1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore NoAlias and NonNull because they don't affect the 61 // call sequence. 62 AttributeList CallerAttrs = F.getAttributes(); 63 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 64 .removeAttribute(Attribute::NoAlias) 65 .removeAttribute(Attribute::NonNull) 66 .hasAttributes()) 67 return false; 68 69 // It's not safe to eliminate the sign / zero extension of the return value. 70 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 71 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 72 return false; 73 74 // Check if the only use is a function return node. 75 return isUsedByReturnOnly(Node, Chain); 76 } 77 78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 79 const uint32_t *CallerPreservedMask, 80 const SmallVectorImpl<CCValAssign> &ArgLocs, 81 const SmallVectorImpl<SDValue> &OutVals) const { 82 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 83 const CCValAssign &ArgLoc = ArgLocs[I]; 84 if (!ArgLoc.isRegLoc()) 85 continue; 86 MCRegister Reg = ArgLoc.getLocReg(); 87 // Only look at callee saved registers. 88 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 89 continue; 90 // Check that we pass the value used for the caller. 91 // (We look for a CopyFromReg reading a virtual register that is used 92 // for the function live-in value of register Reg) 93 SDValue Value = OutVals[I]; 94 if (Value->getOpcode() != ISD::CopyFromReg) 95 return false; 96 MCRegister ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 97 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 98 return false; 99 } 100 return true; 101 } 102 103 /// Set CallLoweringInfo attribute flags based on a call instruction 104 /// and called function attributes. 105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 106 unsigned ArgIdx) { 107 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 108 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 109 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 110 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 111 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 112 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 113 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 114 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 115 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 116 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 117 Alignment = Call->getParamAlign(ArgIdx); 118 ByValType = nullptr; 119 if (Call->paramHasAttr(ArgIdx, Attribute::ByVal)) 120 ByValType = Call->getParamByValType(ArgIdx); 121 } 122 123 /// Generate a libcall taking the given operands as arguments and returning a 124 /// result of type RetVT. 125 std::pair<SDValue, SDValue> 126 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 127 ArrayRef<SDValue> Ops, 128 MakeLibCallOptions CallOptions, 129 const SDLoc &dl, 130 SDValue InChain) const { 131 if (!InChain) 132 InChain = DAG.getEntryNode(); 133 134 TargetLowering::ArgListTy Args; 135 Args.reserve(Ops.size()); 136 137 TargetLowering::ArgListEntry Entry; 138 for (unsigned i = 0; i < Ops.size(); ++i) { 139 SDValue NewOp = Ops[i]; 140 Entry.Node = NewOp; 141 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 142 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 143 CallOptions.IsSExt); 144 Entry.IsZExt = !Entry.IsSExt; 145 146 if (CallOptions.IsSoften && 147 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 148 Entry.IsSExt = Entry.IsZExt = false; 149 } 150 Args.push_back(Entry); 151 } 152 153 if (LC == RTLIB::UNKNOWN_LIBCALL) 154 report_fatal_error("Unsupported library call operation!"); 155 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 156 getPointerTy(DAG.getDataLayout())); 157 158 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 159 TargetLowering::CallLoweringInfo CLI(DAG); 160 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 161 bool zeroExtend = !signExtend; 162 163 if (CallOptions.IsSoften && 164 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 165 signExtend = zeroExtend = false; 166 } 167 168 CLI.setDebugLoc(dl) 169 .setChain(InChain) 170 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 171 .setNoReturn(CallOptions.DoesNotReturn) 172 .setDiscardResult(!CallOptions.IsReturnValueUsed) 173 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 174 .setSExtResult(signExtend) 175 .setZExtResult(zeroExtend); 176 return LowerCallTo(CLI); 177 } 178 179 bool TargetLowering::findOptimalMemOpLowering( 180 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 181 unsigned SrcAS, const AttributeList &FuncAttributes) const { 182 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 183 return false; 184 185 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 186 187 if (VT == MVT::Other) { 188 // Use the largest integer type whose alignment constraints are satisfied. 189 // We only need to check DstAlign here as SrcAlign is always greater or 190 // equal to DstAlign (or zero). 191 VT = MVT::i64; 192 if (Op.isFixedDstAlign()) 193 while ( 194 Op.getDstAlign() < (VT.getSizeInBits() / 8) && 195 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value())) 196 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 197 assert(VT.isInteger()); 198 199 // Find the largest legal integer type. 200 MVT LVT = MVT::i64; 201 while (!isTypeLegal(LVT)) 202 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 203 assert(LVT.isInteger()); 204 205 // If the type we've chosen is larger than the largest legal integer type 206 // then use that instead. 207 if (VT.bitsGT(LVT)) 208 VT = LVT; 209 } 210 211 unsigned NumMemOps = 0; 212 uint64_t Size = Op.size(); 213 while (Size) { 214 unsigned VTSize = VT.getSizeInBits() / 8; 215 while (VTSize > Size) { 216 // For now, only use non-vector load / store's for the left-over pieces. 217 EVT NewVT = VT; 218 unsigned NewVTSize; 219 220 bool Found = false; 221 if (VT.isVector() || VT.isFloatingPoint()) { 222 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 223 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 224 isSafeMemOpType(NewVT.getSimpleVT())) 225 Found = true; 226 else if (NewVT == MVT::i64 && 227 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 228 isSafeMemOpType(MVT::f64)) { 229 // i64 is usually not legal on 32-bit targets, but f64 may be. 230 NewVT = MVT::f64; 231 Found = true; 232 } 233 } 234 235 if (!Found) { 236 do { 237 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 238 if (NewVT == MVT::i8) 239 break; 240 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 241 } 242 NewVTSize = NewVT.getSizeInBits() / 8; 243 244 // If the new VT cannot cover all of the remaining bits, then consider 245 // issuing a (or a pair of) unaligned and overlapping load / store. 246 bool Fast; 247 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 248 allowsMisalignedMemoryAccesses( 249 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0, 250 MachineMemOperand::MONone, &Fast) && 251 Fast) 252 VTSize = Size; 253 else { 254 VT = NewVT; 255 VTSize = NewVTSize; 256 } 257 } 258 259 if (++NumMemOps > Limit) 260 return false; 261 262 MemOps.push_back(VT); 263 Size -= VTSize; 264 } 265 266 return true; 267 } 268 269 /// Soften the operands of a comparison. This code is shared among BR_CC, 270 /// SELECT_CC, and SETCC handlers. 271 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 272 SDValue &NewLHS, SDValue &NewRHS, 273 ISD::CondCode &CCCode, 274 const SDLoc &dl, const SDValue OldLHS, 275 const SDValue OldRHS) const { 276 SDValue Chain; 277 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 278 OldRHS, Chain); 279 } 280 281 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 282 SDValue &NewLHS, SDValue &NewRHS, 283 ISD::CondCode &CCCode, 284 const SDLoc &dl, const SDValue OldLHS, 285 const SDValue OldRHS, 286 SDValue &Chain, 287 bool IsSignaling) const { 288 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 289 // not supporting it. We can update this code when libgcc provides such 290 // functions. 291 292 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 293 && "Unsupported setcc type!"); 294 295 // Expand into one or more soft-fp libcall(s). 296 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 297 bool ShouldInvertCC = false; 298 switch (CCCode) { 299 case ISD::SETEQ: 300 case ISD::SETOEQ: 301 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 302 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 303 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 304 break; 305 case ISD::SETNE: 306 case ISD::SETUNE: 307 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 308 (VT == MVT::f64) ? RTLIB::UNE_F64 : 309 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 310 break; 311 case ISD::SETGE: 312 case ISD::SETOGE: 313 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 314 (VT == MVT::f64) ? RTLIB::OGE_F64 : 315 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 316 break; 317 case ISD::SETLT: 318 case ISD::SETOLT: 319 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 320 (VT == MVT::f64) ? RTLIB::OLT_F64 : 321 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 322 break; 323 case ISD::SETLE: 324 case ISD::SETOLE: 325 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 326 (VT == MVT::f64) ? RTLIB::OLE_F64 : 327 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 328 break; 329 case ISD::SETGT: 330 case ISD::SETOGT: 331 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 332 (VT == MVT::f64) ? RTLIB::OGT_F64 : 333 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 334 break; 335 case ISD::SETO: 336 ShouldInvertCC = true; 337 LLVM_FALLTHROUGH; 338 case ISD::SETUO: 339 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 340 (VT == MVT::f64) ? RTLIB::UO_F64 : 341 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 342 break; 343 case ISD::SETONE: 344 // SETONE = O && UNE 345 ShouldInvertCC = true; 346 LLVM_FALLTHROUGH; 347 case ISD::SETUEQ: 348 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 349 (VT == MVT::f64) ? RTLIB::UO_F64 : 350 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 351 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 352 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 353 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 354 break; 355 default: 356 // Invert CC for unordered comparisons 357 ShouldInvertCC = true; 358 switch (CCCode) { 359 case ISD::SETULT: 360 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 361 (VT == MVT::f64) ? RTLIB::OGE_F64 : 362 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 363 break; 364 case ISD::SETULE: 365 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 366 (VT == MVT::f64) ? RTLIB::OGT_F64 : 367 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 368 break; 369 case ISD::SETUGT: 370 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 371 (VT == MVT::f64) ? RTLIB::OLE_F64 : 372 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 373 break; 374 case ISD::SETUGE: 375 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 376 (VT == MVT::f64) ? RTLIB::OLT_F64 : 377 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 378 break; 379 default: llvm_unreachable("Do not know how to soften this setcc!"); 380 } 381 } 382 383 // Use the target specific return value for comparions lib calls. 384 EVT RetVT = getCmpLibcallReturnType(); 385 SDValue Ops[2] = {NewLHS, NewRHS}; 386 TargetLowering::MakeLibCallOptions CallOptions; 387 EVT OpsVT[2] = { OldLHS.getValueType(), 388 OldRHS.getValueType() }; 389 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 390 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 391 NewLHS = Call.first; 392 NewRHS = DAG.getConstant(0, dl, RetVT); 393 394 CCCode = getCmpLibcallCC(LC1); 395 if (ShouldInvertCC) { 396 assert(RetVT.isInteger()); 397 CCCode = getSetCCInverse(CCCode, RetVT); 398 } 399 400 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 401 // Update Chain. 402 Chain = Call.second; 403 } else { 404 EVT SetCCVT = 405 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 406 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 407 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 408 CCCode = getCmpLibcallCC(LC2); 409 if (ShouldInvertCC) 410 CCCode = getSetCCInverse(CCCode, RetVT); 411 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 412 if (Chain) 413 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 414 Call2.second); 415 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 416 Tmp.getValueType(), Tmp, NewLHS); 417 NewRHS = SDValue(); 418 } 419 } 420 421 /// Return the entry encoding for a jump table in the current function. The 422 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 423 unsigned TargetLowering::getJumpTableEncoding() const { 424 // In non-pic modes, just use the address of a block. 425 if (!isPositionIndependent()) 426 return MachineJumpTableInfo::EK_BlockAddress; 427 428 // In PIC mode, if the target supports a GPRel32 directive, use it. 429 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 430 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 431 432 // Otherwise, use a label difference. 433 return MachineJumpTableInfo::EK_LabelDifference32; 434 } 435 436 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 437 SelectionDAG &DAG) const { 438 // If our PIC model is GP relative, use the global offset table as the base. 439 unsigned JTEncoding = getJumpTableEncoding(); 440 441 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 442 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 443 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 444 445 return Table; 446 } 447 448 /// This returns the relocation base for the given PIC jumptable, the same as 449 /// getPICJumpTableRelocBase, but as an MCExpr. 450 const MCExpr * 451 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 452 unsigned JTI,MCContext &Ctx) const{ 453 // The normal PIC reloc base is the label at the start of the jump table. 454 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 455 } 456 457 bool 458 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 459 const TargetMachine &TM = getTargetMachine(); 460 const GlobalValue *GV = GA->getGlobal(); 461 462 // If the address is not even local to this DSO we will have to load it from 463 // a got and then add the offset. 464 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 465 return false; 466 467 // If the code is position independent we will have to add a base register. 468 if (isPositionIndependent()) 469 return false; 470 471 // Otherwise we can do it. 472 return true; 473 } 474 475 //===----------------------------------------------------------------------===// 476 // Optimization Methods 477 //===----------------------------------------------------------------------===// 478 479 /// If the specified instruction has a constant integer operand and there are 480 /// bits set in that constant that are not demanded, then clear those bits and 481 /// return true. 482 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 483 TargetLoweringOpt &TLO) const { 484 SDLoc DL(Op); 485 unsigned Opcode = Op.getOpcode(); 486 487 // Do target-specific constant optimization. 488 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 489 return TLO.New.getNode(); 490 491 // FIXME: ISD::SELECT, ISD::SELECT_CC 492 switch (Opcode) { 493 default: 494 break; 495 case ISD::XOR: 496 case ISD::AND: 497 case ISD::OR: { 498 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 499 if (!Op1C) 500 return false; 501 502 // If this is a 'not' op, don't touch it because that's a canonical form. 503 const APInt &C = Op1C->getAPIntValue(); 504 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 505 return false; 506 507 if (!C.isSubsetOf(Demanded)) { 508 EVT VT = Op.getValueType(); 509 SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT); 510 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 511 return TLO.CombineTo(Op, NewOp); 512 } 513 514 break; 515 } 516 } 517 518 return false; 519 } 520 521 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 522 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 523 /// generalized for targets with other types of implicit widening casts. 524 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 525 const APInt &Demanded, 526 TargetLoweringOpt &TLO) const { 527 assert(Op.getNumOperands() == 2 && 528 "ShrinkDemandedOp only supports binary operators!"); 529 assert(Op.getNode()->getNumValues() == 1 && 530 "ShrinkDemandedOp only supports nodes with one result!"); 531 532 SelectionDAG &DAG = TLO.DAG; 533 SDLoc dl(Op); 534 535 // Early return, as this function cannot handle vector types. 536 if (Op.getValueType().isVector()) 537 return false; 538 539 // Don't do this if the node has another user, which may require the 540 // full value. 541 if (!Op.getNode()->hasOneUse()) 542 return false; 543 544 // Search for the smallest integer type with free casts to and from 545 // Op's type. For expedience, just check power-of-2 integer types. 546 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 547 unsigned DemandedSize = Demanded.getActiveBits(); 548 unsigned SmallVTBits = DemandedSize; 549 if (!isPowerOf2_32(SmallVTBits)) 550 SmallVTBits = NextPowerOf2(SmallVTBits); 551 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 552 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 553 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 554 TLI.isZExtFree(SmallVT, Op.getValueType())) { 555 // We found a type with free casts. 556 SDValue X = DAG.getNode( 557 Op.getOpcode(), dl, SmallVT, 558 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 559 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 560 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 561 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 562 return TLO.CombineTo(Op, Z); 563 } 564 } 565 return false; 566 } 567 568 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 569 DAGCombinerInfo &DCI) const { 570 SelectionDAG &DAG = DCI.DAG; 571 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 572 !DCI.isBeforeLegalizeOps()); 573 KnownBits Known; 574 575 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 576 if (Simplified) { 577 DCI.AddToWorklist(Op.getNode()); 578 DCI.CommitTargetLoweringOpt(TLO); 579 } 580 return Simplified; 581 } 582 583 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 584 KnownBits &Known, 585 TargetLoweringOpt &TLO, 586 unsigned Depth, 587 bool AssumeSingleUse) const { 588 EVT VT = Op.getValueType(); 589 APInt DemandedElts = VT.isVector() 590 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 591 : APInt(1, 1); 592 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 593 AssumeSingleUse); 594 } 595 596 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 597 // TODO: Under what circumstances can we create nodes? Constant folding? 598 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 599 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 600 SelectionDAG &DAG, unsigned Depth) const { 601 // Limit search depth. 602 if (Depth >= SelectionDAG::MaxRecursionDepth) 603 return SDValue(); 604 605 // Ignore UNDEFs. 606 if (Op.isUndef()) 607 return SDValue(); 608 609 // Not demanding any bits/elts from Op. 610 if (DemandedBits == 0 || DemandedElts == 0) 611 return DAG.getUNDEF(Op.getValueType()); 612 613 unsigned NumElts = DemandedElts.getBitWidth(); 614 KnownBits LHSKnown, RHSKnown; 615 switch (Op.getOpcode()) { 616 case ISD::BITCAST: { 617 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 618 EVT SrcVT = Src.getValueType(); 619 EVT DstVT = Op.getValueType(); 620 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 621 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 622 623 if (NumSrcEltBits == NumDstEltBits) 624 if (SDValue V = SimplifyMultipleUseDemandedBits( 625 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 626 return DAG.getBitcast(DstVT, V); 627 628 // TODO - bigendian once we have test coverage. 629 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 630 DAG.getDataLayout().isLittleEndian()) { 631 unsigned Scale = NumDstEltBits / NumSrcEltBits; 632 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 633 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 634 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 635 for (unsigned i = 0; i != Scale; ++i) { 636 unsigned Offset = i * NumSrcEltBits; 637 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 638 if (!Sub.isNullValue()) { 639 DemandedSrcBits |= Sub; 640 for (unsigned j = 0; j != NumElts; ++j) 641 if (DemandedElts[j]) 642 DemandedSrcElts.setBit((j * Scale) + i); 643 } 644 } 645 646 if (SDValue V = SimplifyMultipleUseDemandedBits( 647 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 648 return DAG.getBitcast(DstVT, V); 649 } 650 651 // TODO - bigendian once we have test coverage. 652 if ((NumSrcEltBits % NumDstEltBits) == 0 && 653 DAG.getDataLayout().isLittleEndian()) { 654 unsigned Scale = NumSrcEltBits / NumDstEltBits; 655 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 656 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 657 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 658 for (unsigned i = 0; i != NumElts; ++i) 659 if (DemandedElts[i]) { 660 unsigned Offset = (i % Scale) * NumDstEltBits; 661 DemandedSrcBits.insertBits(DemandedBits, Offset); 662 DemandedSrcElts.setBit(i / Scale); 663 } 664 665 if (SDValue V = SimplifyMultipleUseDemandedBits( 666 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 667 return DAG.getBitcast(DstVT, V); 668 } 669 670 break; 671 } 672 case ISD::AND: { 673 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 674 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 675 676 // If all of the demanded bits are known 1 on one side, return the other. 677 // These bits cannot contribute to the result of the 'and' in this 678 // context. 679 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 680 return Op.getOperand(0); 681 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 682 return Op.getOperand(1); 683 break; 684 } 685 case ISD::OR: { 686 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 687 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 688 689 // If all of the demanded bits are known zero on one side, return the 690 // other. These bits cannot contribute to the result of the 'or' in this 691 // context. 692 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 693 return Op.getOperand(0); 694 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 695 return Op.getOperand(1); 696 break; 697 } 698 case ISD::XOR: { 699 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 700 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 701 702 // If all of the demanded bits are known zero on one side, return the 703 // other. 704 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 705 return Op.getOperand(0); 706 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 707 return Op.getOperand(1); 708 break; 709 } 710 case ISD::SETCC: { 711 SDValue Op0 = Op.getOperand(0); 712 SDValue Op1 = Op.getOperand(1); 713 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 714 // If (1) we only need the sign-bit, (2) the setcc operands are the same 715 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 716 // -1, we may be able to bypass the setcc. 717 if (DemandedBits.isSignMask() && 718 Op0.getScalarValueSizeInBits() == DemandedBits.getBitWidth() && 719 getBooleanContents(Op0.getValueType()) == 720 BooleanContent::ZeroOrNegativeOneBooleanContent) { 721 // If we're testing X < 0, then this compare isn't needed - just use X! 722 // FIXME: We're limiting to integer types here, but this should also work 723 // if we don't care about FP signed-zero. The use of SETLT with FP means 724 // that we don't care about NaNs. 725 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 726 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 727 return Op0; 728 } 729 break; 730 } 731 case ISD::SIGN_EXTEND_INREG: { 732 // If none of the extended bits are demanded, eliminate the sextinreg. 733 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 734 if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits()) 735 return Op.getOperand(0); 736 break; 737 } 738 case ISD::INSERT_VECTOR_ELT: { 739 // If we don't demand the inserted element, return the base vector. 740 SDValue Vec = Op.getOperand(0); 741 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 742 EVT VecVT = Vec.getValueType(); 743 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 744 !DemandedElts[CIdx->getZExtValue()]) 745 return Vec; 746 break; 747 } 748 case ISD::INSERT_SUBVECTOR: { 749 // If we don't demand the inserted subvector, return the base vector. 750 SDValue Vec = Op.getOperand(0); 751 SDValue Sub = Op.getOperand(1); 752 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 753 unsigned NumVecElts = Vec.getValueType().getVectorNumElements(); 754 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 755 if (CIdx && CIdx->getAPIntValue().ule(NumVecElts - NumSubElts)) 756 if (DemandedElts.extractBits(NumSubElts, CIdx->getZExtValue()) == 0) 757 return Vec; 758 break; 759 } 760 case ISD::VECTOR_SHUFFLE: { 761 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 762 763 // If all the demanded elts are from one operand and are inline, 764 // then we can use the operand directly. 765 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 766 for (unsigned i = 0; i != NumElts; ++i) { 767 int M = ShuffleMask[i]; 768 if (M < 0 || !DemandedElts[i]) 769 continue; 770 AllUndef = false; 771 IdentityLHS &= (M == (int)i); 772 IdentityRHS &= ((M - NumElts) == i); 773 } 774 775 if (AllUndef) 776 return DAG.getUNDEF(Op.getValueType()); 777 if (IdentityLHS) 778 return Op.getOperand(0); 779 if (IdentityRHS) 780 return Op.getOperand(1); 781 break; 782 } 783 default: 784 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 785 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 786 Op, DemandedBits, DemandedElts, DAG, Depth)) 787 return V; 788 break; 789 } 790 return SDValue(); 791 } 792 793 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 794 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 795 unsigned Depth) const { 796 EVT VT = Op.getValueType(); 797 APInt DemandedElts = VT.isVector() 798 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 799 : APInt(1, 1); 800 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 801 Depth); 802 } 803 804 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 805 /// result of Op are ever used downstream. If we can use this information to 806 /// simplify Op, create a new simplified DAG node and return true, returning the 807 /// original and new nodes in Old and New. Otherwise, analyze the expression and 808 /// return a mask of Known bits for the expression (used to simplify the 809 /// caller). The Known bits may only be accurate for those bits in the 810 /// OriginalDemandedBits and OriginalDemandedElts. 811 bool TargetLowering::SimplifyDemandedBits( 812 SDValue Op, const APInt &OriginalDemandedBits, 813 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 814 unsigned Depth, bool AssumeSingleUse) const { 815 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 816 assert(Op.getScalarValueSizeInBits() == BitWidth && 817 "Mask size mismatches value type size!"); 818 819 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 820 assert((!Op.getValueType().isVector() || 821 NumElts == Op.getValueType().getVectorNumElements()) && 822 "Unexpected vector size"); 823 824 APInt DemandedBits = OriginalDemandedBits; 825 APInt DemandedElts = OriginalDemandedElts; 826 SDLoc dl(Op); 827 auto &DL = TLO.DAG.getDataLayout(); 828 829 // Don't know anything. 830 Known = KnownBits(BitWidth); 831 832 // Undef operand. 833 if (Op.isUndef()) 834 return false; 835 836 if (Op.getOpcode() == ISD::Constant) { 837 // We know all of the bits for a constant! 838 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 839 Known.Zero = ~Known.One; 840 return false; 841 } 842 843 // Other users may use these bits. 844 EVT VT = Op.getValueType(); 845 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 846 if (Depth != 0) { 847 // If not at the root, Just compute the Known bits to 848 // simplify things downstream. 849 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 850 return false; 851 } 852 // If this is the root being simplified, allow it to have multiple uses, 853 // just set the DemandedBits/Elts to all bits. 854 DemandedBits = APInt::getAllOnesValue(BitWidth); 855 DemandedElts = APInt::getAllOnesValue(NumElts); 856 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 857 // Not demanding any bits/elts from Op. 858 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 859 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 860 // Limit search depth. 861 return false; 862 } 863 864 KnownBits Known2; 865 switch (Op.getOpcode()) { 866 case ISD::TargetConstant: 867 llvm_unreachable("Can't simplify this node"); 868 case ISD::SCALAR_TO_VECTOR: { 869 if (!DemandedElts[0]) 870 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 871 872 KnownBits SrcKnown; 873 SDValue Src = Op.getOperand(0); 874 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 875 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 876 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 877 return true; 878 879 // Upper elements are undef, so only get the knownbits if we just demand 880 // the bottom element. 881 if (DemandedElts == 1) 882 Known = SrcKnown.anyextOrTrunc(BitWidth); 883 break; 884 } 885 case ISD::BUILD_VECTOR: 886 // Collect the known bits that are shared by every demanded element. 887 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 888 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 889 return false; // Don't fall through, will infinitely loop. 890 case ISD::LOAD: { 891 LoadSDNode *LD = cast<LoadSDNode>(Op); 892 if (getTargetConstantFromLoad(LD)) { 893 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 894 return false; // Don't fall through, will infinitely loop. 895 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 896 // If this is a ZEXTLoad and we are looking at the loaded value. 897 EVT MemVT = LD->getMemoryVT(); 898 unsigned MemBits = MemVT.getScalarSizeInBits(); 899 Known.Zero.setBitsFrom(MemBits); 900 return false; // Don't fall through, will infinitely loop. 901 } 902 break; 903 } 904 case ISD::INSERT_VECTOR_ELT: { 905 SDValue Vec = Op.getOperand(0); 906 SDValue Scl = Op.getOperand(1); 907 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 908 EVT VecVT = Vec.getValueType(); 909 910 // If index isn't constant, assume we need all vector elements AND the 911 // inserted element. 912 APInt DemandedVecElts(DemandedElts); 913 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 914 unsigned Idx = CIdx->getZExtValue(); 915 DemandedVecElts.clearBit(Idx); 916 917 // Inserted element is not required. 918 if (!DemandedElts[Idx]) 919 return TLO.CombineTo(Op, Vec); 920 } 921 922 KnownBits KnownScl; 923 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 924 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 925 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 926 return true; 927 928 Known = KnownScl.anyextOrTrunc(BitWidth); 929 930 KnownBits KnownVec; 931 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 932 Depth + 1)) 933 return true; 934 935 if (!!DemandedVecElts) { 936 Known.One &= KnownVec.One; 937 Known.Zero &= KnownVec.Zero; 938 } 939 940 return false; 941 } 942 case ISD::INSERT_SUBVECTOR: { 943 SDValue Base = Op.getOperand(0); 944 SDValue Sub = Op.getOperand(1); 945 EVT SubVT = Sub.getValueType(); 946 unsigned NumSubElts = SubVT.getVectorNumElements(); 947 948 // If index isn't constant, assume we need the original demanded base 949 // elements and ALL the inserted subvector elements. 950 APInt BaseElts = DemandedElts; 951 APInt SubElts = APInt::getAllOnesValue(NumSubElts); 952 if (isa<ConstantSDNode>(Op.getOperand(2))) { 953 const APInt &Idx = Op.getConstantOperandAPInt(2); 954 if (Idx.ule(NumElts - NumSubElts)) { 955 unsigned SubIdx = Idx.getZExtValue(); 956 SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 957 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 958 } 959 } 960 961 KnownBits KnownSub, KnownBase; 962 if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO, 963 Depth + 1)) 964 return true; 965 if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO, 966 Depth + 1)) 967 return true; 968 969 Known.Zero.setAllBits(); 970 Known.One.setAllBits(); 971 if (!!SubElts) { 972 Known.One &= KnownSub.One; 973 Known.Zero &= KnownSub.Zero; 974 } 975 if (!!BaseElts) { 976 Known.One &= KnownBase.One; 977 Known.Zero &= KnownBase.Zero; 978 } 979 980 // Attempt to avoid multi-use src if we don't need anything from it. 981 if (!DemandedBits.isAllOnesValue() || !SubElts.isAllOnesValue() || 982 !BaseElts.isAllOnesValue()) { 983 SDValue NewSub = SimplifyMultipleUseDemandedBits( 984 Sub, DemandedBits, SubElts, TLO.DAG, Depth + 1); 985 SDValue NewBase = SimplifyMultipleUseDemandedBits( 986 Base, DemandedBits, BaseElts, TLO.DAG, Depth + 1); 987 if (NewSub || NewBase) { 988 NewSub = NewSub ? NewSub : Sub; 989 NewBase = NewBase ? NewBase : Base; 990 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewBase, NewSub, 991 Op.getOperand(2)); 992 return TLO.CombineTo(Op, NewOp); 993 } 994 } 995 break; 996 } 997 case ISD::EXTRACT_SUBVECTOR: { 998 // If index isn't constant, assume we need all the source vector elements. 999 SDValue Src = Op.getOperand(0); 1000 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 1001 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1002 APInt SrcElts = APInt::getAllOnesValue(NumSrcElts); 1003 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 1004 // Offset the demanded elts by the subvector index. 1005 uint64_t Idx = SubIdx->getZExtValue(); 1006 SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1007 } 1008 if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1)) 1009 return true; 1010 1011 // Attempt to avoid multi-use src if we don't need anything from it. 1012 if (!DemandedBits.isAllOnesValue() || !SrcElts.isAllOnesValue()) { 1013 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1014 Src, DemandedBits, SrcElts, TLO.DAG, Depth + 1); 1015 if (DemandedSrc) { 1016 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1017 Op.getOperand(1)); 1018 return TLO.CombineTo(Op, NewOp); 1019 } 1020 } 1021 break; 1022 } 1023 case ISD::CONCAT_VECTORS: { 1024 Known.Zero.setAllBits(); 1025 Known.One.setAllBits(); 1026 EVT SubVT = Op.getOperand(0).getValueType(); 1027 unsigned NumSubVecs = Op.getNumOperands(); 1028 unsigned NumSubElts = SubVT.getVectorNumElements(); 1029 for (unsigned i = 0; i != NumSubVecs; ++i) { 1030 APInt DemandedSubElts = 1031 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1032 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1033 Known2, TLO, Depth + 1)) 1034 return true; 1035 // Known bits are shared by every demanded subvector element. 1036 if (!!DemandedSubElts) { 1037 Known.One &= Known2.One; 1038 Known.Zero &= Known2.Zero; 1039 } 1040 } 1041 break; 1042 } 1043 case ISD::VECTOR_SHUFFLE: { 1044 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1045 1046 // Collect demanded elements from shuffle operands.. 1047 APInt DemandedLHS(NumElts, 0); 1048 APInt DemandedRHS(NumElts, 0); 1049 for (unsigned i = 0; i != NumElts; ++i) { 1050 if (!DemandedElts[i]) 1051 continue; 1052 int M = ShuffleMask[i]; 1053 if (M < 0) { 1054 // For UNDEF elements, we don't know anything about the common state of 1055 // the shuffle result. 1056 DemandedLHS.clearAllBits(); 1057 DemandedRHS.clearAllBits(); 1058 break; 1059 } 1060 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1061 if (M < (int)NumElts) 1062 DemandedLHS.setBit(M); 1063 else 1064 DemandedRHS.setBit(M - NumElts); 1065 } 1066 1067 if (!!DemandedLHS || !!DemandedRHS) { 1068 SDValue Op0 = Op.getOperand(0); 1069 SDValue Op1 = Op.getOperand(1); 1070 1071 Known.Zero.setAllBits(); 1072 Known.One.setAllBits(); 1073 if (!!DemandedLHS) { 1074 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1075 Depth + 1)) 1076 return true; 1077 Known.One &= Known2.One; 1078 Known.Zero &= Known2.Zero; 1079 } 1080 if (!!DemandedRHS) { 1081 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1082 Depth + 1)) 1083 return true; 1084 Known.One &= Known2.One; 1085 Known.Zero &= Known2.Zero; 1086 } 1087 1088 // Attempt to avoid multi-use ops if we don't need anything from them. 1089 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1090 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1091 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1092 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1093 if (DemandedOp0 || DemandedOp1) { 1094 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1095 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1096 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1097 return TLO.CombineTo(Op, NewOp); 1098 } 1099 } 1100 break; 1101 } 1102 case ISD::AND: { 1103 SDValue Op0 = Op.getOperand(0); 1104 SDValue Op1 = Op.getOperand(1); 1105 1106 // If the RHS is a constant, check to see if the LHS would be zero without 1107 // using the bits from the RHS. Below, we use knowledge about the RHS to 1108 // simplify the LHS, here we're using information from the LHS to simplify 1109 // the RHS. 1110 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1111 // Do not increment Depth here; that can cause an infinite loop. 1112 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1113 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1114 if ((LHSKnown.Zero & DemandedBits) == 1115 (~RHSC->getAPIntValue() & DemandedBits)) 1116 return TLO.CombineTo(Op, Op0); 1117 1118 // If any of the set bits in the RHS are known zero on the LHS, shrink 1119 // the constant. 1120 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 1121 return true; 1122 1123 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1124 // constant, but if this 'and' is only clearing bits that were just set by 1125 // the xor, then this 'and' can be eliminated by shrinking the mask of 1126 // the xor. For example, for a 32-bit X: 1127 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1128 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1129 LHSKnown.One == ~RHSC->getAPIntValue()) { 1130 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1131 return TLO.CombineTo(Op, Xor); 1132 } 1133 } 1134 1135 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1136 Depth + 1)) 1137 return true; 1138 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1139 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1140 Known2, TLO, Depth + 1)) 1141 return true; 1142 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1143 1144 // Attempt to avoid multi-use ops if we don't need anything from them. 1145 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1146 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1147 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1148 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1149 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1150 if (DemandedOp0 || DemandedOp1) { 1151 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1152 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1153 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1154 return TLO.CombineTo(Op, NewOp); 1155 } 1156 } 1157 1158 // If all of the demanded bits are known one on one side, return the other. 1159 // These bits cannot contribute to the result of the 'and'. 1160 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1161 return TLO.CombineTo(Op, Op0); 1162 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1163 return TLO.CombineTo(Op, Op1); 1164 // If all of the demanded bits in the inputs are known zeros, return zero. 1165 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1166 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1167 // If the RHS is a constant, see if we can simplify it. 1168 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 1169 return true; 1170 // If the operation can be done in a smaller type, do so. 1171 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1172 return true; 1173 1174 Known &= Known2; 1175 break; 1176 } 1177 case ISD::OR: { 1178 SDValue Op0 = Op.getOperand(0); 1179 SDValue Op1 = Op.getOperand(1); 1180 1181 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1182 Depth + 1)) 1183 return true; 1184 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1185 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1186 Known2, TLO, Depth + 1)) 1187 return true; 1188 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1189 1190 // Attempt to avoid multi-use ops if we don't need anything from them. 1191 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1192 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1193 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1194 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1195 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1196 if (DemandedOp0 || DemandedOp1) { 1197 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1198 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1199 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1200 return TLO.CombineTo(Op, NewOp); 1201 } 1202 } 1203 1204 // If all of the demanded bits are known zero on one side, return the other. 1205 // These bits cannot contribute to the result of the 'or'. 1206 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1207 return TLO.CombineTo(Op, Op0); 1208 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1209 return TLO.CombineTo(Op, Op1); 1210 // If the RHS is a constant, see if we can simplify it. 1211 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1212 return true; 1213 // If the operation can be done in a smaller type, do so. 1214 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1215 return true; 1216 1217 Known |= Known2; 1218 break; 1219 } 1220 case ISD::XOR: { 1221 SDValue Op0 = Op.getOperand(0); 1222 SDValue Op1 = Op.getOperand(1); 1223 1224 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1225 Depth + 1)) 1226 return true; 1227 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1228 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1229 Depth + 1)) 1230 return true; 1231 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1232 1233 // Attempt to avoid multi-use ops if we don't need anything from them. 1234 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1235 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1236 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1237 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1238 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1239 if (DemandedOp0 || DemandedOp1) { 1240 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1241 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1242 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1243 return TLO.CombineTo(Op, NewOp); 1244 } 1245 } 1246 1247 // If all of the demanded bits are known zero on one side, return the other. 1248 // These bits cannot contribute to the result of the 'xor'. 1249 if (DemandedBits.isSubsetOf(Known.Zero)) 1250 return TLO.CombineTo(Op, Op0); 1251 if (DemandedBits.isSubsetOf(Known2.Zero)) 1252 return TLO.CombineTo(Op, Op1); 1253 // If the operation can be done in a smaller type, do so. 1254 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1255 return true; 1256 1257 // If all of the unknown bits are known to be zero on one side or the other 1258 // (but not both) turn this into an *inclusive* or. 1259 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1260 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1261 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1262 1263 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 1264 // If one side is a constant, and all of the known set bits on the other 1265 // side are also set in the constant, turn this into an AND, as we know 1266 // the bits will be cleared. 1267 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1268 // NB: it is okay if more bits are known than are requested 1269 if (C->getAPIntValue() == Known2.One) { 1270 SDValue ANDC = 1271 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1272 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1273 } 1274 1275 // If the RHS is a constant, see if we can change it. Don't alter a -1 1276 // constant because that's a 'not' op, and that is better for combining 1277 // and codegen. 1278 if (!C->isAllOnesValue()) { 1279 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 1280 // We're flipping all demanded bits. Flip the undemanded bits too. 1281 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1282 return TLO.CombineTo(Op, New); 1283 } 1284 // If we can't turn this into a 'not', try to shrink the constant. 1285 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1286 return true; 1287 } 1288 } 1289 1290 Known ^= Known2; 1291 break; 1292 } 1293 case ISD::SELECT: 1294 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1295 Depth + 1)) 1296 return true; 1297 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1298 Depth + 1)) 1299 return true; 1300 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1301 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1302 1303 // If the operands are constants, see if we can simplify them. 1304 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1305 return true; 1306 1307 // Only known if known in both the LHS and RHS. 1308 Known.One &= Known2.One; 1309 Known.Zero &= Known2.Zero; 1310 break; 1311 case ISD::SELECT_CC: 1312 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1313 Depth + 1)) 1314 return true; 1315 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1316 Depth + 1)) 1317 return true; 1318 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1319 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1320 1321 // If the operands are constants, see if we can simplify them. 1322 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1323 return true; 1324 1325 // Only known if known in both the LHS and RHS. 1326 Known.One &= Known2.One; 1327 Known.Zero &= Known2.Zero; 1328 break; 1329 case ISD::SETCC: { 1330 SDValue Op0 = Op.getOperand(0); 1331 SDValue Op1 = Op.getOperand(1); 1332 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1333 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1334 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1335 // -1, we may be able to bypass the setcc. 1336 if (DemandedBits.isSignMask() && 1337 Op0.getScalarValueSizeInBits() == BitWidth && 1338 getBooleanContents(Op0.getValueType()) == 1339 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1340 // If we're testing X < 0, then this compare isn't needed - just use X! 1341 // FIXME: We're limiting to integer types here, but this should also work 1342 // if we don't care about FP signed-zero. The use of SETLT with FP means 1343 // that we don't care about NaNs. 1344 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1345 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1346 return TLO.CombineTo(Op, Op0); 1347 1348 // TODO: Should we check for other forms of sign-bit comparisons? 1349 // Examples: X <= -1, X >= 0 1350 } 1351 if (getBooleanContents(Op0.getValueType()) == 1352 TargetLowering::ZeroOrOneBooleanContent && 1353 BitWidth > 1) 1354 Known.Zero.setBitsFrom(1); 1355 break; 1356 } 1357 case ISD::SHL: { 1358 SDValue Op0 = Op.getOperand(0); 1359 SDValue Op1 = Op.getOperand(1); 1360 EVT ShiftVT = Op1.getValueType(); 1361 1362 if (const APInt *SA = 1363 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1364 unsigned ShAmt = SA->getZExtValue(); 1365 if (ShAmt == 0) 1366 return TLO.CombineTo(Op, Op0); 1367 1368 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1369 // single shift. We can do this if the bottom bits (which are shifted 1370 // out) are never demanded. 1371 // TODO - support non-uniform vector amounts. 1372 if (Op0.getOpcode() == ISD::SRL) { 1373 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1374 if (const APInt *SA2 = 1375 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1376 if (SA2->ult(BitWidth)) { 1377 unsigned C1 = SA2->getZExtValue(); 1378 unsigned Opc = ISD::SHL; 1379 int Diff = ShAmt - C1; 1380 if (Diff < 0) { 1381 Diff = -Diff; 1382 Opc = ISD::SRL; 1383 } 1384 1385 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1386 return TLO.CombineTo( 1387 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1388 } 1389 } 1390 } 1391 } 1392 1393 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1394 // are not demanded. This will likely allow the anyext to be folded away. 1395 // TODO - support non-uniform vector amounts. 1396 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1397 SDValue InnerOp = Op0.getOperand(0); 1398 EVT InnerVT = InnerOp.getValueType(); 1399 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1400 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1401 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1402 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1403 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1404 ShTy = InnerVT; 1405 SDValue NarrowShl = 1406 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1407 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1408 return TLO.CombineTo( 1409 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1410 } 1411 1412 // Repeat the SHL optimization above in cases where an extension 1413 // intervenes: (shl (anyext (shr x, c1)), c2) to 1414 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1415 // aren't demanded (as above) and that the shifted upper c1 bits of 1416 // x aren't demanded. 1417 // TODO - support non-uniform vector amounts. 1418 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1419 InnerOp.hasOneUse()) { 1420 if (const APInt *SA2 = 1421 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1422 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 1423 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1424 DemandedBits.getActiveBits() <= 1425 (InnerBits - InnerShAmt + ShAmt) && 1426 DemandedBits.countTrailingZeros() >= ShAmt) { 1427 SDValue NewSA = 1428 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1429 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1430 InnerOp.getOperand(0)); 1431 return TLO.CombineTo( 1432 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1433 } 1434 } 1435 } 1436 } 1437 1438 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1439 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1440 Depth + 1)) 1441 return true; 1442 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1443 Known.Zero <<= ShAmt; 1444 Known.One <<= ShAmt; 1445 // low bits known zero. 1446 Known.Zero.setLowBits(ShAmt); 1447 1448 // Try shrinking the operation as long as the shift amount will still be 1449 // in range. 1450 if ((ShAmt < DemandedBits.getActiveBits()) && 1451 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1452 return true; 1453 } 1454 break; 1455 } 1456 case ISD::SRL: { 1457 SDValue Op0 = Op.getOperand(0); 1458 SDValue Op1 = Op.getOperand(1); 1459 EVT ShiftVT = Op1.getValueType(); 1460 1461 if (const APInt *SA = 1462 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1463 unsigned ShAmt = SA->getZExtValue(); 1464 if (ShAmt == 0) 1465 return TLO.CombineTo(Op, Op0); 1466 1467 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1468 // single shift. We can do this if the top bits (which are shifted out) 1469 // are never demanded. 1470 // TODO - support non-uniform vector amounts. 1471 if (Op0.getOpcode() == ISD::SHL) { 1472 if (const APInt *SA2 = 1473 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1474 if (!DemandedBits.intersects( 1475 APInt::getHighBitsSet(BitWidth, ShAmt))) { 1476 if (SA2->ult(BitWidth)) { 1477 unsigned C1 = SA2->getZExtValue(); 1478 unsigned Opc = ISD::SRL; 1479 int Diff = ShAmt - C1; 1480 if (Diff < 0) { 1481 Diff = -Diff; 1482 Opc = ISD::SHL; 1483 } 1484 1485 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1486 return TLO.CombineTo( 1487 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1488 } 1489 } 1490 } 1491 } 1492 1493 APInt InDemandedMask = (DemandedBits << ShAmt); 1494 1495 // If the shift is exact, then it does demand the low bits (and knows that 1496 // they are zero). 1497 if (Op->getFlags().hasExact()) 1498 InDemandedMask.setLowBits(ShAmt); 1499 1500 // Compute the new bits that are at the top now. 1501 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1502 Depth + 1)) 1503 return true; 1504 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1505 Known.Zero.lshrInPlace(ShAmt); 1506 Known.One.lshrInPlace(ShAmt); 1507 // High bits known zero. 1508 Known.Zero.setHighBits(ShAmt); 1509 } 1510 break; 1511 } 1512 case ISD::SRA: { 1513 SDValue Op0 = Op.getOperand(0); 1514 SDValue Op1 = Op.getOperand(1); 1515 EVT ShiftVT = Op1.getValueType(); 1516 1517 // If we only want bits that already match the signbit then we don't need 1518 // to shift. 1519 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1520 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1521 NumHiDemandedBits) 1522 return TLO.CombineTo(Op, Op0); 1523 1524 // If this is an arithmetic shift right and only the low-bit is set, we can 1525 // always convert this into a logical shr, even if the shift amount is 1526 // variable. The low bit of the shift cannot be an input sign bit unless 1527 // the shift amount is >= the size of the datatype, which is undefined. 1528 if (DemandedBits.isOneValue()) 1529 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1530 1531 if (const APInt *SA = 1532 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1533 unsigned ShAmt = SA->getZExtValue(); 1534 if (ShAmt == 0) 1535 return TLO.CombineTo(Op, Op0); 1536 1537 APInt InDemandedMask = (DemandedBits << ShAmt); 1538 1539 // If the shift is exact, then it does demand the low bits (and knows that 1540 // they are zero). 1541 if (Op->getFlags().hasExact()) 1542 InDemandedMask.setLowBits(ShAmt); 1543 1544 // If any of the demanded bits are produced by the sign extension, we also 1545 // demand the input sign bit. 1546 if (DemandedBits.countLeadingZeros() < ShAmt) 1547 InDemandedMask.setSignBit(); 1548 1549 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1550 Depth + 1)) 1551 return true; 1552 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1553 Known.Zero.lshrInPlace(ShAmt); 1554 Known.One.lshrInPlace(ShAmt); 1555 1556 // If the input sign bit is known to be zero, or if none of the top bits 1557 // are demanded, turn this into an unsigned shift right. 1558 if (Known.Zero[BitWidth - ShAmt - 1] || 1559 DemandedBits.countLeadingZeros() >= ShAmt) { 1560 SDNodeFlags Flags; 1561 Flags.setExact(Op->getFlags().hasExact()); 1562 return TLO.CombineTo( 1563 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1564 } 1565 1566 int Log2 = DemandedBits.exactLogBase2(); 1567 if (Log2 >= 0) { 1568 // The bit must come from the sign. 1569 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1570 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1571 } 1572 1573 if (Known.One[BitWidth - ShAmt - 1]) 1574 // New bits are known one. 1575 Known.One.setHighBits(ShAmt); 1576 1577 // Attempt to avoid multi-use ops if we don't need anything from them. 1578 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1579 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1580 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1581 if (DemandedOp0) { 1582 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1583 return TLO.CombineTo(Op, NewOp); 1584 } 1585 } 1586 } 1587 break; 1588 } 1589 case ISD::FSHL: 1590 case ISD::FSHR: { 1591 SDValue Op0 = Op.getOperand(0); 1592 SDValue Op1 = Op.getOperand(1); 1593 SDValue Op2 = Op.getOperand(2); 1594 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1595 1596 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1597 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1598 1599 // For fshl, 0-shift returns the 1st arg. 1600 // For fshr, 0-shift returns the 2nd arg. 1601 if (Amt == 0) { 1602 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1603 Known, TLO, Depth + 1)) 1604 return true; 1605 break; 1606 } 1607 1608 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1609 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1610 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1611 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1612 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1613 Depth + 1)) 1614 return true; 1615 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1616 Depth + 1)) 1617 return true; 1618 1619 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1620 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1621 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1622 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1623 Known.One |= Known2.One; 1624 Known.Zero |= Known2.Zero; 1625 } 1626 1627 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1628 if (isPowerOf2_32(BitWidth)) { 1629 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1630 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1631 Known2, TLO, Depth + 1)) 1632 return true; 1633 } 1634 break; 1635 } 1636 case ISD::ROTL: 1637 case ISD::ROTR: { 1638 SDValue Op0 = Op.getOperand(0); 1639 SDValue Op1 = Op.getOperand(1); 1640 1641 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1642 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1643 return TLO.CombineTo(Op, Op0); 1644 1645 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1646 if (isPowerOf2_32(BitWidth)) { 1647 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1648 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1649 Depth + 1)) 1650 return true; 1651 } 1652 break; 1653 } 1654 case ISD::BITREVERSE: { 1655 SDValue Src = Op.getOperand(0); 1656 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1657 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1658 Depth + 1)) 1659 return true; 1660 Known.One = Known2.One.reverseBits(); 1661 Known.Zero = Known2.Zero.reverseBits(); 1662 break; 1663 } 1664 case ISD::BSWAP: { 1665 SDValue Src = Op.getOperand(0); 1666 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1667 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1668 Depth + 1)) 1669 return true; 1670 Known.One = Known2.One.byteSwap(); 1671 Known.Zero = Known2.Zero.byteSwap(); 1672 break; 1673 } 1674 case ISD::SIGN_EXTEND_INREG: { 1675 SDValue Op0 = Op.getOperand(0); 1676 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1677 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1678 1679 // If we only care about the highest bit, don't bother shifting right. 1680 if (DemandedBits.isSignMask()) { 1681 unsigned NumSignBits = 1682 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1683 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1684 // However if the input is already sign extended we expect the sign 1685 // extension to be dropped altogether later and do not simplify. 1686 if (!AlreadySignExtended) { 1687 // Compute the correct shift amount type, which must be getShiftAmountTy 1688 // for scalar types after legalization. 1689 EVT ShiftAmtTy = VT; 1690 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1691 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1692 1693 SDValue ShiftAmt = 1694 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1695 return TLO.CombineTo(Op, 1696 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1697 } 1698 } 1699 1700 // If none of the extended bits are demanded, eliminate the sextinreg. 1701 if (DemandedBits.getActiveBits() <= ExVTBits) 1702 return TLO.CombineTo(Op, Op0); 1703 1704 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1705 1706 // Since the sign extended bits are demanded, we know that the sign 1707 // bit is demanded. 1708 InputDemandedBits.setBit(ExVTBits - 1); 1709 1710 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1711 return true; 1712 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1713 1714 // If the sign bit of the input is known set or clear, then we know the 1715 // top bits of the result. 1716 1717 // If the input sign bit is known zero, convert this into a zero extension. 1718 if (Known.Zero[ExVTBits - 1]) 1719 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 1720 1721 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1722 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1723 Known.One.setBitsFrom(ExVTBits); 1724 Known.Zero &= Mask; 1725 } else { // Input sign bit unknown 1726 Known.Zero &= Mask; 1727 Known.One &= Mask; 1728 } 1729 break; 1730 } 1731 case ISD::BUILD_PAIR: { 1732 EVT HalfVT = Op.getOperand(0).getValueType(); 1733 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1734 1735 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1736 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1737 1738 KnownBits KnownLo, KnownHi; 1739 1740 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1741 return true; 1742 1743 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1744 return true; 1745 1746 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1747 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1748 1749 Known.One = KnownLo.One.zext(BitWidth) | 1750 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1751 break; 1752 } 1753 case ISD::ZERO_EXTEND: 1754 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1755 SDValue Src = Op.getOperand(0); 1756 EVT SrcVT = Src.getValueType(); 1757 unsigned InBits = SrcVT.getScalarSizeInBits(); 1758 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1759 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1760 1761 // If none of the top bits are demanded, convert this into an any_extend. 1762 if (DemandedBits.getActiveBits() <= InBits) { 1763 // If we only need the non-extended bits of the bottom element 1764 // then we can just bitcast to the result. 1765 if (IsVecInReg && DemandedElts == 1 && 1766 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1767 TLO.DAG.getDataLayout().isLittleEndian()) 1768 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1769 1770 unsigned Opc = 1771 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1772 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1773 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1774 } 1775 1776 APInt InDemandedBits = DemandedBits.trunc(InBits); 1777 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1778 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1779 Depth + 1)) 1780 return true; 1781 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1782 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1783 Known = Known.zext(BitWidth); 1784 break; 1785 } 1786 case ISD::SIGN_EXTEND: 1787 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1788 SDValue Src = Op.getOperand(0); 1789 EVT SrcVT = Src.getValueType(); 1790 unsigned InBits = SrcVT.getScalarSizeInBits(); 1791 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1792 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1793 1794 // If none of the top bits are demanded, convert this into an any_extend. 1795 if (DemandedBits.getActiveBits() <= InBits) { 1796 // If we only need the non-extended bits of the bottom element 1797 // then we can just bitcast to the result. 1798 if (IsVecInReg && DemandedElts == 1 && 1799 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1800 TLO.DAG.getDataLayout().isLittleEndian()) 1801 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1802 1803 unsigned Opc = 1804 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1805 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1806 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1807 } 1808 1809 APInt InDemandedBits = DemandedBits.trunc(InBits); 1810 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1811 1812 // Since some of the sign extended bits are demanded, we know that the sign 1813 // bit is demanded. 1814 InDemandedBits.setBit(InBits - 1); 1815 1816 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1817 Depth + 1)) 1818 return true; 1819 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1820 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1821 1822 // If the sign bit is known one, the top bits match. 1823 Known = Known.sext(BitWidth); 1824 1825 // If the sign bit is known zero, convert this to a zero extend. 1826 if (Known.isNonNegative()) { 1827 unsigned Opc = 1828 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1829 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1830 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1831 } 1832 break; 1833 } 1834 case ISD::ANY_EXTEND: 1835 case ISD::ANY_EXTEND_VECTOR_INREG: { 1836 SDValue Src = Op.getOperand(0); 1837 EVT SrcVT = Src.getValueType(); 1838 unsigned InBits = SrcVT.getScalarSizeInBits(); 1839 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1840 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1841 1842 // If we only need the bottom element then we can just bitcast. 1843 // TODO: Handle ANY_EXTEND? 1844 if (IsVecInReg && DemandedElts == 1 && 1845 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1846 TLO.DAG.getDataLayout().isLittleEndian()) 1847 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1848 1849 APInt InDemandedBits = DemandedBits.trunc(InBits); 1850 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1851 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1852 Depth + 1)) 1853 return true; 1854 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1855 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1856 Known = Known.anyext(BitWidth); 1857 1858 // Attempt to avoid multi-use ops if we don't need anything from them. 1859 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1860 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1861 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1862 break; 1863 } 1864 case ISD::TRUNCATE: { 1865 SDValue Src = Op.getOperand(0); 1866 1867 // Simplify the input, using demanded bit information, and compute the known 1868 // zero/one bits live out. 1869 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1870 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1871 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1872 return true; 1873 Known = Known.trunc(BitWidth); 1874 1875 // Attempt to avoid multi-use ops if we don't need anything from them. 1876 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1877 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 1878 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 1879 1880 // If the input is only used by this truncate, see if we can shrink it based 1881 // on the known demanded bits. 1882 if (Src.getNode()->hasOneUse()) { 1883 switch (Src.getOpcode()) { 1884 default: 1885 break; 1886 case ISD::SRL: 1887 // Shrink SRL by a constant if none of the high bits shifted in are 1888 // demanded. 1889 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1890 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1891 // undesirable. 1892 break; 1893 1894 SDValue ShAmt = Src.getOperand(1); 1895 auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt); 1896 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 1897 break; 1898 uint64_t ShVal = ShAmtC->getZExtValue(); 1899 1900 APInt HighBits = 1901 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 1902 HighBits.lshrInPlace(ShVal); 1903 HighBits = HighBits.trunc(BitWidth); 1904 1905 if (!(HighBits & DemandedBits)) { 1906 // None of the shifted in bits are needed. Add a truncate of the 1907 // shift input, then shift it. 1908 if (TLO.LegalTypes()) 1909 ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1910 SDValue NewTrunc = 1911 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1912 return TLO.CombineTo( 1913 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt)); 1914 } 1915 break; 1916 } 1917 } 1918 1919 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1920 break; 1921 } 1922 case ISD::AssertZext: { 1923 // AssertZext demands all of the high bits, plus any of the low bits 1924 // demanded by its users. 1925 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1926 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1927 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 1928 TLO, Depth + 1)) 1929 return true; 1930 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1931 1932 Known.Zero |= ~InMask; 1933 break; 1934 } 1935 case ISD::EXTRACT_VECTOR_ELT: { 1936 SDValue Src = Op.getOperand(0); 1937 SDValue Idx = Op.getOperand(1); 1938 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1939 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 1940 1941 // Demand the bits from every vector element without a constant index. 1942 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 1943 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 1944 if (CIdx->getAPIntValue().ult(NumSrcElts)) 1945 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 1946 1947 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 1948 // anything about the extended bits. 1949 APInt DemandedSrcBits = DemandedBits; 1950 if (BitWidth > EltBitWidth) 1951 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 1952 1953 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 1954 Depth + 1)) 1955 return true; 1956 1957 // Attempt to avoid multi-use ops if we don't need anything from them. 1958 if (!DemandedSrcBits.isAllOnesValue() || 1959 !DemandedSrcElts.isAllOnesValue()) { 1960 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1961 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 1962 SDValue NewOp = 1963 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 1964 return TLO.CombineTo(Op, NewOp); 1965 } 1966 } 1967 1968 Known = Known2; 1969 if (BitWidth > EltBitWidth) 1970 Known = Known.anyext(BitWidth); 1971 break; 1972 } 1973 case ISD::BITCAST: { 1974 SDValue Src = Op.getOperand(0); 1975 EVT SrcVT = Src.getValueType(); 1976 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 1977 1978 // If this is an FP->Int bitcast and if the sign bit is the only 1979 // thing demanded, turn this into a FGETSIGN. 1980 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 1981 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 1982 SrcVT.isFloatingPoint()) { 1983 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1984 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1985 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 1986 SrcVT != MVT::f128) { 1987 // Cannot eliminate/lower SHL for f128 yet. 1988 EVT Ty = OpVTLegal ? VT : MVT::i32; 1989 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1990 // place. We expect the SHL to be eliminated by other optimizations. 1991 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 1992 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1993 if (!OpVTLegal && OpVTSizeInBits > 32) 1994 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 1995 unsigned ShVal = Op.getValueSizeInBits() - 1; 1996 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 1997 return TLO.CombineTo(Op, 1998 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 1999 } 2000 } 2001 2002 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2003 // Demand the elt/bit if any of the original elts/bits are demanded. 2004 // TODO - bigendian once we have test coverage. 2005 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 2006 TLO.DAG.getDataLayout().isLittleEndian()) { 2007 unsigned Scale = BitWidth / NumSrcEltBits; 2008 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2009 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2010 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2011 for (unsigned i = 0; i != Scale; ++i) { 2012 unsigned Offset = i * NumSrcEltBits; 2013 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 2014 if (!Sub.isNullValue()) { 2015 DemandedSrcBits |= Sub; 2016 for (unsigned j = 0; j != NumElts; ++j) 2017 if (DemandedElts[j]) 2018 DemandedSrcElts.setBit((j * Scale) + i); 2019 } 2020 } 2021 2022 APInt KnownSrcUndef, KnownSrcZero; 2023 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2024 KnownSrcZero, TLO, Depth + 1)) 2025 return true; 2026 2027 KnownBits KnownSrcBits; 2028 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2029 KnownSrcBits, TLO, Depth + 1)) 2030 return true; 2031 } else if ((NumSrcEltBits % BitWidth) == 0 && 2032 TLO.DAG.getDataLayout().isLittleEndian()) { 2033 unsigned Scale = NumSrcEltBits / BitWidth; 2034 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2035 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2036 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2037 for (unsigned i = 0; i != NumElts; ++i) 2038 if (DemandedElts[i]) { 2039 unsigned Offset = (i % Scale) * BitWidth; 2040 DemandedSrcBits.insertBits(DemandedBits, Offset); 2041 DemandedSrcElts.setBit(i / Scale); 2042 } 2043 2044 if (SrcVT.isVector()) { 2045 APInt KnownSrcUndef, KnownSrcZero; 2046 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2047 KnownSrcZero, TLO, Depth + 1)) 2048 return true; 2049 } 2050 2051 KnownBits KnownSrcBits; 2052 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2053 KnownSrcBits, TLO, Depth + 1)) 2054 return true; 2055 } 2056 2057 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2058 // recursive call where Known may be useful to the caller. 2059 if (Depth > 0) { 2060 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2061 return false; 2062 } 2063 break; 2064 } 2065 case ISD::ADD: 2066 case ISD::MUL: 2067 case ISD::SUB: { 2068 // Add, Sub, and Mul don't demand any bits in positions beyond that 2069 // of the highest bit demanded of them. 2070 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2071 SDNodeFlags Flags = Op.getNode()->getFlags(); 2072 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2073 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2074 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2075 Depth + 1) || 2076 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2077 Depth + 1) || 2078 // See if the operation should be performed at a smaller bit width. 2079 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2080 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2081 // Disable the nsw and nuw flags. We can no longer guarantee that we 2082 // won't wrap after simplification. 2083 Flags.setNoSignedWrap(false); 2084 Flags.setNoUnsignedWrap(false); 2085 SDValue NewOp = 2086 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2087 return TLO.CombineTo(Op, NewOp); 2088 } 2089 return true; 2090 } 2091 2092 // Attempt to avoid multi-use ops if we don't need anything from them. 2093 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 2094 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2095 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2096 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2097 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2098 if (DemandedOp0 || DemandedOp1) { 2099 Flags.setNoSignedWrap(false); 2100 Flags.setNoUnsignedWrap(false); 2101 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2102 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2103 SDValue NewOp = 2104 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2105 return TLO.CombineTo(Op, NewOp); 2106 } 2107 } 2108 2109 // If we have a constant operand, we may be able to turn it into -1 if we 2110 // do not demand the high bits. This can make the constant smaller to 2111 // encode, allow more general folding, or match specialized instruction 2112 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2113 // is probably not useful (and could be detrimental). 2114 ConstantSDNode *C = isConstOrConstSplat(Op1); 2115 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2116 if (C && !C->isAllOnesValue() && !C->isOne() && 2117 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 2118 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2119 // Disable the nsw and nuw flags. We can no longer guarantee that we 2120 // won't wrap after simplification. 2121 Flags.setNoSignedWrap(false); 2122 Flags.setNoUnsignedWrap(false); 2123 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2124 return TLO.CombineTo(Op, NewOp); 2125 } 2126 2127 LLVM_FALLTHROUGH; 2128 } 2129 default: 2130 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2131 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2132 Known, TLO, Depth)) 2133 return true; 2134 break; 2135 } 2136 2137 // Just use computeKnownBits to compute output bits. 2138 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2139 break; 2140 } 2141 2142 // If we know the value of all of the demanded bits, return this as a 2143 // constant. 2144 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2145 // Avoid folding to a constant if any OpaqueConstant is involved. 2146 const SDNode *N = Op.getNode(); 2147 for (SDNodeIterator I = SDNodeIterator::begin(N), 2148 E = SDNodeIterator::end(N); 2149 I != E; ++I) { 2150 SDNode *Op = *I; 2151 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2152 if (C->isOpaque()) 2153 return false; 2154 } 2155 // TODO: Handle float bits as well. 2156 if (VT.isInteger()) 2157 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2158 } 2159 2160 return false; 2161 } 2162 2163 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2164 const APInt &DemandedElts, 2165 APInt &KnownUndef, 2166 APInt &KnownZero, 2167 DAGCombinerInfo &DCI) const { 2168 SelectionDAG &DAG = DCI.DAG; 2169 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2170 !DCI.isBeforeLegalizeOps()); 2171 2172 bool Simplified = 2173 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2174 if (Simplified) { 2175 DCI.AddToWorklist(Op.getNode()); 2176 DCI.CommitTargetLoweringOpt(TLO); 2177 } 2178 2179 return Simplified; 2180 } 2181 2182 /// Given a vector binary operation and known undefined elements for each input 2183 /// operand, compute whether each element of the output is undefined. 2184 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2185 const APInt &UndefOp0, 2186 const APInt &UndefOp1) { 2187 EVT VT = BO.getValueType(); 2188 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2189 "Vector binop only"); 2190 2191 EVT EltVT = VT.getVectorElementType(); 2192 unsigned NumElts = VT.getVectorNumElements(); 2193 assert(UndefOp0.getBitWidth() == NumElts && 2194 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2195 2196 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2197 const APInt &UndefVals) { 2198 if (UndefVals[Index]) 2199 return DAG.getUNDEF(EltVT); 2200 2201 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2202 // Try hard to make sure that the getNode() call is not creating temporary 2203 // nodes. Ignore opaque integers because they do not constant fold. 2204 SDValue Elt = BV->getOperand(Index); 2205 auto *C = dyn_cast<ConstantSDNode>(Elt); 2206 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2207 return Elt; 2208 } 2209 2210 return SDValue(); 2211 }; 2212 2213 APInt KnownUndef = APInt::getNullValue(NumElts); 2214 for (unsigned i = 0; i != NumElts; ++i) { 2215 // If both inputs for this element are either constant or undef and match 2216 // the element type, compute the constant/undef result for this element of 2217 // the vector. 2218 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2219 // not handle FP constants. The code within getNode() should be refactored 2220 // to avoid the danger of creating a bogus temporary node here. 2221 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2222 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2223 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2224 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2225 KnownUndef.setBit(i); 2226 } 2227 return KnownUndef; 2228 } 2229 2230 bool TargetLowering::SimplifyDemandedVectorElts( 2231 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2232 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2233 bool AssumeSingleUse) const { 2234 EVT VT = Op.getValueType(); 2235 APInt DemandedElts = OriginalDemandedElts; 2236 unsigned NumElts = DemandedElts.getBitWidth(); 2237 assert(VT.isVector() && "Expected vector op"); 2238 assert(VT.getVectorNumElements() == NumElts && 2239 "Mask size mismatches value type element count!"); 2240 2241 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2242 2243 // Undef operand. 2244 if (Op.isUndef()) { 2245 KnownUndef.setAllBits(); 2246 return false; 2247 } 2248 2249 // If Op has other users, assume that all elements are needed. 2250 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2251 DemandedElts.setAllBits(); 2252 2253 // Not demanding any elements from Op. 2254 if (DemandedElts == 0) { 2255 KnownUndef.setAllBits(); 2256 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2257 } 2258 2259 // Limit search depth. 2260 if (Depth >= SelectionDAG::MaxRecursionDepth) 2261 return false; 2262 2263 SDLoc DL(Op); 2264 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2265 2266 switch (Op.getOpcode()) { 2267 case ISD::SCALAR_TO_VECTOR: { 2268 if (!DemandedElts[0]) { 2269 KnownUndef.setAllBits(); 2270 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2271 } 2272 KnownUndef.setHighBits(NumElts - 1); 2273 break; 2274 } 2275 case ISD::BITCAST: { 2276 SDValue Src = Op.getOperand(0); 2277 EVT SrcVT = Src.getValueType(); 2278 2279 // We only handle vectors here. 2280 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2281 if (!SrcVT.isVector()) 2282 break; 2283 2284 // Fast handling of 'identity' bitcasts. 2285 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2286 if (NumSrcElts == NumElts) 2287 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2288 KnownZero, TLO, Depth + 1); 2289 2290 APInt SrcZero, SrcUndef; 2291 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2292 2293 // Bitcast from 'large element' src vector to 'small element' vector, we 2294 // must demand a source element if any DemandedElt maps to it. 2295 if ((NumElts % NumSrcElts) == 0) { 2296 unsigned Scale = NumElts / NumSrcElts; 2297 for (unsigned i = 0; i != NumElts; ++i) 2298 if (DemandedElts[i]) 2299 SrcDemandedElts.setBit(i / Scale); 2300 2301 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2302 TLO, Depth + 1)) 2303 return true; 2304 2305 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2306 // of the large element. 2307 // TODO - bigendian once we have test coverage. 2308 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2309 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2310 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2311 for (unsigned i = 0; i != NumElts; ++i) 2312 if (DemandedElts[i]) { 2313 unsigned Ofs = (i % Scale) * EltSizeInBits; 2314 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2315 } 2316 2317 KnownBits Known; 2318 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2319 TLO, Depth + 1)) 2320 return true; 2321 } 2322 2323 // If the src element is zero/undef then all the output elements will be - 2324 // only demanded elements are guaranteed to be correct. 2325 for (unsigned i = 0; i != NumSrcElts; ++i) { 2326 if (SrcDemandedElts[i]) { 2327 if (SrcZero[i]) 2328 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2329 if (SrcUndef[i]) 2330 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2331 } 2332 } 2333 } 2334 2335 // Bitcast from 'small element' src vector to 'large element' vector, we 2336 // demand all smaller source elements covered by the larger demanded element 2337 // of this vector. 2338 if ((NumSrcElts % NumElts) == 0) { 2339 unsigned Scale = NumSrcElts / NumElts; 2340 for (unsigned i = 0; i != NumElts; ++i) 2341 if (DemandedElts[i]) 2342 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2343 2344 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2345 TLO, Depth + 1)) 2346 return true; 2347 2348 // If all the src elements covering an output element are zero/undef, then 2349 // the output element will be as well, assuming it was demanded. 2350 for (unsigned i = 0; i != NumElts; ++i) { 2351 if (DemandedElts[i]) { 2352 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2353 KnownZero.setBit(i); 2354 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2355 KnownUndef.setBit(i); 2356 } 2357 } 2358 } 2359 break; 2360 } 2361 case ISD::BUILD_VECTOR: { 2362 // Check all elements and simplify any unused elements with UNDEF. 2363 if (!DemandedElts.isAllOnesValue()) { 2364 // Don't simplify BROADCASTS. 2365 if (llvm::any_of(Op->op_values(), 2366 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2367 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2368 bool Updated = false; 2369 for (unsigned i = 0; i != NumElts; ++i) { 2370 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2371 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2372 KnownUndef.setBit(i); 2373 Updated = true; 2374 } 2375 } 2376 if (Updated) 2377 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2378 } 2379 } 2380 for (unsigned i = 0; i != NumElts; ++i) { 2381 SDValue SrcOp = Op.getOperand(i); 2382 if (SrcOp.isUndef()) { 2383 KnownUndef.setBit(i); 2384 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2385 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2386 KnownZero.setBit(i); 2387 } 2388 } 2389 break; 2390 } 2391 case ISD::CONCAT_VECTORS: { 2392 EVT SubVT = Op.getOperand(0).getValueType(); 2393 unsigned NumSubVecs = Op.getNumOperands(); 2394 unsigned NumSubElts = SubVT.getVectorNumElements(); 2395 for (unsigned i = 0; i != NumSubVecs; ++i) { 2396 SDValue SubOp = Op.getOperand(i); 2397 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2398 APInt SubUndef, SubZero; 2399 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2400 Depth + 1)) 2401 return true; 2402 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2403 KnownZero.insertBits(SubZero, i * NumSubElts); 2404 } 2405 break; 2406 } 2407 case ISD::INSERT_SUBVECTOR: { 2408 if (!isa<ConstantSDNode>(Op.getOperand(2))) 2409 break; 2410 SDValue Base = Op.getOperand(0); 2411 SDValue Sub = Op.getOperand(1); 2412 EVT SubVT = Sub.getValueType(); 2413 unsigned NumSubElts = SubVT.getVectorNumElements(); 2414 const APInt &Idx = Op.getConstantOperandAPInt(2); 2415 if (Idx.ugt(NumElts - NumSubElts)) 2416 break; 2417 unsigned SubIdx = Idx.getZExtValue(); 2418 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 2419 if (!SubElts) 2420 return TLO.CombineTo(Op, Base); 2421 APInt SubUndef, SubZero; 2422 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 2423 Depth + 1)) 2424 return true; 2425 APInt BaseElts = DemandedElts; 2426 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 2427 2428 // If none of the base operand elements are demanded, replace it with undef. 2429 if (!BaseElts && !Base.isUndef()) 2430 return TLO.CombineTo(Op, 2431 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2432 TLO.DAG.getUNDEF(VT), 2433 Op.getOperand(1), 2434 Op.getOperand(2))); 2435 2436 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 2437 Depth + 1)) 2438 return true; 2439 KnownUndef.insertBits(SubUndef, SubIdx); 2440 KnownZero.insertBits(SubZero, SubIdx); 2441 2442 // Attempt to avoid multi-use ops if we don't need anything from them. 2443 if (!BaseElts.isAllOnesValue() || !SubElts.isAllOnesValue()) { 2444 APInt DemandedBits = APInt::getAllOnesValue(VT.getScalarSizeInBits()); 2445 SDValue NewBase = SimplifyMultipleUseDemandedBits( 2446 Base, DemandedBits, BaseElts, TLO.DAG, Depth + 1); 2447 SDValue NewSub = SimplifyMultipleUseDemandedBits( 2448 Sub, DemandedBits, SubElts, TLO.DAG, Depth + 1); 2449 if (NewBase || NewSub) { 2450 NewBase = NewBase ? NewBase : Base; 2451 NewSub = NewSub ? NewSub : Sub; 2452 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewBase, 2453 NewSub, Op.getOperand(2)); 2454 return TLO.CombineTo(Op, NewOp); 2455 } 2456 } 2457 break; 2458 } 2459 case ISD::EXTRACT_SUBVECTOR: { 2460 SDValue Src = Op.getOperand(0); 2461 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2462 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2463 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2464 // Offset the demanded elts by the subvector index. 2465 uint64_t Idx = SubIdx->getZExtValue(); 2466 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2467 APInt SrcUndef, SrcZero; 2468 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, 2469 Depth + 1)) 2470 return true; 2471 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2472 KnownZero = SrcZero.extractBits(NumElts, Idx); 2473 2474 // Attempt to avoid multi-use ops if we don't need anything from them. 2475 if (!DemandedElts.isAllOnesValue()) { 2476 APInt DemandedBits = APInt::getAllOnesValue(VT.getScalarSizeInBits()); 2477 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2478 Src, DemandedBits, SrcElts, TLO.DAG, Depth + 1); 2479 if (NewSrc) { 2480 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2481 Op.getOperand(1)); 2482 return TLO.CombineTo(Op, NewOp); 2483 } 2484 } 2485 } 2486 break; 2487 } 2488 case ISD::INSERT_VECTOR_ELT: { 2489 SDValue Vec = Op.getOperand(0); 2490 SDValue Scl = Op.getOperand(1); 2491 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2492 2493 // For a legal, constant insertion index, if we don't need this insertion 2494 // then strip it, else remove it from the demanded elts. 2495 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2496 unsigned Idx = CIdx->getZExtValue(); 2497 if (!DemandedElts[Idx]) 2498 return TLO.CombineTo(Op, Vec); 2499 2500 APInt DemandedVecElts(DemandedElts); 2501 DemandedVecElts.clearBit(Idx); 2502 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2503 KnownZero, TLO, Depth + 1)) 2504 return true; 2505 2506 KnownUndef.clearBit(Idx); 2507 if (Scl.isUndef()) 2508 KnownUndef.setBit(Idx); 2509 2510 KnownZero.clearBit(Idx); 2511 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 2512 KnownZero.setBit(Idx); 2513 break; 2514 } 2515 2516 APInt VecUndef, VecZero; 2517 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2518 Depth + 1)) 2519 return true; 2520 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2521 break; 2522 } 2523 case ISD::VSELECT: { 2524 // Try to transform the select condition based on the current demanded 2525 // elements. 2526 // TODO: If a condition element is undef, we can choose from one arm of the 2527 // select (and if one arm is undef, then we can propagate that to the 2528 // result). 2529 // TODO - add support for constant vselect masks (see IR version of this). 2530 APInt UnusedUndef, UnusedZero; 2531 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2532 UnusedZero, TLO, Depth + 1)) 2533 return true; 2534 2535 // See if we can simplify either vselect operand. 2536 APInt DemandedLHS(DemandedElts); 2537 APInt DemandedRHS(DemandedElts); 2538 APInt UndefLHS, ZeroLHS; 2539 APInt UndefRHS, ZeroRHS; 2540 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2541 ZeroLHS, TLO, Depth + 1)) 2542 return true; 2543 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2544 ZeroRHS, TLO, Depth + 1)) 2545 return true; 2546 2547 KnownUndef = UndefLHS & UndefRHS; 2548 KnownZero = ZeroLHS & ZeroRHS; 2549 break; 2550 } 2551 case ISD::VECTOR_SHUFFLE: { 2552 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2553 2554 // Collect demanded elements from shuffle operands.. 2555 APInt DemandedLHS(NumElts, 0); 2556 APInt DemandedRHS(NumElts, 0); 2557 for (unsigned i = 0; i != NumElts; ++i) { 2558 int M = ShuffleMask[i]; 2559 if (M < 0 || !DemandedElts[i]) 2560 continue; 2561 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2562 if (M < (int)NumElts) 2563 DemandedLHS.setBit(M); 2564 else 2565 DemandedRHS.setBit(M - NumElts); 2566 } 2567 2568 // See if we can simplify either shuffle operand. 2569 APInt UndefLHS, ZeroLHS; 2570 APInt UndefRHS, ZeroRHS; 2571 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2572 ZeroLHS, TLO, Depth + 1)) 2573 return true; 2574 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2575 ZeroRHS, TLO, Depth + 1)) 2576 return true; 2577 2578 // Simplify mask using undef elements from LHS/RHS. 2579 bool Updated = false; 2580 bool IdentityLHS = true, IdentityRHS = true; 2581 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2582 for (unsigned i = 0; i != NumElts; ++i) { 2583 int &M = NewMask[i]; 2584 if (M < 0) 2585 continue; 2586 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2587 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2588 Updated = true; 2589 M = -1; 2590 } 2591 IdentityLHS &= (M < 0) || (M == (int)i); 2592 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2593 } 2594 2595 // Update legal shuffle masks based on demanded elements if it won't reduce 2596 // to Identity which can cause premature removal of the shuffle mask. 2597 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2598 SDValue LegalShuffle = 2599 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2600 NewMask, TLO.DAG); 2601 if (LegalShuffle) 2602 return TLO.CombineTo(Op, LegalShuffle); 2603 } 2604 2605 // Propagate undef/zero elements from LHS/RHS. 2606 for (unsigned i = 0; i != NumElts; ++i) { 2607 int M = ShuffleMask[i]; 2608 if (M < 0) { 2609 KnownUndef.setBit(i); 2610 } else if (M < (int)NumElts) { 2611 if (UndefLHS[M]) 2612 KnownUndef.setBit(i); 2613 if (ZeroLHS[M]) 2614 KnownZero.setBit(i); 2615 } else { 2616 if (UndefRHS[M - NumElts]) 2617 KnownUndef.setBit(i); 2618 if (ZeroRHS[M - NumElts]) 2619 KnownZero.setBit(i); 2620 } 2621 } 2622 break; 2623 } 2624 case ISD::ANY_EXTEND_VECTOR_INREG: 2625 case ISD::SIGN_EXTEND_VECTOR_INREG: 2626 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2627 APInt SrcUndef, SrcZero; 2628 SDValue Src = Op.getOperand(0); 2629 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2630 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2631 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2632 Depth + 1)) 2633 return true; 2634 KnownZero = SrcZero.zextOrTrunc(NumElts); 2635 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2636 2637 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2638 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2639 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2640 // aext - if we just need the bottom element then we can bitcast. 2641 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2642 } 2643 2644 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2645 // zext(undef) upper bits are guaranteed to be zero. 2646 if (DemandedElts.isSubsetOf(KnownUndef)) 2647 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2648 KnownUndef.clearAllBits(); 2649 } 2650 break; 2651 } 2652 2653 // TODO: There are more binop opcodes that could be handled here - MUL, MIN, 2654 // MAX, saturated math, etc. 2655 case ISD::OR: 2656 case ISD::XOR: 2657 case ISD::ADD: 2658 case ISD::SUB: 2659 case ISD::FADD: 2660 case ISD::FSUB: 2661 case ISD::FMUL: 2662 case ISD::FDIV: 2663 case ISD::FREM: { 2664 APInt UndefRHS, ZeroRHS; 2665 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2666 ZeroRHS, TLO, Depth + 1)) 2667 return true; 2668 APInt UndefLHS, ZeroLHS; 2669 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2670 ZeroLHS, TLO, Depth + 1)) 2671 return true; 2672 2673 KnownZero = ZeroLHS & ZeroRHS; 2674 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2675 break; 2676 } 2677 case ISD::SHL: 2678 case ISD::SRL: 2679 case ISD::SRA: 2680 case ISD::ROTL: 2681 case ISD::ROTR: { 2682 APInt UndefRHS, ZeroRHS; 2683 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2684 ZeroRHS, TLO, Depth + 1)) 2685 return true; 2686 APInt UndefLHS, ZeroLHS; 2687 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2688 ZeroLHS, TLO, Depth + 1)) 2689 return true; 2690 2691 KnownZero = ZeroLHS; 2692 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2693 break; 2694 } 2695 case ISD::MUL: 2696 case ISD::AND: { 2697 APInt SrcUndef, SrcZero; 2698 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 2699 SrcZero, TLO, Depth + 1)) 2700 return true; 2701 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2702 KnownZero, TLO, Depth + 1)) 2703 return true; 2704 2705 // If either side has a zero element, then the result element is zero, even 2706 // if the other is an UNDEF. 2707 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2708 // and then handle 'and' nodes with the rest of the binop opcodes. 2709 KnownZero |= SrcZero; 2710 KnownUndef &= SrcUndef; 2711 KnownUndef &= ~KnownZero; 2712 break; 2713 } 2714 case ISD::TRUNCATE: 2715 case ISD::SIGN_EXTEND: 2716 case ISD::ZERO_EXTEND: 2717 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2718 KnownZero, TLO, Depth + 1)) 2719 return true; 2720 2721 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2722 // zext(undef) upper bits are guaranteed to be zero. 2723 if (DemandedElts.isSubsetOf(KnownUndef)) 2724 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2725 KnownUndef.clearAllBits(); 2726 } 2727 break; 2728 default: { 2729 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2730 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2731 KnownZero, TLO, Depth)) 2732 return true; 2733 } else { 2734 KnownBits Known; 2735 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2736 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2737 TLO, Depth, AssumeSingleUse)) 2738 return true; 2739 } 2740 break; 2741 } 2742 } 2743 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2744 2745 // Constant fold all undef cases. 2746 // TODO: Handle zero cases as well. 2747 if (DemandedElts.isSubsetOf(KnownUndef)) 2748 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2749 2750 return false; 2751 } 2752 2753 /// Determine which of the bits specified in Mask are known to be either zero or 2754 /// one and return them in the Known. 2755 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2756 KnownBits &Known, 2757 const APInt &DemandedElts, 2758 const SelectionDAG &DAG, 2759 unsigned Depth) const { 2760 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2761 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2762 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2763 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2764 "Should use MaskedValueIsZero if you don't know whether Op" 2765 " is a target node!"); 2766 Known.resetAll(); 2767 } 2768 2769 void TargetLowering::computeKnownBitsForTargetInstr( 2770 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2771 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2772 unsigned Depth) const { 2773 Known.resetAll(); 2774 } 2775 2776 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 2777 KnownBits &Known, 2778 const APInt &DemandedElts, 2779 const SelectionDAG &DAG, 2780 unsigned Depth) const { 2781 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 2782 2783 if (MaybeAlign Alignment = DAG.InferPtrAlign(Op)) { 2784 // The low bits are known zero if the pointer is aligned. 2785 Known.Zero.setLowBits(Log2(*Alignment)); 2786 } 2787 } 2788 2789 /// This method can be implemented by targets that want to expose additional 2790 /// information about sign bits to the DAG Combiner. 2791 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2792 const APInt &, 2793 const SelectionDAG &, 2794 unsigned Depth) const { 2795 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2796 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2797 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2798 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2799 "Should use ComputeNumSignBits if you don't know whether Op" 2800 " is a target node!"); 2801 return 1; 2802 } 2803 2804 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 2805 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 2806 const MachineRegisterInfo &MRI, unsigned Depth) const { 2807 return 1; 2808 } 2809 2810 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2811 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2812 TargetLoweringOpt &TLO, unsigned Depth) const { 2813 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2814 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2815 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2816 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2817 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2818 " is a target node!"); 2819 return false; 2820 } 2821 2822 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2823 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2824 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2825 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2826 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2827 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2828 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2829 "Should use SimplifyDemandedBits if you don't know whether Op" 2830 " is a target node!"); 2831 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2832 return false; 2833 } 2834 2835 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 2836 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2837 SelectionDAG &DAG, unsigned Depth) const { 2838 assert( 2839 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2840 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2841 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2842 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2843 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 2844 " is a target node!"); 2845 return SDValue(); 2846 } 2847 2848 SDValue 2849 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 2850 SDValue N1, MutableArrayRef<int> Mask, 2851 SelectionDAG &DAG) const { 2852 bool LegalMask = isShuffleMaskLegal(Mask, VT); 2853 if (!LegalMask) { 2854 std::swap(N0, N1); 2855 ShuffleVectorSDNode::commuteMask(Mask); 2856 LegalMask = isShuffleMaskLegal(Mask, VT); 2857 } 2858 2859 if (!LegalMask) 2860 return SDValue(); 2861 2862 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 2863 } 2864 2865 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 2866 return nullptr; 2867 } 2868 2869 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 2870 const SelectionDAG &DAG, 2871 bool SNaN, 2872 unsigned Depth) const { 2873 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2874 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2875 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2876 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2877 "Should use isKnownNeverNaN if you don't know whether Op" 2878 " is a target node!"); 2879 return false; 2880 } 2881 2882 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 2883 // work with truncating build vectors and vectors with elements of less than 2884 // 8 bits. 2885 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 2886 if (!N) 2887 return false; 2888 2889 APInt CVal; 2890 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 2891 CVal = CN->getAPIntValue(); 2892 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 2893 auto *CN = BV->getConstantSplatNode(); 2894 if (!CN) 2895 return false; 2896 2897 // If this is a truncating build vector, truncate the splat value. 2898 // Otherwise, we may fail to match the expected values below. 2899 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 2900 CVal = CN->getAPIntValue(); 2901 if (BVEltWidth < CVal.getBitWidth()) 2902 CVal = CVal.trunc(BVEltWidth); 2903 } else { 2904 return false; 2905 } 2906 2907 switch (getBooleanContents(N->getValueType(0))) { 2908 case UndefinedBooleanContent: 2909 return CVal[0]; 2910 case ZeroOrOneBooleanContent: 2911 return CVal.isOneValue(); 2912 case ZeroOrNegativeOneBooleanContent: 2913 return CVal.isAllOnesValue(); 2914 } 2915 2916 llvm_unreachable("Invalid boolean contents"); 2917 } 2918 2919 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 2920 if (!N) 2921 return false; 2922 2923 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 2924 if (!CN) { 2925 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 2926 if (!BV) 2927 return false; 2928 2929 // Only interested in constant splats, we don't care about undef 2930 // elements in identifying boolean constants and getConstantSplatNode 2931 // returns NULL if all ops are undef; 2932 CN = BV->getConstantSplatNode(); 2933 if (!CN) 2934 return false; 2935 } 2936 2937 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 2938 return !CN->getAPIntValue()[0]; 2939 2940 return CN->isNullValue(); 2941 } 2942 2943 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 2944 bool SExt) const { 2945 if (VT == MVT::i1) 2946 return N->isOne(); 2947 2948 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 2949 switch (Cnt) { 2950 case TargetLowering::ZeroOrOneBooleanContent: 2951 // An extended value of 1 is always true, unless its original type is i1, 2952 // in which case it will be sign extended to -1. 2953 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 2954 case TargetLowering::UndefinedBooleanContent: 2955 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2956 return N->isAllOnesValue() && SExt; 2957 } 2958 llvm_unreachable("Unexpected enumeration."); 2959 } 2960 2961 /// This helper function of SimplifySetCC tries to optimize the comparison when 2962 /// either operand of the SetCC node is a bitwise-and instruction. 2963 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 2964 ISD::CondCode Cond, const SDLoc &DL, 2965 DAGCombinerInfo &DCI) const { 2966 // Match these patterns in any of their permutations: 2967 // (X & Y) == Y 2968 // (X & Y) != Y 2969 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 2970 std::swap(N0, N1); 2971 2972 EVT OpVT = N0.getValueType(); 2973 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 2974 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 2975 return SDValue(); 2976 2977 SDValue X, Y; 2978 if (N0.getOperand(0) == N1) { 2979 X = N0.getOperand(1); 2980 Y = N0.getOperand(0); 2981 } else if (N0.getOperand(1) == N1) { 2982 X = N0.getOperand(0); 2983 Y = N0.getOperand(1); 2984 } else { 2985 return SDValue(); 2986 } 2987 2988 SelectionDAG &DAG = DCI.DAG; 2989 SDValue Zero = DAG.getConstant(0, DL, OpVT); 2990 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 2991 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 2992 // Note that where Y is variable and is known to have at most one bit set 2993 // (for example, if it is Z & 1) we cannot do this; the expressions are not 2994 // equivalent when Y == 0. 2995 assert(OpVT.isInteger()); 2996 Cond = ISD::getSetCCInverse(Cond, OpVT); 2997 if (DCI.isBeforeLegalizeOps() || 2998 isCondCodeLegal(Cond, N0.getSimpleValueType())) 2999 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3000 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3001 // If the target supports an 'and-not' or 'and-complement' logic operation, 3002 // try to use that to make a comparison operation more efficient. 3003 // But don't do this transform if the mask is a single bit because there are 3004 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3005 // 'rlwinm' on PPC). 3006 3007 // Bail out if the compare operand that we want to turn into a zero is 3008 // already a zero (otherwise, infinite loop). 3009 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3010 if (YConst && YConst->isNullValue()) 3011 return SDValue(); 3012 3013 // Transform this into: ~X & Y == 0. 3014 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3015 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3016 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3017 } 3018 3019 return SDValue(); 3020 } 3021 3022 /// There are multiple IR patterns that could be checking whether certain 3023 /// truncation of a signed number would be lossy or not. The pattern which is 3024 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3025 /// We are looking for the following pattern: (KeptBits is a constant) 3026 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3027 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3028 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3029 /// We will unfold it into the natural trunc+sext pattern: 3030 /// ((%x << C) a>> C) dstcond %x 3031 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3032 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3033 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3034 const SDLoc &DL) const { 3035 // We must be comparing with a constant. 3036 ConstantSDNode *C1; 3037 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3038 return SDValue(); 3039 3040 // N0 should be: add %x, (1 << (KeptBits-1)) 3041 if (N0->getOpcode() != ISD::ADD) 3042 return SDValue(); 3043 3044 // And we must be 'add'ing a constant. 3045 ConstantSDNode *C01; 3046 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3047 return SDValue(); 3048 3049 SDValue X = N0->getOperand(0); 3050 EVT XVT = X.getValueType(); 3051 3052 // Validate constants ... 3053 3054 APInt I1 = C1->getAPIntValue(); 3055 3056 ISD::CondCode NewCond; 3057 if (Cond == ISD::CondCode::SETULT) { 3058 NewCond = ISD::CondCode::SETEQ; 3059 } else if (Cond == ISD::CondCode::SETULE) { 3060 NewCond = ISD::CondCode::SETEQ; 3061 // But need to 'canonicalize' the constant. 3062 I1 += 1; 3063 } else if (Cond == ISD::CondCode::SETUGT) { 3064 NewCond = ISD::CondCode::SETNE; 3065 // But need to 'canonicalize' the constant. 3066 I1 += 1; 3067 } else if (Cond == ISD::CondCode::SETUGE) { 3068 NewCond = ISD::CondCode::SETNE; 3069 } else 3070 return SDValue(); 3071 3072 APInt I01 = C01->getAPIntValue(); 3073 3074 auto checkConstants = [&I1, &I01]() -> bool { 3075 // Both of them must be power-of-two, and the constant from setcc is bigger. 3076 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3077 }; 3078 3079 if (checkConstants()) { 3080 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3081 } else { 3082 // What if we invert constants? (and the target predicate) 3083 I1.negate(); 3084 I01.negate(); 3085 assert(XVT.isInteger()); 3086 NewCond = getSetCCInverse(NewCond, XVT); 3087 if (!checkConstants()) 3088 return SDValue(); 3089 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3090 } 3091 3092 // They are power-of-two, so which bit is set? 3093 const unsigned KeptBits = I1.logBase2(); 3094 const unsigned KeptBitsMinusOne = I01.logBase2(); 3095 3096 // Magic! 3097 if (KeptBits != (KeptBitsMinusOne + 1)) 3098 return SDValue(); 3099 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3100 3101 // We don't want to do this in every single case. 3102 SelectionDAG &DAG = DCI.DAG; 3103 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3104 XVT, KeptBits)) 3105 return SDValue(); 3106 3107 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3108 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3109 3110 // Unfold into: ((%x << C) a>> C) cond %x 3111 // Where 'cond' will be either 'eq' or 'ne'. 3112 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3113 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3114 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3115 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3116 3117 return T2; 3118 } 3119 3120 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3121 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3122 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3123 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3124 assert(isConstOrConstSplat(N1C) && 3125 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 3126 "Should be a comparison with 0."); 3127 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3128 "Valid only for [in]equality comparisons."); 3129 3130 unsigned NewShiftOpcode; 3131 SDValue X, C, Y; 3132 3133 SelectionDAG &DAG = DCI.DAG; 3134 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3135 3136 // Look for '(C l>>/<< Y)'. 3137 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3138 // The shift should be one-use. 3139 if (!V.hasOneUse()) 3140 return false; 3141 unsigned OldShiftOpcode = V.getOpcode(); 3142 switch (OldShiftOpcode) { 3143 case ISD::SHL: 3144 NewShiftOpcode = ISD::SRL; 3145 break; 3146 case ISD::SRL: 3147 NewShiftOpcode = ISD::SHL; 3148 break; 3149 default: 3150 return false; // must be a logical shift. 3151 } 3152 // We should be shifting a constant. 3153 // FIXME: best to use isConstantOrConstantVector(). 3154 C = V.getOperand(0); 3155 ConstantSDNode *CC = 3156 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3157 if (!CC) 3158 return false; 3159 Y = V.getOperand(1); 3160 3161 ConstantSDNode *XC = 3162 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3163 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3164 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3165 }; 3166 3167 // LHS of comparison should be an one-use 'and'. 3168 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3169 return SDValue(); 3170 3171 X = N0.getOperand(0); 3172 SDValue Mask = N0.getOperand(1); 3173 3174 // 'and' is commutative! 3175 if (!Match(Mask)) { 3176 std::swap(X, Mask); 3177 if (!Match(Mask)) 3178 return SDValue(); 3179 } 3180 3181 EVT VT = X.getValueType(); 3182 3183 // Produce: 3184 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3185 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3186 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3187 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3188 return T2; 3189 } 3190 3191 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3192 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3193 /// handle the commuted versions of these patterns. 3194 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3195 ISD::CondCode Cond, const SDLoc &DL, 3196 DAGCombinerInfo &DCI) const { 3197 unsigned BOpcode = N0.getOpcode(); 3198 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3199 "Unexpected binop"); 3200 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3201 3202 // (X + Y) == X --> Y == 0 3203 // (X - Y) == X --> Y == 0 3204 // (X ^ Y) == X --> Y == 0 3205 SelectionDAG &DAG = DCI.DAG; 3206 EVT OpVT = N0.getValueType(); 3207 SDValue X = N0.getOperand(0); 3208 SDValue Y = N0.getOperand(1); 3209 if (X == N1) 3210 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3211 3212 if (Y != N1) 3213 return SDValue(); 3214 3215 // (X + Y) == Y --> X == 0 3216 // (X ^ Y) == Y --> X == 0 3217 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3218 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3219 3220 // The shift would not be valid if the operands are boolean (i1). 3221 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3222 return SDValue(); 3223 3224 // (X - Y) == Y --> X == Y << 1 3225 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3226 !DCI.isBeforeLegalize()); 3227 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3228 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3229 if (!DCI.isCalledByLegalizer()) 3230 DCI.AddToWorklist(YShl1.getNode()); 3231 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3232 } 3233 3234 /// Try to simplify a setcc built with the specified operands and cc. If it is 3235 /// unable to simplify it, return a null SDValue. 3236 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3237 ISD::CondCode Cond, bool foldBooleans, 3238 DAGCombinerInfo &DCI, 3239 const SDLoc &dl) const { 3240 SelectionDAG &DAG = DCI.DAG; 3241 const DataLayout &Layout = DAG.getDataLayout(); 3242 EVT OpVT = N0.getValueType(); 3243 3244 // Constant fold or commute setcc. 3245 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3246 return Fold; 3247 3248 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3249 // TODO: Handle non-splat vector constants. All undef causes trouble. 3250 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3251 if (isConstOrConstSplat(N0) && 3252 (DCI.isBeforeLegalizeOps() || 3253 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3254 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3255 3256 // If we have a subtract with the same 2 non-constant operands as this setcc 3257 // -- but in reverse order -- then try to commute the operands of this setcc 3258 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3259 // instruction on some targets. 3260 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3261 (DCI.isBeforeLegalizeOps() || 3262 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3263 DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) && 3264 !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } )) 3265 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3266 3267 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3268 const APInt &C1 = N1C->getAPIntValue(); 3269 3270 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3271 // equality comparison, then we're just comparing whether X itself is 3272 // zero. 3273 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3274 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3275 N0.getOperand(1).getOpcode() == ISD::Constant) { 3276 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 3277 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3278 ShAmt == Log2_32(N0.getValueSizeInBits())) { 3279 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3280 // (srl (ctlz x), 5) == 0 -> X != 0 3281 // (srl (ctlz x), 5) != 1 -> X != 0 3282 Cond = ISD::SETNE; 3283 } else { 3284 // (srl (ctlz x), 5) != 0 -> X == 0 3285 // (srl (ctlz x), 5) == 1 -> X == 0 3286 Cond = ISD::SETEQ; 3287 } 3288 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3289 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 3290 Zero, Cond); 3291 } 3292 } 3293 3294 SDValue CTPOP = N0; 3295 // Look through truncs that don't change the value of a ctpop. 3296 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 3297 CTPOP = N0.getOperand(0); 3298 3299 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 3300 (N0 == CTPOP || 3301 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 3302 EVT CTVT = CTPOP.getValueType(); 3303 SDValue CTOp = CTPOP.getOperand(0); 3304 3305 // (ctpop x) u< 2 -> (x & x-1) == 0 3306 // (ctpop x) u> 1 -> (x & x-1) != 0 3307 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 3308 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3309 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3310 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3311 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3312 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 3313 } 3314 3315 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3316 if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) && 3317 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3318 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3319 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3320 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3321 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3322 assert(CTVT.isInteger()); 3323 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3324 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3325 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3326 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3327 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3328 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3329 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3330 } 3331 } 3332 3333 // (zext x) == C --> x == (trunc C) 3334 // (sext x) == C --> x == (trunc C) 3335 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3336 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3337 unsigned MinBits = N0.getValueSizeInBits(); 3338 SDValue PreExt; 3339 bool Signed = false; 3340 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3341 // ZExt 3342 MinBits = N0->getOperand(0).getValueSizeInBits(); 3343 PreExt = N0->getOperand(0); 3344 } else if (N0->getOpcode() == ISD::AND) { 3345 // DAGCombine turns costly ZExts into ANDs 3346 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3347 if ((C->getAPIntValue()+1).isPowerOf2()) { 3348 MinBits = C->getAPIntValue().countTrailingOnes(); 3349 PreExt = N0->getOperand(0); 3350 } 3351 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3352 // SExt 3353 MinBits = N0->getOperand(0).getValueSizeInBits(); 3354 PreExt = N0->getOperand(0); 3355 Signed = true; 3356 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3357 // ZEXTLOAD / SEXTLOAD 3358 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3359 MinBits = LN0->getMemoryVT().getSizeInBits(); 3360 PreExt = N0; 3361 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3362 Signed = true; 3363 MinBits = LN0->getMemoryVT().getSizeInBits(); 3364 PreExt = N0; 3365 } 3366 } 3367 3368 // Figure out how many bits we need to preserve this constant. 3369 unsigned ReqdBits = Signed ? 3370 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3371 C1.getActiveBits(); 3372 3373 // Make sure we're not losing bits from the constant. 3374 if (MinBits > 0 && 3375 MinBits < C1.getBitWidth() && 3376 MinBits >= ReqdBits) { 3377 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3378 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3379 // Will get folded away. 3380 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3381 if (MinBits == 1 && C1 == 1) 3382 // Invert the condition. 3383 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3384 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3385 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3386 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3387 } 3388 3389 // If truncating the setcc operands is not desirable, we can still 3390 // simplify the expression in some cases: 3391 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3392 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3393 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3394 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3395 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3396 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3397 SDValue TopSetCC = N0->getOperand(0); 3398 unsigned N0Opc = N0->getOpcode(); 3399 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3400 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3401 TopSetCC.getOpcode() == ISD::SETCC && 3402 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3403 (isConstFalseVal(N1C) || 3404 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3405 3406 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3407 (!N1C->isNullValue() && Cond == ISD::SETNE); 3408 3409 if (!Inverse) 3410 return TopSetCC; 3411 3412 ISD::CondCode InvCond = ISD::getSetCCInverse( 3413 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3414 TopSetCC.getOperand(0).getValueType()); 3415 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3416 TopSetCC.getOperand(1), 3417 InvCond); 3418 } 3419 } 3420 } 3421 3422 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3423 // equality or unsigned, and all 1 bits of the const are in the same 3424 // partial word, see if we can shorten the load. 3425 if (DCI.isBeforeLegalize() && 3426 !ISD::isSignedIntSetCC(Cond) && 3427 N0.getOpcode() == ISD::AND && C1 == 0 && 3428 N0.getNode()->hasOneUse() && 3429 isa<LoadSDNode>(N0.getOperand(0)) && 3430 N0.getOperand(0).getNode()->hasOneUse() && 3431 isa<ConstantSDNode>(N0.getOperand(1))) { 3432 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3433 APInt bestMask; 3434 unsigned bestWidth = 0, bestOffset = 0; 3435 if (Lod->isSimple() && Lod->isUnindexed()) { 3436 unsigned origWidth = N0.getValueSizeInBits(); 3437 unsigned maskWidth = origWidth; 3438 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3439 // 8 bits, but have to be careful... 3440 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3441 origWidth = Lod->getMemoryVT().getSizeInBits(); 3442 const APInt &Mask = N0.getConstantOperandAPInt(1); 3443 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3444 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3445 for (unsigned offset=0; offset<origWidth/width; offset++) { 3446 if (Mask.isSubsetOf(newMask)) { 3447 if (Layout.isLittleEndian()) 3448 bestOffset = (uint64_t)offset * (width/8); 3449 else 3450 bestOffset = (origWidth/width - offset - 1) * (width/8); 3451 bestMask = Mask.lshr(offset * (width/8) * 8); 3452 bestWidth = width; 3453 break; 3454 } 3455 newMask <<= width; 3456 } 3457 } 3458 } 3459 if (bestWidth) { 3460 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3461 if (newVT.isRound() && 3462 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3463 SDValue Ptr = Lod->getBasePtr(); 3464 if (bestOffset != 0) 3465 Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl); 3466 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 3467 SDValue NewLoad = DAG.getLoad( 3468 newVT, dl, Lod->getChain(), Ptr, 3469 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 3470 return DAG.getSetCC(dl, VT, 3471 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3472 DAG.getConstant(bestMask.trunc(bestWidth), 3473 dl, newVT)), 3474 DAG.getConstant(0LL, dl, newVT), Cond); 3475 } 3476 } 3477 } 3478 3479 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3480 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3481 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3482 3483 // If the comparison constant has bits in the upper part, the 3484 // zero-extended value could never match. 3485 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3486 C1.getBitWidth() - InSize))) { 3487 switch (Cond) { 3488 case ISD::SETUGT: 3489 case ISD::SETUGE: 3490 case ISD::SETEQ: 3491 return DAG.getConstant(0, dl, VT); 3492 case ISD::SETULT: 3493 case ISD::SETULE: 3494 case ISD::SETNE: 3495 return DAG.getConstant(1, dl, VT); 3496 case ISD::SETGT: 3497 case ISD::SETGE: 3498 // True if the sign bit of C1 is set. 3499 return DAG.getConstant(C1.isNegative(), dl, VT); 3500 case ISD::SETLT: 3501 case ISD::SETLE: 3502 // True if the sign bit of C1 isn't set. 3503 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3504 default: 3505 break; 3506 } 3507 } 3508 3509 // Otherwise, we can perform the comparison with the low bits. 3510 switch (Cond) { 3511 case ISD::SETEQ: 3512 case ISD::SETNE: 3513 case ISD::SETUGT: 3514 case ISD::SETUGE: 3515 case ISD::SETULT: 3516 case ISD::SETULE: { 3517 EVT newVT = N0.getOperand(0).getValueType(); 3518 if (DCI.isBeforeLegalizeOps() || 3519 (isOperationLegal(ISD::SETCC, newVT) && 3520 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3521 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3522 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3523 3524 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3525 NewConst, Cond); 3526 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3527 } 3528 break; 3529 } 3530 default: 3531 break; // todo, be more careful with signed comparisons 3532 } 3533 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3534 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3535 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3536 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3537 EVT ExtDstTy = N0.getValueType(); 3538 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3539 3540 // If the constant doesn't fit into the number of bits for the source of 3541 // the sign extension, it is impossible for both sides to be equal. 3542 if (C1.getMinSignedBits() > ExtSrcTyBits) 3543 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 3544 3545 SDValue ZextOp; 3546 EVT Op0Ty = N0.getOperand(0).getValueType(); 3547 if (Op0Ty == ExtSrcTy) { 3548 ZextOp = N0.getOperand(0); 3549 } else { 3550 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3551 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 3552 DAG.getConstant(Imm, dl, Op0Ty)); 3553 } 3554 if (!DCI.isCalledByLegalizer()) 3555 DCI.AddToWorklist(ZextOp.getNode()); 3556 // Otherwise, make this a use of a zext. 3557 return DAG.getSetCC(dl, VT, ZextOp, 3558 DAG.getConstant(C1 & APInt::getLowBitsSet( 3559 ExtDstTyBits, 3560 ExtSrcTyBits), 3561 dl, ExtDstTy), 3562 Cond); 3563 } else if ((N1C->isNullValue() || N1C->isOne()) && 3564 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3565 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3566 if (N0.getOpcode() == ISD::SETCC && 3567 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3568 (N0.getValueType() == MVT::i1 || 3569 getBooleanContents(N0.getOperand(0).getValueType()) == 3570 ZeroOrOneBooleanContent)) { 3571 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3572 if (TrueWhenTrue) 3573 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3574 // Invert the condition. 3575 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3576 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3577 if (DCI.isBeforeLegalizeOps() || 3578 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3579 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3580 } 3581 3582 if ((N0.getOpcode() == ISD::XOR || 3583 (N0.getOpcode() == ISD::AND && 3584 N0.getOperand(0).getOpcode() == ISD::XOR && 3585 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3586 isa<ConstantSDNode>(N0.getOperand(1)) && 3587 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 3588 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3589 // can only do this if the top bits are known zero. 3590 unsigned BitWidth = N0.getValueSizeInBits(); 3591 if (DAG.MaskedValueIsZero(N0, 3592 APInt::getHighBitsSet(BitWidth, 3593 BitWidth-1))) { 3594 // Okay, get the un-inverted input value. 3595 SDValue Val; 3596 if (N0.getOpcode() == ISD::XOR) { 3597 Val = N0.getOperand(0); 3598 } else { 3599 assert(N0.getOpcode() == ISD::AND && 3600 N0.getOperand(0).getOpcode() == ISD::XOR); 3601 // ((X^1)&1)^1 -> X & 1 3602 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3603 N0.getOperand(0).getOperand(0), 3604 N0.getOperand(1)); 3605 } 3606 3607 return DAG.getSetCC(dl, VT, Val, N1, 3608 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3609 } 3610 } else if (N1C->isOne()) { 3611 SDValue Op0 = N0; 3612 if (Op0.getOpcode() == ISD::TRUNCATE) 3613 Op0 = Op0.getOperand(0); 3614 3615 if ((Op0.getOpcode() == ISD::XOR) && 3616 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3617 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3618 SDValue XorLHS = Op0.getOperand(0); 3619 SDValue XorRHS = Op0.getOperand(1); 3620 // Ensure that the input setccs return an i1 type or 0/1 value. 3621 if (Op0.getValueType() == MVT::i1 || 3622 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3623 ZeroOrOneBooleanContent && 3624 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3625 ZeroOrOneBooleanContent)) { 3626 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3627 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3628 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3629 } 3630 } 3631 if (Op0.getOpcode() == ISD::AND && 3632 isa<ConstantSDNode>(Op0.getOperand(1)) && 3633 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 3634 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3635 if (Op0.getValueType().bitsGT(VT)) 3636 Op0 = DAG.getNode(ISD::AND, dl, VT, 3637 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3638 DAG.getConstant(1, dl, VT)); 3639 else if (Op0.getValueType().bitsLT(VT)) 3640 Op0 = DAG.getNode(ISD::AND, dl, VT, 3641 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3642 DAG.getConstant(1, dl, VT)); 3643 3644 return DAG.getSetCC(dl, VT, Op0, 3645 DAG.getConstant(0, dl, Op0.getValueType()), 3646 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3647 } 3648 if (Op0.getOpcode() == ISD::AssertZext && 3649 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3650 return DAG.getSetCC(dl, VT, Op0, 3651 DAG.getConstant(0, dl, Op0.getValueType()), 3652 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3653 } 3654 } 3655 3656 // Given: 3657 // icmp eq/ne (urem %x, %y), 0 3658 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3659 // icmp eq/ne %x, 0 3660 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3661 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3662 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3663 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3664 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3665 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3666 } 3667 3668 if (SDValue V = 3669 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3670 return V; 3671 } 3672 3673 // These simplifications apply to splat vectors as well. 3674 // TODO: Handle more splat vector cases. 3675 if (auto *N1C = isConstOrConstSplat(N1)) { 3676 const APInt &C1 = N1C->getAPIntValue(); 3677 3678 APInt MinVal, MaxVal; 3679 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3680 if (ISD::isSignedIntSetCC(Cond)) { 3681 MinVal = APInt::getSignedMinValue(OperandBitSize); 3682 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3683 } else { 3684 MinVal = APInt::getMinValue(OperandBitSize); 3685 MaxVal = APInt::getMaxValue(OperandBitSize); 3686 } 3687 3688 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3689 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3690 // X >= MIN --> true 3691 if (C1 == MinVal) 3692 return DAG.getBoolConstant(true, dl, VT, OpVT); 3693 3694 if (!VT.isVector()) { // TODO: Support this for vectors. 3695 // X >= C0 --> X > (C0 - 1) 3696 APInt C = C1 - 1; 3697 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3698 if ((DCI.isBeforeLegalizeOps() || 3699 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3700 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3701 isLegalICmpImmediate(C.getSExtValue())))) { 3702 return DAG.getSetCC(dl, VT, N0, 3703 DAG.getConstant(C, dl, N1.getValueType()), 3704 NewCC); 3705 } 3706 } 3707 } 3708 3709 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3710 // X <= MAX --> true 3711 if (C1 == MaxVal) 3712 return DAG.getBoolConstant(true, dl, VT, OpVT); 3713 3714 // X <= C0 --> X < (C0 + 1) 3715 if (!VT.isVector()) { // TODO: Support this for vectors. 3716 APInt C = C1 + 1; 3717 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3718 if ((DCI.isBeforeLegalizeOps() || 3719 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3720 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3721 isLegalICmpImmediate(C.getSExtValue())))) { 3722 return DAG.getSetCC(dl, VT, N0, 3723 DAG.getConstant(C, dl, N1.getValueType()), 3724 NewCC); 3725 } 3726 } 3727 } 3728 3729 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3730 if (C1 == MinVal) 3731 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3732 3733 // TODO: Support this for vectors after legalize ops. 3734 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3735 // Canonicalize setlt X, Max --> setne X, Max 3736 if (C1 == MaxVal) 3737 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3738 3739 // If we have setult X, 1, turn it into seteq X, 0 3740 if (C1 == MinVal+1) 3741 return DAG.getSetCC(dl, VT, N0, 3742 DAG.getConstant(MinVal, dl, N0.getValueType()), 3743 ISD::SETEQ); 3744 } 3745 } 3746 3747 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3748 if (C1 == MaxVal) 3749 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3750 3751 // TODO: Support this for vectors after legalize ops. 3752 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3753 // Canonicalize setgt X, Min --> setne X, Min 3754 if (C1 == MinVal) 3755 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3756 3757 // If we have setugt X, Max-1, turn it into seteq X, Max 3758 if (C1 == MaxVal-1) 3759 return DAG.getSetCC(dl, VT, N0, 3760 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3761 ISD::SETEQ); 3762 } 3763 } 3764 3765 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3766 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3767 if (C1.isNullValue()) 3768 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3769 VT, N0, N1, Cond, DCI, dl)) 3770 return CC; 3771 } 3772 3773 // If we have "setcc X, C0", check to see if we can shrink the immediate 3774 // by changing cc. 3775 // TODO: Support this for vectors after legalize ops. 3776 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3777 // SETUGT X, SINTMAX -> SETLT X, 0 3778 if (Cond == ISD::SETUGT && 3779 C1 == APInt::getSignedMaxValue(OperandBitSize)) 3780 return DAG.getSetCC(dl, VT, N0, 3781 DAG.getConstant(0, dl, N1.getValueType()), 3782 ISD::SETLT); 3783 3784 // SETULT X, SINTMIN -> SETGT X, -1 3785 if (Cond == ISD::SETULT && 3786 C1 == APInt::getSignedMinValue(OperandBitSize)) { 3787 SDValue ConstMinusOne = 3788 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 3789 N1.getValueType()); 3790 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 3791 } 3792 } 3793 } 3794 3795 // Back to non-vector simplifications. 3796 // TODO: Can we do these for vector splats? 3797 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3798 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3799 const APInt &C1 = N1C->getAPIntValue(); 3800 EVT ShValTy = N0.getValueType(); 3801 3802 // Fold bit comparisons when we can. 3803 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3804 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 3805 N0.getOpcode() == ISD::AND) { 3806 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3807 EVT ShiftTy = 3808 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3809 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 3810 // Perform the xform if the AND RHS is a single bit. 3811 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 3812 if (AndRHS->getAPIntValue().isPowerOf2() && 3813 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3814 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3815 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3816 DAG.getConstant(ShCt, dl, ShiftTy))); 3817 } 3818 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 3819 // (X & 8) == 8 --> (X & 8) >> 3 3820 // Perform the xform if C1 is a single bit. 3821 unsigned ShCt = C1.logBase2(); 3822 if (C1.isPowerOf2() && 3823 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3824 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3825 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3826 DAG.getConstant(ShCt, dl, ShiftTy))); 3827 } 3828 } 3829 } 3830 } 3831 3832 if (C1.getMinSignedBits() <= 64 && 3833 !isLegalICmpImmediate(C1.getSExtValue())) { 3834 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3835 // (X & -256) == 256 -> (X >> 8) == 1 3836 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3837 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 3838 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3839 const APInt &AndRHSC = AndRHS->getAPIntValue(); 3840 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 3841 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 3842 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3843 SDValue Shift = 3844 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 3845 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3846 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 3847 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 3848 } 3849 } 3850 } 3851 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 3852 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 3853 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 3854 // X < 0x100000000 -> (X >> 32) < 1 3855 // X >= 0x100000000 -> (X >> 32) >= 1 3856 // X <= 0x0ffffffff -> (X >> 32) < 1 3857 // X > 0x0ffffffff -> (X >> 32) >= 1 3858 unsigned ShiftBits; 3859 APInt NewC = C1; 3860 ISD::CondCode NewCond = Cond; 3861 if (AdjOne) { 3862 ShiftBits = C1.countTrailingOnes(); 3863 NewC = NewC + 1; 3864 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 3865 } else { 3866 ShiftBits = C1.countTrailingZeros(); 3867 } 3868 NewC.lshrInPlace(ShiftBits); 3869 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 3870 isLegalICmpImmediate(NewC.getSExtValue()) && 3871 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3872 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3873 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3874 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 3875 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 3876 } 3877 } 3878 } 3879 } 3880 3881 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 3882 auto *CFP = cast<ConstantFPSDNode>(N1); 3883 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 3884 3885 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 3886 // constant if knowing that the operand is non-nan is enough. We prefer to 3887 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 3888 // materialize 0.0. 3889 if (Cond == ISD::SETO || Cond == ISD::SETUO) 3890 return DAG.getSetCC(dl, VT, N0, N0, Cond); 3891 3892 // setcc (fneg x), C -> setcc swap(pred) x, -C 3893 if (N0.getOpcode() == ISD::FNEG) { 3894 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 3895 if (DCI.isBeforeLegalizeOps() || 3896 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 3897 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 3898 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 3899 } 3900 } 3901 3902 // If the condition is not legal, see if we can find an equivalent one 3903 // which is legal. 3904 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 3905 // If the comparison was an awkward floating-point == or != and one of 3906 // the comparison operands is infinity or negative infinity, convert the 3907 // condition to a less-awkward <= or >=. 3908 if (CFP->getValueAPF().isInfinity()) { 3909 bool IsNegInf = CFP->getValueAPF().isNegative(); 3910 ISD::CondCode NewCond = ISD::SETCC_INVALID; 3911 switch (Cond) { 3912 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 3913 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 3914 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 3915 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 3916 default: break; 3917 } 3918 if (NewCond != ISD::SETCC_INVALID && 3919 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 3920 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3921 } 3922 } 3923 } 3924 3925 if (N0 == N1) { 3926 // The sext(setcc()) => setcc() optimization relies on the appropriate 3927 // constant being emitted. 3928 assert(!N0.getValueType().isInteger() && 3929 "Integer types should be handled by FoldSetCC"); 3930 3931 bool EqTrue = ISD::isTrueWhenEqual(Cond); 3932 unsigned UOF = ISD::getUnorderedFlavor(Cond); 3933 if (UOF == 2) // FP operators that are undefined on NaNs. 3934 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3935 if (UOF == unsigned(EqTrue)) 3936 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3937 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 3938 // if it is not already. 3939 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 3940 if (NewCond != Cond && 3941 (DCI.isBeforeLegalizeOps() || 3942 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 3943 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3944 } 3945 3946 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3947 N0.getValueType().isInteger()) { 3948 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 3949 N0.getOpcode() == ISD::XOR) { 3950 // Simplify (X+Y) == (X+Z) --> Y == Z 3951 if (N0.getOpcode() == N1.getOpcode()) { 3952 if (N0.getOperand(0) == N1.getOperand(0)) 3953 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 3954 if (N0.getOperand(1) == N1.getOperand(1)) 3955 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 3956 if (isCommutativeBinOp(N0.getOpcode())) { 3957 // If X op Y == Y op X, try other combinations. 3958 if (N0.getOperand(0) == N1.getOperand(1)) 3959 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 3960 Cond); 3961 if (N0.getOperand(1) == N1.getOperand(0)) 3962 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 3963 Cond); 3964 } 3965 } 3966 3967 // If RHS is a legal immediate value for a compare instruction, we need 3968 // to be careful about increasing register pressure needlessly. 3969 bool LegalRHSImm = false; 3970 3971 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 3972 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3973 // Turn (X+C1) == C2 --> X == C2-C1 3974 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 3975 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3976 DAG.getConstant(RHSC->getAPIntValue()- 3977 LHSR->getAPIntValue(), 3978 dl, N0.getValueType()), Cond); 3979 } 3980 3981 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 3982 if (N0.getOpcode() == ISD::XOR) 3983 // If we know that all of the inverted bits are zero, don't bother 3984 // performing the inversion. 3985 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 3986 return 3987 DAG.getSetCC(dl, VT, N0.getOperand(0), 3988 DAG.getConstant(LHSR->getAPIntValue() ^ 3989 RHSC->getAPIntValue(), 3990 dl, N0.getValueType()), 3991 Cond); 3992 } 3993 3994 // Turn (C1-X) == C2 --> X == C1-C2 3995 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 3996 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 3997 return 3998 DAG.getSetCC(dl, VT, N0.getOperand(1), 3999 DAG.getConstant(SUBC->getAPIntValue() - 4000 RHSC->getAPIntValue(), 4001 dl, N0.getValueType()), 4002 Cond); 4003 } 4004 } 4005 4006 // Could RHSC fold directly into a compare? 4007 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4008 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4009 } 4010 4011 // (X+Y) == X --> Y == 0 and similar folds. 4012 // Don't do this if X is an immediate that can fold into a cmp 4013 // instruction and X+Y has other uses. It could be an induction variable 4014 // chain, and the transform would increase register pressure. 4015 if (!LegalRHSImm || N0.hasOneUse()) 4016 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4017 return V; 4018 } 4019 4020 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4021 N1.getOpcode() == ISD::XOR) 4022 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4023 return V; 4024 4025 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4026 return V; 4027 } 4028 4029 // Fold remainder of division by a constant. 4030 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4031 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4032 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4033 4034 // When division is cheap or optimizing for minimum size, 4035 // fall through to DIVREM creation by skipping this fold. 4036 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 4037 if (N0.getOpcode() == ISD::UREM) { 4038 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4039 return Folded; 4040 } else if (N0.getOpcode() == ISD::SREM) { 4041 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4042 return Folded; 4043 } 4044 } 4045 } 4046 4047 // Fold away ALL boolean setcc's. 4048 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4049 SDValue Temp; 4050 switch (Cond) { 4051 default: llvm_unreachable("Unknown integer setcc!"); 4052 case ISD::SETEQ: // X == Y -> ~(X^Y) 4053 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4054 N0 = DAG.getNOT(dl, Temp, OpVT); 4055 if (!DCI.isCalledByLegalizer()) 4056 DCI.AddToWorklist(Temp.getNode()); 4057 break; 4058 case ISD::SETNE: // X != Y --> (X^Y) 4059 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4060 break; 4061 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4062 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4063 Temp = DAG.getNOT(dl, N0, OpVT); 4064 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4065 if (!DCI.isCalledByLegalizer()) 4066 DCI.AddToWorklist(Temp.getNode()); 4067 break; 4068 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4069 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4070 Temp = DAG.getNOT(dl, N1, OpVT); 4071 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4072 if (!DCI.isCalledByLegalizer()) 4073 DCI.AddToWorklist(Temp.getNode()); 4074 break; 4075 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4076 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4077 Temp = DAG.getNOT(dl, N0, OpVT); 4078 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4079 if (!DCI.isCalledByLegalizer()) 4080 DCI.AddToWorklist(Temp.getNode()); 4081 break; 4082 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4083 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4084 Temp = DAG.getNOT(dl, N1, OpVT); 4085 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4086 break; 4087 } 4088 if (VT.getScalarType() != MVT::i1) { 4089 if (!DCI.isCalledByLegalizer()) 4090 DCI.AddToWorklist(N0.getNode()); 4091 // FIXME: If running after legalize, we probably can't do this. 4092 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4093 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4094 } 4095 return N0; 4096 } 4097 4098 // Could not fold it. 4099 return SDValue(); 4100 } 4101 4102 /// Returns true (and the GlobalValue and the offset) if the node is a 4103 /// GlobalAddress + offset. 4104 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4105 int64_t &Offset) const { 4106 4107 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4108 4109 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4110 GA = GASD->getGlobal(); 4111 Offset += GASD->getOffset(); 4112 return true; 4113 } 4114 4115 if (N->getOpcode() == ISD::ADD) { 4116 SDValue N1 = N->getOperand(0); 4117 SDValue N2 = N->getOperand(1); 4118 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4119 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4120 Offset += V->getSExtValue(); 4121 return true; 4122 } 4123 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4124 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4125 Offset += V->getSExtValue(); 4126 return true; 4127 } 4128 } 4129 } 4130 4131 return false; 4132 } 4133 4134 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4135 DAGCombinerInfo &DCI) const { 4136 // Default implementation: no optimization. 4137 return SDValue(); 4138 } 4139 4140 //===----------------------------------------------------------------------===// 4141 // Inline Assembler Implementation Methods 4142 //===----------------------------------------------------------------------===// 4143 4144 TargetLowering::ConstraintType 4145 TargetLowering::getConstraintType(StringRef Constraint) const { 4146 unsigned S = Constraint.size(); 4147 4148 if (S == 1) { 4149 switch (Constraint[0]) { 4150 default: break; 4151 case 'r': 4152 return C_RegisterClass; 4153 case 'm': // memory 4154 case 'o': // offsetable 4155 case 'V': // not offsetable 4156 return C_Memory; 4157 case 'n': // Simple Integer 4158 case 'E': // Floating Point Constant 4159 case 'F': // Floating Point Constant 4160 return C_Immediate; 4161 case 'i': // Simple Integer or Relocatable Constant 4162 case 's': // Relocatable Constant 4163 case 'p': // Address. 4164 case 'X': // Allow ANY value. 4165 case 'I': // Target registers. 4166 case 'J': 4167 case 'K': 4168 case 'L': 4169 case 'M': 4170 case 'N': 4171 case 'O': 4172 case 'P': 4173 case '<': 4174 case '>': 4175 return C_Other; 4176 } 4177 } 4178 4179 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4180 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4181 return C_Memory; 4182 return C_Register; 4183 } 4184 return C_Unknown; 4185 } 4186 4187 /// Try to replace an X constraint, which matches anything, with another that 4188 /// has more specific requirements based on the type of the corresponding 4189 /// operand. 4190 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4191 if (ConstraintVT.isInteger()) 4192 return "r"; 4193 if (ConstraintVT.isFloatingPoint()) 4194 return "f"; // works for many targets 4195 return nullptr; 4196 } 4197 4198 SDValue TargetLowering::LowerAsmOutputForConstraint( 4199 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, 4200 SelectionDAG &DAG) const { 4201 return SDValue(); 4202 } 4203 4204 /// Lower the specified operand into the Ops vector. 4205 /// If it is invalid, don't add anything to Ops. 4206 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4207 std::string &Constraint, 4208 std::vector<SDValue> &Ops, 4209 SelectionDAG &DAG) const { 4210 4211 if (Constraint.length() > 1) return; 4212 4213 char ConstraintLetter = Constraint[0]; 4214 switch (ConstraintLetter) { 4215 default: break; 4216 case 'X': // Allows any operand; labels (basic block) use this. 4217 if (Op.getOpcode() == ISD::BasicBlock || 4218 Op.getOpcode() == ISD::TargetBlockAddress) { 4219 Ops.push_back(Op); 4220 return; 4221 } 4222 LLVM_FALLTHROUGH; 4223 case 'i': // Simple Integer or Relocatable Constant 4224 case 'n': // Simple Integer 4225 case 's': { // Relocatable Constant 4226 4227 GlobalAddressSDNode *GA; 4228 ConstantSDNode *C; 4229 BlockAddressSDNode *BA; 4230 uint64_t Offset = 0; 4231 4232 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4233 // etc., since getelementpointer is variadic. We can't use 4234 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4235 // while in this case the GA may be furthest from the root node which is 4236 // likely an ISD::ADD. 4237 while (1) { 4238 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4239 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4240 GA->getValueType(0), 4241 Offset + GA->getOffset())); 4242 return; 4243 } else if ((C = dyn_cast<ConstantSDNode>(Op)) && 4244 ConstraintLetter != 's') { 4245 // gcc prints these as sign extended. Sign extend value to 64 bits 4246 // now; without this it would get ZExt'd later in 4247 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4248 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4249 BooleanContent BCont = getBooleanContents(MVT::i64); 4250 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont) 4251 : ISD::SIGN_EXTEND; 4252 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() 4253 : C->getSExtValue(); 4254 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal, 4255 SDLoc(C), MVT::i64)); 4256 return; 4257 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && 4258 ConstraintLetter != 'n') { 4259 Ops.push_back(DAG.getTargetBlockAddress( 4260 BA->getBlockAddress(), BA->getValueType(0), 4261 Offset + BA->getOffset(), BA->getTargetFlags())); 4262 return; 4263 } else { 4264 const unsigned OpCode = Op.getOpcode(); 4265 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4266 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4267 Op = Op.getOperand(1); 4268 // Subtraction is not commutative. 4269 else if (OpCode == ISD::ADD && 4270 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4271 Op = Op.getOperand(0); 4272 else 4273 return; 4274 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4275 continue; 4276 } 4277 } 4278 return; 4279 } 4280 break; 4281 } 4282 } 4283 } 4284 4285 std::pair<unsigned, const TargetRegisterClass *> 4286 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4287 StringRef Constraint, 4288 MVT VT) const { 4289 if (Constraint.empty() || Constraint[0] != '{') 4290 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4291 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4292 4293 // Remove the braces from around the name. 4294 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4295 4296 std::pair<unsigned, const TargetRegisterClass *> R = 4297 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4298 4299 // Figure out which register class contains this reg. 4300 for (const TargetRegisterClass *RC : RI->regclasses()) { 4301 // If none of the value types for this register class are valid, we 4302 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4303 if (!isLegalRC(*RI, *RC)) 4304 continue; 4305 4306 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 4307 I != E; ++I) { 4308 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 4309 std::pair<unsigned, const TargetRegisterClass *> S = 4310 std::make_pair(*I, RC); 4311 4312 // If this register class has the requested value type, return it, 4313 // otherwise keep searching and return the first class found 4314 // if no other is found which explicitly has the requested type. 4315 if (RI->isTypeLegalForClass(*RC, VT)) 4316 return S; 4317 if (!R.second) 4318 R = S; 4319 } 4320 } 4321 } 4322 4323 return R; 4324 } 4325 4326 //===----------------------------------------------------------------------===// 4327 // Constraint Selection. 4328 4329 /// Return true of this is an input operand that is a matching constraint like 4330 /// "4". 4331 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4332 assert(!ConstraintCode.empty() && "No known constraint!"); 4333 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4334 } 4335 4336 /// If this is an input matching constraint, this method returns the output 4337 /// operand it matches. 4338 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4339 assert(!ConstraintCode.empty() && "No known constraint!"); 4340 return atoi(ConstraintCode.c_str()); 4341 } 4342 4343 /// Split up the constraint string from the inline assembly value into the 4344 /// specific constraints and their prefixes, and also tie in the associated 4345 /// operand values. 4346 /// If this returns an empty vector, and if the constraint string itself 4347 /// isn't empty, there was an error parsing. 4348 TargetLowering::AsmOperandInfoVector 4349 TargetLowering::ParseConstraints(const DataLayout &DL, 4350 const TargetRegisterInfo *TRI, 4351 const CallBase &Call) const { 4352 /// Information about all of the constraints. 4353 AsmOperandInfoVector ConstraintOperands; 4354 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 4355 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4356 4357 // Do a prepass over the constraints, canonicalizing them, and building up the 4358 // ConstraintOperands list. 4359 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4360 unsigned ResNo = 0; // ResNo - The result number of the next output. 4361 4362 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4363 ConstraintOperands.emplace_back(std::move(CI)); 4364 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4365 4366 // Update multiple alternative constraint count. 4367 if (OpInfo.multipleAlternatives.size() > maCount) 4368 maCount = OpInfo.multipleAlternatives.size(); 4369 4370 OpInfo.ConstraintVT = MVT::Other; 4371 4372 // Compute the value type for each operand. 4373 switch (OpInfo.Type) { 4374 case InlineAsm::isOutput: 4375 // Indirect outputs just consume an argument. 4376 if (OpInfo.isIndirect) { 4377 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4378 break; 4379 } 4380 4381 // The return value of the call is this value. As such, there is no 4382 // corresponding argument. 4383 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 4384 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 4385 OpInfo.ConstraintVT = 4386 getSimpleValueType(DL, STy->getElementType(ResNo)); 4387 } else { 4388 assert(ResNo == 0 && "Asm only has one result!"); 4389 OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType()); 4390 } 4391 ++ResNo; 4392 break; 4393 case InlineAsm::isInput: 4394 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4395 break; 4396 case InlineAsm::isClobber: 4397 // Nothing to do. 4398 break; 4399 } 4400 4401 if (OpInfo.CallOperandVal) { 4402 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4403 if (OpInfo.isIndirect) { 4404 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4405 if (!PtrTy) 4406 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4407 OpTy = PtrTy->getElementType(); 4408 } 4409 4410 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4411 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4412 if (STy->getNumElements() == 1) 4413 OpTy = STy->getElementType(0); 4414 4415 // If OpTy is not a single value, it may be a struct/union that we 4416 // can tile with integers. 4417 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4418 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4419 switch (BitSize) { 4420 default: break; 4421 case 1: 4422 case 8: 4423 case 16: 4424 case 32: 4425 case 64: 4426 case 128: 4427 OpInfo.ConstraintVT = 4428 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4429 break; 4430 } 4431 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4432 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4433 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4434 } else { 4435 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4436 } 4437 } 4438 } 4439 4440 // If we have multiple alternative constraints, select the best alternative. 4441 if (!ConstraintOperands.empty()) { 4442 if (maCount) { 4443 unsigned bestMAIndex = 0; 4444 int bestWeight = -1; 4445 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4446 int weight = -1; 4447 unsigned maIndex; 4448 // Compute the sums of the weights for each alternative, keeping track 4449 // of the best (highest weight) one so far. 4450 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4451 int weightSum = 0; 4452 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4453 cIndex != eIndex; ++cIndex) { 4454 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4455 if (OpInfo.Type == InlineAsm::isClobber) 4456 continue; 4457 4458 // If this is an output operand with a matching input operand, 4459 // look up the matching input. If their types mismatch, e.g. one 4460 // is an integer, the other is floating point, or their sizes are 4461 // different, flag it as an maCantMatch. 4462 if (OpInfo.hasMatchingInput()) { 4463 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4464 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4465 if ((OpInfo.ConstraintVT.isInteger() != 4466 Input.ConstraintVT.isInteger()) || 4467 (OpInfo.ConstraintVT.getSizeInBits() != 4468 Input.ConstraintVT.getSizeInBits())) { 4469 weightSum = -1; // Can't match. 4470 break; 4471 } 4472 } 4473 } 4474 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4475 if (weight == -1) { 4476 weightSum = -1; 4477 break; 4478 } 4479 weightSum += weight; 4480 } 4481 // Update best. 4482 if (weightSum > bestWeight) { 4483 bestWeight = weightSum; 4484 bestMAIndex = maIndex; 4485 } 4486 } 4487 4488 // Now select chosen alternative in each constraint. 4489 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4490 cIndex != eIndex; ++cIndex) { 4491 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4492 if (cInfo.Type == InlineAsm::isClobber) 4493 continue; 4494 cInfo.selectAlternative(bestMAIndex); 4495 } 4496 } 4497 } 4498 4499 // Check and hook up tied operands, choose constraint code to use. 4500 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4501 cIndex != eIndex; ++cIndex) { 4502 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4503 4504 // If this is an output operand with a matching input operand, look up the 4505 // matching input. If their types mismatch, e.g. one is an integer, the 4506 // other is floating point, or their sizes are different, flag it as an 4507 // error. 4508 if (OpInfo.hasMatchingInput()) { 4509 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4510 4511 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4512 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4513 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4514 OpInfo.ConstraintVT); 4515 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4516 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4517 Input.ConstraintVT); 4518 if ((OpInfo.ConstraintVT.isInteger() != 4519 Input.ConstraintVT.isInteger()) || 4520 (MatchRC.second != InputRC.second)) { 4521 report_fatal_error("Unsupported asm: input constraint" 4522 " with a matching output constraint of" 4523 " incompatible type!"); 4524 } 4525 } 4526 } 4527 } 4528 4529 return ConstraintOperands; 4530 } 4531 4532 /// Return an integer indicating how general CT is. 4533 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4534 switch (CT) { 4535 case TargetLowering::C_Immediate: 4536 case TargetLowering::C_Other: 4537 case TargetLowering::C_Unknown: 4538 return 0; 4539 case TargetLowering::C_Register: 4540 return 1; 4541 case TargetLowering::C_RegisterClass: 4542 return 2; 4543 case TargetLowering::C_Memory: 4544 return 3; 4545 } 4546 llvm_unreachable("Invalid constraint type"); 4547 } 4548 4549 /// Examine constraint type and operand type and determine a weight value. 4550 /// This object must already have been set up with the operand type 4551 /// and the current alternative constraint selected. 4552 TargetLowering::ConstraintWeight 4553 TargetLowering::getMultipleConstraintMatchWeight( 4554 AsmOperandInfo &info, int maIndex) const { 4555 InlineAsm::ConstraintCodeVector *rCodes; 4556 if (maIndex >= (int)info.multipleAlternatives.size()) 4557 rCodes = &info.Codes; 4558 else 4559 rCodes = &info.multipleAlternatives[maIndex].Codes; 4560 ConstraintWeight BestWeight = CW_Invalid; 4561 4562 // Loop over the options, keeping track of the most general one. 4563 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4564 ConstraintWeight weight = 4565 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4566 if (weight > BestWeight) 4567 BestWeight = weight; 4568 } 4569 4570 return BestWeight; 4571 } 4572 4573 /// Examine constraint type and operand type and determine a weight value. 4574 /// This object must already have been set up with the operand type 4575 /// and the current alternative constraint selected. 4576 TargetLowering::ConstraintWeight 4577 TargetLowering::getSingleConstraintMatchWeight( 4578 AsmOperandInfo &info, const char *constraint) const { 4579 ConstraintWeight weight = CW_Invalid; 4580 Value *CallOperandVal = info.CallOperandVal; 4581 // If we don't have a value, we can't do a match, 4582 // but allow it at the lowest weight. 4583 if (!CallOperandVal) 4584 return CW_Default; 4585 // Look at the constraint type. 4586 switch (*constraint) { 4587 case 'i': // immediate integer. 4588 case 'n': // immediate integer with a known value. 4589 if (isa<ConstantInt>(CallOperandVal)) 4590 weight = CW_Constant; 4591 break; 4592 case 's': // non-explicit intregal immediate. 4593 if (isa<GlobalValue>(CallOperandVal)) 4594 weight = CW_Constant; 4595 break; 4596 case 'E': // immediate float if host format. 4597 case 'F': // immediate float. 4598 if (isa<ConstantFP>(CallOperandVal)) 4599 weight = CW_Constant; 4600 break; 4601 case '<': // memory operand with autodecrement. 4602 case '>': // memory operand with autoincrement. 4603 case 'm': // memory operand. 4604 case 'o': // offsettable memory operand 4605 case 'V': // non-offsettable memory operand 4606 weight = CW_Memory; 4607 break; 4608 case 'r': // general register. 4609 case 'g': // general register, memory operand or immediate integer. 4610 // note: Clang converts "g" to "imr". 4611 if (CallOperandVal->getType()->isIntegerTy()) 4612 weight = CW_Register; 4613 break; 4614 case 'X': // any operand. 4615 default: 4616 weight = CW_Default; 4617 break; 4618 } 4619 return weight; 4620 } 4621 4622 /// If there are multiple different constraints that we could pick for this 4623 /// operand (e.g. "imr") try to pick the 'best' one. 4624 /// This is somewhat tricky: constraints fall into four classes: 4625 /// Other -> immediates and magic values 4626 /// Register -> one specific register 4627 /// RegisterClass -> a group of regs 4628 /// Memory -> memory 4629 /// Ideally, we would pick the most specific constraint possible: if we have 4630 /// something that fits into a register, we would pick it. The problem here 4631 /// is that if we have something that could either be in a register or in 4632 /// memory that use of the register could cause selection of *other* 4633 /// operands to fail: they might only succeed if we pick memory. Because of 4634 /// this the heuristic we use is: 4635 /// 4636 /// 1) If there is an 'other' constraint, and if the operand is valid for 4637 /// that constraint, use it. This makes us take advantage of 'i' 4638 /// constraints when available. 4639 /// 2) Otherwise, pick the most general constraint present. This prefers 4640 /// 'm' over 'r', for example. 4641 /// 4642 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4643 const TargetLowering &TLI, 4644 SDValue Op, SelectionDAG *DAG) { 4645 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4646 unsigned BestIdx = 0; 4647 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4648 int BestGenerality = -1; 4649 4650 // Loop over the options, keeping track of the most general one. 4651 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4652 TargetLowering::ConstraintType CType = 4653 TLI.getConstraintType(OpInfo.Codes[i]); 4654 4655 // Indirect 'other' or 'immediate' constraints are not allowed. 4656 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 4657 CType == TargetLowering::C_Register || 4658 CType == TargetLowering::C_RegisterClass)) 4659 continue; 4660 4661 // If this is an 'other' or 'immediate' constraint, see if the operand is 4662 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4663 // the operand is an integer in the range [0..31] we want to use I (saving a 4664 // load of a register), otherwise we must use 'r'. 4665 if ((CType == TargetLowering::C_Other || 4666 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4667 assert(OpInfo.Codes[i].size() == 1 && 4668 "Unhandled multi-letter 'other' constraint"); 4669 std::vector<SDValue> ResultOps; 4670 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4671 ResultOps, *DAG); 4672 if (!ResultOps.empty()) { 4673 BestType = CType; 4674 BestIdx = i; 4675 break; 4676 } 4677 } 4678 4679 // Things with matching constraints can only be registers, per gcc 4680 // documentation. This mainly affects "g" constraints. 4681 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4682 continue; 4683 4684 // This constraint letter is more general than the previous one, use it. 4685 int Generality = getConstraintGenerality(CType); 4686 if (Generality > BestGenerality) { 4687 BestType = CType; 4688 BestIdx = i; 4689 BestGenerality = Generality; 4690 } 4691 } 4692 4693 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4694 OpInfo.ConstraintType = BestType; 4695 } 4696 4697 /// Determines the constraint code and constraint type to use for the specific 4698 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4699 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4700 SDValue Op, 4701 SelectionDAG *DAG) const { 4702 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4703 4704 // Single-letter constraints ('r') are very common. 4705 if (OpInfo.Codes.size() == 1) { 4706 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4707 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4708 } else { 4709 ChooseConstraint(OpInfo, *this, Op, DAG); 4710 } 4711 4712 // 'X' matches anything. 4713 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4714 // Labels and constants are handled elsewhere ('X' is the only thing 4715 // that matches labels). For Functions, the type here is the type of 4716 // the result, which is not what we want to look at; leave them alone. 4717 Value *v = OpInfo.CallOperandVal; 4718 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4719 OpInfo.CallOperandVal = v; 4720 return; 4721 } 4722 4723 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4724 return; 4725 4726 // Otherwise, try to resolve it to something we know about by looking at 4727 // the actual operand type. 4728 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4729 OpInfo.ConstraintCode = Repl; 4730 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4731 } 4732 } 4733 } 4734 4735 /// Given an exact SDIV by a constant, create a multiplication 4736 /// with the multiplicative inverse of the constant. 4737 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 4738 const SDLoc &dl, SelectionDAG &DAG, 4739 SmallVectorImpl<SDNode *> &Created) { 4740 SDValue Op0 = N->getOperand(0); 4741 SDValue Op1 = N->getOperand(1); 4742 EVT VT = N->getValueType(0); 4743 EVT SVT = VT.getScalarType(); 4744 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 4745 EVT ShSVT = ShVT.getScalarType(); 4746 4747 bool UseSRA = false; 4748 SmallVector<SDValue, 16> Shifts, Factors; 4749 4750 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4751 if (C->isNullValue()) 4752 return false; 4753 APInt Divisor = C->getAPIntValue(); 4754 unsigned Shift = Divisor.countTrailingZeros(); 4755 if (Shift) { 4756 Divisor.ashrInPlace(Shift); 4757 UseSRA = true; 4758 } 4759 // Calculate the multiplicative inverse, using Newton's method. 4760 APInt t; 4761 APInt Factor = Divisor; 4762 while ((t = Divisor * Factor) != 1) 4763 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 4764 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 4765 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 4766 return true; 4767 }; 4768 4769 // Collect all magic values from the build vector. 4770 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 4771 return SDValue(); 4772 4773 SDValue Shift, Factor; 4774 if (VT.isVector()) { 4775 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4776 Factor = DAG.getBuildVector(VT, dl, Factors); 4777 } else { 4778 Shift = Shifts[0]; 4779 Factor = Factors[0]; 4780 } 4781 4782 SDValue Res = Op0; 4783 4784 // Shift the value upfront if it is even, so the LSB is one. 4785 if (UseSRA) { 4786 // TODO: For UDIV use SRL instead of SRA. 4787 SDNodeFlags Flags; 4788 Flags.setExact(true); 4789 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 4790 Created.push_back(Res.getNode()); 4791 } 4792 4793 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 4794 } 4795 4796 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 4797 SelectionDAG &DAG, 4798 SmallVectorImpl<SDNode *> &Created) const { 4799 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4800 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4801 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 4802 return SDValue(N, 0); // Lower SDIV as SDIV 4803 return SDValue(); 4804 } 4805 4806 /// Given an ISD::SDIV node expressing a divide by constant, 4807 /// return a DAG expression to select that will generate the same value by 4808 /// multiplying by a magic number. 4809 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4810 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 4811 bool IsAfterLegalization, 4812 SmallVectorImpl<SDNode *> &Created) const { 4813 SDLoc dl(N); 4814 EVT VT = N->getValueType(0); 4815 EVT SVT = VT.getScalarType(); 4816 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4817 EVT ShSVT = ShVT.getScalarType(); 4818 unsigned EltBits = VT.getScalarSizeInBits(); 4819 4820 // Check to see if we can do this. 4821 // FIXME: We should be more aggressive here. 4822 if (!isTypeLegal(VT)) 4823 return SDValue(); 4824 4825 // If the sdiv has an 'exact' bit we can use a simpler lowering. 4826 if (N->getFlags().hasExact()) 4827 return BuildExactSDIV(*this, N, dl, DAG, Created); 4828 4829 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 4830 4831 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4832 if (C->isNullValue()) 4833 return false; 4834 4835 const APInt &Divisor = C->getAPIntValue(); 4836 APInt::ms magics = Divisor.magic(); 4837 int NumeratorFactor = 0; 4838 int ShiftMask = -1; 4839 4840 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 4841 // If d is +1/-1, we just multiply the numerator by +1/-1. 4842 NumeratorFactor = Divisor.getSExtValue(); 4843 magics.m = 0; 4844 magics.s = 0; 4845 ShiftMask = 0; 4846 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 4847 // If d > 0 and m < 0, add the numerator. 4848 NumeratorFactor = 1; 4849 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 4850 // If d < 0 and m > 0, subtract the numerator. 4851 NumeratorFactor = -1; 4852 } 4853 4854 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 4855 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 4856 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 4857 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 4858 return true; 4859 }; 4860 4861 SDValue N0 = N->getOperand(0); 4862 SDValue N1 = N->getOperand(1); 4863 4864 // Collect the shifts / magic values from each element. 4865 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 4866 return SDValue(); 4867 4868 SDValue MagicFactor, Factor, Shift, ShiftMask; 4869 if (VT.isVector()) { 4870 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4871 Factor = DAG.getBuildVector(VT, dl, Factors); 4872 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4873 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 4874 } else { 4875 MagicFactor = MagicFactors[0]; 4876 Factor = Factors[0]; 4877 Shift = Shifts[0]; 4878 ShiftMask = ShiftMasks[0]; 4879 } 4880 4881 // Multiply the numerator (operand 0) by the magic value. 4882 // FIXME: We should support doing a MUL in a wider type. 4883 SDValue Q; 4884 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 4885 : isOperationLegalOrCustom(ISD::MULHS, VT)) 4886 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 4887 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 4888 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 4889 SDValue LoHi = 4890 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 4891 Q = SDValue(LoHi.getNode(), 1); 4892 } else 4893 return SDValue(); // No mulhs or equivalent. 4894 Created.push_back(Q.getNode()); 4895 4896 // (Optionally) Add/subtract the numerator using Factor. 4897 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 4898 Created.push_back(Factor.getNode()); 4899 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 4900 Created.push_back(Q.getNode()); 4901 4902 // Shift right algebraic by shift value. 4903 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 4904 Created.push_back(Q.getNode()); 4905 4906 // Extract the sign bit, mask it and add it to the quotient. 4907 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 4908 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 4909 Created.push_back(T.getNode()); 4910 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 4911 Created.push_back(T.getNode()); 4912 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 4913 } 4914 4915 /// Given an ISD::UDIV node expressing a divide by constant, 4916 /// return a DAG expression to select that will generate the same value by 4917 /// multiplying by a magic number. 4918 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4919 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 4920 bool IsAfterLegalization, 4921 SmallVectorImpl<SDNode *> &Created) const { 4922 SDLoc dl(N); 4923 EVT VT = N->getValueType(0); 4924 EVT SVT = VT.getScalarType(); 4925 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4926 EVT ShSVT = ShVT.getScalarType(); 4927 unsigned EltBits = VT.getScalarSizeInBits(); 4928 4929 // Check to see if we can do this. 4930 // FIXME: We should be more aggressive here. 4931 if (!isTypeLegal(VT)) 4932 return SDValue(); 4933 4934 bool UseNPQ = false; 4935 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4936 4937 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 4938 if (C->isNullValue()) 4939 return false; 4940 // FIXME: We should use a narrower constant when the upper 4941 // bits are known to be zero. 4942 APInt Divisor = C->getAPIntValue(); 4943 APInt::mu magics = Divisor.magicu(); 4944 unsigned PreShift = 0, PostShift = 0; 4945 4946 // If the divisor is even, we can avoid using the expensive fixup by 4947 // shifting the divided value upfront. 4948 if (magics.a != 0 && !Divisor[0]) { 4949 PreShift = Divisor.countTrailingZeros(); 4950 // Get magic number for the shifted divisor. 4951 magics = Divisor.lshr(PreShift).magicu(PreShift); 4952 assert(magics.a == 0 && "Should use cheap fixup now"); 4953 } 4954 4955 APInt Magic = magics.m; 4956 4957 unsigned SelNPQ; 4958 if (magics.a == 0 || Divisor.isOneValue()) { 4959 assert(magics.s < Divisor.getBitWidth() && 4960 "We shouldn't generate an undefined shift!"); 4961 PostShift = magics.s; 4962 SelNPQ = false; 4963 } else { 4964 PostShift = magics.s - 1; 4965 SelNPQ = true; 4966 } 4967 4968 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 4969 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 4970 NPQFactors.push_back( 4971 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4972 : APInt::getNullValue(EltBits), 4973 dl, SVT)); 4974 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 4975 UseNPQ |= SelNPQ; 4976 return true; 4977 }; 4978 4979 SDValue N0 = N->getOperand(0); 4980 SDValue N1 = N->getOperand(1); 4981 4982 // Collect the shifts/magic values from each element. 4983 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 4984 return SDValue(); 4985 4986 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 4987 if (VT.isVector()) { 4988 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 4989 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4990 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 4991 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 4992 } else { 4993 PreShift = PreShifts[0]; 4994 MagicFactor = MagicFactors[0]; 4995 PostShift = PostShifts[0]; 4996 } 4997 4998 SDValue Q = N0; 4999 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5000 Created.push_back(Q.getNode()); 5001 5002 // FIXME: We should support doing a MUL in a wider type. 5003 auto GetMULHU = [&](SDValue X, SDValue Y) { 5004 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 5005 : isOperationLegalOrCustom(ISD::MULHU, VT)) 5006 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5007 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 5008 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 5009 SDValue LoHi = 5010 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5011 return SDValue(LoHi.getNode(), 1); 5012 } 5013 return SDValue(); // No mulhu or equivalent 5014 }; 5015 5016 // Multiply the numerator (operand 0) by the magic value. 5017 Q = GetMULHU(Q, MagicFactor); 5018 if (!Q) 5019 return SDValue(); 5020 5021 Created.push_back(Q.getNode()); 5022 5023 if (UseNPQ) { 5024 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5025 Created.push_back(NPQ.getNode()); 5026 5027 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5028 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5029 if (VT.isVector()) 5030 NPQ = GetMULHU(NPQ, NPQFactor); 5031 else 5032 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5033 5034 Created.push_back(NPQ.getNode()); 5035 5036 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5037 Created.push_back(Q.getNode()); 5038 } 5039 5040 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5041 Created.push_back(Q.getNode()); 5042 5043 SDValue One = DAG.getConstant(1, dl, VT); 5044 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 5045 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5046 } 5047 5048 /// If all values in Values that *don't* match the predicate are same 'splat' 5049 /// value, then replace all values with that splat value. 5050 /// Else, if AlternativeReplacement was provided, then replace all values that 5051 /// do match predicate with AlternativeReplacement value. 5052 static void 5053 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5054 std::function<bool(SDValue)> Predicate, 5055 SDValue AlternativeReplacement = SDValue()) { 5056 SDValue Replacement; 5057 // Is there a value for which the Predicate does *NOT* match? What is it? 5058 auto SplatValue = llvm::find_if_not(Values, Predicate); 5059 if (SplatValue != Values.end()) { 5060 // Does Values consist only of SplatValue's and values matching Predicate? 5061 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5062 return Value == *SplatValue || Predicate(Value); 5063 })) // Then we shall replace values matching predicate with SplatValue. 5064 Replacement = *SplatValue; 5065 } 5066 if (!Replacement) { 5067 // Oops, we did not find the "baseline" splat value. 5068 if (!AlternativeReplacement) 5069 return; // Nothing to do. 5070 // Let's replace with provided value then. 5071 Replacement = AlternativeReplacement; 5072 } 5073 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5074 } 5075 5076 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5077 /// where the divisor is constant and the comparison target is zero, 5078 /// return a DAG expression that will generate the same comparison result 5079 /// using only multiplications, additions and shifts/rotations. 5080 /// Ref: "Hacker's Delight" 10-17. 5081 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5082 SDValue CompTargetNode, 5083 ISD::CondCode Cond, 5084 DAGCombinerInfo &DCI, 5085 const SDLoc &DL) const { 5086 SmallVector<SDNode *, 5> Built; 5087 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5088 DCI, DL, Built)) { 5089 for (SDNode *N : Built) 5090 DCI.AddToWorklist(N); 5091 return Folded; 5092 } 5093 5094 return SDValue(); 5095 } 5096 5097 SDValue 5098 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5099 SDValue CompTargetNode, ISD::CondCode Cond, 5100 DAGCombinerInfo &DCI, const SDLoc &DL, 5101 SmallVectorImpl<SDNode *> &Created) const { 5102 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5103 // - D must be constant, with D = D0 * 2^K where D0 is odd 5104 // - P is the multiplicative inverse of D0 modulo 2^W 5105 // - Q = floor(((2^W) - 1) / D) 5106 // where W is the width of the common type of N and D. 5107 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5108 "Only applicable for (in)equality comparisons."); 5109 5110 SelectionDAG &DAG = DCI.DAG; 5111 5112 EVT VT = REMNode.getValueType(); 5113 EVT SVT = VT.getScalarType(); 5114 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5115 EVT ShSVT = ShVT.getScalarType(); 5116 5117 // If MUL is unavailable, we cannot proceed in any case. 5118 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5119 return SDValue(); 5120 5121 bool ComparingWithAllZeros = true; 5122 bool AllComparisonsWithNonZerosAreTautological = true; 5123 bool HadTautologicalLanes = false; 5124 bool AllLanesAreTautological = true; 5125 bool HadEvenDivisor = false; 5126 bool AllDivisorsArePowerOfTwo = true; 5127 bool HadTautologicalInvertedLanes = false; 5128 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5129 5130 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5131 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5132 if (CDiv->isNullValue()) 5133 return false; 5134 5135 const APInt &D = CDiv->getAPIntValue(); 5136 const APInt &Cmp = CCmp->getAPIntValue(); 5137 5138 ComparingWithAllZeros &= Cmp.isNullValue(); 5139 5140 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5141 // if C2 is not less than C1, the comparison is always false. 5142 // But we will only be able to produce the comparison that will give the 5143 // opposive tautological answer. So this lane would need to be fixed up. 5144 bool TautologicalInvertedLane = D.ule(Cmp); 5145 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5146 5147 // If all lanes are tautological (either all divisors are ones, or divisor 5148 // is not greater than the constant we are comparing with), 5149 // we will prefer to avoid the fold. 5150 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; 5151 HadTautologicalLanes |= TautologicalLane; 5152 AllLanesAreTautological &= TautologicalLane; 5153 5154 // If we are comparing with non-zero, we need'll need to subtract said 5155 // comparison value from the LHS. But there is no point in doing that if 5156 // every lane where we are comparing with non-zero is tautological.. 5157 if (!Cmp.isNullValue()) 5158 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5159 5160 // Decompose D into D0 * 2^K 5161 unsigned K = D.countTrailingZeros(); 5162 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5163 APInt D0 = D.lshr(K); 5164 5165 // D is even if it has trailing zeros. 5166 HadEvenDivisor |= (K != 0); 5167 // D is a power-of-two if D0 is one. 5168 // If all divisors are power-of-two, we will prefer to avoid the fold. 5169 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5170 5171 // P = inv(D0, 2^W) 5172 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5173 unsigned W = D.getBitWidth(); 5174 APInt P = D0.zext(W + 1) 5175 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5176 .trunc(W); 5177 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5178 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5179 5180 // Q = floor((2^W - 1) u/ D) 5181 // R = ((2^W - 1) u% D) 5182 APInt Q, R; 5183 APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R); 5184 5185 // If we are comparing with zero, then that comparison constant is okay, 5186 // else it may need to be one less than that. 5187 if (Cmp.ugt(R)) 5188 Q -= 1; 5189 5190 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5191 "We are expecting that K is always less than all-ones for ShSVT"); 5192 5193 // If the lane is tautological the result can be constant-folded. 5194 if (TautologicalLane) { 5195 // Set P and K amount to a bogus values so we can try to splat them. 5196 P = 0; 5197 K = -1; 5198 // And ensure that comparison constant is tautological, 5199 // it will always compare true/false. 5200 Q = -1; 5201 } 5202 5203 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5204 KAmts.push_back( 5205 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5206 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5207 return true; 5208 }; 5209 5210 SDValue N = REMNode.getOperand(0); 5211 SDValue D = REMNode.getOperand(1); 5212 5213 // Collect the values from each element. 5214 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5215 return SDValue(); 5216 5217 // If all lanes are tautological, the result can be constant-folded. 5218 if (AllLanesAreTautological) 5219 return SDValue(); 5220 5221 // If this is a urem by a powers-of-two, avoid the fold since it can be 5222 // best implemented as a bit test. 5223 if (AllDivisorsArePowerOfTwo) 5224 return SDValue(); 5225 5226 SDValue PVal, KVal, QVal; 5227 if (VT.isVector()) { 5228 if (HadTautologicalLanes) { 5229 // Try to turn PAmts into a splat, since we don't care about the values 5230 // that are currently '0'. If we can't, just keep '0'`s. 5231 turnVectorIntoSplatVector(PAmts, isNullConstant); 5232 // Try to turn KAmts into a splat, since we don't care about the values 5233 // that are currently '-1'. If we can't, change them to '0'`s. 5234 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5235 DAG.getConstant(0, DL, ShSVT)); 5236 } 5237 5238 PVal = DAG.getBuildVector(VT, DL, PAmts); 5239 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5240 QVal = DAG.getBuildVector(VT, DL, QAmts); 5241 } else { 5242 PVal = PAmts[0]; 5243 KVal = KAmts[0]; 5244 QVal = QAmts[0]; 5245 } 5246 5247 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5248 if (!isOperationLegalOrCustom(ISD::SUB, VT)) 5249 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5250 assert(CompTargetNode.getValueType() == N.getValueType() && 5251 "Expecting that the types on LHS and RHS of comparisons match."); 5252 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5253 } 5254 5255 // (mul N, P) 5256 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5257 Created.push_back(Op0.getNode()); 5258 5259 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5260 // divisors as a performance improvement, since rotating by 0 is a no-op. 5261 if (HadEvenDivisor) { 5262 // We need ROTR to do this. 5263 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5264 return SDValue(); 5265 SDNodeFlags Flags; 5266 Flags.setExact(true); 5267 // UREM: (rotr (mul N, P), K) 5268 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5269 Created.push_back(Op0.getNode()); 5270 } 5271 5272 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5273 SDValue NewCC = 5274 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5275 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5276 if (!HadTautologicalInvertedLanes) 5277 return NewCC; 5278 5279 // If any lanes previously compared always-false, the NewCC will give 5280 // always-true result for them, so we need to fixup those lanes. 5281 // Or the other way around for inequality predicate. 5282 assert(VT.isVector() && "Can/should only get here for vectors."); 5283 Created.push_back(NewCC.getNode()); 5284 5285 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5286 // if C2 is not less than C1, the comparison is always false. 5287 // But we have produced the comparison that will give the 5288 // opposive tautological answer. So these lanes would need to be fixed up. 5289 SDValue TautologicalInvertedChannels = 5290 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5291 Created.push_back(TautologicalInvertedChannels.getNode()); 5292 5293 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5294 // If we have a vector select, let's replace the comparison results in the 5295 // affected lanes with the correct tautological result. 5296 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5297 DL, SETCCVT, SETCCVT); 5298 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5299 Replacement, NewCC); 5300 } 5301 5302 // Else, we can just invert the comparison result in the appropriate lanes. 5303 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5304 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5305 TautologicalInvertedChannels); 5306 5307 return SDValue(); // Don't know how to lower. 5308 } 5309 5310 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5311 /// where the divisor is constant and the comparison target is zero, 5312 /// return a DAG expression that will generate the same comparison result 5313 /// using only multiplications, additions and shifts/rotations. 5314 /// Ref: "Hacker's Delight" 10-17. 5315 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5316 SDValue CompTargetNode, 5317 ISD::CondCode Cond, 5318 DAGCombinerInfo &DCI, 5319 const SDLoc &DL) const { 5320 SmallVector<SDNode *, 7> Built; 5321 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5322 DCI, DL, Built)) { 5323 assert(Built.size() <= 7 && "Max size prediction failed."); 5324 for (SDNode *N : Built) 5325 DCI.AddToWorklist(N); 5326 return Folded; 5327 } 5328 5329 return SDValue(); 5330 } 5331 5332 SDValue 5333 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5334 SDValue CompTargetNode, ISD::CondCode Cond, 5335 DAGCombinerInfo &DCI, const SDLoc &DL, 5336 SmallVectorImpl<SDNode *> &Created) const { 5337 // Fold: 5338 // (seteq/ne (srem N, D), 0) 5339 // To: 5340 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5341 // 5342 // - D must be constant, with D = D0 * 2^K where D0 is odd 5343 // - P is the multiplicative inverse of D0 modulo 2^W 5344 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5345 // - Q = floor((2 * A) / (2^K)) 5346 // where W is the width of the common type of N and D. 5347 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5348 "Only applicable for (in)equality comparisons."); 5349 5350 SelectionDAG &DAG = DCI.DAG; 5351 5352 EVT VT = REMNode.getValueType(); 5353 EVT SVT = VT.getScalarType(); 5354 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5355 EVT ShSVT = ShVT.getScalarType(); 5356 5357 // If MUL is unavailable, we cannot proceed in any case. 5358 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5359 return SDValue(); 5360 5361 // TODO: Could support comparing with non-zero too. 5362 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5363 if (!CompTarget || !CompTarget->isNullValue()) 5364 return SDValue(); 5365 5366 bool HadIntMinDivisor = false; 5367 bool HadOneDivisor = false; 5368 bool AllDivisorsAreOnes = true; 5369 bool HadEvenDivisor = false; 5370 bool NeedToApplyOffset = false; 5371 bool AllDivisorsArePowerOfTwo = true; 5372 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5373 5374 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5375 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5376 if (C->isNullValue()) 5377 return false; 5378 5379 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5380 5381 // WARNING: this fold is only valid for positive divisors! 5382 APInt D = C->getAPIntValue(); 5383 if (D.isNegative()) 5384 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5385 5386 HadIntMinDivisor |= D.isMinSignedValue(); 5387 5388 // If all divisors are ones, we will prefer to avoid the fold. 5389 HadOneDivisor |= D.isOneValue(); 5390 AllDivisorsAreOnes &= D.isOneValue(); 5391 5392 // Decompose D into D0 * 2^K 5393 unsigned K = D.countTrailingZeros(); 5394 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5395 APInt D0 = D.lshr(K); 5396 5397 if (!D.isMinSignedValue()) { 5398 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5399 // we don't care about this lane in this fold, we'll special-handle it. 5400 HadEvenDivisor |= (K != 0); 5401 } 5402 5403 // D is a power-of-two if D0 is one. This includes INT_MIN. 5404 // If all divisors are power-of-two, we will prefer to avoid the fold. 5405 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5406 5407 // P = inv(D0, 2^W) 5408 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5409 unsigned W = D.getBitWidth(); 5410 APInt P = D0.zext(W + 1) 5411 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5412 .trunc(W); 5413 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5414 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5415 5416 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5417 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5418 A.clearLowBits(K); 5419 5420 if (!D.isMinSignedValue()) { 5421 // If divisor INT_MIN, then we don't care about this lane in this fold, 5422 // we'll special-handle it. 5423 NeedToApplyOffset |= A != 0; 5424 } 5425 5426 // Q = floor((2 * A) / (2^K)) 5427 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5428 5429 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5430 "We are expecting that A is always less than all-ones for SVT"); 5431 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5432 "We are expecting that K is always less than all-ones for ShSVT"); 5433 5434 // If the divisor is 1 the result can be constant-folded. Likewise, we 5435 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5436 if (D.isOneValue()) { 5437 // Set P, A and K to a bogus values so we can try to splat them. 5438 P = 0; 5439 A = -1; 5440 K = -1; 5441 5442 // x ?% 1 == 0 <--> true <--> x u<= -1 5443 Q = -1; 5444 } 5445 5446 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5447 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5448 KAmts.push_back( 5449 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5450 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5451 return true; 5452 }; 5453 5454 SDValue N = REMNode.getOperand(0); 5455 SDValue D = REMNode.getOperand(1); 5456 5457 // Collect the values from each element. 5458 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5459 return SDValue(); 5460 5461 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5462 if (AllDivisorsAreOnes) 5463 return SDValue(); 5464 5465 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5466 // since it can be best implemented as a bit test. 5467 if (AllDivisorsArePowerOfTwo) 5468 return SDValue(); 5469 5470 SDValue PVal, AVal, KVal, QVal; 5471 if (VT.isVector()) { 5472 if (HadOneDivisor) { 5473 // Try to turn PAmts into a splat, since we don't care about the values 5474 // that are currently '0'. If we can't, just keep '0'`s. 5475 turnVectorIntoSplatVector(PAmts, isNullConstant); 5476 // Try to turn AAmts into a splat, since we don't care about the 5477 // values that are currently '-1'. If we can't, change them to '0'`s. 5478 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5479 DAG.getConstant(0, DL, SVT)); 5480 // Try to turn KAmts into a splat, since we don't care about the values 5481 // that are currently '-1'. If we can't, change them to '0'`s. 5482 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5483 DAG.getConstant(0, DL, ShSVT)); 5484 } 5485 5486 PVal = DAG.getBuildVector(VT, DL, PAmts); 5487 AVal = DAG.getBuildVector(VT, DL, AAmts); 5488 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5489 QVal = DAG.getBuildVector(VT, DL, QAmts); 5490 } else { 5491 PVal = PAmts[0]; 5492 AVal = AAmts[0]; 5493 KVal = KAmts[0]; 5494 QVal = QAmts[0]; 5495 } 5496 5497 // (mul N, P) 5498 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5499 Created.push_back(Op0.getNode()); 5500 5501 if (NeedToApplyOffset) { 5502 // We need ADD to do this. 5503 if (!isOperationLegalOrCustom(ISD::ADD, VT)) 5504 return SDValue(); 5505 5506 // (add (mul N, P), A) 5507 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5508 Created.push_back(Op0.getNode()); 5509 } 5510 5511 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5512 // divisors as a performance improvement, since rotating by 0 is a no-op. 5513 if (HadEvenDivisor) { 5514 // We need ROTR to do this. 5515 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5516 return SDValue(); 5517 SDNodeFlags Flags; 5518 Flags.setExact(true); 5519 // SREM: (rotr (add (mul N, P), A), K) 5520 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5521 Created.push_back(Op0.getNode()); 5522 } 5523 5524 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5525 SDValue Fold = 5526 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5527 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5528 5529 // If we didn't have lanes with INT_MIN divisor, then we're done. 5530 if (!HadIntMinDivisor) 5531 return Fold; 5532 5533 // That fold is only valid for positive divisors. Which effectively means, 5534 // it is invalid for INT_MIN divisors. So if we have such a lane, 5535 // we must fix-up results for said lanes. 5536 assert(VT.isVector() && "Can/should only get here for vectors."); 5537 5538 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5539 !isOperationLegalOrCustom(ISD::AND, VT) || 5540 !isOperationLegalOrCustom(Cond, VT) || 5541 !isOperationLegalOrCustom(ISD::VSELECT, VT)) 5542 return SDValue(); 5543 5544 Created.push_back(Fold.getNode()); 5545 5546 SDValue IntMin = DAG.getConstant( 5547 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5548 SDValue IntMax = DAG.getConstant( 5549 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5550 SDValue Zero = 5551 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5552 5553 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5554 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5555 Created.push_back(DivisorIsIntMin.getNode()); 5556 5557 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5558 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5559 Created.push_back(Masked.getNode()); 5560 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5561 Created.push_back(MaskedIsZero.getNode()); 5562 5563 // To produce final result we need to blend 2 vectors: 'SetCC' and 5564 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5565 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5566 // constant-folded, select can get lowered to a shuffle with constant mask. 5567 SDValue Blended = 5568 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); 5569 5570 return Blended; 5571 } 5572 5573 bool TargetLowering:: 5574 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5575 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5576 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5577 "be a constant integer"); 5578 return true; 5579 } 5580 5581 return false; 5582 } 5583 5584 TargetLowering::NegatibleCost 5585 TargetLowering::getNegatibleCost(SDValue Op, SelectionDAG &DAG, 5586 bool LegalOperations, bool ForCodeSize, 5587 unsigned Depth) const { 5588 // fneg is removable even if it has multiple uses. 5589 if (Op.getOpcode() == ISD::FNEG) 5590 return NegatibleCost::Cheaper; 5591 5592 // Don't allow anything with multiple uses unless we know it is free. 5593 EVT VT = Op.getValueType(); 5594 const SDNodeFlags Flags = Op->getFlags(); 5595 const TargetOptions &Options = DAG.getTarget().Options; 5596 if (!Op.hasOneUse()) { 5597 bool IsFreeExtend = Op.getOpcode() == ISD::FP_EXTEND && 5598 isFPExtFree(VT, Op.getOperand(0).getValueType()); 5599 5600 // If we already have the use of the negated floating constant, it is free 5601 // to negate it even it has multiple uses. 5602 bool IsFreeConstant = 5603 Op.getOpcode() == ISD::ConstantFP && 5604 !negateExpression(Op, DAG, LegalOperations, ForCodeSize).use_empty(); 5605 5606 if (!IsFreeExtend && !IsFreeConstant) 5607 return NegatibleCost::Expensive; 5608 } 5609 5610 // Don't recurse exponentially. 5611 if (Depth > SelectionDAG::MaxRecursionDepth) 5612 return NegatibleCost::Expensive; 5613 5614 switch (Op.getOpcode()) { 5615 case ISD::ConstantFP: { 5616 if (!LegalOperations) 5617 return NegatibleCost::Neutral; 5618 5619 // Don't invert constant FP values after legalization unless the target says 5620 // the negated constant is legal. 5621 if (isOperationLegal(ISD::ConstantFP, VT) || 5622 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 5623 ForCodeSize)) 5624 return NegatibleCost::Neutral; 5625 break; 5626 } 5627 case ISD::BUILD_VECTOR: { 5628 // Only permit BUILD_VECTOR of constants. 5629 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 5630 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 5631 })) 5632 return NegatibleCost::Expensive; 5633 if (!LegalOperations) 5634 return NegatibleCost::Neutral; 5635 if (isOperationLegal(ISD::ConstantFP, VT) && 5636 isOperationLegal(ISD::BUILD_VECTOR, VT)) 5637 return NegatibleCost::Neutral; 5638 if (llvm::all_of(Op->op_values(), [&](SDValue N) { 5639 return N.isUndef() || 5640 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 5641 ForCodeSize); 5642 })) 5643 return NegatibleCost::Neutral; 5644 break; 5645 } 5646 case ISD::FADD: { 5647 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5648 return NegatibleCost::Expensive; 5649 5650 // After operation legalization, it might not be legal to create new FSUBs. 5651 if (LegalOperations && !isOperationLegalOrCustom(ISD::FSUB, VT)) 5652 return NegatibleCost::Expensive; 5653 5654 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 5655 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5656 ForCodeSize, Depth + 1); 5657 if (V0 != NegatibleCost::Expensive) 5658 return V0; 5659 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 5660 return getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, ForCodeSize, 5661 Depth + 1); 5662 } 5663 case ISD::FSUB: 5664 // We can't turn -(A-B) into B-A when we honor signed zeros. 5665 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5666 return NegatibleCost::Expensive; 5667 5668 // fold (fneg (fsub A, B)) -> (fsub B, A) 5669 return NegatibleCost::Neutral; 5670 case ISD::FMUL: 5671 case ISD::FDIV: { 5672 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) 5673 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5674 ForCodeSize, Depth + 1); 5675 if (V0 != NegatibleCost::Expensive) 5676 return V0; 5677 5678 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 5679 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 5680 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 5681 return NegatibleCost::Expensive; 5682 5683 return getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, ForCodeSize, 5684 Depth + 1); 5685 } 5686 case ISD::FMA: 5687 case ISD::FMAD: { 5688 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5689 return NegatibleCost::Expensive; 5690 5691 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5692 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5693 NegatibleCost V2 = getNegatibleCost(Op.getOperand(2), DAG, LegalOperations, 5694 ForCodeSize, Depth + 1); 5695 if (NegatibleCost::Expensive == V2) 5696 return NegatibleCost::Expensive; 5697 5698 // One of Op0/Op1 must be cheaply negatible, then select the cheapest. 5699 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5700 ForCodeSize, Depth + 1); 5701 NegatibleCost V1 = getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, 5702 ForCodeSize, Depth + 1); 5703 NegatibleCost V01 = std::min(V0, V1); 5704 if (V01 == NegatibleCost::Expensive) 5705 return NegatibleCost::Expensive; 5706 return std::min(V01, V2); 5707 } 5708 5709 case ISD::FP_EXTEND: 5710 case ISD::FP_ROUND: 5711 case ISD::FSIN: 5712 return getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, ForCodeSize, 5713 Depth + 1); 5714 } 5715 5716 return NegatibleCost::Expensive; 5717 } 5718 5719 SDValue TargetLowering::negateExpression(SDValue Op, SelectionDAG &DAG, 5720 bool LegalOps, bool OptForSize, 5721 unsigned Depth) const { 5722 // fneg is removable even if it has multiple uses. 5723 if (Op.getOpcode() == ISD::FNEG) 5724 return Op.getOperand(0); 5725 5726 assert(Depth <= SelectionDAG::MaxRecursionDepth && 5727 "negateExpression doesn't match getNegatibleCost"); 5728 5729 // Pre-increment recursion depth for use in recursive calls. 5730 ++Depth; 5731 const SDNodeFlags Flags = Op->getFlags(); 5732 EVT VT = Op.getValueType(); 5733 unsigned Opcode = Op.getOpcode(); 5734 SDLoc DL(Op); 5735 5736 switch (Opcode) { 5737 case ISD::ConstantFP: { 5738 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 5739 V.changeSign(); 5740 return DAG.getConstantFP(V, DL, VT); 5741 } 5742 case ISD::BUILD_VECTOR: { 5743 SmallVector<SDValue, 4> Ops; 5744 for (SDValue C : Op->op_values()) { 5745 if (C.isUndef()) { 5746 Ops.push_back(C); 5747 continue; 5748 } 5749 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 5750 V.changeSign(); 5751 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 5752 } 5753 return DAG.getBuildVector(VT, DL, Ops); 5754 } 5755 case ISD::FADD: { 5756 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5757 assert((DAG.getTarget().Options.NoSignedZerosFPMath || 5758 Flags.hasNoSignedZeros()) && 5759 "Expected NSZ fp-flag"); 5760 5761 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 5762 NegatibleCost CostX = getNegatibleCost(X, DAG, LegalOps, OptForSize, Depth); 5763 if (CostX != NegatibleCost::Expensive) 5764 return DAG.getNode(ISD::FSUB, DL, VT, 5765 negateExpression(X, DAG, LegalOps, OptForSize, Depth), 5766 Y, Flags); 5767 5768 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 5769 return DAG.getNode(ISD::FSUB, DL, VT, 5770 negateExpression(Y, DAG, LegalOps, OptForSize, Depth), X, 5771 Flags); 5772 } 5773 case ISD::FSUB: { 5774 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5775 // fold (fneg (fsub 0, Y)) -> Y 5776 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 5777 if (C->isZero()) 5778 return Y; 5779 5780 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 5781 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 5782 } 5783 case ISD::FMUL: 5784 case ISD::FDIV: { 5785 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5786 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 5787 NegatibleCost CostX = getNegatibleCost(X, DAG, LegalOps, OptForSize, Depth); 5788 if (CostX != NegatibleCost::Expensive) 5789 return DAG.getNode(Opcode, DL, VT, 5790 negateExpression(X, DAG, LegalOps, OptForSize, Depth), 5791 Y, Flags); 5792 5793 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 5794 return DAG.getNode(Opcode, DL, VT, X, 5795 negateExpression(Y, DAG, LegalOps, OptForSize, Depth), 5796 Flags); 5797 } 5798 case ISD::FMA: 5799 case ISD::FMAD: { 5800 assert((DAG.getTarget().Options.NoSignedZerosFPMath || 5801 Flags.hasNoSignedZeros()) && 5802 "Expected NSZ fp-flag"); 5803 5804 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 5805 SDValue NegZ = negateExpression(Z, DAG, LegalOps, OptForSize, Depth); 5806 NegatibleCost CostX = getNegatibleCost(X, DAG, LegalOps, OptForSize, Depth); 5807 NegatibleCost CostY = getNegatibleCost(Y, DAG, LegalOps, OptForSize, Depth); 5808 if (CostX <= CostY) { 5809 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5810 SDValue NegX = negateExpression(X, DAG, LegalOps, OptForSize, Depth); 5811 return DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 5812 } 5813 5814 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5815 SDValue NegY = negateExpression(Y, DAG, LegalOps, OptForSize, Depth); 5816 return DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 5817 } 5818 5819 case ISD::FP_EXTEND: 5820 case ISD::FSIN: 5821 return DAG.getNode( 5822 Opcode, DL, VT, 5823 negateExpression(Op.getOperand(0), DAG, LegalOps, OptForSize, Depth)); 5824 case ISD::FP_ROUND: 5825 return DAG.getNode( 5826 ISD::FP_ROUND, DL, VT, 5827 negateExpression(Op.getOperand(0), DAG, LegalOps, OptForSize, Depth), 5828 Op.getOperand(1)); 5829 } 5830 5831 llvm_unreachable("Unknown code"); 5832 } 5833 5834 //===----------------------------------------------------------------------===// 5835 // Legalization Utilities 5836 //===----------------------------------------------------------------------===// 5837 5838 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 5839 SDValue LHS, SDValue RHS, 5840 SmallVectorImpl<SDValue> &Result, 5841 EVT HiLoVT, SelectionDAG &DAG, 5842 MulExpansionKind Kind, SDValue LL, 5843 SDValue LH, SDValue RL, SDValue RH) const { 5844 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 5845 Opcode == ISD::SMUL_LOHI); 5846 5847 bool HasMULHS = (Kind == MulExpansionKind::Always) || 5848 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 5849 bool HasMULHU = (Kind == MulExpansionKind::Always) || 5850 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 5851 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 5852 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 5853 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 5854 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 5855 5856 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 5857 return false; 5858 5859 unsigned OuterBitSize = VT.getScalarSizeInBits(); 5860 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 5861 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 5862 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 5863 5864 // LL, LH, RL, and RH must be either all NULL or all set to a value. 5865 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 5866 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 5867 5868 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 5869 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 5870 bool Signed) -> bool { 5871 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 5872 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 5873 Hi = SDValue(Lo.getNode(), 1); 5874 return true; 5875 } 5876 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 5877 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 5878 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 5879 return true; 5880 } 5881 return false; 5882 }; 5883 5884 SDValue Lo, Hi; 5885 5886 if (!LL.getNode() && !RL.getNode() && 5887 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5888 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 5889 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 5890 } 5891 5892 if (!LL.getNode()) 5893 return false; 5894 5895 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 5896 if (DAG.MaskedValueIsZero(LHS, HighMask) && 5897 DAG.MaskedValueIsZero(RHS, HighMask)) { 5898 // The inputs are both zero-extended. 5899 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 5900 Result.push_back(Lo); 5901 Result.push_back(Hi); 5902 if (Opcode != ISD::MUL) { 5903 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5904 Result.push_back(Zero); 5905 Result.push_back(Zero); 5906 } 5907 return true; 5908 } 5909 } 5910 5911 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 5912 RHSSB > InnerBitSize) { 5913 // The input values are both sign-extended. 5914 // TODO non-MUL case? 5915 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 5916 Result.push_back(Lo); 5917 Result.push_back(Hi); 5918 return true; 5919 } 5920 } 5921 5922 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 5923 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5924 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 5925 // FIXME getShiftAmountTy does not always return a sensible result when VT 5926 // is an illegal type, and so the type may be too small to fit the shift 5927 // amount. Override it with i32. The shift will have to be legalized. 5928 ShiftAmountTy = MVT::i32; 5929 } 5930 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 5931 5932 if (!LH.getNode() && !RH.getNode() && 5933 isOperationLegalOrCustom(ISD::SRL, VT) && 5934 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5935 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 5936 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 5937 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 5938 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 5939 } 5940 5941 if (!LH.getNode()) 5942 return false; 5943 5944 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 5945 return false; 5946 5947 Result.push_back(Lo); 5948 5949 if (Opcode == ISD::MUL) { 5950 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 5951 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 5952 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 5953 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 5954 Result.push_back(Hi); 5955 return true; 5956 } 5957 5958 // Compute the full width result. 5959 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 5960 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 5961 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5962 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 5963 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 5964 }; 5965 5966 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5967 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 5968 return false; 5969 5970 // This is effectively the add part of a multiply-add of half-sized operands, 5971 // so it cannot overflow. 5972 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5973 5974 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 5975 return false; 5976 5977 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5978 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5979 5980 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 5981 isOperationLegalOrCustom(ISD::ADDE, VT)); 5982 if (UseGlue) 5983 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 5984 Merge(Lo, Hi)); 5985 else 5986 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 5987 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 5988 5989 SDValue Carry = Next.getValue(1); 5990 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5991 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5992 5993 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 5994 return false; 5995 5996 if (UseGlue) 5997 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 5998 Carry); 5999 else 6000 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6001 Zero, Carry); 6002 6003 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6004 6005 if (Opcode == ISD::SMUL_LOHI) { 6006 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6007 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6008 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6009 6010 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6011 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6012 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6013 } 6014 6015 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6016 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6017 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6018 return true; 6019 } 6020 6021 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6022 SelectionDAG &DAG, MulExpansionKind Kind, 6023 SDValue LL, SDValue LH, SDValue RL, 6024 SDValue RH) const { 6025 SmallVector<SDValue, 2> Result; 6026 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 6027 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6028 DAG, Kind, LL, LH, RL, RH); 6029 if (Ok) { 6030 assert(Result.size() == 2); 6031 Lo = Result[0]; 6032 Hi = Result[1]; 6033 } 6034 return Ok; 6035 } 6036 6037 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 6038 SelectionDAG &DAG) const { 6039 EVT VT = Node->getValueType(0); 6040 6041 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6042 !isOperationLegalOrCustom(ISD::SRL, VT) || 6043 !isOperationLegalOrCustom(ISD::SUB, VT) || 6044 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6045 return false; 6046 6047 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6048 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6049 SDValue X = Node->getOperand(0); 6050 SDValue Y = Node->getOperand(1); 6051 SDValue Z = Node->getOperand(2); 6052 6053 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6054 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6055 SDLoc DL(SDValue(Node, 0)); 6056 6057 EVT ShVT = Z.getValueType(); 6058 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6059 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6060 6061 SDValue ShAmt; 6062 if (isPowerOf2_32(EltSizeInBits)) { 6063 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6064 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6065 } else { 6066 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6067 } 6068 6069 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6070 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6071 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6072 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6073 6074 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6075 // and that is undefined. We must compare and select to avoid UB. 6076 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT); 6077 6078 // For fshl, 0-shift returns the 1st arg (X). 6079 // For fshr, 0-shift returns the 2nd arg (Y). 6080 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ); 6081 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or); 6082 return true; 6083 } 6084 6085 // TODO: Merge with expandFunnelShift. 6086 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 6087 SelectionDAG &DAG) const { 6088 EVT VT = Node->getValueType(0); 6089 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6090 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6091 SDValue Op0 = Node->getOperand(0); 6092 SDValue Op1 = Node->getOperand(1); 6093 SDLoc DL(SDValue(Node, 0)); 6094 6095 EVT ShVT = Op1.getValueType(); 6096 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6097 6098 // If a rotate in the other direction is legal, use it. 6099 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6100 if (isOperationLegal(RevRot, VT)) { 6101 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 6102 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 6103 return true; 6104 } 6105 6106 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6107 !isOperationLegalOrCustom(ISD::SRL, VT) || 6108 !isOperationLegalOrCustom(ISD::SUB, VT) || 6109 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6110 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6111 return false; 6112 6113 // Otherwise, 6114 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) 6115 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) 6116 // 6117 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && 6118 "Expecting the type bitwidth to be a power of 2"); 6119 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6120 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6121 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6122 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 6123 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6124 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6125 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), 6126 DAG.getNode(HsOpc, DL, VT, Op0, And1)); 6127 return true; 6128 } 6129 6130 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6131 SelectionDAG &DAG) const { 6132 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6133 SDValue Src = Node->getOperand(OpNo); 6134 EVT SrcVT = Src.getValueType(); 6135 EVT DstVT = Node->getValueType(0); 6136 SDLoc dl(SDValue(Node, 0)); 6137 6138 // FIXME: Only f32 to i64 conversions are supported. 6139 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6140 return false; 6141 6142 if (Node->isStrictFPOpcode()) 6143 // When a NaN is converted to an integer a trap is allowed. We can't 6144 // use this expansion here because it would eliminate that trap. Other 6145 // traps are also allowed and cannot be eliminated. See 6146 // IEEE 754-2008 sec 5.8. 6147 return false; 6148 6149 // Expand f32 -> i64 conversion 6150 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6151 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 6152 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6153 EVT IntVT = SrcVT.changeTypeToInteger(); 6154 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6155 6156 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6157 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6158 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6159 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6160 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6161 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6162 6163 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6164 6165 SDValue ExponentBits = DAG.getNode( 6166 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6167 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6168 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6169 6170 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6171 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6172 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6173 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6174 6175 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6176 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6177 DAG.getConstant(0x00800000, dl, IntVT)); 6178 6179 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6180 6181 R = DAG.getSelectCC( 6182 dl, Exponent, ExponentLoBit, 6183 DAG.getNode(ISD::SHL, dl, DstVT, R, 6184 DAG.getZExtOrTrunc( 6185 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6186 dl, IntShVT)), 6187 DAG.getNode(ISD::SRL, dl, DstVT, R, 6188 DAG.getZExtOrTrunc( 6189 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6190 dl, IntShVT)), 6191 ISD::SETGT); 6192 6193 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6194 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6195 6196 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6197 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6198 return true; 6199 } 6200 6201 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6202 SDValue &Chain, 6203 SelectionDAG &DAG) const { 6204 SDLoc dl(SDValue(Node, 0)); 6205 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6206 SDValue Src = Node->getOperand(OpNo); 6207 6208 EVT SrcVT = Src.getValueType(); 6209 EVT DstVT = Node->getValueType(0); 6210 EVT SetCCVT = 6211 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6212 EVT DstSetCCVT = 6213 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6214 6215 // Only expand vector types if we have the appropriate vector bit operations. 6216 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6217 ISD::FP_TO_SINT; 6218 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6219 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6220 return false; 6221 6222 // If the maximum float value is smaller then the signed integer range, 6223 // the destination signmask can't be represented by the float, so we can 6224 // just use FP_TO_SINT directly. 6225 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6226 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 6227 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6228 if (APFloat::opOverflow & 6229 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6230 if (Node->isStrictFPOpcode()) { 6231 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6232 { Node->getOperand(0), Src }); 6233 Chain = Result.getValue(1); 6234 } else 6235 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6236 return true; 6237 } 6238 6239 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6240 SDValue Sel; 6241 6242 if (Node->isStrictFPOpcode()) { 6243 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6244 Node->getOperand(0), /*IsSignaling*/ true); 6245 Chain = Sel.getValue(1); 6246 } else { 6247 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6248 } 6249 6250 bool Strict = Node->isStrictFPOpcode() || 6251 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6252 6253 if (Strict) { 6254 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6255 // signmask then offset (the result of which should be fully representable). 6256 // Sel = Src < 0x8000000000000000 6257 // FltOfs = select Sel, 0, 0x8000000000000000 6258 // IntOfs = select Sel, 0, 0x8000000000000000 6259 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6260 6261 // TODO: Should any fast-math-flags be set for the FSUB? 6262 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6263 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6264 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6265 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6266 DAG.getConstant(0, dl, DstVT), 6267 DAG.getConstant(SignMask, dl, DstVT)); 6268 SDValue SInt; 6269 if (Node->isStrictFPOpcode()) { 6270 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6271 { Chain, Src, FltOfs }); 6272 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6273 { Val.getValue(1), Val }); 6274 Chain = SInt.getValue(1); 6275 } else { 6276 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6277 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6278 } 6279 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6280 } else { 6281 // Expand based on maximum range of FP_TO_SINT: 6282 // True = fp_to_sint(Src) 6283 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6284 // Result = select (Src < 0x8000000000000000), True, False 6285 6286 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6287 // TODO: Should any fast-math-flags be set for the FSUB? 6288 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6289 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6290 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6291 DAG.getConstant(SignMask, dl, DstVT)); 6292 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6293 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6294 } 6295 return true; 6296 } 6297 6298 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6299 SDValue &Chain, 6300 SelectionDAG &DAG) const { 6301 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6302 SDValue Src = Node->getOperand(OpNo); 6303 EVT SrcVT = Src.getValueType(); 6304 EVT DstVT = Node->getValueType(0); 6305 6306 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6307 return false; 6308 6309 // Only expand vector types if we have the appropriate vector bit operations. 6310 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6311 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6312 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6313 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6314 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6315 return false; 6316 6317 SDLoc dl(SDValue(Node, 0)); 6318 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6319 6320 // Implementation of unsigned i64 to f64 following the algorithm in 6321 // __floatundidf in compiler_rt. This implementation has the advantage 6322 // of performing rounding correctly, both in the default rounding mode 6323 // and in all alternate rounding modes. 6324 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6325 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6326 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6327 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6328 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6329 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6330 6331 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6332 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6333 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6334 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6335 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6336 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6337 if (Node->isStrictFPOpcode()) { 6338 SDValue HiSub = 6339 DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other}, 6340 {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52}); 6341 Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other}, 6342 {HiSub.getValue(1), LoFlt, HiSub}); 6343 Chain = Result.getValue(1); 6344 } else { 6345 SDValue HiSub = 6346 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6347 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6348 } 6349 return true; 6350 } 6351 6352 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6353 SelectionDAG &DAG) const { 6354 SDLoc dl(Node); 6355 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6356 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6357 EVT VT = Node->getValueType(0); 6358 if (isOperationLegalOrCustom(NewOp, VT)) { 6359 SDValue Quiet0 = Node->getOperand(0); 6360 SDValue Quiet1 = Node->getOperand(1); 6361 6362 if (!Node->getFlags().hasNoNaNs()) { 6363 // Insert canonicalizes if it's possible we need to quiet to get correct 6364 // sNaN behavior. 6365 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6366 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6367 Node->getFlags()); 6368 } 6369 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6370 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6371 Node->getFlags()); 6372 } 6373 } 6374 6375 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6376 } 6377 6378 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6379 // instead if there are no NaNs. 6380 if (Node->getFlags().hasNoNaNs()) { 6381 unsigned IEEE2018Op = 6382 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6383 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6384 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6385 Node->getOperand(1), Node->getFlags()); 6386 } 6387 } 6388 6389 // If none of the above worked, but there are no NaNs, then expand to 6390 // a compare/select sequence. This is required for correctness since 6391 // InstCombine might have canonicalized a fcmp+select sequence to a 6392 // FMINNUM/FMAXNUM node. If we were to fall through to the default 6393 // expansion to libcall, we might introduce a link-time dependency 6394 // on libm into a file that originally did not have one. 6395 if (Node->getFlags().hasNoNaNs()) { 6396 ISD::CondCode Pred = 6397 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 6398 SDValue Op1 = Node->getOperand(0); 6399 SDValue Op2 = Node->getOperand(1); 6400 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 6401 // Copy FMF flags, but always set the no-signed-zeros flag 6402 // as this is implied by the FMINNUM/FMAXNUM semantics. 6403 SDNodeFlags Flags = Node->getFlags(); 6404 Flags.setNoSignedZeros(true); 6405 SelCC->setFlags(Flags); 6406 return SelCC; 6407 } 6408 6409 return SDValue(); 6410 } 6411 6412 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 6413 SelectionDAG &DAG) const { 6414 SDLoc dl(Node); 6415 EVT VT = Node->getValueType(0); 6416 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6417 SDValue Op = Node->getOperand(0); 6418 unsigned Len = VT.getScalarSizeInBits(); 6419 assert(VT.isInteger() && "CTPOP not implemented for this type."); 6420 6421 // TODO: Add support for irregular type lengths. 6422 if (!(Len <= 128 && Len % 8 == 0)) 6423 return false; 6424 6425 // Only expand vector types if we have the appropriate vector bit operations. 6426 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 6427 !isOperationLegalOrCustom(ISD::SUB, VT) || 6428 !isOperationLegalOrCustom(ISD::SRL, VT) || 6429 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 6430 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6431 return false; 6432 6433 // This is the "best" algorithm from 6434 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 6435 SDValue Mask55 = 6436 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 6437 SDValue Mask33 = 6438 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 6439 SDValue Mask0F = 6440 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 6441 SDValue Mask01 = 6442 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 6443 6444 // v = v - ((v >> 1) & 0x55555555...) 6445 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 6446 DAG.getNode(ISD::AND, dl, VT, 6447 DAG.getNode(ISD::SRL, dl, VT, Op, 6448 DAG.getConstant(1, dl, ShVT)), 6449 Mask55)); 6450 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 6451 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 6452 DAG.getNode(ISD::AND, dl, VT, 6453 DAG.getNode(ISD::SRL, dl, VT, Op, 6454 DAG.getConstant(2, dl, ShVT)), 6455 Mask33)); 6456 // v = (v + (v >> 4)) & 0x0F0F0F0F... 6457 Op = DAG.getNode(ISD::AND, dl, VT, 6458 DAG.getNode(ISD::ADD, dl, VT, Op, 6459 DAG.getNode(ISD::SRL, dl, VT, Op, 6460 DAG.getConstant(4, dl, ShVT))), 6461 Mask0F); 6462 // v = (v * 0x01010101...) >> (Len - 8) 6463 if (Len > 8) 6464 Op = 6465 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 6466 DAG.getConstant(Len - 8, dl, ShVT)); 6467 6468 Result = Op; 6469 return true; 6470 } 6471 6472 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 6473 SelectionDAG &DAG) const { 6474 SDLoc dl(Node); 6475 EVT VT = Node->getValueType(0); 6476 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6477 SDValue Op = Node->getOperand(0); 6478 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6479 6480 // If the non-ZERO_UNDEF version is supported we can use that instead. 6481 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 6482 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 6483 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 6484 return true; 6485 } 6486 6487 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6488 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 6489 EVT SetCCVT = 6490 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6491 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 6492 SDValue Zero = DAG.getConstant(0, dl, VT); 6493 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6494 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6495 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 6496 return true; 6497 } 6498 6499 // Only expand vector types if we have the appropriate vector bit operations. 6500 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6501 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 6502 !isOperationLegalOrCustom(ISD::SRL, VT) || 6503 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6504 return false; 6505 6506 // for now, we do this: 6507 // x = x | (x >> 1); 6508 // x = x | (x >> 2); 6509 // ... 6510 // x = x | (x >>16); 6511 // x = x | (x >>32); // for 64-bit input 6512 // return popcount(~x); 6513 // 6514 // Ref: "Hacker's Delight" by Henry Warren 6515 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 6516 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 6517 Op = DAG.getNode(ISD::OR, dl, VT, Op, 6518 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 6519 } 6520 Op = DAG.getNOT(dl, Op, VT); 6521 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 6522 return true; 6523 } 6524 6525 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 6526 SelectionDAG &DAG) const { 6527 SDLoc dl(Node); 6528 EVT VT = Node->getValueType(0); 6529 SDValue Op = Node->getOperand(0); 6530 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6531 6532 // If the non-ZERO_UNDEF version is supported we can use that instead. 6533 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 6534 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 6535 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 6536 return true; 6537 } 6538 6539 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6540 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 6541 EVT SetCCVT = 6542 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6543 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 6544 SDValue Zero = DAG.getConstant(0, dl, VT); 6545 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6546 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6547 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 6548 return true; 6549 } 6550 6551 // Only expand vector types if we have the appropriate vector bit operations. 6552 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6553 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 6554 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 6555 !isOperationLegalOrCustom(ISD::SUB, VT) || 6556 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 6557 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6558 return false; 6559 6560 // for now, we use: { return popcount(~x & (x - 1)); } 6561 // unless the target has ctlz but not ctpop, in which case we use: 6562 // { return 32 - nlz(~x & (x-1)); } 6563 // Ref: "Hacker's Delight" by Henry Warren 6564 SDValue Tmp = DAG.getNode( 6565 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 6566 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 6567 6568 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 6569 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 6570 Result = 6571 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 6572 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 6573 return true; 6574 } 6575 6576 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 6577 return true; 6578 } 6579 6580 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 6581 SelectionDAG &DAG) const { 6582 SDLoc dl(N); 6583 EVT VT = N->getValueType(0); 6584 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6585 SDValue Op = N->getOperand(0); 6586 6587 // Only expand vector types if we have the appropriate vector operations. 6588 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 6589 !isOperationLegalOrCustom(ISD::ADD, VT) || 6590 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6591 return false; 6592 6593 SDValue Shift = 6594 DAG.getNode(ISD::SRA, dl, VT, Op, 6595 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 6596 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 6597 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 6598 return true; 6599 } 6600 6601 std::pair<SDValue, SDValue> 6602 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 6603 SelectionDAG &DAG) const { 6604 SDLoc SL(LD); 6605 SDValue Chain = LD->getChain(); 6606 SDValue BasePTR = LD->getBasePtr(); 6607 EVT SrcVT = LD->getMemoryVT(); 6608 EVT DstVT = LD->getValueType(0); 6609 ISD::LoadExtType ExtType = LD->getExtensionType(); 6610 6611 unsigned NumElem = SrcVT.getVectorNumElements(); 6612 6613 EVT SrcEltVT = SrcVT.getScalarType(); 6614 EVT DstEltVT = DstVT.getScalarType(); 6615 6616 // A vector must always be stored in memory as-is, i.e. without any padding 6617 // between the elements, since various code depend on it, e.g. in the 6618 // handling of a bitcast of a vector type to int, which may be done with a 6619 // vector store followed by an integer load. A vector that does not have 6620 // elements that are byte-sized must therefore be stored as an integer 6621 // built out of the extracted vector elements. 6622 if (!SrcEltVT.isByteSized()) { 6623 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 6624 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 6625 6626 unsigned NumSrcBits = SrcVT.getSizeInBits(); 6627 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 6628 6629 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 6630 SDValue SrcEltBitMask = DAG.getConstant( 6631 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 6632 6633 // Load the whole vector and avoid masking off the top bits as it makes 6634 // the codegen worse. 6635 SDValue Load = 6636 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 6637 LD->getPointerInfo(), SrcIntVT, LD->getAlignment(), 6638 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6639 6640 SmallVector<SDValue, 8> Vals; 6641 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6642 unsigned ShiftIntoIdx = 6643 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6644 SDValue ShiftAmount = 6645 DAG.getConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), SL, 6646 getShiftAmountTy(LoadVT, DAG.getDataLayout())); 6647 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 6648 SDValue Elt = 6649 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 6650 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 6651 6652 if (ExtType != ISD::NON_EXTLOAD) { 6653 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 6654 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 6655 } 6656 6657 Vals.push_back(Scalar); 6658 } 6659 6660 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 6661 return std::make_pair(Value, Load.getValue(1)); 6662 } 6663 6664 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 6665 assert(SrcEltVT.isByteSized()); 6666 6667 SmallVector<SDValue, 8> Vals; 6668 SmallVector<SDValue, 8> LoadChains; 6669 6670 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6671 SDValue ScalarLoad = 6672 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 6673 LD->getPointerInfo().getWithOffset(Idx * Stride), 6674 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 6675 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6676 6677 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 6678 6679 Vals.push_back(ScalarLoad.getValue(0)); 6680 LoadChains.push_back(ScalarLoad.getValue(1)); 6681 } 6682 6683 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 6684 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 6685 6686 return std::make_pair(Value, NewChain); 6687 } 6688 6689 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 6690 SelectionDAG &DAG) const { 6691 SDLoc SL(ST); 6692 6693 SDValue Chain = ST->getChain(); 6694 SDValue BasePtr = ST->getBasePtr(); 6695 SDValue Value = ST->getValue(); 6696 EVT StVT = ST->getMemoryVT(); 6697 6698 // The type of the data we want to save 6699 EVT RegVT = Value.getValueType(); 6700 EVT RegSclVT = RegVT.getScalarType(); 6701 6702 // The type of data as saved in memory. 6703 EVT MemSclVT = StVT.getScalarType(); 6704 6705 unsigned NumElem = StVT.getVectorNumElements(); 6706 6707 // A vector must always be stored in memory as-is, i.e. without any padding 6708 // between the elements, since various code depend on it, e.g. in the 6709 // handling of a bitcast of a vector type to int, which may be done with a 6710 // vector store followed by an integer load. A vector that does not have 6711 // elements that are byte-sized must therefore be stored as an integer 6712 // built out of the extracted vector elements. 6713 if (!MemSclVT.isByteSized()) { 6714 unsigned NumBits = StVT.getSizeInBits(); 6715 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 6716 6717 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 6718 6719 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6720 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6721 DAG.getVectorIdxConstant(Idx, SL)); 6722 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 6723 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 6724 unsigned ShiftIntoIdx = 6725 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6726 SDValue ShiftAmount = 6727 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 6728 SDValue ShiftedElt = 6729 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 6730 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 6731 } 6732 6733 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 6734 ST->getAlignment(), ST->getMemOperand()->getFlags(), 6735 ST->getAAInfo()); 6736 } 6737 6738 // Store Stride in bytes 6739 unsigned Stride = MemSclVT.getSizeInBits() / 8; 6740 assert(Stride && "Zero stride!"); 6741 // Extract each of the elements from the original vector and save them into 6742 // memory individually. 6743 SmallVector<SDValue, 8> Stores; 6744 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6745 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6746 DAG.getVectorIdxConstant(Idx, SL)); 6747 6748 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 6749 6750 // This scalar TruncStore may be illegal, but we legalize it later. 6751 SDValue Store = DAG.getTruncStore( 6752 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 6753 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 6754 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6755 6756 Stores.push_back(Store); 6757 } 6758 6759 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 6760 } 6761 6762 std::pair<SDValue, SDValue> 6763 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 6764 assert(LD->getAddressingMode() == ISD::UNINDEXED && 6765 "unaligned indexed loads not implemented!"); 6766 SDValue Chain = LD->getChain(); 6767 SDValue Ptr = LD->getBasePtr(); 6768 EVT VT = LD->getValueType(0); 6769 EVT LoadedVT = LD->getMemoryVT(); 6770 SDLoc dl(LD); 6771 auto &MF = DAG.getMachineFunction(); 6772 6773 if (VT.isFloatingPoint() || VT.isVector()) { 6774 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 6775 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 6776 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 6777 LoadedVT.isVector()) { 6778 // Scalarize the load and let the individual components be handled. 6779 return scalarizeVectorLoad(LD, DAG); 6780 } 6781 6782 // Expand to a (misaligned) integer load of the same size, 6783 // then bitconvert to floating point or vector. 6784 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 6785 LD->getMemOperand()); 6786 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 6787 if (LoadedVT != VT) 6788 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 6789 ISD::ANY_EXTEND, dl, VT, Result); 6790 6791 return std::make_pair(Result, newLoad.getValue(1)); 6792 } 6793 6794 // Copy the value to a (aligned) stack slot using (unaligned) integer 6795 // loads and stores, then do a (aligned) load from the stack slot. 6796 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 6797 unsigned LoadedBytes = LoadedVT.getStoreSize(); 6798 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6799 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 6800 6801 // Make sure the stack slot is also aligned for the register type. 6802 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 6803 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 6804 SmallVector<SDValue, 8> Stores; 6805 SDValue StackPtr = StackBase; 6806 unsigned Offset = 0; 6807 6808 EVT PtrVT = Ptr.getValueType(); 6809 EVT StackPtrVT = StackPtr.getValueType(); 6810 6811 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6812 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6813 6814 // Do all but one copies using the full register width. 6815 for (unsigned i = 1; i < NumRegs; i++) { 6816 // Load one integer register's worth from the original location. 6817 SDValue Load = DAG.getLoad( 6818 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 6819 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 6820 LD->getAAInfo()); 6821 // Follow the load with a store to the stack slot. Remember the store. 6822 Stores.push_back(DAG.getStore( 6823 Load.getValue(1), dl, Load, StackPtr, 6824 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 6825 // Increment the pointers. 6826 Offset += RegBytes; 6827 6828 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6829 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6830 } 6831 6832 // The last copy may be partial. Do an extending load. 6833 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 6834 8 * (LoadedBytes - Offset)); 6835 SDValue Load = 6836 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 6837 LD->getPointerInfo().getWithOffset(Offset), MemVT, 6838 MinAlign(LD->getAlignment(), Offset), 6839 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6840 // Follow the load with a store to the stack slot. Remember the store. 6841 // On big-endian machines this requires a truncating store to ensure 6842 // that the bits end up in the right place. 6843 Stores.push_back(DAG.getTruncStore( 6844 Load.getValue(1), dl, Load, StackPtr, 6845 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 6846 6847 // The order of the stores doesn't matter - say it with a TokenFactor. 6848 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6849 6850 // Finally, perform the original load only redirected to the stack slot. 6851 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 6852 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 6853 LoadedVT); 6854 6855 // Callers expect a MERGE_VALUES node. 6856 return std::make_pair(Load, TF); 6857 } 6858 6859 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 6860 "Unaligned load of unsupported type."); 6861 6862 // Compute the new VT that is half the size of the old one. This is an 6863 // integer MVT. 6864 unsigned NumBits = LoadedVT.getSizeInBits(); 6865 EVT NewLoadedVT; 6866 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 6867 NumBits >>= 1; 6868 6869 unsigned Alignment = LD->getAlignment(); 6870 unsigned IncrementSize = NumBits / 8; 6871 ISD::LoadExtType HiExtType = LD->getExtensionType(); 6872 6873 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 6874 if (HiExtType == ISD::NON_EXTLOAD) 6875 HiExtType = ISD::ZEXTLOAD; 6876 6877 // Load the value in two parts 6878 SDValue Lo, Hi; 6879 if (DAG.getDataLayout().isLittleEndian()) { 6880 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6881 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6882 LD->getAAInfo()); 6883 6884 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6885 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 6886 LD->getPointerInfo().getWithOffset(IncrementSize), 6887 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6888 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6889 } else { 6890 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6891 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6892 LD->getAAInfo()); 6893 6894 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6895 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 6896 LD->getPointerInfo().getWithOffset(IncrementSize), 6897 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6898 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6899 } 6900 6901 // aggregate the two parts 6902 SDValue ShiftAmount = 6903 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 6904 DAG.getDataLayout())); 6905 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 6906 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 6907 6908 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 6909 Hi.getValue(1)); 6910 6911 return std::make_pair(Result, TF); 6912 } 6913 6914 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 6915 SelectionDAG &DAG) const { 6916 assert(ST->getAddressingMode() == ISD::UNINDEXED && 6917 "unaligned indexed stores not implemented!"); 6918 SDValue Chain = ST->getChain(); 6919 SDValue Ptr = ST->getBasePtr(); 6920 SDValue Val = ST->getValue(); 6921 EVT VT = Val.getValueType(); 6922 int Alignment = ST->getAlignment(); 6923 auto &MF = DAG.getMachineFunction(); 6924 EVT StoreMemVT = ST->getMemoryVT(); 6925 6926 SDLoc dl(ST); 6927 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 6928 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 6929 if (isTypeLegal(intVT)) { 6930 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 6931 StoreMemVT.isVector()) { 6932 // Scalarize the store and let the individual components be handled. 6933 SDValue Result = scalarizeVectorStore(ST, DAG); 6934 return Result; 6935 } 6936 // Expand to a bitconvert of the value to the integer type of the 6937 // same size, then a (misaligned) int store. 6938 // FIXME: Does not handle truncating floating point stores! 6939 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 6940 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 6941 Alignment, ST->getMemOperand()->getFlags()); 6942 return Result; 6943 } 6944 // Do a (aligned) store to a stack slot, then copy from the stack slot 6945 // to the final destination using (unaligned) integer loads and stores. 6946 MVT RegVT = getRegisterType( 6947 *DAG.getContext(), 6948 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 6949 EVT PtrVT = Ptr.getValueType(); 6950 unsigned StoredBytes = StoreMemVT.getStoreSize(); 6951 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6952 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 6953 6954 // Make sure the stack slot is also aligned for the register type. 6955 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 6956 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 6957 6958 // Perform the original store, only redirected to the stack slot. 6959 SDValue Store = DAG.getTruncStore( 6960 Chain, dl, Val, StackPtr, 6961 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 6962 6963 EVT StackPtrVT = StackPtr.getValueType(); 6964 6965 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6966 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6967 SmallVector<SDValue, 8> Stores; 6968 unsigned Offset = 0; 6969 6970 // Do all but one copies using the full register width. 6971 for (unsigned i = 1; i < NumRegs; i++) { 6972 // Load one integer register's worth from the stack slot. 6973 SDValue Load = DAG.getLoad( 6974 RegVT, dl, Store, StackPtr, 6975 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 6976 // Store it to the final location. Remember the store. 6977 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 6978 ST->getPointerInfo().getWithOffset(Offset), 6979 MinAlign(ST->getAlignment(), Offset), 6980 ST->getMemOperand()->getFlags())); 6981 // Increment the pointers. 6982 Offset += RegBytes; 6983 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6984 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6985 } 6986 6987 // The last store may be partial. Do a truncating store. On big-endian 6988 // machines this requires an extending load from the stack slot to ensure 6989 // that the bits are in the right place. 6990 EVT LoadMemVT = 6991 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 6992 6993 // Load from the stack slot. 6994 SDValue Load = DAG.getExtLoad( 6995 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 6996 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 6997 6998 Stores.push_back( 6999 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 7000 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 7001 MinAlign(ST->getAlignment(), Offset), 7002 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 7003 // The order of the stores doesn't matter - say it with a TokenFactor. 7004 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7005 return Result; 7006 } 7007 7008 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 7009 "Unaligned store of unknown type."); 7010 // Get the half-size VT 7011 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 7012 int NumBits = NewStoredVT.getSizeInBits(); 7013 int IncrementSize = NumBits / 8; 7014 7015 // Divide the stored value in two parts. 7016 SDValue ShiftAmount = DAG.getConstant( 7017 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 7018 SDValue Lo = Val; 7019 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 7020 7021 // Store the two parts 7022 SDValue Store1, Store2; 7023 Store1 = DAG.getTruncStore(Chain, dl, 7024 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 7025 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 7026 ST->getMemOperand()->getFlags()); 7027 7028 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 7029 Alignment = MinAlign(Alignment, IncrementSize); 7030 Store2 = DAG.getTruncStore( 7031 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 7032 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 7033 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 7034 7035 SDValue Result = 7036 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 7037 return Result; 7038 } 7039 7040 SDValue 7041 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7042 const SDLoc &DL, EVT DataVT, 7043 SelectionDAG &DAG, 7044 bool IsCompressedMemory) const { 7045 SDValue Increment; 7046 EVT AddrVT = Addr.getValueType(); 7047 EVT MaskVT = Mask.getValueType(); 7048 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 7049 "Incompatible types of Data and Mask"); 7050 if (IsCompressedMemory) { 7051 // Incrementing the pointer according to number of '1's in the mask. 7052 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7053 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7054 if (MaskIntVT.getSizeInBits() < 32) { 7055 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7056 MaskIntVT = MVT::i32; 7057 } 7058 7059 // Count '1's with POPCNT. 7060 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7061 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7062 // Scale is an element size in bytes. 7063 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7064 AddrVT); 7065 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7066 } else 7067 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7068 7069 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7070 } 7071 7072 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 7073 SDValue Idx, 7074 EVT VecVT, 7075 const SDLoc &dl) { 7076 if (isa<ConstantSDNode>(Idx)) 7077 return Idx; 7078 7079 EVT IdxVT = Idx.getValueType(); 7080 unsigned NElts = VecVT.getVectorNumElements(); 7081 if (isPowerOf2_32(NElts)) { 7082 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 7083 Log2_32(NElts)); 7084 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7085 DAG.getConstant(Imm, dl, IdxVT)); 7086 } 7087 7088 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7089 DAG.getConstant(NElts - 1, dl, IdxVT)); 7090 } 7091 7092 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7093 SDValue VecPtr, EVT VecVT, 7094 SDValue Index) const { 7095 SDLoc dl(Index); 7096 // Make sure the index type is big enough to compute in. 7097 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7098 7099 EVT EltVT = VecVT.getVectorElementType(); 7100 7101 // Calculate the element offset and add it to the pointer. 7102 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 7103 assert(EltSize * 8 == EltVT.getSizeInBits() && 7104 "Converting bits to bytes lost precision"); 7105 7106 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 7107 7108 EVT IdxVT = Index.getValueType(); 7109 7110 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7111 DAG.getConstant(EltSize, dl, IdxVT)); 7112 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7113 } 7114 7115 //===----------------------------------------------------------------------===// 7116 // Implementation of Emulated TLS Model 7117 //===----------------------------------------------------------------------===// 7118 7119 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7120 SelectionDAG &DAG) const { 7121 // Access to address of TLS varialbe xyz is lowered to a function call: 7122 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7123 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7124 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7125 SDLoc dl(GA); 7126 7127 ArgListTy Args; 7128 ArgListEntry Entry; 7129 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7130 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7131 StringRef EmuTlsVarName(NameString); 7132 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7133 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7134 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7135 Entry.Ty = VoidPtrType; 7136 Args.push_back(Entry); 7137 7138 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7139 7140 TargetLowering::CallLoweringInfo CLI(DAG); 7141 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7142 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7143 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7144 7145 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7146 // At last for X86 targets, maybe good for other targets too? 7147 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7148 MFI.setAdjustsStack(true); // Is this only for X86 target? 7149 MFI.setHasCalls(true); 7150 7151 assert((GA->getOffset() == 0) && 7152 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7153 return CallResult.first; 7154 } 7155 7156 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7157 SelectionDAG &DAG) const { 7158 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7159 if (!isCtlzFast()) 7160 return SDValue(); 7161 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7162 SDLoc dl(Op); 7163 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7164 if (C->isNullValue() && CC == ISD::SETEQ) { 7165 EVT VT = Op.getOperand(0).getValueType(); 7166 SDValue Zext = Op.getOperand(0); 7167 if (VT.bitsLT(MVT::i32)) { 7168 VT = MVT::i32; 7169 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7170 } 7171 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7172 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7173 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7174 DAG.getConstant(Log2b, dl, MVT::i32)); 7175 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7176 } 7177 } 7178 return SDValue(); 7179 } 7180 7181 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 7182 unsigned Opcode = Node->getOpcode(); 7183 SDValue LHS = Node->getOperand(0); 7184 SDValue RHS = Node->getOperand(1); 7185 EVT VT = LHS.getValueType(); 7186 SDLoc dl(Node); 7187 7188 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7189 assert(VT.isInteger() && "Expected operands to be integers"); 7190 7191 // usub.sat(a, b) -> umax(a, b) - b 7192 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 7193 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 7194 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 7195 } 7196 7197 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 7198 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 7199 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 7200 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 7201 } 7202 7203 unsigned OverflowOp; 7204 switch (Opcode) { 7205 case ISD::SADDSAT: 7206 OverflowOp = ISD::SADDO; 7207 break; 7208 case ISD::UADDSAT: 7209 OverflowOp = ISD::UADDO; 7210 break; 7211 case ISD::SSUBSAT: 7212 OverflowOp = ISD::SSUBO; 7213 break; 7214 case ISD::USUBSAT: 7215 OverflowOp = ISD::USUBO; 7216 break; 7217 default: 7218 llvm_unreachable("Expected method to receive signed or unsigned saturation " 7219 "addition or subtraction node."); 7220 } 7221 7222 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 7223 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7224 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 7225 LHS, RHS); 7226 SDValue SumDiff = Result.getValue(0); 7227 SDValue Overflow = Result.getValue(1); 7228 SDValue Zero = DAG.getConstant(0, dl, VT); 7229 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 7230 7231 if (Opcode == ISD::UADDSAT) { 7232 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7233 // (LHS + RHS) | OverflowMask 7234 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7235 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 7236 } 7237 // Overflow ? 0xffff.... : (LHS + RHS) 7238 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 7239 } else if (Opcode == ISD::USUBSAT) { 7240 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7241 // (LHS - RHS) & ~OverflowMask 7242 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7243 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 7244 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 7245 } 7246 // Overflow ? 0 : (LHS - RHS) 7247 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 7248 } else { 7249 // SatMax -> Overflow && SumDiff < 0 7250 // SatMin -> Overflow && SumDiff >= 0 7251 APInt MinVal = APInt::getSignedMinValue(BitWidth); 7252 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 7253 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7254 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7255 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 7256 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 7257 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 7258 } 7259 } 7260 7261 SDValue 7262 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 7263 assert((Node->getOpcode() == ISD::SMULFIX || 7264 Node->getOpcode() == ISD::UMULFIX || 7265 Node->getOpcode() == ISD::SMULFIXSAT || 7266 Node->getOpcode() == ISD::UMULFIXSAT) && 7267 "Expected a fixed point multiplication opcode"); 7268 7269 SDLoc dl(Node); 7270 SDValue LHS = Node->getOperand(0); 7271 SDValue RHS = Node->getOperand(1); 7272 EVT VT = LHS.getValueType(); 7273 unsigned Scale = Node->getConstantOperandVal(2); 7274 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 7275 Node->getOpcode() == ISD::UMULFIXSAT); 7276 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 7277 Node->getOpcode() == ISD::SMULFIXSAT); 7278 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7279 unsigned VTSize = VT.getScalarSizeInBits(); 7280 7281 if (!Scale) { 7282 // [us]mul.fix(a, b, 0) -> mul(a, b) 7283 if (!Saturating) { 7284 if (isOperationLegalOrCustom(ISD::MUL, VT)) 7285 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7286 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 7287 SDValue Result = 7288 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7289 SDValue Product = Result.getValue(0); 7290 SDValue Overflow = Result.getValue(1); 7291 SDValue Zero = DAG.getConstant(0, dl, VT); 7292 7293 APInt MinVal = APInt::getSignedMinValue(VTSize); 7294 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 7295 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7296 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7297 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 7298 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 7299 return DAG.getSelect(dl, VT, Overflow, Result, Product); 7300 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 7301 SDValue Result = 7302 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7303 SDValue Product = Result.getValue(0); 7304 SDValue Overflow = Result.getValue(1); 7305 7306 APInt MaxVal = APInt::getMaxValue(VTSize); 7307 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7308 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 7309 } 7310 } 7311 7312 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 7313 "Expected scale to be less than the number of bits if signed or at " 7314 "most the number of bits if unsigned."); 7315 assert(LHS.getValueType() == RHS.getValueType() && 7316 "Expected both operands to be the same type"); 7317 7318 // Get the upper and lower bits of the result. 7319 SDValue Lo, Hi; 7320 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 7321 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 7322 if (isOperationLegalOrCustom(LoHiOp, VT)) { 7323 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 7324 Lo = Result.getValue(0); 7325 Hi = Result.getValue(1); 7326 } else if (isOperationLegalOrCustom(HiOp, VT)) { 7327 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7328 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 7329 } else if (VT.isVector()) { 7330 return SDValue(); 7331 } else { 7332 report_fatal_error("Unable to expand fixed point multiplication."); 7333 } 7334 7335 if (Scale == VTSize) 7336 // Result is just the top half since we'd be shifting by the width of the 7337 // operand. Overflow impossible so this works for both UMULFIX and 7338 // UMULFIXSAT. 7339 return Hi; 7340 7341 // The result will need to be shifted right by the scale since both operands 7342 // are scaled. The result is given to us in 2 halves, so we only want part of 7343 // both in the result. 7344 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7345 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 7346 DAG.getConstant(Scale, dl, ShiftTy)); 7347 if (!Saturating) 7348 return Result; 7349 7350 if (!Signed) { 7351 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 7352 // widened multiplication) aren't all zeroes. 7353 7354 // Saturate to max if ((Hi >> Scale) != 0), 7355 // which is the same as if (Hi > ((1 << Scale) - 1)) 7356 APInt MaxVal = APInt::getMaxValue(VTSize); 7357 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 7358 dl, VT); 7359 Result = DAG.getSelectCC(dl, Hi, LowMask, 7360 DAG.getConstant(MaxVal, dl, VT), Result, 7361 ISD::SETUGT); 7362 7363 return Result; 7364 } 7365 7366 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 7367 // widened multiplication) aren't all ones or all zeroes. 7368 7369 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 7370 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 7371 7372 if (Scale == 0) { 7373 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 7374 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 7375 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 7376 // Saturated to SatMin if wide product is negative, and SatMax if wide 7377 // product is positive ... 7378 SDValue Zero = DAG.getConstant(0, dl, VT); 7379 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 7380 ISD::SETLT); 7381 // ... but only if we overflowed. 7382 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 7383 } 7384 7385 // We handled Scale==0 above so all the bits to examine is in Hi. 7386 7387 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 7388 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 7389 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 7390 dl, VT); 7391 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 7392 // Saturate to min if (Hi >> (Scale - 1)) < -1), 7393 // which is the same as if (HI < (-1 << (Scale - 1)) 7394 SDValue HighMask = 7395 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 7396 dl, VT); 7397 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 7398 return Result; 7399 } 7400 7401 SDValue 7402 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 7403 SDValue LHS, SDValue RHS, 7404 unsigned Scale, SelectionDAG &DAG) const { 7405 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 7406 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 7407 "Expected a fixed point division opcode"); 7408 7409 EVT VT = LHS.getValueType(); 7410 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 7411 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 7412 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7413 7414 // If there is enough room in the type to upscale the LHS or downscale the 7415 // RHS before the division, we can perform it in this type without having to 7416 // resize. For signed operations, the LHS headroom is the number of 7417 // redundant sign bits, and for unsigned ones it is the number of zeroes. 7418 // The headroom for the RHS is the number of trailing zeroes. 7419 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 7420 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 7421 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 7422 7423 // For signed saturating operations, we need to be able to detect true integer 7424 // division overflow; that is, when you have MIN / -EPS. However, this 7425 // is undefined behavior and if we emit divisions that could take such 7426 // values it may cause undesired behavior (arithmetic exceptions on x86, for 7427 // example). 7428 // Avoid this by requiring an extra bit so that we never get this case. 7429 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 7430 // signed saturating division, we need to emit a whopping 32-bit division. 7431 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 7432 return SDValue(); 7433 7434 unsigned LHSShift = std::min(LHSLead, Scale); 7435 unsigned RHSShift = Scale - LHSShift; 7436 7437 // At this point, we know that if we shift the LHS up by LHSShift and the 7438 // RHS down by RHSShift, we can emit a regular division with a final scaling 7439 // factor of Scale. 7440 7441 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7442 if (LHSShift) 7443 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 7444 DAG.getConstant(LHSShift, dl, ShiftTy)); 7445 if (RHSShift) 7446 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 7447 DAG.getConstant(RHSShift, dl, ShiftTy)); 7448 7449 SDValue Quot; 7450 if (Signed) { 7451 // For signed operations, if the resulting quotient is negative and the 7452 // remainder is nonzero, subtract 1 from the quotient to round towards 7453 // negative infinity. 7454 SDValue Rem; 7455 // FIXME: Ideally we would always produce an SDIVREM here, but if the 7456 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 7457 // we couldn't just form a libcall, but the type legalizer doesn't do it. 7458 if (isTypeLegal(VT) && 7459 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 7460 Quot = DAG.getNode(ISD::SDIVREM, dl, 7461 DAG.getVTList(VT, VT), 7462 LHS, RHS); 7463 Rem = Quot.getValue(1); 7464 Quot = Quot.getValue(0); 7465 } else { 7466 Quot = DAG.getNode(ISD::SDIV, dl, VT, 7467 LHS, RHS); 7468 Rem = DAG.getNode(ISD::SREM, dl, VT, 7469 LHS, RHS); 7470 } 7471 SDValue Zero = DAG.getConstant(0, dl, VT); 7472 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 7473 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 7474 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 7475 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 7476 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 7477 DAG.getConstant(1, dl, VT)); 7478 Quot = DAG.getSelect(dl, VT, 7479 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 7480 Sub1, Quot); 7481 } else 7482 Quot = DAG.getNode(ISD::UDIV, dl, VT, 7483 LHS, RHS); 7484 7485 return Quot; 7486 } 7487 7488 void TargetLowering::expandUADDSUBO( 7489 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7490 SDLoc dl(Node); 7491 SDValue LHS = Node->getOperand(0); 7492 SDValue RHS = Node->getOperand(1); 7493 bool IsAdd = Node->getOpcode() == ISD::UADDO; 7494 7495 // If ADD/SUBCARRY is legal, use that instead. 7496 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 7497 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 7498 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 7499 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 7500 { LHS, RHS, CarryIn }); 7501 Result = SDValue(NodeCarry.getNode(), 0); 7502 Overflow = SDValue(NodeCarry.getNode(), 1); 7503 return; 7504 } 7505 7506 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7507 LHS.getValueType(), LHS, RHS); 7508 7509 EVT ResultType = Node->getValueType(1); 7510 EVT SetCCType = getSetCCResultType( 7511 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7512 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 7513 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 7514 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7515 } 7516 7517 void TargetLowering::expandSADDSUBO( 7518 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7519 SDLoc dl(Node); 7520 SDValue LHS = Node->getOperand(0); 7521 SDValue RHS = Node->getOperand(1); 7522 bool IsAdd = Node->getOpcode() == ISD::SADDO; 7523 7524 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7525 LHS.getValueType(), LHS, RHS); 7526 7527 EVT ResultType = Node->getValueType(1); 7528 EVT OType = getSetCCResultType( 7529 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7530 7531 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 7532 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 7533 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 7534 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 7535 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 7536 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7537 return; 7538 } 7539 7540 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 7541 7542 // For an addition, the result should be less than one of the operands (LHS) 7543 // if and only if the other operand (RHS) is negative, otherwise there will 7544 // be overflow. 7545 // For a subtraction, the result should be less than one of the operands 7546 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 7547 // otherwise there will be overflow. 7548 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 7549 SDValue ConditionRHS = 7550 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 7551 7552 Overflow = DAG.getBoolExtOrTrunc( 7553 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 7554 ResultType, ResultType); 7555 } 7556 7557 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 7558 SDValue &Overflow, SelectionDAG &DAG) const { 7559 SDLoc dl(Node); 7560 EVT VT = Node->getValueType(0); 7561 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7562 SDValue LHS = Node->getOperand(0); 7563 SDValue RHS = Node->getOperand(1); 7564 bool isSigned = Node->getOpcode() == ISD::SMULO; 7565 7566 // For power-of-two multiplications we can use a simpler shift expansion. 7567 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 7568 const APInt &C = RHSC->getAPIntValue(); 7569 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 7570 if (C.isPowerOf2()) { 7571 // smulo(x, signed_min) is same as umulo(x, signed_min). 7572 bool UseArithShift = isSigned && !C.isMinSignedValue(); 7573 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7574 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 7575 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 7576 Overflow = DAG.getSetCC(dl, SetCCVT, 7577 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 7578 dl, VT, Result, ShiftAmt), 7579 LHS, ISD::SETNE); 7580 return true; 7581 } 7582 } 7583 7584 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 7585 if (VT.isVector()) 7586 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 7587 VT.getVectorNumElements()); 7588 7589 SDValue BottomHalf; 7590 SDValue TopHalf; 7591 static const unsigned Ops[2][3] = 7592 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 7593 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 7594 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 7595 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7596 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 7597 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 7598 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 7599 RHS); 7600 TopHalf = BottomHalf.getValue(1); 7601 } else if (isTypeLegal(WideVT)) { 7602 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 7603 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 7604 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 7605 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 7606 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 7607 getShiftAmountTy(WideVT, DAG.getDataLayout())); 7608 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 7609 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 7610 } else { 7611 if (VT.isVector()) 7612 return false; 7613 7614 // We can fall back to a libcall with an illegal type for the MUL if we 7615 // have a libcall big enough. 7616 // Also, we can fall back to a division in some cases, but that's a big 7617 // performance hit in the general case. 7618 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 7619 if (WideVT == MVT::i16) 7620 LC = RTLIB::MUL_I16; 7621 else if (WideVT == MVT::i32) 7622 LC = RTLIB::MUL_I32; 7623 else if (WideVT == MVT::i64) 7624 LC = RTLIB::MUL_I64; 7625 else if (WideVT == MVT::i128) 7626 LC = RTLIB::MUL_I128; 7627 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 7628 7629 SDValue HiLHS; 7630 SDValue HiRHS; 7631 if (isSigned) { 7632 // The high part is obtained by SRA'ing all but one of the bits of low 7633 // part. 7634 unsigned LoSize = VT.getSizeInBits(); 7635 HiLHS = 7636 DAG.getNode(ISD::SRA, dl, VT, LHS, 7637 DAG.getConstant(LoSize - 1, dl, 7638 getPointerTy(DAG.getDataLayout()))); 7639 HiRHS = 7640 DAG.getNode(ISD::SRA, dl, VT, RHS, 7641 DAG.getConstant(LoSize - 1, dl, 7642 getPointerTy(DAG.getDataLayout()))); 7643 } else { 7644 HiLHS = DAG.getConstant(0, dl, VT); 7645 HiRHS = DAG.getConstant(0, dl, VT); 7646 } 7647 7648 // Here we're passing the 2 arguments explicitly as 4 arguments that are 7649 // pre-lowered to the correct types. This all depends upon WideVT not 7650 // being a legal type for the architecture and thus has to be split to 7651 // two arguments. 7652 SDValue Ret; 7653 TargetLowering::MakeLibCallOptions CallOptions; 7654 CallOptions.setSExt(isSigned); 7655 CallOptions.setIsPostTypeLegalization(true); 7656 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 7657 // Halves of WideVT are packed into registers in different order 7658 // depending on platform endianness. This is usually handled by 7659 // the C calling convention, but we can't defer to it in 7660 // the legalizer. 7661 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 7662 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7663 } else { 7664 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 7665 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7666 } 7667 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 7668 "Ret value is a collection of constituent nodes holding result."); 7669 if (DAG.getDataLayout().isLittleEndian()) { 7670 // Same as above. 7671 BottomHalf = Ret.getOperand(0); 7672 TopHalf = Ret.getOperand(1); 7673 } else { 7674 BottomHalf = Ret.getOperand(1); 7675 TopHalf = Ret.getOperand(0); 7676 } 7677 } 7678 7679 Result = BottomHalf; 7680 if (isSigned) { 7681 SDValue ShiftAmt = DAG.getConstant( 7682 VT.getScalarSizeInBits() - 1, dl, 7683 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 7684 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 7685 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 7686 } else { 7687 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 7688 DAG.getConstant(0, dl, VT), ISD::SETNE); 7689 } 7690 7691 // Truncate the result if SetCC returns a larger type than needed. 7692 EVT RType = Node->getValueType(1); 7693 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 7694 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 7695 7696 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 7697 "Unexpected result type for S/UMULO legalization"); 7698 return true; 7699 } 7700 7701 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 7702 SDLoc dl(Node); 7703 bool NoNaN = Node->getFlags().hasNoNaNs(); 7704 unsigned BaseOpcode = 0; 7705 switch (Node->getOpcode()) { 7706 default: llvm_unreachable("Expected VECREDUCE opcode"); 7707 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 7708 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 7709 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; 7710 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 7711 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 7712 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 7713 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 7714 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; 7715 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; 7716 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; 7717 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; 7718 case ISD::VECREDUCE_FMAX: 7719 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM; 7720 break; 7721 case ISD::VECREDUCE_FMIN: 7722 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM; 7723 break; 7724 } 7725 7726 SDValue Op = Node->getOperand(0); 7727 EVT VT = Op.getValueType(); 7728 7729 // Try to use a shuffle reduction for power of two vectors. 7730 if (VT.isPow2VectorType()) { 7731 while (VT.getVectorNumElements() > 1) { 7732 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 7733 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 7734 break; 7735 7736 SDValue Lo, Hi; 7737 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 7738 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 7739 VT = HalfVT; 7740 } 7741 } 7742 7743 EVT EltVT = VT.getVectorElementType(); 7744 unsigned NumElts = VT.getVectorNumElements(); 7745 7746 SmallVector<SDValue, 8> Ops; 7747 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 7748 7749 SDValue Res = Ops[0]; 7750 for (unsigned i = 1; i < NumElts; i++) 7751 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 7752 7753 // Result type may be wider than element type. 7754 if (EltVT != Node->getValueType(0)) 7755 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 7756 return Res; 7757 } 7758