacement = SDValue()) {
5563   SDValue Replacement;
5564   // Is there a value for which the Predicate does *NOT* match? What is it?
5565   auto SplatValue = llvm::find_if_not(Values, Predicate);
5566   if (SplatValue != Values.end()) {
5567     // Does Values consist only of SplatValue's and values matching Predicate?
5568     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5569           return Value == *SplatValue || Predicate(Value);
5570         })) // Then we shall replace values matching predicate with SplatValue.
5571       Replacement = *SplatValue;
5572   }
5573   if (!Replacement) {
5574     // Oops, we did not find the "baseline" splat value.
5575     if (!AlternativeReplacement)
5576       return; // Nothing to do.
5577     // Let's replace with provided value then.
5578     Replacement = AlternativeReplacement;
5579   }
5580   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5581 }
5582 
5583 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5584 /// where the divisor is constant and the comparison target is zero,
5585 /// return a DAG expression that will generate the same comparison result
5586 /// using only multiplications, additions and shifts/rotations.
5587 /// Ref: "Hacker's Delight" 10-17.
5588 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5589                                         SDValue CompTargetNode,
5590                                         ISD::CondCode Cond,
5591                                         DAGCombinerInfo &DCI,
5592                                         const SDLoc &DL) const {
5593   SmallVector<SDNode *, 5> Built;
5594   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5595                                          DCI, DL, Built)) {
5596     for (SDNode *N : Built)
5597       DCI.AddToWorklist(N);
5598     return Folded;
5599   }
5600 
5601   return SDValue();
5602 }
5603 
5604 SDValue
5605 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5606                                   SDValue CompTargetNode, ISD::CondCode Cond,
5607                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5608                                   SmallVectorImpl<SDNode *> &Created) const {
5609   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5610   // - D must be constant, with D = D0 * 2^K where D0 is odd
5611   // - P is the multiplicative inverse of D0 modulo 2^W
5612   // - Q = floor(((2^W) - 1) / D)
5613   // where W is the width of the common type of N and D.
5614   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5615          "Only applicable for (in)equality comparisons.");
5616 
5617   SelectionDAG &DAG = DCI.DAG;
5618 
5619   EVT VT = REMNode.getValueType();
5620   EVT SVT = VT.getScalarType();
5621   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5622   EVT ShSVT = ShVT.getScalarType();
5623 
5624   // If MUL is unavailable, we cannot proceed in any case.
5625   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5626     return SDValue();
5627 
5628   bool ComparingWithAllZeros = true;
5629   bool AllComparisonsWithNonZerosAreTautological = true;
5630   bool HadTautologicalLanes = false;
5631   bool AllLanesAreTautological = true;
5632   bool HadEvenDivisor = false;
5633   bool AllDivisorsArePowerOfTwo = true;
5634   bool HadTautologicalInvertedLanes = false;
5635   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5636 
5637   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5638     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5639     if (CDiv->isNullValue())
5640       return false;
5641 
5642     const APInt &D = CDiv->getAPIntValue();
5643     const APInt &Cmp = CCmp->getAPIntValue();
5644 
5645     ComparingWithAllZeros &= Cmp.isNullValue();
5646 
5647     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5648     // if C2 is not less than C1, the comparison is always false.
5649     // But we will only be able to produce the comparison that will give the
5650     // opposive tautological answer. So this lane would need to be fixed up.
5651     bool TautologicalInvertedLane = D.ule(Cmp);
5652     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5653 
5654     // If all lanes are tautological (either all divisors are ones, or divisor
5655     // is not greater than the constant we are comparing with),
5656     // we will prefer to avoid the fold.
5657     bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane;
5658     HadTautologicalLanes |= TautologicalLane;
5659     AllLanesAreTautological &= TautologicalLane;
5660 
5661     // If we are comparing with non-zero, we need'll need  to subtract said
5662     // comparison value from the LHS. But there is no point in doing that if
5663     // every lane where we are comparing with non-zero is tautological..
5664     if (!Cmp.isNullValue())
5665       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5666 
5667     // Decompose D into D0 * 2^K
5668     unsigned K = D.countTrailingZeros();
5669     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5670     APInt D0 = D.lshr(K);
5671 
5672     // D is even if it has trailing zeros.
5673     HadEvenDivisor |= (K != 0);
5674     // D is a power-of-two if D0 is one.
5675     // If all divisors are power-of-two, we will prefer to avoid the fold.
5676     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5677 
5678     // P = inv(D0, 2^W)
5679     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5680     unsigned W = D.getBitWidth();
5681     APInt P = D0.zext(W + 1)
5682                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5683                   .trunc(W);
5684     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5685     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5686 
5687     // Q = floor((2^W - 1) u/ D)
5688     // R = ((2^W - 1) u% D)
5689     APInt Q, R;
5690     APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R);
5691 
5692     // If we are comparing with zero, then that comparison constant is okay,
5693     // else it may need to be one less than that.
5694     if (Cmp.ugt(R))
5695       Q -= 1;
5696 
5697     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5698            "We are expecting that K is always less than all-ones for ShSVT");
5699 
5700     // If the lane is tautological the result can be constant-folded.
5701     if (TautologicalLane) {
5702       // Set P and K amount to a bogus values so we can try to splat them.
5703       P = 0;
5704       K = -1;
5705       // And ensure that comparison constant is tautological,
5706       // it will always compare true/false.
5707       Q = -1;
5708     }
5709 
5710     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5711     KAmts.push_back(
5712         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5713     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5714     return true;
5715   };
5716 
5717   SDValue N = REMNode.getOperand(0);
5718   SDValue D = REMNode.getOperand(1);
5719 
5720   // Collect the values from each element.
5721   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5722     return SDValue();
5723 
5724   // If all lanes are tautological, the result can be constant-folded.
5725   if (AllLanesAreTautological)
5726     return SDValue();
5727 
5728   // If this is a urem by a powers-of-two, avoid the fold since it can be
5729   // best implemented as a bit test.
5730   if (AllDivisorsArePowerOfTwo)
5731     return SDValue();
5732 
5733   SDValue PVal, KVal, QVal;
5734   if (D.getOpcode() == ISD::BUILD_VECTOR) {
5735     if (HadTautologicalLanes) {
5736       // Try to turn PAmts into a splat, since we don't care about the values
5737       // that are currently '0'. If we can't, just keep '0'`s.
5738       turnVectorIntoSplatVector(PAmts, isNullConstant);
5739       // Try to turn KAmts into a splat, since we don't care about the values
5740       // that are currently '-1'. If we can't, change them to '0'`s.
5741       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5742                                 DAG.getConstant(0, DL, ShSVT));
5743     }
5744 
5745     PVal = DAG.getBuildVector(VT, DL, PAmts);
5746     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5747     QVal = DAG.getBuildVector(VT, DL, QAmts);
5748   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
5749     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
5750            "Expected matchBinaryPredicate to return one element for "
5751            "SPLAT_VECTORs");
5752     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
5753     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
5754     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
5755   } else {
5756     PVal = PAmts[0];
5757     KVal = KAmts[0];
5758     QVal = QAmts[0];
5759   }
5760 
5761   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5762     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
5763       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5764     assert(CompTargetNode.getValueType() == N.getValueType() &&
5765            "Expecting that the types on LHS and RHS of comparisons match.");
5766     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5767   }
5768 
5769   // (mul N, P)
5770   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5771   Created.push_back(Op0.getNode());
5772 
5773   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5774   // divisors as a performance improvement, since rotating by 0 is a no-op.
5775   if (HadEvenDivisor) {
5776     // We need ROTR to do this.
5777     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
5778       return SDValue();
5779     // UREM: (rotr (mul N, P), K)
5780     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
5781     Created.push_back(Op0.getNode());
5782   }
5783 
5784   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5785   SDValue NewCC =
5786       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5787                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5788   if (!HadTautologicalInvertedLanes)
5789     return NewCC;
5790 
5791   // If any lanes previously compared always-false, the NewCC will give
5792   // always-true result for them, so we need to fixup those lanes.
5793   // Or the other way around for inequality predicate.
5794   assert(VT.isVector() && "Can/should only get here for vectors.");
5795   Created.push_back(NewCC.getNode());
5796 
5797   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5798   // if C2 is not less than C1, the comparison is always false.
5799   // But we have produced the comparison that will give the
5800   // opposive tautological answer. So these lanes would need to be fixed up.
5801   SDValue TautologicalInvertedChannels =
5802       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5803   Created.push_back(TautologicalInvertedChannels.getNode());
5804 
5805   // NOTE: we avoid letting illegal types through even if we're before legalize
5806   // ops – legalization has a hard time producing good code for this.
5807   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5808     // If we have a vector select, let's replace the comparison results in the
5809     // affected lanes with the correct tautological result.
5810     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5811                                               DL, SETCCVT, SETCCVT);
5812     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5813                        Replacement, NewCC);
5814   }
5815 
5816   // Else, we can just invert the comparison result in the appropriate lanes.
5817   //
5818   // NOTE: see the note above VSELECT above.
5819   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5820     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5821                        TautologicalInvertedChannels);
5822 
5823   return SDValue(); // Don't know how to lower.
5824 }
5825 
5826 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5827 /// where the divisor is constant and the comparison target is zero,
5828 /// return a DAG expression that will generate the same comparison result
5829 /// using only multiplications, additions and shifts/rotations.
5830 /// Ref: "Hacker's Delight" 10-17.
5831 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5832                                         SDValue CompTargetNode,
5833                                         ISD::CondCode Cond,
5834                                         DAGCombinerInfo &DCI,
5835                                         const SDLoc &DL) const {
5836   SmallVector<SDNode *, 7> Built;
5837   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5838                                          DCI, DL, Built)) {
5839     assert(Built.size() <= 7 && "Max size prediction failed.");
5840     for (SDNode *N : Built)
5841       DCI.AddToWorklist(N);
5842     return Folded;
5843   }
5844 
5845   return SDValue();
5846 }
5847 
5848 SDValue
5849 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5850                                   SDValue CompTargetNode, ISD::CondCode Cond,
5851                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5852                                   SmallVectorImpl<SDNode *> &Created) const {
5853   // Fold:
5854   //   (seteq/ne (srem N, D), 0)
5855   // To:
5856   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5857   //
5858   // - D must be constant, with D = D0 * 2^K where D0 is odd
5859   // - P is the multiplicative inverse of D0 modulo 2^W
5860   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5861   // - Q = floor((2 * A) / (2^K))
5862   // where W is the width of the common type of N and D.
5863   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5864          "Only applicable for (in)equality comparisons.");
5865 
5866   SelectionDAG &DAG = DCI.DAG;
5867 
5868   EVT VT = REMNode.getValueType();
5869   EVT SVT = VT.getScalarType();
5870   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5871   EVT ShSVT = ShVT.getScalarType();
5872 
5873   // If we are after ops legalization, and MUL is unavailable, we can not
5874   // proceed.
5875   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5876     return SDValue();
5877 
5878   // TODO: Could support comparing with non-zero too.
5879   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5880   if (!CompTarget || !CompTarget->isNullValue())
5881     return SDValue();
5882 
5883   bool HadIntMinDivisor = false;
5884   bool HadOneDivisor = false;
5885   bool AllDivisorsAreOnes = true;
5886   bool HadEvenDivisor = false;
5887   bool NeedToApplyOffset = false;
5888   bool AllDivisorsArePowerOfTwo = true;
5889   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5890 
5891   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5892     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5893     if (C->isNullValue())
5894       return false;
5895 
5896     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5897 
5898     // WARNING: this fold is only valid for positive divisors!
5899     APInt D = C->getAPIntValue();
5900     if (D.isNegative())
5901       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5902 
5903     HadIntMinDivisor |= D.isMinSignedValue();
5904 
5905     // If all divisors are ones, we will prefer to avoid the fold.
5906     HadOneDivisor |= D.isOneValue();
5907     AllDivisorsAreOnes &= D.isOneValue();
5908 
5909     // Decompose D into D0 * 2^K
5910     unsigned K = D.countTrailingZeros();
5911     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5912     APInt D0 = D.lshr(K);
5913 
5914     if (!D.isMinSignedValue()) {
5915       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5916       // we don't care about this lane in this fold, we'll special-handle it.
5917       HadEvenDivisor |= (K != 0);
5918     }
5919 
5920     // D is a power-of-two if D0 is one. This includes INT_MIN.
5921     // If all divisors are power-of-two, we will prefer to avoid the fold.
5922     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5923 
5924     // P = inv(D0, 2^W)
5925     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5926     unsigned W = D.getBitWidth();
5927     APInt P = D0.zext(W + 1)
5928                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5929                   .trunc(W);
5930     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5931     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5932 
5933     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5934     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5935     A.clearLowBits(K);
5936 
5937     if (!D.isMinSignedValue()) {
5938       // If divisor INT_MIN, then we don't care about this lane in this fold,
5939       // we'll special-handle it.
5940       NeedToApplyOffset |= A != 0;
5941     }
5942 
5943     // Q = floor((2 * A) / (2^K))
5944     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5945 
5946     assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5947            "We are expecting that A is always less than all-ones for SVT");
5948     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5949            "We are expecting that K is always less than all-ones for ShSVT");
5950 
5951     // If the divisor is 1 the result can be constant-folded. Likewise, we
5952     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5953     if (D.isOneValue()) {
5954       // Set P, A and K to a bogus values so we can try to splat them.
5955       P = 0;
5956       A = -1;
5957       K = -1;
5958 
5959       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5960       Q = -1;
5961     }
5962 
5963     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5964     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5965     KAmts.push_back(
5966         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5967     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5968     return true;
5969   };
5970 
5971   SDValue N = REMNode.getOperand(0);
5972   SDValue D = REMNode.getOperand(1);
5973 
5974   // Collect the values from each element.
5975   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5976     return SDValue();
5977 
5978   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5979   if (AllDivisorsAreOnes)
5980     return SDValue();
5981 
5982   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5983   // since it can be best implemented as a bit test.
5984   if (AllDivisorsArePowerOfTwo)
5985     return SDValue();
5986 
5987   SDValue PVal, AVal, KVal, QVal;
5988   if (D.getOpcode() == ISD::BUILD_VECTOR) {
5989     if (HadOneDivisor) {
5990       // Try to turn PAmts into a splat, since we don't care about the values
5991       // that are currently '0'. If we can't, just keep '0'`s.
5992       turnVectorIntoSplatVector(PAmts, isNullConstant);
5993       // Try to turn AAmts into a splat, since we don't care about the
5994       // values that are currently '-1'. If we can't, change them to '0'`s.
5995       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5996                                 DAG.getConstant(0, DL, SVT));
5997       // Try to turn KAmts into a splat, since we don't care about the values
5998       // that are currently '-1'. If we can't, change them to '0'`s.
5999       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6000                                 DAG.getConstant(0, DL, ShSVT));
6001     }
6002 
6003     PVal = DAG.getBuildVector(VT, DL, PAmts);
6004     AVal = DAG.getBuildVector(VT, DL, AAmts);
6005     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6006     QVal = DAG.getBuildVector(VT, DL, QAmts);
6007   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6008     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
6009            QAmts.size() == 1 &&
6010            "Expected matchUnaryPredicate to return one element for scalable "
6011            "vectors");
6012     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6013     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
6014     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6015     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6016   } else {
6017     assert(isa<ConstantSDNode>(D) && "Expected a constant");
6018     PVal = PAmts[0];
6019     AVal = AAmts[0];
6020     KVal = KAmts[0];
6021     QVal = QAmts[0];
6022   }
6023 
6024   // (mul N, P)
6025   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6026   Created.push_back(Op0.getNode());
6027 
6028   if (NeedToApplyOffset) {
6029     // We need ADD to do this.
6030     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
6031       return SDValue();
6032 
6033     // (add (mul N, P), A)
6034     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
6035     Created.push_back(Op0.getNode());
6036   }
6037 
6038   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6039   // divisors as a performance improvement, since rotating by 0 is a no-op.
6040   if (HadEvenDivisor) {
6041     // We need ROTR to do this.
6042     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6043       return SDValue();
6044     // SREM: (rotr (add (mul N, P), A), K)
6045     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6046     Created.push_back(Op0.getNode());
6047   }
6048 
6049   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
6050   SDValue Fold =
6051       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6052                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6053 
6054   // If we didn't have lanes with INT_MIN divisor, then we're done.
6055   if (!HadIntMinDivisor)
6056     return Fold;
6057 
6058   // That fold is only valid for positive divisors. Which effectively means,
6059   // it is invalid for INT_MIN divisors. So if we have such a lane,
6060   // we must fix-up results for said lanes.
6061   assert(VT.isVector() && "Can/should only get here for vectors.");
6062 
6063   // NOTE: we avoid letting illegal types through even if we're before legalize
6064   // ops – legalization has a hard time producing good code for the code that
6065   // follows.
6066   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
6067       !isOperationLegalOrCustom(ISD::AND, VT) ||
6068       !isOperationLegalOrCustom(Cond, VT) ||
6069       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
6070     return SDValue();
6071 
6072   Created.push_back(Fold.getNode());
6073 
6074   SDValue IntMin = DAG.getConstant(
6075       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
6076   SDValue IntMax = DAG.getConstant(
6077       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
6078   SDValue Zero =
6079       DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
6080 
6081   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
6082   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
6083   Created.push_back(DivisorIsIntMin.getNode());
6084 
6085   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
6086   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
6087   Created.push_back(Masked.getNode());
6088   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
6089   Created.push_back(MaskedIsZero.getNode());
6090 
6091   // To produce final result we need to blend 2 vectors: 'SetCC' and
6092   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
6093   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
6094   // constant-folded, select can get lowered to a shuffle with constant mask.
6095   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
6096                                 MaskedIsZero, Fold);
6097 
6098   return Blended;
6099 }
6100 
6101 bool TargetLowering::
6102 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
6103   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
6104     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
6105                                 "be a constant integer");
6106     return true;
6107   }
6108 
6109   return false;
6110 }
6111 
6112 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
6113                                          const DenormalMode &Mode) const {
6114   SDLoc DL(Op);
6115   EVT VT = Op.getValueType();
6116   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6117   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
6118   // Testing it with denormal inputs to avoid wrong estimate.
6119   if (Mode.Input == DenormalMode::IEEE) {
6120     // This is specifically a check for the handling of denormal inputs,
6121     // not the result.
6122 
6123     // Test = fabs(X) < SmallestNormal
6124     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
6125     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
6126     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
6127     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
6128     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
6129   }
6130   // Test = X == 0.0
6131   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
6132 }
6133 
6134 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
6135                                              bool LegalOps, bool OptForSize,
6136                                              NegatibleCost &Cost,
6137                                              unsigned Depth) const {
6138   // fneg is removable even if it has multiple uses.
6139   if (Op.getOpcode() == ISD::FNEG) {
6140     Cost = NegatibleCost::Cheaper;
6141     return Op.getOperand(0);
6142   }
6143 
6144   // Don't recurse exponentially.
6145   if (Depth > SelectionDAG::MaxRecursionDepth)
6146     return SDValue();
6147 
6148   // Pre-increment recursion depth for use in recursive calls.
6149   ++Depth;
6150   const SDNodeFlags Flags = Op->getFlags();
6151   const TargetOptions &Options = DAG.getTarget().Options;
6152   EVT VT = Op.getValueType();
6153   unsigned Opcode = Op.getOpcode();
6154 
6155   // Don't allow anything with multiple uses unless we know it is free.
6156   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6157     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6158                         isFPExtFree(VT, Op.getOperand(0).getValueType());
6159     if (!IsFreeExtend)
6160       return SDValue();
6161   }
6162 
6163   auto RemoveDeadNode = [&](SDValue N) {
6164     if (N && N.getNode()->use_empty())
6165       DAG.RemoveDeadNode(N.getNode());
6166   };
6167 
6168   SDLoc DL(Op);
6169 
6170   // Because getNegatedExpression can delete nodes we need a handle to keep
6171   // temporary nodes alive in case the recursion manages to create an identical
6172   // node.
6173   std::list<HandleSDNode> Handles;
6174 
6175   switch (Opcode) {
6176   case ISD::ConstantFP: {
6177     // Don't invert constant FP values after legalization unless the target says
6178     // the negated constant is legal.
6179     bool IsOpLegal =
6180         isOperationLegal(ISD::ConstantFP, VT) ||
6181         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6182                      OptForSize);
6183 
6184     if (LegalOps && !IsOpLegal)
6185       break;
6186 
6187     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6188     V.changeSign();
6189     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6190 
6191     // If we already have the use of the negated floating constant, it is free
6192     // to negate it even it has multiple uses.
6193     if (!Op.hasOneUse() && CFP.use_empty())
6194       break;
6195     Cost = NegatibleCost::Neutral;
6196     return CFP;
6197   }
6198   case ISD::BUILD_VECTOR: {
6199     // Only permit BUILD_VECTOR of constants.
6200     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6201           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6202         }))
6203       break;
6204 
6205     bool IsOpLegal =
6206         (isOperationLegal(ISD::ConstantFP, VT) &&
6207          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6208         llvm::all_of(Op->op_values(), [&](SDValue N) {
6209           return N.isUndef() ||
6210                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6211                               OptForSize);
6212         });
6213 
6214     if (LegalOps && !IsOpLegal)
6215       break;
6216 
6217     SmallVector<SDValue, 4> Ops;
6218     for (SDValue C : Op->op_values()) {
6219       if (C.isUndef()) {
6220         Ops.push_back(C);
6221         continue;
6222       }
6223       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6224       V.changeSign();
6225       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6226     }
6227     Cost = NegatibleCost::Neutral;
6228     return DAG.getBuildVector(VT, DL, Ops);
6229   }
6230   case ISD::FADD: {
6231     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6232       break;
6233 
6234     // After operation legalization, it might not be legal to create new FSUBs.
6235     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6236       break;
6237     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6238 
6239     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6240     NegatibleCost CostX = NegatibleCost::Expensive;
6241     SDValue NegX =
6242         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6243     // Prevent this node from being deleted by the next call.
6244     if (NegX)
6245       Handles.emplace_back(NegX);
6246 
6247     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6248     NegatibleCost CostY = NegatibleCost::Expensive;
6249     SDValue NegY =
6250         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6251 
6252     // We're done with the handles.
6253     Handles.clear();
6254 
6255     // Negate the X if its cost is less or equal than Y.
6256     if (NegX && (CostX <= CostY)) {
6257       Cost = CostX;
6258       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6259       if (NegY != N)
6260         RemoveDeadNode(NegY);
6261       return N;
6262     }
6263 
6264     // Negate the Y if it is not expensive.
6265     if (NegY) {
6266       Cost = CostY;
6267       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6268       if (NegX != N)
6269         RemoveDeadNode(NegX);
6270       return N;
6271     }
6272     break;
6273   }
6274   case ISD::FSUB: {
6275     // We can't turn -(A-B) into B-A when we honor signed zeros.
6276     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6277       break;
6278 
6279     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6280     // fold (fneg (fsub 0, Y)) -> Y
6281     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6282       if (C->isZero()) {
6283         Cost = NegatibleCost::Cheaper;
6284         return Y;
6285       }
6286 
6287     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6288     Cost = NegatibleCost::Neutral;
6289     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6290   }
6291   case ISD::FMUL:
6292   case ISD::FDIV: {
6293     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6294 
6295     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6296     NegatibleCost CostX = NegatibleCost::Expensive;
6297     SDValue NegX =
6298         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6299     // Prevent this node from being deleted by the next call.
6300     if (NegX)
6301       Handles.emplace_back(NegX);
6302 
6303     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6304     NegatibleCost CostY = NegatibleCost::Expensive;
6305     SDValue NegY =
6306         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6307 
6308     // We're done with the handles.
6309     Handles.clear();
6310 
6311     // Negate the X if its cost is less or equal than Y.
6312     if (NegX && (CostX <= CostY)) {
6313       Cost = CostX;
6314       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6315       if (NegY != N)
6316         RemoveDeadNode(NegY);
6317       return N;
6318     }
6319 
6320     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6321     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6322       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6323         break;
6324 
6325     // Negate the Y if it is not expensive.
6326     if (NegY) {
6327       Cost = CostY;
6328       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6329       if (NegX != N)
6330         RemoveDeadNode(NegX);
6331       return N;
6332     }
6333     break;
6334   }
6335   case ISD::FMA:
6336   case ISD::FMAD: {
6337     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6338       break;
6339 
6340     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6341     NegatibleCost CostZ = NegatibleCost::Expensive;
6342     SDValue NegZ =
6343         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6344     // Give up if fail to negate the Z.
6345     if (!NegZ)
6346       break;
6347 
6348     // Prevent this node from being deleted by the next two calls.
6349     Handles.emplace_back(NegZ);
6350 
6351     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6352     NegatibleCost CostX = NegatibleCost::Expensive;
6353     SDValue NegX =
6354         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6355     // Prevent this node from being deleted by the next call.
6356     if (NegX)
6357       Handles.emplace_back(NegX);
6358 
6359     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6360     NegatibleCost CostY = NegatibleCost::Expensive;
6361     SDValue NegY =
6362         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6363 
6364     // We're done with the handles.
6365     Handles.clear();
6366 
6367     // Negate the X if its cost is less or equal than Y.
6368     if (NegX && (CostX <= CostY)) {
6369       Cost = std::min(CostX, CostZ);
6370       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6371       if (NegY != N)
6372         RemoveDeadNode(NegY);
6373       return N;
6374     }
6375 
6376     // Negate the Y if it is not expensive.
6377     if (NegY) {
6378       Cost = std::min(CostY, CostZ);
6379       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6380       if (NegX != N)
6381         RemoveDeadNode(NegX);
6382       return N;
6383     }
6384     break;
6385   }
6386 
6387   case ISD::FP_EXTEND:
6388   case ISD::FSIN:
6389     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6390                                             OptForSize, Cost, Depth))
6391       return DAG.getNode(Opcode, DL, VT, NegV);
6392     break;
6393   case ISD::FP_ROUND:
6394     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6395                                             OptForSize, Cost, Depth))
6396       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6397     break;
6398   }
6399 
6400   return SDValue();
6401 }
6402 
6403 //===----------------------------------------------------------------------===//
6404 // Legalization Utilities
6405 //===----------------------------------------------------------------------===//
6406 
6407 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6408                                     SDValue LHS, SDValue RHS,
6409                                     SmallVectorImpl<SDValue> &Result,
6410                                     EVT HiLoVT, SelectionDAG &DAG,
6411                                     MulExpansionKind Kind, SDValue LL,
6412                                     SDValue LH, SDValue RL, SDValue RH) const {
6413   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6414          Opcode == ISD::SMUL_LOHI);
6415 
6416   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6417                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6418   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6419                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6420   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6421                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6422   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6423                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6424 
6425   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6426     return false;
6427 
6428   unsigned OuterBitSize = VT.getScalarSizeInBits();
6429   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6430 
6431   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6432   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6433          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6434 
6435   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6436   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6437                           bool Signed) -> bool {
6438     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6439       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6440       Hi = SDValue(Lo.getNode(), 1);
6441       return true;
6442     }
6443     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6444       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6445       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6446       return true;
6447     }
6448     return false;
6449   };
6450 
6451   SDValue Lo, Hi;
6452 
6453   if (!LL.getNode() && !RL.getNode() &&
6454       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6455     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6456     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6457   }
6458 
6459   if (!LL.getNode())
6460     return false;
6461 
6462   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6463   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6464       DAG.MaskedValueIsZero(RHS, HighMask)) {
6465     // The inputs are both zero-extended.
6466     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6467       Result.push_back(Lo);
6468       Result.push_back(Hi);
6469       if (Opcode != ISD::MUL) {
6470         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6471         Result.push_back(Zero);
6472         Result.push_back(Zero);
6473       }
6474       return true;
6475     }
6476   }
6477 
6478   if (!VT.isVector() && Opcode == ISD::MUL &&
6479       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6480       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6481     // The input values are both sign-extended.
6482     // TODO non-MUL case?
6483     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6484       Result.push_back(Lo);
6485       Result.push_back(Hi);
6486       return true;
6487     }
6488   }
6489 
6490   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6491   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6492   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
6493     // FIXME getShiftAmountTy does not always return a sensible result when VT
6494     // is an illegal type, and so the type may be too small to fit the shift
6495     // amount. Override it with i32. The shift will have to be legalized.
6496     ShiftAmountTy = MVT::i32;
6497   }
6498   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6499 
6500   if (!LH.getNode() && !RH.getNode() &&
6501       isOperationLegalOrCustom(ISD::SRL, VT) &&
6502       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6503     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6504     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6505     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6506     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6507   }
6508 
6509   if (!LH.getNode())
6510     return false;
6511 
6512   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6513     return false;
6514 
6515   Result.push_back(Lo);
6516 
6517   if (Opcode == ISD::MUL) {
6518     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6519     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6520     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6521     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6522     Result.push_back(Hi);
6523     return true;
6524   }
6525 
6526   // Compute the full width result.
6527   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6528     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6529     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6530     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6531     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6532   };
6533 
6534   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6535   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6536     return false;
6537 
6538   // This is effectively the add part of a multiply-add of half-sized operands,
6539   // so it cannot overflow.
6540   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6541 
6542   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6543     return false;
6544 
6545   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6546   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6547 
6548   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6549                   isOperationLegalOrCustom(ISD::ADDE, VT));
6550   if (UseGlue)
6551     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6552                        Merge(Lo, Hi));
6553   else
6554     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6555                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6556 
6557   SDValue Carry = Next.getValue(1);
6558   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6559   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6560 
6561   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6562     return false;
6563 
6564   if (UseGlue)
6565     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6566                      Carry);
6567   else
6568     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6569                      Zero, Carry);
6570 
6571   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6572 
6573   if (Opcode == ISD::SMUL_LOHI) {
6574     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6575                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6576     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6577 
6578     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6579                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6580     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6581   }
6582 
6583   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6584   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6585   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6586   return true;
6587 }
6588 
6589 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6590                                SelectionDAG &DAG, MulExpansionKind Kind,
6591                                SDValue LL, SDValue LH, SDValue RL,
6592                                SDValue RH) const {
6593   SmallVector<SDValue, 2> Result;
6594   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6595                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6596                            DAG, Kind, LL, LH, RL, RH);
6597   if (Ok) {
6598     assert(Result.size() == 2);
6599     Lo = Result[0];
6600     Hi = Result[1];
6601   }
6602   return Ok;
6603 }
6604 
6605 // Check that (every element of) Z is undef or not an exact multiple of BW.
6606 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
6607   return ISD::matchUnaryPredicate(
6608       Z,
6609       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
6610       true);
6611 }
6612 
6613 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
6614                                        SelectionDAG &DAG) const {
6615   EVT VT = Node->getValueType(0);
6616 
6617   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6618                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6619                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6620                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6621     return false;
6622 
6623   SDValue X = Node->getOperand(0);
6624   SDValue Y = Node->getOperand(1);
6625   SDValue Z = Node->getOperand(2);
6626 
6627   unsigned BW = VT.getScalarSizeInBits();
6628   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6629   SDLoc DL(SDValue(Node, 0));
6630 
6631   EVT ShVT = Z.getValueType();
6632 
6633   // If a funnel shift in the other direction is more supported, use it.
6634   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
6635   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6636       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
6637     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6638       // fshl X, Y, Z -> fshr X, Y, -Z
6639       // fshr X, Y, Z -> fshl X, Y, -Z
6640       SDValue Zero = DAG.getConstant(0, DL, ShVT);
6641       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
6642     } else {
6643       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
6644       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
6645       SDValue One = DAG.getConstant(1, DL, ShVT);
6646       if (IsFSHL) {
6647         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6648         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
6649       } else {
6650         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6651         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
6652       }
6653       Z = DAG.getNOT(DL, Z, ShVT);
6654     }
6655     Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
6656     return true;
6657   }
6658 
6659   SDValue ShX, ShY;
6660   SDValue ShAmt, InvShAmt;
6661   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6662     // fshl: X << C | Y >> (BW - C)
6663     // fshr: X << (BW - C) | Y >> C
6664     // where C = Z % BW is not zero
6665     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6666     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6667     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6668     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6669     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6670   } else {
6671     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6672     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6673     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
6674     if (isPowerOf2_32(BW)) {
6675       // Z % BW -> Z & (BW - 1)
6676       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6677       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
6678       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
6679     } else {
6680       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6681       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6682       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
6683     }
6684 
6685     SDValue One = DAG.getConstant(1, DL, ShVT);
6686     if (IsFSHL) {
6687       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
6688       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
6689       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
6690     } else {
6691       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
6692       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
6693       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
6694     }
6695   }
6696   Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6697   return true;
6698 }
6699 
6700 // TODO: Merge with expandFunnelShift.
6701 bool TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
6702                                SDValue &Result, SelectionDAG &DAG) const {
6703   EVT VT = Node->getValueType(0);
6704   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6705   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6706   SDValue Op0 = Node->getOperand(0);
6707   SDValue Op1 = Node->getOperand(1);
6708   SDLoc DL(SDValue(Node, 0));
6709 
6710   EVT ShVT = Op1.getValueType();
6711   SDValue Zero = DAG.getConstant(0, DL, ShVT);
6712 
6713   // If a rotate in the other direction is supported, use it.
6714   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6715   if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
6716     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6717     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6718     return true;
6719   }
6720 
6721   if (!AllowVectorOps && VT.isVector() &&
6722       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6723        !isOperationLegalOrCustom(ISD::SRL, VT) ||
6724        !isOperationLegalOrCustom(ISD::SUB, VT) ||
6725        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6726        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6727     return false;
6728 
6729   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6730   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6731   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6732   SDValue ShVal;
6733   SDValue HsVal;
6734   if (isPowerOf2_32(EltSizeInBits)) {
6735     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
6736     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
6737     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6738     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6739     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6740     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6741     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
6742   } else {
6743     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
6744     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
6745     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6746     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
6747     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6748     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
6749     SDValue One = DAG.getConstant(1, DL, ShVT);
6750     HsVal =
6751         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
6752   }
6753   Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
6754   return true;
6755 }
6756 
6757 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
6758                                       SelectionDAG &DAG) const {
6759   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
6760   EVT VT = Node->getValueType(0);
6761   unsigned VTBits = VT.getScalarSizeInBits();
6762   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
6763 
6764   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
6765   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
6766   SDValue ShOpLo = Node->getOperand(0);
6767   SDValue ShOpHi = Node->getOperand(1);
6768   SDValue ShAmt = Node->getOperand(2);
6769   EVT ShAmtVT = ShAmt.getValueType();
6770   EVT ShAmtCCVT =
6771       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
6772   SDLoc dl(Node);
6773 
6774   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
6775   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
6776   // away during isel.
6777   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6778                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
6779   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6780                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
6781                        : DAG.getConstant(0, dl, VT);
6782 
6783   SDValue Tmp2, Tmp3;
6784   if (IsSHL) {
6785     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
6786     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
6787   } else {
6788     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
6789     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
6790   }
6791 
6792   // If the shift amount is larger or equal than the width of a part we don't
6793   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
6794   // values for large shift amounts.
6795   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6796                                 DAG.getConstant(VTBits, dl, ShAmtVT));
6797   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
6798                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
6799 
6800   if (IsSHL) {
6801     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6802     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6803   } else {
6804     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6805     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6806   }
6807 }
6808 
6809 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6810                                       SelectionDAG &DAG) const {
6811   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6812   SDValue Src = Node->getOperand(OpNo);
6813   EVT SrcVT = Src.getValueType();
6814   EVT DstVT = Node->getValueType(0);
6815   SDLoc dl(SDValue(Node, 0));
6816 
6817   // FIXME: Only f32 to i64 conversions are supported.
6818   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6819     return false;
6820 
6821   if (Node->isStrictFPOpcode())
6822     // When a NaN is converted to an integer a trap is allowed. We can't
6823     // use this expansion here because it would eliminate that trap. Other
6824     // traps are also allowed and cannot be eliminated. See
6825     // IEEE 754-2008 sec 5.8.
6826     return false;
6827 
6828   // Expand f32 -> i64 conversion
6829   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6830   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
6831   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6832   EVT IntVT = SrcVT.changeTypeToInteger();
6833   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6834 
6835   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6836   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6837   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6838   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6839   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6840   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6841 
6842   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6843 
6844   SDValue ExponentBits = DAG.getNode(
6845       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6846       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6847   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6848 
6849   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6850                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6851                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6852   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6853 
6854   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6855                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6856                           DAG.getConstant(0x00800000, dl, IntVT));
6857 
6858   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6859 
6860   R = DAG.getSelectCC(
6861       dl, Exponent, ExponentLoBit,
6862       DAG.getNode(ISD::SHL, dl, DstVT, R,
6863                   DAG.getZExtOrTrunc(
6864                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6865                       dl, IntShVT)),
6866       DAG.getNode(ISD::SRL, dl, DstVT, R,
6867                   DAG.getZExtOrTrunc(
6868                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6869                       dl, IntShVT)),
6870       ISD::SETGT);
6871 
6872   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6873                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6874 
6875   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6876                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6877   return true;
6878 }
6879 
6880 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6881                                       SDValue &Chain,
6882                                       SelectionDAG &DAG) const {
6883   SDLoc dl(SDValue(Node, 0));
6884   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6885   SDValue Src = Node->getOperand(OpNo);
6886 
6887   EVT SrcVT = Src.getValueType();
6888   EVT DstVT = Node->getValueType(0);
6889   EVT SetCCVT =
6890       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6891   EVT DstSetCCVT =
6892       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6893 
6894   // Only expand vector types if we have the appropriate vector bit operations.
6895   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6896                                                    ISD::FP_TO_SINT;
6897   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6898                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6899     return false;
6900 
6901   // If the maximum float value is smaller then the signed integer range,
6902   // the destination signmask can't be represented by the float, so we can
6903   // just use FP_TO_SINT directly.
6904   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6905   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
6906   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6907   if (APFloat::opOverflow &
6908       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6909     if (Node->isStrictFPOpcode()) {
6910       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6911                            { Node->getOperand(0), Src });
6912       Chain = Result.getValue(1);
6913     } else
6914       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6915     return true;
6916   }
6917 
6918   // Don't expand it if there isn't cheap fsub instruction.
6919   if (!isOperationLegalOrCustom(
6920           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
6921     return false;
6922 
6923   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6924   SDValue Sel;
6925 
6926   if (Node->isStrictFPOpcode()) {
6927     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6928                        Node->getOperand(0), /*IsSignaling*/ true);
6929     Chain = Sel.getValue(1);
6930   } else {
6931     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6932   }
6933 
6934   bool Strict = Node->isStrictFPOpcode() ||
6935                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6936 
6937   if (Strict) {
6938     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6939     // signmask then offset (the result of which should be fully representable).
6940     // Sel = Src < 0x8000000000000000
6941     // FltOfs = select Sel, 0, 0x8000000000000000
6942     // IntOfs = select Sel, 0, 0x8000000000000000
6943     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6944 
6945     // TODO: Should any fast-math-flags be set for the FSUB?
6946     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6947                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6948     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6949     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6950                                    DAG.getConstant(0, dl, DstVT),
6951                                    DAG.getConstant(SignMask, dl, DstVT));
6952     SDValue SInt;
6953     if (Node->isStrictFPOpcode()) {
6954       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6955                                 { Chain, Src, FltOfs });
6956       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6957                          { Val.getValue(1), Val });
6958       Chain = SInt.getValue(1);
6959     } else {
6960       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6961       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6962     }
6963     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6964   } else {
6965     // Expand based on maximum range of FP_TO_SINT:
6966     // True = fp_to_sint(Src)
6967     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6968     // Result = select (Src < 0x8000000000000000), True, False
6969 
6970     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6971     // TODO: Should any fast-math-flags be set for the FSUB?
6972     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6973                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6974     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6975                         DAG.getConstant(SignMask, dl, DstVT));
6976     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6977     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6978   }
6979   return true;
6980 }
6981 
6982 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6983                                       SDValue &Chain,
6984                                       SelectionDAG &DAG) const {
6985   // This transform is not correct for converting 0 when rounding mode is set
6986   // to round toward negative infinity which will produce -0.0. So disable under
6987   // strictfp.
6988   if (Node->isStrictFPOpcode())
6989     return false;
6990 
6991   SDValue Src = Node->getOperand(0);
6992   EVT SrcVT = Src.getValueType();
6993   EVT DstVT = Node->getValueType(0);
6994 
6995   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6996     return false;
6997 
6998   // Only expand vector types if we have the appropriate vector bit operations.
6999   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
7000                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
7001                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
7002                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
7003                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
7004     return false;
7005 
7006   SDLoc dl(SDValue(Node, 0));
7007   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
7008 
7009   // Implementation of unsigned i64 to f64 following the algorithm in
7010   // __floatundidf in compiler_rt.  This implementation performs rounding
7011   // correctly in all rounding modes with the exception of converting 0
7012   // when rounding toward negative infinity. In that case the fsub will produce
7013   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
7014   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
7015   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
7016       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
7017   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
7018   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
7019   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
7020 
7021   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
7022   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
7023   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
7024   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
7025   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
7026   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
7027   SDValue HiSub =
7028       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
7029   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
7030   return true;
7031 }
7032 
7033 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
7034                                               SelectionDAG &DAG) const {
7035   SDLoc dl(Node);
7036   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
7037     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
7038   EVT VT = Node->getValueType(0);
7039 
7040   if (VT.isScalableVector())
7041     report_fatal_error(
7042         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
7043 
7044   if (isOperationLegalOrCustom(NewOp, VT)) {
7045     SDValue Quiet0 = Node->getOperand(0);
7046     SDValue Quiet1 = Node->getOperand(1);
7047 
7048     if (!Node->getFlags().hasNoNaNs()) {
7049       // Insert canonicalizes if it's possible we need to quiet to get correct
7050       // sNaN behavior.
7051       if (!DAG.isKnownNeverSNaN(Quiet0)) {
7052         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
7053                              Node->getFlags());
7054       }
7055       if (!DAG.isKnownNeverSNaN(Quiet1)) {
7056         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
7057                              Node->getFlags());
7058       }
7059     }
7060 
7061     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
7062   }
7063 
7064   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
7065   // instead if there are no NaNs.
7066   if (Node->getFlags().hasNoNaNs()) {
7067     unsigned IEEE2018Op =
7068         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
7069     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
7070       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
7071                          Node->getOperand(1), Node->getFlags());
7072     }
7073   }
7074 
7075   // If none of the above worked, but there are no NaNs, then expand to
7076   // a compare/select sequence.  This is required for correctness since
7077   // InstCombine might have canonicalized a fcmp+select sequence to a
7078   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
7079   // expansion to libcall, we might introduce a link-time dependency
7080   // on libm into a file that originally did not have one.
7081   if (Node->getFlags().hasNoNaNs()) {
7082     ISD::CondCode Pred =
7083         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
7084     SDValue Op1 = Node->getOperand(0);
7085     SDValue Op2 = Node->getOperand(1);
7086     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
7087     // Copy FMF flags, but always set the no-signed-zeros flag
7088     // as this is implied by the FMINNUM/FMAXNUM semantics.
7089     SDNodeFlags Flags = Node->getFlags();
7090     Flags.setNoSignedZeros(true);
7091     SelCC->setFlags(Flags);
7092     return SelCC;
7093   }
7094 
7095   return SDValue();
7096 }
7097 
7098 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
7099                                  SelectionDAG &DAG) const {
7100   SDLoc dl(Node);
7101   EVT VT = Node->getValueType(0);
7102   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7103   SDValue Op = Node->getOperand(0);
7104   unsigned Len = VT.getScalarSizeInBits();
7105   assert(VT.isInteger() && "CTPOP not implemented for this type.");
7106 
7107   // TODO: Add support for irregular type lengths.
7108   if (!(Len <= 128 && Len % 8 == 0))
7109     return false;
7110 
7111   // Only expand vector types if we have the appropriate vector bit operations.
7112   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
7113                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7114                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7115                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
7116                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
7117     return false;
7118 
7119   // This is the "best" algorithm from
7120   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
7121   SDValue Mask55 =
7122       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
7123   SDValue Mask33 =
7124       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
7125   SDValue Mask0F =
7126       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
7127   SDValue Mask01 =
7128       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
7129 
7130   // v = v - ((v >> 1) & 0x55555555...)
7131   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
7132                    DAG.getNode(ISD::AND, dl, VT,
7133                                DAG.getNode(ISD::SRL, dl, VT, Op,
7134                                            DAG.getConstant(1, dl, ShVT)),
7135                                Mask55));
7136   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
7137   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
7138                    DAG.getNode(ISD::AND, dl, VT,
7139                                DAG.getNode(ISD::SRL, dl, VT, Op,
7140                                            DAG.getConstant(2, dl, ShVT)),
7141                                Mask33));
7142   // v = (v + (v >> 4)) & 0x0F0F0F0F...
7143   Op = DAG.getNode(ISD::AND, dl, VT,
7144                    DAG.getNode(ISD::ADD, dl, VT, Op,
7145                                DAG.getNode(ISD::SRL, dl, VT, Op,
7146                                            DAG.getConstant(4, dl, ShVT))),
7147                    Mask0F);
7148   // v = (v * 0x01010101...) >> (Len - 8)
7149   if (Len > 8)
7150     Op =
7151         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
7152                     DAG.getConstant(Len - 8, dl, ShVT));
7153 
7154   Result = Op;
7155   return true;
7156 }
7157 
7158 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
7159                                 SelectionDAG &DAG) const {
7160   SDLoc dl(Node);
7161   EVT VT = Node->getValueType(0);
7162   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7163   SDValue Op = Node->getOperand(0);
7164   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7165 
7166   // If the non-ZERO_UNDEF version is supported we can use that instead.
7167   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
7168       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
7169     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
7170     return true;
7171   }
7172 
7173   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7174   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
7175     EVT SetCCVT =
7176         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7177     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
7178     SDValue Zero = DAG.getConstant(0, dl, VT);
7179     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7180     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
7181                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
7182     return true;
7183   }
7184 
7185   // Only expand vector types if we have the appropriate vector bit operations.
7186   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7187                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
7188                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7189                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7190     return false;
7191 
7192   // for now, we do this:
7193   // x = x | (x >> 1);
7194   // x = x | (x >> 2);
7195   // ...
7196   // x = x | (x >>16);
7197   // x = x | (x >>32); // for 64-bit input
7198   // return popcount(~x);
7199   //
7200   // Ref: "Hacker's Delight" by Henry Warren
7201   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
7202     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
7203     Op = DAG.getNode(ISD::OR, dl, VT, Op,
7204                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
7205   }
7206   Op = DAG.getNOT(dl, Op, VT);
7207   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
7208   return true;
7209 }
7210 
7211 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
7212                                 SelectionDAG &DAG) const {
7213   SDLoc dl(Node);
7214   EVT VT = Node->getValueType(0);
7215   SDValue Op = Node->getOperand(0);
7216   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7217 
7218   // If the non-ZERO_UNDEF version is supported we can use that instead.
7219   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
7220       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
7221     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
7222     return true;
7223   }
7224 
7225   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7226   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7227     EVT SetCCVT =
7228         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7229     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7230     SDValue Zero = DAG.getConstant(0, dl, VT);
7231     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7232     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
7233                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7234     return true;
7235   }
7236 
7237   // Only expand vector types if we have the appropriate vector bit operations.
7238   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7239                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7240                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
7241                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7242                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
7243                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7244     return false;
7245 
7246   // for now, we use: { return popcount(~x & (x - 1)); }
7247   // unless the target has ctlz but not ctpop, in which case we use:
7248   // { return 32 - nlz(~x & (x-1)); }
7249   // Ref: "Hacker's Delight" by Henry Warren
7250   SDValue Tmp = DAG.getNode(
7251       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
7252       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
7253 
7254   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
7255   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
7256     Result =
7257         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
7258                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
7259     return true;
7260   }
7261 
7262   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
7263   return true;
7264 }
7265 
7266 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
7267                                SelectionDAG &DAG, bool IsNegative) const {
7268   SDLoc dl(N);
7269   EVT VT = N->getValueType(0);
7270   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7271   SDValue Op = N->getOperand(0);
7272 
7273   // abs(x) -> smax(x,sub(0,x))
7274   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7275       isOperationLegal(ISD::SMAX, VT)) {
7276     SDValue Zero = DAG.getConstant(0, dl, VT);
7277     Result = DAG.getNode(ISD::SMAX, dl, VT, Op,
7278                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7279     return true;
7280   }
7281 
7282   // abs(x) -> umin(x,sub(0,x))
7283   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7284       isOperationLegal(ISD::UMIN, VT)) {
7285     SDValue Zero = DAG.getConstant(0, dl, VT);
7286     Result = DAG.getNode(ISD::UMIN, dl, VT, Op,
7287                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7288     return true;
7289   }
7290 
7291   // 0 - abs(x) -> smin(x, sub(0,x))
7292   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
7293       isOperationLegal(ISD::SMIN, VT)) {
7294     SDValue Zero = DAG.getConstant(0, dl, VT);
7295     Result = DAG.getNode(ISD::SMIN, dl, VT, Op,
7296                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7297     return true;
7298   }
7299 
7300   // Only expand vector types if we have the appropriate vector operations.
7301   if (VT.isVector() &&
7302       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
7303        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
7304        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
7305        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7306     return false;
7307 
7308   SDValue Shift =
7309       DAG.getNode(ISD::SRA, dl, VT, Op,
7310                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
7311   if (!IsNegative) {
7312     SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
7313     Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
7314   } else {
7315     // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
7316     SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
7317     Result = DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
7318   }
7319   return true;
7320 }
7321 
7322 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
7323   SDLoc dl(N);
7324   EVT VT = N->getValueType(0);
7325   SDValue Op = N->getOperand(0);
7326 
7327   if (!VT.isSimple())
7328     return SDValue();
7329 
7330   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7331   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
7332   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
7333   default:
7334     return SDValue();
7335   case MVT::i16:
7336     // Use a rotate by 8. This can be further expanded if necessary.
7337     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7338   case MVT::i32:
7339     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7340     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7341     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7342     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7343     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7344                        DAG.getConstant(0xFF0000, dl, VT));
7345     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
7346     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7347     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7348     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7349   case MVT::i64:
7350     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7351     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7352     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7353     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7354     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7355     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7356     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7357     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7358     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
7359                        DAG.getConstant(255ULL<<48, dl, VT));
7360     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
7361                        DAG.getConstant(255ULL<<40, dl, VT));
7362     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
7363                        DAG.getConstant(255ULL<<32, dl, VT));
7364     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
7365                        DAG.getConstant(255ULL<<24, dl, VT));
7366     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7367                        DAG.getConstant(255ULL<<16, dl, VT));
7368     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
7369                        DAG.getConstant(255ULL<<8 , dl, VT));
7370     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
7371     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
7372     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7373     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7374     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
7375     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7376     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
7377   }
7378 }
7379 
7380 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
7381   SDLoc dl(N);
7382   EVT VT = N->getValueType(0);
7383   SDValue Op = N->getOperand(0);
7384   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7385   unsigned Sz = VT.getScalarSizeInBits();
7386 
7387   SDValue Tmp, Tmp2, Tmp3;
7388 
7389   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
7390   // and finally the i1 pairs.
7391   // TODO: We can easily support i4/i2 legal types if any target ever does.
7392   if (Sz >= 8 && isPowerOf2_32(Sz)) {
7393     // Create the masks - repeating the pattern every byte.
7394     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
7395     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
7396     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
7397 
7398     // BSWAP if the type is wider than a single byte.
7399     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
7400 
7401     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
7402     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
7403     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
7404     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
7405     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
7406     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7407 
7408     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
7409     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
7410     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
7411     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
7412     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
7413     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7414 
7415     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
7416     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
7417     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
7418     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
7419     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
7420     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7421     return Tmp;
7422   }
7423 
7424   Tmp = DAG.getConstant(0, dl, VT);
7425   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
7426     if (I < J)
7427       Tmp2 =
7428           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
7429     else
7430       Tmp2 =
7431           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
7432 
7433     APInt Shift(Sz, 1);
7434     Shift <<= J;
7435     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
7436     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
7437   }
7438 
7439   return Tmp;
7440 }
7441 
7442 std::pair<SDValue, SDValue>
7443 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
7444                                     SelectionDAG &DAG) const {
7445   SDLoc SL(LD);
7446   SDValue Chain = LD->getChain();
7447   SDValue BasePTR = LD->getBasePtr();
7448   EVT SrcVT = LD->getMemoryVT();
7449   EVT DstVT = LD->getValueType(0);
7450   ISD::LoadExtType ExtType = LD->getExtensionType();
7451 
7452   if (SrcVT.isScalableVector())
7453     report_fatal_error("Cannot scalarize scalable vector loads");
7454 
7455   unsigned NumElem = SrcVT.getVectorNumElements();
7456 
7457   EVT SrcEltVT = SrcVT.getScalarType();
7458   EVT DstEltVT = DstVT.getScalarType();
7459 
7460   // A vector must always be stored in memory as-is, i.e. without any padding
7461   // between the elements, since various code depend on it, e.g. in the
7462   // handling of a bitcast of a vector type to int, which may be done with a
7463   // vector store followed by an integer load. A vector that does not have
7464   // elements that are byte-sized must therefore be stored as an integer
7465   // built out of the extracted vector elements.
7466   if (!SrcEltVT.isByteSized()) {
7467     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
7468     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
7469 
7470     unsigned NumSrcBits = SrcVT.getSizeInBits();
7471     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
7472 
7473     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
7474     SDValue SrcEltBitMask = DAG.getConstant(
7475         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
7476 
7477     // Load the whole vector and avoid masking off the top bits as it makes
7478     // the codegen worse.
7479     SDValue Load =
7480         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
7481                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
7482                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7483 
7484     SmallVector<SDValue, 8> Vals;
7485     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7486       unsigned ShiftIntoIdx =
7487           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7488       SDValue ShiftAmount =
7489           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
7490                                      LoadVT, SL, /*LegalTypes=*/false);
7491       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
7492       SDValue Elt =
7493           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
7494       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
7495 
7496       if (ExtType != ISD::NON_EXTLOAD) {
7497         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
7498         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
7499       }
7500 
7501       Vals.push_back(Scalar);
7502     }
7503 
7504     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7505     return std::make_pair(Value, Load.getValue(1));
7506   }
7507 
7508   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
7509   assert(SrcEltVT.isByteSized());
7510 
7511   SmallVector<SDValue, 8> Vals;
7512   SmallVector<SDValue, 8> LoadChains;
7513 
7514   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7515     SDValue ScalarLoad =
7516         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
7517                        LD->getPointerInfo().getWithOffset(Idx * Stride),
7518                        SrcEltVT, LD->getOriginalAlign(),
7519                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7520 
7521     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
7522 
7523     Vals.push_back(ScalarLoad.getValue(0));
7524     LoadChains.push_back(ScalarLoad.getValue(1));
7525   }
7526 
7527   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
7528   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7529 
7530   return std::make_pair(Value, NewChain);
7531 }
7532 
7533 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
7534                                              SelectionDAG &DAG) const {
7535   SDLoc SL(ST);
7536 
7537   SDValue Chain = ST->getChain();
7538   SDValue BasePtr = ST->getBasePtr();
7539   SDValue Value = ST->getValue();
7540   EVT StVT = ST->getMemoryVT();
7541 
7542   if (StVT.isScalableVector())
7543     report_fatal_error("Cannot scalarize scalable vector stores");
7544 
7545   // The type of the data we want to save
7546   EVT RegVT = Value.getValueType();
7547   EVT RegSclVT = RegVT.getScalarType();
7548 
7549   // The type of data as saved in memory.
7550   EVT MemSclVT = StVT.getScalarType();
7551 
7552   unsigned NumElem = StVT.getVectorNumElements();
7553 
7554   // A vector must always be stored in memory as-is, i.e. without any padding
7555   // between the elements, since various code depend on it, e.g. in the
7556   // handling of a bitcast of a vector type to int, which may be done with a
7557   // vector store followed by an integer load. A vector that does not have
7558   // elements that are byte-sized must therefore be stored as an integer
7559   // built out of the extracted vector elements.
7560   if (!MemSclVT.isByteSized()) {
7561     unsigned NumBits = StVT.getSizeInBits();
7562     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
7563 
7564     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
7565 
7566     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7567       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7568                                 DAG.getVectorIdxConstant(Idx, SL));
7569       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
7570       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
7571       unsigned ShiftIntoIdx =
7572           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7573       SDValue ShiftAmount =
7574           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
7575       SDValue ShiftedElt =
7576           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
7577       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
7578     }
7579 
7580     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
7581                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7582                         ST->getAAInfo());
7583   }
7584 
7585   // Store Stride in bytes
7586   unsigned Stride = MemSclVT.getSizeInBits() / 8;
7587   assert(Stride && "Zero stride!");
7588   // Extract each of the elements from the original vector and save them into
7589   // memory individually.
7590   SmallVector<SDValue, 8> Stores;
7591   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7592     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7593                               DAG.getVectorIdxConstant(Idx, SL));
7594 
7595     SDValue Ptr =
7596         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
7597 
7598     // This scalar TruncStore may be illegal, but we legalize it later.
7599     SDValue Store = DAG.getTruncStore(
7600         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
7601         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7602         ST->getAAInfo());
7603 
7604     Stores.push_back(Store);
7605   }
7606 
7607   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
7608 }
7609 
7610 std::pair<SDValue, SDValue>
7611 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
7612   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
7613          "unaligned indexed loads not implemented!");
7614   SDValue Chain = LD->getChain();
7615   SDValue Ptr = LD->getBasePtr();
7616   EVT VT = LD->getValueType(0);
7617   EVT LoadedVT = LD->getMemoryVT();
7618   SDLoc dl(LD);
7619   auto &MF = DAG.getMachineFunction();
7620 
7621   if (VT.isFloatingPoint() || VT.isVector()) {
7622     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
7623     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
7624       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
7625           LoadedVT.isVector()) {
7626         // Scalarize the load and let the individual components be handled.
7627         return scalarizeVectorLoad(LD, DAG);
7628       }
7629 
7630       // Expand to a (misaligned) integer load of the same size,
7631       // then bitconvert to floating point or vector.
7632       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
7633                                     LD->getMemOperand());
7634       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
7635       if (LoadedVT != VT)
7636         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
7637                              ISD::ANY_EXTEND, dl, VT, Result);
7638 
7639       return std::make_pair(Result, newLoad.getValue(1));
7640     }
7641 
7642     // Copy the value to a (aligned) stack slot using (unaligned) integer
7643     // loads and stores, then do a (aligned) load from the stack slot.
7644     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
7645     unsigned LoadedBytes = LoadedVT.getStoreSize();
7646     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7647     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
7648 
7649     // Make sure the stack slot is also aligned for the register type.
7650     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
7651     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
7652     SmallVector<SDValue, 8> Stores;
7653     SDValue StackPtr = StackBase;
7654     unsigned Offset = 0;
7655 
7656     EVT PtrVT = Ptr.getValueType();
7657     EVT StackPtrVT = StackPtr.getValueType();
7658 
7659     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7660     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7661 
7662     // Do all but one copies using the full register width.
7663     for (unsigned i = 1; i < NumRegs; i++) {
7664       // Load one integer register's worth from the original location.
7665       SDValue Load = DAG.getLoad(
7666           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
7667           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7668           LD->getAAInfo());
7669       // Follow the load with a store to the stack slot.  Remember the store.
7670       Stores.push_back(DAG.getStore(
7671           Load.getValue(1), dl, Load, StackPtr,
7672           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
7673       // Increment the pointers.
7674       Offset += RegBytes;
7675 
7676       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7677       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7678     }
7679 
7680     // The last copy may be partial.  Do an extending load.
7681     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
7682                                   8 * (LoadedBytes - Offset));
7683     SDValue Load =
7684         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
7685                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
7686                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7687                        LD->getAAInfo());
7688     // Follow the load with a store to the stack slot.  Remember the store.
7689     // On big-endian machines this requires a truncating store to ensure
7690     // that the bits end up in the right place.
7691     Stores.push_back(DAG.getTruncStore(
7692         Load.getValue(1), dl, Load, StackPtr,
7693         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
7694 
7695     // The order of the stores doesn't matter - say it with a TokenFactor.
7696     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7697 
7698     // Finally, perform the original load only redirected to the stack slot.
7699     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
7700                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
7701                           LoadedVT);
7702 
7703     // Callers expect a MERGE_VALUES node.
7704     return std::make_pair(Load, TF);
7705   }
7706 
7707   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
7708          "Unaligned load of unsupported type.");
7709 
7710   // Compute the new VT that is half the size of the old one.  This is an
7711   // integer MVT.
7712   unsigned NumBits = LoadedVT.getSizeInBits();
7713   EVT NewLoadedVT;
7714   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
7715   NumBits >>= 1;
7716 
7717   Align Alignment = LD->getOriginalAlign();
7718   unsigned IncrementSize = NumBits / 8;
7719   ISD::LoadExtType HiExtType = LD->getExtensionType();
7720 
7721   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
7722   if (HiExtType == ISD::NON_EXTLOAD)
7723     HiExtType = ISD::ZEXTLOAD;
7724 
7725   // Load the value in two parts
7726   SDValue Lo, Hi;
7727   if (DAG.getDataLayout().isLittleEndian()) {
7728     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7729                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7730                         LD->getAAInfo());
7731 
7732     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7733     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
7734                         LD->getPointerInfo().getWithOffset(IncrementSize),
7735                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7736                         LD->getAAInfo());
7737   } else {
7738     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7739                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7740                         LD->getAAInfo());
7741 
7742     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7743     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
7744                         LD->getPointerInfo().getWithOffset(IncrementSize),
7745                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7746                         LD->getAAInfo());
7747   }
7748 
7749   // aggregate the two parts
7750   SDValue ShiftAmount =
7751       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
7752                                                     DAG.getDataLayout()));
7753   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
7754   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
7755 
7756   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
7757                              Hi.getValue(1));
7758 
7759   return std::make_pair(Result, TF);
7760 }
7761 
7762 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
7763                                              SelectionDAG &DAG) const {
7764   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
7765          "unaligned indexed stores not implemented!");
7766   SDValue Chain = ST->getChain();
7767   SDValue Ptr = ST->getBasePtr();
7768   SDValue Val = ST->getValue();
7769   EVT VT = Val.getValueType();
7770   Align Alignment = ST->getOriginalAlign();
7771   auto &MF = DAG.getMachineFunction();
7772   EVT StoreMemVT = ST->getMemoryVT();
7773 
7774   SDLoc dl(ST);
7775   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
7776     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7777     if (isTypeLegal(intVT)) {
7778       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
7779           StoreMemVT.isVector()) {
7780         // Scalarize the store and let the individual components be handled.
7781         SDValue Result = scalarizeVectorStore(ST, DAG);
7782         return Result;
7783       }
7784       // Expand to a bitconvert of the value to the integer type of the
7785       // same size, then a (misaligned) int store.
7786       // FIXME: Does not handle truncating floating point stores!
7787       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
7788       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
7789                             Alignment, ST->getMemOperand()->getFlags());
7790       return Result;
7791     }
7792     // Do a (aligned) store to a stack slot, then copy from the stack slot
7793     // to the final destination using (unaligned) integer loads and stores.
7794     MVT RegVT = getRegisterType(
7795         *DAG.getContext(),
7796         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
7797     EVT PtrVT = Ptr.getValueType();
7798     unsigned StoredBytes = StoreMemVT.getStoreSize();
7799     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7800     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
7801 
7802     // Make sure the stack slot is also aligned for the register type.
7803     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
7804     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
7805 
7806     // Perform the original store, only redirected to the stack slot.
7807     SDValue Store = DAG.getTruncStore(
7808         Chain, dl, Val, StackPtr,
7809         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
7810 
7811     EVT StackPtrVT = StackPtr.getValueType();
7812 
7813     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7814     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7815     SmallVector<SDValue, 8> Stores;
7816     unsigned Offset = 0;
7817 
7818     // Do all but one copies using the full register width.
7819     for (unsigned i = 1; i < NumRegs; i++) {
7820       // Load one integer register's worth from the stack slot.
7821       SDValue Load = DAG.getLoad(
7822           RegVT, dl, Store, StackPtr,
7823           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
7824       // Store it to the final location.  Remember the store.
7825       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
7826                                     ST->getPointerInfo().getWithOffset(Offset),
7827                                     ST->getOriginalAlign(),
7828                                     ST->getMemOperand()->getFlags()));
7829       // Increment the pointers.
7830       Offset += RegBytes;
7831       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7832       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7833     }
7834 
7835     // The last store may be partial.  Do a truncating store.  On big-endian
7836     // machines this requires an extending load from the stack slot to ensure
7837     // that the bits are in the right place.
7838     EVT LoadMemVT =
7839         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
7840 
7841     // Load from the stack slot.
7842     SDValue Load = DAG.getExtLoad(
7843         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
7844         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
7845 
7846     Stores.push_back(
7847         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
7848                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
7849                           ST->getOriginalAlign(),
7850                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
7851     // The order of the stores doesn't matter - say it with a TokenFactor.
7852     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7853     return Result;
7854   }
7855 
7856   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
7857          "Unaligned store of unknown type.");
7858   // Get the half-size VT
7859   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
7860   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
7861   unsigned IncrementSize = NumBits / 8;
7862 
7863   // Divide the stored value in two parts.
7864   SDValue ShiftAmount = DAG.getConstant(
7865       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
7866   SDValue Lo = Val;
7867   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
7868 
7869   // Store the two parts
7870   SDValue Store1, Store2;
7871   Store1 = DAG.getTruncStore(Chain, dl,
7872                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
7873                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
7874                              ST->getMemOperand()->getFlags());
7875 
7876   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7877   Store2 = DAG.getTruncStore(
7878       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
7879       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
7880       ST->getMemOperand()->getFlags(), ST->getAAInfo());
7881 
7882   SDValue Result =
7883       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
7884   return Result;
7885 }
7886 
7887 SDValue
7888 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
7889                                        const SDLoc &DL, EVT DataVT,
7890                                        SelectionDAG &DAG,
7891                                        bool IsCompressedMemory) const {
7892   SDValue Increment;
7893   EVT AddrVT = Addr.getValueType();
7894   EVT MaskVT = Mask.getValueType();
7895   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
7896          "Incompatible types of Data and Mask");
7897   if (IsCompressedMemory) {
7898     if (DataVT.isScalableVector())
7899       report_fatal_error(
7900           "Cannot currently handle compressed memory with scalable vectors");
7901     // Incrementing the pointer according to number of '1's in the mask.
7902     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7903     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7904     if (MaskIntVT.getSizeInBits() < 32) {
7905       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7906       MaskIntVT = MVT::i32;
7907     }
7908 
7909     // Count '1's with POPCNT.
7910     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7911     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7912     // Scale is an element size in bytes.
7913     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7914                                     AddrVT);
7915     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7916   } else if (DataVT.isScalableVector()) {
7917     Increment = DAG.getVScale(DL, AddrVT,
7918                               APInt(AddrVT.getFixedSizeInBits(),
7919                                     DataVT.getStoreSize().getKnownMinSize()));
7920   } else
7921     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7922 
7923   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7924 }
7925 
7926 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
7927                                        EVT VecVT, const SDLoc &dl,
7928                                        unsigned NumSubElts) {
7929   if (!VecVT.isScalableVector() && isa<ConstantSDNode>(Idx))
7930     return Idx;
7931 
7932   EVT IdxVT = Idx.getValueType();
7933   unsigned NElts = VecVT.getVectorMinNumElements();
7934   if (VecVT.isScalableVector()) {
7935     // If this is a constant index and we know the value plus the number of the
7936     // elements in the subvector minus one is less than the minimum number of
7937     // elements then it's safe to return Idx.
7938     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
7939       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
7940         return Idx;
7941     SDValue VS =
7942         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
7943     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
7944     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
7945                               DAG.getConstant(NumSubElts, dl, IdxVT));
7946     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
7947   }
7948   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
7949     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
7950     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7951                        DAG.getConstant(Imm, dl, IdxVT));
7952   }
7953   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
7954   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7955                      DAG.getConstant(MaxIndex, dl, IdxVT));
7956 }
7957 
7958 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7959                                                 SDValue VecPtr, EVT VecVT,
7960                                                 SDValue Index) const {
7961   return getVectorSubVecPointer(
7962       DAG, VecPtr, VecVT,
7963       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
7964       Index);
7965 }
7966 
7967 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
7968                                                SDValue VecPtr, EVT VecVT,
7969                                                EVT SubVecVT,
7970                                                SDValue Index) const {
7971   SDLoc dl(Index);
7972   // Make sure the index type is big enough to compute in.
7973   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7974 
7975   EVT EltVT = VecVT.getVectorElementType();
7976 
7977   // Calculate the element offset and add it to the pointer.
7978   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
7979   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
7980          "Converting bits to bytes lost precision");
7981 
7982   // Scalable vectors don't need clamping as these are checked at compile time
7983   if (SubVecVT.isFixedLengthVector()) {
7984     assert(SubVecVT.getVectorElementType() == EltVT &&
7985            "Sub-vector must be a fixed vector with matching element type");
7986     Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
7987                                     SubVecVT.getVectorNumElements());
7988   }
7989 
7990   EVT IdxVT = Index.getValueType();
7991 
7992   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7993                       DAG.getConstant(EltSize, dl, IdxVT));
7994   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7995 }
7996 
7997 //===----------------------------------------------------------------------===//
7998 // Implementation of Emulated TLS Model
7999 //===----------------------------------------------------------------------===//
8000 
8001 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
8002                                                 SelectionDAG &DAG) const {
8003   // Access to address of TLS varialbe xyz is lowered to a function call:
8004   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
8005   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8006   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
8007   SDLoc dl(GA);
8008 
8009   ArgListTy Args;
8010   ArgListEntry Entry;
8011   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
8012   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
8013   StringRef EmuTlsVarName(NameString);
8014   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
8015   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
8016   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
8017   Entry.Ty = VoidPtrType;
8018   Args.push_back(Entry);
8019 
8020   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
8021 
8022   TargetLowering::CallLoweringInfo CLI(DAG);
8023   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
8024   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
8025   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
8026 
8027   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
8028   // At last for X86 targets, maybe good for other targets too?
8029   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8030   MFI.setAdjustsStack(true); // Is this only for X86 target?
8031   MFI.setHasCalls(true);
8032 
8033   assert((GA->getOffset() == 0) &&
8034          "Emulated TLS must have zero offset in GlobalAddressSDNode");
8035   return CallResult.first;
8036 }
8037 
8038 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
8039                                                 SelectionDAG &DAG) const {
8040   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
8041   if (!isCtlzFast())
8042     return SDValue();
8043   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8044   SDLoc dl(Op);
8045   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8046     if (C->isNullValue() && CC == ISD::SETEQ) {
8047       EVT VT = Op.getOperand(0).getValueType();
8048       SDValue Zext = Op.getOperand(0);
8049       if (VT.bitsLT(MVT::i32)) {
8050         VT = MVT::i32;
8051         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
8052       }
8053       unsigned Log2b = Log2_32(VT.getSizeInBits());
8054       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
8055       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
8056                                 DAG.getConstant(Log2b, dl, MVT::i32));
8057       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
8058     }
8059   }
8060   return SDValue();
8061 }
8062 
8063 // Convert redundant addressing modes (e.g. scaling is redundant
8064 // when accessing bytes).
8065 ISD::MemIndexType
8066 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT,
8067                                       SDValue Offsets) const {
8068   bool IsScaledIndex =
8069       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED);
8070   bool IsSignedIndex =
8071       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED);
8072 
8073   // Scaling is unimportant for bytes, canonicalize to unscaled.
8074   if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) {
8075     IsScaledIndex = false;
8076     IndexType = IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED;
8077   }
8078 
8079   return IndexType;
8080 }
8081 
8082 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
8083   SDValue Op0 = Node->getOperand(0);
8084   SDValue Op1 = Node->getOperand(1);
8085   EVT VT = Op0.getValueType();
8086   unsigned Opcode = Node->getOpcode();
8087   SDLoc DL(Node);
8088 
8089   // umin(x,y) -> sub(x,usubsat(x,y))
8090   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
8091       isOperationLegal(ISD::USUBSAT, VT)) {
8092     return DAG.getNode(ISD::SUB, DL, VT, Op0,
8093                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
8094   }
8095 
8096   // umax(x,y) -> add(x,usubsat(y,x))
8097   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
8098       isOperationLegal(ISD::USUBSAT, VT)) {
8099     return DAG.getNode(ISD::ADD, DL, VT, Op0,
8100                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
8101   }
8102 
8103   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
8104   ISD::CondCode CC;
8105   switch (Opcode) {
8106   default: llvm_unreachable("How did we get here?");
8107   case ISD::SMAX: CC = ISD::SETGT; break;
8108   case ISD::SMIN: CC = ISD::SETLT; break;
8109   case ISD::UMAX: CC = ISD::SETUGT; break;
8110   case ISD::UMIN: CC = ISD::SETULT; break;
8111   }
8112 
8113   // FIXME: Should really try to split the vector in case it's legal on a
8114   // subvector.
8115   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8116     return DAG.UnrollVectorOp(Node);
8117 
8118   SDValue Cond = DAG.getSetCC(DL, VT, Op0, Op1, CC);
8119   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
8120 }
8121 
8122 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
8123   unsigned Opcode = Node->getOpcode();
8124   SDValue LHS = Node->getOperand(0);
8125   SDValue RHS = Node->getOperand(1);
8126   EVT VT = LHS.getValueType();
8127   SDLoc dl(Node);
8128 
8129   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8130   assert(VT.isInteger() && "Expected operands to be integers");
8131 
8132   // usub.sat(a, b) -> umax(a, b) - b
8133   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
8134     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
8135     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
8136   }
8137 
8138   // uadd.sat(a, b) -> umin(a, ~b) + b
8139   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
8140     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
8141     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
8142     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
8143   }
8144 
8145   unsigned OverflowOp;
8146   switch (Opcode) {
8147   case ISD::SADDSAT:
8148     OverflowOp = ISD::SADDO;
8149     break;
8150   case ISD::UADDSAT:
8151     OverflowOp = ISD::UADDO;
8152     break;
8153   case ISD::SSUBSAT:
8154     OverflowOp = ISD::SSUBO;
8155     break;
8156   case ISD::USUBSAT:
8157     OverflowOp = ISD::USUBO;
8158     break;
8159   default:
8160     llvm_unreachable("Expected method to receive signed or unsigned saturation "
8161                      "addition or subtraction node.");
8162   }
8163 
8164   // FIXME: Should really try to split the vector in case it's legal on a
8165   // subvector.
8166   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8167     return DAG.UnrollVectorOp(Node);
8168 
8169   unsigned BitWidth = LHS.getScalarValueSizeInBits();
8170   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8171   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8172   SDValue SumDiff = Result.getValue(0);
8173   SDValue Overflow = Result.getValue(1);
8174   SDValue Zero = DAG.getConstant(0, dl, VT);
8175   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
8176 
8177   if (Opcode == ISD::UADDSAT) {
8178     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8179       // (LHS + RHS) | OverflowMask
8180       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8181       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
8182     }
8183     // Overflow ? 0xffff.... : (LHS + RHS)
8184     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
8185   }
8186 
8187   if (Opcode == ISD::USUBSAT) {
8188     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8189       // (LHS - RHS) & ~OverflowMask
8190       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8191       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
8192       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
8193     }
8194     // Overflow ? 0 : (LHS - RHS)
8195     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
8196   }
8197 
8198   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
8199   APInt MinVal = APInt::getSignedMinValue(BitWidth);
8200   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8201   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
8202                               DAG.getConstant(BitWidth - 1, dl, VT));
8203   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
8204   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
8205 }
8206 
8207 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
8208   unsigned Opcode = Node->getOpcode();
8209   bool IsSigned = Opcode == ISD::SSHLSAT;
8210   SDValue LHS = Node->getOperand(0);
8211   SDValue RHS = Node->getOperand(1);
8212   EVT VT = LHS.getValueType();
8213   SDLoc dl(Node);
8214 
8215   assert((Node->getOpcode() == ISD::SSHLSAT ||
8216           Node->getOpcode() == ISD::USHLSAT) &&
8217           "Expected a SHLSAT opcode");
8218   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8219   assert(VT.isInteger() && "Expected operands to be integers");
8220 
8221   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
8222 
8223   unsigned BW = VT.getScalarSizeInBits();
8224   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
8225   SDValue Orig =
8226       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
8227 
8228   SDValue SatVal;
8229   if (IsSigned) {
8230     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8231     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8232     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8233                              SatMin, SatMax, ISD::SETLT);
8234   } else {
8235     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8236   }
8237   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8238 
8239   return Result;
8240 }
8241 
8242 SDValue
8243 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8244   assert((Node->getOpcode() == ISD::SMULFIX ||
8245           Node->getOpcode() == ISD::UMULFIX ||
8246           Node->getOpcode() == ISD::SMULFIXSAT ||
8247           Node->getOpcode() == ISD::UMULFIXSAT) &&
8248          "Expected a fixed point multiplication opcode");
8249 
8250   SDLoc dl(Node);
8251   SDValue LHS = Node->getOperand(0);
8252   SDValue RHS = Node->getOperand(1);
8253   EVT VT = LHS.getValueType();
8254   unsigned Scale = Node->getConstantOperandVal(2);
8255   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8256                      Node->getOpcode() == ISD::UMULFIXSAT);
8257   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8258                  Node->getOpcode() == ISD::SMULFIXSAT);
8259   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8260   unsigned VTSize = VT.getScalarSizeInBits();
8261 
8262   if (!Scale) {
8263     // [us]mul.fix(a, b, 0) -> mul(a, b)
8264     if (!Saturating) {
8265       if (isOperationLegalOrCustom(ISD::MUL, VT))
8266         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8267     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
8268       SDValue Result =
8269           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8270       SDValue Product = Result.getValue(0);
8271       SDValue Overflow = Result.getValue(1);
8272       SDValue Zero = DAG.getConstant(0, dl, VT);
8273 
8274       APInt MinVal = APInt::getSignedMinValue(VTSize);
8275       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
8276       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8277       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8278       // Xor the inputs, if resulting sign bit is 0 the product will be
8279       // positive, else negative.
8280       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
8281       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
8282       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
8283       return DAG.getSelect(dl, VT, Overflow, Result, Product);
8284     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
8285       SDValue Result =
8286           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8287       SDValue Product = Result.getValue(0);
8288       SDValue Overflow = Result.getValue(1);
8289 
8290       APInt MaxVal = APInt::getMaxValue(VTSize);
8291       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8292       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
8293     }
8294   }
8295 
8296   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
8297          "Expected scale to be less than the number of bits if signed or at "
8298          "most the number of bits if unsigned.");
8299   assert(LHS.getValueType() == RHS.getValueType() &&
8300          "Expected both operands to be the same type");
8301 
8302   // Get the upper and lower bits of the result.
8303   SDValue Lo, Hi;
8304   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
8305   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
8306   if (isOperationLegalOrCustom(LoHiOp, VT)) {
8307     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
8308     Lo = Result.getValue(0);
8309     Hi = Result.getValue(1);
8310   } else if (isOperationLegalOrCustom(HiOp, VT)) {
8311     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8312     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
8313   } else if (VT.isVector()) {
8314     return SDValue();
8315   } else {
8316     report_fatal_error("Unable to expand fixed point multiplication.");
8317   }
8318 
8319   if (Scale == VTSize)
8320     // Result is just the top half since we'd be shifting by the width of the
8321     // operand. Overflow impossible so this works for both UMULFIX and
8322     // UMULFIXSAT.
8323     return Hi;
8324 
8325   // The result will need to be shifted right by the scale since both operands
8326   // are scaled. The result is given to us in 2 halves, so we only want part of
8327   // both in the result.
8328   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8329   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
8330                                DAG.getConstant(Scale, dl, ShiftTy));
8331   if (!Saturating)
8332     return Result;
8333 
8334   if (!Signed) {
8335     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
8336     // widened multiplication) aren't all zeroes.
8337 
8338     // Saturate to max if ((Hi >> Scale) != 0),
8339     // which is the same as if (Hi > ((1 << Scale) - 1))
8340     APInt MaxVal = APInt::getMaxValue(VTSize);
8341     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
8342                                       dl, VT);
8343     Result = DAG.getSelectCC(dl, Hi, LowMask,
8344                              DAG.getConstant(MaxVal, dl, VT), Result,
8345                              ISD::SETUGT);
8346 
8347     return Result;
8348   }
8349 
8350   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
8351   // widened multiplication) aren't all ones or all zeroes.
8352 
8353   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
8354   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
8355 
8356   if (Scale == 0) {
8357     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
8358                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
8359     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
8360     // Saturated to SatMin if wide product is negative, and SatMax if wide
8361     // product is positive ...
8362     SDValue Zero = DAG.getConstant(0, dl, VT);
8363     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
8364                                                ISD::SETLT);
8365     // ... but only if we overflowed.
8366     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
8367   }
8368 
8369   //  We handled Scale==0 above so all the bits to examine is in Hi.
8370 
8371   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
8372   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
8373   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
8374                                     dl, VT);
8375   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
8376   // Saturate to min if (Hi >> (Scale - 1)) < -1),
8377   // which is the same as if (HI < (-1 << (Scale - 1))
8378   SDValue HighMask =
8379       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
8380                       dl, VT);
8381   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
8382   return Result;
8383 }
8384 
8385 SDValue
8386 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
8387                                     SDValue LHS, SDValue RHS,
8388                                     unsigned Scale, SelectionDAG &DAG) const {
8389   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
8390           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
8391          "Expected a fixed point division opcode");
8392 
8393   EVT VT = LHS.getValueType();
8394   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
8395   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
8396   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8397 
8398   // If there is enough room in the type to upscale the LHS or downscale the
8399   // RHS before the division, we can perform it in this type without having to
8400   // resize. For signed operations, the LHS headroom is the number of
8401   // redundant sign bits, and for unsigned ones it is the number of zeroes.
8402   // The headroom for the RHS is the number of trailing zeroes.
8403   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
8404                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
8405   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
8406 
8407   // For signed saturating operations, we need to be able to detect true integer
8408   // division overflow; that is, when you have MIN / -EPS. However, this
8409   // is undefined behavior and if we emit divisions that could take such
8410   // values it may cause undesired behavior (arithmetic exceptions on x86, for
8411   // example).
8412   // Avoid this by requiring an extra bit so that we never get this case.
8413   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
8414   // signed saturating division, we need to emit a whopping 32-bit division.
8415   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
8416     return SDValue();
8417 
8418   unsigned LHSShift = std::min(LHSLead, Scale);
8419   unsigned RHSShift = Scale - LHSShift;
8420 
8421   // At this point, we know that if we shift the LHS up by LHSShift and the
8422   // RHS down by RHSShift, we can emit a regular division with a final scaling
8423   // factor of Scale.
8424 
8425   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8426   if (LHSShift)
8427     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
8428                       DAG.getConstant(LHSShift, dl, ShiftTy));
8429   if (RHSShift)
8430     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
8431                       DAG.getConstant(RHSShift, dl, ShiftTy));
8432 
8433   SDValue Quot;
8434   if (Signed) {
8435     // For signed operations, if the resulting quotient is negative and the
8436     // remainder is nonzero, subtract 1 from the quotient to round towards
8437     // negative infinity.
8438     SDValue Rem;
8439     // FIXME: Ideally we would always produce an SDIVREM here, but if the
8440     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
8441     // we couldn't just form a libcall, but the type legalizer doesn't do it.
8442     if (isTypeLegal(VT) &&
8443         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
8444       Quot = DAG.getNode(ISD::SDIVREM, dl,
8445                          DAG.getVTList(VT, VT),
8446                          LHS, RHS);
8447       Rem = Quot.getValue(1);
8448       Quot = Quot.getValue(0);
8449     } else {
8450       Quot = DAG.getNode(ISD::SDIV, dl, VT,
8451                          LHS, RHS);
8452       Rem = DAG.getNode(ISD::SREM, dl, VT,
8453                         LHS, RHS);
8454     }
8455     SDValue Zero = DAG.getConstant(0, dl, VT);
8456     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
8457     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
8458     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
8459     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
8460     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
8461                                DAG.getConstant(1, dl, VT));
8462     Quot = DAG.getSelect(dl, VT,
8463                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
8464                          Sub1, Quot);
8465   } else
8466     Quot = DAG.getNode(ISD::UDIV, dl, VT,
8467                        LHS, RHS);
8468 
8469   return Quot;
8470 }
8471 
8472 void TargetLowering::expandUADDSUBO(
8473     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8474   SDLoc dl(Node);
8475   SDValue LHS = Node->getOperand(0);
8476   SDValue RHS = Node->getOperand(1);
8477   bool IsAdd = Node->getOpcode() == ISD::UADDO;
8478 
8479   // If ADD/SUBCARRY is legal, use that instead.
8480   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
8481   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
8482     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
8483     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
8484                                     { LHS, RHS, CarryIn });
8485     Result = SDValue(NodeCarry.getNode(), 0);
8486     Overflow = SDValue(NodeCarry.getNode(), 1);
8487     return;
8488   }
8489 
8490   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8491                             LHS.getValueType(), LHS, RHS);
8492 
8493   EVT ResultType = Node->getValueType(1);
8494   EVT SetCCType = getSetCCResultType(
8495       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8496   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
8497   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
8498   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8499 }
8500 
8501 void TargetLowering::expandSADDSUBO(
8502     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8503   SDLoc dl(Node);
8504   SDValue LHS = Node->getOperand(0);
8505   SDValue RHS = Node->getOperand(1);
8506   bool IsAdd = Node->getOpcode() == ISD::SADDO;
8507 
8508   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8509                             LHS.getValueType(), LHS, RHS);
8510 
8511   EVT ResultType = Node->getValueType(1);
8512   EVT OType = getSetCCResultType(
8513       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8514 
8515   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
8516   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
8517   if (isOperationLegal(OpcSat, LHS.getValueType())) {
8518     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
8519     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
8520     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8521     return;
8522   }
8523 
8524   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
8525 
8526   // For an addition, the result should be less than one of the operands (LHS)
8527   // if and only if the other operand (RHS) is negative, otherwise there will
8528   // be overflow.
8529   // For a subtraction, the result should be less than one of the operands
8530   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
8531   // otherwise there will be overflow.
8532   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
8533   SDValue ConditionRHS =
8534       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
8535 
8536   Overflow = DAG.getBoolExtOrTrunc(
8537       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
8538       ResultType, ResultType);
8539 }
8540 
8541 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
8542                                 SDValue &Overflow, SelectionDAG &DAG) const {
8543   SDLoc dl(Node);
8544   EVT VT = Node->getValueType(0);
8545   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8546   SDValue LHS = Node->getOperand(0);
8547   SDValue RHS = Node->getOperand(1);
8548   bool isSigned = Node->getOpcode() == ISD::SMULO;
8549 
8550   // For power-of-two multiplications we can use a simpler shift expansion.
8551   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
8552     const APInt &C = RHSC->getAPIntValue();
8553     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
8554     if (C.isPowerOf2()) {
8555       // smulo(x, signed_min) is same as umulo(x, signed_min).
8556       bool UseArithShift = isSigned && !C.isMinSignedValue();
8557       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
8558       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
8559       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
8560       Overflow = DAG.getSetCC(dl, SetCCVT,
8561           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
8562                       dl, VT, Result, ShiftAmt),
8563           LHS, ISD::SETNE);
8564       return true;
8565     }
8566   }
8567 
8568   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
8569   if (VT.isVector())
8570     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
8571                               VT.getVectorNumElements());
8572 
8573   SDValue BottomHalf;
8574   SDValue TopHalf;
8575   static const unsigned Ops[2][3] =
8576       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
8577         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
8578   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
8579     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8580     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
8581   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
8582     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
8583                              RHS);
8584     TopHalf = BottomHalf.getValue(1);
8585   } else if (isTypeLegal(WideVT)) {
8586     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
8587     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
8588     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
8589     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
8590     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
8591         getShiftAmountTy(WideVT, DAG.getDataLayout()));
8592     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
8593                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
8594   } else {
8595     if (VT.isVector())
8596       return false;
8597 
8598     // We can fall back to a libcall with an illegal type for the MUL if we
8599     // have a libcall big enough.
8600     // Also, we can fall back to a division in some cases, but that's a big
8601     // performance hit in the general case.
8602     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
8603     if (WideVT == MVT::i16)
8604       LC = RTLIB::MUL_I16;
8605     else if (WideVT == MVT::i32)
8606       LC = RTLIB::MUL_I32;
8607     else if (WideVT == MVT::i64)
8608       LC = RTLIB::MUL_I64;
8609     else if (WideVT == MVT::i128)
8610       LC = RTLIB::MUL_I128;
8611     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
8612 
8613     SDValue HiLHS;
8614     SDValue HiRHS;
8615     if (isSigned) {
8616       // The high part is obtained by SRA'ing all but one of the bits of low
8617       // part.
8618       unsigned LoSize = VT.getFixedSizeInBits();
8619       HiLHS =
8620           DAG.getNode(ISD::SRA, dl, VT, LHS,
8621                       DAG.getConstant(LoSize - 1, dl,
8622                                       getPointerTy(DAG.getDataLayout())));
8623       HiRHS =
8624           DAG.getNode(ISD::SRA, dl, VT, RHS,
8625                       DAG.getConstant(LoSize - 1, dl,
8626                                       getPointerTy(DAG.getDataLayout())));
8627     } else {
8628         HiLHS = DAG.getConstant(0, dl, VT);
8629         HiRHS = DAG.getConstant(0, dl, VT);
8630     }
8631 
8632     // Here we're passing the 2 arguments explicitly as 4 arguments that are
8633     // pre-lowered to the correct types. This all depends upon WideVT not
8634     // being a legal type for the architecture and thus has to be split to
8635     // two arguments.
8636     SDValue Ret;
8637     TargetLowering::MakeLibCallOptions CallOptions;
8638     CallOptions.setSExt(isSigned);
8639     CallOptions.setIsPostTypeLegalization(true);
8640     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
8641       // Halves of WideVT are packed into registers in different order
8642       // depending on platform endianness. This is usually handled by
8643       // the C calling convention, but we can't defer to it in
8644       // the legalizer.
8645       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
8646       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8647     } else {
8648       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
8649       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8650     }
8651     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
8652            "Ret value is a collection of constituent nodes holding result.");
8653     if (DAG.getDataLayout().isLittleEndian()) {
8654       // Same as above.
8655       BottomHalf = Ret.getOperand(0);
8656       TopHalf = Ret.getOperand(1);
8657     } else {
8658       BottomHalf = Ret.getOperand(1);
8659       TopHalf = Ret.getOperand(0);
8660     }
8661   }
8662 
8663   Result = BottomHalf;
8664   if (isSigned) {
8665     SDValue ShiftAmt = DAG.getConstant(
8666         VT.getScalarSizeInBits() - 1, dl,
8667         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
8668     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
8669     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
8670   } else {
8671     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
8672                             DAG.getConstant(0, dl, VT), ISD::SETNE);
8673   }
8674 
8675   // Truncate the result if SetCC returns a larger type than needed.
8676   EVT RType = Node->getValueType(1);
8677   if (RType.bitsLT(Overflow.getValueType()))
8678     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
8679 
8680   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
8681          "Unexpected result type for S/UMULO legalization");
8682   return true;
8683 }
8684 
8685 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
8686   SDLoc dl(Node);
8687   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8688   SDValue Op = Node->getOperand(0);
8689   EVT VT = Op.getValueType();
8690 
8691   if (VT.isScalableVector())
8692     report_fatal_error(
8693         "Expanding reductions for scalable vectors is undefined.");
8694 
8695   // Try to use a shuffle reduction for power of two vectors.
8696   if (VT.isPow2VectorType()) {
8697     while (VT.getVectorNumElements() > 1) {
8698       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
8699       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
8700         break;
8701 
8702       SDValue Lo, Hi;
8703       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
8704       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
8705       VT = HalfVT;
8706     }
8707   }
8708 
8709   EVT EltVT = VT.getVectorElementType();
8710   unsigned NumElts = VT.getVectorNumElements();
8711 
8712   SmallVector<SDValue, 8> Ops;
8713   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
8714 
8715   SDValue Res = Ops[0];
8716   for (unsigned i = 1; i < NumElts; i++)
8717     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
8718 
8719   // Result type may be wider than element type.
8720   if (EltVT != Node->getValueType(0))
8721     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
8722   return Res;
8723 }
8724 
8725 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
8726   SDLoc dl(Node);
8727   SDValue AccOp = Node->getOperand(0);
8728   SDValue VecOp = Node->getOperand(1);
8729   SDNodeFlags Flags = Node->getFlags();
8730 
8731   EVT VT = VecOp.getValueType();
8732   EVT EltVT = VT.getVectorElementType();
8733 
8734   if (VT.isScalableVector())
8735     report_fatal_error(
8736         "Expanding reductions for scalable vectors is undefined.");
8737 
8738   unsigned NumElts = VT.getVectorNumElements();
8739 
8740   SmallVector<SDValue, 8> Ops;
8741   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
8742 
8743   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8744 
8745   SDValue Res = AccOp;
8746   for (unsigned i = 0; i < NumElts; i++)
8747     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
8748 
8749   return Res;
8750 }
8751 
8752 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
8753                                SelectionDAG &DAG) const {
8754   EVT VT = Node->getValueType(0);
8755   SDLoc dl(Node);
8756   bool isSigned = Node->getOpcode() == ISD::SREM;
8757   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
8758   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
8759   SDValue Dividend = Node->getOperand(0);
8760   SDValue Divisor = Node->getOperand(1);
8761   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
8762     SDVTList VTs = DAG.getVTList(VT, VT);
8763     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
8764     return true;
8765   }
8766   if (isOperationLegalOrCustom(DivOpc, VT)) {
8767     // X % Y -> X-X/Y*Y
8768     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
8769     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
8770     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
8771     return true;
8772   }
8773   return false;
8774 }
8775 
8776 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
8777                                             SelectionDAG &DAG) const {
8778   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
8779   SDLoc dl(SDValue(Node, 0));
8780   SDValue Src = Node->getOperand(0);
8781 
8782   // DstVT is the result type, while SatVT is the size to which we saturate
8783   EVT SrcVT = Src.getValueType();
8784   EVT DstVT = Node->getValueType(0);
8785 
8786   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
8787   unsigned SatWidth = SatVT.getScalarSizeInBits();
8788   unsigned DstWidth = DstVT.getScalarSizeInBits();
8789   assert(SatWidth <= DstWidth &&
8790          "Expected saturation width smaller than result width");
8791 
8792   // Determine minimum and maximum integer values and their corresponding
8793   // floating-point values.
8794   APInt MinInt, MaxInt;
8795   if (IsSigned) {
8796     MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth);
8797     MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth);
8798   } else {
8799     MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth);
8800     MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth);
8801   }
8802 
8803   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
8804   // libcall emission cannot handle this. Large result types will fail.
8805   if (SrcVT == MVT::f16) {
8806     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
8807     SrcVT = Src.getValueType();
8808   }
8809 
8810   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8811   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8812 
8813   APFloat::opStatus MinStatus =
8814       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
8815   APFloat::opStatus MaxStatus =
8816       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
8817   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
8818                              !(MaxStatus & APFloat::opStatus::opInexact);
8819 
8820   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
8821   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
8822 
8823   // If the integer bounds are exactly representable as floats and min/max are
8824   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
8825   // of comparisons and selects.
8826   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
8827                      isOperationLegal(ISD::FMAXNUM, SrcVT);
8828   if (AreExactFloatBounds && MinMaxLegal) {
8829     SDValue Clamped = Src;
8830 
8831     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
8832     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
8833     // Clamp by MaxFloat from above. NaN cannot occur.
8834     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
8835     // Convert clamped value to integer.
8836     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
8837                                   dl, DstVT, Clamped);
8838 
8839     // In the unsigned case we're done, because we mapped NaN to MinFloat,
8840     // which will cast to zero.
8841     if (!IsSigned)
8842       return FpToInt;
8843 
8844     // Otherwise, select 0 if Src is NaN.
8845     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8846     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
8847                            ISD::CondCode::SETUO);
8848   }
8849 
8850   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
8851   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
8852 
8853   // Result of direct conversion. The assumption here is that the operation is
8854   // non-trapping and it's fine to apply it to an out-of-range value if we
8855   // select it away later.
8856   SDValue FpToInt =
8857       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
8858 
8859   SDValue Select = FpToInt;
8860 
8861   // If Src ULT MinFloat, select MinInt. In particular, this also selects
8862   // MinInt if Src is NaN.
8863   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
8864                            ISD::CondCode::SETULT);
8865   // If Src OGT MaxFloat, select MaxInt.
8866   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
8867                            ISD::CondCode::SETOGT);
8868 
8869   // In the unsigned case we are done, because we mapped NaN to MinInt, which
8870   // is already zero.
8871   if (!IsSigned)
8872     return Select;
8873 
8874   // Otherwise, select 0 if Src is NaN.
8875   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8876   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
8877 }
8878 
8879 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
8880                                            SelectionDAG &DAG) const {
8881   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
8882   assert(Node->getValueType(0).isScalableVector() &&
8883          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
8884 
8885   EVT VT = Node->getValueType(0);
8886   SDValue V1 = Node->getOperand(0);
8887   SDValue V2 = Node->getOperand(1);
8888   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
8889   SDLoc DL(Node);
8890 
8891   // Expand through memory thusly:
8892   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
8893   //  Store V1, Ptr
8894   //  Store V2, Ptr + sizeof(V1)
8895   //  If (Imm < 0)
8896   //    TrailingElts = -Imm
8897   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
8898   //  else
8899   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
8900   //  Res = Load Ptr
8901 
8902   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
8903 
8904   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
8905                                VT.getVectorElementCount() * 2);
8906   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
8907   EVT PtrVT = StackPtr.getValueType();
8908   auto &MF = DAG.getMachineFunction();
8909   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
8910   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
8911 
8912   // Store the lo part of CONCAT_VECTORS(V1, V2)
8913   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
8914   // Store the hi part of CONCAT_VECTORS(V1, V2)
8915   SDValue OffsetToV2 = DAG.getVScale(
8916       DL, PtrVT,
8917       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8918   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
8919   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
8920 
8921   if (Imm >= 0) {
8922     // Load back the required element. getVectorElementPointer takes care of
8923     // clamping the index if it's out-of-bounds.
8924     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
8925     // Load the spliced result
8926     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
8927                        MachinePointerInfo::getUnknownStack(MF));
8928   }
8929 
8930   uint64_t TrailingElts = -Imm;
8931 
8932   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
8933   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
8934   SDValue TrailingBytes =
8935       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
8936 
8937   if (TrailingElts > VT.getVectorMinNumElements()) {
8938     SDValue VLBytes = DAG.getVScale(
8939         DL, PtrVT,
8940         APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8941     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
8942   }
8943 
8944   // Calculate the start address of the spliced result.
8945   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
8946 
8947   // Load the spliced result
8948   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
8949                      MachinePointerInfo::getUnknownStack(MF));
8950 }
8951 
8952 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
8953                                            SDValue &LHS, SDValue &RHS,
8954                                            SDValue &CC, bool &NeedInvert,
8955                                            const SDLoc &dl, SDValue &Chain,
8956                                            bool IsSignaling) const {
8957   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8958   MVT OpVT = LHS.getSimpleValueType();
8959   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
8960   NeedInvert = false;
8961   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
8962   default:
8963     llvm_unreachable("Unknown condition code action!");
8964   case TargetLowering::Legal:
8965     // Nothing to do.
8966     break;
8967   case TargetLowering::Expand: {
8968     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
8969     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8970       std::swap(LHS, RHS);
8971       CC = DAG.getCondCode(InvCC);
8972       return true;
8973     }
8974     // Swapping operands didn't work. Try inverting the condition.
8975     bool NeedSwap = false;
8976     InvCC = getSetCCInverse(CCCode, OpVT);
8977     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8978       // If inverting the condition is not enough, try swapping operands
8979       // on top of it.
8980       InvCC = ISD::getSetCCSwappedOperands(InvCC);
8981       NeedSwap = true;
8982     }
8983     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8984       CC = DAG.getCondCode(InvCC);
8985       NeedInvert = true;
8986       if (NeedSwap)
8987         std::swap(LHS, RHS);
8988       return true;
8989     }
8990 
8991     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
8992     unsigned Opc = 0;
8993     switch (CCCode) {
8994     default:
8995       llvm_unreachable("Don't know how to expand this condition!");
8996     case ISD::SETUO:
8997       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
8998         CC1 = ISD::SETUNE;
8999         CC2 = ISD::SETUNE;
9000         Opc = ISD::OR;
9001         break;
9002       }
9003       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9004              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
9005       NeedInvert = true;
9006       LLVM_FALLTHROUGH;
9007     case ISD::SETO:
9008       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9009              "If SETO is expanded, SETOEQ must be legal!");
9010       CC1 = ISD::SETOEQ;
9011       CC2 = ISD::SETOEQ;
9012       Opc = ISD::AND;
9013       break;
9014     case ISD::SETONE:
9015     case ISD::SETUEQ:
9016       // If the SETUO or SETO CC isn't legal, we might be able to use
9017       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
9018       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
9019       // the operands.
9020       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9021       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
9022           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
9023            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
9024         CC1 = ISD::SETOGT;
9025         CC2 = ISD::SETOLT;
9026         Opc = ISD::OR;
9027         NeedInvert = ((unsigned)CCCode & 0x8U);
9028         break;
9029       }
9030       LLVM_FALLTHROUGH;
9031     case ISD::SETOEQ:
9032     case ISD::SETOGT:
9033     case ISD::SETOGE:
9034     case ISD::SETOLT:
9035     case ISD::SETOLE:
9036     case ISD::SETUNE:
9037     case ISD::SETUGT:
9038     case ISD::SETUGE:
9039     case ISD::SETULT:
9040     case ISD::SETULE:
9041       // If we are floating point, assign and break, otherwise fall through.
9042       if (!OpVT.isInteger()) {
9043         // We can use the 4th bit to tell if we are the unordered
9044         // or ordered version of the opcode.
9045         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9046         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
9047         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
9048         break;
9049       }
9050       // Fallthrough if we are unsigned integer.
9051       LLVM_FALLTHROUGH;
9052     case ISD::SETLE:
9053     case ISD::SETGT:
9054     case ISD::SETGE:
9055     case ISD::SETLT:
9056     case ISD::SETNE:
9057     case ISD::SETEQ:
9058       // If all combinations of inverting the condition and swapping operands
9059       // didn't work then we have no means to expand the condition.
9060       llvm_unreachable("Don't know how to expand this condition!");
9061     }
9062 
9063     SDValue SetCC1, SetCC2;
9064     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
9065       // If we aren't the ordered or unorder operation,
9066       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
9067       SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
9068       SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
9069     } else {
9070       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
9071       SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
9072       SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
9073     }
9074     if (Chain)
9075       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
9076                           SetCC2.getValue(1));
9077     LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
9078     RHS = SDValue();
9079     CC = SDValue();
9080     return true;
9081   }
9082   }
9083   return false;
9084 }
9085