1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore following attributes because they don't affect the 61 // call sequence. 62 AttrBuilder CallerAttrs(F.getAttributes(), AttributeList::ReturnIndex); 63 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 64 Attribute::DereferenceableOrNull, Attribute::NoAlias, 65 Attribute::NonNull}) 66 CallerAttrs.removeAttribute(Attr); 67 68 if (CallerAttrs.hasAttributes()) 69 return false; 70 71 // It's not safe to eliminate the sign / zero extension of the return value. 72 if (CallerAttrs.contains(Attribute::ZExt) || 73 CallerAttrs.contains(Attribute::SExt)) 74 return false; 75 76 // Check if the only use is a function return node. 77 return isUsedByReturnOnly(Node, Chain); 78 } 79 80 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 81 const uint32_t *CallerPreservedMask, 82 const SmallVectorImpl<CCValAssign> &ArgLocs, 83 const SmallVectorImpl<SDValue> &OutVals) const { 84 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 85 const CCValAssign &ArgLoc = ArgLocs[I]; 86 if (!ArgLoc.isRegLoc()) 87 continue; 88 MCRegister Reg = ArgLoc.getLocReg(); 89 // Only look at callee saved registers. 90 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 91 continue; 92 // Check that we pass the value used for the caller. 93 // (We look for a CopyFromReg reading a virtual register that is used 94 // for the function live-in value of register Reg) 95 SDValue Value = OutVals[I]; 96 if (Value->getOpcode() != ISD::CopyFromReg) 97 return false; 98 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 99 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 100 return false; 101 } 102 return true; 103 } 104 105 /// Set CallLoweringInfo attribute flags based on a call instruction 106 /// and called function attributes. 107 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 108 unsigned ArgIdx) { 109 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 110 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 111 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 112 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 113 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 114 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 115 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 116 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 117 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 118 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 119 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 120 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 121 Alignment = Call->getParamStackAlign(ArgIdx); 122 IndirectType = nullptr; 123 assert(IsByVal + IsPreallocated + IsInAlloca <= 1 && 124 "multiple ABI attributes?"); 125 if (IsByVal) { 126 IndirectType = Call->getParamByValType(ArgIdx); 127 if (!Alignment) 128 Alignment = Call->getParamAlign(ArgIdx); 129 } 130 if (IsPreallocated) 131 IndirectType = Call->getParamPreallocatedType(ArgIdx); 132 if (IsInAlloca) 133 IndirectType = Call->getParamInAllocaType(ArgIdx); 134 } 135 136 /// Generate a libcall taking the given operands as arguments and returning a 137 /// result of type RetVT. 138 std::pair<SDValue, SDValue> 139 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 140 ArrayRef<SDValue> Ops, 141 MakeLibCallOptions CallOptions, 142 const SDLoc &dl, 143 SDValue InChain) const { 144 if (!InChain) 145 InChain = DAG.getEntryNode(); 146 147 TargetLowering::ArgListTy Args; 148 Args.reserve(Ops.size()); 149 150 TargetLowering::ArgListEntry Entry; 151 for (unsigned i = 0; i < Ops.size(); ++i) { 152 SDValue NewOp = Ops[i]; 153 Entry.Node = NewOp; 154 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 155 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 156 CallOptions.IsSExt); 157 Entry.IsZExt = !Entry.IsSExt; 158 159 if (CallOptions.IsSoften && 160 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 161 Entry.IsSExt = Entry.IsZExt = false; 162 } 163 Args.push_back(Entry); 164 } 165 166 if (LC == RTLIB::UNKNOWN_LIBCALL) 167 report_fatal_error("Unsupported library call operation!"); 168 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 169 getPointerTy(DAG.getDataLayout())); 170 171 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 172 TargetLowering::CallLoweringInfo CLI(DAG); 173 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 174 bool zeroExtend = !signExtend; 175 176 if (CallOptions.IsSoften && 177 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 178 signExtend = zeroExtend = false; 179 } 180 181 CLI.setDebugLoc(dl) 182 .setChain(InChain) 183 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 184 .setNoReturn(CallOptions.DoesNotReturn) 185 .setDiscardResult(!CallOptions.IsReturnValueUsed) 186 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 187 .setSExtResult(signExtend) 188 .setZExtResult(zeroExtend); 189 return LowerCallTo(CLI); 190 } 191 192 bool TargetLowering::findOptimalMemOpLowering( 193 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 194 unsigned SrcAS, const AttributeList &FuncAttributes) const { 195 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 196 return false; 197 198 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 199 200 if (VT == MVT::Other) { 201 // Use the largest integer type whose alignment constraints are satisfied. 202 // We only need to check DstAlign here as SrcAlign is always greater or 203 // equal to DstAlign (or zero). 204 VT = MVT::i64; 205 if (Op.isFixedDstAlign()) 206 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 207 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 208 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 209 assert(VT.isInteger()); 210 211 // Find the largest legal integer type. 212 MVT LVT = MVT::i64; 213 while (!isTypeLegal(LVT)) 214 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 215 assert(LVT.isInteger()); 216 217 // If the type we've chosen is larger than the largest legal integer type 218 // then use that instead. 219 if (VT.bitsGT(LVT)) 220 VT = LVT; 221 } 222 223 unsigned NumMemOps = 0; 224 uint64_t Size = Op.size(); 225 while (Size) { 226 unsigned VTSize = VT.getSizeInBits() / 8; 227 while (VTSize > Size) { 228 // For now, only use non-vector load / store's for the left-over pieces. 229 EVT NewVT = VT; 230 unsigned NewVTSize; 231 232 bool Found = false; 233 if (VT.isVector() || VT.isFloatingPoint()) { 234 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 235 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 236 isSafeMemOpType(NewVT.getSimpleVT())) 237 Found = true; 238 else if (NewVT == MVT::i64 && 239 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 240 isSafeMemOpType(MVT::f64)) { 241 // i64 is usually not legal on 32-bit targets, but f64 may be. 242 NewVT = MVT::f64; 243 Found = true; 244 } 245 } 246 247 if (!Found) { 248 do { 249 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 250 if (NewVT == MVT::i8) 251 break; 252 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 253 } 254 NewVTSize = NewVT.getSizeInBits() / 8; 255 256 // If the new VT cannot cover all of the remaining bits, then consider 257 // issuing a (or a pair of) unaligned and overlapping load / store. 258 bool Fast; 259 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 260 allowsMisalignedMemoryAccesses( 261 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 262 MachineMemOperand::MONone, &Fast) && 263 Fast) 264 VTSize = Size; 265 else { 266 VT = NewVT; 267 VTSize = NewVTSize; 268 } 269 } 270 271 if (++NumMemOps > Limit) 272 return false; 273 274 MemOps.push_back(VT); 275 Size -= VTSize; 276 } 277 278 return true; 279 } 280 281 /// Soften the operands of a comparison. This code is shared among BR_CC, 282 /// SELECT_CC, and SETCC handlers. 283 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 284 SDValue &NewLHS, SDValue &NewRHS, 285 ISD::CondCode &CCCode, 286 const SDLoc &dl, const SDValue OldLHS, 287 const SDValue OldRHS) const { 288 SDValue Chain; 289 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 290 OldRHS, Chain); 291 } 292 293 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 294 SDValue &NewLHS, SDValue &NewRHS, 295 ISD::CondCode &CCCode, 296 const SDLoc &dl, const SDValue OldLHS, 297 const SDValue OldRHS, 298 SDValue &Chain, 299 bool IsSignaling) const { 300 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 301 // not supporting it. We can update this code when libgcc provides such 302 // functions. 303 304 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 305 && "Unsupported setcc type!"); 306 307 // Expand into one or more soft-fp libcall(s). 308 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 309 bool ShouldInvertCC = false; 310 switch (CCCode) { 311 case ISD::SETEQ: 312 case ISD::SETOEQ: 313 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 314 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 315 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 316 break; 317 case ISD::SETNE: 318 case ISD::SETUNE: 319 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 320 (VT == MVT::f64) ? RTLIB::UNE_F64 : 321 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 322 break; 323 case ISD::SETGE: 324 case ISD::SETOGE: 325 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 326 (VT == MVT::f64) ? RTLIB::OGE_F64 : 327 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 328 break; 329 case ISD::SETLT: 330 case ISD::SETOLT: 331 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 332 (VT == MVT::f64) ? RTLIB::OLT_F64 : 333 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 334 break; 335 case ISD::SETLE: 336 case ISD::SETOLE: 337 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 338 (VT == MVT::f64) ? RTLIB::OLE_F64 : 339 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 340 break; 341 case ISD::SETGT: 342 case ISD::SETOGT: 343 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 344 (VT == MVT::f64) ? RTLIB::OGT_F64 : 345 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 346 break; 347 case ISD::SETO: 348 ShouldInvertCC = true; 349 LLVM_FALLTHROUGH; 350 case ISD::SETUO: 351 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 352 (VT == MVT::f64) ? RTLIB::UO_F64 : 353 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 354 break; 355 case ISD::SETONE: 356 // SETONE = O && UNE 357 ShouldInvertCC = true; 358 LLVM_FALLTHROUGH; 359 case ISD::SETUEQ: 360 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 361 (VT == MVT::f64) ? RTLIB::UO_F64 : 362 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 363 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 364 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 365 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 366 break; 367 default: 368 // Invert CC for unordered comparisons 369 ShouldInvertCC = true; 370 switch (CCCode) { 371 case ISD::SETULT: 372 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 373 (VT == MVT::f64) ? RTLIB::OGE_F64 : 374 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 375 break; 376 case ISD::SETULE: 377 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 378 (VT == MVT::f64) ? RTLIB::OGT_F64 : 379 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 380 break; 381 case ISD::SETUGT: 382 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 383 (VT == MVT::f64) ? RTLIB::OLE_F64 : 384 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 385 break; 386 case ISD::SETUGE: 387 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 388 (VT == MVT::f64) ? RTLIB::OLT_F64 : 389 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 390 break; 391 default: llvm_unreachable("Do not know how to soften this setcc!"); 392 } 393 } 394 395 // Use the target specific return value for comparions lib calls. 396 EVT RetVT = getCmpLibcallReturnType(); 397 SDValue Ops[2] = {NewLHS, NewRHS}; 398 TargetLowering::MakeLibCallOptions CallOptions; 399 EVT OpsVT[2] = { OldLHS.getValueType(), 400 OldRHS.getValueType() }; 401 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 402 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 403 NewLHS = Call.first; 404 NewRHS = DAG.getConstant(0, dl, RetVT); 405 406 CCCode = getCmpLibcallCC(LC1); 407 if (ShouldInvertCC) { 408 assert(RetVT.isInteger()); 409 CCCode = getSetCCInverse(CCCode, RetVT); 410 } 411 412 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 413 // Update Chain. 414 Chain = Call.second; 415 } else { 416 EVT SetCCVT = 417 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 418 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 419 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 420 CCCode = getCmpLibcallCC(LC2); 421 if (ShouldInvertCC) 422 CCCode = getSetCCInverse(CCCode, RetVT); 423 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 424 if (Chain) 425 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 426 Call2.second); 427 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 428 Tmp.getValueType(), Tmp, NewLHS); 429 NewRHS = SDValue(); 430 } 431 } 432 433 /// Return the entry encoding for a jump table in the current function. The 434 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 435 unsigned TargetLowering::getJumpTableEncoding() const { 436 // In non-pic modes, just use the address of a block. 437 if (!isPositionIndependent()) 438 return MachineJumpTableInfo::EK_BlockAddress; 439 440 // In PIC mode, if the target supports a GPRel32 directive, use it. 441 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 442 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 443 444 // Otherwise, use a label difference. 445 return MachineJumpTableInfo::EK_LabelDifference32; 446 } 447 448 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 449 SelectionDAG &DAG) const { 450 // If our PIC model is GP relative, use the global offset table as the base. 451 unsigned JTEncoding = getJumpTableEncoding(); 452 453 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 454 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 455 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 456 457 return Table; 458 } 459 460 /// This returns the relocation base for the given PIC jumptable, the same as 461 /// getPICJumpTableRelocBase, but as an MCExpr. 462 const MCExpr * 463 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 464 unsigned JTI,MCContext &Ctx) const{ 465 // The normal PIC reloc base is the label at the start of the jump table. 466 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 467 } 468 469 bool 470 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 471 const TargetMachine &TM = getTargetMachine(); 472 const GlobalValue *GV = GA->getGlobal(); 473 474 // If the address is not even local to this DSO we will have to load it from 475 // a got and then add the offset. 476 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 477 return false; 478 479 // If the code is position independent we will have to add a base register. 480 if (isPositionIndependent()) 481 return false; 482 483 // Otherwise we can do it. 484 return true; 485 } 486 487 //===----------------------------------------------------------------------===// 488 // Optimization Methods 489 //===----------------------------------------------------------------------===// 490 491 /// If the specified instruction has a constant integer operand and there are 492 /// bits set in that constant that are not demanded, then clear those bits and 493 /// return true. 494 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 495 const APInt &DemandedBits, 496 const APInt &DemandedElts, 497 TargetLoweringOpt &TLO) const { 498 SDLoc DL(Op); 499 unsigned Opcode = Op.getOpcode(); 500 501 // Do target-specific constant optimization. 502 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 503 return TLO.New.getNode(); 504 505 // FIXME: ISD::SELECT, ISD::SELECT_CC 506 switch (Opcode) { 507 default: 508 break; 509 case ISD::XOR: 510 case ISD::AND: 511 case ISD::OR: { 512 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 513 if (!Op1C || Op1C->isOpaque()) 514 return false; 515 516 // If this is a 'not' op, don't touch it because that's a canonical form. 517 const APInt &C = Op1C->getAPIntValue(); 518 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 519 return false; 520 521 if (!C.isSubsetOf(DemandedBits)) { 522 EVT VT = Op.getValueType(); 523 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 524 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 525 return TLO.CombineTo(Op, NewOp); 526 } 527 528 break; 529 } 530 } 531 532 return false; 533 } 534 535 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 536 const APInt &DemandedBits, 537 TargetLoweringOpt &TLO) const { 538 EVT VT = Op.getValueType(); 539 APInt DemandedElts = VT.isVector() 540 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 541 : APInt(1, 1); 542 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 543 } 544 545 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 546 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 547 /// generalized for targets with other types of implicit widening casts. 548 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 549 const APInt &Demanded, 550 TargetLoweringOpt &TLO) const { 551 assert(Op.getNumOperands() == 2 && 552 "ShrinkDemandedOp only supports binary operators!"); 553 assert(Op.getNode()->getNumValues() == 1 && 554 "ShrinkDemandedOp only supports nodes with one result!"); 555 556 SelectionDAG &DAG = TLO.DAG; 557 SDLoc dl(Op); 558 559 // Early return, as this function cannot handle vector types. 560 if (Op.getValueType().isVector()) 561 return false; 562 563 // Don't do this if the node has another user, which may require the 564 // full value. 565 if (!Op.getNode()->hasOneUse()) 566 return false; 567 568 // Search for the smallest integer type with free casts to and from 569 // Op's type. For expedience, just check power-of-2 integer types. 570 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 571 unsigned DemandedSize = Demanded.getActiveBits(); 572 unsigned SmallVTBits = DemandedSize; 573 if (!isPowerOf2_32(SmallVTBits)) 574 SmallVTBits = NextPowerOf2(SmallVTBits); 575 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 576 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 577 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 578 TLI.isZExtFree(SmallVT, Op.getValueType())) { 579 // We found a type with free casts. 580 SDValue X = DAG.getNode( 581 Op.getOpcode(), dl, SmallVT, 582 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 583 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 584 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 585 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 586 return TLO.CombineTo(Op, Z); 587 } 588 } 589 return false; 590 } 591 592 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 593 DAGCombinerInfo &DCI) const { 594 SelectionDAG &DAG = DCI.DAG; 595 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 596 !DCI.isBeforeLegalizeOps()); 597 KnownBits Known; 598 599 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 600 if (Simplified) { 601 DCI.AddToWorklist(Op.getNode()); 602 DCI.CommitTargetLoweringOpt(TLO); 603 } 604 return Simplified; 605 } 606 607 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 608 KnownBits &Known, 609 TargetLoweringOpt &TLO, 610 unsigned Depth, 611 bool AssumeSingleUse) const { 612 EVT VT = Op.getValueType(); 613 614 // TODO: We can probably do more work on calculating the known bits and 615 // simplifying the operations for scalable vectors, but for now we just 616 // bail out. 617 if (VT.isScalableVector()) { 618 // Pretend we don't know anything for now. 619 Known = KnownBits(DemandedBits.getBitWidth()); 620 return false; 621 } 622 623 APInt DemandedElts = VT.isVector() 624 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 625 : APInt(1, 1); 626 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 627 AssumeSingleUse); 628 } 629 630 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 631 // TODO: Under what circumstances can we create nodes? Constant folding? 632 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 633 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 634 SelectionDAG &DAG, unsigned Depth) const { 635 // Limit search depth. 636 if (Depth >= SelectionDAG::MaxRecursionDepth) 637 return SDValue(); 638 639 // Ignore UNDEFs. 640 if (Op.isUndef()) 641 return SDValue(); 642 643 // Not demanding any bits/elts from Op. 644 if (DemandedBits == 0 || DemandedElts == 0) 645 return DAG.getUNDEF(Op.getValueType()); 646 647 unsigned NumElts = DemandedElts.getBitWidth(); 648 unsigned BitWidth = DemandedBits.getBitWidth(); 649 KnownBits LHSKnown, RHSKnown; 650 switch (Op.getOpcode()) { 651 case ISD::BITCAST: { 652 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 653 EVT SrcVT = Src.getValueType(); 654 EVT DstVT = Op.getValueType(); 655 if (SrcVT == DstVT) 656 return Src; 657 658 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 659 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 660 if (NumSrcEltBits == NumDstEltBits) 661 if (SDValue V = SimplifyMultipleUseDemandedBits( 662 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 663 return DAG.getBitcast(DstVT, V); 664 665 // TODO - bigendian once we have test coverage. 666 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 667 DAG.getDataLayout().isLittleEndian()) { 668 unsigned Scale = NumDstEltBits / NumSrcEltBits; 669 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 670 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 671 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 672 for (unsigned i = 0; i != Scale; ++i) { 673 unsigned Offset = i * NumSrcEltBits; 674 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 675 if (!Sub.isNullValue()) { 676 DemandedSrcBits |= Sub; 677 for (unsigned j = 0; j != NumElts; ++j) 678 if (DemandedElts[j]) 679 DemandedSrcElts.setBit((j * Scale) + i); 680 } 681 } 682 683 if (SDValue V = SimplifyMultipleUseDemandedBits( 684 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 685 return DAG.getBitcast(DstVT, V); 686 } 687 688 // TODO - bigendian once we have test coverage. 689 if ((NumSrcEltBits % NumDstEltBits) == 0 && 690 DAG.getDataLayout().isLittleEndian()) { 691 unsigned Scale = NumSrcEltBits / NumDstEltBits; 692 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 693 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 694 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 695 for (unsigned i = 0; i != NumElts; ++i) 696 if (DemandedElts[i]) { 697 unsigned Offset = (i % Scale) * NumDstEltBits; 698 DemandedSrcBits.insertBits(DemandedBits, Offset); 699 DemandedSrcElts.setBit(i / Scale); 700 } 701 702 if (SDValue V = SimplifyMultipleUseDemandedBits( 703 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 704 return DAG.getBitcast(DstVT, V); 705 } 706 707 break; 708 } 709 case ISD::AND: { 710 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 711 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 712 713 // If all of the demanded bits are known 1 on one side, return the other. 714 // These bits cannot contribute to the result of the 'and' in this 715 // context. 716 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 717 return Op.getOperand(0); 718 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 719 return Op.getOperand(1); 720 break; 721 } 722 case ISD::OR: { 723 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 724 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 725 726 // If all of the demanded bits are known zero on one side, return the 727 // other. These bits cannot contribute to the result of the 'or' in this 728 // context. 729 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 730 return Op.getOperand(0); 731 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 732 return Op.getOperand(1); 733 break; 734 } 735 case ISD::XOR: { 736 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 737 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 738 739 // If all of the demanded bits are known zero on one side, return the 740 // other. 741 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 742 return Op.getOperand(0); 743 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 744 return Op.getOperand(1); 745 break; 746 } 747 case ISD::SHL: { 748 // If we are only demanding sign bits then we can use the shift source 749 // directly. 750 if (const APInt *MaxSA = 751 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 752 SDValue Op0 = Op.getOperand(0); 753 unsigned ShAmt = MaxSA->getZExtValue(); 754 unsigned NumSignBits = 755 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 756 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 757 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 758 return Op0; 759 } 760 break; 761 } 762 case ISD::SETCC: { 763 SDValue Op0 = Op.getOperand(0); 764 SDValue Op1 = Op.getOperand(1); 765 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 766 // If (1) we only need the sign-bit, (2) the setcc operands are the same 767 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 768 // -1, we may be able to bypass the setcc. 769 if (DemandedBits.isSignMask() && 770 Op0.getScalarValueSizeInBits() == BitWidth && 771 getBooleanContents(Op0.getValueType()) == 772 BooleanContent::ZeroOrNegativeOneBooleanContent) { 773 // If we're testing X < 0, then this compare isn't needed - just use X! 774 // FIXME: We're limiting to integer types here, but this should also work 775 // if we don't care about FP signed-zero. The use of SETLT with FP means 776 // that we don't care about NaNs. 777 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 778 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 779 return Op0; 780 } 781 break; 782 } 783 case ISD::SIGN_EXTEND_INREG: { 784 // If none of the extended bits are demanded, eliminate the sextinreg. 785 SDValue Op0 = Op.getOperand(0); 786 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 787 unsigned ExBits = ExVT.getScalarSizeInBits(); 788 if (DemandedBits.getActiveBits() <= ExBits) 789 return Op0; 790 // If the input is already sign extended, just drop the extension. 791 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 792 if (NumSignBits >= (BitWidth - ExBits + 1)) 793 return Op0; 794 break; 795 } 796 case ISD::ANY_EXTEND_VECTOR_INREG: 797 case ISD::SIGN_EXTEND_VECTOR_INREG: 798 case ISD::ZERO_EXTEND_VECTOR_INREG: { 799 // If we only want the lowest element and none of extended bits, then we can 800 // return the bitcasted source vector. 801 SDValue Src = Op.getOperand(0); 802 EVT SrcVT = Src.getValueType(); 803 EVT DstVT = Op.getValueType(); 804 if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 805 DAG.getDataLayout().isLittleEndian() && 806 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 807 return DAG.getBitcast(DstVT, Src); 808 } 809 break; 810 } 811 case ISD::INSERT_VECTOR_ELT: { 812 // If we don't demand the inserted element, return the base vector. 813 SDValue Vec = Op.getOperand(0); 814 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 815 EVT VecVT = Vec.getValueType(); 816 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 817 !DemandedElts[CIdx->getZExtValue()]) 818 return Vec; 819 break; 820 } 821 case ISD::INSERT_SUBVECTOR: { 822 SDValue Vec = Op.getOperand(0); 823 SDValue Sub = Op.getOperand(1); 824 uint64_t Idx = Op.getConstantOperandVal(2); 825 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 826 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 827 // If we don't demand the inserted subvector, return the base vector. 828 if (DemandedSubElts == 0) 829 return Vec; 830 // If this simply widens the lowest subvector, see if we can do it earlier. 831 if (Idx == 0 && Vec.isUndef()) { 832 if (SDValue NewSub = SimplifyMultipleUseDemandedBits( 833 Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1)) 834 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 835 Op.getOperand(0), NewSub, Op.getOperand(2)); 836 } 837 break; 838 } 839 case ISD::VECTOR_SHUFFLE: { 840 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 841 842 // If all the demanded elts are from one operand and are inline, 843 // then we can use the operand directly. 844 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 845 for (unsigned i = 0; i != NumElts; ++i) { 846 int M = ShuffleMask[i]; 847 if (M < 0 || !DemandedElts[i]) 848 continue; 849 AllUndef = false; 850 IdentityLHS &= (M == (int)i); 851 IdentityRHS &= ((M - NumElts) == i); 852 } 853 854 if (AllUndef) 855 return DAG.getUNDEF(Op.getValueType()); 856 if (IdentityLHS) 857 return Op.getOperand(0); 858 if (IdentityRHS) 859 return Op.getOperand(1); 860 break; 861 } 862 default: 863 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 864 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 865 Op, DemandedBits, DemandedElts, DAG, Depth)) 866 return V; 867 break; 868 } 869 return SDValue(); 870 } 871 872 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 873 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 874 unsigned Depth) const { 875 EVT VT = Op.getValueType(); 876 APInt DemandedElts = VT.isVector() 877 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 878 : APInt(1, 1); 879 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 880 Depth); 881 } 882 883 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 884 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 885 unsigned Depth) const { 886 APInt DemandedBits = APInt::getAllOnesValue(Op.getScalarValueSizeInBits()); 887 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 888 Depth); 889 } 890 891 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 892 /// result of Op are ever used downstream. If we can use this information to 893 /// simplify Op, create a new simplified DAG node and return true, returning the 894 /// original and new nodes in Old and New. Otherwise, analyze the expression and 895 /// return a mask of Known bits for the expression (used to simplify the 896 /// caller). The Known bits may only be accurate for those bits in the 897 /// OriginalDemandedBits and OriginalDemandedElts. 898 bool TargetLowering::SimplifyDemandedBits( 899 SDValue Op, const APInt &OriginalDemandedBits, 900 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 901 unsigned Depth, bool AssumeSingleUse) const { 902 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 903 assert(Op.getScalarValueSizeInBits() == BitWidth && 904 "Mask size mismatches value type size!"); 905 906 // Don't know anything. 907 Known = KnownBits(BitWidth); 908 909 // TODO: We can probably do more work on calculating the known bits and 910 // simplifying the operations for scalable vectors, but for now we just 911 // bail out. 912 if (Op.getValueType().isScalableVector()) 913 return false; 914 915 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 916 assert((!Op.getValueType().isVector() || 917 NumElts == Op.getValueType().getVectorNumElements()) && 918 "Unexpected vector size"); 919 920 APInt DemandedBits = OriginalDemandedBits; 921 APInt DemandedElts = OriginalDemandedElts; 922 SDLoc dl(Op); 923 auto &DL = TLO.DAG.getDataLayout(); 924 925 // Undef operand. 926 if (Op.isUndef()) 927 return false; 928 929 if (Op.getOpcode() == ISD::Constant) { 930 // We know all of the bits for a constant! 931 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 932 return false; 933 } 934 935 if (Op.getOpcode() == ISD::ConstantFP) { 936 // We know all of the bits for a floating point constant! 937 Known = KnownBits::makeConstant( 938 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 939 return false; 940 } 941 942 // Other users may use these bits. 943 EVT VT = Op.getValueType(); 944 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 945 if (Depth != 0) { 946 // If not at the root, Just compute the Known bits to 947 // simplify things downstream. 948 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 949 return false; 950 } 951 // If this is the root being simplified, allow it to have multiple uses, 952 // just set the DemandedBits/Elts to all bits. 953 DemandedBits = APInt::getAllOnesValue(BitWidth); 954 DemandedElts = APInt::getAllOnesValue(NumElts); 955 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 956 // Not demanding any bits/elts from Op. 957 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 958 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 959 // Limit search depth. 960 return false; 961 } 962 963 KnownBits Known2; 964 switch (Op.getOpcode()) { 965 case ISD::TargetConstant: 966 llvm_unreachable("Can't simplify this node"); 967 case ISD::SCALAR_TO_VECTOR: { 968 if (!DemandedElts[0]) 969 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 970 971 KnownBits SrcKnown; 972 SDValue Src = Op.getOperand(0); 973 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 974 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 975 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 976 return true; 977 978 // Upper elements are undef, so only get the knownbits if we just demand 979 // the bottom element. 980 if (DemandedElts == 1) 981 Known = SrcKnown.anyextOrTrunc(BitWidth); 982 break; 983 } 984 case ISD::BUILD_VECTOR: 985 // Collect the known bits that are shared by every demanded element. 986 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 987 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 988 return false; // Don't fall through, will infinitely loop. 989 case ISD::LOAD: { 990 auto *LD = cast<LoadSDNode>(Op); 991 if (getTargetConstantFromLoad(LD)) { 992 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 993 return false; // Don't fall through, will infinitely loop. 994 } 995 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 996 // If this is a ZEXTLoad and we are looking at the loaded value. 997 EVT MemVT = LD->getMemoryVT(); 998 unsigned MemBits = MemVT.getScalarSizeInBits(); 999 Known.Zero.setBitsFrom(MemBits); 1000 return false; // Don't fall through, will infinitely loop. 1001 } 1002 break; 1003 } 1004 case ISD::INSERT_VECTOR_ELT: { 1005 SDValue Vec = Op.getOperand(0); 1006 SDValue Scl = Op.getOperand(1); 1007 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1008 EVT VecVT = Vec.getValueType(); 1009 1010 // If index isn't constant, assume we need all vector elements AND the 1011 // inserted element. 1012 APInt DemandedVecElts(DemandedElts); 1013 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1014 unsigned Idx = CIdx->getZExtValue(); 1015 DemandedVecElts.clearBit(Idx); 1016 1017 // Inserted element is not required. 1018 if (!DemandedElts[Idx]) 1019 return TLO.CombineTo(Op, Vec); 1020 } 1021 1022 KnownBits KnownScl; 1023 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1024 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1025 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1026 return true; 1027 1028 Known = KnownScl.anyextOrTrunc(BitWidth); 1029 1030 KnownBits KnownVec; 1031 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1032 Depth + 1)) 1033 return true; 1034 1035 if (!!DemandedVecElts) 1036 Known = KnownBits::commonBits(Known, KnownVec); 1037 1038 return false; 1039 } 1040 case ISD::INSERT_SUBVECTOR: { 1041 // Demand any elements from the subvector and the remainder from the src its 1042 // inserted into. 1043 SDValue Src = Op.getOperand(0); 1044 SDValue Sub = Op.getOperand(1); 1045 uint64_t Idx = Op.getConstantOperandVal(2); 1046 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1047 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1048 APInt DemandedSrcElts = DemandedElts; 1049 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 1050 1051 KnownBits KnownSub, KnownSrc; 1052 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1053 Depth + 1)) 1054 return true; 1055 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1056 Depth + 1)) 1057 return true; 1058 1059 Known.Zero.setAllBits(); 1060 Known.One.setAllBits(); 1061 if (!!DemandedSubElts) 1062 Known = KnownBits::commonBits(Known, KnownSub); 1063 if (!!DemandedSrcElts) 1064 Known = KnownBits::commonBits(Known, KnownSrc); 1065 1066 // Attempt to avoid multi-use src if we don't need anything from it. 1067 if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() || 1068 !DemandedSrcElts.isAllOnesValue()) { 1069 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1070 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1071 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1072 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1073 if (NewSub || NewSrc) { 1074 NewSub = NewSub ? NewSub : Sub; 1075 NewSrc = NewSrc ? NewSrc : Src; 1076 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1077 Op.getOperand(2)); 1078 return TLO.CombineTo(Op, NewOp); 1079 } 1080 } 1081 break; 1082 } 1083 case ISD::EXTRACT_SUBVECTOR: { 1084 // Offset the demanded elts by the subvector index. 1085 SDValue Src = Op.getOperand(0); 1086 if (Src.getValueType().isScalableVector()) 1087 break; 1088 uint64_t Idx = Op.getConstantOperandVal(1); 1089 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1090 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1091 1092 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1093 Depth + 1)) 1094 return true; 1095 1096 // Attempt to avoid multi-use src if we don't need anything from it. 1097 if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) { 1098 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1099 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1100 if (DemandedSrc) { 1101 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1102 Op.getOperand(1)); 1103 return TLO.CombineTo(Op, NewOp); 1104 } 1105 } 1106 break; 1107 } 1108 case ISD::CONCAT_VECTORS: { 1109 Known.Zero.setAllBits(); 1110 Known.One.setAllBits(); 1111 EVT SubVT = Op.getOperand(0).getValueType(); 1112 unsigned NumSubVecs = Op.getNumOperands(); 1113 unsigned NumSubElts = SubVT.getVectorNumElements(); 1114 for (unsigned i = 0; i != NumSubVecs; ++i) { 1115 APInt DemandedSubElts = 1116 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1117 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1118 Known2, TLO, Depth + 1)) 1119 return true; 1120 // Known bits are shared by every demanded subvector element. 1121 if (!!DemandedSubElts) 1122 Known = KnownBits::commonBits(Known, Known2); 1123 } 1124 break; 1125 } 1126 case ISD::VECTOR_SHUFFLE: { 1127 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1128 1129 // Collect demanded elements from shuffle operands.. 1130 APInt DemandedLHS(NumElts, 0); 1131 APInt DemandedRHS(NumElts, 0); 1132 for (unsigned i = 0; i != NumElts; ++i) { 1133 if (!DemandedElts[i]) 1134 continue; 1135 int M = ShuffleMask[i]; 1136 if (M < 0) { 1137 // For UNDEF elements, we don't know anything about the common state of 1138 // the shuffle result. 1139 DemandedLHS.clearAllBits(); 1140 DemandedRHS.clearAllBits(); 1141 break; 1142 } 1143 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1144 if (M < (int)NumElts) 1145 DemandedLHS.setBit(M); 1146 else 1147 DemandedRHS.setBit(M - NumElts); 1148 } 1149 1150 if (!!DemandedLHS || !!DemandedRHS) { 1151 SDValue Op0 = Op.getOperand(0); 1152 SDValue Op1 = Op.getOperand(1); 1153 1154 Known.Zero.setAllBits(); 1155 Known.One.setAllBits(); 1156 if (!!DemandedLHS) { 1157 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1158 Depth + 1)) 1159 return true; 1160 Known = KnownBits::commonBits(Known, Known2); 1161 } 1162 if (!!DemandedRHS) { 1163 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1164 Depth + 1)) 1165 return true; 1166 Known = KnownBits::commonBits(Known, Known2); 1167 } 1168 1169 // Attempt to avoid multi-use ops if we don't need anything from them. 1170 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1171 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1172 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1173 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1174 if (DemandedOp0 || DemandedOp1) { 1175 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1176 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1177 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1178 return TLO.CombineTo(Op, NewOp); 1179 } 1180 } 1181 break; 1182 } 1183 case ISD::AND: { 1184 SDValue Op0 = Op.getOperand(0); 1185 SDValue Op1 = Op.getOperand(1); 1186 1187 // If the RHS is a constant, check to see if the LHS would be zero without 1188 // using the bits from the RHS. Below, we use knowledge about the RHS to 1189 // simplify the LHS, here we're using information from the LHS to simplify 1190 // the RHS. 1191 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1192 // Do not increment Depth here; that can cause an infinite loop. 1193 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1194 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1195 if ((LHSKnown.Zero & DemandedBits) == 1196 (~RHSC->getAPIntValue() & DemandedBits)) 1197 return TLO.CombineTo(Op, Op0); 1198 1199 // If any of the set bits in the RHS are known zero on the LHS, shrink 1200 // the constant. 1201 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1202 DemandedElts, TLO)) 1203 return true; 1204 1205 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1206 // constant, but if this 'and' is only clearing bits that were just set by 1207 // the xor, then this 'and' can be eliminated by shrinking the mask of 1208 // the xor. For example, for a 32-bit X: 1209 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1210 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1211 LHSKnown.One == ~RHSC->getAPIntValue()) { 1212 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1213 return TLO.CombineTo(Op, Xor); 1214 } 1215 } 1216 1217 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1218 Depth + 1)) 1219 return true; 1220 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1221 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1222 Known2, TLO, Depth + 1)) 1223 return true; 1224 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1225 1226 // Attempt to avoid multi-use ops if we don't need anything from them. 1227 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1228 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1229 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1230 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1231 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1232 if (DemandedOp0 || DemandedOp1) { 1233 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1234 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1235 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1236 return TLO.CombineTo(Op, NewOp); 1237 } 1238 } 1239 1240 // If all of the demanded bits are known one on one side, return the other. 1241 // These bits cannot contribute to the result of the 'and'. 1242 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1243 return TLO.CombineTo(Op, Op0); 1244 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1245 return TLO.CombineTo(Op, Op1); 1246 // If all of the demanded bits in the inputs are known zeros, return zero. 1247 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1248 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1249 // If the RHS is a constant, see if we can simplify it. 1250 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1251 TLO)) 1252 return true; 1253 // If the operation can be done in a smaller type, do so. 1254 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1255 return true; 1256 1257 Known &= Known2; 1258 break; 1259 } 1260 case ISD::OR: { 1261 SDValue Op0 = Op.getOperand(0); 1262 SDValue Op1 = Op.getOperand(1); 1263 1264 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1265 Depth + 1)) 1266 return true; 1267 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1268 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1269 Known2, TLO, Depth + 1)) 1270 return true; 1271 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1272 1273 // Attempt to avoid multi-use ops if we don't need anything from them. 1274 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1275 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1276 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1277 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1278 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1279 if (DemandedOp0 || DemandedOp1) { 1280 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1281 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1282 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1283 return TLO.CombineTo(Op, NewOp); 1284 } 1285 } 1286 1287 // If all of the demanded bits are known zero on one side, return the other. 1288 // These bits cannot contribute to the result of the 'or'. 1289 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1290 return TLO.CombineTo(Op, Op0); 1291 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1292 return TLO.CombineTo(Op, Op1); 1293 // If the RHS is a constant, see if we can simplify it. 1294 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1295 return true; 1296 // If the operation can be done in a smaller type, do so. 1297 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1298 return true; 1299 1300 Known |= Known2; 1301 break; 1302 } 1303 case ISD::XOR: { 1304 SDValue Op0 = Op.getOperand(0); 1305 SDValue Op1 = Op.getOperand(1); 1306 1307 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1308 Depth + 1)) 1309 return true; 1310 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1311 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1312 Depth + 1)) 1313 return true; 1314 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1315 1316 // Attempt to avoid multi-use ops if we don't need anything from them. 1317 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1318 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1319 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1320 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1321 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1322 if (DemandedOp0 || DemandedOp1) { 1323 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1324 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1325 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1326 return TLO.CombineTo(Op, NewOp); 1327 } 1328 } 1329 1330 // If all of the demanded bits are known zero on one side, return the other. 1331 // These bits cannot contribute to the result of the 'xor'. 1332 if (DemandedBits.isSubsetOf(Known.Zero)) 1333 return TLO.CombineTo(Op, Op0); 1334 if (DemandedBits.isSubsetOf(Known2.Zero)) 1335 return TLO.CombineTo(Op, Op1); 1336 // If the operation can be done in a smaller type, do so. 1337 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1338 return true; 1339 1340 // If all of the unknown bits are known to be zero on one side or the other 1341 // turn this into an *inclusive* or. 1342 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1343 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1344 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1345 1346 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1347 if (C) { 1348 // If one side is a constant, and all of the set bits in the constant are 1349 // also known set on the other side, turn this into an AND, as we know 1350 // the bits will be cleared. 1351 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1352 // NB: it is okay if more bits are known than are requested 1353 if (C->getAPIntValue() == Known2.One) { 1354 SDValue ANDC = 1355 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1356 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1357 } 1358 1359 // If the RHS is a constant, see if we can change it. Don't alter a -1 1360 // constant because that's a 'not' op, and that is better for combining 1361 // and codegen. 1362 if (!C->isAllOnesValue() && 1363 DemandedBits.isSubsetOf(C->getAPIntValue())) { 1364 // We're flipping all demanded bits. Flip the undemanded bits too. 1365 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1366 return TLO.CombineTo(Op, New); 1367 } 1368 } 1369 1370 // If we can't turn this into a 'not', try to shrink the constant. 1371 if (!C || !C->isAllOnesValue()) 1372 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1373 return true; 1374 1375 Known ^= Known2; 1376 break; 1377 } 1378 case ISD::SELECT: 1379 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1380 Depth + 1)) 1381 return true; 1382 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1383 Depth + 1)) 1384 return true; 1385 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1386 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1387 1388 // If the operands are constants, see if we can simplify them. 1389 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1390 return true; 1391 1392 // Only known if known in both the LHS and RHS. 1393 Known = KnownBits::commonBits(Known, Known2); 1394 break; 1395 case ISD::SELECT_CC: 1396 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1397 Depth + 1)) 1398 return true; 1399 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1400 Depth + 1)) 1401 return true; 1402 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1403 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1404 1405 // If the operands are constants, see if we can simplify them. 1406 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1407 return true; 1408 1409 // Only known if known in both the LHS and RHS. 1410 Known = KnownBits::commonBits(Known, Known2); 1411 break; 1412 case ISD::SETCC: { 1413 SDValue Op0 = Op.getOperand(0); 1414 SDValue Op1 = Op.getOperand(1); 1415 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1416 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1417 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1418 // -1, we may be able to bypass the setcc. 1419 if (DemandedBits.isSignMask() && 1420 Op0.getScalarValueSizeInBits() == BitWidth && 1421 getBooleanContents(Op0.getValueType()) == 1422 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1423 // If we're testing X < 0, then this compare isn't needed - just use X! 1424 // FIXME: We're limiting to integer types here, but this should also work 1425 // if we don't care about FP signed-zero. The use of SETLT with FP means 1426 // that we don't care about NaNs. 1427 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1428 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1429 return TLO.CombineTo(Op, Op0); 1430 1431 // TODO: Should we check for other forms of sign-bit comparisons? 1432 // Examples: X <= -1, X >= 0 1433 } 1434 if (getBooleanContents(Op0.getValueType()) == 1435 TargetLowering::ZeroOrOneBooleanContent && 1436 BitWidth > 1) 1437 Known.Zero.setBitsFrom(1); 1438 break; 1439 } 1440 case ISD::SHL: { 1441 SDValue Op0 = Op.getOperand(0); 1442 SDValue Op1 = Op.getOperand(1); 1443 EVT ShiftVT = Op1.getValueType(); 1444 1445 if (const APInt *SA = 1446 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1447 unsigned ShAmt = SA->getZExtValue(); 1448 if (ShAmt == 0) 1449 return TLO.CombineTo(Op, Op0); 1450 1451 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1452 // single shift. We can do this if the bottom bits (which are shifted 1453 // out) are never demanded. 1454 // TODO - support non-uniform vector amounts. 1455 if (Op0.getOpcode() == ISD::SRL) { 1456 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1457 if (const APInt *SA2 = 1458 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1459 unsigned C1 = SA2->getZExtValue(); 1460 unsigned Opc = ISD::SHL; 1461 int Diff = ShAmt - C1; 1462 if (Diff < 0) { 1463 Diff = -Diff; 1464 Opc = ISD::SRL; 1465 } 1466 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1467 return TLO.CombineTo( 1468 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1469 } 1470 } 1471 } 1472 1473 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1474 // are not demanded. This will likely allow the anyext to be folded away. 1475 // TODO - support non-uniform vector amounts. 1476 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1477 SDValue InnerOp = Op0.getOperand(0); 1478 EVT InnerVT = InnerOp.getValueType(); 1479 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1480 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1481 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1482 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1483 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1484 ShTy = InnerVT; 1485 SDValue NarrowShl = 1486 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1487 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1488 return TLO.CombineTo( 1489 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1490 } 1491 1492 // Repeat the SHL optimization above in cases where an extension 1493 // intervenes: (shl (anyext (shr x, c1)), c2) to 1494 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1495 // aren't demanded (as above) and that the shifted upper c1 bits of 1496 // x aren't demanded. 1497 // TODO - support non-uniform vector amounts. 1498 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1499 InnerOp.hasOneUse()) { 1500 if (const APInt *SA2 = 1501 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1502 unsigned InnerShAmt = SA2->getZExtValue(); 1503 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1504 DemandedBits.getActiveBits() <= 1505 (InnerBits - InnerShAmt + ShAmt) && 1506 DemandedBits.countTrailingZeros() >= ShAmt) { 1507 SDValue NewSA = 1508 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1509 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1510 InnerOp.getOperand(0)); 1511 return TLO.CombineTo( 1512 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1513 } 1514 } 1515 } 1516 } 1517 1518 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1519 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1520 Depth + 1)) 1521 return true; 1522 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1523 Known.Zero <<= ShAmt; 1524 Known.One <<= ShAmt; 1525 // low bits known zero. 1526 Known.Zero.setLowBits(ShAmt); 1527 1528 // Try shrinking the operation as long as the shift amount will still be 1529 // in range. 1530 if ((ShAmt < DemandedBits.getActiveBits()) && 1531 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1532 return true; 1533 } 1534 1535 // If we are only demanding sign bits then we can use the shift source 1536 // directly. 1537 if (const APInt *MaxSA = 1538 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1539 unsigned ShAmt = MaxSA->getZExtValue(); 1540 unsigned NumSignBits = 1541 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1542 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1543 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1544 return TLO.CombineTo(Op, Op0); 1545 } 1546 break; 1547 } 1548 case ISD::SRL: { 1549 SDValue Op0 = Op.getOperand(0); 1550 SDValue Op1 = Op.getOperand(1); 1551 EVT ShiftVT = Op1.getValueType(); 1552 1553 if (const APInt *SA = 1554 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1555 unsigned ShAmt = SA->getZExtValue(); 1556 if (ShAmt == 0) 1557 return TLO.CombineTo(Op, Op0); 1558 1559 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1560 // single shift. We can do this if the top bits (which are shifted out) 1561 // are never demanded. 1562 // TODO - support non-uniform vector amounts. 1563 if (Op0.getOpcode() == ISD::SHL) { 1564 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1565 if (const APInt *SA2 = 1566 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1567 unsigned C1 = SA2->getZExtValue(); 1568 unsigned Opc = ISD::SRL; 1569 int Diff = ShAmt - C1; 1570 if (Diff < 0) { 1571 Diff = -Diff; 1572 Opc = ISD::SHL; 1573 } 1574 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1575 return TLO.CombineTo( 1576 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1577 } 1578 } 1579 } 1580 1581 APInt InDemandedMask = (DemandedBits << ShAmt); 1582 1583 // If the shift is exact, then it does demand the low bits (and knows that 1584 // they are zero). 1585 if (Op->getFlags().hasExact()) 1586 InDemandedMask.setLowBits(ShAmt); 1587 1588 // Compute the new bits that are at the top now. 1589 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1590 Depth + 1)) 1591 return true; 1592 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1593 Known.Zero.lshrInPlace(ShAmt); 1594 Known.One.lshrInPlace(ShAmt); 1595 // High bits known zero. 1596 Known.Zero.setHighBits(ShAmt); 1597 } 1598 break; 1599 } 1600 case ISD::SRA: { 1601 SDValue Op0 = Op.getOperand(0); 1602 SDValue Op1 = Op.getOperand(1); 1603 EVT ShiftVT = Op1.getValueType(); 1604 1605 // If we only want bits that already match the signbit then we don't need 1606 // to shift. 1607 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1608 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1609 NumHiDemandedBits) 1610 return TLO.CombineTo(Op, Op0); 1611 1612 // If this is an arithmetic shift right and only the low-bit is set, we can 1613 // always convert this into a logical shr, even if the shift amount is 1614 // variable. The low bit of the shift cannot be an input sign bit unless 1615 // the shift amount is >= the size of the datatype, which is undefined. 1616 if (DemandedBits.isOneValue()) 1617 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1618 1619 if (const APInt *SA = 1620 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1621 unsigned ShAmt = SA->getZExtValue(); 1622 if (ShAmt == 0) 1623 return TLO.CombineTo(Op, Op0); 1624 1625 APInt InDemandedMask = (DemandedBits << ShAmt); 1626 1627 // If the shift is exact, then it does demand the low bits (and knows that 1628 // they are zero). 1629 if (Op->getFlags().hasExact()) 1630 InDemandedMask.setLowBits(ShAmt); 1631 1632 // If any of the demanded bits are produced by the sign extension, we also 1633 // demand the input sign bit. 1634 if (DemandedBits.countLeadingZeros() < ShAmt) 1635 InDemandedMask.setSignBit(); 1636 1637 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1638 Depth + 1)) 1639 return true; 1640 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1641 Known.Zero.lshrInPlace(ShAmt); 1642 Known.One.lshrInPlace(ShAmt); 1643 1644 // If the input sign bit is known to be zero, or if none of the top bits 1645 // are demanded, turn this into an unsigned shift right. 1646 if (Known.Zero[BitWidth - ShAmt - 1] || 1647 DemandedBits.countLeadingZeros() >= ShAmt) { 1648 SDNodeFlags Flags; 1649 Flags.setExact(Op->getFlags().hasExact()); 1650 return TLO.CombineTo( 1651 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1652 } 1653 1654 int Log2 = DemandedBits.exactLogBase2(); 1655 if (Log2 >= 0) { 1656 // The bit must come from the sign. 1657 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1658 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1659 } 1660 1661 if (Known.One[BitWidth - ShAmt - 1]) 1662 // New bits are known one. 1663 Known.One.setHighBits(ShAmt); 1664 1665 // Attempt to avoid multi-use ops if we don't need anything from them. 1666 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1667 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1668 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1669 if (DemandedOp0) { 1670 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1671 return TLO.CombineTo(Op, NewOp); 1672 } 1673 } 1674 } 1675 break; 1676 } 1677 case ISD::FSHL: 1678 case ISD::FSHR: { 1679 SDValue Op0 = Op.getOperand(0); 1680 SDValue Op1 = Op.getOperand(1); 1681 SDValue Op2 = Op.getOperand(2); 1682 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1683 1684 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1685 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1686 1687 // For fshl, 0-shift returns the 1st arg. 1688 // For fshr, 0-shift returns the 2nd arg. 1689 if (Amt == 0) { 1690 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1691 Known, TLO, Depth + 1)) 1692 return true; 1693 break; 1694 } 1695 1696 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1697 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1698 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1699 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1700 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1701 Depth + 1)) 1702 return true; 1703 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1704 Depth + 1)) 1705 return true; 1706 1707 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1708 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1709 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1710 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1711 Known.One |= Known2.One; 1712 Known.Zero |= Known2.Zero; 1713 } 1714 1715 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1716 if (isPowerOf2_32(BitWidth)) { 1717 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1718 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1719 Known2, TLO, Depth + 1)) 1720 return true; 1721 } 1722 break; 1723 } 1724 case ISD::ROTL: 1725 case ISD::ROTR: { 1726 SDValue Op0 = Op.getOperand(0); 1727 SDValue Op1 = Op.getOperand(1); 1728 1729 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1730 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1731 return TLO.CombineTo(Op, Op0); 1732 1733 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1734 if (isPowerOf2_32(BitWidth)) { 1735 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1736 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1737 Depth + 1)) 1738 return true; 1739 } 1740 break; 1741 } 1742 case ISD::UMIN: { 1743 // Check if one arg is always less than (or equal) to the other arg. 1744 SDValue Op0 = Op.getOperand(0); 1745 SDValue Op1 = Op.getOperand(1); 1746 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1747 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1748 Known = KnownBits::umin(Known0, Known1); 1749 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 1750 return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1); 1751 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 1752 return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1); 1753 break; 1754 } 1755 case ISD::UMAX: { 1756 // Check if one arg is always greater than (or equal) to the other arg. 1757 SDValue Op0 = Op.getOperand(0); 1758 SDValue Op1 = Op.getOperand(1); 1759 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1760 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1761 Known = KnownBits::umax(Known0, Known1); 1762 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 1763 return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1); 1764 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 1765 return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1); 1766 break; 1767 } 1768 case ISD::BITREVERSE: { 1769 SDValue Src = Op.getOperand(0); 1770 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1771 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1772 Depth + 1)) 1773 return true; 1774 Known.One = Known2.One.reverseBits(); 1775 Known.Zero = Known2.Zero.reverseBits(); 1776 break; 1777 } 1778 case ISD::BSWAP: { 1779 SDValue Src = Op.getOperand(0); 1780 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1781 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1782 Depth + 1)) 1783 return true; 1784 Known.One = Known2.One.byteSwap(); 1785 Known.Zero = Known2.Zero.byteSwap(); 1786 break; 1787 } 1788 case ISD::CTPOP: { 1789 // If only 1 bit is demanded, replace with PARITY as long as we're before 1790 // op legalization. 1791 // FIXME: Limit to scalars for now. 1792 if (DemandedBits.isOneValue() && !TLO.LegalOps && !VT.isVector()) 1793 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 1794 Op.getOperand(0))); 1795 1796 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1797 break; 1798 } 1799 case ISD::SIGN_EXTEND_INREG: { 1800 SDValue Op0 = Op.getOperand(0); 1801 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1802 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1803 1804 // If we only care about the highest bit, don't bother shifting right. 1805 if (DemandedBits.isSignMask()) { 1806 unsigned NumSignBits = 1807 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1808 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1809 // However if the input is already sign extended we expect the sign 1810 // extension to be dropped altogether later and do not simplify. 1811 if (!AlreadySignExtended) { 1812 // Compute the correct shift amount type, which must be getShiftAmountTy 1813 // for scalar types after legalization. 1814 EVT ShiftAmtTy = VT; 1815 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1816 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1817 1818 SDValue ShiftAmt = 1819 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1820 return TLO.CombineTo(Op, 1821 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1822 } 1823 } 1824 1825 // If none of the extended bits are demanded, eliminate the sextinreg. 1826 if (DemandedBits.getActiveBits() <= ExVTBits) 1827 return TLO.CombineTo(Op, Op0); 1828 1829 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1830 1831 // Since the sign extended bits are demanded, we know that the sign 1832 // bit is demanded. 1833 InputDemandedBits.setBit(ExVTBits - 1); 1834 1835 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1836 return true; 1837 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1838 1839 // If the sign bit of the input is known set or clear, then we know the 1840 // top bits of the result. 1841 1842 // If the input sign bit is known zero, convert this into a zero extension. 1843 if (Known.Zero[ExVTBits - 1]) 1844 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 1845 1846 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1847 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1848 Known.One.setBitsFrom(ExVTBits); 1849 Known.Zero &= Mask; 1850 } else { // Input sign bit unknown 1851 Known.Zero &= Mask; 1852 Known.One &= Mask; 1853 } 1854 break; 1855 } 1856 case ISD::BUILD_PAIR: { 1857 EVT HalfVT = Op.getOperand(0).getValueType(); 1858 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1859 1860 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1861 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1862 1863 KnownBits KnownLo, KnownHi; 1864 1865 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1866 return true; 1867 1868 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1869 return true; 1870 1871 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1872 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1873 1874 Known.One = KnownLo.One.zext(BitWidth) | 1875 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1876 break; 1877 } 1878 case ISD::ZERO_EXTEND: 1879 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1880 SDValue Src = Op.getOperand(0); 1881 EVT SrcVT = Src.getValueType(); 1882 unsigned InBits = SrcVT.getScalarSizeInBits(); 1883 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1884 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1885 1886 // If none of the top bits are demanded, convert this into an any_extend. 1887 if (DemandedBits.getActiveBits() <= InBits) { 1888 // If we only need the non-extended bits of the bottom element 1889 // then we can just bitcast to the result. 1890 if (IsVecInReg && DemandedElts == 1 && 1891 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1892 TLO.DAG.getDataLayout().isLittleEndian()) 1893 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1894 1895 unsigned Opc = 1896 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1897 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1898 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1899 } 1900 1901 APInt InDemandedBits = DemandedBits.trunc(InBits); 1902 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1903 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1904 Depth + 1)) 1905 return true; 1906 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1907 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1908 Known = Known.zext(BitWidth); 1909 1910 // Attempt to avoid multi-use ops if we don't need anything from them. 1911 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1912 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1913 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1914 break; 1915 } 1916 case ISD::SIGN_EXTEND: 1917 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1918 SDValue Src = Op.getOperand(0); 1919 EVT SrcVT = Src.getValueType(); 1920 unsigned InBits = SrcVT.getScalarSizeInBits(); 1921 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1922 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1923 1924 // If none of the top bits are demanded, convert this into an any_extend. 1925 if (DemandedBits.getActiveBits() <= InBits) { 1926 // If we only need the non-extended bits of the bottom element 1927 // then we can just bitcast to the result. 1928 if (IsVecInReg && DemandedElts == 1 && 1929 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1930 TLO.DAG.getDataLayout().isLittleEndian()) 1931 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1932 1933 unsigned Opc = 1934 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1935 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1936 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1937 } 1938 1939 APInt InDemandedBits = DemandedBits.trunc(InBits); 1940 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1941 1942 // Since some of the sign extended bits are demanded, we know that the sign 1943 // bit is demanded. 1944 InDemandedBits.setBit(InBits - 1); 1945 1946 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1947 Depth + 1)) 1948 return true; 1949 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1950 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1951 1952 // If the sign bit is known one, the top bits match. 1953 Known = Known.sext(BitWidth); 1954 1955 // If the sign bit is known zero, convert this to a zero extend. 1956 if (Known.isNonNegative()) { 1957 unsigned Opc = 1958 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1959 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1960 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1961 } 1962 1963 // Attempt to avoid multi-use ops if we don't need anything from them. 1964 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1965 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1966 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1967 break; 1968 } 1969 case ISD::ANY_EXTEND: 1970 case ISD::ANY_EXTEND_VECTOR_INREG: { 1971 SDValue Src = Op.getOperand(0); 1972 EVT SrcVT = Src.getValueType(); 1973 unsigned InBits = SrcVT.getScalarSizeInBits(); 1974 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1975 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1976 1977 // If we only need the bottom element then we can just bitcast. 1978 // TODO: Handle ANY_EXTEND? 1979 if (IsVecInReg && DemandedElts == 1 && 1980 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1981 TLO.DAG.getDataLayout().isLittleEndian()) 1982 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1983 1984 APInt InDemandedBits = DemandedBits.trunc(InBits); 1985 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1986 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1987 Depth + 1)) 1988 return true; 1989 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1990 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1991 Known = Known.anyext(BitWidth); 1992 1993 // Attempt to avoid multi-use ops if we don't need anything from them. 1994 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1995 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1996 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1997 break; 1998 } 1999 case ISD::TRUNCATE: { 2000 SDValue Src = Op.getOperand(0); 2001 2002 // Simplify the input, using demanded bit information, and compute the known 2003 // zero/one bits live out. 2004 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2005 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2006 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2007 Depth + 1)) 2008 return true; 2009 Known = Known.trunc(BitWidth); 2010 2011 // Attempt to avoid multi-use ops if we don't need anything from them. 2012 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2013 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2014 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2015 2016 // If the input is only used by this truncate, see if we can shrink it based 2017 // on the known demanded bits. 2018 if (Src.getNode()->hasOneUse()) { 2019 switch (Src.getOpcode()) { 2020 default: 2021 break; 2022 case ISD::SRL: 2023 // Shrink SRL by a constant if none of the high bits shifted in are 2024 // demanded. 2025 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2026 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2027 // undesirable. 2028 break; 2029 2030 const APInt *ShAmtC = 2031 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2032 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2033 break; 2034 uint64_t ShVal = ShAmtC->getZExtValue(); 2035 2036 APInt HighBits = 2037 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2038 HighBits.lshrInPlace(ShVal); 2039 HighBits = HighBits.trunc(BitWidth); 2040 2041 if (!(HighBits & DemandedBits)) { 2042 // None of the shifted in bits are needed. Add a truncate of the 2043 // shift input, then shift it. 2044 SDValue NewShAmt = TLO.DAG.getConstant( 2045 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2046 SDValue NewTrunc = 2047 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2048 return TLO.CombineTo( 2049 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2050 } 2051 break; 2052 } 2053 } 2054 2055 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2056 break; 2057 } 2058 case ISD::AssertZext: { 2059 // AssertZext demands all of the high bits, plus any of the low bits 2060 // demanded by its users. 2061 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2062 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2063 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2064 TLO, Depth + 1)) 2065 return true; 2066 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2067 2068 Known.Zero |= ~InMask; 2069 break; 2070 } 2071 case ISD::EXTRACT_VECTOR_ELT: { 2072 SDValue Src = Op.getOperand(0); 2073 SDValue Idx = Op.getOperand(1); 2074 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2075 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2076 2077 if (SrcEltCnt.isScalable()) 2078 return false; 2079 2080 // Demand the bits from every vector element without a constant index. 2081 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2082 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 2083 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2084 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2085 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2086 2087 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2088 // anything about the extended bits. 2089 APInt DemandedSrcBits = DemandedBits; 2090 if (BitWidth > EltBitWidth) 2091 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2092 2093 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2094 Depth + 1)) 2095 return true; 2096 2097 // Attempt to avoid multi-use ops if we don't need anything from them. 2098 if (!DemandedSrcBits.isAllOnesValue() || 2099 !DemandedSrcElts.isAllOnesValue()) { 2100 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2101 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2102 SDValue NewOp = 2103 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2104 return TLO.CombineTo(Op, NewOp); 2105 } 2106 } 2107 2108 Known = Known2; 2109 if (BitWidth > EltBitWidth) 2110 Known = Known.anyext(BitWidth); 2111 break; 2112 } 2113 case ISD::BITCAST: { 2114 SDValue Src = Op.getOperand(0); 2115 EVT SrcVT = Src.getValueType(); 2116 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2117 2118 // If this is an FP->Int bitcast and if the sign bit is the only 2119 // thing demanded, turn this into a FGETSIGN. 2120 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2121 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2122 SrcVT.isFloatingPoint()) { 2123 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2124 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2125 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2126 SrcVT != MVT::f128) { 2127 // Cannot eliminate/lower SHL for f128 yet. 2128 EVT Ty = OpVTLegal ? VT : MVT::i32; 2129 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2130 // place. We expect the SHL to be eliminated by other optimizations. 2131 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2132 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2133 if (!OpVTLegal && OpVTSizeInBits > 32) 2134 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2135 unsigned ShVal = Op.getValueSizeInBits() - 1; 2136 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2137 return TLO.CombineTo(Op, 2138 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2139 } 2140 } 2141 2142 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2143 // Demand the elt/bit if any of the original elts/bits are demanded. 2144 // TODO - bigendian once we have test coverage. 2145 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 2146 TLO.DAG.getDataLayout().isLittleEndian()) { 2147 unsigned Scale = BitWidth / NumSrcEltBits; 2148 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2149 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2150 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2151 for (unsigned i = 0; i != Scale; ++i) { 2152 unsigned Offset = i * NumSrcEltBits; 2153 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 2154 if (!Sub.isNullValue()) { 2155 DemandedSrcBits |= Sub; 2156 for (unsigned j = 0; j != NumElts; ++j) 2157 if (DemandedElts[j]) 2158 DemandedSrcElts.setBit((j * Scale) + i); 2159 } 2160 } 2161 2162 APInt KnownSrcUndef, KnownSrcZero; 2163 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2164 KnownSrcZero, TLO, Depth + 1)) 2165 return true; 2166 2167 KnownBits KnownSrcBits; 2168 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2169 KnownSrcBits, TLO, Depth + 1)) 2170 return true; 2171 } else if ((NumSrcEltBits % BitWidth) == 0 && 2172 TLO.DAG.getDataLayout().isLittleEndian()) { 2173 unsigned Scale = NumSrcEltBits / BitWidth; 2174 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2175 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2176 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2177 for (unsigned i = 0; i != NumElts; ++i) 2178 if (DemandedElts[i]) { 2179 unsigned Offset = (i % Scale) * BitWidth; 2180 DemandedSrcBits.insertBits(DemandedBits, Offset); 2181 DemandedSrcElts.setBit(i / Scale); 2182 } 2183 2184 if (SrcVT.isVector()) { 2185 APInt KnownSrcUndef, KnownSrcZero; 2186 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2187 KnownSrcZero, TLO, Depth + 1)) 2188 return true; 2189 } 2190 2191 KnownBits KnownSrcBits; 2192 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2193 KnownSrcBits, TLO, Depth + 1)) 2194 return true; 2195 } 2196 2197 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2198 // recursive call where Known may be useful to the caller. 2199 if (Depth > 0) { 2200 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2201 return false; 2202 } 2203 break; 2204 } 2205 case ISD::ADD: 2206 case ISD::MUL: 2207 case ISD::SUB: { 2208 // Add, Sub, and Mul don't demand any bits in positions beyond that 2209 // of the highest bit demanded of them. 2210 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2211 SDNodeFlags Flags = Op.getNode()->getFlags(); 2212 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2213 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2214 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2215 Depth + 1) || 2216 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2217 Depth + 1) || 2218 // See if the operation should be performed at a smaller bit width. 2219 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2220 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2221 // Disable the nsw and nuw flags. We can no longer guarantee that we 2222 // won't wrap after simplification. 2223 Flags.setNoSignedWrap(false); 2224 Flags.setNoUnsignedWrap(false); 2225 SDValue NewOp = 2226 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2227 return TLO.CombineTo(Op, NewOp); 2228 } 2229 return true; 2230 } 2231 2232 // Attempt to avoid multi-use ops if we don't need anything from them. 2233 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 2234 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2235 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2236 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2237 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2238 if (DemandedOp0 || DemandedOp1) { 2239 Flags.setNoSignedWrap(false); 2240 Flags.setNoUnsignedWrap(false); 2241 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2242 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2243 SDValue NewOp = 2244 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2245 return TLO.CombineTo(Op, NewOp); 2246 } 2247 } 2248 2249 // If we have a constant operand, we may be able to turn it into -1 if we 2250 // do not demand the high bits. This can make the constant smaller to 2251 // encode, allow more general folding, or match specialized instruction 2252 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2253 // is probably not useful (and could be detrimental). 2254 ConstantSDNode *C = isConstOrConstSplat(Op1); 2255 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2256 if (C && !C->isAllOnesValue() && !C->isOne() && 2257 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 2258 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2259 // Disable the nsw and nuw flags. We can no longer guarantee that we 2260 // won't wrap after simplification. 2261 Flags.setNoSignedWrap(false); 2262 Flags.setNoUnsignedWrap(false); 2263 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2264 return TLO.CombineTo(Op, NewOp); 2265 } 2266 2267 LLVM_FALLTHROUGH; 2268 } 2269 default: 2270 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2271 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2272 Known, TLO, Depth)) 2273 return true; 2274 break; 2275 } 2276 2277 // Just use computeKnownBits to compute output bits. 2278 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2279 break; 2280 } 2281 2282 // If we know the value of all of the demanded bits, return this as a 2283 // constant. 2284 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2285 // Avoid folding to a constant if any OpaqueConstant is involved. 2286 const SDNode *N = Op.getNode(); 2287 for (SDNode *Op : 2288 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2289 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2290 if (C->isOpaque()) 2291 return false; 2292 } 2293 if (VT.isInteger()) 2294 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2295 if (VT.isFloatingPoint()) 2296 return TLO.CombineTo( 2297 Op, 2298 TLO.DAG.getConstantFP( 2299 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2300 } 2301 2302 return false; 2303 } 2304 2305 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2306 const APInt &DemandedElts, 2307 APInt &KnownUndef, 2308 APInt &KnownZero, 2309 DAGCombinerInfo &DCI) const { 2310 SelectionDAG &DAG = DCI.DAG; 2311 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2312 !DCI.isBeforeLegalizeOps()); 2313 2314 bool Simplified = 2315 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2316 if (Simplified) { 2317 DCI.AddToWorklist(Op.getNode()); 2318 DCI.CommitTargetLoweringOpt(TLO); 2319 } 2320 2321 return Simplified; 2322 } 2323 2324 /// Given a vector binary operation and known undefined elements for each input 2325 /// operand, compute whether each element of the output is undefined. 2326 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2327 const APInt &UndefOp0, 2328 const APInt &UndefOp1) { 2329 EVT VT = BO.getValueType(); 2330 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2331 "Vector binop only"); 2332 2333 EVT EltVT = VT.getVectorElementType(); 2334 unsigned NumElts = VT.getVectorNumElements(); 2335 assert(UndefOp0.getBitWidth() == NumElts && 2336 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2337 2338 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2339 const APInt &UndefVals) { 2340 if (UndefVals[Index]) 2341 return DAG.getUNDEF(EltVT); 2342 2343 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2344 // Try hard to make sure that the getNode() call is not creating temporary 2345 // nodes. Ignore opaque integers because they do not constant fold. 2346 SDValue Elt = BV->getOperand(Index); 2347 auto *C = dyn_cast<ConstantSDNode>(Elt); 2348 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2349 return Elt; 2350 } 2351 2352 return SDValue(); 2353 }; 2354 2355 APInt KnownUndef = APInt::getNullValue(NumElts); 2356 for (unsigned i = 0; i != NumElts; ++i) { 2357 // If both inputs for this element are either constant or undef and match 2358 // the element type, compute the constant/undef result for this element of 2359 // the vector. 2360 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2361 // not handle FP constants. The code within getNode() should be refactored 2362 // to avoid the danger of creating a bogus temporary node here. 2363 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2364 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2365 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2366 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2367 KnownUndef.setBit(i); 2368 } 2369 return KnownUndef; 2370 } 2371 2372 bool TargetLowering::SimplifyDemandedVectorElts( 2373 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2374 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2375 bool AssumeSingleUse) const { 2376 EVT VT = Op.getValueType(); 2377 unsigned Opcode = Op.getOpcode(); 2378 APInt DemandedElts = OriginalDemandedElts; 2379 unsigned NumElts = DemandedElts.getBitWidth(); 2380 assert(VT.isVector() && "Expected vector op"); 2381 2382 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2383 2384 // TODO: For now we assume we know nothing about scalable vectors. 2385 if (VT.isScalableVector()) 2386 return false; 2387 2388 assert(VT.getVectorNumElements() == NumElts && 2389 "Mask size mismatches value type element count!"); 2390 2391 // Undef operand. 2392 if (Op.isUndef()) { 2393 KnownUndef.setAllBits(); 2394 return false; 2395 } 2396 2397 // If Op has other users, assume that all elements are needed. 2398 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2399 DemandedElts.setAllBits(); 2400 2401 // Not demanding any elements from Op. 2402 if (DemandedElts == 0) { 2403 KnownUndef.setAllBits(); 2404 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2405 } 2406 2407 // Limit search depth. 2408 if (Depth >= SelectionDAG::MaxRecursionDepth) 2409 return false; 2410 2411 SDLoc DL(Op); 2412 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2413 2414 // Helper for demanding the specified elements and all the bits of both binary 2415 // operands. 2416 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2417 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2418 TLO.DAG, Depth + 1); 2419 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2420 TLO.DAG, Depth + 1); 2421 if (NewOp0 || NewOp1) { 2422 SDValue NewOp = TLO.DAG.getNode( 2423 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2424 return TLO.CombineTo(Op, NewOp); 2425 } 2426 return false; 2427 }; 2428 2429 switch (Opcode) { 2430 case ISD::SCALAR_TO_VECTOR: { 2431 if (!DemandedElts[0]) { 2432 KnownUndef.setAllBits(); 2433 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2434 } 2435 SDValue ScalarSrc = Op.getOperand(0); 2436 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 2437 SDValue Src = ScalarSrc.getOperand(0); 2438 SDValue Idx = ScalarSrc.getOperand(1); 2439 EVT SrcVT = Src.getValueType(); 2440 2441 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 2442 2443 if (SrcEltCnt.isScalable()) 2444 return false; 2445 2446 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2447 if (isNullConstant(Idx)) { 2448 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 2449 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 2450 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 2451 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2452 TLO, Depth + 1)) 2453 return true; 2454 } 2455 } 2456 KnownUndef.setHighBits(NumElts - 1); 2457 break; 2458 } 2459 case ISD::BITCAST: { 2460 SDValue Src = Op.getOperand(0); 2461 EVT SrcVT = Src.getValueType(); 2462 2463 // We only handle vectors here. 2464 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2465 if (!SrcVT.isVector()) 2466 break; 2467 2468 // Fast handling of 'identity' bitcasts. 2469 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2470 if (NumSrcElts == NumElts) 2471 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2472 KnownZero, TLO, Depth + 1); 2473 2474 APInt SrcZero, SrcUndef; 2475 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2476 2477 // Bitcast from 'large element' src vector to 'small element' vector, we 2478 // must demand a source element if any DemandedElt maps to it. 2479 if ((NumElts % NumSrcElts) == 0) { 2480 unsigned Scale = NumElts / NumSrcElts; 2481 for (unsigned i = 0; i != NumElts; ++i) 2482 if (DemandedElts[i]) 2483 SrcDemandedElts.setBit(i / Scale); 2484 2485 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2486 TLO, Depth + 1)) 2487 return true; 2488 2489 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2490 // of the large element. 2491 // TODO - bigendian once we have test coverage. 2492 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2493 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2494 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2495 for (unsigned i = 0; i != NumElts; ++i) 2496 if (DemandedElts[i]) { 2497 unsigned Ofs = (i % Scale) * EltSizeInBits; 2498 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2499 } 2500 2501 KnownBits Known; 2502 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2503 TLO, Depth + 1)) 2504 return true; 2505 } 2506 2507 // If the src element is zero/undef then all the output elements will be - 2508 // only demanded elements are guaranteed to be correct. 2509 for (unsigned i = 0; i != NumSrcElts; ++i) { 2510 if (SrcDemandedElts[i]) { 2511 if (SrcZero[i]) 2512 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2513 if (SrcUndef[i]) 2514 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2515 } 2516 } 2517 } 2518 2519 // Bitcast from 'small element' src vector to 'large element' vector, we 2520 // demand all smaller source elements covered by the larger demanded element 2521 // of this vector. 2522 if ((NumSrcElts % NumElts) == 0) { 2523 unsigned Scale = NumSrcElts / NumElts; 2524 for (unsigned i = 0; i != NumElts; ++i) 2525 if (DemandedElts[i]) 2526 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2527 2528 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2529 TLO, Depth + 1)) 2530 return true; 2531 2532 // If all the src elements covering an output element are zero/undef, then 2533 // the output element will be as well, assuming it was demanded. 2534 for (unsigned i = 0; i != NumElts; ++i) { 2535 if (DemandedElts[i]) { 2536 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2537 KnownZero.setBit(i); 2538 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2539 KnownUndef.setBit(i); 2540 } 2541 } 2542 } 2543 break; 2544 } 2545 case ISD::BUILD_VECTOR: { 2546 // Check all elements and simplify any unused elements with UNDEF. 2547 if (!DemandedElts.isAllOnesValue()) { 2548 // Don't simplify BROADCASTS. 2549 if (llvm::any_of(Op->op_values(), 2550 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2551 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2552 bool Updated = false; 2553 for (unsigned i = 0; i != NumElts; ++i) { 2554 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2555 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2556 KnownUndef.setBit(i); 2557 Updated = true; 2558 } 2559 } 2560 if (Updated) 2561 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2562 } 2563 } 2564 for (unsigned i = 0; i != NumElts; ++i) { 2565 SDValue SrcOp = Op.getOperand(i); 2566 if (SrcOp.isUndef()) { 2567 KnownUndef.setBit(i); 2568 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2569 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2570 KnownZero.setBit(i); 2571 } 2572 } 2573 break; 2574 } 2575 case ISD::CONCAT_VECTORS: { 2576 EVT SubVT = Op.getOperand(0).getValueType(); 2577 unsigned NumSubVecs = Op.getNumOperands(); 2578 unsigned NumSubElts = SubVT.getVectorNumElements(); 2579 for (unsigned i = 0; i != NumSubVecs; ++i) { 2580 SDValue SubOp = Op.getOperand(i); 2581 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2582 APInt SubUndef, SubZero; 2583 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2584 Depth + 1)) 2585 return true; 2586 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2587 KnownZero.insertBits(SubZero, i * NumSubElts); 2588 } 2589 break; 2590 } 2591 case ISD::INSERT_SUBVECTOR: { 2592 // Demand any elements from the subvector and the remainder from the src its 2593 // inserted into. 2594 SDValue Src = Op.getOperand(0); 2595 SDValue Sub = Op.getOperand(1); 2596 uint64_t Idx = Op.getConstantOperandVal(2); 2597 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2598 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2599 APInt DemandedSrcElts = DemandedElts; 2600 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2601 2602 APInt SubUndef, SubZero; 2603 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2604 Depth + 1)) 2605 return true; 2606 2607 // If none of the src operand elements are demanded, replace it with undef. 2608 if (!DemandedSrcElts && !Src.isUndef()) 2609 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2610 TLO.DAG.getUNDEF(VT), Sub, 2611 Op.getOperand(2))); 2612 2613 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2614 TLO, Depth + 1)) 2615 return true; 2616 KnownUndef.insertBits(SubUndef, Idx); 2617 KnownZero.insertBits(SubZero, Idx); 2618 2619 // Attempt to avoid multi-use ops if we don't need anything from them. 2620 if (!DemandedSrcElts.isAllOnesValue() || 2621 !DemandedSubElts.isAllOnesValue()) { 2622 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2623 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2624 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2625 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2626 if (NewSrc || NewSub) { 2627 NewSrc = NewSrc ? NewSrc : Src; 2628 NewSub = NewSub ? NewSub : Sub; 2629 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2630 NewSub, Op.getOperand(2)); 2631 return TLO.CombineTo(Op, NewOp); 2632 } 2633 } 2634 break; 2635 } 2636 case ISD::EXTRACT_SUBVECTOR: { 2637 // Offset the demanded elts by the subvector index. 2638 SDValue Src = Op.getOperand(0); 2639 if (Src.getValueType().isScalableVector()) 2640 break; 2641 uint64_t Idx = Op.getConstantOperandVal(1); 2642 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2643 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2644 2645 APInt SrcUndef, SrcZero; 2646 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2647 Depth + 1)) 2648 return true; 2649 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2650 KnownZero = SrcZero.extractBits(NumElts, Idx); 2651 2652 // Attempt to avoid multi-use ops if we don't need anything from them. 2653 if (!DemandedElts.isAllOnesValue()) { 2654 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2655 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2656 if (NewSrc) { 2657 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2658 Op.getOperand(1)); 2659 return TLO.CombineTo(Op, NewOp); 2660 } 2661 } 2662 break; 2663 } 2664 case ISD::INSERT_VECTOR_ELT: { 2665 SDValue Vec = Op.getOperand(0); 2666 SDValue Scl = Op.getOperand(1); 2667 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2668 2669 // For a legal, constant insertion index, if we don't need this insertion 2670 // then strip it, else remove it from the demanded elts. 2671 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2672 unsigned Idx = CIdx->getZExtValue(); 2673 if (!DemandedElts[Idx]) 2674 return TLO.CombineTo(Op, Vec); 2675 2676 APInt DemandedVecElts(DemandedElts); 2677 DemandedVecElts.clearBit(Idx); 2678 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2679 KnownZero, TLO, Depth + 1)) 2680 return true; 2681 2682 KnownUndef.setBitVal(Idx, Scl.isUndef()); 2683 2684 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 2685 break; 2686 } 2687 2688 APInt VecUndef, VecZero; 2689 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2690 Depth + 1)) 2691 return true; 2692 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2693 break; 2694 } 2695 case ISD::VSELECT: { 2696 // Try to transform the select condition based on the current demanded 2697 // elements. 2698 // TODO: If a condition element is undef, we can choose from one arm of the 2699 // select (and if one arm is undef, then we can propagate that to the 2700 // result). 2701 // TODO - add support for constant vselect masks (see IR version of this). 2702 APInt UnusedUndef, UnusedZero; 2703 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2704 UnusedZero, TLO, Depth + 1)) 2705 return true; 2706 2707 // See if we can simplify either vselect operand. 2708 APInt DemandedLHS(DemandedElts); 2709 APInt DemandedRHS(DemandedElts); 2710 APInt UndefLHS, ZeroLHS; 2711 APInt UndefRHS, ZeroRHS; 2712 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2713 ZeroLHS, TLO, Depth + 1)) 2714 return true; 2715 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2716 ZeroRHS, TLO, Depth + 1)) 2717 return true; 2718 2719 KnownUndef = UndefLHS & UndefRHS; 2720 KnownZero = ZeroLHS & ZeroRHS; 2721 break; 2722 } 2723 case ISD::VECTOR_SHUFFLE: { 2724 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2725 2726 // Collect demanded elements from shuffle operands.. 2727 APInt DemandedLHS(NumElts, 0); 2728 APInt DemandedRHS(NumElts, 0); 2729 for (unsigned i = 0; i != NumElts; ++i) { 2730 int M = ShuffleMask[i]; 2731 if (M < 0 || !DemandedElts[i]) 2732 continue; 2733 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2734 if (M < (int)NumElts) 2735 DemandedLHS.setBit(M); 2736 else 2737 DemandedRHS.setBit(M - NumElts); 2738 } 2739 2740 // See if we can simplify either shuffle operand. 2741 APInt UndefLHS, ZeroLHS; 2742 APInt UndefRHS, ZeroRHS; 2743 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2744 ZeroLHS, TLO, Depth + 1)) 2745 return true; 2746 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2747 ZeroRHS, TLO, Depth + 1)) 2748 return true; 2749 2750 // Simplify mask using undef elements from LHS/RHS. 2751 bool Updated = false; 2752 bool IdentityLHS = true, IdentityRHS = true; 2753 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2754 for (unsigned i = 0; i != NumElts; ++i) { 2755 int &M = NewMask[i]; 2756 if (M < 0) 2757 continue; 2758 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2759 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2760 Updated = true; 2761 M = -1; 2762 } 2763 IdentityLHS &= (M < 0) || (M == (int)i); 2764 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2765 } 2766 2767 // Update legal shuffle masks based on demanded elements if it won't reduce 2768 // to Identity which can cause premature removal of the shuffle mask. 2769 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2770 SDValue LegalShuffle = 2771 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2772 NewMask, TLO.DAG); 2773 if (LegalShuffle) 2774 return TLO.CombineTo(Op, LegalShuffle); 2775 } 2776 2777 // Propagate undef/zero elements from LHS/RHS. 2778 for (unsigned i = 0; i != NumElts; ++i) { 2779 int M = ShuffleMask[i]; 2780 if (M < 0) { 2781 KnownUndef.setBit(i); 2782 } else if (M < (int)NumElts) { 2783 if (UndefLHS[M]) 2784 KnownUndef.setBit(i); 2785 if (ZeroLHS[M]) 2786 KnownZero.setBit(i); 2787 } else { 2788 if (UndefRHS[M - NumElts]) 2789 KnownUndef.setBit(i); 2790 if (ZeroRHS[M - NumElts]) 2791 KnownZero.setBit(i); 2792 } 2793 } 2794 break; 2795 } 2796 case ISD::ANY_EXTEND_VECTOR_INREG: 2797 case ISD::SIGN_EXTEND_VECTOR_INREG: 2798 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2799 APInt SrcUndef, SrcZero; 2800 SDValue Src = Op.getOperand(0); 2801 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2802 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2803 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2804 Depth + 1)) 2805 return true; 2806 KnownZero = SrcZero.zextOrTrunc(NumElts); 2807 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2808 2809 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2810 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2811 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2812 // aext - if we just need the bottom element then we can bitcast. 2813 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2814 } 2815 2816 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2817 // zext(undef) upper bits are guaranteed to be zero. 2818 if (DemandedElts.isSubsetOf(KnownUndef)) 2819 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2820 KnownUndef.clearAllBits(); 2821 } 2822 break; 2823 } 2824 2825 // TODO: There are more binop opcodes that could be handled here - MIN, 2826 // MAX, saturated math, etc. 2827 case ISD::OR: 2828 case ISD::XOR: 2829 case ISD::ADD: 2830 case ISD::SUB: 2831 case ISD::FADD: 2832 case ISD::FSUB: 2833 case ISD::FMUL: 2834 case ISD::FDIV: 2835 case ISD::FREM: { 2836 SDValue Op0 = Op.getOperand(0); 2837 SDValue Op1 = Op.getOperand(1); 2838 2839 APInt UndefRHS, ZeroRHS; 2840 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2841 Depth + 1)) 2842 return true; 2843 APInt UndefLHS, ZeroLHS; 2844 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2845 Depth + 1)) 2846 return true; 2847 2848 KnownZero = ZeroLHS & ZeroRHS; 2849 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2850 2851 // Attempt to avoid multi-use ops if we don't need anything from them. 2852 // TODO - use KnownUndef to relax the demandedelts? 2853 if (!DemandedElts.isAllOnesValue()) 2854 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2855 return true; 2856 break; 2857 } 2858 case ISD::SHL: 2859 case ISD::SRL: 2860 case ISD::SRA: 2861 case ISD::ROTL: 2862 case ISD::ROTR: { 2863 SDValue Op0 = Op.getOperand(0); 2864 SDValue Op1 = Op.getOperand(1); 2865 2866 APInt UndefRHS, ZeroRHS; 2867 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2868 Depth + 1)) 2869 return true; 2870 APInt UndefLHS, ZeroLHS; 2871 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2872 Depth + 1)) 2873 return true; 2874 2875 KnownZero = ZeroLHS; 2876 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2877 2878 // Attempt to avoid multi-use ops if we don't need anything from them. 2879 // TODO - use KnownUndef to relax the demandedelts? 2880 if (!DemandedElts.isAllOnesValue()) 2881 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2882 return true; 2883 break; 2884 } 2885 case ISD::MUL: 2886 case ISD::AND: { 2887 SDValue Op0 = Op.getOperand(0); 2888 SDValue Op1 = Op.getOperand(1); 2889 2890 APInt SrcUndef, SrcZero; 2891 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 2892 Depth + 1)) 2893 return true; 2894 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 2895 TLO, Depth + 1)) 2896 return true; 2897 2898 // If either side has a zero element, then the result element is zero, even 2899 // if the other is an UNDEF. 2900 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2901 // and then handle 'and' nodes with the rest of the binop opcodes. 2902 KnownZero |= SrcZero; 2903 KnownUndef &= SrcUndef; 2904 KnownUndef &= ~KnownZero; 2905 2906 // Attempt to avoid multi-use ops if we don't need anything from them. 2907 // TODO - use KnownUndef to relax the demandedelts? 2908 if (!DemandedElts.isAllOnesValue()) 2909 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2910 return true; 2911 break; 2912 } 2913 case ISD::TRUNCATE: 2914 case ISD::SIGN_EXTEND: 2915 case ISD::ZERO_EXTEND: 2916 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2917 KnownZero, TLO, Depth + 1)) 2918 return true; 2919 2920 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2921 // zext(undef) upper bits are guaranteed to be zero. 2922 if (DemandedElts.isSubsetOf(KnownUndef)) 2923 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2924 KnownUndef.clearAllBits(); 2925 } 2926 break; 2927 default: { 2928 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2929 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2930 KnownZero, TLO, Depth)) 2931 return true; 2932 } else { 2933 KnownBits Known; 2934 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2935 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2936 TLO, Depth, AssumeSingleUse)) 2937 return true; 2938 } 2939 break; 2940 } 2941 } 2942 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2943 2944 // Constant fold all undef cases. 2945 // TODO: Handle zero cases as well. 2946 if (DemandedElts.isSubsetOf(KnownUndef)) 2947 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2948 2949 return false; 2950 } 2951 2952 /// Determine which of the bits specified in Mask are known to be either zero or 2953 /// one and return them in the Known. 2954 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2955 KnownBits &Known, 2956 const APInt &DemandedElts, 2957 const SelectionDAG &DAG, 2958 unsigned Depth) const { 2959 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2960 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2961 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2962 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2963 "Should use MaskedValueIsZero if you don't know whether Op" 2964 " is a target node!"); 2965 Known.resetAll(); 2966 } 2967 2968 void TargetLowering::computeKnownBitsForTargetInstr( 2969 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2970 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2971 unsigned Depth) const { 2972 Known.resetAll(); 2973 } 2974 2975 void TargetLowering::computeKnownBitsForFrameIndex( 2976 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 2977 // The low bits are known zero if the pointer is aligned. 2978 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 2979 } 2980 2981 Align TargetLowering::computeKnownAlignForTargetInstr( 2982 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 2983 unsigned Depth) const { 2984 return Align(1); 2985 } 2986 2987 /// This method can be implemented by targets that want to expose additional 2988 /// information about sign bits to the DAG Combiner. 2989 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2990 const APInt &, 2991 const SelectionDAG &, 2992 unsigned Depth) const { 2993 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2994 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2995 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2996 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2997 "Should use ComputeNumSignBits if you don't know whether Op" 2998 " is a target node!"); 2999 return 1; 3000 } 3001 3002 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 3003 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 3004 const MachineRegisterInfo &MRI, unsigned Depth) const { 3005 return 1; 3006 } 3007 3008 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3009 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3010 TargetLoweringOpt &TLO, unsigned Depth) const { 3011 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3012 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3013 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3014 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3015 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3016 " is a target node!"); 3017 return false; 3018 } 3019 3020 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3021 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3022 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3023 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3024 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3025 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3026 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3027 "Should use SimplifyDemandedBits if you don't know whether Op" 3028 " is a target node!"); 3029 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3030 return false; 3031 } 3032 3033 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3034 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3035 SelectionDAG &DAG, unsigned Depth) const { 3036 assert( 3037 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3038 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3039 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3040 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3041 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3042 " is a target node!"); 3043 return SDValue(); 3044 } 3045 3046 SDValue 3047 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3048 SDValue N1, MutableArrayRef<int> Mask, 3049 SelectionDAG &DAG) const { 3050 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3051 if (!LegalMask) { 3052 std::swap(N0, N1); 3053 ShuffleVectorSDNode::commuteMask(Mask); 3054 LegalMask = isShuffleMaskLegal(Mask, VT); 3055 } 3056 3057 if (!LegalMask) 3058 return SDValue(); 3059 3060 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3061 } 3062 3063 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3064 return nullptr; 3065 } 3066 3067 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3068 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3069 bool PoisonOnly, unsigned Depth) const { 3070 assert( 3071 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3072 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3073 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3074 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3075 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3076 " is a target node!"); 3077 return false; 3078 } 3079 3080 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3081 const SelectionDAG &DAG, 3082 bool SNaN, 3083 unsigned Depth) const { 3084 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3085 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3086 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3087 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3088 "Should use isKnownNeverNaN if you don't know whether Op" 3089 " is a target node!"); 3090 return false; 3091 } 3092 3093 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3094 // work with truncating build vectors and vectors with elements of less than 3095 // 8 bits. 3096 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 3097 if (!N) 3098 return false; 3099 3100 APInt CVal; 3101 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 3102 CVal = CN->getAPIntValue(); 3103 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 3104 auto *CN = BV->getConstantSplatNode(); 3105 if (!CN) 3106 return false; 3107 3108 // If this is a truncating build vector, truncate the splat value. 3109 // Otherwise, we may fail to match the expected values below. 3110 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 3111 CVal = CN->getAPIntValue(); 3112 if (BVEltWidth < CVal.getBitWidth()) 3113 CVal = CVal.trunc(BVEltWidth); 3114 } else { 3115 return false; 3116 } 3117 3118 switch (getBooleanContents(N->getValueType(0))) { 3119 case UndefinedBooleanContent: 3120 return CVal[0]; 3121 case ZeroOrOneBooleanContent: 3122 return CVal.isOneValue(); 3123 case ZeroOrNegativeOneBooleanContent: 3124 return CVal.isAllOnesValue(); 3125 } 3126 3127 llvm_unreachable("Invalid boolean contents"); 3128 } 3129 3130 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 3131 if (!N) 3132 return false; 3133 3134 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3135 if (!CN) { 3136 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3137 if (!BV) 3138 return false; 3139 3140 // Only interested in constant splats, we don't care about undef 3141 // elements in identifying boolean constants and getConstantSplatNode 3142 // returns NULL if all ops are undef; 3143 CN = BV->getConstantSplatNode(); 3144 if (!CN) 3145 return false; 3146 } 3147 3148 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3149 return !CN->getAPIntValue()[0]; 3150 3151 return CN->isNullValue(); 3152 } 3153 3154 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3155 bool SExt) const { 3156 if (VT == MVT::i1) 3157 return N->isOne(); 3158 3159 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3160 switch (Cnt) { 3161 case TargetLowering::ZeroOrOneBooleanContent: 3162 // An extended value of 1 is always true, unless its original type is i1, 3163 // in which case it will be sign extended to -1. 3164 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3165 case TargetLowering::UndefinedBooleanContent: 3166 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3167 return N->isAllOnesValue() && SExt; 3168 } 3169 llvm_unreachable("Unexpected enumeration."); 3170 } 3171 3172 /// This helper function of SimplifySetCC tries to optimize the comparison when 3173 /// either operand of the SetCC node is a bitwise-and instruction. 3174 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3175 ISD::CondCode Cond, const SDLoc &DL, 3176 DAGCombinerInfo &DCI) const { 3177 // Match these patterns in any of their permutations: 3178 // (X & Y) == Y 3179 // (X & Y) != Y 3180 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3181 std::swap(N0, N1); 3182 3183 EVT OpVT = N0.getValueType(); 3184 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3185 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3186 return SDValue(); 3187 3188 SDValue X, Y; 3189 if (N0.getOperand(0) == N1) { 3190 X = N0.getOperand(1); 3191 Y = N0.getOperand(0); 3192 } else if (N0.getOperand(1) == N1) { 3193 X = N0.getOperand(0); 3194 Y = N0.getOperand(1); 3195 } else { 3196 return SDValue(); 3197 } 3198 3199 SelectionDAG &DAG = DCI.DAG; 3200 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3201 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3202 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3203 // Note that where Y is variable and is known to have at most one bit set 3204 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3205 // equivalent when Y == 0. 3206 assert(OpVT.isInteger()); 3207 Cond = ISD::getSetCCInverse(Cond, OpVT); 3208 if (DCI.isBeforeLegalizeOps() || 3209 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3210 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3211 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3212 // If the target supports an 'and-not' or 'and-complement' logic operation, 3213 // try to use that to make a comparison operation more efficient. 3214 // But don't do this transform if the mask is a single bit because there are 3215 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3216 // 'rlwinm' on PPC). 3217 3218 // Bail out if the compare operand that we want to turn into a zero is 3219 // already a zero (otherwise, infinite loop). 3220 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3221 if (YConst && YConst->isNullValue()) 3222 return SDValue(); 3223 3224 // Transform this into: ~X & Y == 0. 3225 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3226 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3227 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3228 } 3229 3230 return SDValue(); 3231 } 3232 3233 /// There are multiple IR patterns that could be checking whether certain 3234 /// truncation of a signed number would be lossy or not. The pattern which is 3235 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3236 /// We are looking for the following pattern: (KeptBits is a constant) 3237 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3238 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3239 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3240 /// We will unfold it into the natural trunc+sext pattern: 3241 /// ((%x << C) a>> C) dstcond %x 3242 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3243 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3244 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3245 const SDLoc &DL) const { 3246 // We must be comparing with a constant. 3247 ConstantSDNode *C1; 3248 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3249 return SDValue(); 3250 3251 // N0 should be: add %x, (1 << (KeptBits-1)) 3252 if (N0->getOpcode() != ISD::ADD) 3253 return SDValue(); 3254 3255 // And we must be 'add'ing a constant. 3256 ConstantSDNode *C01; 3257 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3258 return SDValue(); 3259 3260 SDValue X = N0->getOperand(0); 3261 EVT XVT = X.getValueType(); 3262 3263 // Validate constants ... 3264 3265 APInt I1 = C1->getAPIntValue(); 3266 3267 ISD::CondCode NewCond; 3268 if (Cond == ISD::CondCode::SETULT) { 3269 NewCond = ISD::CondCode::SETEQ; 3270 } else if (Cond == ISD::CondCode::SETULE) { 3271 NewCond = ISD::CondCode::SETEQ; 3272 // But need to 'canonicalize' the constant. 3273 I1 += 1; 3274 } else if (Cond == ISD::CondCode::SETUGT) { 3275 NewCond = ISD::CondCode::SETNE; 3276 // But need to 'canonicalize' the constant. 3277 I1 += 1; 3278 } else if (Cond == ISD::CondCode::SETUGE) { 3279 NewCond = ISD::CondCode::SETNE; 3280 } else 3281 return SDValue(); 3282 3283 APInt I01 = C01->getAPIntValue(); 3284 3285 auto checkConstants = [&I1, &I01]() -> bool { 3286 // Both of them must be power-of-two, and the constant from setcc is bigger. 3287 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3288 }; 3289 3290 if (checkConstants()) { 3291 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3292 } else { 3293 // What if we invert constants? (and the target predicate) 3294 I1.negate(); 3295 I01.negate(); 3296 assert(XVT.isInteger()); 3297 NewCond = getSetCCInverse(NewCond, XVT); 3298 if (!checkConstants()) 3299 return SDValue(); 3300 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3301 } 3302 3303 // They are power-of-two, so which bit is set? 3304 const unsigned KeptBits = I1.logBase2(); 3305 const unsigned KeptBitsMinusOne = I01.logBase2(); 3306 3307 // Magic! 3308 if (KeptBits != (KeptBitsMinusOne + 1)) 3309 return SDValue(); 3310 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3311 3312 // We don't want to do this in every single case. 3313 SelectionDAG &DAG = DCI.DAG; 3314 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3315 XVT, KeptBits)) 3316 return SDValue(); 3317 3318 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3319 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3320 3321 // Unfold into: ((%x << C) a>> C) cond %x 3322 // Where 'cond' will be either 'eq' or 'ne'. 3323 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3324 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3325 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3326 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3327 3328 return T2; 3329 } 3330 3331 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3332 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3333 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3334 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3335 assert(isConstOrConstSplat(N1C) && 3336 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 3337 "Should be a comparison with 0."); 3338 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3339 "Valid only for [in]equality comparisons."); 3340 3341 unsigned NewShiftOpcode; 3342 SDValue X, C, Y; 3343 3344 SelectionDAG &DAG = DCI.DAG; 3345 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3346 3347 // Look for '(C l>>/<< Y)'. 3348 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3349 // The shift should be one-use. 3350 if (!V.hasOneUse()) 3351 return false; 3352 unsigned OldShiftOpcode = V.getOpcode(); 3353 switch (OldShiftOpcode) { 3354 case ISD::SHL: 3355 NewShiftOpcode = ISD::SRL; 3356 break; 3357 case ISD::SRL: 3358 NewShiftOpcode = ISD::SHL; 3359 break; 3360 default: 3361 return false; // must be a logical shift. 3362 } 3363 // We should be shifting a constant. 3364 // FIXME: best to use isConstantOrConstantVector(). 3365 C = V.getOperand(0); 3366 ConstantSDNode *CC = 3367 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3368 if (!CC) 3369 return false; 3370 Y = V.getOperand(1); 3371 3372 ConstantSDNode *XC = 3373 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3374 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3375 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3376 }; 3377 3378 // LHS of comparison should be an one-use 'and'. 3379 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3380 return SDValue(); 3381 3382 X = N0.getOperand(0); 3383 SDValue Mask = N0.getOperand(1); 3384 3385 // 'and' is commutative! 3386 if (!Match(Mask)) { 3387 std::swap(X, Mask); 3388 if (!Match(Mask)) 3389 return SDValue(); 3390 } 3391 3392 EVT VT = X.getValueType(); 3393 3394 // Produce: 3395 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3396 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3397 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3398 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3399 return T2; 3400 } 3401 3402 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3403 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3404 /// handle the commuted versions of these patterns. 3405 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3406 ISD::CondCode Cond, const SDLoc &DL, 3407 DAGCombinerInfo &DCI) const { 3408 unsigned BOpcode = N0.getOpcode(); 3409 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3410 "Unexpected binop"); 3411 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3412 3413 // (X + Y) == X --> Y == 0 3414 // (X - Y) == X --> Y == 0 3415 // (X ^ Y) == X --> Y == 0 3416 SelectionDAG &DAG = DCI.DAG; 3417 EVT OpVT = N0.getValueType(); 3418 SDValue X = N0.getOperand(0); 3419 SDValue Y = N0.getOperand(1); 3420 if (X == N1) 3421 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3422 3423 if (Y != N1) 3424 return SDValue(); 3425 3426 // (X + Y) == Y --> X == 0 3427 // (X ^ Y) == Y --> X == 0 3428 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3429 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3430 3431 // The shift would not be valid if the operands are boolean (i1). 3432 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3433 return SDValue(); 3434 3435 // (X - Y) == Y --> X == Y << 1 3436 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3437 !DCI.isBeforeLegalize()); 3438 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3439 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3440 if (!DCI.isCalledByLegalizer()) 3441 DCI.AddToWorklist(YShl1.getNode()); 3442 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3443 } 3444 3445 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 3446 SDValue N0, const APInt &C1, 3447 ISD::CondCode Cond, const SDLoc &dl, 3448 SelectionDAG &DAG) { 3449 // Look through truncs that don't change the value of a ctpop. 3450 // FIXME: Add vector support? Need to be careful with setcc result type below. 3451 SDValue CTPOP = N0; 3452 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 3453 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 3454 CTPOP = N0.getOperand(0); 3455 3456 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 3457 return SDValue(); 3458 3459 EVT CTVT = CTPOP.getValueType(); 3460 SDValue CTOp = CTPOP.getOperand(0); 3461 3462 // If this is a vector CTPOP, keep the CTPOP if it is legal. 3463 // TODO: Should we check if CTPOP is legal(or custom) for scalars? 3464 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 3465 return SDValue(); 3466 3467 // (ctpop x) u< 2 -> (x & x-1) == 0 3468 // (ctpop x) u> 1 -> (x & x-1) != 0 3469 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 3470 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 3471 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 3472 return SDValue(); 3473 if (C1 == 0 && (Cond == ISD::SETULT)) 3474 return SDValue(); // This is handled elsewhere. 3475 3476 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 3477 3478 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3479 SDValue Result = CTOp; 3480 for (unsigned i = 0; i < Passes; i++) { 3481 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 3482 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 3483 } 3484 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3485 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 3486 } 3487 3488 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3489 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 3490 // For scalars, keep CTPOP if it is legal or custom. 3491 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT)) 3492 return SDValue(); 3493 // This is based on X86's custom lowering for CTPOP which produces more 3494 // instructions than the expansion here. 3495 3496 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3497 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3498 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3499 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3500 assert(CTVT.isInteger()); 3501 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3502 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3503 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3504 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3505 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3506 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3507 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3508 } 3509 3510 return SDValue(); 3511 } 3512 3513 /// Try to simplify a setcc built with the specified operands and cc. If it is 3514 /// unable to simplify it, return a null SDValue. 3515 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3516 ISD::CondCode Cond, bool foldBooleans, 3517 DAGCombinerInfo &DCI, 3518 const SDLoc &dl) const { 3519 SelectionDAG &DAG = DCI.DAG; 3520 const DataLayout &Layout = DAG.getDataLayout(); 3521 EVT OpVT = N0.getValueType(); 3522 3523 // Constant fold or commute setcc. 3524 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3525 return Fold; 3526 3527 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3528 // TODO: Handle non-splat vector constants. All undef causes trouble. 3529 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 3530 // infinite loop here when we encounter one. 3531 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3532 if (isConstOrConstSplat(N0) && 3533 (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) && 3534 (DCI.isBeforeLegalizeOps() || 3535 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3536 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3537 3538 // If we have a subtract with the same 2 non-constant operands as this setcc 3539 // -- but in reverse order -- then try to commute the operands of this setcc 3540 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3541 // instruction on some targets. 3542 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3543 (DCI.isBeforeLegalizeOps() || 3544 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3545 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 3546 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 3547 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3548 3549 if (auto *N1C = isConstOrConstSplat(N1)) { 3550 const APInt &C1 = N1C->getAPIntValue(); 3551 3552 // Optimize some CTPOP cases. 3553 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 3554 return V; 3555 3556 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3557 // equality comparison, then we're just comparing whether X itself is 3558 // zero. 3559 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3560 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3561 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 3562 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 3563 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3564 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 3565 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3566 // (srl (ctlz x), 5) == 0 -> X != 0 3567 // (srl (ctlz x), 5) != 1 -> X != 0 3568 Cond = ISD::SETNE; 3569 } else { 3570 // (srl (ctlz x), 5) != 0 -> X == 0 3571 // (srl (ctlz x), 5) == 1 -> X == 0 3572 Cond = ISD::SETEQ; 3573 } 3574 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3575 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 3576 Cond); 3577 } 3578 } 3579 } 3580 } 3581 3582 // FIXME: Support vectors. 3583 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3584 const APInt &C1 = N1C->getAPIntValue(); 3585 3586 // (zext x) == C --> x == (trunc C) 3587 // (sext x) == C --> x == (trunc C) 3588 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3589 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3590 unsigned MinBits = N0.getValueSizeInBits(); 3591 SDValue PreExt; 3592 bool Signed = false; 3593 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3594 // ZExt 3595 MinBits = N0->getOperand(0).getValueSizeInBits(); 3596 PreExt = N0->getOperand(0); 3597 } else if (N0->getOpcode() == ISD::AND) { 3598 // DAGCombine turns costly ZExts into ANDs 3599 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3600 if ((C->getAPIntValue()+1).isPowerOf2()) { 3601 MinBits = C->getAPIntValue().countTrailingOnes(); 3602 PreExt = N0->getOperand(0); 3603 } 3604 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3605 // SExt 3606 MinBits = N0->getOperand(0).getValueSizeInBits(); 3607 PreExt = N0->getOperand(0); 3608 Signed = true; 3609 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3610 // ZEXTLOAD / SEXTLOAD 3611 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3612 MinBits = LN0->getMemoryVT().getSizeInBits(); 3613 PreExt = N0; 3614 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3615 Signed = true; 3616 MinBits = LN0->getMemoryVT().getSizeInBits(); 3617 PreExt = N0; 3618 } 3619 } 3620 3621 // Figure out how many bits we need to preserve this constant. 3622 unsigned ReqdBits = Signed ? 3623 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3624 C1.getActiveBits(); 3625 3626 // Make sure we're not losing bits from the constant. 3627 if (MinBits > 0 && 3628 MinBits < C1.getBitWidth() && 3629 MinBits >= ReqdBits) { 3630 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3631 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3632 // Will get folded away. 3633 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3634 if (MinBits == 1 && C1 == 1) 3635 // Invert the condition. 3636 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3637 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3638 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3639 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3640 } 3641 3642 // If truncating the setcc operands is not desirable, we can still 3643 // simplify the expression in some cases: 3644 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3645 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3646 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3647 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3648 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3649 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3650 SDValue TopSetCC = N0->getOperand(0); 3651 unsigned N0Opc = N0->getOpcode(); 3652 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3653 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3654 TopSetCC.getOpcode() == ISD::SETCC && 3655 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3656 (isConstFalseVal(N1C) || 3657 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3658 3659 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3660 (!N1C->isNullValue() && Cond == ISD::SETNE); 3661 3662 if (!Inverse) 3663 return TopSetCC; 3664 3665 ISD::CondCode InvCond = ISD::getSetCCInverse( 3666 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3667 TopSetCC.getOperand(0).getValueType()); 3668 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3669 TopSetCC.getOperand(1), 3670 InvCond); 3671 } 3672 } 3673 } 3674 3675 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3676 // equality or unsigned, and all 1 bits of the const are in the same 3677 // partial word, see if we can shorten the load. 3678 if (DCI.isBeforeLegalize() && 3679 !ISD::isSignedIntSetCC(Cond) && 3680 N0.getOpcode() == ISD::AND && C1 == 0 && 3681 N0.getNode()->hasOneUse() && 3682 isa<LoadSDNode>(N0.getOperand(0)) && 3683 N0.getOperand(0).getNode()->hasOneUse() && 3684 isa<ConstantSDNode>(N0.getOperand(1))) { 3685 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3686 APInt bestMask; 3687 unsigned bestWidth = 0, bestOffset = 0; 3688 if (Lod->isSimple() && Lod->isUnindexed()) { 3689 unsigned origWidth = N0.getValueSizeInBits(); 3690 unsigned maskWidth = origWidth; 3691 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3692 // 8 bits, but have to be careful... 3693 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3694 origWidth = Lod->getMemoryVT().getSizeInBits(); 3695 const APInt &Mask = N0.getConstantOperandAPInt(1); 3696 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3697 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3698 for (unsigned offset=0; offset<origWidth/width; offset++) { 3699 if (Mask.isSubsetOf(newMask)) { 3700 if (Layout.isLittleEndian()) 3701 bestOffset = (uint64_t)offset * (width/8); 3702 else 3703 bestOffset = (origWidth/width - offset - 1) * (width/8); 3704 bestMask = Mask.lshr(offset * (width/8) * 8); 3705 bestWidth = width; 3706 break; 3707 } 3708 newMask <<= width; 3709 } 3710 } 3711 } 3712 if (bestWidth) { 3713 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3714 if (newVT.isRound() && 3715 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3716 SDValue Ptr = Lod->getBasePtr(); 3717 if (bestOffset != 0) 3718 Ptr = 3719 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 3720 SDValue NewLoad = 3721 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 3722 Lod->getPointerInfo().getWithOffset(bestOffset), 3723 Lod->getOriginalAlign()); 3724 return DAG.getSetCC(dl, VT, 3725 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3726 DAG.getConstant(bestMask.trunc(bestWidth), 3727 dl, newVT)), 3728 DAG.getConstant(0LL, dl, newVT), Cond); 3729 } 3730 } 3731 } 3732 3733 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3734 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3735 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3736 3737 // If the comparison constant has bits in the upper part, the 3738 // zero-extended value could never match. 3739 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3740 C1.getBitWidth() - InSize))) { 3741 switch (Cond) { 3742 case ISD::SETUGT: 3743 case ISD::SETUGE: 3744 case ISD::SETEQ: 3745 return DAG.getConstant(0, dl, VT); 3746 case ISD::SETULT: 3747 case ISD::SETULE: 3748 case ISD::SETNE: 3749 return DAG.getConstant(1, dl, VT); 3750 case ISD::SETGT: 3751 case ISD::SETGE: 3752 // True if the sign bit of C1 is set. 3753 return DAG.getConstant(C1.isNegative(), dl, VT); 3754 case ISD::SETLT: 3755 case ISD::SETLE: 3756 // True if the sign bit of C1 isn't set. 3757 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3758 default: 3759 break; 3760 } 3761 } 3762 3763 // Otherwise, we can perform the comparison with the low bits. 3764 switch (Cond) { 3765 case ISD::SETEQ: 3766 case ISD::SETNE: 3767 case ISD::SETUGT: 3768 case ISD::SETUGE: 3769 case ISD::SETULT: 3770 case ISD::SETULE: { 3771 EVT newVT = N0.getOperand(0).getValueType(); 3772 if (DCI.isBeforeLegalizeOps() || 3773 (isOperationLegal(ISD::SETCC, newVT) && 3774 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3775 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3776 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3777 3778 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3779 NewConst, Cond); 3780 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3781 } 3782 break; 3783 } 3784 default: 3785 break; // todo, be more careful with signed comparisons 3786 } 3787 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3788 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3789 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 3790 OpVT)) { 3791 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3792 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3793 EVT ExtDstTy = N0.getValueType(); 3794 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3795 3796 // If the constant doesn't fit into the number of bits for the source of 3797 // the sign extension, it is impossible for both sides to be equal. 3798 if (C1.getMinSignedBits() > ExtSrcTyBits) 3799 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 3800 3801 assert(ExtDstTy == N0.getOperand(0).getValueType() && 3802 ExtDstTy != ExtSrcTy && "Unexpected types!"); 3803 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3804 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 3805 DAG.getConstant(Imm, dl, ExtDstTy)); 3806 if (!DCI.isCalledByLegalizer()) 3807 DCI.AddToWorklist(ZextOp.getNode()); 3808 // Otherwise, make this a use of a zext. 3809 return DAG.getSetCC(dl, VT, ZextOp, 3810 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 3811 } else if ((N1C->isNullValue() || N1C->isOne()) && 3812 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3813 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3814 if (N0.getOpcode() == ISD::SETCC && 3815 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3816 (N0.getValueType() == MVT::i1 || 3817 getBooleanContents(N0.getOperand(0).getValueType()) == 3818 ZeroOrOneBooleanContent)) { 3819 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3820 if (TrueWhenTrue) 3821 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3822 // Invert the condition. 3823 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3824 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3825 if (DCI.isBeforeLegalizeOps() || 3826 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3827 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3828 } 3829 3830 if ((N0.getOpcode() == ISD::XOR || 3831 (N0.getOpcode() == ISD::AND && 3832 N0.getOperand(0).getOpcode() == ISD::XOR && 3833 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3834 isOneConstant(N0.getOperand(1))) { 3835 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3836 // can only do this if the top bits are known zero. 3837 unsigned BitWidth = N0.getValueSizeInBits(); 3838 if (DAG.MaskedValueIsZero(N0, 3839 APInt::getHighBitsSet(BitWidth, 3840 BitWidth-1))) { 3841 // Okay, get the un-inverted input value. 3842 SDValue Val; 3843 if (N0.getOpcode() == ISD::XOR) { 3844 Val = N0.getOperand(0); 3845 } else { 3846 assert(N0.getOpcode() == ISD::AND && 3847 N0.getOperand(0).getOpcode() == ISD::XOR); 3848 // ((X^1)&1)^1 -> X & 1 3849 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3850 N0.getOperand(0).getOperand(0), 3851 N0.getOperand(1)); 3852 } 3853 3854 return DAG.getSetCC(dl, VT, Val, N1, 3855 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3856 } 3857 } else if (N1C->isOne()) { 3858 SDValue Op0 = N0; 3859 if (Op0.getOpcode() == ISD::TRUNCATE) 3860 Op0 = Op0.getOperand(0); 3861 3862 if ((Op0.getOpcode() == ISD::XOR) && 3863 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3864 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3865 SDValue XorLHS = Op0.getOperand(0); 3866 SDValue XorRHS = Op0.getOperand(1); 3867 // Ensure that the input setccs return an i1 type or 0/1 value. 3868 if (Op0.getValueType() == MVT::i1 || 3869 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3870 ZeroOrOneBooleanContent && 3871 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3872 ZeroOrOneBooleanContent)) { 3873 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3874 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3875 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3876 } 3877 } 3878 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 3879 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3880 if (Op0.getValueType().bitsGT(VT)) 3881 Op0 = DAG.getNode(ISD::AND, dl, VT, 3882 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3883 DAG.getConstant(1, dl, VT)); 3884 else if (Op0.getValueType().bitsLT(VT)) 3885 Op0 = DAG.getNode(ISD::AND, dl, VT, 3886 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3887 DAG.getConstant(1, dl, VT)); 3888 3889 return DAG.getSetCC(dl, VT, Op0, 3890 DAG.getConstant(0, dl, Op0.getValueType()), 3891 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3892 } 3893 if (Op0.getOpcode() == ISD::AssertZext && 3894 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3895 return DAG.getSetCC(dl, VT, Op0, 3896 DAG.getConstant(0, dl, Op0.getValueType()), 3897 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3898 } 3899 } 3900 3901 // Given: 3902 // icmp eq/ne (urem %x, %y), 0 3903 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3904 // icmp eq/ne %x, 0 3905 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3906 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3907 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3908 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3909 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3910 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3911 } 3912 3913 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 3914 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 3915 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3916 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && 3917 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && 3918 N1C && N1C->isAllOnesValue()) { 3919 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3920 DAG.getConstant(0, dl, OpVT), 3921 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); 3922 } 3923 3924 if (SDValue V = 3925 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3926 return V; 3927 } 3928 3929 // These simplifications apply to splat vectors as well. 3930 // TODO: Handle more splat vector cases. 3931 if (auto *N1C = isConstOrConstSplat(N1)) { 3932 const APInt &C1 = N1C->getAPIntValue(); 3933 3934 APInt MinVal, MaxVal; 3935 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3936 if (ISD::isSignedIntSetCC(Cond)) { 3937 MinVal = APInt::getSignedMinValue(OperandBitSize); 3938 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3939 } else { 3940 MinVal = APInt::getMinValue(OperandBitSize); 3941 MaxVal = APInt::getMaxValue(OperandBitSize); 3942 } 3943 3944 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3945 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3946 // X >= MIN --> true 3947 if (C1 == MinVal) 3948 return DAG.getBoolConstant(true, dl, VT, OpVT); 3949 3950 if (!VT.isVector()) { // TODO: Support this for vectors. 3951 // X >= C0 --> X > (C0 - 1) 3952 APInt C = C1 - 1; 3953 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3954 if ((DCI.isBeforeLegalizeOps() || 3955 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3956 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3957 isLegalICmpImmediate(C.getSExtValue())))) { 3958 return DAG.getSetCC(dl, VT, N0, 3959 DAG.getConstant(C, dl, N1.getValueType()), 3960 NewCC); 3961 } 3962 } 3963 } 3964 3965 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3966 // X <= MAX --> true 3967 if (C1 == MaxVal) 3968 return DAG.getBoolConstant(true, dl, VT, OpVT); 3969 3970 // X <= C0 --> X < (C0 + 1) 3971 if (!VT.isVector()) { // TODO: Support this for vectors. 3972 APInt C = C1 + 1; 3973 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3974 if ((DCI.isBeforeLegalizeOps() || 3975 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3976 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3977 isLegalICmpImmediate(C.getSExtValue())))) { 3978 return DAG.getSetCC(dl, VT, N0, 3979 DAG.getConstant(C, dl, N1.getValueType()), 3980 NewCC); 3981 } 3982 } 3983 } 3984 3985 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3986 if (C1 == MinVal) 3987 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3988 3989 // TODO: Support this for vectors after legalize ops. 3990 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3991 // Canonicalize setlt X, Max --> setne X, Max 3992 if (C1 == MaxVal) 3993 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3994 3995 // If we have setult X, 1, turn it into seteq X, 0 3996 if (C1 == MinVal+1) 3997 return DAG.getSetCC(dl, VT, N0, 3998 DAG.getConstant(MinVal, dl, N0.getValueType()), 3999 ISD::SETEQ); 4000 } 4001 } 4002 4003 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 4004 if (C1 == MaxVal) 4005 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 4006 4007 // TODO: Support this for vectors after legalize ops. 4008 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4009 // Canonicalize setgt X, Min --> setne X, Min 4010 if (C1 == MinVal) 4011 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4012 4013 // If we have setugt X, Max-1, turn it into seteq X, Max 4014 if (C1 == MaxVal-1) 4015 return DAG.getSetCC(dl, VT, N0, 4016 DAG.getConstant(MaxVal, dl, N0.getValueType()), 4017 ISD::SETEQ); 4018 } 4019 } 4020 4021 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 4022 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4023 if (C1.isNullValue()) 4024 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 4025 VT, N0, N1, Cond, DCI, dl)) 4026 return CC; 4027 4028 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 4029 // For example, when high 32-bits of i64 X are known clear: 4030 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 4031 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 4032 bool CmpZero = N1C->getAPIntValue().isNullValue(); 4033 bool CmpNegOne = N1C->getAPIntValue().isAllOnesValue(); 4034 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 4035 // Match or(lo,shl(hi,bw/2)) pattern. 4036 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 4037 unsigned EltBits = V.getScalarValueSizeInBits(); 4038 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 4039 return false; 4040 SDValue LHS = V.getOperand(0); 4041 SDValue RHS = V.getOperand(1); 4042 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 4043 // Unshifted element must have zero upperbits. 4044 if (RHS.getOpcode() == ISD::SHL && 4045 isa<ConstantSDNode>(RHS.getOperand(1)) && 4046 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4047 DAG.MaskedValueIsZero(LHS, HiBits)) { 4048 Lo = LHS; 4049 Hi = RHS.getOperand(0); 4050 return true; 4051 } 4052 if (LHS.getOpcode() == ISD::SHL && 4053 isa<ConstantSDNode>(LHS.getOperand(1)) && 4054 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4055 DAG.MaskedValueIsZero(RHS, HiBits)) { 4056 Lo = RHS; 4057 Hi = LHS.getOperand(0); 4058 return true; 4059 } 4060 return false; 4061 }; 4062 4063 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4064 unsigned EltBits = N0.getScalarValueSizeInBits(); 4065 unsigned HalfBits = EltBits / 2; 4066 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4067 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4068 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4069 SDValue NewN0 = 4070 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4071 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4072 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4073 }; 4074 4075 SDValue Lo, Hi; 4076 if (IsConcat(N0, Lo, Hi)) 4077 return MergeConcat(Lo, Hi); 4078 4079 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4080 SDValue Lo0, Lo1, Hi0, Hi1; 4081 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4082 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4083 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4084 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4085 } 4086 } 4087 } 4088 } 4089 4090 // If we have "setcc X, C0", check to see if we can shrink the immediate 4091 // by changing cc. 4092 // TODO: Support this for vectors after legalize ops. 4093 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4094 // SETUGT X, SINTMAX -> SETLT X, 0 4095 // SETUGE X, SINTMIN -> SETLT X, 0 4096 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4097 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4098 return DAG.getSetCC(dl, VT, N0, 4099 DAG.getConstant(0, dl, N1.getValueType()), 4100 ISD::SETLT); 4101 4102 // SETULT X, SINTMIN -> SETGT X, -1 4103 // SETULE X, SINTMAX -> SETGT X, -1 4104 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4105 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4106 return DAG.getSetCC(dl, VT, N0, 4107 DAG.getAllOnesConstant(dl, N1.getValueType()), 4108 ISD::SETGT); 4109 } 4110 } 4111 4112 // Back to non-vector simplifications. 4113 // TODO: Can we do these for vector splats? 4114 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4115 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4116 const APInt &C1 = N1C->getAPIntValue(); 4117 EVT ShValTy = N0.getValueType(); 4118 4119 // Fold bit comparisons when we can. This will result in an 4120 // incorrect value when boolean false is negative one, unless 4121 // the bitsize is 1 in which case the false value is the same 4122 // in practice regardless of the representation. 4123 if ((VT.getSizeInBits() == 1 || 4124 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4125 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4126 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4127 N0.getOpcode() == ISD::AND) { 4128 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4129 EVT ShiftTy = 4130 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4131 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4132 // Perform the xform if the AND RHS is a single bit. 4133 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4134 if (AndRHS->getAPIntValue().isPowerOf2() && 4135 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4136 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4137 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4138 DAG.getConstant(ShCt, dl, ShiftTy))); 4139 } 4140 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4141 // (X & 8) == 8 --> (X & 8) >> 3 4142 // Perform the xform if C1 is a single bit. 4143 unsigned ShCt = C1.logBase2(); 4144 if (C1.isPowerOf2() && 4145 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4146 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4147 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4148 DAG.getConstant(ShCt, dl, ShiftTy))); 4149 } 4150 } 4151 } 4152 } 4153 4154 if (C1.getMinSignedBits() <= 64 && 4155 !isLegalICmpImmediate(C1.getSExtValue())) { 4156 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4157 // (X & -256) == 256 -> (X >> 8) == 1 4158 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4159 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4160 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4161 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4162 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 4163 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4164 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4165 SDValue Shift = 4166 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4167 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4168 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4169 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4170 } 4171 } 4172 } 4173 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4174 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4175 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4176 // X < 0x100000000 -> (X >> 32) < 1 4177 // X >= 0x100000000 -> (X >> 32) >= 1 4178 // X <= 0x0ffffffff -> (X >> 32) < 1 4179 // X > 0x0ffffffff -> (X >> 32) >= 1 4180 unsigned ShiftBits; 4181 APInt NewC = C1; 4182 ISD::CondCode NewCond = Cond; 4183 if (AdjOne) { 4184 ShiftBits = C1.countTrailingOnes(); 4185 NewC = NewC + 1; 4186 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4187 } else { 4188 ShiftBits = C1.countTrailingZeros(); 4189 } 4190 NewC.lshrInPlace(ShiftBits); 4191 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4192 isLegalICmpImmediate(NewC.getSExtValue()) && 4193 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4194 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4195 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4196 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4197 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4198 } 4199 } 4200 } 4201 } 4202 4203 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4204 auto *CFP = cast<ConstantFPSDNode>(N1); 4205 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4206 4207 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4208 // constant if knowing that the operand is non-nan is enough. We prefer to 4209 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4210 // materialize 0.0. 4211 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4212 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4213 4214 // setcc (fneg x), C -> setcc swap(pred) x, -C 4215 if (N0.getOpcode() == ISD::FNEG) { 4216 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4217 if (DCI.isBeforeLegalizeOps() || 4218 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4219 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4220 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4221 } 4222 } 4223 4224 // If the condition is not legal, see if we can find an equivalent one 4225 // which is legal. 4226 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4227 // If the comparison was an awkward floating-point == or != and one of 4228 // the comparison operands is infinity or negative infinity, convert the 4229 // condition to a less-awkward <= or >=. 4230 if (CFP->getValueAPF().isInfinity()) { 4231 bool IsNegInf = CFP->getValueAPF().isNegative(); 4232 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4233 switch (Cond) { 4234 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4235 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4236 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4237 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4238 default: break; 4239 } 4240 if (NewCond != ISD::SETCC_INVALID && 4241 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4242 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4243 } 4244 } 4245 } 4246 4247 if (N0 == N1) { 4248 // The sext(setcc()) => setcc() optimization relies on the appropriate 4249 // constant being emitted. 4250 assert(!N0.getValueType().isInteger() && 4251 "Integer types should be handled by FoldSetCC"); 4252 4253 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4254 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4255 if (UOF == 2) // FP operators that are undefined on NaNs. 4256 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4257 if (UOF == unsigned(EqTrue)) 4258 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4259 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4260 // if it is not already. 4261 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4262 if (NewCond != Cond && 4263 (DCI.isBeforeLegalizeOps() || 4264 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4265 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4266 } 4267 4268 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4269 N0.getValueType().isInteger()) { 4270 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4271 N0.getOpcode() == ISD::XOR) { 4272 // Simplify (X+Y) == (X+Z) --> Y == Z 4273 if (N0.getOpcode() == N1.getOpcode()) { 4274 if (N0.getOperand(0) == N1.getOperand(0)) 4275 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4276 if (N0.getOperand(1) == N1.getOperand(1)) 4277 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4278 if (isCommutativeBinOp(N0.getOpcode())) { 4279 // If X op Y == Y op X, try other combinations. 4280 if (N0.getOperand(0) == N1.getOperand(1)) 4281 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4282 Cond); 4283 if (N0.getOperand(1) == N1.getOperand(0)) 4284 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4285 Cond); 4286 } 4287 } 4288 4289 // If RHS is a legal immediate value for a compare instruction, we need 4290 // to be careful about increasing register pressure needlessly. 4291 bool LegalRHSImm = false; 4292 4293 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4294 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4295 // Turn (X+C1) == C2 --> X == C2-C1 4296 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 4297 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4298 DAG.getConstant(RHSC->getAPIntValue()- 4299 LHSR->getAPIntValue(), 4300 dl, N0.getValueType()), Cond); 4301 } 4302 4303 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 4304 if (N0.getOpcode() == ISD::XOR) 4305 // If we know that all of the inverted bits are zero, don't bother 4306 // performing the inversion. 4307 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 4308 return 4309 DAG.getSetCC(dl, VT, N0.getOperand(0), 4310 DAG.getConstant(LHSR->getAPIntValue() ^ 4311 RHSC->getAPIntValue(), 4312 dl, N0.getValueType()), 4313 Cond); 4314 } 4315 4316 // Turn (C1-X) == C2 --> X == C1-C2 4317 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 4318 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 4319 return 4320 DAG.getSetCC(dl, VT, N0.getOperand(1), 4321 DAG.getConstant(SUBC->getAPIntValue() - 4322 RHSC->getAPIntValue(), 4323 dl, N0.getValueType()), 4324 Cond); 4325 } 4326 } 4327 4328 // Could RHSC fold directly into a compare? 4329 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4330 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4331 } 4332 4333 // (X+Y) == X --> Y == 0 and similar folds. 4334 // Don't do this if X is an immediate that can fold into a cmp 4335 // instruction and X+Y has other uses. It could be an induction variable 4336 // chain, and the transform would increase register pressure. 4337 if (!LegalRHSImm || N0.hasOneUse()) 4338 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4339 return V; 4340 } 4341 4342 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4343 N1.getOpcode() == ISD::XOR) 4344 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4345 return V; 4346 4347 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4348 return V; 4349 } 4350 4351 // Fold remainder of division by a constant. 4352 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4353 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4354 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4355 4356 // When division is cheap or optimizing for minimum size, 4357 // fall through to DIVREM creation by skipping this fold. 4358 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { 4359 if (N0.getOpcode() == ISD::UREM) { 4360 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4361 return Folded; 4362 } else if (N0.getOpcode() == ISD::SREM) { 4363 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4364 return Folded; 4365 } 4366 } 4367 } 4368 4369 // Fold away ALL boolean setcc's. 4370 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4371 SDValue Temp; 4372 switch (Cond) { 4373 default: llvm_unreachable("Unknown integer setcc!"); 4374 case ISD::SETEQ: // X == Y -> ~(X^Y) 4375 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4376 N0 = DAG.getNOT(dl, Temp, OpVT); 4377 if (!DCI.isCalledByLegalizer()) 4378 DCI.AddToWorklist(Temp.getNode()); 4379 break; 4380 case ISD::SETNE: // X != Y --> (X^Y) 4381 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4382 break; 4383 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4384 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4385 Temp = DAG.getNOT(dl, N0, OpVT); 4386 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4387 if (!DCI.isCalledByLegalizer()) 4388 DCI.AddToWorklist(Temp.getNode()); 4389 break; 4390 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4391 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4392 Temp = DAG.getNOT(dl, N1, OpVT); 4393 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4394 if (!DCI.isCalledByLegalizer()) 4395 DCI.AddToWorklist(Temp.getNode()); 4396 break; 4397 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4398 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4399 Temp = DAG.getNOT(dl, N0, OpVT); 4400 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4401 if (!DCI.isCalledByLegalizer()) 4402 DCI.AddToWorklist(Temp.getNode()); 4403 break; 4404 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4405 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4406 Temp = DAG.getNOT(dl, N1, OpVT); 4407 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4408 break; 4409 } 4410 if (VT.getScalarType() != MVT::i1) { 4411 if (!DCI.isCalledByLegalizer()) 4412 DCI.AddToWorklist(N0.getNode()); 4413 // FIXME: If running after legalize, we probably can't do this. 4414 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4415 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4416 } 4417 return N0; 4418 } 4419 4420 // Could not fold it. 4421 return SDValue(); 4422 } 4423 4424 /// Returns true (and the GlobalValue and the offset) if the node is a 4425 /// GlobalAddress + offset. 4426 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4427 int64_t &Offset) const { 4428 4429 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4430 4431 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4432 GA = GASD->getGlobal(); 4433 Offset += GASD->getOffset(); 4434 return true; 4435 } 4436 4437 if (N->getOpcode() == ISD::ADD) { 4438 SDValue N1 = N->getOperand(0); 4439 SDValue N2 = N->getOperand(1); 4440 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4441 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4442 Offset += V->getSExtValue(); 4443 return true; 4444 } 4445 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4446 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4447 Offset += V->getSExtValue(); 4448 return true; 4449 } 4450 } 4451 } 4452 4453 return false; 4454 } 4455 4456 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4457 DAGCombinerInfo &DCI) const { 4458 // Default implementation: no optimization. 4459 return SDValue(); 4460 } 4461 4462 //===----------------------------------------------------------------------===// 4463 // Inline Assembler Implementation Methods 4464 //===----------------------------------------------------------------------===// 4465 4466 TargetLowering::ConstraintType 4467 TargetLowering::getConstraintType(StringRef Constraint) const { 4468 unsigned S = Constraint.size(); 4469 4470 if (S == 1) { 4471 switch (Constraint[0]) { 4472 default: break; 4473 case 'r': 4474 return C_RegisterClass; 4475 case 'm': // memory 4476 case 'o': // offsetable 4477 case 'V': // not offsetable 4478 return C_Memory; 4479 case 'n': // Simple Integer 4480 case 'E': // Floating Point Constant 4481 case 'F': // Floating Point Constant 4482 return C_Immediate; 4483 case 'i': // Simple Integer or Relocatable Constant 4484 case 's': // Relocatable Constant 4485 case 'p': // Address. 4486 case 'X': // Allow ANY value. 4487 case 'I': // Target registers. 4488 case 'J': 4489 case 'K': 4490 case 'L': 4491 case 'M': 4492 case 'N': 4493 case 'O': 4494 case 'P': 4495 case '<': 4496 case '>': 4497 return C_Other; 4498 } 4499 } 4500 4501 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4502 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4503 return C_Memory; 4504 return C_Register; 4505 } 4506 return C_Unknown; 4507 } 4508 4509 /// Try to replace an X constraint, which matches anything, with another that 4510 /// has more specific requirements based on the type of the corresponding 4511 /// operand. 4512 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4513 if (ConstraintVT.isInteger()) 4514 return "r"; 4515 if (ConstraintVT.isFloatingPoint()) 4516 return "f"; // works for many targets 4517 return nullptr; 4518 } 4519 4520 SDValue TargetLowering::LowerAsmOutputForConstraint( 4521 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 4522 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 4523 return SDValue(); 4524 } 4525 4526 /// Lower the specified operand into the Ops vector. 4527 /// If it is invalid, don't add anything to Ops. 4528 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4529 std::string &Constraint, 4530 std::vector<SDValue> &Ops, 4531 SelectionDAG &DAG) const { 4532 4533 if (Constraint.length() > 1) return; 4534 4535 char ConstraintLetter = Constraint[0]; 4536 switch (ConstraintLetter) { 4537 default: break; 4538 case 'X': // Allows any operand; labels (basic block) use this. 4539 if (Op.getOpcode() == ISD::BasicBlock || 4540 Op.getOpcode() == ISD::TargetBlockAddress) { 4541 Ops.push_back(Op); 4542 return; 4543 } 4544 LLVM_FALLTHROUGH; 4545 case 'i': // Simple Integer or Relocatable Constant 4546 case 'n': // Simple Integer 4547 case 's': { // Relocatable Constant 4548 4549 GlobalAddressSDNode *GA; 4550 ConstantSDNode *C; 4551 BlockAddressSDNode *BA; 4552 uint64_t Offset = 0; 4553 4554 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4555 // etc., since getelementpointer is variadic. We can't use 4556 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4557 // while in this case the GA may be furthest from the root node which is 4558 // likely an ISD::ADD. 4559 while (1) { 4560 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4561 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4562 GA->getValueType(0), 4563 Offset + GA->getOffset())); 4564 return; 4565 } 4566 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 4567 // gcc prints these as sign extended. Sign extend value to 64 bits 4568 // now; without this it would get ZExt'd later in 4569 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4570 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4571 BooleanContent BCont = getBooleanContents(MVT::i64); 4572 ISD::NodeType ExtOpc = 4573 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 4574 int64_t ExtVal = 4575 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 4576 Ops.push_back( 4577 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 4578 return; 4579 } 4580 if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4581 Ops.push_back(DAG.getTargetBlockAddress( 4582 BA->getBlockAddress(), BA->getValueType(0), 4583 Offset + BA->getOffset(), BA->getTargetFlags())); 4584 return; 4585 } 4586 const unsigned OpCode = Op.getOpcode(); 4587 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4588 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4589 Op = Op.getOperand(1); 4590 // Subtraction is not commutative. 4591 else if (OpCode == ISD::ADD && 4592 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4593 Op = Op.getOperand(0); 4594 else 4595 return; 4596 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4597 continue; 4598 } 4599 return; 4600 } 4601 break; 4602 } 4603 } 4604 } 4605 4606 std::pair<unsigned, const TargetRegisterClass *> 4607 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4608 StringRef Constraint, 4609 MVT VT) const { 4610 if (Constraint.empty() || Constraint[0] != '{') 4611 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4612 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4613 4614 // Remove the braces from around the name. 4615 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4616 4617 std::pair<unsigned, const TargetRegisterClass *> R = 4618 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4619 4620 // Figure out which register class contains this reg. 4621 for (const TargetRegisterClass *RC : RI->regclasses()) { 4622 // If none of the value types for this register class are valid, we 4623 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4624 if (!isLegalRC(*RI, *RC)) 4625 continue; 4626 4627 for (const MCPhysReg &PR : *RC) { 4628 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 4629 std::pair<unsigned, const TargetRegisterClass *> S = 4630 std::make_pair(PR, RC); 4631 4632 // If this register class has the requested value type, return it, 4633 // otherwise keep searching and return the first class found 4634 // if no other is found which explicitly has the requested type. 4635 if (RI->isTypeLegalForClass(*RC, VT)) 4636 return S; 4637 if (!R.second) 4638 R = S; 4639 } 4640 } 4641 } 4642 4643 return R; 4644 } 4645 4646 //===----------------------------------------------------------------------===// 4647 // Constraint Selection. 4648 4649 /// Return true of this is an input operand that is a matching constraint like 4650 /// "4". 4651 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4652 assert(!ConstraintCode.empty() && "No known constraint!"); 4653 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4654 } 4655 4656 /// If this is an input matching constraint, this method returns the output 4657 /// operand it matches. 4658 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4659 assert(!ConstraintCode.empty() && "No known constraint!"); 4660 return atoi(ConstraintCode.c_str()); 4661 } 4662 4663 /// Split up the constraint string from the inline assembly value into the 4664 /// specific constraints and their prefixes, and also tie in the associated 4665 /// operand values. 4666 /// If this returns an empty vector, and if the constraint string itself 4667 /// isn't empty, there was an error parsing. 4668 TargetLowering::AsmOperandInfoVector 4669 TargetLowering::ParseConstraints(const DataLayout &DL, 4670 const TargetRegisterInfo *TRI, 4671 const CallBase &Call) const { 4672 /// Information about all of the constraints. 4673 AsmOperandInfoVector ConstraintOperands; 4674 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 4675 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4676 4677 // Do a prepass over the constraints, canonicalizing them, and building up the 4678 // ConstraintOperands list. 4679 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4680 unsigned ResNo = 0; // ResNo - The result number of the next output. 4681 4682 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4683 ConstraintOperands.emplace_back(std::move(CI)); 4684 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4685 4686 // Update multiple alternative constraint count. 4687 if (OpInfo.multipleAlternatives.size() > maCount) 4688 maCount = OpInfo.multipleAlternatives.size(); 4689 4690 OpInfo.ConstraintVT = MVT::Other; 4691 4692 // Compute the value type for each operand. 4693 switch (OpInfo.Type) { 4694 case InlineAsm::isOutput: 4695 // Indirect outputs just consume an argument. 4696 if (OpInfo.isIndirect) { 4697 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4698 break; 4699 } 4700 4701 // The return value of the call is this value. As such, there is no 4702 // corresponding argument. 4703 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 4704 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 4705 OpInfo.ConstraintVT = 4706 getSimpleValueType(DL, STy->getElementType(ResNo)); 4707 } else { 4708 assert(ResNo == 0 && "Asm only has one result!"); 4709 OpInfo.ConstraintVT = 4710 getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 4711 } 4712 ++ResNo; 4713 break; 4714 case InlineAsm::isInput: 4715 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4716 break; 4717 case InlineAsm::isClobber: 4718 // Nothing to do. 4719 break; 4720 } 4721 4722 if (OpInfo.CallOperandVal) { 4723 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4724 if (OpInfo.isIndirect) { 4725 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4726 if (!PtrTy) 4727 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4728 OpTy = PtrTy->getElementType(); 4729 } 4730 4731 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4732 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4733 if (STy->getNumElements() == 1) 4734 OpTy = STy->getElementType(0); 4735 4736 // If OpTy is not a single value, it may be a struct/union that we 4737 // can tile with integers. 4738 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4739 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4740 switch (BitSize) { 4741 default: break; 4742 case 1: 4743 case 8: 4744 case 16: 4745 case 32: 4746 case 64: 4747 case 128: 4748 OpInfo.ConstraintVT = 4749 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4750 break; 4751 } 4752 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4753 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4754 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4755 } else { 4756 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4757 } 4758 } 4759 } 4760 4761 // If we have multiple alternative constraints, select the best alternative. 4762 if (!ConstraintOperands.empty()) { 4763 if (maCount) { 4764 unsigned bestMAIndex = 0; 4765 int bestWeight = -1; 4766 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4767 int weight = -1; 4768 unsigned maIndex; 4769 // Compute the sums of the weights for each alternative, keeping track 4770 // of the best (highest weight) one so far. 4771 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4772 int weightSum = 0; 4773 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4774 cIndex != eIndex; ++cIndex) { 4775 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4776 if (OpInfo.Type == InlineAsm::isClobber) 4777 continue; 4778 4779 // If this is an output operand with a matching input operand, 4780 // look up the matching input. If their types mismatch, e.g. one 4781 // is an integer, the other is floating point, or their sizes are 4782 // different, flag it as an maCantMatch. 4783 if (OpInfo.hasMatchingInput()) { 4784 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4785 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4786 if ((OpInfo.ConstraintVT.isInteger() != 4787 Input.ConstraintVT.isInteger()) || 4788 (OpInfo.ConstraintVT.getSizeInBits() != 4789 Input.ConstraintVT.getSizeInBits())) { 4790 weightSum = -1; // Can't match. 4791 break; 4792 } 4793 } 4794 } 4795 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4796 if (weight == -1) { 4797 weightSum = -1; 4798 break; 4799 } 4800 weightSum += weight; 4801 } 4802 // Update best. 4803 if (weightSum > bestWeight) { 4804 bestWeight = weightSum; 4805 bestMAIndex = maIndex; 4806 } 4807 } 4808 4809 // Now select chosen alternative in each constraint. 4810 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4811 cIndex != eIndex; ++cIndex) { 4812 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4813 if (cInfo.Type == InlineAsm::isClobber) 4814 continue; 4815 cInfo.selectAlternative(bestMAIndex); 4816 } 4817 } 4818 } 4819 4820 // Check and hook up tied operands, choose constraint code to use. 4821 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4822 cIndex != eIndex; ++cIndex) { 4823 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4824 4825 // If this is an output operand with a matching input operand, look up the 4826 // matching input. If their types mismatch, e.g. one is an integer, the 4827 // other is floating point, or their sizes are different, flag it as an 4828 // error. 4829 if (OpInfo.hasMatchingInput()) { 4830 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4831 4832 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4833 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4834 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4835 OpInfo.ConstraintVT); 4836 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4837 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4838 Input.ConstraintVT); 4839 if ((OpInfo.ConstraintVT.isInteger() != 4840 Input.ConstraintVT.isInteger()) || 4841 (MatchRC.second != InputRC.second)) { 4842 report_fatal_error("Unsupported asm: input constraint" 4843 " with a matching output constraint of" 4844 " incompatible type!"); 4845 } 4846 } 4847 } 4848 } 4849 4850 return ConstraintOperands; 4851 } 4852 4853 /// Return an integer indicating how general CT is. 4854 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4855 switch (CT) { 4856 case TargetLowering::C_Immediate: 4857 case TargetLowering::C_Other: 4858 case TargetLowering::C_Unknown: 4859 return 0; 4860 case TargetLowering::C_Register: 4861 return 1; 4862 case TargetLowering::C_RegisterClass: 4863 return 2; 4864 case TargetLowering::C_Memory: 4865 return 3; 4866 } 4867 llvm_unreachable("Invalid constraint type"); 4868 } 4869 4870 /// Examine constraint type and operand type and determine a weight value. 4871 /// This object must already have been set up with the operand type 4872 /// and the current alternative constraint selected. 4873 TargetLowering::ConstraintWeight 4874 TargetLowering::getMultipleConstraintMatchWeight( 4875 AsmOperandInfo &info, int maIndex) const { 4876 InlineAsm::ConstraintCodeVector *rCodes; 4877 if (maIndex >= (int)info.multipleAlternatives.size()) 4878 rCodes = &info.Codes; 4879 else 4880 rCodes = &info.multipleAlternatives[maIndex].Codes; 4881 ConstraintWeight BestWeight = CW_Invalid; 4882 4883 // Loop over the options, keeping track of the most general one. 4884 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4885 ConstraintWeight weight = 4886 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4887 if (weight > BestWeight) 4888 BestWeight = weight; 4889 } 4890 4891 return BestWeight; 4892 } 4893 4894 /// Examine constraint type and operand type and determine a weight value. 4895 /// This object must already have been set up with the operand type 4896 /// and the current alternative constraint selected. 4897 TargetLowering::ConstraintWeight 4898 TargetLowering::getSingleConstraintMatchWeight( 4899 AsmOperandInfo &info, const char *constraint) const { 4900 ConstraintWeight weight = CW_Invalid; 4901 Value *CallOperandVal = info.CallOperandVal; 4902 // If we don't have a value, we can't do a match, 4903 // but allow it at the lowest weight. 4904 if (!CallOperandVal) 4905 return CW_Default; 4906 // Look at the constraint type. 4907 switch (*constraint) { 4908 case 'i': // immediate integer. 4909 case 'n': // immediate integer with a known value. 4910 if (isa<ConstantInt>(CallOperandVal)) 4911 weight = CW_Constant; 4912 break; 4913 case 's': // non-explicit intregal immediate. 4914 if (isa<GlobalValue>(CallOperandVal)) 4915 weight = CW_Constant; 4916 break; 4917 case 'E': // immediate float if host format. 4918 case 'F': // immediate float. 4919 if (isa<ConstantFP>(CallOperandVal)) 4920 weight = CW_Constant; 4921 break; 4922 case '<': // memory operand with autodecrement. 4923 case '>': // memory operand with autoincrement. 4924 case 'm': // memory operand. 4925 case 'o': // offsettable memory operand 4926 case 'V': // non-offsettable memory operand 4927 weight = CW_Memory; 4928 break; 4929 case 'r': // general register. 4930 case 'g': // general register, memory operand or immediate integer. 4931 // note: Clang converts "g" to "imr". 4932 if (CallOperandVal->getType()->isIntegerTy()) 4933 weight = CW_Register; 4934 break; 4935 case 'X': // any operand. 4936 default: 4937 weight = CW_Default; 4938 break; 4939 } 4940 return weight; 4941 } 4942 4943 /// If there are multiple different constraints that we could pick for this 4944 /// operand (e.g. "imr") try to pick the 'best' one. 4945 /// This is somewhat tricky: constraints fall into four classes: 4946 /// Other -> immediates and magic values 4947 /// Register -> one specific register 4948 /// RegisterClass -> a group of regs 4949 /// Memory -> memory 4950 /// Ideally, we would pick the most specific constraint possible: if we have 4951 /// something that fits into a register, we would pick it. The problem here 4952 /// is that if we have something that could either be in a register or in 4953 /// memory that use of the register could cause selection of *other* 4954 /// operands to fail: they might only succeed if we pick memory. Because of 4955 /// this the heuristic we use is: 4956 /// 4957 /// 1) If there is an 'other' constraint, and if the operand is valid for 4958 /// that constraint, use it. This makes us take advantage of 'i' 4959 /// constraints when available. 4960 /// 2) Otherwise, pick the most general constraint present. This prefers 4961 /// 'm' over 'r', for example. 4962 /// 4963 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4964 const TargetLowering &TLI, 4965 SDValue Op, SelectionDAG *DAG) { 4966 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4967 unsigned BestIdx = 0; 4968 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4969 int BestGenerality = -1; 4970 4971 // Loop over the options, keeping track of the most general one. 4972 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4973 TargetLowering::ConstraintType CType = 4974 TLI.getConstraintType(OpInfo.Codes[i]); 4975 4976 // Indirect 'other' or 'immediate' constraints are not allowed. 4977 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 4978 CType == TargetLowering::C_Register || 4979 CType == TargetLowering::C_RegisterClass)) 4980 continue; 4981 4982 // If this is an 'other' or 'immediate' constraint, see if the operand is 4983 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4984 // the operand is an integer in the range [0..31] we want to use I (saving a 4985 // load of a register), otherwise we must use 'r'. 4986 if ((CType == TargetLowering::C_Other || 4987 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4988 assert(OpInfo.Codes[i].size() == 1 && 4989 "Unhandled multi-letter 'other' constraint"); 4990 std::vector<SDValue> ResultOps; 4991 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4992 ResultOps, *DAG); 4993 if (!ResultOps.empty()) { 4994 BestType = CType; 4995 BestIdx = i; 4996 break; 4997 } 4998 } 4999 5000 // Things with matching constraints can only be registers, per gcc 5001 // documentation. This mainly affects "g" constraints. 5002 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 5003 continue; 5004 5005 // This constraint letter is more general than the previous one, use it. 5006 int Generality = getConstraintGenerality(CType); 5007 if (Generality > BestGenerality) { 5008 BestType = CType; 5009 BestIdx = i; 5010 BestGenerality = Generality; 5011 } 5012 } 5013 5014 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 5015 OpInfo.ConstraintType = BestType; 5016 } 5017 5018 /// Determines the constraint code and constraint type to use for the specific 5019 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 5020 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 5021 SDValue Op, 5022 SelectionDAG *DAG) const { 5023 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 5024 5025 // Single-letter constraints ('r') are very common. 5026 if (OpInfo.Codes.size() == 1) { 5027 OpInfo.ConstraintCode = OpInfo.Codes[0]; 5028 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5029 } else { 5030 ChooseConstraint(OpInfo, *this, Op, DAG); 5031 } 5032 5033 // 'X' matches anything. 5034 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 5035 // Labels and constants are handled elsewhere ('X' is the only thing 5036 // that matches labels). For Functions, the type here is the type of 5037 // the result, which is not what we want to look at; leave them alone. 5038 Value *v = OpInfo.CallOperandVal; 5039 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 5040 OpInfo.CallOperandVal = v; 5041 return; 5042 } 5043 5044 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 5045 return; 5046 5047 // Otherwise, try to resolve it to something we know about by looking at 5048 // the actual operand type. 5049 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 5050 OpInfo.ConstraintCode = Repl; 5051 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5052 } 5053 } 5054 } 5055 5056 /// Given an exact SDIV by a constant, create a multiplication 5057 /// with the multiplicative inverse of the constant. 5058 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 5059 const SDLoc &dl, SelectionDAG &DAG, 5060 SmallVectorImpl<SDNode *> &Created) { 5061 SDValue Op0 = N->getOperand(0); 5062 SDValue Op1 = N->getOperand(1); 5063 EVT VT = N->getValueType(0); 5064 EVT SVT = VT.getScalarType(); 5065 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5066 EVT ShSVT = ShVT.getScalarType(); 5067 5068 bool UseSRA = false; 5069 SmallVector<SDValue, 16> Shifts, Factors; 5070 5071 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5072 if (C->isNullValue()) 5073 return false; 5074 APInt Divisor = C->getAPIntValue(); 5075 unsigned Shift = Divisor.countTrailingZeros(); 5076 if (Shift) { 5077 Divisor.ashrInPlace(Shift); 5078 UseSRA = true; 5079 } 5080 // Calculate the multiplicative inverse, using Newton's method. 5081 APInt t; 5082 APInt Factor = Divisor; 5083 while ((t = Divisor * Factor) != 1) 5084 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5085 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5086 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5087 return true; 5088 }; 5089 5090 // Collect all magic values from the build vector. 5091 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5092 return SDValue(); 5093 5094 SDValue Shift, Factor; 5095 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 5096 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5097 Factor = DAG.getBuildVector(VT, dl, Factors); 5098 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 5099 assert(Shifts.size() == 1 && Factors.size() == 1 && 5100 "Expected matchUnaryPredicate to return one element for scalable " 5101 "vectors"); 5102 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5103 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5104 } else { 5105 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 5106 Shift = Shifts[0]; 5107 Factor = Factors[0]; 5108 } 5109 5110 SDValue Res = Op0; 5111 5112 // Shift the value upfront if it is even, so the LSB is one. 5113 if (UseSRA) { 5114 // TODO: For UDIV use SRL instead of SRA. 5115 SDNodeFlags Flags; 5116 Flags.setExact(true); 5117 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5118 Created.push_back(Res.getNode()); 5119 } 5120 5121 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5122 } 5123 5124 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5125 SelectionDAG &DAG, 5126 SmallVectorImpl<SDNode *> &Created) const { 5127 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5128 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5129 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5130 return SDValue(N, 0); // Lower SDIV as SDIV 5131 return SDValue(); 5132 } 5133 5134 namespace { 5135 /// Magic data for optimising signed division by a constant. 5136 struct ms { 5137 APInt m; ///< magic number 5138 unsigned s; ///< shift amount 5139 }; 5140 5141 /// Magic data for optimising unsigned division by a constant. 5142 struct mu { 5143 APInt m; ///< magic number 5144 bool a; ///< add indicator 5145 unsigned s; ///< shift amount 5146 }; 5147 } // namespace 5148 5149 /// Calculate the magic numbers required to implement an unsigned integer 5150 /// division by a constant as a sequence of multiplies, adds and shifts. 5151 /// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry 5152 /// S. Warren, Jr., chapter 10. 5153 /// LeadingZeros can be used to simplify the calculation if the upper bits 5154 /// of the divided value are known zero. 5155 static mu magicu(const APInt &d, unsigned LeadingZeros = 0) { 5156 unsigned p; 5157 APInt nc, delta, q1, r1, q2, r2; 5158 struct mu magu; 5159 magu.a = 0; // initialize "add" indicator 5160 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros); 5161 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); 5162 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth()); 5163 5164 nc = allOnes - (allOnes - d).urem(d); 5165 p = d.getBitWidth() - 1; // initialize p 5166 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc 5167 r1 = signedMin - q1 * nc; // initialize r1 = rem(2p,nc) 5168 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d 5169 r2 = signedMax - q2 * d; // initialize r2 = rem((2p-1),d) 5170 do { 5171 p = p + 1; 5172 if (r1.uge(nc - r1)) { 5173 q1 = q1 + q1 + 1; // update q1 5174 r1 = r1 + r1 - nc; // update r1 5175 } else { 5176 q1 = q1 + q1; // update q1 5177 r1 = r1 + r1; // update r1 5178 } 5179 if ((r2 + 1).uge(d - r2)) { 5180 if (q2.uge(signedMax)) 5181 magu.a = 1; 5182 q2 = q2 + q2 + 1; // update q2 5183 r2 = r2 + r2 + 1 - d; // update r2 5184 } else { 5185 if (q2.uge(signedMin)) 5186 magu.a = 1; 5187 q2 = q2 + q2; // update q2 5188 r2 = r2 + r2 + 1; // update r2 5189 } 5190 delta = d - 1 - r2; 5191 } while (p < d.getBitWidth() * 2 && 5192 (q1.ult(delta) || (q1 == delta && r1 == 0))); 5193 magu.m = q2 + 1; // resulting magic number 5194 magu.s = p - d.getBitWidth(); // resulting shift 5195 return magu; 5196 } 5197 5198 /// Calculate the magic numbers required to implement a signed integer division 5199 /// by a constant as a sequence of multiplies, adds and shifts. Requires that 5200 /// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S. 5201 /// Warren, Jr., Chapter 10. 5202 static ms magic(const APInt &d) { 5203 unsigned p; 5204 APInt ad, anc, delta, q1, r1, q2, r2, t; 5205 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); 5206 struct ms mag; 5207 5208 ad = d.abs(); 5209 t = signedMin + (d.lshr(d.getBitWidth() - 1)); 5210 anc = t - 1 - t.urem(ad); // absolute value of nc 5211 p = d.getBitWidth() - 1; // initialize p 5212 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc) 5213 r1 = signedMin - q1 * anc; // initialize r1 = rem(2p,abs(nc)) 5214 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d) 5215 r2 = signedMin - q2 * ad; // initialize r2 = rem(2p,abs(d)) 5216 do { 5217 p = p + 1; 5218 q1 = q1 << 1; // update q1 = 2p/abs(nc) 5219 r1 = r1 << 1; // update r1 = rem(2p/abs(nc)) 5220 if (r1.uge(anc)) { // must be unsigned comparison 5221 q1 = q1 + 1; 5222 r1 = r1 - anc; 5223 } 5224 q2 = q2 << 1; // update q2 = 2p/abs(d) 5225 r2 = r2 << 1; // update r2 = rem(2p/abs(d)) 5226 if (r2.uge(ad)) { // must be unsigned comparison 5227 q2 = q2 + 1; 5228 r2 = r2 - ad; 5229 } 5230 delta = ad - r2; 5231 } while (q1.ult(delta) || (q1 == delta && r1 == 0)); 5232 5233 mag.m = q2 + 1; 5234 if (d.isNegative()) 5235 mag.m = -mag.m; // resulting magic number 5236 mag.s = p - d.getBitWidth(); // resulting shift 5237 return mag; 5238 } 5239 5240 /// Given an ISD::SDIV node expressing a divide by constant, 5241 /// return a DAG expression to select that will generate the same value by 5242 /// multiplying by a magic number. 5243 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5244 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5245 bool IsAfterLegalization, 5246 SmallVectorImpl<SDNode *> &Created) const { 5247 SDLoc dl(N); 5248 EVT VT = N->getValueType(0); 5249 EVT SVT = VT.getScalarType(); 5250 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5251 EVT ShSVT = ShVT.getScalarType(); 5252 unsigned EltBits = VT.getScalarSizeInBits(); 5253 EVT MulVT; 5254 5255 // Check to see if we can do this. 5256 // FIXME: We should be more aggressive here. 5257 if (!isTypeLegal(VT)) { 5258 // Limit this to simple scalars for now. 5259 if (VT.isVector() || !VT.isSimple()) 5260 return SDValue(); 5261 5262 // If this type will be promoted to a large enough type with a legal 5263 // multiply operation, we can go ahead and do this transform. 5264 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5265 return SDValue(); 5266 5267 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5268 if (MulVT.getSizeInBits() < (2 * EltBits) || 5269 !isOperationLegal(ISD::MUL, MulVT)) 5270 return SDValue(); 5271 } 5272 5273 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5274 if (N->getFlags().hasExact()) 5275 return BuildExactSDIV(*this, N, dl, DAG, Created); 5276 5277 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5278 5279 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5280 if (C->isNullValue()) 5281 return false; 5282 5283 const APInt &Divisor = C->getAPIntValue(); 5284 ms magics = magic(Divisor); 5285 int NumeratorFactor = 0; 5286 int ShiftMask = -1; 5287 5288 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 5289 // If d is +1/-1, we just multiply the numerator by +1/-1. 5290 NumeratorFactor = Divisor.getSExtValue(); 5291 magics.m = 0; 5292 magics.s = 0; 5293 ShiftMask = 0; 5294 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 5295 // If d > 0 and m < 0, add the numerator. 5296 NumeratorFactor = 1; 5297 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 5298 // If d < 0 and m > 0, subtract the numerator. 5299 NumeratorFactor = -1; 5300 } 5301 5302 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 5303 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5304 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 5305 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5306 return true; 5307 }; 5308 5309 SDValue N0 = N->getOperand(0); 5310 SDValue N1 = N->getOperand(1); 5311 5312 // Collect the shifts / magic values from each element. 5313 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5314 return SDValue(); 5315 5316 SDValue MagicFactor, Factor, Shift, ShiftMask; 5317 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5318 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5319 Factor = DAG.getBuildVector(VT, dl, Factors); 5320 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5321 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5322 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5323 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 5324 Shifts.size() == 1 && ShiftMasks.size() == 1 && 5325 "Expected matchUnaryPredicate to return one element for scalable " 5326 "vectors"); 5327 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5328 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5329 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5330 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 5331 } else { 5332 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5333 MagicFactor = MagicFactors[0]; 5334 Factor = Factors[0]; 5335 Shift = Shifts[0]; 5336 ShiftMask = ShiftMasks[0]; 5337 } 5338 5339 // Multiply the numerator (operand 0) by the magic value. 5340 // FIXME: We should support doing a MUL in a wider type. 5341 auto GetMULHS = [&](SDValue X, SDValue Y) { 5342 // If the type isn't legal, use a wider mul of the the type calculated 5343 // earlier. 5344 if (!isTypeLegal(VT)) { 5345 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 5346 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 5347 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5348 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5349 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5350 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5351 } 5352 5353 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 5354 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 5355 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 5356 SDValue LoHi = 5357 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5358 return SDValue(LoHi.getNode(), 1); 5359 } 5360 return SDValue(); 5361 }; 5362 5363 SDValue Q = GetMULHS(N0, MagicFactor); 5364 if (!Q) 5365 return SDValue(); 5366 5367 Created.push_back(Q.getNode()); 5368 5369 // (Optionally) Add/subtract the numerator using Factor. 5370 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5371 Created.push_back(Factor.getNode()); 5372 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5373 Created.push_back(Q.getNode()); 5374 5375 // Shift right algebraic by shift value. 5376 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5377 Created.push_back(Q.getNode()); 5378 5379 // Extract the sign bit, mask it and add it to the quotient. 5380 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5381 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5382 Created.push_back(T.getNode()); 5383 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5384 Created.push_back(T.getNode()); 5385 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5386 } 5387 5388 /// Given an ISD::UDIV node expressing a divide by constant, 5389 /// return a DAG expression to select that will generate the same value by 5390 /// multiplying by a magic number. 5391 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5392 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5393 bool IsAfterLegalization, 5394 SmallVectorImpl<SDNode *> &Created) const { 5395 SDLoc dl(N); 5396 EVT VT = N->getValueType(0); 5397 EVT SVT = VT.getScalarType(); 5398 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5399 EVT ShSVT = ShVT.getScalarType(); 5400 unsigned EltBits = VT.getScalarSizeInBits(); 5401 EVT MulVT; 5402 5403 // Check to see if we can do this. 5404 // FIXME: We should be more aggressive here. 5405 if (!isTypeLegal(VT)) { 5406 // Limit this to simple scalars for now. 5407 if (VT.isVector() || !VT.isSimple()) 5408 return SDValue(); 5409 5410 // If this type will be promoted to a large enough type with a legal 5411 // multiply operation, we can go ahead and do this transform. 5412 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5413 return SDValue(); 5414 5415 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5416 if (MulVT.getSizeInBits() < (2 * EltBits) || 5417 !isOperationLegal(ISD::MUL, MulVT)) 5418 return SDValue(); 5419 } 5420 5421 bool UseNPQ = false; 5422 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5423 5424 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5425 if (C->isNullValue()) 5426 return false; 5427 // FIXME: We should use a narrower constant when the upper 5428 // bits are known to be zero. 5429 const APInt& Divisor = C->getAPIntValue(); 5430 mu magics = magicu(Divisor); 5431 unsigned PreShift = 0, PostShift = 0; 5432 5433 // If the divisor is even, we can avoid using the expensive fixup by 5434 // shifting the divided value upfront. 5435 if (magics.a != 0 && !Divisor[0]) { 5436 PreShift = Divisor.countTrailingZeros(); 5437 // Get magic number for the shifted divisor. 5438 magics = magicu(Divisor.lshr(PreShift), PreShift); 5439 assert(magics.a == 0 && "Should use cheap fixup now"); 5440 } 5441 5442 APInt Magic = magics.m; 5443 5444 unsigned SelNPQ; 5445 if (magics.a == 0 || Divisor.isOneValue()) { 5446 assert(magics.s < Divisor.getBitWidth() && 5447 "We shouldn't generate an undefined shift!"); 5448 PostShift = magics.s; 5449 SelNPQ = false; 5450 } else { 5451 PostShift = magics.s - 1; 5452 SelNPQ = true; 5453 } 5454 5455 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5456 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5457 NPQFactors.push_back( 5458 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5459 : APInt::getNullValue(EltBits), 5460 dl, SVT)); 5461 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5462 UseNPQ |= SelNPQ; 5463 return true; 5464 }; 5465 5466 SDValue N0 = N->getOperand(0); 5467 SDValue N1 = N->getOperand(1); 5468 5469 // Collect the shifts/magic values from each element. 5470 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5471 return SDValue(); 5472 5473 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5474 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5475 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5476 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5477 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5478 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5479 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5480 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 5481 NPQFactors.size() == 1 && PostShifts.size() == 1 && 5482 "Expected matchUnaryPredicate to return one for scalable vectors"); 5483 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 5484 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5485 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 5486 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 5487 } else { 5488 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5489 PreShift = PreShifts[0]; 5490 MagicFactor = MagicFactors[0]; 5491 PostShift = PostShifts[0]; 5492 } 5493 5494 SDValue Q = N0; 5495 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5496 Created.push_back(Q.getNode()); 5497 5498 // FIXME: We should support doing a MUL in a wider type. 5499 auto GetMULHU = [&](SDValue X, SDValue Y) { 5500 // If the type isn't legal, use a wider mul of the the type calculated 5501 // earlier. 5502 if (!isTypeLegal(VT)) { 5503 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 5504 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 5505 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5506 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5507 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5508 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5509 } 5510 5511 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 5512 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5513 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 5514 SDValue LoHi = 5515 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5516 return SDValue(LoHi.getNode(), 1); 5517 } 5518 return SDValue(); // No mulhu or equivalent 5519 }; 5520 5521 // Multiply the numerator (operand 0) by the magic value. 5522 Q = GetMULHU(Q, MagicFactor); 5523 if (!Q) 5524 return SDValue(); 5525 5526 Created.push_back(Q.getNode()); 5527 5528 if (UseNPQ) { 5529 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5530 Created.push_back(NPQ.getNode()); 5531 5532 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5533 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5534 if (VT.isVector()) 5535 NPQ = GetMULHU(NPQ, NPQFactor); 5536 else 5537 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5538 5539 Created.push_back(NPQ.getNode()); 5540 5541 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5542 Created.push_back(Q.getNode()); 5543 } 5544 5545 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5546 Created.push_back(Q.getNode()); 5547 5548 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5549 5550 SDValue One = DAG.getConstant(1, dl, VT); 5551 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 5552 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5553 } 5554 5555 /// If all values in Values that *don't* match the predicate are same 'splat' 5556 /// value, then replace all values with that splat value. 5557 /// Else, if AlternativeReplacement was provided, then replace all values that 5558 /// do match predicate with AlternativeReplacement value. 5559 static void 5560 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5561 std::function<bool(SDValue)> Predicate, 5562 SDValue AlternativeReplacement = SDValue()) { 5563 SDValue Replacement; 5564 // Is there a value for which the Predicate does *NOT* match? What is it? 5565 auto SplatValue = llvm::find_if_not(Values, Predicate); 5566 if (SplatValue != Values.end()) { 5567 // Does Values consist only of SplatValue's and values matching Predicate? 5568 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5569 return Value == *SplatValue || Predicate(Value); 5570 })) // Then we shall replace values matching predicate with SplatValue. 5571 Replacement = *SplatValue; 5572 } 5573 if (!Replacement) { 5574 // Oops, we did not find the "baseline" splat value. 5575 if (!AlternativeReplacement) 5576 return; // Nothing to do. 5577 // Let's replace with provided value then. 5578 Replacement = AlternativeReplacement; 5579 } 5580 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5581 } 5582 5583 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5584 /// where the divisor is constant and the comparison target is zero, 5585 /// return a DAG expression that will generate the same comparison result 5586 /// using only multiplications, additions and shifts/rotations. 5587 /// Ref: "Hacker's Delight" 10-17. 5588 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5589 SDValue CompTargetNode, 5590 ISD::CondCode Cond, 5591 DAGCombinerInfo &DCI, 5592 const SDLoc &DL) const { 5593 SmallVector<SDNode *, 5> Built; 5594 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5595 DCI, DL, Built)) { 5596 for (SDNode *N : Built) 5597 DCI.AddToWorklist(N); 5598 return Folded; 5599 } 5600 5601 return SDValue(); 5602 } 5603 5604 SDValue 5605 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5606 SDValue CompTargetNode, ISD::CondCode Cond, 5607 DAGCombinerInfo &DCI, const SDLoc &DL, 5608 SmallVectorImpl<SDNode *> &Created) const { 5609 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5610 // - D must be constant, with D = D0 * 2^K where D0 is odd 5611 // - P is the multiplicative inverse of D0 modulo 2^W 5612 // - Q = floor(((2^W) - 1) / D) 5613 // where W is the width of the common type of N and D. 5614 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5615 "Only applicable for (in)equality comparisons."); 5616 5617 SelectionDAG &DAG = DCI.DAG; 5618 5619 EVT VT = REMNode.getValueType(); 5620 EVT SVT = VT.getScalarType(); 5621 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5622 EVT ShSVT = ShVT.getScalarType(); 5623 5624 // If MUL is unavailable, we cannot proceed in any case. 5625 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5626 return SDValue(); 5627 5628 bool ComparingWithAllZeros = true; 5629 bool AllComparisonsWithNonZerosAreTautological = true; 5630 bool HadTautologicalLanes = false; 5631 bool AllLanesAreTautological = true; 5632 bool HadEvenDivisor = false; 5633 bool AllDivisorsArePowerOfTwo = true; 5634 bool HadTautologicalInvertedLanes = false; 5635 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5636 5637 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5638 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5639 if (CDiv->isNullValue()) 5640 return false; 5641 5642 const APInt &D = CDiv->getAPIntValue(); 5643 const APInt &Cmp = CCmp->getAPIntValue(); 5644 5645 ComparingWithAllZeros &= Cmp.isNullValue(); 5646 5647 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5648 // if C2 is not less than C1, the comparison is always false. 5649 // But we will only be able to produce the comparison that will give the 5650 // opposive tautological answer. So this lane would need to be fixed up. 5651 bool TautologicalInvertedLane = D.ule(Cmp); 5652 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5653 5654 // If all lanes are tautological (either all divisors are ones, or divisor 5655 // is not greater than the constant we are comparing with), 5656 // we will prefer to avoid the fold. 5657 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; 5658 HadTautologicalLanes |= TautologicalLane; 5659 AllLanesAreTautological &= TautologicalLane; 5660 5661 // If we are comparing with non-zero, we need'll need to subtract said 5662 // comparison value from the LHS. But there is no point in doing that if 5663 // every lane where we are comparing with non-zero is tautological.. 5664 if (!Cmp.isNullValue()) 5665 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5666 5667 // Decompose D into D0 * 2^K 5668 unsigned K = D.countTrailingZeros(); 5669 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5670 APInt D0 = D.lshr(K); 5671 5672 // D is even if it has trailing zeros. 5673 HadEvenDivisor |= (K != 0); 5674 // D is a power-of-two if D0 is one. 5675 // If all divisors are power-of-two, we will prefer to avoid the fold. 5676 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5677 5678 // P = inv(D0, 2^W) 5679 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5680 unsigned W = D.getBitWidth(); 5681 APInt P = D0.zext(W + 1) 5682 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5683 .trunc(W); 5684 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5685 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5686 5687 // Q = floor((2^W - 1) u/ D) 5688 // R = ((2^W - 1) u% D) 5689 APInt Q, R; 5690 APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R); 5691 5692 // If we are comparing with zero, then that comparison constant is okay, 5693 // else it may need to be one less than that. 5694 if (Cmp.ugt(R)) 5695 Q -= 1; 5696 5697 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5698 "We are expecting that K is always less than all-ones for ShSVT"); 5699 5700 // If the lane is tautological the result can be constant-folded. 5701 if (TautologicalLane) { 5702 // Set P and K amount to a bogus values so we can try to splat them. 5703 P = 0; 5704 K = -1; 5705 // And ensure that comparison constant is tautological, 5706 // it will always compare true/false. 5707 Q = -1; 5708 } 5709 5710 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5711 KAmts.push_back( 5712 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5713 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5714 return true; 5715 }; 5716 5717 SDValue N = REMNode.getOperand(0); 5718 SDValue D = REMNode.getOperand(1); 5719 5720 // Collect the values from each element. 5721 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5722 return SDValue(); 5723 5724 // If all lanes are tautological, the result can be constant-folded. 5725 if (AllLanesAreTautological) 5726 return SDValue(); 5727 5728 // If this is a urem by a powers-of-two, avoid the fold since it can be 5729 // best implemented as a bit test. 5730 if (AllDivisorsArePowerOfTwo) 5731 return SDValue(); 5732 5733 SDValue PVal, KVal, QVal; 5734 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5735 if (HadTautologicalLanes) { 5736 // Try to turn PAmts into a splat, since we don't care about the values 5737 // that are currently '0'. If we can't, just keep '0'`s. 5738 turnVectorIntoSplatVector(PAmts, isNullConstant); 5739 // Try to turn KAmts into a splat, since we don't care about the values 5740 // that are currently '-1'. If we can't, change them to '0'`s. 5741 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5742 DAG.getConstant(0, DL, ShSVT)); 5743 } 5744 5745 PVal = DAG.getBuildVector(VT, DL, PAmts); 5746 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5747 QVal = DAG.getBuildVector(VT, DL, QAmts); 5748 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 5749 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 5750 "Expected matchBinaryPredicate to return one element for " 5751 "SPLAT_VECTORs"); 5752 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 5753 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 5754 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 5755 } else { 5756 PVal = PAmts[0]; 5757 KVal = KAmts[0]; 5758 QVal = QAmts[0]; 5759 } 5760 5761 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5762 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 5763 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5764 assert(CompTargetNode.getValueType() == N.getValueType() && 5765 "Expecting that the types on LHS and RHS of comparisons match."); 5766 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5767 } 5768 5769 // (mul N, P) 5770 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5771 Created.push_back(Op0.getNode()); 5772 5773 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5774 // divisors as a performance improvement, since rotating by 0 is a no-op. 5775 if (HadEvenDivisor) { 5776 // We need ROTR to do this. 5777 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 5778 return SDValue(); 5779 // UREM: (rotr (mul N, P), K) 5780 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 5781 Created.push_back(Op0.getNode()); 5782 } 5783 5784 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5785 SDValue NewCC = 5786 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5787 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5788 if (!HadTautologicalInvertedLanes) 5789 return NewCC; 5790 5791 // If any lanes previously compared always-false, the NewCC will give 5792 // always-true result for them, so we need to fixup those lanes. 5793 // Or the other way around for inequality predicate. 5794 assert(VT.isVector() && "Can/should only get here for vectors."); 5795 Created.push_back(NewCC.getNode()); 5796 5797 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5798 // if C2 is not less than C1, the comparison is always false. 5799 // But we have produced the comparison that will give the 5800 // opposive tautological answer. So these lanes would need to be fixed up. 5801 SDValue TautologicalInvertedChannels = 5802 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5803 Created.push_back(TautologicalInvertedChannels.getNode()); 5804 5805 // NOTE: we avoid letting illegal types through even if we're before legalize 5806 // ops – legalization has a hard time producing good code for this. 5807 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5808 // If we have a vector select, let's replace the comparison results in the 5809 // affected lanes with the correct tautological result. 5810 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5811 DL, SETCCVT, SETCCVT); 5812 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5813 Replacement, NewCC); 5814 } 5815 5816 // Else, we can just invert the comparison result in the appropriate lanes. 5817 // 5818 // NOTE: see the note above VSELECT above. 5819 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5820 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5821 TautologicalInvertedChannels); 5822 5823 return SDValue(); // Don't know how to lower. 5824 } 5825 5826 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5827 /// where the divisor is constant and the comparison target is zero, 5828 /// return a DAG expression that will generate the same comparison result 5829 /// using only multiplications, additions and shifts/rotations. 5830 /// Ref: "Hacker's Delight" 10-17. 5831 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5832 SDValue CompTargetNode, 5833 ISD::CondCode Cond, 5834 DAGCombinerInfo &DCI, 5835 const SDLoc &DL) const { 5836 SmallVector<SDNode *, 7> Built; 5837 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5838 DCI, DL, Built)) { 5839 assert(Built.size() <= 7 && "Max size prediction failed."); 5840 for (SDNode *N : Built) 5841 DCI.AddToWorklist(N); 5842 return Folded; 5843 } 5844 5845 return SDValue(); 5846 } 5847 5848 SDValue 5849 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5850 SDValue CompTargetNode, ISD::CondCode Cond, 5851 DAGCombinerInfo &DCI, const SDLoc &DL, 5852 SmallVectorImpl<SDNode *> &Created) const { 5853 // Fold: 5854 // (seteq/ne (srem N, D), 0) 5855 // To: 5856 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5857 // 5858 // - D must be constant, with D = D0 * 2^K where D0 is odd 5859 // - P is the multiplicative inverse of D0 modulo 2^W 5860 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5861 // - Q = floor((2 * A) / (2^K)) 5862 // where W is the width of the common type of N and D. 5863 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5864 "Only applicable for (in)equality comparisons."); 5865 5866 SelectionDAG &DAG = DCI.DAG; 5867 5868 EVT VT = REMNode.getValueType(); 5869 EVT SVT = VT.getScalarType(); 5870 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5871 EVT ShSVT = ShVT.getScalarType(); 5872 5873 // If we are after ops legalization, and MUL is unavailable, we can not 5874 // proceed. 5875 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5876 return SDValue(); 5877 5878 // TODO: Could support comparing with non-zero too. 5879 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5880 if (!CompTarget || !CompTarget->isNullValue()) 5881 return SDValue(); 5882 5883 bool HadIntMinDivisor = false; 5884 bool HadOneDivisor = false; 5885 bool AllDivisorsAreOnes = true; 5886 bool HadEvenDivisor = false; 5887 bool NeedToApplyOffset = false; 5888 bool AllDivisorsArePowerOfTwo = true; 5889 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5890 5891 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5892 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5893 if (C->isNullValue()) 5894 return false; 5895 5896 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5897 5898 // WARNING: this fold is only valid for positive divisors! 5899 APInt D = C->getAPIntValue(); 5900 if (D.isNegative()) 5901 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5902 5903 HadIntMinDivisor |= D.isMinSignedValue(); 5904 5905 // If all divisors are ones, we will prefer to avoid the fold. 5906 HadOneDivisor |= D.isOneValue(); 5907 AllDivisorsAreOnes &= D.isOneValue(); 5908 5909 // Decompose D into D0 * 2^K 5910 unsigned K = D.countTrailingZeros(); 5911 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5912 APInt D0 = D.lshr(K); 5913 5914 if (!D.isMinSignedValue()) { 5915 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5916 // we don't care about this lane in this fold, we'll special-handle it. 5917 HadEvenDivisor |= (K != 0); 5918 } 5919 5920 // D is a power-of-two if D0 is one. This includes INT_MIN. 5921 // If all divisors are power-of-two, we will prefer to avoid the fold. 5922 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5923 5924 // P = inv(D0, 2^W) 5925 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5926 unsigned W = D.getBitWidth(); 5927 APInt P = D0.zext(W + 1) 5928 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5929 .trunc(W); 5930 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5931 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5932 5933 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5934 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5935 A.clearLowBits(K); 5936 5937 if (!D.isMinSignedValue()) { 5938 // If divisor INT_MIN, then we don't care about this lane in this fold, 5939 // we'll special-handle it. 5940 NeedToApplyOffset |= A != 0; 5941 } 5942 5943 // Q = floor((2 * A) / (2^K)) 5944 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5945 5946 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5947 "We are expecting that A is always less than all-ones for SVT"); 5948 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5949 "We are expecting that K is always less than all-ones for ShSVT"); 5950 5951 // If the divisor is 1 the result can be constant-folded. Likewise, we 5952 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5953 if (D.isOneValue()) { 5954 // Set P, A and K to a bogus values so we can try to splat them. 5955 P = 0; 5956 A = -1; 5957 K = -1; 5958 5959 // x ?% 1 == 0 <--> true <--> x u<= -1 5960 Q = -1; 5961 } 5962 5963 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5964 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5965 KAmts.push_back( 5966 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5967 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5968 return true; 5969 }; 5970 5971 SDValue N = REMNode.getOperand(0); 5972 SDValue D = REMNode.getOperand(1); 5973 5974 // Collect the values from each element. 5975 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5976 return SDValue(); 5977 5978 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5979 if (AllDivisorsAreOnes) 5980 return SDValue(); 5981 5982 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5983 // since it can be best implemented as a bit test. 5984 if (AllDivisorsArePowerOfTwo) 5985 return SDValue(); 5986 5987 SDValue PVal, AVal, KVal, QVal; 5988 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5989 if (HadOneDivisor) { 5990 // Try to turn PAmts into a splat, since we don't care about the values 5991 // that are currently '0'. If we can't, just keep '0'`s. 5992 turnVectorIntoSplatVector(PAmts, isNullConstant); 5993 // Try to turn AAmts into a splat, since we don't care about the 5994 // values that are currently '-1'. If we can't, change them to '0'`s. 5995 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5996 DAG.getConstant(0, DL, SVT)); 5997 // Try to turn KAmts into a splat, since we don't care about the values 5998 // that are currently '-1'. If we can't, change them to '0'`s. 5999 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 6000 DAG.getConstant(0, DL, ShSVT)); 6001 } 6002 6003 PVal = DAG.getBuildVector(VT, DL, PAmts); 6004 AVal = DAG.getBuildVector(VT, DL, AAmts); 6005 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6006 QVal = DAG.getBuildVector(VT, DL, QAmts); 6007 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6008 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 6009 QAmts.size() == 1 && 6010 "Expected matchUnaryPredicate to return one element for scalable " 6011 "vectors"); 6012 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6013 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 6014 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6015 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6016 } else { 6017 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 6018 PVal = PAmts[0]; 6019 AVal = AAmts[0]; 6020 KVal = KAmts[0]; 6021 QVal = QAmts[0]; 6022 } 6023 6024 // (mul N, P) 6025 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6026 Created.push_back(Op0.getNode()); 6027 6028 if (NeedToApplyOffset) { 6029 // We need ADD to do this. 6030 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 6031 return SDValue(); 6032 6033 // (add (mul N, P), A) 6034 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 6035 Created.push_back(Op0.getNode()); 6036 } 6037 6038 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6039 // divisors as a performance improvement, since rotating by 0 is a no-op. 6040 if (HadEvenDivisor) { 6041 // We need ROTR to do this. 6042 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6043 return SDValue(); 6044 // SREM: (rotr (add (mul N, P), A), K) 6045 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6046 Created.push_back(Op0.getNode()); 6047 } 6048 6049 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 6050 SDValue Fold = 6051 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6052 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6053 6054 // If we didn't have lanes with INT_MIN divisor, then we're done. 6055 if (!HadIntMinDivisor) 6056 return Fold; 6057 6058 // That fold is only valid for positive divisors. Which effectively means, 6059 // it is invalid for INT_MIN divisors. So if we have such a lane, 6060 // we must fix-up results for said lanes. 6061 assert(VT.isVector() && "Can/should only get here for vectors."); 6062 6063 // NOTE: we avoid letting illegal types through even if we're before legalize 6064 // ops – legalization has a hard time producing good code for the code that 6065 // follows. 6066 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 6067 !isOperationLegalOrCustom(ISD::AND, VT) || 6068 !isOperationLegalOrCustom(Cond, VT) || 6069 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 6070 return SDValue(); 6071 6072 Created.push_back(Fold.getNode()); 6073 6074 SDValue IntMin = DAG.getConstant( 6075 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 6076 SDValue IntMax = DAG.getConstant( 6077 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 6078 SDValue Zero = 6079 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 6080 6081 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 6082 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 6083 Created.push_back(DivisorIsIntMin.getNode()); 6084 6085 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 6086 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 6087 Created.push_back(Masked.getNode()); 6088 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 6089 Created.push_back(MaskedIsZero.getNode()); 6090 6091 // To produce final result we need to blend 2 vectors: 'SetCC' and 6092 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 6093 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 6094 // constant-folded, select can get lowered to a shuffle with constant mask. 6095 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 6096 MaskedIsZero, Fold); 6097 6098 return Blended; 6099 } 6100 6101 bool TargetLowering:: 6102 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 6103 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 6104 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 6105 "be a constant integer"); 6106 return true; 6107 } 6108 6109 return false; 6110 } 6111 6112 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 6113 const DenormalMode &Mode) const { 6114 SDLoc DL(Op); 6115 EVT VT = Op.getValueType(); 6116 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6117 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 6118 // Testing it with denormal inputs to avoid wrong estimate. 6119 if (Mode.Input == DenormalMode::IEEE) { 6120 // This is specifically a check for the handling of denormal inputs, 6121 // not the result. 6122 6123 // Test = fabs(X) < SmallestNormal 6124 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 6125 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 6126 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 6127 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 6128 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 6129 } 6130 // Test = X == 0.0 6131 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 6132 } 6133 6134 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 6135 bool LegalOps, bool OptForSize, 6136 NegatibleCost &Cost, 6137 unsigned Depth) const { 6138 // fneg is removable even if it has multiple uses. 6139 if (Op.getOpcode() == ISD::FNEG) { 6140 Cost = NegatibleCost::Cheaper; 6141 return Op.getOperand(0); 6142 } 6143 6144 // Don't recurse exponentially. 6145 if (Depth > SelectionDAG::MaxRecursionDepth) 6146 return SDValue(); 6147 6148 // Pre-increment recursion depth for use in recursive calls. 6149 ++Depth; 6150 const SDNodeFlags Flags = Op->getFlags(); 6151 const TargetOptions &Options = DAG.getTarget().Options; 6152 EVT VT = Op.getValueType(); 6153 unsigned Opcode = Op.getOpcode(); 6154 6155 // Don't allow anything with multiple uses unless we know it is free. 6156 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 6157 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 6158 isFPExtFree(VT, Op.getOperand(0).getValueType()); 6159 if (!IsFreeExtend) 6160 return SDValue(); 6161 } 6162 6163 auto RemoveDeadNode = [&](SDValue N) { 6164 if (N && N.getNode()->use_empty()) 6165 DAG.RemoveDeadNode(N.getNode()); 6166 }; 6167 6168 SDLoc DL(Op); 6169 6170 // Because getNegatedExpression can delete nodes we need a handle to keep 6171 // temporary nodes alive in case the recursion manages to create an identical 6172 // node. 6173 std::list<HandleSDNode> Handles; 6174 6175 switch (Opcode) { 6176 case ISD::ConstantFP: { 6177 // Don't invert constant FP values after legalization unless the target says 6178 // the negated constant is legal. 6179 bool IsOpLegal = 6180 isOperationLegal(ISD::ConstantFP, VT) || 6181 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 6182 OptForSize); 6183 6184 if (LegalOps && !IsOpLegal) 6185 break; 6186 6187 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 6188 V.changeSign(); 6189 SDValue CFP = DAG.getConstantFP(V, DL, VT); 6190 6191 // If we already have the use of the negated floating constant, it is free 6192 // to negate it even it has multiple uses. 6193 if (!Op.hasOneUse() && CFP.use_empty()) 6194 break; 6195 Cost = NegatibleCost::Neutral; 6196 return CFP; 6197 } 6198 case ISD::BUILD_VECTOR: { 6199 // Only permit BUILD_VECTOR of constants. 6200 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 6201 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 6202 })) 6203 break; 6204 6205 bool IsOpLegal = 6206 (isOperationLegal(ISD::ConstantFP, VT) && 6207 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 6208 llvm::all_of(Op->op_values(), [&](SDValue N) { 6209 return N.isUndef() || 6210 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 6211 OptForSize); 6212 }); 6213 6214 if (LegalOps && !IsOpLegal) 6215 break; 6216 6217 SmallVector<SDValue, 4> Ops; 6218 for (SDValue C : Op->op_values()) { 6219 if (C.isUndef()) { 6220 Ops.push_back(C); 6221 continue; 6222 } 6223 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 6224 V.changeSign(); 6225 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 6226 } 6227 Cost = NegatibleCost::Neutral; 6228 return DAG.getBuildVector(VT, DL, Ops); 6229 } 6230 case ISD::FADD: { 6231 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6232 break; 6233 6234 // After operation legalization, it might not be legal to create new FSUBs. 6235 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 6236 break; 6237 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6238 6239 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 6240 NegatibleCost CostX = NegatibleCost::Expensive; 6241 SDValue NegX = 6242 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6243 // Prevent this node from being deleted by the next call. 6244 if (NegX) 6245 Handles.emplace_back(NegX); 6246 6247 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 6248 NegatibleCost CostY = NegatibleCost::Expensive; 6249 SDValue NegY = 6250 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6251 6252 // We're done with the handles. 6253 Handles.clear(); 6254 6255 // Negate the X if its cost is less or equal than Y. 6256 if (NegX && (CostX <= CostY)) { 6257 Cost = CostX; 6258 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 6259 if (NegY != N) 6260 RemoveDeadNode(NegY); 6261 return N; 6262 } 6263 6264 // Negate the Y if it is not expensive. 6265 if (NegY) { 6266 Cost = CostY; 6267 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 6268 if (NegX != N) 6269 RemoveDeadNode(NegX); 6270 return N; 6271 } 6272 break; 6273 } 6274 case ISD::FSUB: { 6275 // We can't turn -(A-B) into B-A when we honor signed zeros. 6276 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6277 break; 6278 6279 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6280 // fold (fneg (fsub 0, Y)) -> Y 6281 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 6282 if (C->isZero()) { 6283 Cost = NegatibleCost::Cheaper; 6284 return Y; 6285 } 6286 6287 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 6288 Cost = NegatibleCost::Neutral; 6289 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 6290 } 6291 case ISD::FMUL: 6292 case ISD::FDIV: { 6293 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6294 6295 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 6296 NegatibleCost CostX = NegatibleCost::Expensive; 6297 SDValue NegX = 6298 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6299 // Prevent this node from being deleted by the next call. 6300 if (NegX) 6301 Handles.emplace_back(NegX); 6302 6303 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 6304 NegatibleCost CostY = NegatibleCost::Expensive; 6305 SDValue NegY = 6306 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6307 6308 // We're done with the handles. 6309 Handles.clear(); 6310 6311 // Negate the X if its cost is less or equal than Y. 6312 if (NegX && (CostX <= CostY)) { 6313 Cost = CostX; 6314 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6315 if (NegY != N) 6316 RemoveDeadNode(NegY); 6317 return N; 6318 } 6319 6320 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6321 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6322 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6323 break; 6324 6325 // Negate the Y if it is not expensive. 6326 if (NegY) { 6327 Cost = CostY; 6328 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6329 if (NegX != N) 6330 RemoveDeadNode(NegX); 6331 return N; 6332 } 6333 break; 6334 } 6335 case ISD::FMA: 6336 case ISD::FMAD: { 6337 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6338 break; 6339 6340 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6341 NegatibleCost CostZ = NegatibleCost::Expensive; 6342 SDValue NegZ = 6343 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6344 // Give up if fail to negate the Z. 6345 if (!NegZ) 6346 break; 6347 6348 // Prevent this node from being deleted by the next two calls. 6349 Handles.emplace_back(NegZ); 6350 6351 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6352 NegatibleCost CostX = NegatibleCost::Expensive; 6353 SDValue NegX = 6354 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6355 // Prevent this node from being deleted by the next call. 6356 if (NegX) 6357 Handles.emplace_back(NegX); 6358 6359 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6360 NegatibleCost CostY = NegatibleCost::Expensive; 6361 SDValue NegY = 6362 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6363 6364 // We're done with the handles. 6365 Handles.clear(); 6366 6367 // Negate the X if its cost is less or equal than Y. 6368 if (NegX && (CostX <= CostY)) { 6369 Cost = std::min(CostX, CostZ); 6370 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 6371 if (NegY != N) 6372 RemoveDeadNode(NegY); 6373 return N; 6374 } 6375 6376 // Negate the Y if it is not expensive. 6377 if (NegY) { 6378 Cost = std::min(CostY, CostZ); 6379 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 6380 if (NegX != N) 6381 RemoveDeadNode(NegX); 6382 return N; 6383 } 6384 break; 6385 } 6386 6387 case ISD::FP_EXTEND: 6388 case ISD::FSIN: 6389 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6390 OptForSize, Cost, Depth)) 6391 return DAG.getNode(Opcode, DL, VT, NegV); 6392 break; 6393 case ISD::FP_ROUND: 6394 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6395 OptForSize, Cost, Depth)) 6396 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 6397 break; 6398 } 6399 6400 return SDValue(); 6401 } 6402 6403 //===----------------------------------------------------------------------===// 6404 // Legalization Utilities 6405 //===----------------------------------------------------------------------===// 6406 6407 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 6408 SDValue LHS, SDValue RHS, 6409 SmallVectorImpl<SDValue> &Result, 6410 EVT HiLoVT, SelectionDAG &DAG, 6411 MulExpansionKind Kind, SDValue LL, 6412 SDValue LH, SDValue RL, SDValue RH) const { 6413 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 6414 Opcode == ISD::SMUL_LOHI); 6415 6416 bool HasMULHS = (Kind == MulExpansionKind::Always) || 6417 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 6418 bool HasMULHU = (Kind == MulExpansionKind::Always) || 6419 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 6420 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 6421 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 6422 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 6423 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 6424 6425 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 6426 return false; 6427 6428 unsigned OuterBitSize = VT.getScalarSizeInBits(); 6429 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6430 6431 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6432 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6433 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6434 6435 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6436 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6437 bool Signed) -> bool { 6438 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6439 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6440 Hi = SDValue(Lo.getNode(), 1); 6441 return true; 6442 } 6443 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6444 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6445 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6446 return true; 6447 } 6448 return false; 6449 }; 6450 6451 SDValue Lo, Hi; 6452 6453 if (!LL.getNode() && !RL.getNode() && 6454 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6455 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6456 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6457 } 6458 6459 if (!LL.getNode()) 6460 return false; 6461 6462 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6463 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6464 DAG.MaskedValueIsZero(RHS, HighMask)) { 6465 // The inputs are both zero-extended. 6466 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6467 Result.push_back(Lo); 6468 Result.push_back(Hi); 6469 if (Opcode != ISD::MUL) { 6470 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6471 Result.push_back(Zero); 6472 Result.push_back(Zero); 6473 } 6474 return true; 6475 } 6476 } 6477 6478 if (!VT.isVector() && Opcode == ISD::MUL && 6479 DAG.ComputeNumSignBits(LHS) > InnerBitSize && 6480 DAG.ComputeNumSignBits(RHS) > InnerBitSize) { 6481 // The input values are both sign-extended. 6482 // TODO non-MUL case? 6483 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6484 Result.push_back(Lo); 6485 Result.push_back(Hi); 6486 return true; 6487 } 6488 } 6489 6490 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6491 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6492 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 6493 // FIXME getShiftAmountTy does not always return a sensible result when VT 6494 // is an illegal type, and so the type may be too small to fit the shift 6495 // amount. Override it with i32. The shift will have to be legalized. 6496 ShiftAmountTy = MVT::i32; 6497 } 6498 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6499 6500 if (!LH.getNode() && !RH.getNode() && 6501 isOperationLegalOrCustom(ISD::SRL, VT) && 6502 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6503 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6504 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6505 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6506 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6507 } 6508 6509 if (!LH.getNode()) 6510 return false; 6511 6512 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6513 return false; 6514 6515 Result.push_back(Lo); 6516 6517 if (Opcode == ISD::MUL) { 6518 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6519 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6520 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6521 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6522 Result.push_back(Hi); 6523 return true; 6524 } 6525 6526 // Compute the full width result. 6527 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6528 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6529 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6530 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6531 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6532 }; 6533 6534 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6535 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6536 return false; 6537 6538 // This is effectively the add part of a multiply-add of half-sized operands, 6539 // so it cannot overflow. 6540 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6541 6542 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6543 return false; 6544 6545 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6546 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6547 6548 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6549 isOperationLegalOrCustom(ISD::ADDE, VT)); 6550 if (UseGlue) 6551 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6552 Merge(Lo, Hi)); 6553 else 6554 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6555 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6556 6557 SDValue Carry = Next.getValue(1); 6558 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6559 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6560 6561 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6562 return false; 6563 6564 if (UseGlue) 6565 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6566 Carry); 6567 else 6568 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6569 Zero, Carry); 6570 6571 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6572 6573 if (Opcode == ISD::SMUL_LOHI) { 6574 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6575 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6576 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6577 6578 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6579 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6580 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6581 } 6582 6583 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6584 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6585 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6586 return true; 6587 } 6588 6589 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6590 SelectionDAG &DAG, MulExpansionKind Kind, 6591 SDValue LL, SDValue LH, SDValue RL, 6592 SDValue RH) const { 6593 SmallVector<SDValue, 2> Result; 6594 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 6595 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6596 DAG, Kind, LL, LH, RL, RH); 6597 if (Ok) { 6598 assert(Result.size() == 2); 6599 Lo = Result[0]; 6600 Hi = Result[1]; 6601 } 6602 return Ok; 6603 } 6604 6605 // Check that (every element of) Z is undef or not an exact multiple of BW. 6606 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 6607 return ISD::matchUnaryPredicate( 6608 Z, 6609 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 6610 true); 6611 } 6612 6613 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 6614 SelectionDAG &DAG) const { 6615 EVT VT = Node->getValueType(0); 6616 6617 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6618 !isOperationLegalOrCustom(ISD::SRL, VT) || 6619 !isOperationLegalOrCustom(ISD::SUB, VT) || 6620 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6621 return false; 6622 6623 SDValue X = Node->getOperand(0); 6624 SDValue Y = Node->getOperand(1); 6625 SDValue Z = Node->getOperand(2); 6626 6627 unsigned BW = VT.getScalarSizeInBits(); 6628 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6629 SDLoc DL(SDValue(Node, 0)); 6630 6631 EVT ShVT = Z.getValueType(); 6632 6633 // If a funnel shift in the other direction is more supported, use it. 6634 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 6635 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6636 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 6637 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6638 // fshl X, Y, Z -> fshr X, Y, -Z 6639 // fshr X, Y, Z -> fshl X, Y, -Z 6640 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6641 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 6642 } else { 6643 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 6644 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 6645 SDValue One = DAG.getConstant(1, DL, ShVT); 6646 if (IsFSHL) { 6647 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6648 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 6649 } else { 6650 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6651 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 6652 } 6653 Z = DAG.getNOT(DL, Z, ShVT); 6654 } 6655 Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 6656 return true; 6657 } 6658 6659 SDValue ShX, ShY; 6660 SDValue ShAmt, InvShAmt; 6661 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6662 // fshl: X << C | Y >> (BW - C) 6663 // fshr: X << (BW - C) | Y >> C 6664 // where C = Z % BW is not zero 6665 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6666 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6667 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6668 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6669 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6670 } else { 6671 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6672 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6673 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 6674 if (isPowerOf2_32(BW)) { 6675 // Z % BW -> Z & (BW - 1) 6676 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6677 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6678 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 6679 } else { 6680 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6681 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6682 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 6683 } 6684 6685 SDValue One = DAG.getConstant(1, DL, ShVT); 6686 if (IsFSHL) { 6687 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 6688 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 6689 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 6690 } else { 6691 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 6692 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 6693 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 6694 } 6695 } 6696 Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6697 return true; 6698 } 6699 6700 // TODO: Merge with expandFunnelShift. 6701 bool TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 6702 SDValue &Result, SelectionDAG &DAG) const { 6703 EVT VT = Node->getValueType(0); 6704 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6705 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6706 SDValue Op0 = Node->getOperand(0); 6707 SDValue Op1 = Node->getOperand(1); 6708 SDLoc DL(SDValue(Node, 0)); 6709 6710 EVT ShVT = Op1.getValueType(); 6711 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6712 6713 // If a rotate in the other direction is supported, use it. 6714 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6715 if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 6716 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6717 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 6718 return true; 6719 } 6720 6721 if (!AllowVectorOps && VT.isVector() && 6722 (!isOperationLegalOrCustom(ISD::SHL, VT) || 6723 !isOperationLegalOrCustom(ISD::SRL, VT) || 6724 !isOperationLegalOrCustom(ISD::SUB, VT) || 6725 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6726 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6727 return false; 6728 6729 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6730 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6731 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6732 SDValue ShVal; 6733 SDValue HsVal; 6734 if (isPowerOf2_32(EltSizeInBits)) { 6735 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 6736 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 6737 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6738 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6739 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6740 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6741 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 6742 } else { 6743 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 6744 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 6745 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6746 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 6747 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6748 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 6749 SDValue One = DAG.getConstant(1, DL, ShVT); 6750 HsVal = 6751 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 6752 } 6753 Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 6754 return true; 6755 } 6756 6757 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 6758 SelectionDAG &DAG) const { 6759 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 6760 EVT VT = Node->getValueType(0); 6761 unsigned VTBits = VT.getScalarSizeInBits(); 6762 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 6763 6764 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 6765 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 6766 SDValue ShOpLo = Node->getOperand(0); 6767 SDValue ShOpHi = Node->getOperand(1); 6768 SDValue ShAmt = Node->getOperand(2); 6769 EVT ShAmtVT = ShAmt.getValueType(); 6770 EVT ShAmtCCVT = 6771 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 6772 SDLoc dl(Node); 6773 6774 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 6775 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 6776 // away during isel. 6777 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6778 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 6779 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 6780 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 6781 : DAG.getConstant(0, dl, VT); 6782 6783 SDValue Tmp2, Tmp3; 6784 if (IsSHL) { 6785 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 6786 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 6787 } else { 6788 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 6789 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 6790 } 6791 6792 // If the shift amount is larger or equal than the width of a part we don't 6793 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 6794 // values for large shift amounts. 6795 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6796 DAG.getConstant(VTBits, dl, ShAmtVT)); 6797 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 6798 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 6799 6800 if (IsSHL) { 6801 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6802 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6803 } else { 6804 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6805 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6806 } 6807 } 6808 6809 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6810 SelectionDAG &DAG) const { 6811 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6812 SDValue Src = Node->getOperand(OpNo); 6813 EVT SrcVT = Src.getValueType(); 6814 EVT DstVT = Node->getValueType(0); 6815 SDLoc dl(SDValue(Node, 0)); 6816 6817 // FIXME: Only f32 to i64 conversions are supported. 6818 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6819 return false; 6820 6821 if (Node->isStrictFPOpcode()) 6822 // When a NaN is converted to an integer a trap is allowed. We can't 6823 // use this expansion here because it would eliminate that trap. Other 6824 // traps are also allowed and cannot be eliminated. See 6825 // IEEE 754-2008 sec 5.8. 6826 return false; 6827 6828 // Expand f32 -> i64 conversion 6829 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6830 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 6831 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6832 EVT IntVT = SrcVT.changeTypeToInteger(); 6833 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6834 6835 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6836 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6837 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6838 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6839 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6840 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6841 6842 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6843 6844 SDValue ExponentBits = DAG.getNode( 6845 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6846 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6847 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6848 6849 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6850 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6851 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6852 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6853 6854 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6855 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6856 DAG.getConstant(0x00800000, dl, IntVT)); 6857 6858 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6859 6860 R = DAG.getSelectCC( 6861 dl, Exponent, ExponentLoBit, 6862 DAG.getNode(ISD::SHL, dl, DstVT, R, 6863 DAG.getZExtOrTrunc( 6864 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6865 dl, IntShVT)), 6866 DAG.getNode(ISD::SRL, dl, DstVT, R, 6867 DAG.getZExtOrTrunc( 6868 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6869 dl, IntShVT)), 6870 ISD::SETGT); 6871 6872 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6873 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6874 6875 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6876 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6877 return true; 6878 } 6879 6880 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6881 SDValue &Chain, 6882 SelectionDAG &DAG) const { 6883 SDLoc dl(SDValue(Node, 0)); 6884 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6885 SDValue Src = Node->getOperand(OpNo); 6886 6887 EVT SrcVT = Src.getValueType(); 6888 EVT DstVT = Node->getValueType(0); 6889 EVT SetCCVT = 6890 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6891 EVT DstSetCCVT = 6892 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6893 6894 // Only expand vector types if we have the appropriate vector bit operations. 6895 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6896 ISD::FP_TO_SINT; 6897 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6898 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6899 return false; 6900 6901 // If the maximum float value is smaller then the signed integer range, 6902 // the destination signmask can't be represented by the float, so we can 6903 // just use FP_TO_SINT directly. 6904 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6905 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 6906 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6907 if (APFloat::opOverflow & 6908 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6909 if (Node->isStrictFPOpcode()) { 6910 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6911 { Node->getOperand(0), Src }); 6912 Chain = Result.getValue(1); 6913 } else 6914 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6915 return true; 6916 } 6917 6918 // Don't expand it if there isn't cheap fsub instruction. 6919 if (!isOperationLegalOrCustom( 6920 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 6921 return false; 6922 6923 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6924 SDValue Sel; 6925 6926 if (Node->isStrictFPOpcode()) { 6927 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6928 Node->getOperand(0), /*IsSignaling*/ true); 6929 Chain = Sel.getValue(1); 6930 } else { 6931 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6932 } 6933 6934 bool Strict = Node->isStrictFPOpcode() || 6935 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6936 6937 if (Strict) { 6938 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6939 // signmask then offset (the result of which should be fully representable). 6940 // Sel = Src < 0x8000000000000000 6941 // FltOfs = select Sel, 0, 0x8000000000000000 6942 // IntOfs = select Sel, 0, 0x8000000000000000 6943 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6944 6945 // TODO: Should any fast-math-flags be set for the FSUB? 6946 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6947 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6948 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6949 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6950 DAG.getConstant(0, dl, DstVT), 6951 DAG.getConstant(SignMask, dl, DstVT)); 6952 SDValue SInt; 6953 if (Node->isStrictFPOpcode()) { 6954 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6955 { Chain, Src, FltOfs }); 6956 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6957 { Val.getValue(1), Val }); 6958 Chain = SInt.getValue(1); 6959 } else { 6960 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6961 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6962 } 6963 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6964 } else { 6965 // Expand based on maximum range of FP_TO_SINT: 6966 // True = fp_to_sint(Src) 6967 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6968 // Result = select (Src < 0x8000000000000000), True, False 6969 6970 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6971 // TODO: Should any fast-math-flags be set for the FSUB? 6972 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6973 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6974 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6975 DAG.getConstant(SignMask, dl, DstVT)); 6976 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6977 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6978 } 6979 return true; 6980 } 6981 6982 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6983 SDValue &Chain, 6984 SelectionDAG &DAG) const { 6985 // This transform is not correct for converting 0 when rounding mode is set 6986 // to round toward negative infinity which will produce -0.0. So disable under 6987 // strictfp. 6988 if (Node->isStrictFPOpcode()) 6989 return false; 6990 6991 SDValue Src = Node->getOperand(0); 6992 EVT SrcVT = Src.getValueType(); 6993 EVT DstVT = Node->getValueType(0); 6994 6995 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6996 return false; 6997 6998 // Only expand vector types if we have the appropriate vector bit operations. 6999 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 7000 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 7001 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 7002 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 7003 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 7004 return false; 7005 7006 SDLoc dl(SDValue(Node, 0)); 7007 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 7008 7009 // Implementation of unsigned i64 to f64 following the algorithm in 7010 // __floatundidf in compiler_rt. This implementation performs rounding 7011 // correctly in all rounding modes with the exception of converting 0 7012 // when rounding toward negative infinity. In that case the fsub will produce 7013 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 7014 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 7015 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 7016 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 7017 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 7018 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 7019 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 7020 7021 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 7022 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 7023 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 7024 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 7025 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 7026 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 7027 SDValue HiSub = 7028 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 7029 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 7030 return true; 7031 } 7032 7033 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 7034 SelectionDAG &DAG) const { 7035 SDLoc dl(Node); 7036 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 7037 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 7038 EVT VT = Node->getValueType(0); 7039 7040 if (VT.isScalableVector()) 7041 report_fatal_error( 7042 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 7043 7044 if (isOperationLegalOrCustom(NewOp, VT)) { 7045 SDValue Quiet0 = Node->getOperand(0); 7046 SDValue Quiet1 = Node->getOperand(1); 7047 7048 if (!Node->getFlags().hasNoNaNs()) { 7049 // Insert canonicalizes if it's possible we need to quiet to get correct 7050 // sNaN behavior. 7051 if (!DAG.isKnownNeverSNaN(Quiet0)) { 7052 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 7053 Node->getFlags()); 7054 } 7055 if (!DAG.isKnownNeverSNaN(Quiet1)) { 7056 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 7057 Node->getFlags()); 7058 } 7059 } 7060 7061 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 7062 } 7063 7064 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 7065 // instead if there are no NaNs. 7066 if (Node->getFlags().hasNoNaNs()) { 7067 unsigned IEEE2018Op = 7068 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 7069 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 7070 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 7071 Node->getOperand(1), Node->getFlags()); 7072 } 7073 } 7074 7075 // If none of the above worked, but there are no NaNs, then expand to 7076 // a compare/select sequence. This is required for correctness since 7077 // InstCombine might have canonicalized a fcmp+select sequence to a 7078 // FMINNUM/FMAXNUM node. If we were to fall through to the default 7079 // expansion to libcall, we might introduce a link-time dependency 7080 // on libm into a file that originally did not have one. 7081 if (Node->getFlags().hasNoNaNs()) { 7082 ISD::CondCode Pred = 7083 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 7084 SDValue Op1 = Node->getOperand(0); 7085 SDValue Op2 = Node->getOperand(1); 7086 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 7087 // Copy FMF flags, but always set the no-signed-zeros flag 7088 // as this is implied by the FMINNUM/FMAXNUM semantics. 7089 SDNodeFlags Flags = Node->getFlags(); 7090 Flags.setNoSignedZeros(true); 7091 SelCC->setFlags(Flags); 7092 return SelCC; 7093 } 7094 7095 return SDValue(); 7096 } 7097 7098 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 7099 SelectionDAG &DAG) const { 7100 SDLoc dl(Node); 7101 EVT VT = Node->getValueType(0); 7102 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7103 SDValue Op = Node->getOperand(0); 7104 unsigned Len = VT.getScalarSizeInBits(); 7105 assert(VT.isInteger() && "CTPOP not implemented for this type."); 7106 7107 // TODO: Add support for irregular type lengths. 7108 if (!(Len <= 128 && Len % 8 == 0)) 7109 return false; 7110 7111 // Only expand vector types if we have the appropriate vector bit operations. 7112 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 7113 !isOperationLegalOrCustom(ISD::SUB, VT) || 7114 !isOperationLegalOrCustom(ISD::SRL, VT) || 7115 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 7116 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 7117 return false; 7118 7119 // This is the "best" algorithm from 7120 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 7121 SDValue Mask55 = 7122 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 7123 SDValue Mask33 = 7124 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 7125 SDValue Mask0F = 7126 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 7127 SDValue Mask01 = 7128 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 7129 7130 // v = v - ((v >> 1) & 0x55555555...) 7131 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 7132 DAG.getNode(ISD::AND, dl, VT, 7133 DAG.getNode(ISD::SRL, dl, VT, Op, 7134 DAG.getConstant(1, dl, ShVT)), 7135 Mask55)); 7136 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 7137 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 7138 DAG.getNode(ISD::AND, dl, VT, 7139 DAG.getNode(ISD::SRL, dl, VT, Op, 7140 DAG.getConstant(2, dl, ShVT)), 7141 Mask33)); 7142 // v = (v + (v >> 4)) & 0x0F0F0F0F... 7143 Op = DAG.getNode(ISD::AND, dl, VT, 7144 DAG.getNode(ISD::ADD, dl, VT, Op, 7145 DAG.getNode(ISD::SRL, dl, VT, Op, 7146 DAG.getConstant(4, dl, ShVT))), 7147 Mask0F); 7148 // v = (v * 0x01010101...) >> (Len - 8) 7149 if (Len > 8) 7150 Op = 7151 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 7152 DAG.getConstant(Len - 8, dl, ShVT)); 7153 7154 Result = Op; 7155 return true; 7156 } 7157 7158 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 7159 SelectionDAG &DAG) const { 7160 SDLoc dl(Node); 7161 EVT VT = Node->getValueType(0); 7162 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7163 SDValue Op = Node->getOperand(0); 7164 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7165 7166 // If the non-ZERO_UNDEF version is supported we can use that instead. 7167 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 7168 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 7169 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 7170 return true; 7171 } 7172 7173 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7174 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 7175 EVT SetCCVT = 7176 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7177 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 7178 SDValue Zero = DAG.getConstant(0, dl, VT); 7179 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7180 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 7181 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 7182 return true; 7183 } 7184 7185 // Only expand vector types if we have the appropriate vector bit operations. 7186 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7187 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 7188 !isOperationLegalOrCustom(ISD::SRL, VT) || 7189 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7190 return false; 7191 7192 // for now, we do this: 7193 // x = x | (x >> 1); 7194 // x = x | (x >> 2); 7195 // ... 7196 // x = x | (x >>16); 7197 // x = x | (x >>32); // for 64-bit input 7198 // return popcount(~x); 7199 // 7200 // Ref: "Hacker's Delight" by Henry Warren 7201 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 7202 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 7203 Op = DAG.getNode(ISD::OR, dl, VT, Op, 7204 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 7205 } 7206 Op = DAG.getNOT(dl, Op, VT); 7207 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 7208 return true; 7209 } 7210 7211 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 7212 SelectionDAG &DAG) const { 7213 SDLoc dl(Node); 7214 EVT VT = Node->getValueType(0); 7215 SDValue Op = Node->getOperand(0); 7216 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7217 7218 // If the non-ZERO_UNDEF version is supported we can use that instead. 7219 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 7220 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 7221 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 7222 return true; 7223 } 7224 7225 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7226 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 7227 EVT SetCCVT = 7228 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7229 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 7230 SDValue Zero = DAG.getConstant(0, dl, VT); 7231 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7232 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 7233 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 7234 return true; 7235 } 7236 7237 // Only expand vector types if we have the appropriate vector bit operations. 7238 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7239 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7240 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 7241 !isOperationLegalOrCustom(ISD::SUB, VT) || 7242 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 7243 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7244 return false; 7245 7246 // for now, we use: { return popcount(~x & (x - 1)); } 7247 // unless the target has ctlz but not ctpop, in which case we use: 7248 // { return 32 - nlz(~x & (x-1)); } 7249 // Ref: "Hacker's Delight" by Henry Warren 7250 SDValue Tmp = DAG.getNode( 7251 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 7252 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 7253 7254 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 7255 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 7256 Result = 7257 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 7258 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 7259 return true; 7260 } 7261 7262 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 7263 return true; 7264 } 7265 7266 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 7267 SelectionDAG &DAG, bool IsNegative) const { 7268 SDLoc dl(N); 7269 EVT VT = N->getValueType(0); 7270 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7271 SDValue Op = N->getOperand(0); 7272 7273 // abs(x) -> smax(x,sub(0,x)) 7274 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7275 isOperationLegal(ISD::SMAX, VT)) { 7276 SDValue Zero = DAG.getConstant(0, dl, VT); 7277 Result = DAG.getNode(ISD::SMAX, dl, VT, Op, 7278 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7279 return true; 7280 } 7281 7282 // abs(x) -> umin(x,sub(0,x)) 7283 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7284 isOperationLegal(ISD::UMIN, VT)) { 7285 SDValue Zero = DAG.getConstant(0, dl, VT); 7286 Result = DAG.getNode(ISD::UMIN, dl, VT, Op, 7287 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7288 return true; 7289 } 7290 7291 // 0 - abs(x) -> smin(x, sub(0,x)) 7292 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 7293 isOperationLegal(ISD::SMIN, VT)) { 7294 SDValue Zero = DAG.getConstant(0, dl, VT); 7295 Result = DAG.getNode(ISD::SMIN, dl, VT, Op, 7296 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7297 return true; 7298 } 7299 7300 // Only expand vector types if we have the appropriate vector operations. 7301 if (VT.isVector() && 7302 (!isOperationLegalOrCustom(ISD::SRA, VT) || 7303 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 7304 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 7305 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7306 return false; 7307 7308 SDValue Shift = 7309 DAG.getNode(ISD::SRA, dl, VT, Op, 7310 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 7311 if (!IsNegative) { 7312 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 7313 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 7314 } else { 7315 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 7316 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 7317 Result = DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 7318 } 7319 return true; 7320 } 7321 7322 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 7323 SDLoc dl(N); 7324 EVT VT = N->getValueType(0); 7325 SDValue Op = N->getOperand(0); 7326 7327 if (!VT.isSimple()) 7328 return SDValue(); 7329 7330 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7331 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 7332 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 7333 default: 7334 return SDValue(); 7335 case MVT::i16: 7336 // Use a rotate by 8. This can be further expanded if necessary. 7337 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7338 case MVT::i32: 7339 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7340 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7341 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7342 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7343 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7344 DAG.getConstant(0xFF0000, dl, VT)); 7345 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 7346 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7347 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7348 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7349 case MVT::i64: 7350 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7351 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7352 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7353 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7354 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7355 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7356 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7357 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7358 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 7359 DAG.getConstant(255ULL<<48, dl, VT)); 7360 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 7361 DAG.getConstant(255ULL<<40, dl, VT)); 7362 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 7363 DAG.getConstant(255ULL<<32, dl, VT)); 7364 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 7365 DAG.getConstant(255ULL<<24, dl, VT)); 7366 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7367 DAG.getConstant(255ULL<<16, dl, VT)); 7368 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 7369 DAG.getConstant(255ULL<<8 , dl, VT)); 7370 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 7371 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 7372 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7373 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7374 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 7375 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7376 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 7377 } 7378 } 7379 7380 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 7381 SDLoc dl(N); 7382 EVT VT = N->getValueType(0); 7383 SDValue Op = N->getOperand(0); 7384 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7385 unsigned Sz = VT.getScalarSizeInBits(); 7386 7387 SDValue Tmp, Tmp2, Tmp3; 7388 7389 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 7390 // and finally the i1 pairs. 7391 // TODO: We can easily support i4/i2 legal types if any target ever does. 7392 if (Sz >= 8 && isPowerOf2_32(Sz)) { 7393 // Create the masks - repeating the pattern every byte. 7394 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 7395 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 7396 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 7397 7398 // BSWAP if the type is wider than a single byte. 7399 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 7400 7401 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 7402 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); 7403 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); 7404 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); 7405 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 7406 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7407 7408 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 7409 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); 7410 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); 7411 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); 7412 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 7413 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7414 7415 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 7416 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); 7417 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); 7418 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); 7419 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 7420 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7421 return Tmp; 7422 } 7423 7424 Tmp = DAG.getConstant(0, dl, VT); 7425 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 7426 if (I < J) 7427 Tmp2 = 7428 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 7429 else 7430 Tmp2 = 7431 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 7432 7433 APInt Shift(Sz, 1); 7434 Shift <<= J; 7435 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 7436 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 7437 } 7438 7439 return Tmp; 7440 } 7441 7442 std::pair<SDValue, SDValue> 7443 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 7444 SelectionDAG &DAG) const { 7445 SDLoc SL(LD); 7446 SDValue Chain = LD->getChain(); 7447 SDValue BasePTR = LD->getBasePtr(); 7448 EVT SrcVT = LD->getMemoryVT(); 7449 EVT DstVT = LD->getValueType(0); 7450 ISD::LoadExtType ExtType = LD->getExtensionType(); 7451 7452 if (SrcVT.isScalableVector()) 7453 report_fatal_error("Cannot scalarize scalable vector loads"); 7454 7455 unsigned NumElem = SrcVT.getVectorNumElements(); 7456 7457 EVT SrcEltVT = SrcVT.getScalarType(); 7458 EVT DstEltVT = DstVT.getScalarType(); 7459 7460 // A vector must always be stored in memory as-is, i.e. without any padding 7461 // between the elements, since various code depend on it, e.g. in the 7462 // handling of a bitcast of a vector type to int, which may be done with a 7463 // vector store followed by an integer load. A vector that does not have 7464 // elements that are byte-sized must therefore be stored as an integer 7465 // built out of the extracted vector elements. 7466 if (!SrcEltVT.isByteSized()) { 7467 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 7468 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 7469 7470 unsigned NumSrcBits = SrcVT.getSizeInBits(); 7471 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 7472 7473 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 7474 SDValue SrcEltBitMask = DAG.getConstant( 7475 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 7476 7477 // Load the whole vector and avoid masking off the top bits as it makes 7478 // the codegen worse. 7479 SDValue Load = 7480 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 7481 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 7482 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7483 7484 SmallVector<SDValue, 8> Vals; 7485 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7486 unsigned ShiftIntoIdx = 7487 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7488 SDValue ShiftAmount = 7489 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 7490 LoadVT, SL, /*LegalTypes=*/false); 7491 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 7492 SDValue Elt = 7493 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 7494 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 7495 7496 if (ExtType != ISD::NON_EXTLOAD) { 7497 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 7498 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 7499 } 7500 7501 Vals.push_back(Scalar); 7502 } 7503 7504 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7505 return std::make_pair(Value, Load.getValue(1)); 7506 } 7507 7508 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 7509 assert(SrcEltVT.isByteSized()); 7510 7511 SmallVector<SDValue, 8> Vals; 7512 SmallVector<SDValue, 8> LoadChains; 7513 7514 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7515 SDValue ScalarLoad = 7516 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 7517 LD->getPointerInfo().getWithOffset(Idx * Stride), 7518 SrcEltVT, LD->getOriginalAlign(), 7519 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7520 7521 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 7522 7523 Vals.push_back(ScalarLoad.getValue(0)); 7524 LoadChains.push_back(ScalarLoad.getValue(1)); 7525 } 7526 7527 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 7528 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7529 7530 return std::make_pair(Value, NewChain); 7531 } 7532 7533 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 7534 SelectionDAG &DAG) const { 7535 SDLoc SL(ST); 7536 7537 SDValue Chain = ST->getChain(); 7538 SDValue BasePtr = ST->getBasePtr(); 7539 SDValue Value = ST->getValue(); 7540 EVT StVT = ST->getMemoryVT(); 7541 7542 if (StVT.isScalableVector()) 7543 report_fatal_error("Cannot scalarize scalable vector stores"); 7544 7545 // The type of the data we want to save 7546 EVT RegVT = Value.getValueType(); 7547 EVT RegSclVT = RegVT.getScalarType(); 7548 7549 // The type of data as saved in memory. 7550 EVT MemSclVT = StVT.getScalarType(); 7551 7552 unsigned NumElem = StVT.getVectorNumElements(); 7553 7554 // A vector must always be stored in memory as-is, i.e. without any padding 7555 // between the elements, since various code depend on it, e.g. in the 7556 // handling of a bitcast of a vector type to int, which may be done with a 7557 // vector store followed by an integer load. A vector that does not have 7558 // elements that are byte-sized must therefore be stored as an integer 7559 // built out of the extracted vector elements. 7560 if (!MemSclVT.isByteSized()) { 7561 unsigned NumBits = StVT.getSizeInBits(); 7562 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 7563 7564 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 7565 7566 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7567 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7568 DAG.getVectorIdxConstant(Idx, SL)); 7569 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 7570 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 7571 unsigned ShiftIntoIdx = 7572 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7573 SDValue ShiftAmount = 7574 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 7575 SDValue ShiftedElt = 7576 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 7577 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 7578 } 7579 7580 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 7581 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7582 ST->getAAInfo()); 7583 } 7584 7585 // Store Stride in bytes 7586 unsigned Stride = MemSclVT.getSizeInBits() / 8; 7587 assert(Stride && "Zero stride!"); 7588 // Extract each of the elements from the original vector and save them into 7589 // memory individually. 7590 SmallVector<SDValue, 8> Stores; 7591 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7592 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7593 DAG.getVectorIdxConstant(Idx, SL)); 7594 7595 SDValue Ptr = 7596 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 7597 7598 // This scalar TruncStore may be illegal, but we legalize it later. 7599 SDValue Store = DAG.getTruncStore( 7600 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 7601 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7602 ST->getAAInfo()); 7603 7604 Stores.push_back(Store); 7605 } 7606 7607 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 7608 } 7609 7610 std::pair<SDValue, SDValue> 7611 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 7612 assert(LD->getAddressingMode() == ISD::UNINDEXED && 7613 "unaligned indexed loads not implemented!"); 7614 SDValue Chain = LD->getChain(); 7615 SDValue Ptr = LD->getBasePtr(); 7616 EVT VT = LD->getValueType(0); 7617 EVT LoadedVT = LD->getMemoryVT(); 7618 SDLoc dl(LD); 7619 auto &MF = DAG.getMachineFunction(); 7620 7621 if (VT.isFloatingPoint() || VT.isVector()) { 7622 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 7623 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 7624 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 7625 LoadedVT.isVector()) { 7626 // Scalarize the load and let the individual components be handled. 7627 return scalarizeVectorLoad(LD, DAG); 7628 } 7629 7630 // Expand to a (misaligned) integer load of the same size, 7631 // then bitconvert to floating point or vector. 7632 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 7633 LD->getMemOperand()); 7634 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 7635 if (LoadedVT != VT) 7636 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 7637 ISD::ANY_EXTEND, dl, VT, Result); 7638 7639 return std::make_pair(Result, newLoad.getValue(1)); 7640 } 7641 7642 // Copy the value to a (aligned) stack slot using (unaligned) integer 7643 // loads and stores, then do a (aligned) load from the stack slot. 7644 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 7645 unsigned LoadedBytes = LoadedVT.getStoreSize(); 7646 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7647 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 7648 7649 // Make sure the stack slot is also aligned for the register type. 7650 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 7651 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 7652 SmallVector<SDValue, 8> Stores; 7653 SDValue StackPtr = StackBase; 7654 unsigned Offset = 0; 7655 7656 EVT PtrVT = Ptr.getValueType(); 7657 EVT StackPtrVT = StackPtr.getValueType(); 7658 7659 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7660 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7661 7662 // Do all but one copies using the full register width. 7663 for (unsigned i = 1; i < NumRegs; i++) { 7664 // Load one integer register's worth from the original location. 7665 SDValue Load = DAG.getLoad( 7666 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 7667 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7668 LD->getAAInfo()); 7669 // Follow the load with a store to the stack slot. Remember the store. 7670 Stores.push_back(DAG.getStore( 7671 Load.getValue(1), dl, Load, StackPtr, 7672 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 7673 // Increment the pointers. 7674 Offset += RegBytes; 7675 7676 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7677 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7678 } 7679 7680 // The last copy may be partial. Do an extending load. 7681 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 7682 8 * (LoadedBytes - Offset)); 7683 SDValue Load = 7684 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 7685 LD->getPointerInfo().getWithOffset(Offset), MemVT, 7686 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7687 LD->getAAInfo()); 7688 // Follow the load with a store to the stack slot. Remember the store. 7689 // On big-endian machines this requires a truncating store to ensure 7690 // that the bits end up in the right place. 7691 Stores.push_back(DAG.getTruncStore( 7692 Load.getValue(1), dl, Load, StackPtr, 7693 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 7694 7695 // The order of the stores doesn't matter - say it with a TokenFactor. 7696 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7697 7698 // Finally, perform the original load only redirected to the stack slot. 7699 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 7700 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 7701 LoadedVT); 7702 7703 // Callers expect a MERGE_VALUES node. 7704 return std::make_pair(Load, TF); 7705 } 7706 7707 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 7708 "Unaligned load of unsupported type."); 7709 7710 // Compute the new VT that is half the size of the old one. This is an 7711 // integer MVT. 7712 unsigned NumBits = LoadedVT.getSizeInBits(); 7713 EVT NewLoadedVT; 7714 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 7715 NumBits >>= 1; 7716 7717 Align Alignment = LD->getOriginalAlign(); 7718 unsigned IncrementSize = NumBits / 8; 7719 ISD::LoadExtType HiExtType = LD->getExtensionType(); 7720 7721 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 7722 if (HiExtType == ISD::NON_EXTLOAD) 7723 HiExtType = ISD::ZEXTLOAD; 7724 7725 // Load the value in two parts 7726 SDValue Lo, Hi; 7727 if (DAG.getDataLayout().isLittleEndian()) { 7728 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7729 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7730 LD->getAAInfo()); 7731 7732 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7733 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 7734 LD->getPointerInfo().getWithOffset(IncrementSize), 7735 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7736 LD->getAAInfo()); 7737 } else { 7738 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7739 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7740 LD->getAAInfo()); 7741 7742 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7743 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 7744 LD->getPointerInfo().getWithOffset(IncrementSize), 7745 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7746 LD->getAAInfo()); 7747 } 7748 7749 // aggregate the two parts 7750 SDValue ShiftAmount = 7751 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 7752 DAG.getDataLayout())); 7753 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 7754 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 7755 7756 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 7757 Hi.getValue(1)); 7758 7759 return std::make_pair(Result, TF); 7760 } 7761 7762 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 7763 SelectionDAG &DAG) const { 7764 assert(ST->getAddressingMode() == ISD::UNINDEXED && 7765 "unaligned indexed stores not implemented!"); 7766 SDValue Chain = ST->getChain(); 7767 SDValue Ptr = ST->getBasePtr(); 7768 SDValue Val = ST->getValue(); 7769 EVT VT = Val.getValueType(); 7770 Align Alignment = ST->getOriginalAlign(); 7771 auto &MF = DAG.getMachineFunction(); 7772 EVT StoreMemVT = ST->getMemoryVT(); 7773 7774 SDLoc dl(ST); 7775 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 7776 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 7777 if (isTypeLegal(intVT)) { 7778 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 7779 StoreMemVT.isVector()) { 7780 // Scalarize the store and let the individual components be handled. 7781 SDValue Result = scalarizeVectorStore(ST, DAG); 7782 return Result; 7783 } 7784 // Expand to a bitconvert of the value to the integer type of the 7785 // same size, then a (misaligned) int store. 7786 // FIXME: Does not handle truncating floating point stores! 7787 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 7788 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 7789 Alignment, ST->getMemOperand()->getFlags()); 7790 return Result; 7791 } 7792 // Do a (aligned) store to a stack slot, then copy from the stack slot 7793 // to the final destination using (unaligned) integer loads and stores. 7794 MVT RegVT = getRegisterType( 7795 *DAG.getContext(), 7796 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 7797 EVT PtrVT = Ptr.getValueType(); 7798 unsigned StoredBytes = StoreMemVT.getStoreSize(); 7799 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7800 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 7801 7802 // Make sure the stack slot is also aligned for the register type. 7803 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 7804 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 7805 7806 // Perform the original store, only redirected to the stack slot. 7807 SDValue Store = DAG.getTruncStore( 7808 Chain, dl, Val, StackPtr, 7809 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 7810 7811 EVT StackPtrVT = StackPtr.getValueType(); 7812 7813 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7814 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7815 SmallVector<SDValue, 8> Stores; 7816 unsigned Offset = 0; 7817 7818 // Do all but one copies using the full register width. 7819 for (unsigned i = 1; i < NumRegs; i++) { 7820 // Load one integer register's worth from the stack slot. 7821 SDValue Load = DAG.getLoad( 7822 RegVT, dl, Store, StackPtr, 7823 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 7824 // Store it to the final location. Remember the store. 7825 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 7826 ST->getPointerInfo().getWithOffset(Offset), 7827 ST->getOriginalAlign(), 7828 ST->getMemOperand()->getFlags())); 7829 // Increment the pointers. 7830 Offset += RegBytes; 7831 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7832 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7833 } 7834 7835 // The last store may be partial. Do a truncating store. On big-endian 7836 // machines this requires an extending load from the stack slot to ensure 7837 // that the bits are in the right place. 7838 EVT LoadMemVT = 7839 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 7840 7841 // Load from the stack slot. 7842 SDValue Load = DAG.getExtLoad( 7843 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 7844 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 7845 7846 Stores.push_back( 7847 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 7848 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 7849 ST->getOriginalAlign(), 7850 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 7851 // The order of the stores doesn't matter - say it with a TokenFactor. 7852 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7853 return Result; 7854 } 7855 7856 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 7857 "Unaligned store of unknown type."); 7858 // Get the half-size VT 7859 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 7860 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 7861 unsigned IncrementSize = NumBits / 8; 7862 7863 // Divide the stored value in two parts. 7864 SDValue ShiftAmount = DAG.getConstant( 7865 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 7866 SDValue Lo = Val; 7867 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 7868 7869 // Store the two parts 7870 SDValue Store1, Store2; 7871 Store1 = DAG.getTruncStore(Chain, dl, 7872 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 7873 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 7874 ST->getMemOperand()->getFlags()); 7875 7876 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7877 Store2 = DAG.getTruncStore( 7878 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 7879 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 7880 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 7881 7882 SDValue Result = 7883 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 7884 return Result; 7885 } 7886 7887 SDValue 7888 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7889 const SDLoc &DL, EVT DataVT, 7890 SelectionDAG &DAG, 7891 bool IsCompressedMemory) const { 7892 SDValue Increment; 7893 EVT AddrVT = Addr.getValueType(); 7894 EVT MaskVT = Mask.getValueType(); 7895 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 7896 "Incompatible types of Data and Mask"); 7897 if (IsCompressedMemory) { 7898 if (DataVT.isScalableVector()) 7899 report_fatal_error( 7900 "Cannot currently handle compressed memory with scalable vectors"); 7901 // Incrementing the pointer according to number of '1's in the mask. 7902 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7903 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7904 if (MaskIntVT.getSizeInBits() < 32) { 7905 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7906 MaskIntVT = MVT::i32; 7907 } 7908 7909 // Count '1's with POPCNT. 7910 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7911 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7912 // Scale is an element size in bytes. 7913 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7914 AddrVT); 7915 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7916 } else if (DataVT.isScalableVector()) { 7917 Increment = DAG.getVScale(DL, AddrVT, 7918 APInt(AddrVT.getFixedSizeInBits(), 7919 DataVT.getStoreSize().getKnownMinSize())); 7920 } else 7921 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7922 7923 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7924 } 7925 7926 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 7927 EVT VecVT, const SDLoc &dl, 7928 unsigned NumSubElts) { 7929 if (!VecVT.isScalableVector() && isa<ConstantSDNode>(Idx)) 7930 return Idx; 7931 7932 EVT IdxVT = Idx.getValueType(); 7933 unsigned NElts = VecVT.getVectorMinNumElements(); 7934 if (VecVT.isScalableVector()) { 7935 // If this is a constant index and we know the value plus the number of the 7936 // elements in the subvector minus one is less than the minimum number of 7937 // elements then it's safe to return Idx. 7938 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 7939 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 7940 return Idx; 7941 SDValue VS = 7942 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 7943 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 7944 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 7945 DAG.getConstant(NumSubElts, dl, IdxVT)); 7946 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 7947 } 7948 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 7949 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 7950 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7951 DAG.getConstant(Imm, dl, IdxVT)); 7952 } 7953 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 7954 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7955 DAG.getConstant(MaxIndex, dl, IdxVT)); 7956 } 7957 7958 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7959 SDValue VecPtr, EVT VecVT, 7960 SDValue Index) const { 7961 return getVectorSubVecPointer( 7962 DAG, VecPtr, VecVT, 7963 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 7964 Index); 7965 } 7966 7967 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 7968 SDValue VecPtr, EVT VecVT, 7969 EVT SubVecVT, 7970 SDValue Index) const { 7971 SDLoc dl(Index); 7972 // Make sure the index type is big enough to compute in. 7973 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7974 7975 EVT EltVT = VecVT.getVectorElementType(); 7976 7977 // Calculate the element offset and add it to the pointer. 7978 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 7979 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 7980 "Converting bits to bytes lost precision"); 7981 7982 // Scalable vectors don't need clamping as these are checked at compile time 7983 if (SubVecVT.isFixedLengthVector()) { 7984 assert(SubVecVT.getVectorElementType() == EltVT && 7985 "Sub-vector must be a fixed vector with matching element type"); 7986 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 7987 SubVecVT.getVectorNumElements()); 7988 } 7989 7990 EVT IdxVT = Index.getValueType(); 7991 7992 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7993 DAG.getConstant(EltSize, dl, IdxVT)); 7994 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7995 } 7996 7997 //===----------------------------------------------------------------------===// 7998 // Implementation of Emulated TLS Model 7999 //===----------------------------------------------------------------------===// 8000 8001 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 8002 SelectionDAG &DAG) const { 8003 // Access to address of TLS varialbe xyz is lowered to a function call: 8004 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 8005 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8006 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 8007 SDLoc dl(GA); 8008 8009 ArgListTy Args; 8010 ArgListEntry Entry; 8011 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 8012 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 8013 StringRef EmuTlsVarName(NameString); 8014 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 8015 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 8016 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 8017 Entry.Ty = VoidPtrType; 8018 Args.push_back(Entry); 8019 8020 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 8021 8022 TargetLowering::CallLoweringInfo CLI(DAG); 8023 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 8024 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 8025 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 8026 8027 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 8028 // At last for X86 targets, maybe good for other targets too? 8029 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8030 MFI.setAdjustsStack(true); // Is this only for X86 target? 8031 MFI.setHasCalls(true); 8032 8033 assert((GA->getOffset() == 0) && 8034 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 8035 return CallResult.first; 8036 } 8037 8038 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 8039 SelectionDAG &DAG) const { 8040 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 8041 if (!isCtlzFast()) 8042 return SDValue(); 8043 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 8044 SDLoc dl(Op); 8045 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 8046 if (C->isNullValue() && CC == ISD::SETEQ) { 8047 EVT VT = Op.getOperand(0).getValueType(); 8048 SDValue Zext = Op.getOperand(0); 8049 if (VT.bitsLT(MVT::i32)) { 8050 VT = MVT::i32; 8051 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 8052 } 8053 unsigned Log2b = Log2_32(VT.getSizeInBits()); 8054 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 8055 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 8056 DAG.getConstant(Log2b, dl, MVT::i32)); 8057 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 8058 } 8059 } 8060 return SDValue(); 8061 } 8062 8063 // Convert redundant addressing modes (e.g. scaling is redundant 8064 // when accessing bytes). 8065 ISD::MemIndexType 8066 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT, 8067 SDValue Offsets) const { 8068 bool IsScaledIndex = 8069 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED); 8070 bool IsSignedIndex = 8071 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED); 8072 8073 // Scaling is unimportant for bytes, canonicalize to unscaled. 8074 if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) { 8075 IsScaledIndex = false; 8076 IndexType = IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED; 8077 } 8078 8079 return IndexType; 8080 } 8081 8082 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 8083 SDValue Op0 = Node->getOperand(0); 8084 SDValue Op1 = Node->getOperand(1); 8085 EVT VT = Op0.getValueType(); 8086 unsigned Opcode = Node->getOpcode(); 8087 SDLoc DL(Node); 8088 8089 // umin(x,y) -> sub(x,usubsat(x,y)) 8090 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 8091 isOperationLegal(ISD::USUBSAT, VT)) { 8092 return DAG.getNode(ISD::SUB, DL, VT, Op0, 8093 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 8094 } 8095 8096 // umax(x,y) -> add(x,usubsat(y,x)) 8097 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 8098 isOperationLegal(ISD::USUBSAT, VT)) { 8099 return DAG.getNode(ISD::ADD, DL, VT, Op0, 8100 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 8101 } 8102 8103 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 8104 ISD::CondCode CC; 8105 switch (Opcode) { 8106 default: llvm_unreachable("How did we get here?"); 8107 case ISD::SMAX: CC = ISD::SETGT; break; 8108 case ISD::SMIN: CC = ISD::SETLT; break; 8109 case ISD::UMAX: CC = ISD::SETUGT; break; 8110 case ISD::UMIN: CC = ISD::SETULT; break; 8111 } 8112 8113 // FIXME: Should really try to split the vector in case it's legal on a 8114 // subvector. 8115 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8116 return DAG.UnrollVectorOp(Node); 8117 8118 SDValue Cond = DAG.getSetCC(DL, VT, Op0, Op1, CC); 8119 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 8120 } 8121 8122 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 8123 unsigned Opcode = Node->getOpcode(); 8124 SDValue LHS = Node->getOperand(0); 8125 SDValue RHS = Node->getOperand(1); 8126 EVT VT = LHS.getValueType(); 8127 SDLoc dl(Node); 8128 8129 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8130 assert(VT.isInteger() && "Expected operands to be integers"); 8131 8132 // usub.sat(a, b) -> umax(a, b) - b 8133 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 8134 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 8135 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 8136 } 8137 8138 // uadd.sat(a, b) -> umin(a, ~b) + b 8139 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 8140 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 8141 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 8142 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 8143 } 8144 8145 unsigned OverflowOp; 8146 switch (Opcode) { 8147 case ISD::SADDSAT: 8148 OverflowOp = ISD::SADDO; 8149 break; 8150 case ISD::UADDSAT: 8151 OverflowOp = ISD::UADDO; 8152 break; 8153 case ISD::SSUBSAT: 8154 OverflowOp = ISD::SSUBO; 8155 break; 8156 case ISD::USUBSAT: 8157 OverflowOp = ISD::USUBO; 8158 break; 8159 default: 8160 llvm_unreachable("Expected method to receive signed or unsigned saturation " 8161 "addition or subtraction node."); 8162 } 8163 8164 // FIXME: Should really try to split the vector in case it's legal on a 8165 // subvector. 8166 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8167 return DAG.UnrollVectorOp(Node); 8168 8169 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 8170 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8171 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8172 SDValue SumDiff = Result.getValue(0); 8173 SDValue Overflow = Result.getValue(1); 8174 SDValue Zero = DAG.getConstant(0, dl, VT); 8175 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 8176 8177 if (Opcode == ISD::UADDSAT) { 8178 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8179 // (LHS + RHS) | OverflowMask 8180 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8181 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 8182 } 8183 // Overflow ? 0xffff.... : (LHS + RHS) 8184 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 8185 } 8186 8187 if (Opcode == ISD::USUBSAT) { 8188 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8189 // (LHS - RHS) & ~OverflowMask 8190 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8191 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 8192 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 8193 } 8194 // Overflow ? 0 : (LHS - RHS) 8195 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 8196 } 8197 8198 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff 8199 APInt MinVal = APInt::getSignedMinValue(BitWidth); 8200 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8201 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, 8202 DAG.getConstant(BitWidth - 1, dl, VT)); 8203 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); 8204 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 8205 } 8206 8207 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 8208 unsigned Opcode = Node->getOpcode(); 8209 bool IsSigned = Opcode == ISD::SSHLSAT; 8210 SDValue LHS = Node->getOperand(0); 8211 SDValue RHS = Node->getOperand(1); 8212 EVT VT = LHS.getValueType(); 8213 SDLoc dl(Node); 8214 8215 assert((Node->getOpcode() == ISD::SSHLSAT || 8216 Node->getOpcode() == ISD::USHLSAT) && 8217 "Expected a SHLSAT opcode"); 8218 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8219 assert(VT.isInteger() && "Expected operands to be integers"); 8220 8221 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 8222 8223 unsigned BW = VT.getScalarSizeInBits(); 8224 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 8225 SDValue Orig = 8226 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 8227 8228 SDValue SatVal; 8229 if (IsSigned) { 8230 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 8231 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 8232 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 8233 SatMin, SatMax, ISD::SETLT); 8234 } else { 8235 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 8236 } 8237 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 8238 8239 return Result; 8240 } 8241 8242 SDValue 8243 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 8244 assert((Node->getOpcode() == ISD::SMULFIX || 8245 Node->getOpcode() == ISD::UMULFIX || 8246 Node->getOpcode() == ISD::SMULFIXSAT || 8247 Node->getOpcode() == ISD::UMULFIXSAT) && 8248 "Expected a fixed point multiplication opcode"); 8249 8250 SDLoc dl(Node); 8251 SDValue LHS = Node->getOperand(0); 8252 SDValue RHS = Node->getOperand(1); 8253 EVT VT = LHS.getValueType(); 8254 unsigned Scale = Node->getConstantOperandVal(2); 8255 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 8256 Node->getOpcode() == ISD::UMULFIXSAT); 8257 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 8258 Node->getOpcode() == ISD::SMULFIXSAT); 8259 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8260 unsigned VTSize = VT.getScalarSizeInBits(); 8261 8262 if (!Scale) { 8263 // [us]mul.fix(a, b, 0) -> mul(a, b) 8264 if (!Saturating) { 8265 if (isOperationLegalOrCustom(ISD::MUL, VT)) 8266 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8267 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 8268 SDValue Result = 8269 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8270 SDValue Product = Result.getValue(0); 8271 SDValue Overflow = Result.getValue(1); 8272 SDValue Zero = DAG.getConstant(0, dl, VT); 8273 8274 APInt MinVal = APInt::getSignedMinValue(VTSize); 8275 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 8276 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8277 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8278 // Xor the inputs, if resulting sign bit is 0 the product will be 8279 // positive, else negative. 8280 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 8281 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); 8282 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); 8283 return DAG.getSelect(dl, VT, Overflow, Result, Product); 8284 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 8285 SDValue Result = 8286 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8287 SDValue Product = Result.getValue(0); 8288 SDValue Overflow = Result.getValue(1); 8289 8290 APInt MaxVal = APInt::getMaxValue(VTSize); 8291 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8292 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 8293 } 8294 } 8295 8296 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 8297 "Expected scale to be less than the number of bits if signed or at " 8298 "most the number of bits if unsigned."); 8299 assert(LHS.getValueType() == RHS.getValueType() && 8300 "Expected both operands to be the same type"); 8301 8302 // Get the upper and lower bits of the result. 8303 SDValue Lo, Hi; 8304 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 8305 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 8306 if (isOperationLegalOrCustom(LoHiOp, VT)) { 8307 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 8308 Lo = Result.getValue(0); 8309 Hi = Result.getValue(1); 8310 } else if (isOperationLegalOrCustom(HiOp, VT)) { 8311 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8312 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 8313 } else if (VT.isVector()) { 8314 return SDValue(); 8315 } else { 8316 report_fatal_error("Unable to expand fixed point multiplication."); 8317 } 8318 8319 if (Scale == VTSize) 8320 // Result is just the top half since we'd be shifting by the width of the 8321 // operand. Overflow impossible so this works for both UMULFIX and 8322 // UMULFIXSAT. 8323 return Hi; 8324 8325 // The result will need to be shifted right by the scale since both operands 8326 // are scaled. The result is given to us in 2 halves, so we only want part of 8327 // both in the result. 8328 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8329 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 8330 DAG.getConstant(Scale, dl, ShiftTy)); 8331 if (!Saturating) 8332 return Result; 8333 8334 if (!Signed) { 8335 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 8336 // widened multiplication) aren't all zeroes. 8337 8338 // Saturate to max if ((Hi >> Scale) != 0), 8339 // which is the same as if (Hi > ((1 << Scale) - 1)) 8340 APInt MaxVal = APInt::getMaxValue(VTSize); 8341 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 8342 dl, VT); 8343 Result = DAG.getSelectCC(dl, Hi, LowMask, 8344 DAG.getConstant(MaxVal, dl, VT), Result, 8345 ISD::SETUGT); 8346 8347 return Result; 8348 } 8349 8350 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 8351 // widened multiplication) aren't all ones or all zeroes. 8352 8353 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 8354 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 8355 8356 if (Scale == 0) { 8357 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 8358 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 8359 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 8360 // Saturated to SatMin if wide product is negative, and SatMax if wide 8361 // product is positive ... 8362 SDValue Zero = DAG.getConstant(0, dl, VT); 8363 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 8364 ISD::SETLT); 8365 // ... but only if we overflowed. 8366 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 8367 } 8368 8369 // We handled Scale==0 above so all the bits to examine is in Hi. 8370 8371 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 8372 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 8373 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 8374 dl, VT); 8375 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 8376 // Saturate to min if (Hi >> (Scale - 1)) < -1), 8377 // which is the same as if (HI < (-1 << (Scale - 1)) 8378 SDValue HighMask = 8379 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 8380 dl, VT); 8381 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 8382 return Result; 8383 } 8384 8385 SDValue 8386 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 8387 SDValue LHS, SDValue RHS, 8388 unsigned Scale, SelectionDAG &DAG) const { 8389 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 8390 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 8391 "Expected a fixed point division opcode"); 8392 8393 EVT VT = LHS.getValueType(); 8394 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 8395 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 8396 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8397 8398 // If there is enough room in the type to upscale the LHS or downscale the 8399 // RHS before the division, we can perform it in this type without having to 8400 // resize. For signed operations, the LHS headroom is the number of 8401 // redundant sign bits, and for unsigned ones it is the number of zeroes. 8402 // The headroom for the RHS is the number of trailing zeroes. 8403 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 8404 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 8405 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 8406 8407 // For signed saturating operations, we need to be able to detect true integer 8408 // division overflow; that is, when you have MIN / -EPS. However, this 8409 // is undefined behavior and if we emit divisions that could take such 8410 // values it may cause undesired behavior (arithmetic exceptions on x86, for 8411 // example). 8412 // Avoid this by requiring an extra bit so that we never get this case. 8413 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 8414 // signed saturating division, we need to emit a whopping 32-bit division. 8415 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 8416 return SDValue(); 8417 8418 unsigned LHSShift = std::min(LHSLead, Scale); 8419 unsigned RHSShift = Scale - LHSShift; 8420 8421 // At this point, we know that if we shift the LHS up by LHSShift and the 8422 // RHS down by RHSShift, we can emit a regular division with a final scaling 8423 // factor of Scale. 8424 8425 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8426 if (LHSShift) 8427 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 8428 DAG.getConstant(LHSShift, dl, ShiftTy)); 8429 if (RHSShift) 8430 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 8431 DAG.getConstant(RHSShift, dl, ShiftTy)); 8432 8433 SDValue Quot; 8434 if (Signed) { 8435 // For signed operations, if the resulting quotient is negative and the 8436 // remainder is nonzero, subtract 1 from the quotient to round towards 8437 // negative infinity. 8438 SDValue Rem; 8439 // FIXME: Ideally we would always produce an SDIVREM here, but if the 8440 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 8441 // we couldn't just form a libcall, but the type legalizer doesn't do it. 8442 if (isTypeLegal(VT) && 8443 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 8444 Quot = DAG.getNode(ISD::SDIVREM, dl, 8445 DAG.getVTList(VT, VT), 8446 LHS, RHS); 8447 Rem = Quot.getValue(1); 8448 Quot = Quot.getValue(0); 8449 } else { 8450 Quot = DAG.getNode(ISD::SDIV, dl, VT, 8451 LHS, RHS); 8452 Rem = DAG.getNode(ISD::SREM, dl, VT, 8453 LHS, RHS); 8454 } 8455 SDValue Zero = DAG.getConstant(0, dl, VT); 8456 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 8457 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 8458 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 8459 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 8460 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 8461 DAG.getConstant(1, dl, VT)); 8462 Quot = DAG.getSelect(dl, VT, 8463 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 8464 Sub1, Quot); 8465 } else 8466 Quot = DAG.getNode(ISD::UDIV, dl, VT, 8467 LHS, RHS); 8468 8469 return Quot; 8470 } 8471 8472 void TargetLowering::expandUADDSUBO( 8473 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8474 SDLoc dl(Node); 8475 SDValue LHS = Node->getOperand(0); 8476 SDValue RHS = Node->getOperand(1); 8477 bool IsAdd = Node->getOpcode() == ISD::UADDO; 8478 8479 // If ADD/SUBCARRY is legal, use that instead. 8480 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 8481 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 8482 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 8483 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 8484 { LHS, RHS, CarryIn }); 8485 Result = SDValue(NodeCarry.getNode(), 0); 8486 Overflow = SDValue(NodeCarry.getNode(), 1); 8487 return; 8488 } 8489 8490 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8491 LHS.getValueType(), LHS, RHS); 8492 8493 EVT ResultType = Node->getValueType(1); 8494 EVT SetCCType = getSetCCResultType( 8495 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8496 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 8497 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 8498 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8499 } 8500 8501 void TargetLowering::expandSADDSUBO( 8502 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8503 SDLoc dl(Node); 8504 SDValue LHS = Node->getOperand(0); 8505 SDValue RHS = Node->getOperand(1); 8506 bool IsAdd = Node->getOpcode() == ISD::SADDO; 8507 8508 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8509 LHS.getValueType(), LHS, RHS); 8510 8511 EVT ResultType = Node->getValueType(1); 8512 EVT OType = getSetCCResultType( 8513 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8514 8515 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 8516 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 8517 if (isOperationLegal(OpcSat, LHS.getValueType())) { 8518 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 8519 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 8520 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8521 return; 8522 } 8523 8524 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 8525 8526 // For an addition, the result should be less than one of the operands (LHS) 8527 // if and only if the other operand (RHS) is negative, otherwise there will 8528 // be overflow. 8529 // For a subtraction, the result should be less than one of the operands 8530 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 8531 // otherwise there will be overflow. 8532 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 8533 SDValue ConditionRHS = 8534 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 8535 8536 Overflow = DAG.getBoolExtOrTrunc( 8537 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 8538 ResultType, ResultType); 8539 } 8540 8541 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 8542 SDValue &Overflow, SelectionDAG &DAG) const { 8543 SDLoc dl(Node); 8544 EVT VT = Node->getValueType(0); 8545 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8546 SDValue LHS = Node->getOperand(0); 8547 SDValue RHS = Node->getOperand(1); 8548 bool isSigned = Node->getOpcode() == ISD::SMULO; 8549 8550 // For power-of-two multiplications we can use a simpler shift expansion. 8551 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 8552 const APInt &C = RHSC->getAPIntValue(); 8553 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 8554 if (C.isPowerOf2()) { 8555 // smulo(x, signed_min) is same as umulo(x, signed_min). 8556 bool UseArithShift = isSigned && !C.isMinSignedValue(); 8557 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8558 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 8559 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 8560 Overflow = DAG.getSetCC(dl, SetCCVT, 8561 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 8562 dl, VT, Result, ShiftAmt), 8563 LHS, ISD::SETNE); 8564 return true; 8565 } 8566 } 8567 8568 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 8569 if (VT.isVector()) 8570 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 8571 VT.getVectorNumElements()); 8572 8573 SDValue BottomHalf; 8574 SDValue TopHalf; 8575 static const unsigned Ops[2][3] = 8576 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 8577 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 8578 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 8579 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8580 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 8581 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 8582 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 8583 RHS); 8584 TopHalf = BottomHalf.getValue(1); 8585 } else if (isTypeLegal(WideVT)) { 8586 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 8587 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 8588 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 8589 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 8590 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 8591 getShiftAmountTy(WideVT, DAG.getDataLayout())); 8592 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 8593 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 8594 } else { 8595 if (VT.isVector()) 8596 return false; 8597 8598 // We can fall back to a libcall with an illegal type for the MUL if we 8599 // have a libcall big enough. 8600 // Also, we can fall back to a division in some cases, but that's a big 8601 // performance hit in the general case. 8602 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 8603 if (WideVT == MVT::i16) 8604 LC = RTLIB::MUL_I16; 8605 else if (WideVT == MVT::i32) 8606 LC = RTLIB::MUL_I32; 8607 else if (WideVT == MVT::i64) 8608 LC = RTLIB::MUL_I64; 8609 else if (WideVT == MVT::i128) 8610 LC = RTLIB::MUL_I128; 8611 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 8612 8613 SDValue HiLHS; 8614 SDValue HiRHS; 8615 if (isSigned) { 8616 // The high part is obtained by SRA'ing all but one of the bits of low 8617 // part. 8618 unsigned LoSize = VT.getFixedSizeInBits(); 8619 HiLHS = 8620 DAG.getNode(ISD::SRA, dl, VT, LHS, 8621 DAG.getConstant(LoSize - 1, dl, 8622 getPointerTy(DAG.getDataLayout()))); 8623 HiRHS = 8624 DAG.getNode(ISD::SRA, dl, VT, RHS, 8625 DAG.getConstant(LoSize - 1, dl, 8626 getPointerTy(DAG.getDataLayout()))); 8627 } else { 8628 HiLHS = DAG.getConstant(0, dl, VT); 8629 HiRHS = DAG.getConstant(0, dl, VT); 8630 } 8631 8632 // Here we're passing the 2 arguments explicitly as 4 arguments that are 8633 // pre-lowered to the correct types. This all depends upon WideVT not 8634 // being a legal type for the architecture and thus has to be split to 8635 // two arguments. 8636 SDValue Ret; 8637 TargetLowering::MakeLibCallOptions CallOptions; 8638 CallOptions.setSExt(isSigned); 8639 CallOptions.setIsPostTypeLegalization(true); 8640 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 8641 // Halves of WideVT are packed into registers in different order 8642 // depending on platform endianness. This is usually handled by 8643 // the C calling convention, but we can't defer to it in 8644 // the legalizer. 8645 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 8646 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8647 } else { 8648 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 8649 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8650 } 8651 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 8652 "Ret value is a collection of constituent nodes holding result."); 8653 if (DAG.getDataLayout().isLittleEndian()) { 8654 // Same as above. 8655 BottomHalf = Ret.getOperand(0); 8656 TopHalf = Ret.getOperand(1); 8657 } else { 8658 BottomHalf = Ret.getOperand(1); 8659 TopHalf = Ret.getOperand(0); 8660 } 8661 } 8662 8663 Result = BottomHalf; 8664 if (isSigned) { 8665 SDValue ShiftAmt = DAG.getConstant( 8666 VT.getScalarSizeInBits() - 1, dl, 8667 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 8668 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 8669 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 8670 } else { 8671 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 8672 DAG.getConstant(0, dl, VT), ISD::SETNE); 8673 } 8674 8675 // Truncate the result if SetCC returns a larger type than needed. 8676 EVT RType = Node->getValueType(1); 8677 if (RType.bitsLT(Overflow.getValueType())) 8678 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 8679 8680 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 8681 "Unexpected result type for S/UMULO legalization"); 8682 return true; 8683 } 8684 8685 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 8686 SDLoc dl(Node); 8687 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8688 SDValue Op = Node->getOperand(0); 8689 EVT VT = Op.getValueType(); 8690 8691 if (VT.isScalableVector()) 8692 report_fatal_error( 8693 "Expanding reductions for scalable vectors is undefined."); 8694 8695 // Try to use a shuffle reduction for power of two vectors. 8696 if (VT.isPow2VectorType()) { 8697 while (VT.getVectorNumElements() > 1) { 8698 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 8699 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 8700 break; 8701 8702 SDValue Lo, Hi; 8703 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 8704 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 8705 VT = HalfVT; 8706 } 8707 } 8708 8709 EVT EltVT = VT.getVectorElementType(); 8710 unsigned NumElts = VT.getVectorNumElements(); 8711 8712 SmallVector<SDValue, 8> Ops; 8713 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 8714 8715 SDValue Res = Ops[0]; 8716 for (unsigned i = 1; i < NumElts; i++) 8717 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 8718 8719 // Result type may be wider than element type. 8720 if (EltVT != Node->getValueType(0)) 8721 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 8722 return Res; 8723 } 8724 8725 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 8726 SDLoc dl(Node); 8727 SDValue AccOp = Node->getOperand(0); 8728 SDValue VecOp = Node->getOperand(1); 8729 SDNodeFlags Flags = Node->getFlags(); 8730 8731 EVT VT = VecOp.getValueType(); 8732 EVT EltVT = VT.getVectorElementType(); 8733 8734 if (VT.isScalableVector()) 8735 report_fatal_error( 8736 "Expanding reductions for scalable vectors is undefined."); 8737 8738 unsigned NumElts = VT.getVectorNumElements(); 8739 8740 SmallVector<SDValue, 8> Ops; 8741 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 8742 8743 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8744 8745 SDValue Res = AccOp; 8746 for (unsigned i = 0; i < NumElts; i++) 8747 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 8748 8749 return Res; 8750 } 8751 8752 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 8753 SelectionDAG &DAG) const { 8754 EVT VT = Node->getValueType(0); 8755 SDLoc dl(Node); 8756 bool isSigned = Node->getOpcode() == ISD::SREM; 8757 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 8758 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 8759 SDValue Dividend = Node->getOperand(0); 8760 SDValue Divisor = Node->getOperand(1); 8761 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 8762 SDVTList VTs = DAG.getVTList(VT, VT); 8763 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 8764 return true; 8765 } 8766 if (isOperationLegalOrCustom(DivOpc, VT)) { 8767 // X % Y -> X-X/Y*Y 8768 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 8769 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 8770 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 8771 return true; 8772 } 8773 return false; 8774 } 8775 8776 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 8777 SelectionDAG &DAG) const { 8778 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 8779 SDLoc dl(SDValue(Node, 0)); 8780 SDValue Src = Node->getOperand(0); 8781 8782 // DstVT is the result type, while SatVT is the size to which we saturate 8783 EVT SrcVT = Src.getValueType(); 8784 EVT DstVT = Node->getValueType(0); 8785 8786 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 8787 unsigned SatWidth = SatVT.getScalarSizeInBits(); 8788 unsigned DstWidth = DstVT.getScalarSizeInBits(); 8789 assert(SatWidth <= DstWidth && 8790 "Expected saturation width smaller than result width"); 8791 8792 // Determine minimum and maximum integer values and their corresponding 8793 // floating-point values. 8794 APInt MinInt, MaxInt; 8795 if (IsSigned) { 8796 MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth); 8797 MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth); 8798 } else { 8799 MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth); 8800 MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth); 8801 } 8802 8803 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 8804 // libcall emission cannot handle this. Large result types will fail. 8805 if (SrcVT == MVT::f16) { 8806 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 8807 SrcVT = Src.getValueType(); 8808 } 8809 8810 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8811 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8812 8813 APFloat::opStatus MinStatus = 8814 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 8815 APFloat::opStatus MaxStatus = 8816 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 8817 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 8818 !(MaxStatus & APFloat::opStatus::opInexact); 8819 8820 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 8821 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 8822 8823 // If the integer bounds are exactly representable as floats and min/max are 8824 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 8825 // of comparisons and selects. 8826 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 8827 isOperationLegal(ISD::FMAXNUM, SrcVT); 8828 if (AreExactFloatBounds && MinMaxLegal) { 8829 SDValue Clamped = Src; 8830 8831 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 8832 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 8833 // Clamp by MaxFloat from above. NaN cannot occur. 8834 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 8835 // Convert clamped value to integer. 8836 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 8837 dl, DstVT, Clamped); 8838 8839 // In the unsigned case we're done, because we mapped NaN to MinFloat, 8840 // which will cast to zero. 8841 if (!IsSigned) 8842 return FpToInt; 8843 8844 // Otherwise, select 0 if Src is NaN. 8845 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8846 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 8847 ISD::CondCode::SETUO); 8848 } 8849 8850 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 8851 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 8852 8853 // Result of direct conversion. The assumption here is that the operation is 8854 // non-trapping and it's fine to apply it to an out-of-range value if we 8855 // select it away later. 8856 SDValue FpToInt = 8857 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 8858 8859 SDValue Select = FpToInt; 8860 8861 // If Src ULT MinFloat, select MinInt. In particular, this also selects 8862 // MinInt if Src is NaN. 8863 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 8864 ISD::CondCode::SETULT); 8865 // If Src OGT MaxFloat, select MaxInt. 8866 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 8867 ISD::CondCode::SETOGT); 8868 8869 // In the unsigned case we are done, because we mapped NaN to MinInt, which 8870 // is already zero. 8871 if (!IsSigned) 8872 return Select; 8873 8874 // Otherwise, select 0 if Src is NaN. 8875 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8876 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 8877 } 8878 8879 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 8880 SelectionDAG &DAG) const { 8881 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 8882 assert(Node->getValueType(0).isScalableVector() && 8883 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 8884 8885 EVT VT = Node->getValueType(0); 8886 SDValue V1 = Node->getOperand(0); 8887 SDValue V2 = Node->getOperand(1); 8888 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 8889 SDLoc DL(Node); 8890 8891 // Expand through memory thusly: 8892 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 8893 // Store V1, Ptr 8894 // Store V2, Ptr + sizeof(V1) 8895 // If (Imm < 0) 8896 // TrailingElts = -Imm 8897 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 8898 // else 8899 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 8900 // Res = Load Ptr 8901 8902 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 8903 8904 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 8905 VT.getVectorElementCount() * 2); 8906 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 8907 EVT PtrVT = StackPtr.getValueType(); 8908 auto &MF = DAG.getMachineFunction(); 8909 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 8910 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 8911 8912 // Store the lo part of CONCAT_VECTORS(V1, V2) 8913 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 8914 // Store the hi part of CONCAT_VECTORS(V1, V2) 8915 SDValue OffsetToV2 = DAG.getVScale( 8916 DL, PtrVT, 8917 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8918 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 8919 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 8920 8921 if (Imm >= 0) { 8922 // Load back the required element. getVectorElementPointer takes care of 8923 // clamping the index if it's out-of-bounds. 8924 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 8925 // Load the spliced result 8926 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 8927 MachinePointerInfo::getUnknownStack(MF)); 8928 } 8929 8930 uint64_t TrailingElts = -Imm; 8931 8932 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 8933 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 8934 SDValue TrailingBytes = 8935 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 8936 8937 if (TrailingElts > VT.getVectorMinNumElements()) { 8938 SDValue VLBytes = DAG.getVScale( 8939 DL, PtrVT, 8940 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8941 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 8942 } 8943 8944 // Calculate the start address of the spliced result. 8945 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 8946 8947 // Load the spliced result 8948 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 8949 MachinePointerInfo::getUnknownStack(MF)); 8950 } 8951 8952 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 8953 SDValue &LHS, SDValue &RHS, 8954 SDValue &CC, bool &NeedInvert, 8955 const SDLoc &dl, SDValue &Chain, 8956 bool IsSignaling) const { 8957 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8958 MVT OpVT = LHS.getSimpleValueType(); 8959 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 8960 NeedInvert = false; 8961 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 8962 default: 8963 llvm_unreachable("Unknown condition code action!"); 8964 case TargetLowering::Legal: 8965 // Nothing to do. 8966 break; 8967 case TargetLowering::Expand: { 8968 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 8969 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8970 std::swap(LHS, RHS); 8971 CC = DAG.getCondCode(InvCC); 8972 return true; 8973 } 8974 // Swapping operands didn't work. Try inverting the condition. 8975 bool NeedSwap = false; 8976 InvCC = getSetCCInverse(CCCode, OpVT); 8977 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8978 // If inverting the condition is not enough, try swapping operands 8979 // on top of it. 8980 InvCC = ISD::getSetCCSwappedOperands(InvCC); 8981 NeedSwap = true; 8982 } 8983 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8984 CC = DAG.getCondCode(InvCC); 8985 NeedInvert = true; 8986 if (NeedSwap) 8987 std::swap(LHS, RHS); 8988 return true; 8989 } 8990 8991 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 8992 unsigned Opc = 0; 8993 switch (CCCode) { 8994 default: 8995 llvm_unreachable("Don't know how to expand this condition!"); 8996 case ISD::SETUO: 8997 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 8998 CC1 = ISD::SETUNE; 8999 CC2 = ISD::SETUNE; 9000 Opc = ISD::OR; 9001 break; 9002 } 9003 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 9004 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 9005 NeedInvert = true; 9006 LLVM_FALLTHROUGH; 9007 case ISD::SETO: 9008 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 9009 "If SETO is expanded, SETOEQ must be legal!"); 9010 CC1 = ISD::SETOEQ; 9011 CC2 = ISD::SETOEQ; 9012 Opc = ISD::AND; 9013 break; 9014 case ISD::SETONE: 9015 case ISD::SETUEQ: 9016 // If the SETUO or SETO CC isn't legal, we might be able to use 9017 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 9018 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 9019 // the operands. 9020 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9021 if (!TLI.isCondCodeLegal(CC2, OpVT) && 9022 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 9023 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 9024 CC1 = ISD::SETOGT; 9025 CC2 = ISD::SETOLT; 9026 Opc = ISD::OR; 9027 NeedInvert = ((unsigned)CCCode & 0x8U); 9028 break; 9029 } 9030 LLVM_FALLTHROUGH; 9031 case ISD::SETOEQ: 9032 case ISD::SETOGT: 9033 case ISD::SETOGE: 9034 case ISD::SETOLT: 9035 case ISD::SETOLE: 9036 case ISD::SETUNE: 9037 case ISD::SETUGT: 9038 case ISD::SETUGE: 9039 case ISD::SETULT: 9040 case ISD::SETULE: 9041 // If we are floating point, assign and break, otherwise fall through. 9042 if (!OpVT.isInteger()) { 9043 // We can use the 4th bit to tell if we are the unordered 9044 // or ordered version of the opcode. 9045 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9046 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 9047 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 9048 break; 9049 } 9050 // Fallthrough if we are unsigned integer. 9051 LLVM_FALLTHROUGH; 9052 case ISD::SETLE: 9053 case ISD::SETGT: 9054 case ISD::SETGE: 9055 case ISD::SETLT: 9056 case ISD::SETNE: 9057 case ISD::SETEQ: 9058 // If all combinations of inverting the condition and swapping operands 9059 // didn't work then we have no means to expand the condition. 9060 llvm_unreachable("Don't know how to expand this condition!"); 9061 } 9062 9063 SDValue SetCC1, SetCC2; 9064 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 9065 // If we aren't the ordered or unorder operation, 9066 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 9067 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 9068 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 9069 } else { 9070 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 9071 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 9072 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 9073 } 9074 if (Chain) 9075 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 9076 SetCC2.getValue(1)); 9077 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 9078 RHS = SDValue(); 9079 CC = SDValue(); 9080 return true; 9081 } 9082 } 9083 return false; 9084 } 9085